WO2023219002A1 - Quantum wavelength converter, heralded single photon source - Google Patents

Quantum wavelength converter, heralded single photon source Download PDF

Info

Publication number
WO2023219002A1
WO2023219002A1 PCT/JP2023/016812 JP2023016812W WO2023219002A1 WO 2023219002 A1 WO2023219002 A1 WO 2023219002A1 JP 2023016812 W JP2023016812 W JP 2023016812W WO 2023219002 A1 WO2023219002 A1 WO 2023219002A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant frequency
optical fiber
resonator
photon
pump light
Prior art date
Application number
PCT/JP2023/016812
Other languages
French (fr)
Japanese (ja)
Inventor
隆朗 青木
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Publication of WO2023219002A1 publication Critical patent/WO2023219002A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/383Non-linear optics for second-harmonic generation in an optical waveguide structure of the optical fibre type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the present disclosure relates to a quantum wavelength converter and a single photon source with a messenger equipped with the quantum wavelength converter.
  • a quantum wavelength conversion technology for converting the wavelength of a photon
  • a method realized by a nonlinear optical process including parametric down conversion or a four-wave mixing process is generally known. These nonlinear optical processes are also used to generate photon pairs and are also important as the operating principle of single photon sources with messengers.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose a method for realizing the above-described quantum wavelength conversion using a nonlinear optical crystal bulk such as a KTP crystal.
  • Non-Patent Document 3 and Non-Patent Document 4 disclose a method of realizing the quantum wavelength conversion described above using a nonlinear optical crystal waveguide such as a PPLN waveguide.
  • Non-Patent Document 5 and Non-Patent Document 6 disclose a method of realizing the above-mentioned quantum wavelength conversion using a ring-type microresonator on a chip.
  • Non-Patent Documents 1 to 6 are all difficult to couple with an optical fiber. For this reason, when a quantum wavelength converter using the techniques described in Non-Patent Documents 1 to 6 is introduced into a device that uses an optical fiber as a quantum channel for propagating photons, the optical fiber and the quantum wavelength converter A mechanism is required to connect the two. Therefore, the above-mentioned quantum wavelength converter causes the complexity of the device provided with the quantum wavelength converter.
  • a quantum wavelength converter connects an optical fiber including therein a plurality of resonators having at least a portion of a common resonant optical path, and the optical fiber.
  • a laser light source that inputs pump light having at least one frequency into the optical fiber
  • the plurality of resonators include a first resonator having a first resonant frequency ⁇ 1 as a resonant frequency, and a second resonator having a first resonant frequency ⁇ 1.
  • n i is an effective refractive index inside the optical fiber for light having the i-th resonant frequency ⁇ i
  • c is the speed of light
  • is the nonlinear parameter of the optical fiber
  • P is the intensity of the pump light
  • a quantum wavelength converter connects an optical fiber including therein a plurality of resonators having at least a portion of a common resonant optical path, and the optical fiber, and transmits pump light to the optical fiber.
  • the plurality of resonators include a first resonator having a first resonant frequency ⁇ 1 as a resonant frequency, and a third resonator having a third resonant frequency ⁇ 3 as a resonant frequency; a fourth resonator having a fourth resonant frequency ⁇ 4 different from both the first resonant frequency ⁇ 1 and the third resonant frequency ⁇ 3 ;
  • the effective refractive index inside the optical fiber c is the speed of light, ⁇ is the nonlinear parameter of the optical fiber, P is the intensity of the pump light, The above equations (3) and (4) hold true.
  • a quantum wavelength converter connects an optical fiber including therein a plurality of resonators having at least a portion of a common resonant optical path, and the optical fiber, and transmits pump light to the optical fiber.
  • the plurality of resonators include a first resonator having a first resonant frequency ⁇ 1 as a resonant frequency, a second resonator having a second resonant frequency ⁇ 2 as a resonant frequency, a fourth resonator having a fourth resonant frequency ⁇ 4 different from both the first resonant frequency ⁇ 1 and the second resonant frequency ⁇ 2 , and n i is the light having the i-th resonant frequency ⁇ i .
  • c is the speed of light
  • is the nonlinear parameter of the optical fiber
  • P is the intensity of the pump light
  • a quantum wavelength converter that can be easily coupled to an optical fiber and can reduce the complexity of the quantum device when it is introduced into a quantum device using an optical fiber.
  • FIG. 1 is a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 1 of the present disclosure.
  • 1 is a schematic enlarged view of a single photon source according to Embodiment 1 of the present disclosure.
  • FIG. 1A and 1B are a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 1 of the present disclosure, and an energy diagram showing energy transition in the resonator structure. They are a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 2 of the present disclosure.
  • FIG. 3 is a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 3 of the present disclosure. They are a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 3 of the present disclosure, and an energy diagram showing energy transition in the resonator structure.
  • FIG. 3 is a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 4 of the present disclosure.
  • FIG. 6 is a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 5 of the present disclosure.
  • FIG. 7 is a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 5 of the present disclosure, and an energy diagram showing energy transition in the resonator structure.
  • FIG. FIG. 7 is a schematic plan view of a single photon source with a messenger according to Embodiment 6 of the present disclosure.
  • FIG. 7 is a schematic plan view of a single photon source with a messenger according to Embodiment 7 of the present disclosure. They are a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 7 of the present disclosure, and an energy diagram showing energy transition in the resonator structure.
  • FIG. 7 is a schematic plan view of a single photon source with a messenger according to Embodiment 8 of the present disclosure.
  • FIG. 7 is a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 8 of the present disclosure, and an energy diagram showing energy transition in the resonator structure.
  • FIG. 7 is a schematic plan view of a single photon source with a messenger according to Embodiment 8 of the present disclosure.
  • FIG. 7 is a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 8 of the present disclosure, and an energy diagram showing energy transition in the resonator structure
  • the quantum wavelength converter according to the present embodiment converts the wavelength of an input single photon having a specific wavelength and outputs a single photon having a wavelength different from the wavelength.
  • the quantum wavelength converter according to this embodiment converts a single photon from a single photon source and pump light from a laser light source into a resonator structure including a plurality of resonators having a common resonant optical path.
  • This is a device that outputs a wavelength-converted single photon from the resonator structure upon input.
  • FIG. 1 is a schematic plan view of a quantum wavelength converter 2 according to the present embodiment, and an enlarged view of a resonator structure 4 included in the quantum wavelength converter 2 in the schematic plan view.
  • the quantum wavelength converter 2 includes a resonator structure 4, a laser light source 6, and a single mode optical fiber 8. Further, the quantum wavelength converter 2 includes a single photon source 10, a dichroic mirror 12, and an optical terminator 14. Note that FIG. 1 also shows a quantum device X into which a wavelength-converted single photon generated by a quantum wavelength converter 2 by a method described later is input. As will be described in detail later, the quantum wavelength converter 2 according to the present embodiment converts a single photon input into the resonator structure 4 from the single photon source 10 into a single photon of a wavelength required by the quantum device This will be explained by taking as an example a quantum wavelength converter that converts .
  • the resonator structure 4 includes a nano-optical fiber portion 16 and both end portions 8A connected to the nano-optical fiber portion 16 via a tapered portion 18.
  • both ends 8A are part of the optical fiber 8 included in the quantum wavelength converter 2.
  • the nano-optical fiber section 16 is heated by a method such as heating a part of the optical fiber 8 with a ceramic heater or various heating methods including oxygen-water flame, etc., and pulling the heated part from both ends. is formed in the heated portion of the .
  • the resonator structure 4 includes the nano-optical fiber portion 16 and both end portions 8A as part of the optical fiber 8.
  • the resonator structure 4 further includes a common FBG (fiber Bragg grating) 20, a first FBG 22, a second FBG 24, a third FBG 26, and a fourth FBG 28 at both ends 8A or inside the nano-optical fiber section 16.
  • FBG fiber Bragg grating
  • the above-described FBGs are formed in the core part 30 of the core part 30 through which photons propagate and the clad part 32 around the core part 30, which are included in both end parts 8A.
  • the common FBG 20, the first FBG 22, the second FBG 24, the third FBG 26, and the fourth FBG 28 reflect a portion of photons having a specific frequency.
  • the first FBG 22 has a first resonant frequency ⁇ 1
  • the second FBG 24 has a second resonant frequency ⁇ 2
  • the third FBG 26 has a third resonant frequency ⁇ 3
  • the fourth FBG 28 has a fourth resonant frequency ⁇ 4 . Reflect some of the photons.
  • the common FBG 20 partially reflects photons having any of the first resonant frequency ⁇ 1 , the second resonant frequency ⁇ 2 , the third resonant frequency ⁇ 3 , and the fourth resonant frequency ⁇ 4 .
  • the first resonant frequency ⁇ 1 , the second resonant frequency ⁇ 2 , the third resonant frequency ⁇ 3 , and the fourth resonant frequency ⁇ 4 are all different frequencies. In other words, in this embodiment, at least the fourth resonant frequency ⁇ 4 is different from any of the first resonant frequency ⁇ 1 , the second resonant frequency ⁇ 2 , and the third resonant frequency ⁇ 3 .
  • a common FBG 20 is formed at one end, and a first FBG 22, a second FBG 24, a third FBG 26, and a fourth FBG 28 are formed at the other end.
  • a common optical path including at least the photon propagation path of the nano-optical fiber portion 16 is formed between the common FBG 20 and each of the first FBG 22 , the second FBG 24 , the third FBG 26 , and the fourth FBG 28 .
  • the first resonator 34, the second resonator 36, the third resonator 38, and A fourth resonator 40 is formed.
  • the first resonator 34, the second resonator 36, the third resonator 38, and the fourth resonator 40 each have a first resonant frequency ⁇ 1 , a second resonant frequency ⁇ 2 ,
  • the resonance frequency has a third resonance frequency ⁇ 3 and a fourth resonance frequency ⁇ 4 .
  • photons having a corresponding resonant frequency resonate.
  • the first resonator 34, the second resonator 36, the third resonator 38, and the fourth resonator 40 share a propagation path of photons in the nano-optical fiber section 16, which is at least a part of the optical fiber 8. as a resonant optical path.
  • the resonator structure 4 includes a plurality of resonators, at least some of which have a common resonant optical path.
  • each of the plurality of resonators has a pair of fiber Bragg gratings whose reflection bands include the respective resonant frequencies.
  • the common FBG 20 is formed as the same fiber Bragg grating between the plurality of resonators. Note that at least one of the fiber Bragg gratings included in the plurality of resonators included in the resonator structure 4 may be a common FBG 20.
  • the first FBG 22, the second FBG 24, the third FBG 26, and the fourth FBG 28 are individually formed at one both ends 8A. Therefore, in this embodiment, the resonator lengths L1, L2, L3, and L4 of the first resonator 34, the second resonator 36, the third resonator 38, and the fourth resonator 40 are Can be designed independently.
  • the first FBG 22, the second FBG 24, the third FBG 26, and the fourth FBG 28 are formed individually, but the invention is not limited to this.
  • a continuous fiber Bragg grating may be formed at one of both ends 8A, and chirps may be formed at each of a plurality of positions of the fiber Bragg grating.
  • each resonator may be formed by reflecting photons of a specific wavelength at the positions where each chirp is formed in the fiber Bragg grating.
  • the laser light source 6 may generate pump light that includes multiple frequency bands, or may generate multiple pump lights that include a specific frequency.
  • the laser light source 6 generates a first pump light PL1 having a second resonant frequency ⁇ 2 and a second pump light PL2 having a third resonant frequency ⁇ 3 , and generates a first pump light PL1 having a third resonant frequency ⁇ 3.
  • the second pump light PL2 is input to each resonator of the resonator structure 4.
  • FIG. 2 is an enlarged schematic diagram showing the single photon source 10 included in the quantum wavelength converter 2, out of the schematic plan view of the quantum wavelength converter 2 shown in FIG.
  • the single photon source 10 includes a nano-optical fiber section 16, and both ends connected to the nano-optical fiber section 16 via a tapered section 18. Contains 8A.
  • the single photon source 10 includes a common FBG 20 in the core part 30 at one end 8A of each fiber Bragg grating included in the resonator structure 4, and a first FBG 22 in the core part 30 at the other end 8A. Contains only. Therefore, the single photon source 10 includes only the first resonator 34 among the resonators included in the resonator structure 4 .
  • the single photon source 10 includes a quantum system 42 formed on the nano-optical fiber section 16.
  • the quantum system 42 includes at least a ground level and an excited level that is a level higher than the ground level, and includes, for example, atoms, ions, diamond having nitrogen defects, quantum dots, and the like. Further, in this embodiment, the level difference between the ground level and the excited level of the quantum system 42 corresponds to the energy of a photon having the first resonance frequency ⁇ 1 .
  • the single photon source 10 may generate a single photon having a first resonant frequency ⁇ 1 using, for example, a state transition between the ground level and the excited level of the quantum system 42 .
  • the single photon source 10 may include, for example, a laser light source (not shown) that can irradiate the quantum system 42 with control light that causes a state transition between the ground level and the excited level of the quantum system 42. good.
  • the single photon source 10 uses, for example, the Purcell effect in which the spontaneous emission of a single photon accompanying a state transition between the ground level and the excited level is emphasized by the coupling between the quantum system 42 and the first resonator 34.
  • a single photon having a first resonant frequency ⁇ 1 may be generated in the first resonator 34 based on ⁇ 1 .
  • the single photon source 10 generates a single photon by using the fact that a single photon is generated when the state of the quantum system 42 is excited by the control light from the laser light source and returns to the ground state again. You may.
  • the single photon source 10 may generate a single photon in the first resonator 34 by irradiating the quantum system 42 with control light whose amplitude gradually increases from 0.
  • the waveform of a single photon can be controlled by controlling the temporal change in the amplitude of the control light.
  • the single photon source 10 is connected to the resonator structure 4 via an optical fiber 8. Therefore, the single photon source 10 inputs the generated single photon having the first resonance frequency ⁇ 1 to each resonator of the resonator structure 4 as an input single photon IF.
  • the quantum wavelength converter 2 mixes the first pump light PL1 and the second pump light PL2 from the laser light source 6 and the input single photon IF from the single photon source 10 to convert each of the resonator structures 4
  • a confluencer 44 for inputting to the resonator may be provided.
  • each resonator of the resonator structure 4 receives the first pump light PL1 and the second pump light PL2 from the laser light source 6, and the input single photon IF from the single photon source 10. is input.
  • the resonator structure 4 generates an output photon having a fourth resonant frequency ⁇ 4 by a four-wave mixing process using the input first pump light PL1, second pump light PL2, and input single photon IF.
  • the output photon OF is a single photon.
  • FIG. 3 is a schematic diagram 4A for explaining input and output of photons in the resonator structure 4, and an energy diagram D1 showing state transitions occurring in the resonator structure 4.
  • the resonator structure 4 includes a single input photon IF having a first resonant frequency ⁇ 1 , a first pump light PL1 having a second resonant frequency ⁇ 2 , and a third resonant Second pump light PL2 having a frequency ⁇ 3 is input.
  • an output photon OF having a fourth resonant frequency ⁇ 4 is output from the resonator structure 4 by a method described below.
  • n i is the effective refractive index inside the nano-optical fiber section 16 for light having the i-th resonance frequency ⁇ i .
  • c is the speed of light
  • is the nonlinear coefficient of the nano-optical fiber section 16
  • P is the total intensity of the pump light from the laser light source 6.
  • the energy difference between the ground level g and the excited level e is made approximately equal to the total value of the energy of photons having the first resonance frequency ⁇ 1 and the energy of photons having the second resonance frequency ⁇ 2 .
  • a state transition shown in the energy diagram D1 occurs in the nano-optical fiber section 16 due to the single input photon IF, the first pump light PL1, and the second pump light PL2.
  • the single input photon IF and the first pump light PL1 cause excitation from the ground level g to the excited level e.
  • the second pump light PL2 causes a transition from the excitation level e to the middle of the two levels.
  • an output photon OF having a fourth resonant frequency ⁇ 4 is generated, which has an energy corresponding to the difference between the energy of the second pump light PL2 and the energy difference between the ground level g and the excited level e. .
  • each resonator of the resonator structure 4 according to the present embodiment satisfies the energy conservation law and phase matching conditions of the four-wave mixing process in the nano-optical fiber section 16, which is a common resonant optical path.
  • equation (1) represents the energy conservation law of the four-wave mixing process
  • equation (2) represents the phase matching condition of the four-wave mixing process.
  • each resonator of the resonator structure 4 including the nano-optical fiber section 16 as a common resonant optical path has a first resonant frequency ⁇ 1 , a second resonant frequency ⁇ 2 , a third resonant frequency ⁇ 3 , and a fourth resonant frequency ⁇ 3 . It couples with light having a resonant frequency ⁇ 4 . Therefore, each resonator of the resonator structure 4 promotes the above-mentioned four-wave mixing process in the nano-optical fiber section 16, and the generation of output photons OF in the resonator structure 4 is promoted.
  • c is the speed of light
  • n i is the group refractive index in the i-th resonator
  • Li is the resonator length of the i-th resonator
  • ⁇ i reflects the photon having the i-th resonance frequency ⁇ i
  • the phase change of the photon in the fiber Bragg grating, m i is a natural number.
  • n i and ⁇ i may depend on the frequency of the photon.
  • the resonator length Li of each resonator of the resonator structure 4 is individually designed, or the resonator length Li of each resonator is designed in consideration of the dispersion added by the fiber Bragg grating of each resonator. Design each resonator. Accordingly, in this embodiment, each resonator of the resonator structure 4 is designed so that the above formula (2) holds true. For example, as described above, by individually forming the first FBG 22, the second FBG 24, the third FBG 26, and the fourth FBG 28 for the common FBG 20, the resonator length Li of each resonator can be individually designed.
  • the resonator length Li of each resonator included in the resonator structure 4 is not particularly limited. Therefore, the magnitude relationship of the resonator lengths Li of each resonator included in the resonator structure 4 is not limited to the magnitude relationship shown in FIG. 1 and the like.
  • each resonator can be easily designed to satisfy the above formula (2).
  • the resonator structure 4 individually forms one of the pair of fiber Bragg gratings for each resonator, the resonator length Li for each resonator is stable against disturbances such as temperature changes or vibrations. can be performed independently.
  • the resonator structure 4 generates an output photon OF having the fourth resonant frequency ⁇ 4 .
  • the output photons OF output from the resonator structure 4 enter the dichroic mirror 12 via the optical fiber 8.
  • the single input photon IF from the single photon source 10 the first pump light PL1 from the laser light source 6, and the second pump light PL2 are also emitted from the resonator structure 4, and enter the dichroic mirror 12. .
  • the dichroic mirror 12 is a mirror that transmits or reflects photons of a specific frequency.
  • the dichroic mirror 12 is installed so that the transmitted photons are incident on the quantum device X, and the reflected photons are incident on the optical terminator 14.
  • the quantum wavelength converter 2 may include a plurality of dichroic mirrors 12 that transmit or reflect photons with different frequencies.
  • the dichroic mirror 12 reflects photons having a first resonant frequency ⁇ 1 , a second resonant frequency ⁇ 2 , and a third resonant frequency ⁇ 3 and transmits photons having a fourth resonant frequency ⁇ 4 . Therefore, the dichroic mirror 12 receives a single input photon IF with a first resonant frequency ⁇ 1 , a first pump light PL1 with a second resonant frequency ⁇ 2 , and a second pump light PL2 with a third resonant frequency ⁇ 3 . It is reflected and made incident on the optical terminator 14.
  • the dichroic mirror 12 transmits the output photon OF having the fourth resonance frequency ⁇ 4 and makes it incident on the quantum device X.
  • the dichroic mirror 12 limits the photons that enter the quantum device X among the photons emitted from the resonator structure 4 to only the output photons OF.
  • the quantum wavelength converter 2 may include a diffraction grating that diffracts the light emitted from the resonator structure 4 in different directions for each wavelength.
  • the quantum wavelength converter 2 according to this embodiment may include a WDM filter that separates the light emitted from the resonator structure 4 instead of the dichroic mirror 12.
  • the optical terminator 14 is, for example, an optical element that converts the energy of incident photons into energy such as heat, thereby causing the photons to disappear without being reflected or dispersed.
  • the quantum wavelength converter 2 reduces the output of the single input photon IF, the first pump light PL1, and the second pump light PL2 emitted from the resonator structure 4 to the outside.
  • the quantum wavelength converter 2 may further include another resonator structure 4 instead of the optical terminator 14, and the photons reflected by the dichroic mirror 12 may be incident on the resonator structure 4. good. Thereby, the quantum wavelength converter 2 may generate output photons OF in each of the plurality of resonator structures 4.
  • the quantum wavelength converter 2 converts a single input photon IF having a first resonance frequency ⁇ 1 generated by the single photon source 10 into a fourth resonance having a frequency different from the first resonance frequency ⁇ 1 . It can be converted into an output photon OF with frequency ⁇ 4 . Further, the quantum wavelength converter 2 inputs the output photon OF to the quantum device X. Thereby, even if there is a difference between the frequency of photons generated by the single photon source 10 and the frequency of photons required by the quantum device The frequency of the photon can be converted and input into the quantum device X.
  • the fourth resonant frequency ⁇ 4 is set to be a frequency lower than any of the other resonant frequencies.
  • the present invention is not limited to this, and the fourth resonant frequency ⁇ 4 may be higher than any of the resonant frequencies.
  • the fourth resonant frequency ⁇ 4 may be made larger than the third resonant frequency ⁇ 3 .
  • the frequencies of the first pump light PL1 and the second pump light PL2 and the resonator of each resonator included in the resonator structure 4 are set so that the above formulas (1) and (2) are satisfied.
  • the fourth resonant frequency ⁇ 4 may be changed by changing the design such as length.
  • the quantum wavelength converter 2 according to the present embodiment includes, as part of the optical fiber 8, a common resonant optical path of each resonator into which pump light and the like are input and which generate photons after wavelength conversion. Therefore, even if a quantum device that emits photons before wavelength conversion or a quantum device that requires photons after wavelength conversion has an optical fiber, the quantum wavelength converter 2 according to the present embodiment can be used. , easily realizes coupling with the optical fiber. Therefore, even when the quantum wavelength converter 2 is incorporated into a quantum device including an optical fiber, the complexity of the structure of the quantum device is reduced.
  • the quantum wavelength converter 2 converts the wavelength of the single input photon IF generated by the single photon source 10, the present invention is not limited thereto.
  • the quantum wavelength converter 2 may convert the wavelength of a photon having the first resonant frequency ⁇ 1 output from a quantum computing unit in a quantum computer or a quantum repeater in a quantum communication device.
  • the quantum wavelength converter 2 may further convert the wavelength of the output photon OF generated by another quantum wavelength converter 2.
  • a quantum processing unit or quantum repeater that includes atoms as a quantum system
  • the excitation between the ground level of the atom and immediately above it is required. Transitions between levels are often used.
  • the wavelength of the photon is generally required to be less than 1 ⁇ m in order to cause the atom to interact with the photon.
  • the wavelength of photons propagating through the optical fiber is included in the communication wavelength band, which is a wavelength band of 1.3 ⁇ m or more and 1.6 ⁇ m or less. There are many.
  • the quantum wavelength converter 2 converts photons with a wavelength of less than 1 ⁇ m, which are output from the quantum operation unit or quantum repeater described above, into photons with a wavelength of 1.3 ⁇ m or more and 1.6 ⁇ m or less, for example. However, it may also be propagated through an optical fiber. Then, another quantum wavelength converter 2 may convert the photon propagating in the optical fiber into a photon having a wavelength of less than 1 ⁇ m again, and then input the photon to another quantum processing unit or quantum repeater. In this case, the quantum wavelength converter 2 provides a low-loss propagation of photons in a plurality of quantum computing units or quantum repeaters.
  • the common resonant optical path in each resonator of the resonator structure 4 includes a nano-optical fiber portion 16 having a smaller diameter than both end portions 8A. Therefore, due to the small mode cross section, the above-mentioned four-wave mixing process occurs more significantly in the nano-optical fiber portion 16 than in other portions of the optical fiber 8. Therefore, the quantum wavelength converter 2 according to this embodiment can improve the conversion efficiency from a single input photon IF to an output photon OF.
  • each resonator of the resonator structure 4 has a pair of fiber Bragg gratings. Therefore, in the quantum wavelength converter 2, each resonator of the resonator structure 4 can be configured more simply than when the quantum wavelength converter 2 includes an optical element such as a pair of mirrors or a ring resonator. Furthermore, between the plurality of resonators, at least a portion of the fiber Bragg grating is the same common FBG 20. Therefore, in the quantum wavelength converter 2, each resonator of the resonator structure 4 can be configured more simply than when each resonator is provided with a pair of independent fiber Bragg gratings. As mentioned above, by forming one of the pair of fiber Bragg gratings in each resonator in common and forming the other individually, the quantum wavelength converter 2 can improve the design of the resonator length of each resonator. You can do it easily.
  • the quantum wavelength converter 2 may input pump light having the first resonant frequency ⁇ 1 emitted from the laser light source 6 to the resonator structure 4 instead of the single input photon IF. In this case, by sufficiently increasing the intensity of each pump light emitted from the laser light source 6, the resonator structure 4 generates coherent photons having a fourth resonant frequency ⁇ 4 . In other words, the quantum wavelength converter 2 may also function as an optical parametric oscillator. Note that the quantum wavelength converter according to each embodiment described in this specification, not limited to this embodiment, is an optical parametric converter that generates coherent photons having a fourth resonance frequency ⁇ 4 from pump light from a laser light source. It may also function as an oscillator.
  • FIG. 4 is a schematic plan view of the quantum wavelength converter 46 according to the present embodiment, and an enlarged view of the resonator structure 48 included in the quantum wavelength converter 46 in the schematic plan view.
  • the quantum wavelength converter 46 according to this embodiment differs in configuration from the quantum wavelength converter 2 according to the previous embodiment only in that it includes a resonator structure 48 instead of the resonator structure 4.
  • members that have the same configuration or perform the same functions in different embodiments will be designated by the same member numbers, and detailed explanations thereof will be omitted. do.
  • the resonator structure 48 differs in configuration from the resonator structure 4 according to the previous embodiment in that it does not include the second FBG 24 and the second resonator 36. Therefore, the resonator structure 48 includes a first resonator 34, a third resonator 38, each having a first resonant frequency ⁇ 1 , a third resonant frequency ⁇ 3 , and a fourth resonant frequency ⁇ 4 as resonant frequencies, respectively. and a fourth resonator 40. Further, the resonator structure 48 includes at least the nano-optical fiber section 16 as a common resonant optical path of the first resonator 34, the third resonator 38, and the fourth resonator 40.
  • the laser light source 6 inputs the second pump light PL2 having the third resonance frequency ⁇ 3 to the resonator structure 48, and does not emit the first pump light PL1. Therefore, the second pump light PL2 from the laser light source 6 and the single input photon IF generated by the single photon source 10 are input to the resonator structure 48 according to this embodiment.
  • the resonator structure 48 generates an output photon OF having a fourth resonant frequency ⁇ 4 by parametric down-conversion using the input second pump light PL2 and the input single photon IF.
  • FIG. 5 is a schematic diagram 48A for explaining the input and output of photons in the resonator structure 48, and an energy diagram D2 showing state transitions occurring in the resonator structure 48.
  • a single input photon IF having a first resonant frequency ⁇ 1 and a second pump light PL2 having a third resonant frequency ⁇ 3 are input to the resonator structure 48.
  • an output photon OF having a fourth resonant frequency ⁇ 4 is output from the resonator structure 48 by a method described below.
  • the output photon OF is a single photon.
  • the state transition shown in the energy diagram D2 occurs in the nano-optical fiber section 16 due to the single input photon IF and the second pump light PL2.
  • a single input photon IF causes excitation from the ground level g to the excited level e.
  • the second pump light PL2 causes a transition from the excitation level e to the middle of the two levels.
  • an output photon OF having a fourth resonant frequency ⁇ 4 is generated, which has an energy corresponding to the difference between the energy of the second pump light PL2 and the energy difference between the ground level g and the excited level e. .
  • each resonator of the resonator structure 48 according to this embodiment satisfies the energy conservation law and phase matching conditions for parametric down conversion in the nano-optical fiber section 16, which is a common resonant optical path.
  • equation (3) represents the energy conservation law of parametric down transformation
  • equation (4) represents the phase matching condition of parametric down transformation.
  • the four-wave mixing process which is a third-order nonlinear optical effect
  • the parametric down-conversion which is a second-order nonlinear optical effect
  • materials without inversion symmetry occurs significantly in materials without inversion symmetry.
  • the optical fiber has inversion symmetry.
  • the effect of the surface having no inversion symmetry as a structure becomes significant, and second-order nonlinear optical effects are observed. Therefore, in each resonator including the nano-optical fiber section 16 in a common resonant optical path, like the resonator structure 48 according to the present embodiment, not only the four-wave mixing process but also the parametric downward conversion significantly occurs. do.
  • the resonator structure 48 generates an output photon OF having a fourth resonant frequency ⁇ 4 .
  • the output photon OF output from the resonator structure 48 passes through the dichroic mirror 12 and enters the quantum device X.
  • the single input photon IF from the resonator structure 48 and the second pump light PL2 are reflected by the dichroic mirror 12, enter the optical terminator 14, and disappear.
  • the quantum wavelength converter 46 receives a single input photon IF having a first resonant frequency ⁇ 1 generated by the single photon source 10 and a single input photon IF having a fourth resonant frequency ⁇ 4.
  • the output photon OF can be converted into an output photon OF and input into the quantum device X.
  • the resonator structure 48 of the quantum wavelength converter 46 does not include the second resonator 36 compared to the resonator structure 4 of the quantum wavelength converter 2, and thus contains one fewer resonator. . Therefore, the quantum wavelength converter 46 can configure the resonator structure 48 more simply than the quantum wavelength converter 2, and also makes the design of the resonator structure 48 easier.
  • the quantum wavelength converter 46 converts the wavelength of a photon using parametric down conversion, so compared to the quantum wavelength converter 2, the single photon input to the resonator structure 48 is converted into a photon with a longer wavelength and lower frequency. This is useful when you want to convert to .
  • FIG. 6 is a schematic plan view of the quantum wavelength converter 50 according to the present embodiment, and an enlarged view of the resonator structure 52 included in the quantum wavelength converter 50 in the schematic plan view.
  • the quantum wavelength converter 50 according to the present embodiment differs in configuration from the quantum wavelength converter 2 according to the first embodiment only in that it includes a resonator structure 52 instead of the resonator structure 4.
  • the resonator structure 52 differs in configuration from the resonator structure 4 in that it does not include the third FBG 26 and the third resonator 38. Therefore, the resonator structure 52 includes a first resonator 34, a second resonator 36, each having a first resonant frequency ⁇ 1 , a second resonant frequency ⁇ 2 , and a fourth resonant frequency ⁇ 4 as resonant frequencies, respectively. and a fourth resonator 40. Further, the resonator structure 52 includes at least the nano-optical fiber section 16 as a common resonant optical path of the first resonator 34, the second resonator 36, and the fourth resonator 40.
  • the laser light source 6 inputs the first pump light PL1 having the second resonance frequency ⁇ 2 to the resonator structure 52, and does not emit the second pump light PL2. Therefore, the first pump light PL1 from the laser light source 6 and the single input photon IF generated by the single photon source 10 are input to the resonator structure 52 according to this embodiment.
  • the resonator structure 52 generates an output photon OF having a fourth resonant frequency ⁇ 4 by parametric upward conversion using the input first pump light PL1 and the input single photon IF.
  • FIG. 7 is a schematic diagram 52A for explaining input and output of photons in the resonator structure 52, and an energy diagram D3 showing state transitions occurring in the resonator structure 52.
  • a single input photon IF having a first resonant frequency ⁇ 1 and a first pump light PL1 having a second resonant frequency ⁇ 2 are input to the resonator structure 52.
  • an output photon OF having the fourth resonant frequency ⁇ 4 is output from the resonator structure 52 by a method described below.
  • the output photon OF is a single photon.
  • the state transition shown in the energy diagram D3 occurs in the nano-optical fiber section 16 due to the single input photon IF and the first pump light PL1.
  • the single input photon IF and the first pump light PL1 cause excitation from the ground level g to the excited level e.
  • an output photon OF with a fourth resonant frequency ⁇ 4 is generated, which has an energy corresponding to the energy difference between the ground level g and the excited level e.
  • each resonator of the resonator structure 52 according to this embodiment satisfies the law of energy conservation and phase matching conditions for parametric upward conversion in the nano-optical fiber section 16, which is a common resonant optical path.
  • equation (5) represents the energy conservation law of parametric upward transformation
  • equation (6) represents the phase matching condition of parametric upward transformation.
  • parametric upward conversion is a second-order nonlinear optical effect like parametric downward conversion, so it occurs significantly in a substance that does not have inversion symmetry.
  • parametric upward conversion also occurs significantly.
  • the resonator structure 52 generates an output photon OF having the fourth resonant frequency ⁇ 4 .
  • the output photon OF output from the resonator structure 52 passes through the dichroic mirror 12 and enters the quantum device X. Further, the single input photon IF from the resonator structure 52 and the first pump light PL1 are reflected by the dichroic mirror 12, enter the optical terminator 14, and disappear.
  • the quantum wavelength converter 50 receives a single input photon IF having a first resonant frequency ⁇ 1 generated by the single photon source 10 and a single input photon IF having a fourth resonant frequency ⁇ 4 .
  • the output photon OF can be converted into an output photon OF and input into the quantum device X.
  • the resonator structure 52 of the quantum wavelength converter 50 does not include the third resonator 38 compared to the resonator structure 4 of the quantum wavelength converter 2, and thus contains one fewer resonator. . Therefore, the quantum wavelength converter 50 can configure the resonator structure 52 more simply than the quantum wavelength converter 2, and also makes the design of the resonator structure 52 easier.
  • Quantum wavelength converter 50 converts the wavelength of a photon using parametric upward conversion, so compared to quantum wavelength converter 2 and quantum wavelength converter 46, quantum wavelength converter 50 converts a single photon input into resonator structure 52 more easily. This is useful when you want to convert photons with short wavelengths and high frequencies.
  • FIG. 8 is a schematic plan view of the quantum wavelength converter 54 according to the present embodiment, and a schematic diagram showing an enlarged view of the resonator structure 56 included in the quantum wavelength converter 54 in the schematic plan view.
  • the quantum wavelength converter 54 according to the present embodiment includes a resonator structure 56 instead of the resonator structure 4, and a single photon source 10.
  • the configuration differs only in that it is not. Therefore, the quantum wavelength converter 54 does not need to include the combiner 44.
  • the resonator structure 56 has the same configuration as the resonator structure 48 except for the relationship in size between the resonator lengths of the respective resonators.
  • L3 is longer than L1.
  • the resonator structure 56 corresponds to the resonator structure 4 in which the second FBG 24 is the same as the first FBG 22, and the first resonator 34 is the same as the second resonator 36.
  • the second resonant frequency ⁇ 2 can be considered to be the same as the first resonant frequency ⁇ 1 .
  • the resonator structure 56 includes a first resonator 34, a third resonator 38, each having a first resonant frequency ⁇ 1 , a third resonant frequency ⁇ 3 , and a fourth resonant frequency ⁇ 4 as resonant frequencies, respectively. and a fourth resonator 40. Further, the resonator structure 56 includes at least the nano-optical fiber section 16 as a common resonant optical path of the first resonator 34, the third resonator 38, and the fourth resonator 40.
  • the laser light source 6 inputs the first pump light PL1 having the second resonant frequency ⁇ 2 and the second pump light PL2 having the third resonant frequency ⁇ 3 to the resonator structure 56 .
  • the first pump light PL1 can be considered to have the first resonant frequency ⁇ 1 .
  • the resonator structure 56 generates output photons OF having a fourth resonant frequency ⁇ 4 through a four-wave mixing process using the input first pump light PL1 and second pump light PL2.
  • FIG. 9 is a schematic diagram 56A for explaining the input and output of photons in the resonator structure 56, and an energy diagram D4 showing state transitions occurring in the resonator structure 56.
  • a first pump light PL1 having a first resonant frequency ⁇ 1 and a second pump light PL2 having a third resonant frequency ⁇ 3 are input to the resonator structure 56.
  • an output photon OF having a fourth resonant frequency ⁇ 4 is output from the resonator structure 56 by a method described below.
  • the output photon OF may be a single photon or may include multiple photons emitted from the resonator structure 56 substantially simultaneously.
  • the energy is approximately equal to twice the energy of .
  • the state transition shown in the energy diagram D4 occurs in the nano-optical fiber section 16 due to the first pump light PL1 and the second pump light PL2.
  • the first pump light PL1 causes excitation from the ground level g to half the energy difference between the ground level g and the excited level e, and the excitation by the first pump light PL1 continues. occurs. Therefore, the first pump light PL1 causes excitation from the ground level g to the excitation level e. Excitation from the ground level g to the excited level e occurs more efficiently in proportion to the intensity of the first pump light PL1.
  • the second pump light PL2 causes a transition from the excitation level e to the middle of the two levels.
  • an output photon OF having a fourth resonant frequency ⁇ 4 is generated, which has an energy corresponding to the difference between the energy of the second pump light PL2 and the energy difference between the ground level g and the excited level e. .
  • each resonator of the resonator structure 56 according to the present embodiment satisfies the energy conservation law and phase matching condition of the four-wave mixing process in the nano-optical fiber section 16, which is a common resonant optical path.
  • the degenerate four-wave mixing process in this embodiment is a third-order nonlinear optical effect, like the non-degenerate four-wave mixing process in the first embodiment, it significantly occurs in the optical fiber 8.
  • the resonator structure 56 generates an output photon OF having a fourth resonant frequency ⁇ 4 .
  • the output photon OF output from the resonator structure 56 passes through the dichroic mirror 12 and enters the quantum device X. Further, the first pump light PL1 and the second pump light PL2 from the resonator structure 56 are reflected by the dichroic mirror 12, enter the optical terminator 14, and disappear.
  • the quantum wavelength converter 54 generates output photons OF having a fourth resonance frequency ⁇ 4 by converting the wavelength of the pump light from the laser light source 6, and can input them into the quantum device X. can.
  • the resonator structure 56 of the quantum wavelength converter 54 does not include the second resonator 36 compared to the resonator structure 4 of the quantum wavelength converter 2, and thus contains one fewer resonator. . Therefore, the quantum wavelength converter 54 can configure the resonator structure 56 more simply than the quantum wavelength converter 2, and also makes the design of the resonator structure 56 easier.
  • FIG. 10 is a schematic plan view of the quantum wavelength converter 58 according to the present embodiment, and an enlarged view of the resonator structure 60 included in the quantum wavelength converter 58 in the schematic plan view.
  • the quantum wavelength converter 58 according to this embodiment differs in configuration from the quantum wavelength converter 54 according to the previous embodiment only in that it includes a resonator structure 60 instead of the resonator structure 56.
  • the resonator structure 60 differs in configuration from the resonator structure 4 in that it does not include the second FBG 24, the third FBG 26, the second resonator 36, and the third resonator 38.
  • the resonator structure 60 corresponds to the resonator structure 52 in which the second FBG 24 is the same as the first FBG 22, and the first resonator 34 is the same as the second resonator 36.
  • the second resonant frequency ⁇ 2 can be considered to be the same as the first resonant frequency ⁇ 1 .
  • the resonator structure 60 includes a first resonator 34 and a fourth resonator 40, each having a first resonant frequency ⁇ 1 and a fourth resonant frequency ⁇ 4 as resonant frequencies. Further, the resonator structure 60 includes at least the nano-optical fiber section 16 as a common resonant optical path of the first resonator 34 and the fourth resonator 40.
  • the laser light source 6 inputs the first pump light PL1 having the second resonance frequency ⁇ 2 to the resonator structure 56 .
  • the first pump light PL1 can be considered to have the first resonant frequency ⁇ 1 .
  • the resonator structure 60 generates an output photon OF having a fourth resonant frequency ⁇ 4 through parametric upward conversion using the input first pump light PL1.
  • FIG. 11 is a schematic diagram 60A for explaining input and output of photons in the resonator structure 60, and an energy diagram D5 showing state transitions occurring in the resonator structure 60.
  • the first pump light PL1 having the first resonance frequency ⁇ 1 is input to the resonator structure 60.
  • an output photon OF having the fourth resonant frequency ⁇ 4 is output from the resonator structure 60 by a method described below.
  • the output photon OF may be a single photon or may include multiple photons emitted from the resonator structure 56 substantially simultaneously.
  • the state transition shown in the energy diagram D5 occurs in the nano-optical fiber section 16 due to the first pump light PL1.
  • the first pump light PL1 causes excitation from the ground level g to an energy that is half the energy difference between the ground level g and the excited level e.
  • the intensity of the first pump light PL1 is sufficiently strong, further excitation by the first pump light PL1 occurs continuously. Therefore, the first pump light PL1 causes excitation from the ground level g to the excitation level e.
  • an output photon OF with a fourth resonant frequency ⁇ 4 is generated, which has an energy corresponding to the energy difference between the ground level g and the excited level e.
  • each resonator of the resonator structure 60 according to this embodiment satisfies the law of energy conservation and phase matching conditions for parametric upward conversion in the nano-optical fiber section 16, which is a common resonant optical path.
  • the resonator structure 60 generates an output photon OF having the fourth resonant frequency ⁇ 4 .
  • the output photon OF output from the resonator structure 60 passes through the dichroic mirror 12 and enters the quantum device X. Further, the first pump light PL1 from the resonator structure 60 is reflected by the dichroic mirror 12, enters the optical terminator 14, and disappears.
  • the quantum wavelength converter 58 generates an output photon OF having a fourth resonance frequency ⁇ 4 by converting the wavelength of the pump light from the laser light source 6, and inputs the output photon OF to the quantum device X. can.
  • the fourth resonant frequency ⁇ 4 is twice the first resonant frequency ⁇ 1
  • the parametric upconversion occurring in the resonator structure 60 is a so-called second harmonic generation.
  • the quantum wavelength converter 58 functions as a second harmonic generator that generates output photons OF having a frequency twice the frequency of the pump light from the laser light source 6.
  • the resonator structure 60 of the quantum wavelength converter 58 does not include the second resonator 36 and the third resonator 38 compared to the resonator structure 4 of the quantum wavelength converter 2, so the resonator structure 60 does not include the second resonator 36 and the third resonator 38.
  • the quantum wavelength converter 58 can configure the resonator structure 60 more simply than the quantum wavelength converter 2, and also makes the design of the resonator structure 60 easier.
  • FIG. 12 is a schematic plan view of the messenger-equipped single photon source 62 according to this embodiment.
  • the single photon source with messenger 62 includes a quantum wavelength converter 64, a dichroic mirror 66, a single photon detector 68, a first output optical fiber 70, and a second output optical fiber 72. Equipped with.
  • the quantum wavelength converter 64 differs in configuration from the quantum wavelength converter 2 according to the first embodiment only in that it does not include the single photon source 10.
  • the dichroic mirror 12 transmits photons having a third resonant frequency ⁇ 3 in addition to photons having a fourth resonant frequency ⁇ 4 . Furthermore, the dichroic mirror 12 according to this embodiment reflects photons having a first resonant frequency ⁇ 1 and a second resonant frequency ⁇ 2 . Therefore, photons having the first resonant frequency ⁇ 1 and the second resonant frequency ⁇ 2 reflected by the dichroic mirror 12 enter the optical terminator 14 .
  • Dichroic mirror 66 differs in configuration from dichroic mirror 12 only in that it transmits photons having a fourth resonant frequency ⁇ 4 and reflects photons having a third resonant frequency ⁇ 3 .
  • the dichroic mirror 66 is arranged so that photons transmitted through the dichroic mirror 12 are incident thereon.
  • the single photon detector 68 is an element for detecting an incident single photon.
  • Single photon detector 68 is arranged so that photons reflected by dichroic mirror 66 are incident thereon. Therefore, the single photon detector 68 detects the photon having the third resonant frequency ⁇ 3 reflected by the dichroic mirror 66 .
  • the quantum device X is arranged so that photons transmitted through the dichroic mirror 66 are incident thereon. Therefore, a photon having the fourth resonance frequency ⁇ 4 that has passed through the dichroic mirror 12 is incident on the single photon detector 68 .
  • the first output optical fiber 70 and the second output optical fiber 72 are single mode optical fibers, and may have the same configuration as the optical fiber 8.
  • the first output optical fiber 70 is arranged so that photons reflected by the dichroic mirror 66 are incident thereon, and the second output optical fiber 72 is arranged so that photons transmitted through the dichroic mirror 66 are incident thereon.
  • the first output optical fiber 70 propagates the photons having the third resonant frequency ⁇ 3 reflected at the dichroic mirror 66 to the single photon detector 68 . Further, the second output optical fiber 72 propagates the photon having the fourth resonance frequency ⁇ 4 that has passed through the dichroic mirror 66 to the quantum device X.
  • the laser light source 6 inputs the first pump light PL1 having the first resonant frequency ⁇ 1 and the second pump light PL2 having the second resonant frequency ⁇ 2 to the resonator structure 4 .
  • the resonator structure 4 generates a first output photon OF1 having a third resonant frequency ⁇ 3 and a fourth resonant frequency ⁇ 4 through a four-wave mixing process using the input pump light, according to a method described later.
  • a second output photon OF2 is generated having a second output photon OF2.
  • the resonator structure 4 generates photon pairs having mutually different wavelengths from the input pump light.
  • the first pump light PL1 and the second pump light PL2 emitted by the laser light source 6 according to the present embodiment are considered to be continuous pulse waves whose pulse length is the photon lifetime of each resonator of the resonator structure 4. be able to.
  • the probability that one photon pair is generated from one pulse wave of each of the first pump light PL1 and the second pump light PL2 is set to p which is sufficiently smaller than 1. do.
  • the laser light source 6 may intermittently emit pulse waves having respective resonance frequencies as the first pump light PL1 and the second pump light PL2.
  • FIG. 13 is a schematic diagram 4B for explaining input and output of photons in the resonator structure 4, and an energy diagram D6 showing state transitions occurring in the resonator structure 4.
  • a first pump light PL1 having a first resonant frequency ⁇ 1 and a second pump light PL2 having a second resonant frequency ⁇ 2 are input to the resonator structure 4.
  • a first output photon OF1 having a third resonant frequency ⁇ 3 and a second output photon OF2 having a fourth resonant frequency ⁇ 4 are output from the resonator structure 4 by the method described below. be done.
  • the first resonant frequency ⁇ 1 , the second resonant frequency ⁇ 2 , the third resonant frequency ⁇ 3 , and the fourth resonant frequency ⁇ 4 are calculated using the above-mentioned equations (1) and (2). holds true.
  • the ground level g and the excited level e are virtually set in the nano-optical fiber section 16.
  • the energy difference between the ground level g and the excited level e is the energy difference between the energy of a photon having a first resonant frequency ⁇ 1 and the second resonant frequency ⁇ 2. It is assumed that the total value of the photon energy is approximately the same as the total value of the photon energy.
  • the state transition shown in the energy diagram D6 occurs in the nano-optical fiber section 16 due to the first pump light PL1 and the second pump light PL2.
  • the first pump light PL1 and the second pump light PL2 cause excitation from the ground level g to the excitation level e.
  • the resonator structure 4 includes a third resonator 38 having a third resonant frequency ⁇ 3 as a resonant frequency, and a fourth resonator 40 having a fourth resonant frequency ⁇ 4 as a resonant frequency. Therefore, as shown in the energy diagram D6, in the nano-optical fiber portion 16, a state transition occurs from the excitation level e toward the ground level g by the energy of the photon having the third resonance frequency ⁇ 3 . Furthermore, a state transition occurs by an amount equal to the energy of the photon having the fourth resonance frequency ⁇ 4 , thereby causing a state transition from the excitation level e to the ground level g.
  • a four-wave mixing process significantly occurs as shown in the energy diagram D6. Due to the above-mentioned four-wave mixing process, photons that couple with the third resonator 38 and have a third resonant frequency ⁇ 3 are significantly generated in the third resonator 38 of the resonator structure 4 . Further, due to the above-mentioned four-wave mixing process, a photon having a fourth resonant frequency ⁇ 4 coupled to the fourth resonator 40 of the resonator structure 4 is transmitted to the fourth resonator 40 of the resonator structure 4 at the third resonant frequency It is generated almost simultaneously with the photon having ⁇ 3 .
  • the first output photon OF1 is emitted from the third resonator 38, and the second output photon OF2 is emitted from the fourth resonator 40.
  • the first output photon OF1 emitted from the resonator structure 4 is transmitted through the dichroic mirror 12 and reflected at the dichroic mirror 66, thereby propagating through the first output optical fiber 70 and transmitting a single photon. It is detected by a one-photon detector 68.
  • the second output photon OF2 emitted from the resonator structure 4 transmits both the dichroic mirror 12 and the dichroic mirror 66, propagates through the second output optical fiber 72, and enters the quantum device X.
  • the probability that one photon pair is generated from one pulse wave of each pump light by the four-wave mixing process is p. Therefore, the probability that two photon pairs are simultaneously generated from each pump light by the four-wave mixing process is the square of p. Therefore, when the single photon detector 68 detects a photon, the probability that two photons will enter the quantum device X is sufficiently smaller than one. In other words, when the single photon detector 68 detects a photon, the photon incident on the quantum device X is a single photon with a probability sufficiently close to 1. Specifically, when the single photon detector 68 detects the first output photon OF1, the probability that the second output photon OF2 includes a plurality of photons is sufficiently smaller than one. In other words, when the single photon detector 68 detects the first output photon OF1, the second output photon OF2 is a single photon with a probability sufficiently close to 1.
  • the single photon detector 68 detects the first output photon OF1
  • the second output photon OF2 almost certainly enters the quantum device X.
  • the second output photon OF2 is a single photon with probability sufficiently close to 1. Therefore, the single photon source 62 with a messenger functions as a single photon source with a messenger that generates the second output photon OF2, which is a signal photon, using the detection of the first output photon OF1, which is an idler photon, as a messenger.
  • the quantum device X may be, for example, a device including a quantum communicator that requires a single photon with a messenger, such as a quantum cryptographic communicator.
  • the single photon source 62 with a messenger is a quantum wavelength converter including a resonator structure 4, which generates a first output photon OF1 which is an idler photon and a second output photon OF2 which is a signal photon. 64 is used. Therefore, for the same reason as the quantum wavelength converter 2, even when the single photon source with messenger 62 is incorporated into a quantum device including an optical fiber, it reduces the complexity of the structure of the quantum device.
  • FIG. 14 is a schematic plan view of the messenger-equipped single photon source 74 according to this embodiment.
  • the single photon source 74 with a messenger includes the quantum wavelength converter 54 according to the fourth embodiment instead of the quantum wavelength converter 64.
  • the dichroic mirror 12 included in the quantum wavelength converter 54 transmits photons having a third resonant frequency ⁇ 3 in addition to photons having a fourth resonant frequency ⁇ 4 , and transmits photons having a third resonant frequency ⁇ 3 . 1 and the photons with the second resonant frequency ⁇ 2 are reflected.
  • the laser light source 6 inputs the first pump light PL1 having the first resonance frequency ⁇ 1 to the resonator structure 4.
  • the resonator structure 4 generates a first output photon OF1 having a third resonant frequency ⁇ 3 and a fourth resonant frequency ⁇ 4 through a four-wave mixing process using the input pump light, according to a method described later.
  • a second output photon OF2 is generated having a second output photon OF2.
  • the second resonant frequency ⁇ 2 is the same as the first resonant frequency ⁇ 1 in the previous embodiment.
  • the second resonator 36 is the same as the first resonator 34 in the single photon source 62 with a messenger, and the second pump light PL2 is replaced with the first pump light. This corresponds to the same as PL1.
  • FIG. 15 is a schematic diagram 56B for explaining the input and output of photons in the resonator structure 56, and an energy diagram D7 showing state transitions occurring in the resonator structure 56.
  • the first pump light PL1 having the first resonance frequency ⁇ 1 is input to the resonator structure 56.
  • a first output photon OF1 having a third resonant frequency ⁇ 3 and a second output photon OF2 having a fourth resonant frequency ⁇ 4 are output from the resonator structure 4 by the method described below. be done.
  • ⁇ 1 ⁇ 2
  • the energy difference between the ground level g and the excited level e in the nano-optical fiber section 16 is approximately equal to twice the energy of the photon having the first resonance frequency ⁇ 1 .
  • the state transition shown in the energy diagram D7 occurs in the nano-optical fiber section 16 due to the first pump light PL1.
  • the first pump light PL1 causes excitation from the ground level g to an energy that is half the energy difference between the ground level g and the excited level e.
  • the intensity of the first pump light PL1 is sufficiently strong, further excitation by the first pump light PL1 occurs continuously. Therefore, the first pump light PL1 causes excitation from the ground level g to the excitation level e.
  • the four-wave mixing process significantly occurs as shown in the energy diagram D7 for the same reason as explained in the previous embodiment.
  • the third resonator 38 of the resonator structure 4 receives a photon having the third resonant frequency ⁇ 3
  • the fourth resonator 40 of the resonator structure 4 receives a photon having the fourth resonant frequency. Photons with ⁇ 4 are generated approximately simultaneously.
  • the first pump light PL1 can be regarded as a series of pulse waves whose pulse length is the photon lifetime of each resonator of the resonator structure 4.
  • the probability that one photon pair is generated from one pulse wave of the first pump light PL1 is set to p, which is sufficiently smaller than 1.
  • the probability that two photon pairs are simultaneously generated from the first pump light PL1 by the four-wave mixing process is the square of p. Therefore, when the single photon detector 68 detects a photon, the probability that two photons will enter the quantum device X is sufficiently smaller than one.
  • the single photon detector 68 detects a photon
  • the photon incident on the quantum device X is a single photon with a probability sufficiently close to 1.
  • the single photon detector 68 detects the first output photon OF1
  • the probability that the second output photon OF2 includes a plurality of photons is sufficiently smaller than one.
  • the single photon detector 68 detects the first output photon OF1
  • the second output photon OF2 is a single photon with a probability sufficiently close to 1.
  • the first output photon OF1 is emitted from the third resonator 38, and the second output photon OF2 is emitted from the fourth resonator 40.
  • the first output photon OF1 emitted from the resonator structure 56 is detected by the single photon detector 68, and the second output photon OF2 emitted from the resonator structure 56 is detected by the single photon detector 68. incident on quantum device X.
  • the quantum device The second output photon OF2 is almost certainly input to X.
  • the second output photon OF2 is a single photon with a probability sufficiently close to 1. Therefore, the single photon source 74 with a messenger functions as a single photon source with a messenger that generates the second output photon OF2, which is a signal photon, using the detection of the first output photon OF1, which is an idler photon, as a messenger.
  • the single photon source 74 with a messenger is a quantum wavelength converter including a resonator structure 56 for generating a first output photon OF1, which is an idler photon, and a second output photon OF2, which is a signal photon. 54 is used. Therefore, for the same reason as the quantum wavelength converter 2, even when the single photon source 74 with a messenger is incorporated into a quantum device including an optical fiber, the complexity of the structure of the quantum device is reduced.
  • the resonator structure 56 of the single photon source 74 with a messenger does not include the second resonator 36 compared to the resonator structure 4 of the single photon source 62 with a messenger, the number of resonators included is is one less. Therefore, the single photon source 74 with a messenger can configure the resonator structure 56 more simply than the single photon source 62 with a messenger, and also makes the design of the resonator structure 56 easier.
  • FIG. 16 is a schematic plan view of the single photon source 76 with messenger according to this embodiment.
  • the single photon source 76 with a messenger differs in configuration from the single photon source 62 with a messenger in that it includes a quantum wavelength converter 78 instead of the quantum wavelength converter 64.
  • the quantum wavelength converter 78 differs in configuration from the quantum wavelength converter 46 according to the second embodiment only in that it does not include the single photon source 10.
  • the dichroic mirror 12 included in the quantum wavelength converter 78 transmits photons having a third resonant frequency ⁇ 3 in addition to photons having a fourth resonant frequency ⁇ 4 , and transmits photons having a third resonant frequency ⁇ 3 . 1 and the photons with the second resonant frequency ⁇ 2 are reflected.
  • the laser light source 6 inputs the first pump light PL1 having the first resonance frequency ⁇ 1 to the resonator structure 4.
  • the resonator structure 48 has a first output photon OF1 with a third resonant frequency ⁇ 3 and a fourth resonant frequency ⁇ 4 due to parametric down-conversion by the input pump light, according to the method described below.
  • a second output photon OF2 is generated.
  • FIG. 17 is a schematic diagram 48B for explaining input and output of photons in the resonator structure 48, and an energy diagram D8 showing state transitions occurring in the resonator structure 48.
  • the first pump light PL1 having the first resonance frequency ⁇ 1 is input to the resonator structure 48.
  • a first output photon OF1 having a third resonant frequency ⁇ 3 and a second output photon OF2 having a fourth resonant frequency ⁇ 4 are output from the resonator structure 4 by the method described below. be done.
  • the above-described equations (3) and (4) hold for the first resonant frequency ⁇ 1 , the third resonant frequency ⁇ 3 , and the fourth resonant frequency ⁇ 4 .
  • the energy difference between the ground level g and the excited level e in the nano-optical fiber section 16 is made approximately equal to the energy of a photon having the first resonance frequency ⁇ 1 .
  • the state transition shown in the energy diagram D7 occurs in the nano-optical fiber section 16 due to the first pump light PL1.
  • the first pump light PL1 causes excitation from the ground level g to the excited level e.
  • the third resonator 38 of the resonator structure 4 receives a photon having a third resonant frequency ⁇ 3 and the fourth resonator 40 of the resonator structure 4 receives a photon having a fourth resonant frequency ⁇ 4 photons are generated approximately simultaneously.
  • the first pump light PL1 can be regarded as a series of pulse waves whose pulse length is the photon lifetime of each resonator of the resonator structure 4.
  • the probability that one photon pair is generated from one pulse wave of the first pump light PL1 is set to p, which is sufficiently smaller than 1.
  • the probability that two photon pairs are simultaneously generated from the first pump light PL1 by parametric downward conversion is the square of p. Therefore, when the single photon detector 68 detects a photon, the probability that two photons will enter the quantum device X is sufficiently smaller than one.
  • the single photon detector 68 detects a photon
  • the photon incident on the quantum device X is a single photon with a probability sufficiently close to 1.
  • the single photon detector 68 detects the first output photon OF1
  • the probability that the second output photon OF2 includes a plurality of photons is sufficiently smaller than one.
  • the single photon detector 68 detects the first output photon OF1
  • the second output photon OF2 is a single photon with a probability sufficiently close to 1.
  • the first output photon OF1 is emitted from the third resonator 38
  • the second output photon OF2 is emitted from the fourth resonator 40.
  • the first output photon OF1 emitted from the resonator structure 48 is detected by the single photon detector 68
  • the second output photon OF2 emitted from the resonator structure 48 is detected by the single photon detector 68. incident on quantum device X.
  • the quantum device The second output photon OF2 is almost certainly input to X.
  • the second output photon OF2 is a single photon with a probability sufficiently close to 1. Therefore, the single photon source 76 with a messenger functions as a single photon source with a messenger that uses the detection of the first output photon OF1, which is an idler photon, as a messenger to generate the second output photon OF2, which is a signal photon.
  • the single photon source 76 with a messenger is a quantum wavelength converter including a resonator structure 48 for generating first output photons OF1, which are idler photons, and second output photons OF2, which are signal photons. 78 is used. Therefore, for the same reason as the quantum wavelength converter 2, even when the single photon source 76 with a messenger is incorporated into a quantum device including an optical fiber, the complexity of the structure of the quantum device is reduced.
  • the resonator structure 48 of the single photon source 76 with a messenger does not include the second resonator 36 compared to the resonator structure 4 of the single photon source 62 with a messenger, the number of resonators included is is one less. Therefore, the single photon source 76 with a messenger can configure the resonator structure 48 more simply than the single photon source 62 with a messenger, and also makes the design of the resonator structure 48 easier.
  • an optical fiber including therein a plurality of resonators having a common resonant optical path at least in part; a laser light source connected to the optical fiber and inputting pump light having at least one frequency into the optical fiber;
  • the plurality of resonators include a first resonator having a first resonant frequency ⁇ 1 as a resonant frequency, a second resonator having a second resonant frequency ⁇ 2 as a resonant frequency, and a third resonant frequency ⁇ 3 as a resonant frequency.
  • n i is the effective refractive index inside the optical fiber for light with the i-th resonance frequency ⁇ i
  • c is the speed of light
  • is the nonlinear coefficient of the optical fiber
  • P is the intensity of the pump light
  • (Aspect 2) further comprising a single photon source connected to the optical fiber and inputting input photons having the first resonant frequency ⁇ 1 to the plurality of resonators into the optical fiber, the laser light source inputs a first pump light having the second resonant frequency ⁇ 2 and a second pump light having the third resonant frequency ⁇ 3 to the optical fiber;
  • the first resonant frequency ⁇ 1 is the same as the second resonant frequency ⁇ 2 ; the first resonator is the same as the second resonator, the laser light source inputs a first pump light having the first resonant frequency ⁇ 1 and a second pump light having the third resonant frequency ⁇ 3 to the optical fiber;
  • an optical fiber including therein a plurality of resonators having a common resonant optical path at least in part; a laser light source connected to the optical fiber and inputting pump light into the optical fiber;
  • the plurality of resonators include a first resonator having a first resonant frequency ⁇ 1 as a resonant frequency, a third resonator having a third resonant frequency ⁇ 3 as a resonant frequency, and a third resonator having a resonant frequency ⁇ 1 and a third resonant frequency ⁇ 3 .
  • n i is the effective refractive index inside the optical fiber for light with the i-th resonance frequency ⁇ i
  • c is the speed of light
  • is the nonlinear coefficient of the optical fiber
  • P is the intensity of the pump light
  • an optical fiber including therein a plurality of resonators having a common resonant optical path at least in part; a laser light source connected to the optical fiber and inputting pump light into the optical fiber;
  • the plurality of resonators include a first resonator having a first resonant frequency ⁇ 1 as a resonant frequency, a second resonator having a second resonant frequency ⁇ 2 as a resonant frequency, and a second resonator having a second resonant frequency ⁇ 2 as a resonant frequency, and a fourth resonator having a fourth resonant frequency ⁇ 4 different from both the second resonant frequency ⁇ 2 ;
  • n i is the effective refractive index inside the optical fiber for light with the i-th resonance frequency ⁇ i
  • c is the speed of light
  • is the nonlinear coefficient of the optical fiber
  • P is the intensity of the pump light
  • the first resonant frequency ⁇ 1 is the same as the second resonant frequency ⁇ 2 ; the first resonator is the same as the second resonator, the laser light source inputs a first pump light having the first resonant frequency ⁇ 1 to the optical fiber; 7.
  • the optical fiber includes a nano-optical fiber portion and both end portions that are larger in diameter than the nano-optical fiber portion and are connected to both ends of the nano-optical fiber portion via a tapered portion, and at least a portion of the resonant optical path.
  • the quantum wavelength converter according to any one of aspects 1 to 8, wherein the quantum wavelength converter is located in the nano-optical fiber section.
  • each of the plurality of resonators includes a pair of fiber Bragg gratings whose reflection bands include the respective resonance frequencies.
  • the quantum wavelength converter according to aspect 1 a first output optical fiber connected to the optical fiber and configured to propagate a first single output photon having the third resonant frequency ⁇ 3 emitted from the third resonator; a second output optical fiber connected to the optical fiber and configured to propagate a second single output photon having the fourth resonant frequency ⁇ 4 emitted from the fourth resonator; further comprising a single photon detector connected to the first output optical fiber and detecting the first single output photon; A single photon source with a messenger, wherein the laser light source inputs a first pump light having the first resonant frequency ⁇ 1 and a second pump light having the second resonant frequency ⁇ 2 to the optical fiber.
  • the first resonant frequency ⁇ 1 is the same as the second resonant frequency ⁇ 2 ; the first resonator is the same as the second resonator, 13.
  • the quantum wavelength converter according to aspect 4 a first output optical fiber connected to the optical fiber and configured to propagate a first single output photon having the third resonant frequency ⁇ 3 emitted from the third resonator; a second output optical fiber connected to the optical fiber and configured to propagate a second single output photon having the fourth resonant frequency ⁇ 4 emitted from the fourth resonator; further comprising a single photon detector connected to the first output optical fiber and detecting the first single output photon; A single photon source with a messenger, wherein the laser light source inputs the pump light having the first resonant frequency ⁇ 1 to the optical fiber.
  • the optical fiber includes a nano-optical fiber portion and both end portions that are larger in diameter than the nano-optical fiber portion and are connected to both ends of the nano-optical fiber portion via a tapered portion, and at least a portion of the resonant optical path.
  • the single photon source with a messenger according to any one of aspects 12 to 14, wherein: is located in the nano-optical fiber section.
  • Quantum wavelength converter 4 Resonator structure 6 Laser light source 8 Optical fiber 16 Nano optical fiber section 18 Tapered section 20 Common FBG 22 1st FBG 24 2nd FBG 26 3rd FBG 28 4th FBG 34 First resonator 36 Second resonator 38 Third resonator 40 Fourth resonator 62 Single photon source with messenger 68 Single photon detector 70 First output optical fiber 72 Second output optical fiber

Abstract

The present invention achieves a quantum wavelength converter that is easily coupled to an optical fiber. A quantum wavelength converter (2) comprises: an optical fiber (8) that contains a plurality of resonators (34, 36, 38, 40) that have a shared resonance optical path at at least a portion thereof; and a laser light source (6) that is connected to the optical fiber and inputs pump light that has one or more frequencies into the optical fiber. The plurality of resonators satisfy the law of conservation of energy and phase matching conditions for four-wave mixing or parametric conversion at the shared resonance optical path.

Description

量子波長変換器、伝令付き単一光子源Quantum wavelength converter, single photon source with messenger
 本開示は量子波長変換器、および当該量子波長変換器を備えた伝令付き単一光子源に関する。 The present disclosure relates to a quantum wavelength converter and a single photon source with a messenger equipped with the quantum wavelength converter.
 光子の波長を変換する量子波長変換技術として、パラメトリック下方変換、または四光波混合過程等を含む非線形光学過程によって実現する手法が一般に知られている。これらの非線形光学過程は光子対の生成にも用いられ、また、伝令付き単一光子源の動作原理として重要でもある。 As a quantum wavelength conversion technology for converting the wavelength of a photon, a method realized by a nonlinear optical process including parametric down conversion or a four-wave mixing process is generally known. These nonlinear optical processes are also used to generate photon pairs and are also important as the operating principle of single photon sources with messengers.
 非特許文献1および非特許文献2は、上述した量子波長変換をKTP結晶等の非線形光学結晶バルクを用いて実現する手法を開示する。また、非特許文献3および非特許文献4は、上述した量子波長変換をPPLN導波路等の非線形光学結晶導波路を用いて実現する手法を開示する。さらに、非特許文献5および非特許文献6は、上述した量子波長変換を、チップ上リング型微小共振器を用いて実現する手法を開示する。 Non-Patent Document 1 and Non-Patent Document 2 disclose a method for realizing the above-described quantum wavelength conversion using a nonlinear optical crystal bulk such as a KTP crystal. Furthermore, Non-Patent Document 3 and Non-Patent Document 4 disclose a method of realizing the quantum wavelength conversion described above using a nonlinear optical crystal waveguide such as a PPLN waveguide. Furthermore, Non-Patent Document 5 and Non-Patent Document 6 disclose a method of realizing the above-mentioned quantum wavelength conversion using a ring-type microresonator on a chip.
 非特許文献1から6に記載された量子波長変換技術に用いられる、非線形光学結晶バルク、非線形光学結晶導波路、およびリング型微小共振器は、何れも光ファイバとの結合が困難である。このため、非特許文献1から6に記載された技術を用いた量子波長変換器を、例えば、光子を伝搬させる量子チャンネルに光ファイバを用いる装置に導入する場合、当該光ファイバと量子波長変換器とを結合するための機構を要する。したがって、上記量子波長変換器は、当該量子波長変換器を備える装置の複雑化を招来する。 The nonlinear optical crystal bulk, nonlinear optical crystal waveguide, and ring-shaped microresonator used in the quantum wavelength conversion techniques described in Non-Patent Documents 1 to 6 are all difficult to couple with an optical fiber. For this reason, when a quantum wavelength converter using the techniques described in Non-Patent Documents 1 to 6 is introduced into a device that uses an optical fiber as a quantum channel for propagating photons, the optical fiber and the quantum wavelength converter A mechanism is required to connect the two. Therefore, the above-mentioned quantum wavelength converter causes the complexity of the device provided with the quantum wavelength converter.
 上記の課題を解決するために、本開示の一態様に係る量子波長変換器は、少なくとも一部に共通の共振光路を有する複数の共振器を内部に含む光ファイバと、前記光ファイバと接続し、少なくとも1つ以上の周波数を有するポンプ光を前記光ファイバに入力するレーザ光源とを備え、前記複数の共振器は、第1共振周波数ωを共振周波数に有する第1共振器と、第2共振周波数ωを共振周波数に有する第2共振器と、第3共振周波数ωを共振周波数に有する第3共振器と、前記第1共振周波数ω、前記第2共振周波数ω、および前記第3周波数の何れとも異なる第4共振周波数ωを共振周波数に有する第4共振器とを含み、nを前記第i共振周波数ωの光に対する前記光ファイバの内部における実効屈折率、cを光速、γを前記光ファイバの非線形パラメータ、Pを前記ポンプ光の強度として、
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 上記(1)式および(2)式が成立する。
In order to solve the above problems, a quantum wavelength converter according to one aspect of the present disclosure connects an optical fiber including therein a plurality of resonators having at least a portion of a common resonant optical path, and the optical fiber. , a laser light source that inputs pump light having at least one frequency into the optical fiber, and the plurality of resonators include a first resonator having a first resonant frequency ω 1 as a resonant frequency, and a second resonator having a first resonant frequency ω1. a second resonator having a resonant frequency ω 2 as a resonant frequency; a third resonator having a third resonant frequency ω 3 as a resonant frequency; the first resonant frequency ω 1 , the second resonant frequency ω 2 ; a fourth resonator having a fourth resonant frequency ω 4 different from any of the third frequencies, where n i is an effective refractive index inside the optical fiber for light having the i-th resonant frequency ω i , and c is the speed of light, γ is the nonlinear parameter of the optical fiber, and P is the intensity of the pump light,
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
The above equations (1) and (2) hold true.
 本開示の他の一態様に係る量子波長変換器は、少なくとも一部に共通の共振光路を有する複数の共振器を内部に含む光ファイバと、前記光ファイバと接続し、ポンプ光を前記光ファイバに入力するレーザ光源とを備え、前記複数の共振器は、第1共振周波数ωを共振周波数に有する第1共振器と、第3共振周波数ωを共振周波数に有する第3共振器と、前記第1共振周波数ωおよび第3共振周波数ωの双方と異なる第4共振周波数ωを共振周波数に有する第4共振器とを含み、nを前記第i共振周波数ωの光に対する前記光ファイバの内部における実効屈折率、cを光速、γを前記光ファイバの非線形パラメータ、Pを前記ポンプ光の強度として、
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 上記(3)式および(4)式が成立する。
A quantum wavelength converter according to another aspect of the present disclosure connects an optical fiber including therein a plurality of resonators having at least a portion of a common resonant optical path, and the optical fiber, and transmits pump light to the optical fiber. the plurality of resonators include a first resonator having a first resonant frequency ω1 as a resonant frequency, and a third resonator having a third resonant frequency ω3 as a resonant frequency; a fourth resonator having a fourth resonant frequency ω 4 different from both the first resonant frequency ω 1 and the third resonant frequency ω 3 ; The effective refractive index inside the optical fiber, c is the speed of light, γ is the nonlinear parameter of the optical fiber, P is the intensity of the pump light,
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
The above equations (3) and (4) hold true.
 本開示の他の一態様に係る量子波長変換器は、少なくとも一部に共通の共振光路を有する複数の共振器を内部に含む光ファイバと、前記光ファイバと接続し、ポンプ光を前記光ファイバに入力するレーザ光源とを備え、前記複数の共振器は、第1共振周波数ωを共振周波数に有する第1共振器と、第2共振周波数ωを共振周波数に有する第2共振器と、前記第1共振周波数ωおよび前記第2共振周波数ωの双方と異なる第4共振周波数ωを共振周波数に有する第4共振器とを含み、nを前記第i共振周波数ωの光に対する前記光ファイバの内部における実効屈折率、cを光速、γを前記光ファイバの非線形パラメータ、Pを前記ポンプ光の強度として、
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 上記(5)式および(6)式が成立する。
A quantum wavelength converter according to another aspect of the present disclosure connects an optical fiber including therein a plurality of resonators having at least a portion of a common resonant optical path, and the optical fiber, and transmits pump light to the optical fiber. the plurality of resonators include a first resonator having a first resonant frequency ω1 as a resonant frequency, a second resonator having a second resonant frequency ω2 as a resonant frequency, a fourth resonator having a fourth resonant frequency ω4 different from both the first resonant frequency ω1 and the second resonant frequency ω2 , and n i is the light having the i-th resonant frequency ω i . where c is the speed of light, γ is the nonlinear parameter of the optical fiber, and P is the intensity of the pump light,
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
The above equations (5) and (6) hold true.
 本開示の一態様によれば、光ファイバへの結合が容易であり、光ファイバを用いた量子デバイスに導入する場合にも、当該量子デバイスの複雑化を低減できる量子波長変換器を達成する。 According to one aspect of the present disclosure, it is possible to achieve a quantum wavelength converter that can be easily coupled to an optical fiber and can reduce the complexity of the quantum device when it is introduced into a quantum device using an optical fiber.
本開示の実施形態1に係る量子波長変換器の概略平面図、および共振器構造体の概略拡大図である。FIG. 1 is a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 1 of the present disclosure. 本開示の実施形態1に係る単一光子源の概略拡大図である。1 is a schematic enlarged view of a single photon source according to Embodiment 1 of the present disclosure. FIG. 本開示の実施形態1に係る共振器構造体における光子の入出力を表す模式図、および共振器構造体におけるエネルギー遷移を表すエネルギーダイヤグラムである。1A and 1B are a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 1 of the present disclosure, and an energy diagram showing energy transition in the resonator structure. 本開示の実施形態2に係る量子波長変換器の概略平面図、および共振器構造体の概略拡大図である。They are a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 2 of the present disclosure. 本開示の実施形態2に係る共振器構造体における光子の入出力を表す模式図、および共振器構造体におけるエネルギー遷移を表すエネルギーダイヤグラムである。They are a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 2 of the present disclosure, and an energy diagram showing energy transition in the resonator structure. 本開示の実施形態3に係る量子波長変換器の概略平面図、および共振器構造体の概略拡大図である。FIG. 3 is a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 3 of the present disclosure. 本開示の実施形態3に係る共振器構造体における光子の入出力を表す模式図、および共振器構造体におけるエネルギー遷移を表すエネルギーダイヤグラムである。They are a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 3 of the present disclosure, and an energy diagram showing energy transition in the resonator structure. 本開示の実施形態4に係る量子波長変換器の概略平面図、および共振器構造体の概略拡大図である。FIG. 3 is a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 4 of the present disclosure. 本開示の実施形態4に係る共振器構造体における光子の入出力を表す模式図、および共振器構造体におけるエネルギー遷移を表すエネルギーダイヤグラムである。They are a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 4 of the present disclosure, and an energy diagram showing energy transition in the resonator structure. 本開示の実施形態5に係る量子波長変換器の概略平面図、および共振器構造体の概略拡大図である。FIG. 6 is a schematic plan view of a quantum wavelength converter and a schematic enlarged view of a resonator structure according to Embodiment 5 of the present disclosure. 本開示の実施形態5に係る共振器構造体における光子の入出力を表す模式図、および共振器構造体におけるエネルギー遷移を表すエネルギーダイヤグラムである。FIG. 7 is a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 5 of the present disclosure, and an energy diagram showing energy transition in the resonator structure. FIG. 本開示の実施形態6に係る伝令付き単一光子源の概略平面図である。FIG. 7 is a schematic plan view of a single photon source with a messenger according to Embodiment 6 of the present disclosure. 本開示の実施形態6に係る共振器構造体における光子の入出力を表す模式図、および共振器構造体におけるエネルギー遷移を表すエネルギーダイヤグラムである。They are a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 6 of the present disclosure, and an energy diagram showing energy transition in the resonator structure. 本開示の実施形態7に係る伝令付き単一光子源の概略平面図である。FIG. 7 is a schematic plan view of a single photon source with a messenger according to Embodiment 7 of the present disclosure. 本開示の実施形態7に係る共振器構造体における光子の入出力を表す模式図、および共振器構造体におけるエネルギー遷移を表すエネルギーダイヤグラムである。They are a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 7 of the present disclosure, and an energy diagram showing energy transition in the resonator structure. 本開示の実施形態8に係る伝令付き単一光子源の概略平面図である。FIG. 7 is a schematic plan view of a single photon source with a messenger according to Embodiment 8 of the present disclosure. 本開示の実施形態8に係る共振器構造体における光子の入出力を表す模式図、および共振器構造体におけるエネルギー遷移を表すエネルギーダイヤグラムである。FIG. 7 is a schematic diagram showing input and output of photons in a resonator structure according to Embodiment 8 of the present disclosure, and an energy diagram showing energy transition in the resonator structure. FIG.
 〔実施形態1〕
 <量子波長変換器>
 本実施形態に係る量子波長変換器は、例えば、入力された特定の波長を有する単一光子の波長を変換し、当該波長とは異なる波長を有する単一光子を出力することにより、単一光子の波長を変換する装置である。特に、本実施形態に係る量子波長変換器は、単一光子源からの単一光子と、レーザ光源からのポンプ光とを、共通の共振光路を有する複数の共振器を含む共振器構造体に入力することにより、当該共振器構造体から波長変換後の単一光子を出力する装置である。
[Embodiment 1]
<Quantum wavelength converter>
For example, the quantum wavelength converter according to the present embodiment converts the wavelength of an input single photon having a specific wavelength and outputs a single photon having a wavelength different from the wavelength. This is a device that converts the wavelength of In particular, the quantum wavelength converter according to this embodiment converts a single photon from a single photon source and pump light from a laser light source into a resonator structure including a plurality of resonators having a common resonant optical path. This is a device that outputs a wavelength-converted single photon from the resonator structure upon input.
 本実施形態に係る量子波長変換器、および当該量子波長変換器が備える共振器構造体について、図1を参照し説明する。図1は、本実施形態に係る量子波長変換器2の概略平面図、および、当該概略平面図のうち、量子波長変換器2が備える共振器構造体4について拡大して示す概略図である。 A quantum wavelength converter according to this embodiment and a resonator structure included in the quantum wavelength converter will be described with reference to FIG. 1. FIG. 1 is a schematic plan view of a quantum wavelength converter 2 according to the present embodiment, and an enlarged view of a resonator structure 4 included in the quantum wavelength converter 2 in the schematic plan view.
 図1に示すように、量子波長変換器2は、共振器構造体4と、レーザ光源6と、単一モードの光ファイバ8とを備える。さらに、量子波長変換器2は、単一光子源10と、ダイクロイックミラー12と、光終端器14とを備える。なお、図1は、後述する方法により量子波長変換器2によって生成された、波長変換後の単一光子が入力される量子デバイスXについても示す。本実施形態に係る量子波長変換器2は、後に詳述するが、単一光子源10から共振器構造体4に入力された単一光子を、量子デバイスXが必要とする波長の単一光子に変換する量子波長変換器を例に挙げて説明する。 As shown in FIG. 1, the quantum wavelength converter 2 includes a resonator structure 4, a laser light source 6, and a single mode optical fiber 8. Further, the quantum wavelength converter 2 includes a single photon source 10, a dichroic mirror 12, and an optical terminator 14. Note that FIG. 1 also shows a quantum device X into which a wavelength-converted single photon generated by a quantum wavelength converter 2 by a method described later is input. As will be described in detail later, the quantum wavelength converter 2 according to the present embodiment converts a single photon input into the resonator structure 4 from the single photon source 10 into a single photon of a wavelength required by the quantum device This will be explained by taking as an example a quantum wavelength converter that converts .
 <共振器構造体>
 共振器構造体4は、図1に示すように、ナノ光ファイバ部16と、当該ナノ光ファイバ部16にテーパー部18を介して接続する両端部8Aを含む。ここで、例えば、両端部8Aは、量子波長変換器2が備える光ファイバ8の一部である。また、ナノ光ファイバ部16は、光ファイバ8の一部をセラミックヒータ、または酸素水炎等を含む種々の加熱方法により加熱しつつ、加熱部分を両端から引張する等の手法により、光ファイバ8の当該加熱部分に形成される。換言すれば、共振器構造体4は、光ファイバ8の一部としてナノ光ファイバ部16および両端部8Aを含む。
<Resonator structure>
As shown in FIG. 1, the resonator structure 4 includes a nano-optical fiber portion 16 and both end portions 8A connected to the nano-optical fiber portion 16 via a tapered portion 18. Here, for example, both ends 8A are part of the optical fiber 8 included in the quantum wavelength converter 2. Further, the nano-optical fiber section 16 is heated by a method such as heating a part of the optical fiber 8 with a ceramic heater or various heating methods including oxygen-water flame, etc., and pulling the heated part from both ends. is formed in the heated portion of the . In other words, the resonator structure 4 includes the nano-optical fiber portion 16 and both end portions 8A as part of the optical fiber 8.
 共振器構造体4は、さらに、両端部8Aまたはナノ光ファイバ部16の内部に、共通FBG(fiber Bragg grating:ファイバブラッグ格子)20、第1FBG22、第2FBG24、第3FBG26、および第4FBG28を含む。特に、本実施形態においては、両端部8Aが含む、光子が伝搬するコア部30と当該コア部30の周囲におけるクラッド部32とのうち、コア部30に上述した各FBGが形成されている。 The resonator structure 4 further includes a common FBG (fiber Bragg grating) 20, a first FBG 22, a second FBG 24, a third FBG 26, and a fourth FBG 28 at both ends 8A or inside the nano-optical fiber section 16. In particular, in this embodiment, the above-described FBGs are formed in the core part 30 of the core part 30 through which photons propagate and the clad part 32 around the core part 30, which are included in both end parts 8A.
 共通FBG20、第1FBG22、第2FBG24、第3FBG26、および第4FBG28は、特定の周波数を有する光子の一部を反射する。本明細書において、第1FBG22は第1共振周波数ω、第2FBG24は第2共振周波数ω、第3FBG26は第3共振周波数ω、第4FBG28は第4共振周波数ω、それぞれの周波数を有する光子の一部を反射する。また、共通FBG20は、第1共振周波数ω、第2共振周波数ω、第3共振周波数ω、および第4共振周波数ωの何れの周波数を有する光子も一部を反射する。 The common FBG 20, the first FBG 22, the second FBG 24, the third FBG 26, and the fourth FBG 28 reflect a portion of photons having a specific frequency. In this specification, the first FBG 22 has a first resonant frequency ω 1 , the second FBG 24 has a second resonant frequency ω 2 , the third FBG 26 has a third resonant frequency ω 3 , and the fourth FBG 28 has a fourth resonant frequency ω 4 . Reflect some of the photons. Further, the common FBG 20 partially reflects photons having any of the first resonant frequency ω 1 , the second resonant frequency ω 2 , the third resonant frequency ω 3 , and the fourth resonant frequency ω 4 .
 なお、本実施形態において、第1共振周波数ω、第2共振周波数ω、第3共振周波数ω、および第4共振周波数ωは、何れも互いに異なる周波数である。換言すれば、本実施形態において、少なくとも、第4共振周波数ωは、第1共振周波数ω、第2共振周波数ω、および第3共振周波数ωの何れの周波数とも異なっている。 In this embodiment, the first resonant frequency ω 1 , the second resonant frequency ω 2 , the third resonant frequency ω 3 , and the fourth resonant frequency ω 4 are all different frequencies. In other words, in this embodiment, at least the fourth resonant frequency ω 4 is different from any of the first resonant frequency ω 1 , the second resonant frequency ω 2 , and the third resonant frequency ω 3 .
 本実施形態において、ナノ光ファイバ部16の両端に形成された2つの両端部8Aのうち、一方に共通FBG20が形成され、他方に第1FBG22、第2FBG24、第3FBG26、および第4FBG28が形成されている。したがって、共通FBG20と、第1FBG22、第2FBG24、第3FBG26、および第4FBG28とのそれぞれの間には、少なくともナノ光ファイバ部16の光子の伝搬路を含む共通の光路が形成されている。 In this embodiment, of the two end portions 8A formed at both ends of the nano-optical fiber section 16, a common FBG 20 is formed at one end, and a first FBG 22, a second FBG 24, a third FBG 26, and a fourth FBG 28 are formed at the other end. There is. Therefore, a common optical path including at least the photon propagation path of the nano-optical fiber portion 16 is formed between the common FBG 20 and each of the first FBG 22 , the second FBG 24 , the third FBG 26 , and the fourth FBG 28 .
 したがって、共振器構造体4には、共通FBG20と、第1FBG22、第2FBG24、第3FBG26、および第4FBG28とのそれぞれによって、第1共振器34、第2共振器36、第3共振器38、および第4共振器40が形成される。ここで、本実施形態において、第1共振器34、第2共振器36、第3共振器38、および第4共振器40は、それぞれ、第1共振周波数ω、第2共振周波数ω、第3共振周波数ω、および第4共振周波数ωを共振周波数に有する。換言すれば、共振器構造体4が含む各共振器においては、対応する共振周波数を有する光子が共振する。 Therefore, in the resonator structure 4, the first resonator 34, the second resonator 36, the third resonator 38, and A fourth resonator 40 is formed. Here, in this embodiment, the first resonator 34, the second resonator 36, the third resonator 38, and the fourth resonator 40 each have a first resonant frequency ω 1 , a second resonant frequency ω 2 , The resonance frequency has a third resonance frequency ω 3 and a fourth resonance frequency ω 4 . In other words, in each resonator included in the resonator structure 4, photons having a corresponding resonant frequency resonate.
 特に、第1共振器34、第2共振器36、第3共振器38、および第4共振器40は、少なくとも光ファイバ8の一部であるナノ光ファイバ部16の光子の伝搬路を、共通の共振光路として有する。換言すれば、共振器構造体4は、少なくとも一部が共通の共振光路を有する複数の共振器を含む。 In particular, the first resonator 34, the second resonator 36, the third resonator 38, and the fourth resonator 40 share a propagation path of photons in the nano-optical fiber section 16, which is at least a part of the optical fiber 8. as a resonant optical path. In other words, the resonator structure 4 includes a plurality of resonators, at least some of which have a common resonant optical path.
 さらに、当該複数の共振器は、それぞれの共振周波数を反射帯域に含む一対のファイバブラッグ格子をそれぞれ有する。特に、共通FBG20は、複数の共振器の間において同一のファイバブラッグ格子として形成されている。なお、共振器構造体4が含む複数の共振器が有するファイバブラッグ格子のうち、少なくとも一つが共通FBG20であってもよい。 Furthermore, each of the plurality of resonators has a pair of fiber Bragg gratings whose reflection bands include the respective resonant frequencies. In particular, the common FBG 20 is formed as the same fiber Bragg grating between the plurality of resonators. Note that at least one of the fiber Bragg gratings included in the plurality of resonators included in the resonator structure 4 may be a common FBG 20.
 本実施形態においては、上述の通り、一方の両端部8Aに、第1FBG22、第2FBG24、第3FBG26、および第4FBG28が個別に形成されている。このため、本実施形態においては、第1共振器34、第2共振器36、第3共振器38、および第4共振器40のそれぞれの共振器長であるL1、L2、L3、およびL4を独立して設計することができる。 In this embodiment, as described above, the first FBG 22, the second FBG 24, the third FBG 26, and the fourth FBG 28 are individually formed at one both ends 8A. Therefore, in this embodiment, the resonator lengths L1, L2, L3, and L4 of the first resonator 34, the second resonator 36, the third resonator 38, and the fourth resonator 40 are Can be designed independently.
 なお、本実施形態においては、第1FBG22、第2FBG24、第3FBG26、および第4FBG28が個別に形成されているが、これに限られない。例えば、本実施形態においては、両端部8Aの一方に、連続したファイバブラッグ格子を形成し、当該ファイバブラッグ格子の複数の位置のそれぞれにチャープを形成してもよい。これにより、本実施形態においては、ファイバブラッグ格子の各チャープを形成した位置において特定波長の光子を反射させることにより、各共振器を形成してもよい。 Note that in this embodiment, the first FBG 22, the second FBG 24, the third FBG 26, and the fourth FBG 28 are formed individually, but the invention is not limited to this. For example, in the present embodiment, a continuous fiber Bragg grating may be formed at one of both ends 8A, and chirps may be formed at each of a plurality of positions of the fiber Bragg grating. Accordingly, in this embodiment, each resonator may be formed by reflecting photons of a specific wavelength at the positions where each chirp is formed in the fiber Bragg grating.
 <レーザ光源、単一光子源>
 図1の量子波長変換器2の平面図の参照に戻ると、レーザ光源6は、光ファイバ8を介して共振器構造体4の各共振器に、少なくとも一つ以上の周波数を有するポンプ光を入力するための光源である。例えば、レーザ光源6は、複数の周波数帯を含むポンプ光を生成してもよく、あるいは、特定の周波数を含む複数のポンプ光を生成してもよい。特に、本実施形態において、レーザ光源6は、第2共振周波数ωを有する第1ポンプ光PL1と、第3共振周波数ωを有する第2ポンプ光PL2とを生成し、第1ポンプ光PL1および第2ポンプ光PL2を共振器構造体4の各共振器に入力する。
<Laser light source, single photon source>
Referring back to the plan view of the quantum wavelength converter 2 in FIG. It is a light source for input. For example, the laser light source 6 may generate pump light that includes multiple frequency bands, or may generate multiple pump lights that include a specific frequency. In particular, in the present embodiment, the laser light source 6 generates a first pump light PL1 having a second resonant frequency ω 2 and a second pump light PL2 having a third resonant frequency ω 3 , and generates a first pump light PL1 having a third resonant frequency ω 3. And the second pump light PL2 is input to each resonator of the resonator structure 4.
 次いで、単一光子源10について、図2を参照して詳細に説明する。図2は、図1に示す量子波長変換器2の概略平面図のうち、量子波長変換器2が備える単一光子源10について拡大して示す概略図である。図2に示すように、単一光子源10は、共振器構造体4が含む各構成のうち、ナノ光ファイバ部16、および当該ナノ光ファイバ部16とテーパー部18を介して接続する両端部8Aを含む。 Next, the single photon source 10 will be described in detail with reference to FIG. 2. FIG. 2 is an enlarged schematic diagram showing the single photon source 10 included in the quantum wavelength converter 2, out of the schematic plan view of the quantum wavelength converter 2 shown in FIG. As shown in FIG. 2, among the components included in the resonator structure 4, the single photon source 10 includes a nano-optical fiber section 16, and both ends connected to the nano-optical fiber section 16 via a tapered section 18. Contains 8A.
 ただし、単一光子源10は、共振器構造体4が含む各ファイバブラッグ格子のうち、一方の両端部8Aのコア部30に共通FBG20を含み、他方の両端部8Aのコア部30に第1FBG22のみを含む。このため、単一光子源10は、共振器構造体4が含む各共振器のうち、第1共振器34のみを含む。 However, the single photon source 10 includes a common FBG 20 in the core part 30 at one end 8A of each fiber Bragg grating included in the resonator structure 4, and a first FBG 22 in the core part 30 at the other end 8A. Contains only. Therefore, the single photon source 10 includes only the first resonator 34 among the resonators included in the resonator structure 4 .
 さらに、単一光子源10は、ナノ光ファイバ部16上に形成された量子系42を備える。量子系42は、少なくとも、基底準位と当該基底準位よりも上位の準位である励起準位とを含み、例えば、原子、イオン、窒素欠陥を有するダイヤモンド、および量子ドット等を含む。また、本実施形態において、量子系42の基底準位と励起準位との準位差は、第1共振周波数ωを有する光子のエネルギーに相当する。 Furthermore, the single photon source 10 includes a quantum system 42 formed on the nano-optical fiber section 16. The quantum system 42 includes at least a ground level and an excited level that is a level higher than the ground level, and includes, for example, atoms, ions, diamond having nitrogen defects, quantum dots, and the like. Further, in this embodiment, the level difference between the ground level and the excited level of the quantum system 42 corresponds to the energy of a photon having the first resonance frequency ω1 .
 単一光子源10は、例えば、量子系42の基底準位と励起準位との間の状態遷移を用いて、第1共振周波数ωを有する単一光子を生成してもよい。この場合、単一光子源10は、例えば、量子系42の基底準位と励起準位との間の状態遷移を引き起こすコントロール光を量子系42に照射可能な図示しないレーザ光源を含んでいてもよい。 The single photon source 10 may generate a single photon having a first resonant frequency ω 1 using, for example, a state transition between the ground level and the excited level of the quantum system 42 . In this case, the single photon source 10 may include, for example, a laser light source (not shown) that can irradiate the quantum system 42 with control light that causes a state transition between the ground level and the excited level of the quantum system 42. good.
 単一光子源10は、例えば、量子系42と第1共振器34との結合により、基底準位と励起準位との間の状態遷移に伴う単一光子の自然放出が強調されるパーセル効果に基づき、第1共振周波数ωを有する単一光子を第1共振器34中に生成してもよい。換言すれば、上述したレーザ光源からのコントロール光により量子系42の状態を励起させ、再び基底状態に戻る際に単一光子が生じることを利用し、単一光子源10は単一光子を生成してもよい。 The single photon source 10 uses, for example, the Purcell effect in which the spontaneous emission of a single photon accompanying a state transition between the ground level and the excited level is emphasized by the coupling between the quantum system 42 and the first resonator 34. A single photon having a first resonant frequency ω 1 may be generated in the first resonator 34 based on ω 1 . In other words, the single photon source 10 generates a single photon by using the fact that a single photon is generated when the state of the quantum system 42 is excited by the control light from the laser light source and returns to the ground state again. You may.
 あるいは、単一光子源10は、振幅が0から次第に上昇するコントロール光を量子系42に照射することにより単一光子を第1共振器34に生成してもよい。この場合、コントロール光の振幅の時間変化を制御することにより、単一光子の波形を制御できる。 Alternatively, the single photon source 10 may generate a single photon in the first resonator 34 by irradiating the quantum system 42 with control light whose amplitude gradually increases from 0. In this case, the waveform of a single photon can be controlled by controlling the temporal change in the amplitude of the control light.
 図1の参照に戻ると、単一光子源10は光ファイバ8を介して共振器構造体4と接続する。このため、単一光子源10は生成した第1共振周波数ωを有する単一光子を、入力単一光子IFとして共振器構造体4の各共振器に入力する。量子波長変換器2は、レーザ光源6からの第1ポンプ光PL1および第2ポンプ光PL2と、単一光子源10からの入力単一光子IFと、を混合して共振器構造体4の各共振器に入力するための合流器44を備えていてもよい。 Referring back to FIG. 1, the single photon source 10 is connected to the resonator structure 4 via an optical fiber 8. Therefore, the single photon source 10 inputs the generated single photon having the first resonance frequency ω 1 to each resonator of the resonator structure 4 as an input single photon IF. The quantum wavelength converter 2 mixes the first pump light PL1 and the second pump light PL2 from the laser light source 6 and the input single photon IF from the single photon source 10 to convert each of the resonator structures 4 A confluencer 44 for inputting to the resonator may be provided.
 <四光波混合過程>
 以上より、本実施形態において、共振器構造体4の各共振器には、レーザ光源6からの第1ポンプ光PL1および第2ポンプ光PL2と、単一光子源10からの入力単一光子IFと、が入力される。本実施形態において、共振器構造体4は、入力された第1ポンプ光PL1、第2ポンプ光PL2、および入力単一光子IFによる四光波混合過程により、第4共振周波数ωを有する出力光子OFを生成する。本実施形態において、出力光子OFは単一光子である。
<Four-wave mixing process>
As described above, in this embodiment, each resonator of the resonator structure 4 receives the first pump light PL1 and the second pump light PL2 from the laser light source 6, and the input single photon IF from the single photon source 10. is input. In this embodiment, the resonator structure 4 generates an output photon having a fourth resonant frequency ω 4 by a four-wave mixing process using the input first pump light PL1, second pump light PL2, and input single photon IF. Generate OF. In this embodiment, the output photon OF is a single photon.
 共振器構造体4による出力光子OFの生成について、図3を参照してより詳細に説明する。図3は、共振器構造体4における光子の入出力を説明するための模式図4Aと、共振器構造体4において生じる状態遷移を表すエネルギーダイヤグラムD1である。 The generation of output photons OF by the resonator structure 4 will be explained in more detail with reference to FIG. 3. FIG. 3 is a schematic diagram 4A for explaining input and output of photons in the resonator structure 4, and an energy diagram D1 showing state transitions occurring in the resonator structure 4.
 図3の模式図4Aに示す通り、共振器構造体4には、第1共振周波数ωを有する単一入力光子IF、第2共振周波数ωを有する第1ポンプ光PL1、および第3共振周波数ωを有する第2ポンプ光PL2が入力される。この結果、後述の方法により、模式図4Aに示す通り、第4共振周波数ωを有する出力光子OFが共振器構造体4から出力される。 As shown in the schematic diagram 4A of FIG. 3, the resonator structure 4 includes a single input photon IF having a first resonant frequency ω 1 , a first pump light PL1 having a second resonant frequency ω 2 , and a third resonant Second pump light PL2 having a frequency ω 3 is input. As a result, as shown in schematic diagram 4A, an output photon OF having a fourth resonant frequency ω 4 is output from the resonator structure 4 by a method described below.
 ここで、本実施形態においては、第1共振周波数ω、第2共振周波数ω、第3共振周波数ω、および第4共振周波数ωについて、以下の式(1)および式(2)が成立する。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 上記2式において、nは第i共振周波数ωの光に対するナノ光ファイバ部16の内部における実効屈折率である。また、上記2式において、cは光速、γはナノ光ファイバ部16の非線形係数、Pはレーザ光源6からのポンプ光の合計強度である。
Here, in this embodiment, the following equations (1) and (2) are used for the first resonant frequency ω 1 , the second resonant frequency ω 2 , the third resonant frequency ω 3 , and the fourth resonant frequency ω 4 holds true.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
In the above two equations, n i is the effective refractive index inside the nano-optical fiber section 16 for light having the i-th resonance frequency ω i . In the above two equations, c is the speed of light, γ is the nonlinear coefficient of the nano-optical fiber section 16, and P is the total intensity of the pump light from the laser light source 6.
 ここで、共振器構造体4の各共振器の共通光路に含まれるナノ光ファイバ部16において、図3のエネルギーダイヤグラムD1に示すように、基底準位gと励起準位eとを仮想的に設定する。また、基底準位gと励起準位eとのエネルギー差を、第1共振周波数ωを有する光子のエネルギーと第2共振周波数ωを有する光子のエネルギーとの合計値と略同一とする。なお、上記式(1)から、ω+ω=ω+ωが成立するため、基底準位gと励起準位eとのエネルギー差は、第3共振周波数ωを有する光子のエネルギーと第4共振周波数ωを有する光子のエネルギーとの合計値とも略同一である。 Here, in the nano-optical fiber section 16 included in the common optical path of each resonator of the resonator structure 4, as shown in the energy diagram D1 of FIG. Set. Further, the energy difference between the ground level g and the excited level e is made approximately equal to the total value of the energy of photons having the first resonance frequency ω 1 and the energy of photons having the second resonance frequency ω 2 . Note that from the above equation (1), ω 1234 holds, so the energy difference between the ground level g and the excited level e is equal to the energy of a photon having the third resonance frequency ω 3 . It is also approximately the same as the total value of the energy of photons having the fourth resonance frequency ω4 .
 上記2式が成立する場合、ナノ光ファイバ部16においては、単一入力光子IF、第1ポンプ光PL1、および第2ポンプ光PL2によって、エネルギーダイヤグラムD1に示す状態遷移が生じる。具体的には、単一入力光子IFおよび第1ポンプ光PL1によって、基底準位gから励起準位eへの励起が生じる。また、当該励起と併せて、第2ポンプ光PL2によって、励起準位eから2準位の中間への遷移が生じる。結果として、第2ポンプ光PL2のエネルギーと、基底準位gと励起準位eとのエネルギー差との差に相当するエネルギーを有する、第4共振周波数ωを有する出力光子OFが生成される。 When the above two equations hold true, a state transition shown in the energy diagram D1 occurs in the nano-optical fiber section 16 due to the single input photon IF, the first pump light PL1, and the second pump light PL2. Specifically, the single input photon IF and the first pump light PL1 cause excitation from the ground level g to the excited level e. In addition to the excitation, the second pump light PL2 causes a transition from the excitation level e to the middle of the two levels. As a result, an output photon OF having a fourth resonant frequency ω 4 is generated, which has an energy corresponding to the difference between the energy of the second pump light PL2 and the energy difference between the ground level g and the excited level e. .
 以上により、ナノ光ファイバ部16においては四光波混合過程が発生する。換言すれば、本実施形態に係る共振器構造体4の各共振器は、共通の共振光路であるナノ光ファイバ部16における四光波混合過程のエネルギー保存則および位相整合条件を満たしている。ここで、上記2式のうち、式(1)は四光波混合過程のエネルギー保存則を表し、式(2)は四光波混合過程の位相整合条件を表す。 As a result of the above, a four-wave mixing process occurs in the nano-optical fiber section 16. In other words, each resonator of the resonator structure 4 according to the present embodiment satisfies the energy conservation law and phase matching conditions of the four-wave mixing process in the nano-optical fiber section 16, which is a common resonant optical path. Here, of the above two equations, equation (1) represents the energy conservation law of the four-wave mixing process, and equation (2) represents the phase matching condition of the four-wave mixing process.
 ここで、ナノ光ファイバ部16を共通の共振光路として含む共振器構造体4の各共振器は、第1共振周波数ω、第2共振周波数ω、第3共振周波数ω、および第4共振周波数ωを有する光と結合する。このため、共振器構造体4の各共振器により、ナノ光ファイバ部16における上述の四光波混合過程は促進され、共振器構造体4における出力光子OFの生成が促進される。 Here, each resonator of the resonator structure 4 including the nano-optical fiber section 16 as a common resonant optical path has a first resonant frequency ω 1 , a second resonant frequency ω 2 , a third resonant frequency ω 3 , and a fourth resonant frequency ω 3 . It couples with light having a resonant frequency ω 4 . Therefore, each resonator of the resonator structure 4 promotes the above-mentioned four-wave mixing process in the nano-optical fiber section 16, and the generation of output photons OF in the resonator structure 4 is promoted.
 <フリースペクトルレンジの設計>
 ここで、共振器構造体4の各共振器の共振条件は、(n・ω・Li/c)+φ=m・πと表される。当該共振条件の式において、cは光速、nは第i共振器中の群屈折率、Liは第i共振器の共振器長、φは第i共振周波数ωを有する光子を反射するファイバブラッグ格子における当該光子の位相変化、mは自然数である。ここで、一般に、nおよびφは光子の周波数に依存し得る。このため、共振器長Liが同一であり、共振器構造体4が含むファイバブラッグ格子の分散を無視する場合、共振器構造体4の各共振器の共振条件を満たす第i共振周波数ωにおいて、上記式(2)は一般には成立しない。
<Free spectrum range design>
Here, the resonance condition of each resonator of the resonator structure 4 is expressed as (ni · ω i ·Li/c)+φ i =m i ·π. In the equation of the resonance condition, c is the speed of light, n i is the group refractive index in the i-th resonator, Li is the resonator length of the i-th resonator, and φ i reflects the photon having the i-th resonance frequency ω i The phase change of the photon in the fiber Bragg grating, m i , is a natural number. Here, in general, n i and φ i may depend on the frequency of the photon. Therefore, when the resonator length Li is the same and the dispersion of the fiber Bragg grating included in the resonator structure 4 is ignored, at the i-th resonance frequency ω i that satisfies the resonance condition of each resonator of the resonator structure 4, , the above formula (2) generally does not hold.
 そこで、本実施形態においては、共振器構造体4の各共振器の共振器長Liを個別に設計し、あるいは、当該各共振器が有するファイバブラッグ格子によって付加される分散を考慮して、当該各共振器の設計を行う。これにより、本実施形態においては、上記式(2)が成立するように、共振器構造体4の各共振器の設計を行う。例えば、上述の通り、共通FBG20に対し、第1FBG22、第2FBG24、第3FBG26、および第4FBG28を個別に形成することにより、各共振器の共振器長Liを個別に設計可能とする。 Therefore, in the present embodiment, the resonator length Li of each resonator of the resonator structure 4 is individually designed, or the resonator length Li of each resonator is designed in consideration of the dispersion added by the fiber Bragg grating of each resonator. Design each resonator. Accordingly, in this embodiment, each resonator of the resonator structure 4 is designed so that the above formula (2) holds true. For example, as described above, by individually forming the first FBG 22, the second FBG 24, the third FBG 26, and the fourth FBG 28 for the common FBG 20, the resonator length Li of each resonator can be individually designed.
 これにより、各共振器において、共振条件である(n・ω・Li/c)+φ=m・πを満たす共振器長Liを個別に設計できる。なお、上記式(2)が満たされる限り、共振器構造体4が含む各共振器の共振器長Liは特に限定されない。したがって、共振器構造体4が含む各共振器の共振器長Liの大小関係は、図1等に示す大小関係には限定されない。 Thereby, in each resonator, it is possible to individually design a resonator length Li that satisfies the resonance condition (n i ·ω i ·Li/c)+φ i =m i ·π. Note that, as long as the above formula (2) is satisfied, the resonator length Li of each resonator included in the resonator structure 4 is not particularly limited. Therefore, the magnitude relationship of the resonator lengths Li of each resonator included in the resonator structure 4 is not limited to the magnitude relationship shown in FIG. 1 and the like.
 このため、本実施形態に係る共振器構造体4は、上記式(2)を満たすように各共振器の設計を行うことが容易となる。また、共振器構造体4は、各共振器の一対のファイバブラッグ格子のうち一方を個別に形成しているため、温度変化または振動等の外乱に対し、各共振器に対する共振器長Liの安定化を独立して行うことができる。 Therefore, in the resonator structure 4 according to the present embodiment, each resonator can be easily designed to satisfy the above formula (2). In addition, since the resonator structure 4 individually forms one of the pair of fiber Bragg gratings for each resonator, the resonator length Li for each resonator is stable against disturbances such as temperature changes or vibrations. can be performed independently.
 <ダイクロイックミラー、光終端器>
 以上により、共振器構造体4は第4共振周波数ωを有する出力光子OFを生成する。図1の参照に戻ると、共振器構造体4から出力された出力光子OFは光ファイバ8を介してダイクロイックミラー12に入射する。ただし、共振器構造体4からは、単一光子源10からの単一入力光子IF、レーザ光源6からの第1ポンプ光PL1、および第2ポンプ光PL2も出射し、ダイクロイックミラー12に入射する。
<Dichroic mirror, optical terminator>
With the above, the resonator structure 4 generates an output photon OF having the fourth resonant frequency ω 4 . Returning to FIG. 1, the output photons OF output from the resonator structure 4 enter the dichroic mirror 12 via the optical fiber 8. However, the single input photon IF from the single photon source 10, the first pump light PL1 from the laser light source 6, and the second pump light PL2 are also emitted from the resonator structure 4, and enter the dichroic mirror 12. .
 ダイクロイックミラー12は、特定周波数の光子を透過または反射するミラーである。本実施形態において、ダイクロイックミラー12は、透過した光子が量子デバイスXに入射し、反射した光子が光終端器14に入射するように設置される。なお、本実施形態に係る量子波長変換器2は、透過または反射する光子の周波数が互いに異なる複数のダイクロイックミラー12を備えていてもよい。 The dichroic mirror 12 is a mirror that transmits or reflects photons of a specific frequency. In this embodiment, the dichroic mirror 12 is installed so that the transmitted photons are incident on the quantum device X, and the reflected photons are incident on the optical terminator 14. Note that the quantum wavelength converter 2 according to this embodiment may include a plurality of dichroic mirrors 12 that transmit or reflect photons with different frequencies.
 本実施形態において、ダイクロイックミラー12は、第1共振周波数ω、第2共振周波数ω、および第3共振周波数ωを有する光子を反射し、第4共振周波数ωを有する光子を透過する。したがって、ダイクロイックミラー12は、第1共振周波数ωを有する単一入力光子IF、第2共振周波数ωを有する第1ポンプ光PL1、および第3共振周波数ωを有する第2ポンプ光PL2を反射し、光終端器14に入射させる。また、ダイクロイックミラー12は、第4共振周波数ωを有する出力光子OFを透過させて、量子デバイスXに入射させる。換言すれば、ダイクロイックミラー12は、共振器構造体4から出射した光子のうち、量子デバイスXに入射する光子を、出力光子OFのみに限定する。 In this embodiment, the dichroic mirror 12 reflects photons having a first resonant frequency ω 1 , a second resonant frequency ω 2 , and a third resonant frequency ω 3 and transmits photons having a fourth resonant frequency ω 4 . Therefore, the dichroic mirror 12 receives a single input photon IF with a first resonant frequency ω 1 , a first pump light PL1 with a second resonant frequency ω 2 , and a second pump light PL2 with a third resonant frequency ω 3 . It is reflected and made incident on the optical terminator 14. Furthermore, the dichroic mirror 12 transmits the output photon OF having the fourth resonance frequency ω 4 and makes it incident on the quantum device X. In other words, the dichroic mirror 12 limits the photons that enter the quantum device X among the photons emitted from the resonator structure 4 to only the output photons OF.
 なお、本実施形態に係る量子波長変換器2は、ダイクロイックミラー12に代えて、共振器構造体4から出射した光を波長ごとに異なる方向に回折させる回折格子を備えていてもよい。また、本実施形態に係る量子波長変換器2は、ダイクロイックミラー12に代えて、共振器構造体4から出射した光を分波するWDMフィルタを備えていてもよい。 Note that, instead of the dichroic mirror 12, the quantum wavelength converter 2 according to this embodiment may include a diffraction grating that diffracts the light emitted from the resonator structure 4 in different directions for each wavelength. Furthermore, the quantum wavelength converter 2 according to this embodiment may include a WDM filter that separates the light emitted from the resonator structure 4 instead of the dichroic mirror 12.
 光終端器14は、例えば、入射した光子のエネルギーを熱等のエネルギーに変換することにより、当該光子を反射または分散等させることなく消失させるための光学素子である。光終端器14により、量子波長変換器2は、共振器構造体4から出射した単一入力光子IF、第1ポンプ光PL1、および第2ポンプ光PL2が外部に出射することを低減する。 The optical terminator 14 is, for example, an optical element that converts the energy of incident photons into energy such as heat, thereby causing the photons to disappear without being reflected or dispersed. With the optical terminator 14, the quantum wavelength converter 2 reduces the output of the single input photon IF, the first pump light PL1, and the second pump light PL2 emitted from the resonator structure 4 to the outside.
 ただし、量子波長変換器2は、光終端器14に代えてさらに他の共振器構造体4を備えていてもよく、当該共振器構造体4にダイクロイックミラー12が反射した光子を入射させてもよい。これにより、量子波長変換器2は、複数の共振器構造体4のそれぞれにおいて、出力光子OFを生成してもよい。 However, the quantum wavelength converter 2 may further include another resonator structure 4 instead of the optical terminator 14, and the photons reflected by the dichroic mirror 12 may be incident on the resonator structure 4. good. Thereby, the quantum wavelength converter 2 may generate output photons OF in each of the plurality of resonator structures 4.
 <実施形態1のまとめ>
 本実施形態に係る量子波長変換器2は、単一光子源10が生成した第1共振周波数ωを有する単一入力光子IFを、当該第1共振周波数ωと異なる周波数である第4共振周波数ωを有する出力光子OFに変換することができる。また、量子波長変換器2は、量子デバイスXに出力光子OFを入力する。これにより、量子波長変換器2は、単一光子源10が生成する光子の周波数と、量子デバイスXが必要とする光子の周波数との間に差異があっても、単一光子源10が生成する光子の周波数を変換して量子デバイスXに入力することができる。
<Summary of Embodiment 1>
The quantum wavelength converter 2 according to the present embodiment converts a single input photon IF having a first resonance frequency ω 1 generated by the single photon source 10 into a fourth resonance having a frequency different from the first resonance frequency ω 1 . It can be converted into an output photon OF with frequency ω 4 . Further, the quantum wavelength converter 2 inputs the output photon OF to the quantum device X. Thereby, even if there is a difference between the frequency of photons generated by the single photon source 10 and the frequency of photons required by the quantum device The frequency of the photon can be converted and input into the quantum device X.
 本実施形態においては、例えば、図3のエネルギーダイヤグラムD1に示すように、第4共振周波数ωを他の共振周波数の何れよりも低い周波数とした。しかしながら、これに限られず、第4共振周波数ωは何れかの共振周波数よりも大きくともよい。本実施形態においては、例えば、第4共振周波数ωを第3共振周波数ωよりも大きくしてもよい。本実施形態においては、上記式(1)および式(2)を満たすように、第1ポンプ光PL1と第2ポンプ光PL2との周波数、および共振器構造体4が含む各共振器の共振器長等の設計を変更することにより、第4共振周波数ωの変更を実現してもよい。 In this embodiment, for example, as shown in the energy diagram D1 of FIG. 3, the fourth resonant frequency ω4 is set to be a frequency lower than any of the other resonant frequencies. However, the present invention is not limited to this, and the fourth resonant frequency ω 4 may be higher than any of the resonant frequencies. In this embodiment, for example, the fourth resonant frequency ω 4 may be made larger than the third resonant frequency ω 3 . In this embodiment, the frequencies of the first pump light PL1 and the second pump light PL2 and the resonator of each resonator included in the resonator structure 4 are set so that the above formulas (1) and (2) are satisfied. The fourth resonant frequency ω 4 may be changed by changing the design such as length.
 本実施形態に係る量子波長変換器2は、ポンプ光等が入力され、波長変換後の光子を生成する各共振器の共通の共振光路を、光ファイバ8の一部として含む。このため、波長変換前の光子を出射する量子デバイス、または、波長変換後の光子を必要とする量子デバイスが光ファイバを有していた場合においても、本実施形態に係る量子波長変換器2は、当該光ファイバとの結合を容易に実現する。したがって、量子波長変換器2は、光ファイバを含む量子デバイスに組み込んだ場合においても、当該量子デバイスの構造の複雑化を低減する。 The quantum wavelength converter 2 according to the present embodiment includes, as part of the optical fiber 8, a common resonant optical path of each resonator into which pump light and the like are input and which generate photons after wavelength conversion. Therefore, even if a quantum device that emits photons before wavelength conversion or a quantum device that requires photons after wavelength conversion has an optical fiber, the quantum wavelength converter 2 according to the present embodiment can be used. , easily realizes coupling with the optical fiber. Therefore, even when the quantum wavelength converter 2 is incorporated into a quantum device including an optical fiber, the complexity of the structure of the quantum device is reduced.
 なお、量子波長変換器2は、単一光子源10が生成する単一入力光子IFの波長を変換するが、これに限られない。例えば、量子波長変換器2は、量子コンピュータにおける量子演算ユニット、または、量子通信器における量子中継器から出力された、第1共振周波数ωを有する光子の波長を変換してもよい。あるいは、量子波長変換器2は、他の量子波長変換器2が生成した出力光子OFの波長をさらに変換してもよい。 Note that, although the quantum wavelength converter 2 converts the wavelength of the single input photon IF generated by the single photon source 10, the present invention is not limited thereto. For example, the quantum wavelength converter 2 may convert the wavelength of a photon having the first resonant frequency ω 1 output from a quantum computing unit in a quantum computer or a quantum repeater in a quantum communication device. Alternatively, the quantum wavelength converter 2 may further convert the wavelength of the output photon OF generated by another quantum wavelength converter 2.
 一般に、量子系として原子を備える量子演算ユニットまたは量子中継器において、当該原子と光子とを相互作用させる場合、原子における十分なコヒーレンス時間の確保のために、原子の基底準位とその直上の励起準位との遷移が利用される場合が多い。この場合、一般に、原子と光子とを相互作用させるために、当該光子の波長は1μm未満であることが求められる。 Generally, in a quantum processing unit or quantum repeater that includes atoms as a quantum system, when the atoms and photons interact, in order to ensure sufficient coherence time in the atoms, the excitation between the ground level of the atom and immediately above it is required. Transitions between levels are often used. In this case, the wavelength of the photon is generally required to be less than 1 μm in order to cause the atom to interact with the photon.
 一方、ある量子演算ユニットにおける演算に利用した光子を利用してさらなる演算を行うために、当該光子を他の量子演算ユニットに伝搬させるために、または、複数の量子中継器の間における光子の伝搬のために、一般に単一モードの光ファイバが用いられる。ここで、一般に、光ファイバ中における光子の損失を十分に低減するために、当該光ファイバを伝搬する光子の波長は1.3μm以上1.6μm以下の波長帯である通信波長帯に含まれる場合が多い。 On the other hand, in order to perform further operations using photons used in operations in a certain quantum operation unit, to propagate the photons to other quantum operation units, or to propagate photons between multiple quantum repeaters. For this purpose, single mode optical fibers are generally used. Here, in general, in order to sufficiently reduce the loss of photons in an optical fiber, the wavelength of photons propagating through the optical fiber is included in the communication wavelength band, which is a wavelength band of 1.3 μm or more and 1.6 μm or less. There are many.
 本実施形態に係る量子波長変換器2は、例えば、上述した量子演算ユニットまたは量子中継器から出力され、波長が1μm未満の光子を、1.3μm以上1.6μm以下の波長を有する光子に変換し、光ファイバ中を伝搬させてもよい。次いで、他の量子波長変換器2が、当該光ファイバ中を伝搬する光子を、再び1μm未満の波長を有する光子に変換した後、他の量子演算ユニットまたは量子中継器に入力してもよい。この場合、量子波長変換器2によって、複数の量子演算ユニットまたは量子中継器における光子の低損失の伝搬が実現する。 The quantum wavelength converter 2 according to the present embodiment converts photons with a wavelength of less than 1 μm, which are output from the quantum operation unit or quantum repeater described above, into photons with a wavelength of 1.3 μm or more and 1.6 μm or less, for example. However, it may also be propagated through an optical fiber. Then, another quantum wavelength converter 2 may convert the photon propagating in the optical fiber into a photon having a wavelength of less than 1 μm again, and then input the photon to another quantum processing unit or quantum repeater. In this case, the quantum wavelength converter 2 provides a low-loss propagation of photons in a plurality of quantum computing units or quantum repeaters.
 本実施形態において、共振器構造体4の各共振器における共通の共振光路は、両端部8Aよりも径の小さいナノ光ファイバ部16を含む。このため、モード断面積が小さいことにより、ナノ光ファイバ部16においては、光ファイバ8の他の部分よりも、上述した四光波混合過程が有意に発生する。したがって、本実施形態に係る量子波長変換器2は、単一入力光子IFから出力光子OFへの変換効率を向上させることができる。 In this embodiment, the common resonant optical path in each resonator of the resonator structure 4 includes a nano-optical fiber portion 16 having a smaller diameter than both end portions 8A. Therefore, due to the small mode cross section, the above-mentioned four-wave mixing process occurs more significantly in the nano-optical fiber portion 16 than in other portions of the optical fiber 8. Therefore, the quantum wavelength converter 2 according to this embodiment can improve the conversion efficiency from a single input photon IF to an output photon OF.
 本実施形態において、共振器構造体4の各共振器は、一対のファイバブラッグ格子を有する。このため、量子波長変換器2は、一対のミラー等の光学素子、または、リング共振器等を備える場合と比較して、共振器構造体4の各共振器を簡素に構成できる。さらに、複数の共振器の間において、ファイバブラッグ格子の少なくとも一部は、同一の共通FBG20である。このため、量子波長変換器2は、共振器ごとに独立した一対のファイバブラッグ格子を備える場合と比較して、共振器構造体4の各共振器をより簡素に構成できる。なお、各共振器の一対のファイバブラッグ格子のうち、一方を共通とし、他方を個々に形成することにより、量子波長変換器2は、上述の通り、各共振器の共振器長の設計をより容易とできる。 In this embodiment, each resonator of the resonator structure 4 has a pair of fiber Bragg gratings. Therefore, in the quantum wavelength converter 2, each resonator of the resonator structure 4 can be configured more simply than when the quantum wavelength converter 2 includes an optical element such as a pair of mirrors or a ring resonator. Furthermore, between the plurality of resonators, at least a portion of the fiber Bragg grating is the same common FBG 20. Therefore, in the quantum wavelength converter 2, each resonator of the resonator structure 4 can be configured more simply than when each resonator is provided with a pair of independent fiber Bragg gratings. As mentioned above, by forming one of the pair of fiber Bragg gratings in each resonator in common and forming the other individually, the quantum wavelength converter 2 can improve the design of the resonator length of each resonator. You can do it easily.
 なお、量子波長変換器2は、単一入力光子IFの代わりに、レーザ光源6から出射した第1共振周波数ωのポンプ光を共振器構造体4に入力してもよい。この場合、レーザ光源6から出射した各ポンプ光の強度を十分に強くすることにより、共振器構造体4は、第4共振周波数ωを有するコヒーレントな光子を生成する。換言すれば、量子波長変換器2は、光パラメトリック発振器としても機能してよい。なお、本実施形態に限られず、本明細書に記載された各実施形態に係る量子波長変換器は、レーザ光源からのポンプ光から第4共振周波数ωを有するコヒーレントな光子を生成する光パラメトリック発振器としても機能してよい。 Note that the quantum wavelength converter 2 may input pump light having the first resonant frequency ω 1 emitted from the laser light source 6 to the resonator structure 4 instead of the single input photon IF. In this case, by sufficiently increasing the intensity of each pump light emitted from the laser light source 6, the resonator structure 4 generates coherent photons having a fourth resonant frequency ω4 . In other words, the quantum wavelength converter 2 may also function as an optical parametric oscillator. Note that the quantum wavelength converter according to each embodiment described in this specification, not limited to this embodiment, is an optical parametric converter that generates coherent photons having a fourth resonance frequency ω 4 from pump light from a laser light source. It may also function as an oscillator.
 〔実施形態2〕
 <パラメトリック下方変換を利用した波長変換>
 図4は、本実施形態に係る量子波長変換器46の概略平面図、および、当該概略平面図のうち、量子波長変換器46が備える共振器構造体48について拡大して示す概略図である。本実施形態に係る量子波長変換器46は、前実施形態に係る量子波長変換器2と比較して、共振器構造体4に代えて共振器構造体48を備える点においてのみ構成が異なる。なお、以降の実施形態において、特に説明しない限り、異なる実施形態の間において同一の構成を有し、または同一の機能を果たす部材については、同一の部材番号を付し、その詳細な説明を省略する。
[Embodiment 2]
<Wavelength conversion using parametric down conversion>
FIG. 4 is a schematic plan view of the quantum wavelength converter 46 according to the present embodiment, and an enlarged view of the resonator structure 48 included in the quantum wavelength converter 46 in the schematic plan view. The quantum wavelength converter 46 according to this embodiment differs in configuration from the quantum wavelength converter 2 according to the previous embodiment only in that it includes a resonator structure 48 instead of the resonator structure 4. In the following embodiments, unless otherwise specified, members that have the same configuration or perform the same functions in different embodiments will be designated by the same member numbers, and detailed explanations thereof will be omitted. do.
 本実施形態に係る共振器構造体48は、前実施形態に係る共振器構造体4と比較して、第2FBG24および第2共振器36を備えていない点において構成が異なる。このため、共振器構造体48は、第1共振周波数ω、第3共振周波数ω、および第4共振周波数ωをそれぞれ共振周波数として有する、第1共振器34、第3共振器38、および第4共振器40を含む。また、共振器構造体48は、第1共振器34、第3共振器38、および第4共振器40の共通の共振光路として、少なくともナノ光ファイバ部16を含む。 The resonator structure 48 according to this embodiment differs in configuration from the resonator structure 4 according to the previous embodiment in that it does not include the second FBG 24 and the second resonator 36. Therefore, the resonator structure 48 includes a first resonator 34, a third resonator 38, each having a first resonant frequency ω 1 , a third resonant frequency ω 3 , and a fourth resonant frequency ω 4 as resonant frequencies, respectively. and a fourth resonator 40. Further, the resonator structure 48 includes at least the nano-optical fiber section 16 as a common resonant optical path of the first resonator 34, the third resonator 38, and the fourth resonator 40.
 また、本実施形態において、レーザ光源6は、第3共振周波数ωを有する第2ポンプ光PL2を共振器構造体48に入力し、第1ポンプ光PL1を出射しない。したがって、本実施形態に係る共振器構造体48には、レーザ光源6からの第2ポンプ光PL2と、単一光子源10が生成する単一入力光子IFとが入力される。本実施形態において、共振器構造体48は、入力された第2ポンプ光PL2、および入力単一光子IFによるパラメトリック下方変換により、第4共振周波数ωを有する出力光子OFを生成する。 Further, in this embodiment, the laser light source 6 inputs the second pump light PL2 having the third resonance frequency ω 3 to the resonator structure 48, and does not emit the first pump light PL1. Therefore, the second pump light PL2 from the laser light source 6 and the single input photon IF generated by the single photon source 10 are input to the resonator structure 48 according to this embodiment. In this embodiment, the resonator structure 48 generates an output photon OF having a fourth resonant frequency ω 4 by parametric down-conversion using the input second pump light PL2 and the input single photon IF.
 共振器構造体48による出力光子OFの生成について、図5を参照してより詳細に説明する。図5は、共振器構造体48における光子の入出力を説明するための模式図48Aと、共振器構造体48において生じる状態遷移を表すエネルギーダイヤグラムD2である。 The generation of output photons OF by the resonator structure 48 will be explained in more detail with reference to FIG. 5. FIG. 5 is a schematic diagram 48A for explaining the input and output of photons in the resonator structure 48, and an energy diagram D2 showing state transitions occurring in the resonator structure 48.
 図5の模式図48Aに示す通り、共振器構造体48には、第1共振周波数ωを有する単一入力光子IF、および第3共振周波数ωを有する第2ポンプ光PL2が入力される。この結果、後述の方法により、模式図48Aに示す通り、第4共振周波数ωを有する出力光子OFが共振器構造体48から出力される。本実施形態においても、出力光子OFは単一光子である。 As shown in the schematic diagram 48A of FIG. 5, a single input photon IF having a first resonant frequency ω 1 and a second pump light PL2 having a third resonant frequency ω 3 are input to the resonator structure 48. . As a result, as shown in schematic diagram 48A, an output photon OF having a fourth resonant frequency ω 4 is output from the resonator structure 48 by a method described below. Also in this embodiment, the output photon OF is a single photon.
 ここで、本実施形態においては、第1共振周波数ω、第3共振周波数ω、および第4共振周波数ωについて、上述した式(1)および式(2)を、以下の式(3)および式(4)に読み替えた式が成立する。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 ここで、本実施形態においては、図5のエネルギーダイヤグラムD2に示すように、ナノ光ファイバ部16における基底準位gと励起準位eとのエネルギー差を、第1共振周波数ωを有する光子のエネルギーと略同一とする。なお、上記式(3)から、ω=ω+ωが成立するため、基底準位gと励起準位eとのエネルギー差は、第3共振周波数ωを有する光子のエネルギーと第4共振周波数ωを有する光子のエネルギーとの合計値とも略同一である。
Here, in this embodiment, for the first resonant frequency ω 1 , the third resonant frequency ω 3 , and the fourth resonant frequency ω 4 , the above-mentioned equations (1) and (2) are replaced by the following equation (3). ) and the equation (4) is established.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
In this embodiment, as shown in the energy diagram D2 of FIG. 5, the energy difference between the ground level g and the excited level e in the nano-optical fiber section 16 is expressed as The energy is approximately the same as that of Note that from the above equation (3), ω 1 = ω 3 + ω 4 holds, so the energy difference between the ground level g and the excited level e is equal to the energy of the photon having the third resonance frequency ω 3 and the fourth It is also approximately the same as the total value of the energy of photons having a resonant frequency ω 4 .
 上記2式が成立する場合、ナノ光ファイバ部16においては、単一入力光子IF、および第2ポンプ光PL2によって、エネルギーダイヤグラムD2に示す状態遷移が生じる。具体的には、単一入力光子IFによって、基底準位gから励起準位eへの励起が生じる。また、当該励起と併せて、第2ポンプ光PL2によって、励起準位eから2準位の中間への遷移が生じる。結果として、第2ポンプ光PL2のエネルギーと、基底準位gと励起準位eとのエネルギー差との差に相当するエネルギーを有する、第4共振周波数ωを有する出力光子OFが生成される。 When the above two equations hold true, the state transition shown in the energy diagram D2 occurs in the nano-optical fiber section 16 due to the single input photon IF and the second pump light PL2. Specifically, a single input photon IF causes excitation from the ground level g to the excited level e. In addition to the excitation, the second pump light PL2 causes a transition from the excitation level e to the middle of the two levels. As a result, an output photon OF having a fourth resonant frequency ω 4 is generated, which has an energy corresponding to the difference between the energy of the second pump light PL2 and the energy difference between the ground level g and the excited level e. .
 以上により、ナノ光ファイバ部16においてはパラメトリック下方変換が発生する。換言すれば、本実施形態に係る共振器構造体48の各共振器は、共通の共振光路であるナノ光ファイバ部16におけるパラメトリック下方変換のエネルギー保存則および位相整合条件を満たしている。ここで、上記2式のうち、式(3)はパラメトリック下方変換のエネルギー保存則を表し、式(4)はパラメトリック下方変換の位相整合条件を表す。 As a result of the above, parametric downward conversion occurs in the nano-optical fiber section 16. In other words, each resonator of the resonator structure 48 according to this embodiment satisfies the energy conservation law and phase matching conditions for parametric down conversion in the nano-optical fiber section 16, which is a common resonant optical path. Here, of the above two equations, equation (3) represents the energy conservation law of parametric down transformation, and equation (4) represents the phase matching condition of parametric down transformation.
 ここで、3次の非線形光学効果である四光波混合過程は、反転対称性を有する物質中であっても有意に発生するのと比較して、2次の非線形光学効果であるパラメトリック下方変換は、反転対称性を有さない物質中において有意に発生する。一般に、例えば、単一モードの光ファイバがシリカガラスからなる場合、当該光ファイバは反転対称性を有する。しかしながら、ナノ光ファイバにおいては、構造として反転対称性を有さない表面の効果が顕著となり、2次の非線形光学効果が観測される。したがって、本実施形態に係る共振器構造体48のように、ナノ光ファイバ部16を共通の共振光路に含む各共振器においては、四光波混合過程のみならず、パラメトリック下方変換についても有意に発生する。 Here, the four-wave mixing process, which is a third-order nonlinear optical effect, occurs significantly even in materials with inversion symmetry, whereas the parametric down-conversion, which is a second-order nonlinear optical effect, occurs significantly even in materials with inversion symmetry. , occurs significantly in materials without inversion symmetry. Generally, for example, when a single mode optical fiber is made of silica glass, the optical fiber has inversion symmetry. However, in nano-optical fibers, the effect of the surface having no inversion symmetry as a structure becomes significant, and second-order nonlinear optical effects are observed. Therefore, in each resonator including the nano-optical fiber section 16 in a common resonant optical path, like the resonator structure 48 according to the present embodiment, not only the four-wave mixing process but also the parametric downward conversion significantly occurs. do.
 以上により、共振器構造体48は第4共振周波数ωを有する出力光子OFを生成する。図4の参照に戻ると、共振器構造体48から出力された出力光子OFはダイクロイックミラー12を透過して量子デバイスXに入射する。また、共振器構造体48からの単一入力光子IF、および第2ポンプ光PL2は、ダイクロイックミラー12において反射し光終端器14に入射し消失する。 As a result, the resonator structure 48 generates an output photon OF having a fourth resonant frequency ω 4 . Returning to FIG. 4, the output photon OF output from the resonator structure 48 passes through the dichroic mirror 12 and enters the quantum device X. Furthermore, the single input photon IF from the resonator structure 48 and the second pump light PL2 are reflected by the dichroic mirror 12, enter the optical terminator 14, and disappear.
 本実施形態に係る量子波長変換器46は、量子波長変換器2と同じく、単一光子源10が生成する第1共振周波数ωを有する単一入力光子IFを、第4共振周波数ωを有する出力光子OFに変換し、量子デバイスXに入力することができる。また、量子波長変換器46の共振器構造体48は、量子波長変換器2の共振器構造体4と比較して、第2共振器36を含まないため、含む共振器の個数が1つ少ない。したがって、量子波長変換器46は、量子波長変換器2と比較して、より簡素に共振器構造体48を構成でき、また、共振器構造体48の設計をより容易とする。量子波長変換器46は、パラメトリック下方変換を用いて光子の波長を変換するため、量子波長変換器2と比較して、共振器構造体48に入力する単一光子をより長波長低周波数の光子に変換したい場合に有用である。 Like the quantum wavelength converter 2, the quantum wavelength converter 46 according to this embodiment receives a single input photon IF having a first resonant frequency ω 1 generated by the single photon source 10 and a single input photon IF having a fourth resonant frequency ω 4. The output photon OF can be converted into an output photon OF and input into the quantum device X. Furthermore, the resonator structure 48 of the quantum wavelength converter 46 does not include the second resonator 36 compared to the resonator structure 4 of the quantum wavelength converter 2, and thus contains one fewer resonator. . Therefore, the quantum wavelength converter 46 can configure the resonator structure 48 more simply than the quantum wavelength converter 2, and also makes the design of the resonator structure 48 easier. The quantum wavelength converter 46 converts the wavelength of a photon using parametric down conversion, so compared to the quantum wavelength converter 2, the single photon input to the resonator structure 48 is converted into a photon with a longer wavelength and lower frequency. This is useful when you want to convert to .
 〔実施形態3〕
 <パラメトリック上方変換を利用した波長変換>
 図6は、本実施形態に係る量子波長変換器50の概略平面図、および、当該概略平面図のうち、量子波長変換器50が備える共振器構造体52について拡大して示す概略図である。本実施形態に係る量子波長変換器50は、実施形態1に係る量子波長変換器2と比較して、共振器構造体4に代えて共振器構造体52を備える点においてのみ構成が異なる。
[Embodiment 3]
<Wavelength conversion using parametric upward conversion>
FIG. 6 is a schematic plan view of the quantum wavelength converter 50 according to the present embodiment, and an enlarged view of the resonator structure 52 included in the quantum wavelength converter 50 in the schematic plan view. The quantum wavelength converter 50 according to the present embodiment differs in configuration from the quantum wavelength converter 2 according to the first embodiment only in that it includes a resonator structure 52 instead of the resonator structure 4.
 本実施形態に係る共振器構造体52は、共振器構造体4と比較して、第3FBG26および第3共振器38を備えていない点において構成が異なる。このため、共振器構造体52は、第1共振周波数ω、第2共振周波数ω、および第4共振周波数ωをそれぞれ共振周波数として有する、第1共振器34、第2共振器36、および第4共振器40を含む。また、共振器構造体52は、第1共振器34、第2共振器36、および第4共振器40の共通の共振光路として、少なくともナノ光ファイバ部16を含む。 The resonator structure 52 according to this embodiment differs in configuration from the resonator structure 4 in that it does not include the third FBG 26 and the third resonator 38. Therefore, the resonator structure 52 includes a first resonator 34, a second resonator 36, each having a first resonant frequency ω 1 , a second resonant frequency ω 2 , and a fourth resonant frequency ω 4 as resonant frequencies, respectively. and a fourth resonator 40. Further, the resonator structure 52 includes at least the nano-optical fiber section 16 as a common resonant optical path of the first resonator 34, the second resonator 36, and the fourth resonator 40.
 また、本実施形態において、レーザ光源6は、第2共振周波数ωを有する第1ポンプ光PL1を共振器構造体52に入力し、第2ポンプ光PL2を出射しない。したがって、本実施形態に係る共振器構造体52には、レーザ光源6からの第1ポンプ光PL1と、単一光子源10が生成する単一入力光子IFとが入力される。本実施形態において、共振器構造体52は、入力された第1ポンプ光PL1、および入力単一光子IFによるパラメトリック上方変換により、第4共振周波数ωを有する出力光子OFを生成する。 Furthermore, in this embodiment, the laser light source 6 inputs the first pump light PL1 having the second resonance frequency ω 2 to the resonator structure 52, and does not emit the second pump light PL2. Therefore, the first pump light PL1 from the laser light source 6 and the single input photon IF generated by the single photon source 10 are input to the resonator structure 52 according to this embodiment. In this embodiment, the resonator structure 52 generates an output photon OF having a fourth resonant frequency ω 4 by parametric upward conversion using the input first pump light PL1 and the input single photon IF.
 共振器構造体52による出力光子OFの生成について、図7を参照してより詳細に説明する。図7は、共振器構造体52における光子の入出力を説明するための模式図52Aと、共振器構造体52において生じる状態遷移を表すエネルギーダイヤグラムD3である。 The generation of output photons OF by the resonator structure 52 will be described in more detail with reference to FIG. 7. FIG. 7 is a schematic diagram 52A for explaining input and output of photons in the resonator structure 52, and an energy diagram D3 showing state transitions occurring in the resonator structure 52.
 図7の模式図52Aに示す通り、共振器構造体52には、第1共振周波数ωを有する単一入力光子IF、および第2共振周波数ωを有する第1ポンプ光PL1が入力される。この結果、後述の方法により、模式図52Aに示す通り、第4共振周波数ωを有する出力光子OFが共振器構造体52から出力される。本実施形態においても、出力光子OFは単一光子である。 As shown in the schematic diagram 52A of FIG. 7, a single input photon IF having a first resonant frequency ω 1 and a first pump light PL1 having a second resonant frequency ω 2 are input to the resonator structure 52. . As a result, as shown in the schematic diagram 52A, an output photon OF having the fourth resonant frequency ω 4 is output from the resonator structure 52 by a method described below. Also in this embodiment, the output photon OF is a single photon.
 ここで、本実施形態においては、第1共振周波数ω、第2共振周波数ω、および第4共振周波数ωについて、上述した式(1)および式(2)を、以下の式(5)および式(6)に読み替えた式が成立する。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ここで、本実施形態においては、図7のエネルギーダイヤグラムD3に示すように、ナノ光ファイバ部16における基底準位gと励起準位eとのエネルギー差を、第4共振周波数ωを有する光子のエネルギーとも略同一とする。なお、上記式(5)から、ω+ω=ωが成立するため、基底準位gと励起準位eとのエネルギー差は、第1共振周波数ωを有する光子のエネルギーと第2共振周波数ωを有する光子のエネルギーとの合計値と略同一である。
Here, in this embodiment, for the first resonant frequency ω 1 , the second resonant frequency ω 2 , and the fourth resonant frequency ω 4 , the above-mentioned equations (1) and (2) are replaced by the following equations (5 ) and the equation (6) is established.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
In this embodiment, as shown in the energy diagram D3 of FIG. 7, the energy difference between the ground level g and the excited level e in the nano-optical fiber section 16 is expressed as It is assumed that the energy of is almost the same as that of Note that from the above equation (5), ω 124 holds, so the energy difference between the ground level g and the excited level e is equal to the energy of the photon having the first resonance frequency ω 1 and the second It is approximately the same as the total value of the energy of a photon having a resonant frequency ω 2 .
 上記2式が成立する場合、ナノ光ファイバ部16においては、単一入力光子IF、および第1ポンプ光PL1によって、エネルギーダイヤグラムD3に示す状態遷移が生じる。具体的には、単一入力光子IFおよび第1ポンプ光PL1によって、基底準位gから励起準位eへの励起が生じる。結果として、基底準位gと励起準位eとのエネルギー差に相当するエネルギーを有する、第4共振周波数ωを有する出力光子OFが生成される。 When the above two equations hold true, the state transition shown in the energy diagram D3 occurs in the nano-optical fiber section 16 due to the single input photon IF and the first pump light PL1. Specifically, the single input photon IF and the first pump light PL1 cause excitation from the ground level g to the excited level e. As a result, an output photon OF with a fourth resonant frequency ω 4 is generated, which has an energy corresponding to the energy difference between the ground level g and the excited level e.
 以上により、ナノ光ファイバ部16においてはパラメトリック上方変換が発生する。換言すれば、本実施形態に係る共振器構造体52の各共振器は、共通の共振光路であるナノ光ファイバ部16におけるパラメトリック上方変換のエネルギー保存則および位相整合条件を満たしている。ここで、上記2式のうち、式(5)はパラメトリック上方変換のエネルギー保存則を表し、式(6)はパラメトリック上方変換の位相整合条件を表す。 As a result of the above, parametric upward conversion occurs in the nano-optical fiber section 16. In other words, each resonator of the resonator structure 52 according to this embodiment satisfies the law of energy conservation and phase matching conditions for parametric upward conversion in the nano-optical fiber section 16, which is a common resonant optical path. Here, of the above two equations, equation (5) represents the energy conservation law of parametric upward transformation, and equation (6) represents the phase matching condition of parametric upward transformation.
 ここで、パラメトリック上方変換は、パラメトリック下方変換と同じく2次の非線形光学効果であるため、反転対称性を有さない物質中において有意に発生する。しかしながら、構造として反転対称性を有さない表面の効果が顕著となるナノ光ファイバ部16においては、パラメトリック上方変換についても有意に発生する。 Here, parametric upward conversion is a second-order nonlinear optical effect like parametric downward conversion, so it occurs significantly in a substance that does not have inversion symmetry. However, in the nano-optical fiber section 16 where the effect of the surface having no inversion symmetry as a structure is significant, parametric upward conversion also occurs significantly.
 以上により、共振器構造体52は第4共振周波数ωを有する出力光子OFを生成する。図6の参照に戻ると、共振器構造体52から出力された出力光子OFはダイクロイックミラー12を透過して量子デバイスXに入射する。また、共振器構造体52からの単一入力光子IF、および第1ポンプ光PL1は、ダイクロイックミラー12において反射し光終端器14に入射し消失する。 As a result, the resonator structure 52 generates an output photon OF having the fourth resonant frequency ω 4 . Returning to FIG. 6, the output photon OF output from the resonator structure 52 passes through the dichroic mirror 12 and enters the quantum device X. Further, the single input photon IF from the resonator structure 52 and the first pump light PL1 are reflected by the dichroic mirror 12, enter the optical terminator 14, and disappear.
 本実施形態に係る量子波長変換器50は、量子波長変換器2と同じく、単一光子源10が生成する第1共振周波数ωを有する単一入力光子IFを、第4共振周波数ωを有する出力光子OFに変換し、量子デバイスXに入力することができる。また、量子波長変換器50の共振器構造体52は、量子波長変換器2の共振器構造体4と比較して、第3共振器38を含まないため、含む共振器の個数が1つ少ない。したがって、量子波長変換器50は、量子波長変換器2と比較して、より簡素に共振器構造体52を構成でき、また、共振器構造体52の設計をより容易とする。量子波長変換器50は、パラメトリック上方変換を用いて光子の波長を変換するため、量子波長変換器2および量子波長変換器46と比較して、共振器構造体52に入力する単一光子をより短波長高周波数の光子に変換したい場合に有用である。 Like the quantum wavelength converter 2, the quantum wavelength converter 50 according to the present embodiment receives a single input photon IF having a first resonant frequency ω 1 generated by the single photon source 10 and a single input photon IF having a fourth resonant frequency ω 4 . The output photon OF can be converted into an output photon OF and input into the quantum device X. Furthermore, the resonator structure 52 of the quantum wavelength converter 50 does not include the third resonator 38 compared to the resonator structure 4 of the quantum wavelength converter 2, and thus contains one fewer resonator. . Therefore, the quantum wavelength converter 50 can configure the resonator structure 52 more simply than the quantum wavelength converter 2, and also makes the design of the resonator structure 52 easier. Quantum wavelength converter 50 converts the wavelength of a photon using parametric upward conversion, so compared to quantum wavelength converter 2 and quantum wavelength converter 46, quantum wavelength converter 50 converts a single photon input into resonator structure 52 more easily. This is useful when you want to convert photons with short wavelengths and high frequencies.
  〔実施形態4〕
 <ポンプ光の波長変換>
 図8は、本実施形態に係る量子波長変換器54の概略平面図、および、当該概略平面図のうち、量子波長変換器54が備える共振器構造体56について拡大して示す概略図である。本実施形態に係る量子波長変換器54は、実施形態1に係る量子波長変換器2と比較して、共振器構造体4に代えて共振器構造体56を備え、単一光子源10を備えていない点においてのみ構成が異なる。このため、量子波長変換器54は合流器44を備えていなくともよい。
[Embodiment 4]
<Wavelength conversion of pump light>
FIG. 8 is a schematic plan view of the quantum wavelength converter 54 according to the present embodiment, and a schematic diagram showing an enlarged view of the resonator structure 56 included in the quantum wavelength converter 54 in the schematic plan view. Compared to the quantum wavelength converter 2 according to the first embodiment, the quantum wavelength converter 54 according to the present embodiment includes a resonator structure 56 instead of the resonator structure 4, and a single photon source 10. The configuration differs only in that it is not. Therefore, the quantum wavelength converter 54 does not need to include the combiner 44.
 本実施形態に係る共振器構造体56は、共振器構造体48と比較して、各共振器の共振器長の大小関係を除いて同一の構成を有する。特に、本実施形態においてはL1よりもL3の方が長い。例えば、共振器構造体56は、共振器構造体4において、第2FBG24を第1FBG22と同一とすることにより、第1共振器34を第2共振器36と同一としたものに相当する。この場合、本実施形態においては、第2共振周波数ωを第1共振周波数ωと同一とみなせる。 The resonator structure 56 according to this embodiment has the same configuration as the resonator structure 48 except for the relationship in size between the resonator lengths of the respective resonators. In particular, in this embodiment, L3 is longer than L1. For example, the resonator structure 56 corresponds to the resonator structure 4 in which the second FBG 24 is the same as the first FBG 22, and the first resonator 34 is the same as the second resonator 36. In this case, in this embodiment, the second resonant frequency ω 2 can be considered to be the same as the first resonant frequency ω 1 .
 このため、共振器構造体56は、第1共振周波数ω、第3共振周波数ω、および第4共振周波数ωをそれぞれ共振周波数として有する、第1共振器34、第3共振器38、および第4共振器40を含む。また、共振器構造体56は、第1共振器34、第3共振器38、および第4共振器40の共通の共振光路として、少なくともナノ光ファイバ部16を含む。 Therefore, the resonator structure 56 includes a first resonator 34, a third resonator 38, each having a first resonant frequency ω 1 , a third resonant frequency ω 3 , and a fourth resonant frequency ω 4 as resonant frequencies, respectively. and a fourth resonator 40. Further, the resonator structure 56 includes at least the nano-optical fiber section 16 as a common resonant optical path of the first resonator 34, the third resonator 38, and the fourth resonator 40.
 また、本実施形態において、レーザ光源6は、第2共振周波数ωを有する第1ポンプ光PL1および第3共振周波数ωを有する第2ポンプ光PL2を共振器構造体56に入力する。なお、本実施形態において、第2共振周波数ωを第1共振周波数ωと同一とみなせるため、第1ポンプ光PL1は第1共振周波数ωを有するとみなせる。本実施形態において、共振器構造体56は、入力された第1ポンプ光PL1、および第2ポンプ光PL2による四光波混合過程により、第4共振周波数ωを有する出力光子OFを生成する。 Further, in this embodiment, the laser light source 6 inputs the first pump light PL1 having the second resonant frequency ω 2 and the second pump light PL2 having the third resonant frequency ω 3 to the resonator structure 56 . Note that in this embodiment, since the second resonant frequency ω 2 can be considered to be the same as the first resonant frequency ω 1 , the first pump light PL1 can be considered to have the first resonant frequency ω 1 . In this embodiment, the resonator structure 56 generates output photons OF having a fourth resonant frequency ω 4 through a four-wave mixing process using the input first pump light PL1 and second pump light PL2.
 共振器構造体56による出力光子OFの生成について、図9を参照してより詳細に説明する。図9は、共振器構造体56における光子の入出力を説明するための模式図56Aと、共振器構造体56において生じる状態遷移を表すエネルギーダイヤグラムD4である。 The generation of output photons OF by the resonator structure 56 will be explained in more detail with reference to FIG. 9. FIG. 9 is a schematic diagram 56A for explaining the input and output of photons in the resonator structure 56, and an energy diagram D4 showing state transitions occurring in the resonator structure 56.
 図9の模式図56Aに示す通り、共振器構造体56には、第1共振周波数ωを有する第1ポンプ光PL1、および第3共振周波数ωを有する第2ポンプ光PL2が入力される。この結果、後述の方法により、模式図56Aに示す通り、第4共振周波数ωを有する出力光子OFが共振器構造体56から出力される。本実施形態においては、出力光子OFは単一光子であってもよく、あるいは、共振器構造体56から略同時に出射した複数の光子を含んでいてもよい。 As shown in the schematic diagram 56A of FIG. 9, a first pump light PL1 having a first resonant frequency ω 1 and a second pump light PL2 having a third resonant frequency ω 3 are input to the resonator structure 56. . As a result, as shown in schematic diagram 56A, an output photon OF having a fourth resonant frequency ω 4 is output from the resonator structure 56 by a method described below. In this embodiment, the output photon OF may be a single photon or may include multiple photons emitted from the resonator structure 56 substantially simultaneously.
 ここで、本実施形態においては、第1共振周波数ω、第3共振周波数ω、および第4共振周波数ωについて、上述した式(1)および式(2)において、ω=ωとした式が成立する。 Here, in this embodiment, for the first resonant frequency ω 1 , the third resonant frequency ω 3 , and the fourth resonant frequency ω 4 , in the above-mentioned equations (1) and (2), ω 12 The following formula holds true.
 ここで、本実施形態においては、図9のエネルギーダイヤグラムD4に示すように、ナノ光ファイバ部16における基底準位gと励起準位eとのエネルギー差を、第1共振周波数ωを有する光子のエネルギーの2倍と略同一とする。なお、上記式(5)から、2ω=ω+ωが成立するため、基底準位gと励起準位eとのエネルギー差は、第3共振周波数ωを有する光子のエネルギーと第4共振周波数ωを有する光子のエネルギーとの合計値とも略同一である。 Here, in this embodiment , as shown in the energy diagram D4 of FIG. The energy is approximately equal to twice the energy of . Note that from the above equation (5), 2ω 134 holds, so the energy difference between the ground level g and the excited level e is equal to the energy of the photon having the third resonance frequency ω 3 and the fourth It is also approximately the same as the total value of the energy of photons having a resonant frequency ω 4 .
 上記2式が成立する場合、ナノ光ファイバ部16においては、第1ポンプ光PL1、および第2ポンプ光PL2によって、エネルギーダイヤグラムD4に示す状態遷移が生じる。具体的には、第1ポンプ光PL1によって、基底準位gから、基底準位gと励起準位eとのエネルギー差の半分のエネルギーまで励起が生じ、さらに第1ポンプ光PL1による励起が連続して発生する。このため、第1ポンプ光PL1によって、基底準位gから励起準位eへの励起が生じる。この基底準位gから励起準位eへの励起は、第1ポンプ光PL1の強度に比例してより効率よく発生する。 When the above two equations hold true, the state transition shown in the energy diagram D4 occurs in the nano-optical fiber section 16 due to the first pump light PL1 and the second pump light PL2. Specifically, the first pump light PL1 causes excitation from the ground level g to half the energy difference between the ground level g and the excited level e, and the excitation by the first pump light PL1 continues. occurs. Therefore, the first pump light PL1 causes excitation from the ground level g to the excitation level e. Excitation from the ground level g to the excited level e occurs more efficiently in proportion to the intensity of the first pump light PL1.
 また、当該励起と併せて、第2ポンプ光PL2によって、励起準位eから2準位の中間への遷移が生じる。結果として、第2ポンプ光PL2のエネルギーと、基底準位gと励起準位eとのエネルギー差との差に相当するエネルギーを有する、第4共振周波数ωを有する出力光子OFが生成される。 In addition to the excitation, the second pump light PL2 causes a transition from the excitation level e to the middle of the two levels. As a result, an output photon OF having a fourth resonant frequency ω 4 is generated, which has an energy corresponding to the difference between the energy of the second pump light PL2 and the energy difference between the ground level g and the excited level e. .
 以上により、ナノ光ファイバ部16においては四光波混合過程が発生する。換言すれば、本実施形態に係る共振器構造体56の各共振器は、共通の共振光路であるナノ光ファイバ部16における四光波混合過程のエネルギー保存則および位相整合条件を満たしている。なお、本実施形態における四光波混合過程は、実施形態1における四光波混合過程において、ω=ωとした場合に相当する縮退四光波混合過程である。ただし、本実施形態における縮退四光波混合過程は、実施形態1における非縮退四光波混合過程と同じく、3次の非線形光学効果であるため、光ファイバ8中において有意に発生する。 As a result of the above, a four-wave mixing process occurs in the nano-optical fiber section 16. In other words, each resonator of the resonator structure 56 according to the present embodiment satisfies the energy conservation law and phase matching condition of the four-wave mixing process in the nano-optical fiber section 16, which is a common resonant optical path. Note that the four-wave mixing process in this embodiment is a degenerate four-wave mixing process that corresponds to the case where ω 12 in the four-wave mixing process in Embodiment 1. However, since the degenerate four-wave mixing process in this embodiment is a third-order nonlinear optical effect, like the non-degenerate four-wave mixing process in the first embodiment, it significantly occurs in the optical fiber 8.
 以上により、共振器構造体56は第4共振周波数ωを有する出力光子OFを生成する。図8の参照に戻ると、共振器構造体56から出力された出力光子OFはダイクロイックミラー12を透過して量子デバイスXに入射する。また、共振器構造体56からの第1ポンプ光PL1、および第2ポンプ光PL2は、ダイクロイックミラー12において反射し光終端器14に入射し消失する。 As a result, the resonator structure 56 generates an output photon OF having a fourth resonant frequency ω 4 . Returning to FIG. 8, the output photon OF output from the resonator structure 56 passes through the dichroic mirror 12 and enters the quantum device X. Further, the first pump light PL1 and the second pump light PL2 from the resonator structure 56 are reflected by the dichroic mirror 12, enter the optical terminator 14, and disappear.
 本実施形態に係る量子波長変換器54は、レーザ光源6からのポンプ光の波長を変換することにより、第4共振周波数ωを有する出力光子OFを生成し、量子デバイスXに入力することができる。 The quantum wavelength converter 54 according to the present embodiment generates output photons OF having a fourth resonance frequency ω 4 by converting the wavelength of the pump light from the laser light source 6, and can input them into the quantum device X. can.
 また、量子波長変換器54の共振器構造体56は、量子波長変換器2の共振器構造体4と比較して、第2共振器36を含まないため、含む共振器の個数が1つ少ない。したがって、量子波長変換器54は、量子波長変換器2と比較して、より簡素に共振器構造体56を構成でき、また、共振器構造体56の設計をより容易とする。 Furthermore, the resonator structure 56 of the quantum wavelength converter 54 does not include the second resonator 36 compared to the resonator structure 4 of the quantum wavelength converter 2, and thus contains one fewer resonator. . Therefore, the quantum wavelength converter 54 can configure the resonator structure 56 more simply than the quantum wavelength converter 2, and also makes the design of the resonator structure 56 easier.
 〔実施形態5〕
 <二次高調波発生器>
 図10は、本実施形態に係る量子波長変換器58の概略平面図、および、当該概略平面図のうち、量子波長変換器58が備える共振器構造体60について拡大して示す概略図である。本実施形態に係る量子波長変換器58は、前実施形態に係る量子波長変換器54と比較して、共振器構造体56に代えて共振器構造体60を備える点においてのみ構成が異なる。
[Embodiment 5]
<Second harmonic generator>
FIG. 10 is a schematic plan view of the quantum wavelength converter 58 according to the present embodiment, and an enlarged view of the resonator structure 60 included in the quantum wavelength converter 58 in the schematic plan view. The quantum wavelength converter 58 according to this embodiment differs in configuration from the quantum wavelength converter 54 according to the previous embodiment only in that it includes a resonator structure 60 instead of the resonator structure 56.
 本実施形態に係る共振器構造体60は、共振器構造体4と比較して、第2FBG24、第3FBG26、第2共振器36、および第3共振器38を備えていない点において構成が異なる。例えば、共振器構造体60は、共振器構造体52において、第2FBG24を第1FBG22と同一とすることにより、第1共振器34を第2共振器36と同一としたものに相当する。この場合、本実施形態においては、第2共振周波数ωを第1共振周波数ωと同一とみなせる。 The resonator structure 60 according to this embodiment differs in configuration from the resonator structure 4 in that it does not include the second FBG 24, the third FBG 26, the second resonator 36, and the third resonator 38. For example, the resonator structure 60 corresponds to the resonator structure 52 in which the second FBG 24 is the same as the first FBG 22, and the first resonator 34 is the same as the second resonator 36. In this case, in this embodiment, the second resonant frequency ω 2 can be considered to be the same as the first resonant frequency ω 1 .
 このため、共振器構造体60は、第1共振周波数ω、および第4共振周波数ωをそれぞれ共振周波数として有する、第1共振器34、および第4共振器40を含む。また、共振器構造体60は、第1共振器34、および第4共振器40の共通の共振光路として、少なくともナノ光ファイバ部16を含む。 Therefore, the resonator structure 60 includes a first resonator 34 and a fourth resonator 40, each having a first resonant frequency ω 1 and a fourth resonant frequency ω 4 as resonant frequencies. Further, the resonator structure 60 includes at least the nano-optical fiber section 16 as a common resonant optical path of the first resonator 34 and the fourth resonator 40.
 また、本実施形態において、レーザ光源6は、第2共振周波数ωを有する第1ポンプ光PL1を共振器構造体56に入力する。なお、本実施形態において、第2共振周波数ωを第1共振周波数ωと同一とみなせるため、第1ポンプ光PL1は第1共振周波数ωを有するとみなせる。本実施形態において、共振器構造体60は、入力された第1ポンプ光PL1によるパラメトリック上方変換により、第4共振周波数ωを有する出力光子OFを生成する。 Further, in this embodiment, the laser light source 6 inputs the first pump light PL1 having the second resonance frequency ω 2 to the resonator structure 56 . Note that in this embodiment, since the second resonant frequency ω 2 can be considered to be the same as the first resonant frequency ω 1 , the first pump light PL1 can be considered to have the first resonant frequency ω 1 . In this embodiment, the resonator structure 60 generates an output photon OF having a fourth resonant frequency ω 4 through parametric upward conversion using the input first pump light PL1.
 共振器構造体60による出力光子OFの生成について、図11を参照してより詳細に説明する。図11は、共振器構造体60における光子の入出力を説明するための模式図60Aと、共振器構造体60において生じる状態遷移を表すエネルギーダイヤグラムD5である。 The generation of output photons OF by the resonator structure 60 will be explained in more detail with reference to FIG. 11. FIG. 11 is a schematic diagram 60A for explaining input and output of photons in the resonator structure 60, and an energy diagram D5 showing state transitions occurring in the resonator structure 60.
 図11の模式図60Aに示す通り、共振器構造体60には、第1共振周波数ωを有する第1ポンプ光PL1が入力される。この結果、後述の方法により、模式図60Aに示す通り、第4共振周波数ωを有する出力光子OFが共振器構造体60から出力される。本実施形態においては、出力光子OFは単一光子であってもよく、あるいは、共振器構造体56から略同時に出射した複数の光子を含んでいてもよい。 As shown in the schematic diagram 60A of FIG. 11, the first pump light PL1 having the first resonance frequency ω1 is input to the resonator structure 60. As a result, as shown in the schematic diagram 60A, an output photon OF having the fourth resonant frequency ω 4 is output from the resonator structure 60 by a method described below. In this embodiment, the output photon OF may be a single photon or may include multiple photons emitted from the resonator structure 56 substantially simultaneously.
 ここで、本実施形態においては、第1共振周波数ω、および第4共振周波数ωについて、上述した式(5)および式(6)において、ω=ωとした式が成立する。 Here, in this embodiment, the equations ω 1 =ω 2 hold true in the above-mentioned equations (5) and ( 6 ) for the first resonant frequency ω 1 and the fourth resonant frequency ω 4 .
 ここで、本実施形態においては、図11のエネルギーダイヤグラムD5に示すように、ナノ光ファイバ部16における基底準位gと励起準位eとのエネルギー差を、第1共振周波数ωを有する光子のエネルギーの2倍と略同一とする。なお、上記式(5)から、2ω=ωが成立するため、基底準位gと励起準位eとのエネルギー差は、第4共振周波数ωを有する光子のエネルギーとも略同一である。 Here, in this embodiment, as shown in the energy diagram D5 of FIG. 11, the energy difference between the ground level g and the excited level e in the nano-optical fiber section 16 is expressed as The energy is approximately equal to twice the energy of . Note that from the above equation (5), since 2ω 1 = ω 4 holds, the energy difference between the ground level g and the excited level e is approximately the same as the energy of a photon having the fourth resonance frequency ω 4 . .
 上記2式が成立する場合、ナノ光ファイバ部16においては、第1ポンプ光PL1によって、エネルギーダイヤグラムD5に示す状態遷移が生じる。具体的には、第1ポンプ光PL1によって、基底準位gから、基底準位gと励起準位eとのエネルギー差の半分のエネルギーまで励起が生じる。ここで、第1ポンプ光PL1の強度が十分に強い場合には、さらに第1ポンプ光PL1による励起が連続して発生する。このため、第1ポンプ光PL1によって、基底準位gから励起準位eへの励起が生じる。結果として、基底準位gと励起準位eとのエネルギー差に相当するエネルギーを有する、第4共振周波数ωを有する出力光子OFが生成される。 When the above two equations hold true, the state transition shown in the energy diagram D5 occurs in the nano-optical fiber section 16 due to the first pump light PL1. Specifically, the first pump light PL1 causes excitation from the ground level g to an energy that is half the energy difference between the ground level g and the excited level e. Here, if the intensity of the first pump light PL1 is sufficiently strong, further excitation by the first pump light PL1 occurs continuously. Therefore, the first pump light PL1 causes excitation from the ground level g to the excitation level e. As a result, an output photon OF with a fourth resonant frequency ω 4 is generated, which has an energy corresponding to the energy difference between the ground level g and the excited level e.
 以上により、ナノ光ファイバ部16においてはパラメトリック上方変換が発生する。換言すれば、本実施形態に係る共振器構造体60の各共振器は、共通の共振光路であるナノ光ファイバ部16におけるパラメトリック上方変換のエネルギー保存則および位相整合条件を満たしている。 As a result of the above, parametric upward conversion occurs in the nano-optical fiber section 16. In other words, each resonator of the resonator structure 60 according to this embodiment satisfies the law of energy conservation and phase matching conditions for parametric upward conversion in the nano-optical fiber section 16, which is a common resonant optical path.
 以上により、共振器構造体60は第4共振周波数ωを有する出力光子OFを生成する。図10の参照に戻ると、共振器構造体60から出力された出力光子OFはダイクロイックミラー12を透過して量子デバイスXに入射する。また、共振器構造体60からの第1ポンプ光PL1は、ダイクロイックミラー12において反射し光終端器14に入射し消失する。 Accordingly, the resonator structure 60 generates an output photon OF having the fourth resonant frequency ω 4 . Returning to FIG. 10, the output photon OF output from the resonator structure 60 passes through the dichroic mirror 12 and enters the quantum device X. Further, the first pump light PL1 from the resonator structure 60 is reflected by the dichroic mirror 12, enters the optical terminator 14, and disappears.
 本実施形態に係る量子波長変換器58は、レーザ光源6からのポンプ光の波長を変換することにより、第4共振周波数ωを有する出力光子OFを生成し、量子デバイスXに入力することができる。特に、第4共振周波数ωは第1共振周波数ωの2倍であるため、共振器構造体60において生じるパラメトリック上方変換は、いわゆる2次高調波発生である。換言すれば、量子波長変換器58は、レーザ光源6からのポンプ光の周波数の2倍の周波数を有する出力光子OFを生成する、2次高調波発生器として機能する。 The quantum wavelength converter 58 according to this embodiment generates an output photon OF having a fourth resonance frequency ω 4 by converting the wavelength of the pump light from the laser light source 6, and inputs the output photon OF to the quantum device X. can. In particular, since the fourth resonant frequency ω 4 is twice the first resonant frequency ω 1 , the parametric upconversion occurring in the resonator structure 60 is a so-called second harmonic generation. In other words, the quantum wavelength converter 58 functions as a second harmonic generator that generates output photons OF having a frequency twice the frequency of the pump light from the laser light source 6.
 また、量子波長変換器58の共振器構造体60は、量子波長変換器2の共振器構造体4と比較して、第2共振器36および第3共振器38を含まないため、含む共振器の個数が2つ少ない。したがって、量子波長変換器58は、量子波長変換器2と比較して、より簡素に共振器構造体60を構成でき、また、共振器構造体60の設計をより容易とする。 Further, the resonator structure 60 of the quantum wavelength converter 58 does not include the second resonator 36 and the third resonator 38 compared to the resonator structure 4 of the quantum wavelength converter 2, so the resonator structure 60 does not include the second resonator 36 and the third resonator 38. There are two fewer pieces. Therefore, the quantum wavelength converter 58 can configure the resonator structure 60 more simply than the quantum wavelength converter 2, and also makes the design of the resonator structure 60 easier.
 〔実施形態6〕
 <伝令付き単一光子源>
 上述した各実施形態に係る共振器構造体を含む量子波長変換器を用いて、レーザ光源からのポンプ光の波長変換を行うことにより、光子対の生成および伝令付き単一光子の生成を行うことができる。以下、量子波長変換器を備えた、本実施形態に係る伝令付き単一光子源について説明する。図12は、本実施形態に係る伝令付き単一光子源62の概略平面図である。
[Embodiment 6]
<Single photon source with messenger>
Generating photon pairs and single photons with a messenger by converting the wavelength of pump light from a laser light source using a quantum wavelength converter including the resonator structure according to each of the embodiments described above. I can do it. Hereinafter, a single photon source with a messenger according to this embodiment, which is equipped with a quantum wavelength converter, will be described. FIG. 12 is a schematic plan view of the messenger-equipped single photon source 62 according to this embodiment.
 図12に示すように、伝令付き単一光子源62は、量子波長変換器64と、ダイクロイックミラー66と、単一光子検出器68と、第1出力光ファイバ70と、第2出力光ファイバ72とを備える。量子波長変換器64は、実施形態1に係る量子波長変換器2と比較して、単一光子源10を備えていない点においてのみ構成が異なる。 As shown in FIG. 12, the single photon source with messenger 62 includes a quantum wavelength converter 64, a dichroic mirror 66, a single photon detector 68, a first output optical fiber 70, and a second output optical fiber 72. Equipped with. The quantum wavelength converter 64 differs in configuration from the quantum wavelength converter 2 according to the first embodiment only in that it does not include the single photon source 10.
 ただし、本実施形態において、ダイクロイックミラー12は、第4共振周波数ωを有する光子に加えて、第3共振周波数ωを有する光子も透過させる。さらに、本実施形態に係るダイクロイックミラー12は、第1共振周波数ωおよび第2共振周波数ωを有する光子を反射する。このため、光終端器14には、ダイクロイックミラー12において反射した第1共振周波数ωおよび第2共振周波数ωを有する光子が入射する。 However, in this embodiment, the dichroic mirror 12 transmits photons having a third resonant frequency ω 3 in addition to photons having a fourth resonant frequency ω 4 . Furthermore, the dichroic mirror 12 according to this embodiment reflects photons having a first resonant frequency ω 1 and a second resonant frequency ω 2 . Therefore, photons having the first resonant frequency ω 1 and the second resonant frequency ω 2 reflected by the dichroic mirror 12 enter the optical terminator 14 .
 ダイクロイックミラー66は、ダイクロイックミラー12と比較して、第4共振周波数ωを有する光子を透過させ、第3共振周波数ωを有する光子を反射する点においてのみ構成が異なる。ダイクロイックミラー66は、ダイクロイックミラー12を透過した光子が入射するように配置される。 Dichroic mirror 66 differs in configuration from dichroic mirror 12 only in that it transmits photons having a fourth resonant frequency ω 4 and reflects photons having a third resonant frequency ω 3 . The dichroic mirror 66 is arranged so that photons transmitted through the dichroic mirror 12 are incident thereon.
 単一光子検出器68は、入射した単一光子を検出するための素子である。単一光子検出器68は、ダイクロイックミラー66において反射した光子が入射するように配置される。このため、単一光子検出器68は、ダイクロイックミラー66において反射した第3共振周波数ωを有する光子を検出する。 The single photon detector 68 is an element for detecting an incident single photon. Single photon detector 68 is arranged so that photons reflected by dichroic mirror 66 are incident thereon. Therefore, the single photon detector 68 detects the photon having the third resonant frequency ω 3 reflected by the dichroic mirror 66 .
 本実施形態において、量子デバイスXには、ダイクロイックミラー66を透過した光子が入射するように配置される。このため、単一光子検出器68は、ダイクロイックミラー12を透過した第4共振周波数ωを有する光子が入射する。 In this embodiment, the quantum device X is arranged so that photons transmitted through the dichroic mirror 66 are incident thereon. Therefore, a photon having the fourth resonance frequency ω 4 that has passed through the dichroic mirror 12 is incident on the single photon detector 68 .
 第1出力光ファイバ70および第2出力光ファイバ72は、単一モードの光ファイバであり、光ファイバ8と同一の構成を備えていてもよい。第1出力光ファイバ70は、ダイクロイックミラー66において反射した光子が入射するように配置され、第2出力光ファイバ72は、ダイクロイックミラー66を透過した光子が入射するように配置される。 The first output optical fiber 70 and the second output optical fiber 72 are single mode optical fibers, and may have the same configuration as the optical fiber 8. The first output optical fiber 70 is arranged so that photons reflected by the dichroic mirror 66 are incident thereon, and the second output optical fiber 72 is arranged so that photons transmitted through the dichroic mirror 66 are incident thereon.
 したがって、第1出力光ファイバ70は、ダイクロイックミラー66において反射した第3共振周波数ωを有する光子を、単一光子検出器68まで伝搬させる。また、第2出力光ファイバ72は、ダイクロイックミラー66を透過した第4共振周波数ωを有する光子を、量子デバイスXまで伝搬させる。 Therefore, the first output optical fiber 70 propagates the photons having the third resonant frequency ω 3 reflected at the dichroic mirror 66 to the single photon detector 68 . Further, the second output optical fiber 72 propagates the photon having the fourth resonance frequency ω 4 that has passed through the dichroic mirror 66 to the quantum device X.
 また、本実施形態において、レーザ光源6は、第1共振周波数ωを有する第1ポンプ光PL1および第2共振周波数ωを有する第2ポンプ光PL2を共振器構造体4に入力する。 Further, in this embodiment, the laser light source 6 inputs the first pump light PL1 having the first resonant frequency ω 1 and the second pump light PL2 having the second resonant frequency ω 2 to the resonator structure 4 .
 本実施形態において、共振器構造体4は、後述の方法により、入力されたポンプ光による四光波混合過程により、第3共振周波数ωを有する第1出力光子OF1および第4共振周波数ωを有する第2出力光子OF2を生成する。換言すれば、共振器構造体4は、入力されたポンプ光から、互いに波長の異なる光子対を生成する。本実施形態に係るレーザ光源6が出射する第1ポンプ光PL1と第2ポンプ光PL2とは、共振器構造体4の各共振器の光子寿命をパルス長とするパルス波が連続したものとみなすことができる。ここで、本実施形態においては、第1ポンプ光PL1と第2ポンプ光PL2とのそれぞれの一つのパルス波から、上記光子対が一つ生成される確率を、1よりも十分に小さいpとする。なお、レーザ光源6は、第1ポンプ光PL1および第2ポンプ光PL2として、各共振周波数を有するパルス波を断続的に出射してもよい。 In this embodiment, the resonator structure 4 generates a first output photon OF1 having a third resonant frequency ω 3 and a fourth resonant frequency ω 4 through a four-wave mixing process using the input pump light, according to a method described later. A second output photon OF2 is generated having a second output photon OF2. In other words, the resonator structure 4 generates photon pairs having mutually different wavelengths from the input pump light. The first pump light PL1 and the second pump light PL2 emitted by the laser light source 6 according to the present embodiment are considered to be continuous pulse waves whose pulse length is the photon lifetime of each resonator of the resonator structure 4. be able to. Here, in the present embodiment, the probability that one photon pair is generated from one pulse wave of each of the first pump light PL1 and the second pump light PL2 is set to p which is sufficiently smaller than 1. do. Note that the laser light source 6 may intermittently emit pulse waves having respective resonance frequencies as the first pump light PL1 and the second pump light PL2.
 共振器構造体4における光子対の生成について、図13を参照してより詳細に説明する。図13は、共振器構造体4における光子の入出力を説明するための模式図4Bと、共振器構造体4において生じる状態遷移を表すエネルギーダイヤグラムD6である。 The generation of photon pairs in the resonator structure 4 will be explained in more detail with reference to FIG. 13. FIG. 13 is a schematic diagram 4B for explaining input and output of photons in the resonator structure 4, and an energy diagram D6 showing state transitions occurring in the resonator structure 4.
 図13の模式図4Bに示す通り、共振器構造体4には、第1共振周波数ωを有する第1ポンプ光PL1、および第2共振周波数ωを有する第2ポンプ光PL2が入力される。この結果、後述の方法により、模式図4Bに示す通り、第3共振周波数ωを有する第1出力光子OF1および第4共振周波数ωを有する第2出力光子OF2が共振器構造体4から出力される。 As shown in the schematic diagram 4B of FIG. 13, a first pump light PL1 having a first resonant frequency ω 1 and a second pump light PL2 having a second resonant frequency ω 2 are input to the resonator structure 4. . As a result, as shown in schematic diagram 4B, a first output photon OF1 having a third resonant frequency ω 3 and a second output photon OF2 having a fourth resonant frequency ω 4 are output from the resonator structure 4 by the method described below. be done.
 ここで、本実施形態においては、第1共振周波数ω、第2共振周波数ω、第3共振周波数ω、および第4共振周波数ωについて、上述した式(1)および式(2)が成立する。本実施形態においても、ナノ光ファイバ部16において仮想的に基底準位gと励起準位eとを設定する。本実施形態において、図13のエネルギーダイヤグラムD6に示すように、基底準位gと励起準位eとのエネルギー差は、第1共振周波数ωを有する光子のエネルギーと第2共振周波数ωを有する光子のエネルギーとの合計値と略同一とする。なお、上記式(1)から、ω+ω=ω+ωが成立するため、基底準位gと励起準位eとのエネルギー差は、第3共振周波数ωを有する光子のエネルギーと第4共振周波数ωを有する光子のエネルギーとの合計値とも略同一である。 Here, in this embodiment, the first resonant frequency ω 1 , the second resonant frequency ω 2 , the third resonant frequency ω 3 , and the fourth resonant frequency ω 4 are calculated using the above-mentioned equations (1) and (2). holds true. Also in this embodiment, the ground level g and the excited level e are virtually set in the nano-optical fiber section 16. In this embodiment, as shown in the energy diagram D6 of FIG. 13, the energy difference between the ground level g and the excited level e is the energy difference between the energy of a photon having a first resonant frequency ω1 and the second resonant frequency ω2. It is assumed that the total value of the photon energy is approximately the same as the total value of the photon energy. Note that from the above equation (1), ω 1234 holds, so the energy difference between the ground level g and the excited level e is equal to the energy of a photon having the third resonance frequency ω 3 . It is also approximately the same as the total value of the energy of photons having the fourth resonance frequency ω4 .
 上記2式が成立する場合、ナノ光ファイバ部16においては、第1ポンプ光PL1、および第2ポンプ光PL2によって、エネルギーダイヤグラムD6に示す状態遷移が生じる。具体的には、第1ポンプ光PL1および第2ポンプ光PL2によって、基底準位gから励起準位eへの励起が生じる。 When the above two equations hold true, the state transition shown in the energy diagram D6 occurs in the nano-optical fiber section 16 due to the first pump light PL1 and the second pump light PL2. Specifically, the first pump light PL1 and the second pump light PL2 cause excitation from the ground level g to the excitation level e.
 また、当該励起と併せて、励起準位eから基底準位gへの状態遷移が生じる。ここで、共振器構造体4は、共振周波数として第3共振周波数ωを有する第3共振器38と、共振周波数として第4共振周波数ωを有する第4共振器40とを有する。このため、エネルギーダイヤグラムD6に示すように、ナノ光ファイバ部16においては、はじめに励起準位eから基底準位gに向かって第3共振周波数ωを有する光子のエネルギー分だけ状態遷移が生じる。さらに、第4共振周波数ωを有する光子のエネルギー分だけ状態遷移が生じることにより、励起準位eから基底準位gへの状態遷移が生じる。 In addition to the excitation, a state transition from the excited level e to the ground level g occurs. Here, the resonator structure 4 includes a third resonator 38 having a third resonant frequency ω 3 as a resonant frequency, and a fourth resonator 40 having a fourth resonant frequency ω 4 as a resonant frequency. Therefore, as shown in the energy diagram D6, in the nano-optical fiber portion 16, a state transition occurs from the excitation level e toward the ground level g by the energy of the photon having the third resonance frequency ω3 . Furthermore, a state transition occurs by an amount equal to the energy of the photon having the fourth resonance frequency ω 4 , thereby causing a state transition from the excitation level e to the ground level g.
 したがって、本実施形態に係るナノ光ファイバ部16においては、エネルギーダイヤグラムD6に示すように四光波混合過程が有意に発生する。上述した四光波混合過程に伴い、共振器構造体4の第3共振器38には、第3共振器38と結合し第3共振周波数ωを有する光子が有意に生成される。また、上述した四光波混合過程に伴い、共振器構造体4の第4共振器40には、第4共振器40と結合し第4共振周波数ωを有する光子が、上述した第3共振周波数ωを有する光子と略同時に生成される。 Therefore, in the nano-optical fiber section 16 according to this embodiment, a four-wave mixing process significantly occurs as shown in the energy diagram D6. Due to the above-mentioned four-wave mixing process, photons that couple with the third resonator 38 and have a third resonant frequency ω 3 are significantly generated in the third resonator 38 of the resonator structure 4 . Further, due to the above-mentioned four-wave mixing process, a photon having a fourth resonant frequency ω 4 coupled to the fourth resonator 40 of the resonator structure 4 is transmitted to the fourth resonator 40 of the resonator structure 4 at the third resonant frequency It is generated almost simultaneously with the photon having ω 3 .
 したがって、共振器構造体4において上述した四光波混合過程が生じた場合、第3共振器38からは第1出力光子OF1が出射し、第4共振器40からは第2出力光子OF2が出射する。図12の参照に戻ると、共振器構造体4から出射した第1出力光子OF1は、ダイクロイックミラー12を透過し、ダイクロイックミラー66において反射することにより、第1出力光ファイバ70を伝搬し、単一光子検出器68によって検出される。また、共振器構造体4から出射した第2出力光子OF2は、ダイクロイックミラー12およびダイクロイックミラー66を共に透過することにより、第2出力光ファイバ72を伝搬し、量子デバイスXに入射する。 Therefore, when the above-described four-wave mixing process occurs in the resonator structure 4, the first output photon OF1 is emitted from the third resonator 38, and the second output photon OF2 is emitted from the fourth resonator 40. . Referring back to FIG. 12, the first output photon OF1 emitted from the resonator structure 4 is transmitted through the dichroic mirror 12 and reflected at the dichroic mirror 66, thereby propagating through the first output optical fiber 70 and transmitting a single photon. It is detected by a one-photon detector 68. Further, the second output photon OF2 emitted from the resonator structure 4 transmits both the dichroic mirror 12 and the dichroic mirror 66, propagates through the second output optical fiber 72, and enters the quantum device X.
 ここで、上述した通り、四光波混合過程により各ポンプ光の一つのパルス波から一つの光子対が生成される確率はpである。このため、四光波混合過程により各ポンプ光から二つの光子対が同時に生成される確率はpの二乗となる。このため、単一光子検出器68が光子を検出した際に、二つの光子が量子デバイスXに入射する確率は、1よりも十分に小さくなる。換言すれば、単一光子検出器68が光子を検出した際、量子デバイスXに入射する光子は、1に十分近い確率にて単一光子である。具体的に、単一光子検出器68が第1出力光子OF1を検出した際に、第2出力光子OF2が複数の光子を含む確率は、1よりも十分に小さい。換言すれば、単一光子検出器68が第1出力光子OF1を検出した際に、第2出力光子OF2は、1に十分近い確率にて、単一光子である。 Here, as described above, the probability that one photon pair is generated from one pulse wave of each pump light by the four-wave mixing process is p. Therefore, the probability that two photon pairs are simultaneously generated from each pump light by the four-wave mixing process is the square of p. Therefore, when the single photon detector 68 detects a photon, the probability that two photons will enter the quantum device X is sufficiently smaller than one. In other words, when the single photon detector 68 detects a photon, the photon incident on the quantum device X is a single photon with a probability sufficiently close to 1. Specifically, when the single photon detector 68 detects the first output photon OF1, the probability that the second output photon OF2 includes a plurality of photons is sufficiently smaller than one. In other words, when the single photon detector 68 detects the first output photon OF1, the second output photon OF2 is a single photon with a probability sufficiently close to 1.
 上述した理由から、本実施形態において、単一光子検出器68が第1出力光子OF1を検出した場合、ほぼ確実に第2出力光子OF2が量子デバイスXに入射している。加えて、第2出力光子OF2は、1に十分近い確率にて単一光子である。ゆえに、伝令付き単一光子源62は、アイドラー光子である第1出力光子OF1の検出を伝令として、シグナル光子である第2出力光子OF2を生成する伝令付き単一光子源として機能する。量子デバイスXは、例えば、量子暗号通信器等、伝令が付いた単一光子を必要とする量子通信器を含むデバイスであってもよい。 For the reasons described above, in this embodiment, when the single photon detector 68 detects the first output photon OF1, the second output photon OF2 almost certainly enters the quantum device X. In addition, the second output photon OF2 is a single photon with probability sufficiently close to 1. Therefore, the single photon source 62 with a messenger functions as a single photon source with a messenger that generates the second output photon OF2, which is a signal photon, using the detection of the first output photon OF1, which is an idler photon, as a messenger. The quantum device X may be, for example, a device including a quantum communicator that requires a single photon with a messenger, such as a quantum cryptographic communicator.
 本実施形態に係る伝令付き単一光子源62は、アイドラー光子である第1出力光子OF1と、シグナル光子である第2出力光子OF2とを生成に、共振器構造体4を含む量子波長変換器64を用いる。このため、伝令付き単一光子源62は、量子波長変換器2と同一の理由から、光ファイバを含む量子デバイスに組み込んだ場合においても、当該量子デバイスの構造の複雑化を低減する。 The single photon source 62 with a messenger according to the present embodiment is a quantum wavelength converter including a resonator structure 4, which generates a first output photon OF1 which is an idler photon and a second output photon OF2 which is a signal photon. 64 is used. Therefore, for the same reason as the quantum wavelength converter 2, even when the single photon source with messenger 62 is incorporated into a quantum device including an optical fiber, it reduces the complexity of the structure of the quantum device.
 〔実施形態7〕
 <縮退四光波混合過程を用いる伝令付き単一光子源>
 図14は、本実施形態に係る伝令付き単一光子源74の概略平面図である。図12に示すように、伝令付き単一光子源74は、伝令付き単一光子源62と比較して、量子波長変換器64に代えて、実施形態4に係る量子波長変換器54を備える点においてのみ構成が異なる。ただし、本実施形態において、量子波長変換器54が備えるダイクロイックミラー12は、第4共振周波数ωを有する光子に加えて、第3共振周波数ωを有する光子も透過させ、第1共振周波数ωおよび第2共振周波数ωを有する光子は反射する。
[Embodiment 7]
<Single photon source with messenger using degenerate four-wave mixing process>
FIG. 14 is a schematic plan view of the messenger-equipped single photon source 74 according to this embodiment. As shown in FIG. 12, compared to the single photon source 62 with a messenger, the single photon source 74 with a messenger includes the quantum wavelength converter 54 according to the fourth embodiment instead of the quantum wavelength converter 64. The only difference is in the configuration. However, in this embodiment, the dichroic mirror 12 included in the quantum wavelength converter 54 transmits photons having a third resonant frequency ω 3 in addition to photons having a fourth resonant frequency ω 4 , and transmits photons having a third resonant frequency ω 3 . 1 and the photons with the second resonant frequency ω 2 are reflected.
 また、本実施形態において、レーザ光源6は、第1共振周波数ωを有する第1ポンプ光PL1を共振器構造体4に入力する。本実施形態において、共振器構造体4は、後述の方法により、入力されたポンプ光による四光波混合過程により、第3共振周波数ωを有する第1出力光子OF1および第4共振周波数ωを有する第2出力光子OF2を生成する。 Further, in this embodiment, the laser light source 6 inputs the first pump light PL1 having the first resonance frequency ω 1 to the resonator structure 4. In this embodiment, the resonator structure 4 generates a first output photon OF1 having a third resonant frequency ω 3 and a fourth resonant frequency ω 4 through a four-wave mixing process using the input pump light, according to a method described later. A second output photon OF2 is generated having a second output photon OF2.
 したがって、本実施形態においては、前実施形態において、第2共振周波数ωを第1共振周波数ωと同一としたものとみなせる。また、本実施形態に係る伝令付き単一光子源74は、伝令付き単一光子源62において、第2共振器36を第1共振器34と同一とし、第2ポンプ光PL2を第1ポンプ光PL1と同一としたものに相当する。 Therefore, in this embodiment, it can be considered that the second resonant frequency ω 2 is the same as the first resonant frequency ω 1 in the previous embodiment. Further, in the single photon source 74 with a messenger according to the present embodiment, the second resonator 36 is the same as the first resonator 34 in the single photon source 62 with a messenger, and the second pump light PL2 is replaced with the first pump light. This corresponds to the same as PL1.
 共振器構造体56における光子対の生成について、図15を参照してより詳細に説明する。図15は、共振器構造体56における光子の入出力を説明するための模式図56Bと、共振器構造体56において生じる状態遷移を表すエネルギーダイヤグラムD7である。 The generation of photon pairs in the resonator structure 56 will be explained in more detail with reference to FIG. 15. FIG. 15 is a schematic diagram 56B for explaining the input and output of photons in the resonator structure 56, and an energy diagram D7 showing state transitions occurring in the resonator structure 56.
 図15の模式図56Bに示す通り、共振器構造体56には、第1共振周波数ωを有する第1ポンプ光PL1が入力される。この結果、後述の方法により、模式図56Bに示す通り、第3共振周波数ωを有する第1出力光子OF1および第4共振周波数ωを有する第2出力光子OF2が共振器構造体4から出力される。 As shown in the schematic diagram 56B of FIG. 15, the first pump light PL1 having the first resonance frequency ω1 is input to the resonator structure 56. As a result, as shown in the schematic diagram 56B, a first output photon OF1 having a third resonant frequency ω 3 and a second output photon OF2 having a fourth resonant frequency ω 4 are output from the resonator structure 4 by the method described below. be done.
 ここで、本実施形態においては、第1共振周波数ω、第3共振周波数ω、および第4共振周波数ωについて、上述した式(1)および式(2)において、ω=ωとした式が成立する。なお、本実施形態においては、ナノ光ファイバ部16における基底準位gと励起準位eとのエネルギー差を、第1共振周波数ωを有する光子のエネルギーの2倍と略同一とする。なお、上記式(1)から、2ω=ω+ωが成立するため、基底準位gと励起準位eとのエネルギー差は、第3共振周波数ωを有する光子のエネルギーと第4共振周波数ωを有する光子のエネルギーとの合計値とも略同一である。 Here, in this embodiment, for the first resonant frequency ω 1 , the third resonant frequency ω 3 , and the fourth resonant frequency ω 4 , in the above-mentioned equations (1) and (2), ω 12 The following formula holds true. In this embodiment, the energy difference between the ground level g and the excited level e in the nano-optical fiber section 16 is approximately equal to twice the energy of the photon having the first resonance frequency ω1 . Note that from the above equation (1), 2ω 134 holds, so the energy difference between the ground level g and the excited level e is equal to the energy of the photon having the third resonance frequency ω 3 and the fourth It is also approximately the same as the total value of the energy of photons having a resonant frequency ω 4 .
 上記2式が成立する場合、ナノ光ファイバ部16においては、第1ポンプ光PL1によって、エネルギーダイヤグラムD7に示す状態遷移が生じる。具体的には、第1ポンプ光PL1によって、基底準位gから、基底準位gと励起準位eとのエネルギー差の半分のエネルギーまで励起が生じる。ここで、第1ポンプ光PL1の強度が十分に強い場合には、さらに第1ポンプ光PL1による励起が連続して発生する。このため、第1ポンプ光PL1によって、基底準位gから励起準位eへの励起が生じる。 When the above two equations hold true, the state transition shown in the energy diagram D7 occurs in the nano-optical fiber section 16 due to the first pump light PL1. Specifically, the first pump light PL1 causes excitation from the ground level g to an energy that is half the energy difference between the ground level g and the excited level e. Here, if the intensity of the first pump light PL1 is sufficiently strong, further excitation by the first pump light PL1 occurs continuously. Therefore, the first pump light PL1 causes excitation from the ground level g to the excitation level e.
 また、当該励起と併せて、励起準位eから基底準位gへの状態遷移が生じる。本実施形態においても、前実施形態において説明した理由と同一の理由から、エネルギーダイヤグラムD7に示すように四光波混合過程が有意に発生する。本実施形態に係るナノ光ファイバ部16において生じる四光波混合過程は、前実施形態に係るナノ光ファイバ部16において生じる四光波混合過程において、ω=ωとした縮退四光波混合過程に相当する。当該縮退四光波混合過程に伴い、共振器構造体4の第3共振器38には第3共振周波数ωを有する光子が、共振器構造体4の第4共振器40には第4共振周波数ωを有する光子が略同時に生成される。 In addition to the excitation, a state transition from the excited level e to the ground level g occurs. Also in this embodiment, the four-wave mixing process significantly occurs as shown in the energy diagram D7 for the same reason as explained in the previous embodiment. The four-wave mixing process that occurs in the nano-optical fiber section 16 according to this embodiment corresponds to the degenerate four-wave mixing process where ω 1 = ω 2 in the four-wave mixing process that occurs in the nano-optical fiber section 16 according to the previous embodiment. do. Due to the degenerate four-wave mixing process, the third resonator 38 of the resonator structure 4 receives a photon having the third resonant frequency ω3 , and the fourth resonator 40 of the resonator structure 4 receives a photon having the fourth resonant frequency. Photons with ω 4 are generated approximately simultaneously.
 第1ポンプ光PL1は、共振器構造体4の各共振器の光子寿命をパルス長とするパルス波が連続したものとみなすことができる。ここで、本実施形態においては、第1ポンプ光PL1の一つのパルス波から光子対が一つ生成される確率を、1よりも十分に小さいpとする。この場合、本実施形態においても、第1ポンプ光PL1から四光波混合過程により二つの光子対が同時に生成される確率はpの二乗となる。このため、単一光子検出器68が光子を検出した際に、二つの光子が量子デバイスXに入射する確率は、1よりも十分に小さくなる。換言すれば、本実施形態においても、単一光子検出器68が光子を検出した際、量子デバイスXに入射する光子は、1に十分近い確率にて単一光子である。具体的に、単一光子検出器68が第1出力光子OF1を検出した際に、第2出力光子OF2が複数の光子を含む確率は1よりも十分に小さい。換言すれば、単一光子検出器68が第1出力光子OF1を検出した際に、第2出力光子OF2は、1に十分近い確率にて単一光子である。 The first pump light PL1 can be regarded as a series of pulse waves whose pulse length is the photon lifetime of each resonator of the resonator structure 4. Here, in this embodiment, the probability that one photon pair is generated from one pulse wave of the first pump light PL1 is set to p, which is sufficiently smaller than 1. In this case, also in this embodiment, the probability that two photon pairs are simultaneously generated from the first pump light PL1 by the four-wave mixing process is the square of p. Therefore, when the single photon detector 68 detects a photon, the probability that two photons will enter the quantum device X is sufficiently smaller than one. In other words, in this embodiment as well, when the single photon detector 68 detects a photon, the photon incident on the quantum device X is a single photon with a probability sufficiently close to 1. Specifically, when the single photon detector 68 detects the first output photon OF1, the probability that the second output photon OF2 includes a plurality of photons is sufficiently smaller than one. In other words, when the single photon detector 68 detects the first output photon OF1, the second output photon OF2 is a single photon with a probability sufficiently close to 1.
 したがって、共振器構造体4において上述した四光波混合過程が生じた場合、第3共振器38からは第1出力光子OF1が出射し、第4共振器40からは第2出力光子OF2が出射する。図14の参照に戻ると、共振器構造体56から出射した第1出力光子OF1は、単一光子検出器68によって検出され、また、共振器構造体56から出射した第2出力光子OF2は、量子デバイスXに入射する。 Therefore, when the above-described four-wave mixing process occurs in the resonator structure 4, the first output photon OF1 is emitted from the third resonator 38, and the second output photon OF2 is emitted from the fourth resonator 40. . Returning to FIG. 14, the first output photon OF1 emitted from the resonator structure 56 is detected by the single photon detector 68, and the second output photon OF2 emitted from the resonator structure 56 is detected by the single photon detector 68. incident on quantum device X.
 本実施形態においても、前実施形態において説明した理由と同一の理由から、共振器構造体56から光子対が生成され、単一光子検出器68が第1出力光子OF1を検出した場合、量子デバイスXにはほぼ確実に第2出力光子OF2が入力される。加えて、本実施形態においても、第2出力光子OF2は、は、1に十分近い確率にて単一光子である。したがって、伝令付き単一光子源74は、アイドラー光子である第1出力光子OF1の検出を伝令として、シグナル光子である第2出力光子OF2を生成する伝令付き単一光子源として機能する。 Also in this embodiment, for the same reason as explained in the previous embodiment, when a photon pair is generated from the resonator structure 56 and the single photon detector 68 detects the first output photon OF1, the quantum device The second output photon OF2 is almost certainly input to X. In addition, also in this embodiment, the second output photon OF2 is a single photon with a probability sufficiently close to 1. Therefore, the single photon source 74 with a messenger functions as a single photon source with a messenger that generates the second output photon OF2, which is a signal photon, using the detection of the first output photon OF1, which is an idler photon, as a messenger.
 本実施形態に係る伝令付き単一光子源74は、アイドラー光子である第1出力光子OF1と、シグナル光子である第2出力光子OF2とを生成に、共振器構造体56を含む量子波長変換器54を用いる。このため、伝令付き単一光子源74は、量子波長変換器2と同一の理由から、光ファイバを含む量子デバイスに組み込んだ場合においても、当該量子デバイスの構造の複雑化を低減する。 The single photon source 74 with a messenger according to the present embodiment is a quantum wavelength converter including a resonator structure 56 for generating a first output photon OF1, which is an idler photon, and a second output photon OF2, which is a signal photon. 54 is used. Therefore, for the same reason as the quantum wavelength converter 2, even when the single photon source 74 with a messenger is incorporated into a quantum device including an optical fiber, the complexity of the structure of the quantum device is reduced.
 また、伝令付き単一光子源74の共振器構造体56は、伝令付き単一光子源62の共振器構造体4と比較して、第2共振器36を含まないため、含む共振器の個数が1つ少ない。したがって、伝令付き単一光子源74は、伝令付き単一光子源62と比較して、より簡素に共振器構造体56を構成でき、また、共振器構造体56の設計をより容易とする。 Furthermore, since the resonator structure 56 of the single photon source 74 with a messenger does not include the second resonator 36 compared to the resonator structure 4 of the single photon source 62 with a messenger, the number of resonators included is is one less. Therefore, the single photon source 74 with a messenger can configure the resonator structure 56 more simply than the single photon source 62 with a messenger, and also makes the design of the resonator structure 56 easier.
 〔実施形態8〕
 <パラメトリック下方変換を用いる伝令付き単一光子源>
 図16は、本実施形態に係る伝令付き単一光子源76の概略平面図である。図16に示すように、伝令付き単一光子源76は、伝令付き単一光子源62と比較して、量子波長変換器64に代えて、量子波長変換器78を備える点において構成が異なる。量子波長変換器78は、実施形態2に係る量子波長変換器46と比較して、単一光子源10を備えていない点においてのみ構成が異なる。ただし、本実施形態において、量子波長変換器78が備えるダイクロイックミラー12は、第4共振周波数ωを有する光子に加えて、第3共振周波数ωを有する光子も透過させ、第1共振周波数ωおよび第2共振周波数ωを有する光子は反射する。
[Embodiment 8]
<Single photon source with messenger using parametric down conversion>
FIG. 16 is a schematic plan view of the single photon source 76 with messenger according to this embodiment. As shown in FIG. 16, the single photon source 76 with a messenger differs in configuration from the single photon source 62 with a messenger in that it includes a quantum wavelength converter 78 instead of the quantum wavelength converter 64. The quantum wavelength converter 78 differs in configuration from the quantum wavelength converter 46 according to the second embodiment only in that it does not include the single photon source 10. However, in this embodiment, the dichroic mirror 12 included in the quantum wavelength converter 78 transmits photons having a third resonant frequency ω 3 in addition to photons having a fourth resonant frequency ω 4 , and transmits photons having a third resonant frequency ω 3 . 1 and the photons with the second resonant frequency ω 2 are reflected.
 また、本実施形態において、レーザ光源6は、第1共振周波数ωを有する第1ポンプ光PL1を共振器構造体4に入力する。本実施形態において、共振器構造体48は、後述の方法により、入力されたポンプ光によるパラメトリック下方変換により、第3共振周波数ωを有する第1出力光子OF1および第4共振周波数ωを有する第2出力光子OF2を生成する。 Further, in this embodiment, the laser light source 6 inputs the first pump light PL1 having the first resonance frequency ω 1 to the resonator structure 4. In this embodiment, the resonator structure 48 has a first output photon OF1 with a third resonant frequency ω 3 and a fourth resonant frequency ω 4 due to parametric down-conversion by the input pump light, according to the method described below. A second output photon OF2 is generated.
 共振器構造体48における光子対の生成について、図17を参照してより詳細に説明する。図17は、共振器構造体48における光子の入出力を説明するための模式図48Bと、共振器構造体48において生じる状態遷移を表すエネルギーダイヤグラムD8である。 The generation of photon pairs in the resonator structure 48 will be explained in more detail with reference to FIG. 17. FIG. 17 is a schematic diagram 48B for explaining input and output of photons in the resonator structure 48, and an energy diagram D8 showing state transitions occurring in the resonator structure 48.
 図17の模式図48Bに示す通り、共振器構造体48には、第1共振周波数ωを有する第1ポンプ光PL1が入力される。この結果、後述の方法により、模式図48Bに示す通り、第3共振周波数ωを有する第1出力光子OF1および第4共振周波数ωを有する第2出力光子OF2が共振器構造体4から出力される。 As shown in the schematic diagram 48B of FIG. 17, the first pump light PL1 having the first resonance frequency ω1 is input to the resonator structure 48. As a result, as shown in schematic diagram 48B, a first output photon OF1 having a third resonant frequency ω 3 and a second output photon OF2 having a fourth resonant frequency ω 4 are output from the resonator structure 4 by the method described below. be done.
 ここで、本実施形態においては、第1共振周波数ω、第3共振周波数ω、および第4共振周波数ωについて、上述した式(3)および式(4)が成立する。なお、本実施形態においては、ナノ光ファイバ部16における基底準位gと励起準位eとのエネルギー差を、第1共振周波数ωを有する光子のエネルギーと略同一とする。なお、上記式(3)から、ω=ω+ωが成立するため、基底準位gと励起準位eとのエネルギー差は、第3共振周波数ωを有する光子のエネルギーと第4共振周波数ωを有する光子のエネルギーとの合計値とも略同一である。 Here, in this embodiment, the above-described equations (3) and (4) hold for the first resonant frequency ω 1 , the third resonant frequency ω 3 , and the fourth resonant frequency ω 4 . In this embodiment, the energy difference between the ground level g and the excited level e in the nano-optical fiber section 16 is made approximately equal to the energy of a photon having the first resonance frequency ω1 . Note that from the above equation (3), ω 1 = ω 3 + ω 4 holds, so the energy difference between the ground level g and the excited level e is equal to the energy of the photon having the third resonance frequency ω 3 and the fourth It is also approximately the same as the total value of the energy of photons having a resonant frequency ω 4 .
 上記2式が成立する場合、ナノ光ファイバ部16においては、第1ポンプ光PL1によって、エネルギーダイヤグラムD7に示す状態遷移が生じる。具体的には、第1ポンプ光PL1によって、基底準位gから励起準位eへの励起が生じる。 When the above two equations hold true, the state transition shown in the energy diagram D7 occurs in the nano-optical fiber section 16 due to the first pump light PL1. Specifically, the first pump light PL1 causes excitation from the ground level g to the excited level e.
 また、当該励起と併せて、励起準位eから基底準位gへの状態遷移が生じる。本実施形態においても、前実施形態において説明した理由と同一の理由から、エネルギーダイヤグラムD8に示すようにパラメトリック下方変換が有意に発生する。上述したパラメトリック下方変換に伴い、共振器構造体4の第3共振器38には第3共振周波数ωを有する光子が、共振器構造体4の第4共振器40には第4共振周波数ωを有する光子が略同時に生成される。 In addition to the excitation, a state transition from the excited level e to the ground level g occurs. Also in this embodiment, parametric downward transformation occurs significantly as shown in the energy diagram D8 for the same reason as explained in the previous embodiment. Due to the parametric down-conversion described above, the third resonator 38 of the resonator structure 4 receives a photon having a third resonant frequency ω 3 and the fourth resonator 40 of the resonator structure 4 receives a photon having a fourth resonant frequency ω 4 photons are generated approximately simultaneously.
 第1ポンプ光PL1は、共振器構造体4の各共振器の光子寿命をパルス長とするパルス波が連続したものとみなすことができる。ここで、本実施形態においては、第1ポンプ光PL1の一つのパルス波から光子対が一つ生成される確率を、1よりも十分に小さいpとする。この場合、本実施形態においても、第1ポンプ光PL1からパラメトリック下方変換により二つの光子対が同時に生成される確率はpの二乗となる。このため、単一光子検出器68が光子を検出した際に、二つの光子が量子デバイスXに入射する確率は、1よりも十分に小さくなる。換言すれば、本実施形態においても、単一光子検出器68が光子を検出した際、量子デバイスXに入射する光子は、1に十分近い確率にて単一光子である。具体的に、単一光子検出器68が第1出力光子OF1を検出した際に、第2出力光子OF2が複数の光子を含む確率は、1よりも十分に小さい。換言すれば、単一光子検出器68が第1出力光子OF1を検出した際に、第2出力光子OF2は、1に十分近い確率にて単一光子である。 The first pump light PL1 can be regarded as a series of pulse waves whose pulse length is the photon lifetime of each resonator of the resonator structure 4. Here, in this embodiment, the probability that one photon pair is generated from one pulse wave of the first pump light PL1 is set to p, which is sufficiently smaller than 1. In this case, also in this embodiment, the probability that two photon pairs are simultaneously generated from the first pump light PL1 by parametric downward conversion is the square of p. Therefore, when the single photon detector 68 detects a photon, the probability that two photons will enter the quantum device X is sufficiently smaller than one. In other words, in this embodiment as well, when the single photon detector 68 detects a photon, the photon incident on the quantum device X is a single photon with a probability sufficiently close to 1. Specifically, when the single photon detector 68 detects the first output photon OF1, the probability that the second output photon OF2 includes a plurality of photons is sufficiently smaller than one. In other words, when the single photon detector 68 detects the first output photon OF1, the second output photon OF2 is a single photon with a probability sufficiently close to 1.
 したがって、共振器構造体4において上述したパラメトリック下方変換が生じた場合、第3共振器38からは第1出力光子OF1が出射し、第4共振器40からは第2出力光子OF2が出射する。図16の参照に戻ると、共振器構造体48から出射した第1出力光子OF1は、単一光子検出器68によって検出され、また、共振器構造体48から出射した第2出力光子OF2は、量子デバイスXに入射する。 Therefore, when the above-mentioned parametric downward conversion occurs in the resonator structure 4, the first output photon OF1 is emitted from the third resonator 38, and the second output photon OF2 is emitted from the fourth resonator 40. Returning to FIG. 16, the first output photon OF1 emitted from the resonator structure 48 is detected by the single photon detector 68, and the second output photon OF2 emitted from the resonator structure 48 is detected by the single photon detector 68. incident on quantum device X.
 本実施形態においても、前実施形態において説明した理由と同一の理由から、共振器構造体56から光子対が生成され、単一光子検出器68が第1出力光子OF1を検出した場合、量子デバイスXにはほぼ確実に第2出力光子OF2が入力される。加えて、本実施形態においても、第2出力光子OF2は、1に十分近い確率にて単一光子である。したがって、伝令付き単一光子源76は、アイドラー光子である第1出力光子OF1の検出を伝令として、シグナル光子である第2出力光子OF2を生成する伝令付き単一光子源として機能する。 Also in this embodiment, for the same reason as explained in the previous embodiment, when a photon pair is generated from the resonator structure 56 and the single photon detector 68 detects the first output photon OF1, the quantum device The second output photon OF2 is almost certainly input to X. In addition, also in this embodiment, the second output photon OF2 is a single photon with a probability sufficiently close to 1. Therefore, the single photon source 76 with a messenger functions as a single photon source with a messenger that uses the detection of the first output photon OF1, which is an idler photon, as a messenger to generate the second output photon OF2, which is a signal photon.
 本実施形態に係る伝令付き単一光子源76は、アイドラー光子である第1出力光子OF1と、シグナル光子である第2出力光子OF2とを生成に、共振器構造体48を含む量子波長変換器78を用いる。このため、伝令付き単一光子源76は、量子波長変換器2と同一の理由から、光ファイバを含む量子デバイスに組み込んだ場合においても、当該量子デバイスの構造の複雑化を低減する。 The single photon source 76 with a messenger according to the present embodiment is a quantum wavelength converter including a resonator structure 48 for generating first output photons OF1, which are idler photons, and second output photons OF2, which are signal photons. 78 is used. Therefore, for the same reason as the quantum wavelength converter 2, even when the single photon source 76 with a messenger is incorporated into a quantum device including an optical fiber, the complexity of the structure of the quantum device is reduced.
 また、伝令付き単一光子源76の共振器構造体48は、伝令付き単一光子源62の共振器構造体4と比較して、第2共振器36を含まないため、含む共振器の個数が1つ少ない。したがって、伝令付き単一光子源76は、伝令付き単一光子源62と比較して、より簡素に共振器構造体48を構成でき、また、共振器構造体48の設計をより容易とする。 Further, since the resonator structure 48 of the single photon source 76 with a messenger does not include the second resonator 36 compared to the resonator structure 4 of the single photon source 62 with a messenger, the number of resonators included is is one less. Therefore, the single photon source 76 with a messenger can configure the resonator structure 48 more simply than the single photon source 62 with a messenger, and also makes the design of the resonator structure 48 easier.
 (付記事項)
 上述した実施形態の全部または一部は、以下のように表現することもできる。
(Additional notes)
All or part of the embodiments described above can also be expressed as follows.
 (態様1)
 少なくとも一部に共通の共振光路を有する複数の共振器を内部に含む光ファイバと、
 前記光ファイバと接続し、少なくとも1つ以上の周波数を有するポンプ光を前記光ファイバに入力するレーザ光源とを備え、
 前記複数の共振器は、第1共振周波数ωを共振周波数に有する第1共振器と、第2共振周波数ωを共振周波数に有する第2共振器と、第3共振周波数ωを共振周波数に有する第3共振器と、前記第1共振周波数ω、前記第2共振周波数ω、および前記第3共振周波数ωの何れとも異なる第4共振周波数ωを共振周波数に有する第4共振器とを含み、
 nを第i共振周波数ωの光に対する前記光ファイバの内部における実効屈折率、cを光速、γを前記光ファイバの非線形係数、Pを前記ポンプ光の強度として、
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 上記(1)式および上記(2)式が成立する量子波長変換器。
(Aspect 1)
an optical fiber including therein a plurality of resonators having a common resonant optical path at least in part;
a laser light source connected to the optical fiber and inputting pump light having at least one frequency into the optical fiber;
The plurality of resonators include a first resonator having a first resonant frequency ω1 as a resonant frequency, a second resonator having a second resonant frequency ω2 as a resonant frequency, and a third resonant frequency ω3 as a resonant frequency. and a fourth resonance having a fourth resonant frequency ω 4 different from any of the first resonant frequency ω 1 , the second resonant frequency ω 2 , and the third resonant frequency ω 3 . including vessels,
where n i is the effective refractive index inside the optical fiber for light with the i-th resonance frequency ω i , c is the speed of light, γ is the nonlinear coefficient of the optical fiber, and P is the intensity of the pump light,
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
A quantum wavelength converter that satisfies the above equations (1) and (2).
 (態様2)
 前記光ファイバと接続し、前記複数の共振器に前記第1共振周波数ωを有する入力光子を前記光ファイバに入力する単一光子源をさらに備え、
 前記レーザ光源が、前記第2共振周波数ωを有する第1ポンプ光と、前記第3共振周波数ωを有する第2ポンプ光とを、前記光ファイバに入力し、
 前記第4共振器から前記第4共振周波数ωを有する出力光子を出射させる態様1に記載の量子波長変換器。
(Aspect 2)
further comprising a single photon source connected to the optical fiber and inputting input photons having the first resonant frequency ω 1 to the plurality of resonators into the optical fiber,
the laser light source inputs a first pump light having the second resonant frequency ω 2 and a second pump light having the third resonant frequency ω 3 to the optical fiber;
The quantum wavelength converter according to aspect 1, wherein output photons having the fourth resonant frequency ω 4 are emitted from the fourth resonator.
 (態様3)
 前記第1共振周波数ωが前記第2共振周波数ωと同一であり、
 前記第1共振器が前記第2共振器と同一であり、
 前記レーザ光源が、前記第1共振周波数ωを有する第1ポンプ光と、前記第3共振周波数ωを有する第2ポンプ光とを、前記光ファイバに入力し、
 前記第4共振器から前記第4共振周波数ωを有する出力光子を出射させる態様1に記載の量子波長変換器。
(Aspect 3)
the first resonant frequency ω 1 is the same as the second resonant frequency ω 2 ;
the first resonator is the same as the second resonator,
the laser light source inputs a first pump light having the first resonant frequency ω 1 and a second pump light having the third resonant frequency ω 3 to the optical fiber;
The quantum wavelength converter according to aspect 1, wherein output photons having the fourth resonant frequency ω 4 are emitted from the fourth resonator.
 (態様4)
 少なくとも一部に共通の共振光路を有する複数の共振器を内部に含む光ファイバと、
 前記光ファイバと接続し、ポンプ光を前記光ファイバに入力するレーザ光源とを備え、
 前記複数の共振器は、第1共振周波数ωを共振周波数に有する第1共振器と、第3共振周波数ωを共振周波数に有する第3共振器と、前記第1共振周波数ωおよび第3共振周波数ωの双方と異なる第4共振周波数ωを共振周波数に有する第4共振器とを含み、
 nを第i共振周波数ωの光に対する前記光ファイバの内部における実効屈折率、cを光速、γを前記光ファイバの非線形係数、Pを前記ポンプ光の強度として、
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 上記(3)式および上記(4)式が成立する量子波長変換器。
(Aspect 4)
an optical fiber including therein a plurality of resonators having a common resonant optical path at least in part;
a laser light source connected to the optical fiber and inputting pump light into the optical fiber;
The plurality of resonators include a first resonator having a first resonant frequency ω 1 as a resonant frequency, a third resonator having a third resonant frequency ω 3 as a resonant frequency, and a third resonator having a resonant frequency ω 1 and a third resonant frequency ω 3 . 3 resonant frequency ω 3 and a fourth resonator having a different fourth resonant frequency ω 4 as a resonant frequency,
where n i is the effective refractive index inside the optical fiber for light with the i-th resonance frequency ω i , c is the speed of light, γ is the nonlinear coefficient of the optical fiber, and P is the intensity of the pump light,
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
A quantum wavelength converter that satisfies the above equations (3) and (4).
 (態様5)
 前記光ファイバと接続し、前記複数の共振器に前記第1共振周波数ωを有する入力光子を前記光ファイバに入力する単一光子源をさらに備え、
 前記レーザ光源が、前記第3共振周波数ωを有する前記ポンプ光を前記光ファイバに入力し、
 前記第4共振器から前記第4共振周波数ωを有する出力光子を出射させる態様4に記載の量子波長変換器。
(Aspect 5)
further comprising a single photon source connected to the optical fiber and inputting input photons having the first resonant frequency ω 1 to the plurality of resonators into the optical fiber,
the laser light source inputs the pump light having the third resonant frequency ω 3 to the optical fiber;
The quantum wavelength converter according to aspect 4, wherein output photons having the fourth resonant frequency ω 4 are emitted from the fourth resonator.
 (態様6)
 少なくとも一部に共通の共振光路を有する複数の共振器を内部に含む光ファイバと、
 前記光ファイバと接続し、ポンプ光を前記光ファイバに入力するレーザ光源とを備え、
 前記複数の共振器は、第1共振周波数ωを共振周波数に有する第1共振器と、第2共振周波数ωを共振周波数に有する第2共振器と、前記第1共振周波数ωおよび前記第2共振周波数ωの双方と異なる第4共振周波数ωを共振周波数に有する第4共振器とを含み、
 nを第i共振周波数ωの光に対する前記光ファイバの内部における実効屈折率、cを光速、γを前記光ファイバの非線形係数、Pを前記ポンプ光の強度として、
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 上記(5)式および上記(6)式が成立する量子波長変換器。
(Aspect 6)
an optical fiber including therein a plurality of resonators having a common resonant optical path at least in part;
a laser light source connected to the optical fiber and inputting pump light into the optical fiber;
The plurality of resonators include a first resonator having a first resonant frequency ω 1 as a resonant frequency, a second resonator having a second resonant frequency ω 2 as a resonant frequency, and a second resonator having a second resonant frequency ω 2 as a resonant frequency, and a fourth resonator having a fourth resonant frequency ω4 different from both the second resonant frequency ω2 ;
where n i is the effective refractive index inside the optical fiber for light with the i-th resonance frequency ω i , c is the speed of light, γ is the nonlinear coefficient of the optical fiber, and P is the intensity of the pump light,
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
A quantum wavelength converter that satisfies the above equations (5) and (6).
 (態様7)
 前記光ファイバと接続し、前記複数の共振器に前記第1共振周波数ωを有する入力光子を前記光ファイバに入力する単一光子源をさらに備え、
 前記レーザ光源が、前記第2共振周波数ωを有する前記ポンプ光を前記光ファイバに入力し、
 前記第4共振器から前記第4共振周波数ωを有する出力光子を出射させる態様6に記載の量子波長変換器。
(Aspect 7)
further comprising a single photon source connected to the optical fiber and inputting input photons having the first resonant frequency ω 1 to the plurality of resonators into the optical fiber,
the laser light source inputs the pump light having the second resonant frequency ω 2 to the optical fiber;
The quantum wavelength converter according to aspect 6, wherein output photons having the fourth resonant frequency ω 4 are emitted from the fourth resonator.
 (態様8)
 前記第1共振周波数ωが前記第2共振周波数ωと同一であり、
 前記第1共振器が前記第2共振器と同一であり、
 前記レーザ光源が、前記第1共振周波数ωを有する第1ポンプ光を、前記光ファイバに入力し、
 前記第4共振器から前記第4共振周波数ωを有する態様6に記載の量子波長変換器。
(Aspect 8)
the first resonant frequency ω 1 is the same as the second resonant frequency ω 2 ;
the first resonator is the same as the second resonator,
the laser light source inputs a first pump light having the first resonant frequency ω 1 to the optical fiber;
7. The quantum wavelength converter according to aspect 6, having the fourth resonant frequency ω 4 from the fourth resonator.
 (態様9)
 前記光ファイバは、ナノ光ファイバ部と、前記ナノ光ファイバ部よりも径が大きく、前記ナノ光ファイバ部の両端とテーパー部を介して接続する両端部とを含み、前記共振光路の少なくとも一部が前記ナノ光ファイバ部に位置する態様1から8の何れか1項に記載の量子波長変換器。
(Aspect 9)
The optical fiber includes a nano-optical fiber portion and both end portions that are larger in diameter than the nano-optical fiber portion and are connected to both ends of the nano-optical fiber portion via a tapered portion, and at least a portion of the resonant optical path. 9. The quantum wavelength converter according to any one of aspects 1 to 8, wherein the quantum wavelength converter is located in the nano-optical fiber section.
 (態様10)
 前記複数の共振器は、それぞれの共振周波数を反射帯域に含む一対のファイバブラッグ格子をそれぞれ有する態様1から8の何れか1項に記載の量子波長変換器。
(Aspect 10)
The quantum wavelength converter according to any one of aspects 1 to 8, wherein each of the plurality of resonators includes a pair of fiber Bragg gratings whose reflection bands include the respective resonance frequencies.
 (態様11)
 少なくとも一つの前記ファイバブラッグ格子は、他の何れかの前記ファイバブラッグ格子と同一である態様10に記載の量子波長変換器。
(Aspect 11)
11. The quantum wavelength converter of aspect 10, wherein at least one of the fiber Bragg gratings is the same as any other of the fiber Bragg gratings.
 (態様12)
 態様1に記載の量子波長変換器と、
 前記光ファイバと接続し、前記第3共振器から出射した前記第3共振周波数ωを有する第1単一出力光子を伝搬させる第1出力光ファイバと、
 前記光ファイバと接続し、前記第4共振器から出射した前記第4共振周波数ωを有する第2単一出力光子を伝搬させる第2出力光ファイバと、
 前記第1出力光ファイバと接続し、前記第1単一出力光子を検出する単一光子検出器とをさらに備え、
 前記レーザ光源が、前記第1共振周波数ωを有する第1ポンプ光と、前記第2共振周波数ωを有する第2ポンプ光とを、前記光ファイバに入力する伝令付き単一光子源。
(Aspect 12)
The quantum wavelength converter according to aspect 1,
a first output optical fiber connected to the optical fiber and configured to propagate a first single output photon having the third resonant frequency ω 3 emitted from the third resonator;
a second output optical fiber connected to the optical fiber and configured to propagate a second single output photon having the fourth resonant frequency ω 4 emitted from the fourth resonator;
further comprising a single photon detector connected to the first output optical fiber and detecting the first single output photon;
A single photon source with a messenger, wherein the laser light source inputs a first pump light having the first resonant frequency ω 1 and a second pump light having the second resonant frequency ω 2 to the optical fiber.
 (態様13)
 前記第1共振周波数ωが前記第2共振周波数ωと同一であり、
 前記第1共振器が前記第2共振器と同一であり、
 前記第2ポンプ光が前記第1ポンプ光と同一である態様12に記載の伝令付き単一光子源。
(Aspect 13)
the first resonant frequency ω 1 is the same as the second resonant frequency ω 2 ;
the first resonator is the same as the second resonator,
13. The single photon source with messenger according to aspect 12, wherein the second pump light is the same as the first pump light.
 (態様14)
 態様4に記載の量子波長変換器と、
 前記光ファイバと接続し、前記第3共振器から出射した前記第3共振周波数ωを有する第1単一出力光子を伝搬させる第1出力光ファイバと、
 前記光ファイバと接続し、前記第4共振器から出射した前記第4共振周波数ωを有する第2単一出力光子を伝搬させる第2出力光ファイバと、
 前記第1出力光ファイバと接続し、前記第1単一出力光子を検出する単一光子検出器とをさらに備え、
 前記レーザ光源が、前記第1共振周波数ωを有する前記ポンプ光を前記光ファイバに入力する伝令付き単一光子源。
(Aspect 14)
The quantum wavelength converter according to aspect 4,
a first output optical fiber connected to the optical fiber and configured to propagate a first single output photon having the third resonant frequency ω 3 emitted from the third resonator;
a second output optical fiber connected to the optical fiber and configured to propagate a second single output photon having the fourth resonant frequency ω 4 emitted from the fourth resonator;
further comprising a single photon detector connected to the first output optical fiber and detecting the first single output photon;
A single photon source with a messenger, wherein the laser light source inputs the pump light having the first resonant frequency ω 1 to the optical fiber.
 (態様15)
 前記光ファイバは、ナノ光ファイバ部と、前記ナノ光ファイバ部よりも径が大きく、前記ナノ光ファイバ部の両端とテーパー部を介して接続する両端部とを含み、前記共振光路の少なくとも一部が前記ナノ光ファイバ部に位置する態様12から14の何れか1項に記載の伝令付き単一光子源。
(Aspect 15)
The optical fiber includes a nano-optical fiber portion and both end portions that are larger in diameter than the nano-optical fiber portion and are connected to both ends of the nano-optical fiber portion via a tapered portion, and at least a portion of the resonant optical path. 15. The single photon source with a messenger according to any one of aspects 12 to 14, wherein: is located in the nano-optical fiber section.
 (態様16)
 前記複数の共振器は、それぞれの共振周波数を反射帯域に含む一対のファイバブラッグ格子をそれぞれ有する態様12から14の何れか1項に記載の伝令付き単一光子源。
(Aspect 16)
The single photon source with a messenger according to any one of aspects 12 to 14, wherein each of the plurality of resonators has a pair of fiber Bragg gratings whose reflection bands include the respective resonance frequencies.
 (態様17)
 少なくとも一つの前記ファイバブラッグ格子は、他の何れかの前記ファイバブラッグ格子と同一である態様16に記載の伝令付き単一光子源。
(Aspect 17)
17. The heralded single photon source of embodiment 16, wherein at least one of the fiber Bragg gratings is the same as any other of the fiber Bragg gratings.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present disclosure is not limited to the embodiments described above, and various changes can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present disclosure. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
 2 量子波長変換器
 4 共振器構造体
 6 レーザ光源
 8 光ファイバ
 16 ナノ光ファイバ部
 18 テーパー部
 20 共通FBG
 22 第1FBG
 24 第2FBG
 26 第3FBG
 28 第4FBG
 34 第1共振器
 36 第2共振器
 38 第3共振器
 40 第4共振器
 62 伝令付き単一光子源
 68 単一光子検出器
 70 第1出力光ファイバ
 72 第2出力光ファイバ
2 Quantum wavelength converter 4 Resonator structure 6 Laser light source 8 Optical fiber 16 Nano optical fiber section 18 Tapered section 20 Common FBG
22 1st FBG
24 2nd FBG
26 3rd FBG
28 4th FBG
34 First resonator 36 Second resonator 38 Third resonator 40 Fourth resonator 62 Single photon source with messenger 68 Single photon detector 70 First output optical fiber 72 Second output optical fiber

Claims (17)

  1.  少なくとも一部に共通の共振光路を有する複数の共振器を内部に含む光ファイバと、
     前記光ファイバと接続し、少なくとも1つ以上の周波数を有するポンプ光を前記光ファイバに入力するレーザ光源とを備え、
     前記複数の共振器は、第1共振周波数ωを共振周波数に有する第1共振器と、第2共振周波数ωを共振周波数に有する第2共振器と、第3共振周波数ωを共振周波数に有する第3共振器と、前記第1共振周波数ω、前記第2共振周波数ω、および前記第3共振周波数ωの何れとも異なる第4共振周波数ωを共振周波数に有する第4共振器とを含み、
     nを第i共振周波数ωの光に対する前記光ファイバの内部における実効屈折率、cを光速、γを前記光ファイバの非線形係数、Pを前記ポンプ光の強度として、
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
     上記(1)式および上記(2)式が成立する量子波長変換器。
    an optical fiber including therein a plurality of resonators having a common resonant optical path at least in part;
    a laser light source connected to the optical fiber and inputting pump light having at least one frequency into the optical fiber;
    The plurality of resonators include a first resonator having a first resonant frequency ω1 as a resonant frequency, a second resonator having a second resonant frequency ω2 as a resonant frequency, and a third resonant frequency ω3 as a resonant frequency. and a fourth resonance having a fourth resonant frequency ω 4 different from any of the first resonant frequency ω 1 , the second resonant frequency ω 2 , and the third resonant frequency ω 3 . including vessels,
    where n i is the effective refractive index inside the optical fiber for light with the i-th resonance frequency ω i , c is the speed of light, γ is the nonlinear coefficient of the optical fiber, and P is the intensity of the pump light,
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    A quantum wavelength converter that satisfies the above equations (1) and (2).
  2.  前記光ファイバと接続し、前記複数の共振器に前記第1共振周波数ωを有する入力光子を前記光ファイバに入力する単一光子源をさらに備え、
     前記レーザ光源が、前記第2共振周波数ωを有する第1ポンプ光と、前記第3共振周波数ωを有する第2ポンプ光とを、前記光ファイバに入力し、
     前記第4共振器から前記第4共振周波数ωを有する出力光子を出射させる請求項1に記載の量子波長変換器。
    further comprising a single photon source connected to the optical fiber and inputting input photons having the first resonant frequency ω 1 to the plurality of resonators into the optical fiber,
    the laser light source inputs a first pump light having the second resonant frequency ω 2 and a second pump light having the third resonant frequency ω 3 to the optical fiber;
    The quantum wavelength converter according to claim 1, wherein output photons having the fourth resonant frequency ω4 are emitted from the fourth resonator.
  3.  前記第1共振周波数ωが前記第2共振周波数ωと同一であり、
     前記第1共振器が前記第2共振器と同一であり、
     前記レーザ光源が、前記第1共振周波数ωを有する第1ポンプ光と、前記第3共振周波数ωを有する第2ポンプ光とを、前記光ファイバに入力し、
     前記第4共振器から前記第4共振周波数ωを有する出力光子を出射させる請求項1に記載の量子波長変換器。
    the first resonant frequency ω 1 is the same as the second resonant frequency ω 2 ;
    the first resonator is the same as the second resonator,
    the laser light source inputs a first pump light having the first resonant frequency ω 1 and a second pump light having the third resonant frequency ω 3 to the optical fiber;
    The quantum wavelength converter according to claim 1, wherein output photons having the fourth resonant frequency ω4 are emitted from the fourth resonator.
  4.  少なくとも一部に共通の共振光路を有する複数の共振器を内部に含む光ファイバと、
     前記光ファイバと接続し、ポンプ光を前記光ファイバに入力するレーザ光源とを備え、
     前記複数の共振器は、第1共振周波数ωを共振周波数に有する第1共振器と、第3共振周波数ωを共振周波数に有する第3共振器と、前記第1共振周波数ωおよび第3共振周波数ωの双方と異なる第4共振周波数ωを共振周波数に有する第4共振器とを含み、
     nを第i共振周波数ωの光に対する前記光ファイバの内部における実効屈折率、cを光速、γを前記光ファイバの非線形係数、Pを前記ポンプ光の強度として、
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
     上記(3)式および上記(4)式が成立する量子波長変換器。
    an optical fiber including therein a plurality of resonators having a common resonant optical path at least in part;
    a laser light source connected to the optical fiber and inputting pump light into the optical fiber;
    The plurality of resonators include a first resonator having a first resonant frequency ω 1 as a resonant frequency, a third resonator having a third resonant frequency ω 3 as a resonant frequency, and a third resonator having a resonant frequency ω 1 and a third resonant frequency ω 3 . 3 resonant frequency ω 3 and a fourth resonator having a different fourth resonant frequency ω 4 as a resonant frequency,
    where n i is the effective refractive index inside the optical fiber for light with the i-th resonance frequency ω i , c is the speed of light, γ is the nonlinear coefficient of the optical fiber, and P is the intensity of the pump light,
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    A quantum wavelength converter that satisfies the above equations (3) and (4).
  5.  前記光ファイバと接続し、前記複数の共振器に前記第1共振周波数ωを有する入力光子を前記光ファイバに入力する単一光子源をさらに備え、
     前記レーザ光源が、前記第3共振周波数ωを有する前記ポンプ光を前記光ファイバに入力し、
     前記第4共振器から前記第4共振周波数ωを有する出力光子を出射させる請求項4に記載の量子波長変換器。
    further comprising a single photon source connected to the optical fiber and inputting input photons having the first resonant frequency ω 1 to the plurality of resonators into the optical fiber,
    the laser light source inputs the pump light having the third resonant frequency ω 3 to the optical fiber;
    5. The quantum wavelength converter according to claim 4, wherein output photons having the fourth resonant frequency ω4 are emitted from the fourth resonator.
  6.  少なくとも一部に共通の共振光路を有する複数の共振器を内部に含む光ファイバと、
     前記光ファイバと接続し、ポンプ光を前記光ファイバに入力するレーザ光源とを備え、
     前記複数の共振器は、第1共振周波数ωを共振周波数に有する第1共振器と、第2共振周波数ωを共振周波数に有する第2共振器と、前記第1共振周波数ωおよび前記第2共振周波数ωの双方と異なる第4共振周波数ωを共振周波数に有する第4共振器とを含み、
     nを第i共振周波数ωの光に対する前記光ファイバの内部における実効屈折率、cを光速、γを前記光ファイバの非線形係数、Pを前記ポンプ光の強度として、
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
     上記(5)式および上記(6)式が成立する量子波長変換器。
    an optical fiber including therein a plurality of resonators having a common resonant optical path at least in part;
    a laser light source connected to the optical fiber and inputting pump light into the optical fiber;
    The plurality of resonators include a first resonator having a first resonant frequency ω 1 as a resonant frequency, a second resonator having a second resonant frequency ω 2 as a resonant frequency, and a second resonator having a second resonant frequency ω 2 as a resonant frequency, and a fourth resonator having a fourth resonant frequency ω4 different from both the second resonant frequency ω2 ;
    where n i is the effective refractive index inside the optical fiber for light with the i-th resonance frequency ω i , c is the speed of light, γ is the nonlinear coefficient of the optical fiber, and P is the intensity of the pump light,
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    A quantum wavelength converter that satisfies the above equations (5) and (6).
  7.  前記光ファイバと接続し、前記複数の共振器に前記第1共振周波数ωを有する入力光子を前記光ファイバに入力する単一光子源をさらに備え、
     前記レーザ光源が、前記第2共振周波数ωを有する前記ポンプ光を前記光ファイバに入力し、
     前記第4共振器から前記第4共振周波数ωを有する出力光子を出射させる請求項6に記載の量子波長変換器。
    further comprising a single photon source connected to the optical fiber and inputting input photons having the first resonant frequency ω 1 to the plurality of resonators into the optical fiber,
    the laser light source inputs the pump light having the second resonant frequency ω 2 to the optical fiber;
    7. The quantum wavelength converter according to claim 6, wherein output photons having the fourth resonant frequency ω4 are emitted from the fourth resonator.
  8.  前記第1共振周波数ωが前記第2共振周波数ωと同一であり、
     前記第1共振器が前記第2共振器と同一であり、
     前記レーザ光源が、前記第1共振周波数ωを有する第1ポンプ光を、前記光ファイバに入力し、
     前記第4共振器から前記第4共振周波数ωを有する請求項6に記載の量子波長変換器。
    the first resonant frequency ω 1 is the same as the second resonant frequency ω 2 ;
    the first resonator is the same as the second resonator,
    the laser light source inputs a first pump light having the first resonant frequency ω 1 to the optical fiber;
    7. The quantum wavelength converter according to claim 6, having the fourth resonant frequency ω 4 from the fourth resonator.
  9.  前記光ファイバは、ナノ光ファイバ部と、前記ナノ光ファイバ部よりも径が大きく、前記ナノ光ファイバ部の両端とテーパー部を介して接続する両端部とを含み、前記共振光路の少なくとも一部が前記ナノ光ファイバ部に位置する請求項1から8の何れか1項に記載の量子波長変換器。 The optical fiber includes a nano-optical fiber portion and both end portions that are larger in diameter than the nano-optical fiber portion and are connected to both ends of the nano-optical fiber portion via a tapered portion, and at least a portion of the resonant optical path. 9. The quantum wavelength converter according to claim 1, wherein: is located in the nano-optical fiber section.
  10.  前記複数の共振器は、それぞれの共振周波数を反射帯域に含む一対のファイバブラッグ格子をそれぞれ有する請求項1から8の何れか1項に記載の量子波長変換器。 The quantum wavelength converter according to any one of claims 1 to 8, wherein each of the plurality of resonators includes a pair of fiber Bragg gratings whose reflection bands include the respective resonant frequencies.
  11.  少なくとも一つの前記ファイバブラッグ格子は、他の何れかの前記ファイバブラッグ格子と同一である請求項10に記載の量子波長変換器。 11. The quantum wavelength converter of claim 10, wherein at least one of the fiber Bragg gratings is the same as any other of the fiber Bragg gratings.
  12.  請求項1に記載の量子波長変換器と、
     前記光ファイバと接続し、前記第3共振器から出射した前記第3共振周波数ωを有する第1単一出力光子を伝搬させる第1出力光ファイバと、
     前記光ファイバと接続し、前記第4共振器から出射した前記第4共振周波数ωを有する第2単一出力光子を伝搬させる第2出力光ファイバと、
     前記第1出力光ファイバと接続し、前記第1単一出力光子を検出する単一光子検出器とをさらに備え、
     前記レーザ光源が、前記第1共振周波数ωを有する第1ポンプ光と、前記第2共振周波数ωを有する第2ポンプ光とを、前記光ファイバに入力する伝令付き単一光子源。
    Quantum wavelength converter according to claim 1;
    a first output optical fiber connected to the optical fiber and configured to propagate a first single output photon having the third resonant frequency ω 3 emitted from the third resonator;
    a second output optical fiber connected to the optical fiber and configured to propagate a second single output photon having the fourth resonant frequency ω 4 emitted from the fourth resonator;
    further comprising a single photon detector connected to the first output optical fiber and detecting the first single output photon;
    A single photon source with a messenger, wherein the laser light source inputs a first pump light having the first resonant frequency ω 1 and a second pump light having the second resonant frequency ω 2 to the optical fiber.
  13.  前記第1共振周波数ωが前記第2共振周波数ωと同一であり、
     前記第1共振器が前記第2共振器と同一であり、
     前記第2ポンプ光が前記第1ポンプ光と同一である請求項12に記載の伝令付き単一光子源。
    the first resonant frequency ω 1 is the same as the second resonant frequency ω 2 ;
    the first resonator is the same as the second resonator,
    13. The single photon source with messenger according to claim 12, wherein the second pump light is the same as the first pump light.
  14.  請求項4に記載の量子波長変換器と、
     前記光ファイバと接続し、前記第3共振器から出射した前記第3共振周波数ωを有する第1単一出力光子を伝搬させる第1出力光ファイバと、
     前記光ファイバと接続し、前記第4共振器から出射した前記第4共振周波数ωを有する第2単一出力光子を伝搬させる第2出力光ファイバと、
     前記第1出力光ファイバと接続し、前記第1単一出力光子を検出する単一光子検出器とをさらに備え、
     前記レーザ光源が、前記第1共振周波数ωを有する前記ポンプ光を前記光ファイバに入力する伝令付き単一光子源。
    Quantum wavelength converter according to claim 4,
    a first output optical fiber connected to the optical fiber and configured to propagate a first single output photon having the third resonant frequency ω 3 emitted from the third resonator;
    a second output optical fiber connected to the optical fiber and configured to propagate a second single output photon having the fourth resonant frequency ω 4 emitted from the fourth resonator;
    further comprising a single photon detector connected to the first output optical fiber and detecting the first single output photon;
    A single photon source with a messenger, wherein the laser light source inputs the pump light having the first resonant frequency ω 1 to the optical fiber.
  15.  前記光ファイバは、ナノ光ファイバ部と、前記ナノ光ファイバ部よりも径が大きく、前記ナノ光ファイバ部の両端とテーパー部を介して接続する両端部とを含み、前記共振光路の少なくとも一部が前記ナノ光ファイバ部に位置する請求項12から14の何れか1項に記載の伝令付き単一光子源。 The optical fiber includes a nano-optical fiber portion and both end portions that are larger in diameter than the nano-optical fiber portion and are connected to both ends of the nano-optical fiber portion via a tapered portion, and at least a portion of the resonant optical path. The single photon source with a messenger according to any one of claims 12 to 14, wherein the single photon source is located in the nano-optical fiber section.
  16.  前記複数の共振器は、それぞれの共振周波数を反射帯域に含む一対のファイバブラッグ格子をそれぞれ有する請求項12から14の何れか1項に記載の伝令付き単一光子源。 The single photon source with a messenger according to any one of claims 12 to 14, wherein each of the plurality of resonators has a pair of fiber Bragg gratings whose reflection bands include the respective resonant frequencies.
  17.  少なくとも一つの前記ファイバブラッグ格子は、他の何れかの前記ファイバブラッグ格子と同一である請求項16に記載の伝令付き単一光子源。 17. The messenger single photon source of claim 16, wherein at least one of the fiber Bragg gratings is the same as any other of the fiber Bragg gratings.
PCT/JP2023/016812 2022-05-12 2023-04-28 Quantum wavelength converter, heralded single photon source WO2023219002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022079015A JP2023167667A (en) 2022-05-12 2022-05-12 Quantum wavelength converter, single photon source having messenger
JP2022-079015 2022-05-12

Publications (1)

Publication Number Publication Date
WO2023219002A1 true WO2023219002A1 (en) 2023-11-16

Family

ID=88730457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016812 WO2023219002A1 (en) 2022-05-12 2023-04-28 Quantum wavelength converter, heralded single photon source

Country Status (2)

Country Link
JP (1) JP2023167667A (en)
WO (1) WO2023219002A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271725A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Wavelength conversion apparatus for single photon
CN101546086A (en) * 2009-04-23 2009-09-30 贵州大学 Fabry-Perot cavity structure all-optical cache based on high-nonlinearity optical fiber
US9500930B1 (en) * 2015-03-12 2016-11-22 Sandia Corporation On-chip entangled photon source
US20200183250A1 (en) * 2016-12-06 2020-06-11 Notchway Solutions, Llc Quantum Optical Wavelength Converter
WO2022009950A1 (en) * 2020-07-09 2022-01-13 学校法人早稲田大学 Quantum computing unit, single photon source, quantum computing device, and quantum computing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271725A (en) * 2006-03-30 2007-10-18 Fujitsu Ltd Wavelength conversion apparatus for single photon
CN101546086A (en) * 2009-04-23 2009-09-30 贵州大学 Fabry-Perot cavity structure all-optical cache based on high-nonlinearity optical fiber
US9500930B1 (en) * 2015-03-12 2016-11-22 Sandia Corporation On-chip entangled photon source
US20200183250A1 (en) * 2016-12-06 2020-06-11 Notchway Solutions, Llc Quantum Optical Wavelength Converter
WO2022009950A1 (en) * 2020-07-09 2022-01-13 学校法人早稲田大学 Quantum computing unit, single photon source, quantum computing device, and quantum computing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG CHIN-YAO, LEE JIA-JUAN, LIU ZI-YU, SHIU JIUN-SHIUAN, CHEN YONG-FAN: "Quantum frequency conversion based on resonant four-wave mixing", PHYSICAL REVIEW A, vol. 103, no. 2, 8 December 2020 (2020-12-08), pages 023711, XP093107296, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.103.023711 *

Also Published As

Publication number Publication date
JP2023167667A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
Turner et al. Ultra-low power parametric frequency conversion in a silicon microring resonator
Fulconis et al. High brightness single mode source of correlated photon pairs using a photonic crystal fiber
Okawachi et al. All-optical slow-light on a photonic chip
Rarity et al. Photonic crystal fiber source of correlated photon pairs
Pasquazi et al. All-optical wavelength conversion in an integrated ring resonator
Li et al. All-fiber photon-pair source for quantum communications: Improved generation of correlated photons
Ong et al. Quantum light generation on a silicon chip using waveguides and resonators
Matsuda et al. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides
Domeneguetti et al. Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths
Kuyken et al. A silicon-based widely tunable short-wave infrared optical parametric oscillator
Amiri et al. Ring resonator systems to perform optical communication enhancement using soliton
Li et al. Fast light in silicon ring resonator with resonance-splitting
JP5648969B2 (en) Pulsed light transmission method and laser device using this transmission method
JP5086013B2 (en) Quantum entangled photon pair generator
Garay-Palmett et al. Fiber-based photon-pair generation: tutorial
Lefevre et al. Quasi-phase-matching of four-wave-mixing-based wavelength conversion by phase-mismatch switching
KR100568504B1 (en) Apparatus for enhancing cascaded difference frequency generation using resonant structure
JP5919740B2 (en) Light source device and wavelength conversion method
Wang et al. Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector
Yoshiki et al. Observation of energy oscillation between strongly-coupled counter-propagating ultra-high Q whispering gallery modes
Lefebvre et al. Compact energy–time entanglement source using cascaded nonlinear interactions
WO2023219002A1 (en) Quantum wavelength converter, heralded single photon source
JP5408313B2 (en) Optical device, wavelength conversion method, and optical fiber suitable therefor
Xu et al. Dynamic mode-switchable and wavelength-tunable Brillouin random fiber laser by a high-order mode pump
JP2004184524A (en) Optical module, optical fiber and optical transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803480

Country of ref document: EP

Kind code of ref document: A1