WO2023217093A1 - Prodrug activation of n-oxides by radiotherapy - Google Patents

Prodrug activation of n-oxides by radiotherapy Download PDF

Info

Publication number
WO2023217093A1
WO2023217093A1 PCT/CN2023/092817 CN2023092817W WO2023217093A1 WO 2023217093 A1 WO2023217093 A1 WO 2023217093A1 CN 2023092817 W CN2023092817 W CN 2023092817W WO 2023217093 A1 WO2023217093 A1 WO 2023217093A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
oxide
heterocycle
radiation
Prior art date
Application number
PCT/CN2023/092817
Other languages
French (fr)
Inventor
Zhibo LIU
Zexuan DING
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Publication of WO2023217093A1 publication Critical patent/WO2023217093A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations

Definitions

  • the present invention pertains to the biomedical field, and particularly relates to a method for activating N-oxide prodrugs with radiation, and a method of treating or suppressing a cancer, reducing its severity, lowering its risk or inhibiting its metastasis in an individual.
  • the method comprises administering to the individual a therapeutically effective amount of an N-oxide prodrug, and radiating the individual with a therapeutically effective amount of radiotherapy.
  • prodrug strategies have been widely used to address drug delivery problems in tumor therapy.
  • prodrugs can deliver over 50-fold the normal dose to the desired location and cure tumors normally resistant to chemotherapy. Effectively activating the parent drugs is perhaps the most critical step of prodrug strategy.
  • controlled activation of prodrug is still a long-standing challenge in clinics due to the lack of tumor-selective activating strategies. Therefore, spatiotemporally precise prodrug activation in a tumor-selective manner is a pressing need and full of challenges, prompting us to look for suitable chemical tools.
  • ionizing radiation X-ray, ⁇ -ray, etc.
  • X-ray, ⁇ -ray, etc. clinically relevant ionizing radiation
  • radiotherapy may fail because the total dose limitation (generally less than 60 Gy) and hypoxia resistance since oxygen is involved in the fixation of radiation-induced DNA damage. Consequently, radiotherapy combined with chemotherapy has better chances to treat cancers.
  • Establishing site-directed radiotherapy-activated chemotherapy strategies are expected to reduce the combined toxicities of the dual treatments and achieve better therapeutic efficacy.
  • Radiochemical alterations towards molecules include direct and indirect effects.
  • the indirect radiochemical effect that radiation deposits on environment components is dominant in living systems. It is mainly through water radiolysis as water accounts for 70-80%of tissue weight.
  • Cleavage chemistry on prodrug molecules induced by hydroxyl radical ( ⁇ OH, as one of the major products from water radiolysis) and hydrogen radical ( ⁇ H) has been reported previously.
  • ⁇ OH hydroxyl radical
  • ⁇ H hydrogen radical
  • chemotherapeutic prodrugs in a tumor-selective manner is an ideal way to cure cancers without causing systemic toxicities.
  • the present invention reports a novel prodrug activation strategy using radiotherapy (X-ray) . Due to its precision and deep tissue penetration, X-ray matches the need for altering molecules in tumors through water radiolysis. It is first demonstrated that N-oxides can be effectively reduced by hydrated electron (e - aq ) generated from radiation both in tubes and living cells. A screening is performed to investigate the structure-reduction relationship and mechanism of the e - aq -mediated reductions.
  • the present invention then applies the strategy to activate N-oxide prodrugs.
  • the anticancer drug camptothecin (CPT) based N-oxide prodrug shows a remarkable anticancer effect upon activation by radiotherapy.
  • This radiation-induced in vivo chemistry may enable versatile designs of radiotherapy-activated prodrugs, which are of remarkable clinical relevance, as over 50%of cancer patients take radiotherapy.
  • This radiation-induced in vivo chemistry can also greatly increase the selectivity of chemotherapy or fluorescent compounds, increase the efficacy of the radiotherapy, and reduce the toxicity of administering chemotherapeutic drugs or fluorescent compounds through controlled release of the corresponding chemotherapeutic prodrugs or fluorescent prodrugs.
  • the invention provides a method for activating N-oxide compound with radiation, characterized in that the N-oxide compound comprises at least one aryl or heteroaryl group, and the N-oxide compound can be reduced to a corresponding tertiary amine after irradiated with the radiation.
  • the invention provides a method of treating or diagnosing a disease, the method comprises administering to an individual a therapeutically effective amount of an N-oxide prodrug, and radiating the individual with a therapeutically effective amount of radiation.
  • the invention provides use of an N-oxide prodrug for preparing a medicament for treating or diagnosing a disease in an individual, wherein the individual is also radiated with radiation.
  • Figure 1 shows radiation-induced prodrug activation in tumors.
  • the water radiolysis by ionizing radiation generates various reactive particles (G-value means the number of molecules formed by absorbing 100 eV energy in the system) .
  • G-value means the number of molecules formed by absorbing 100 eV energy in the system
  • hydroxyl radical ( ⁇ OH) was previously reported for controlled drug release.
  • N-oxides are found to be reduced by hydrated electrons (e - aq ) generated from water radiolysis.
  • nitrogen-containing drugs mainly tertiary amine and N-heterocyclic ones
  • Figure 2 shows Radiation-induced reduction of N-oxides.
  • Figure 3 shows structure screening of N-oxides for radiation-induced reduction.
  • (c) Radiation dosage–dependent generation of reduction products (A-8) from aromatic heterocyclic NO-8 (10 ⁇ M in PBS) determined by UPLC-MS (m/z 146) .
  • Figure 4 shows mechanism study of the e - aq -mediated reduction of N-oxides.
  • Figure 5 shows radiation-induced activation of N-oxide prodrug.
  • (b) G-value of generated reduction products shown in (a) , n 3.
  • the dash lines are G-value of DHBC (3, 5-dihydroxylbenzyl carbamate, which is the most efficient group that could be removed by hydroxyl radicals from water radiolysis) .
  • DHBC 5-dihydroxylbenzyl carbamate, which is the most efficient group that could be removed by hydroxyl radicals from water radiolysis
  • Figure 6 shows radiotherapy activates a prodrug that rejects tumor growth.
  • (b) Time-dependent accumulation of NO-CPT in tumor tissue detected by UPLC-UV, n 3.
  • (e) Weight change curves of mice subjected to different treatment. n 6, two-tailed unpaired Student’s t-test, ***P ⁇ 0.001.
  • Figure 7 shows chemical structures of both synthetic raw materials and proposed reduction products of N-oxides (NO-1 to -NO-10, NO-IMQ, NO-APX, NO-PNP, NO-LRT, NO-CPT, respectively) .
  • Figure 14 shows photographs of representative tumors at day 27 after different treatments.
  • Figure 15 shows hematoxylin & eosin (H&E) stained tissue sections from the major organs (heart, liver, spleen, lung, kidney) . No noticeable abnormality can be observed in these major organs of mice after treatment.
  • H&E hematoxylin & eosin
  • the terms “including” , “comprising” , “having” , “containing” or “comprising” , and other variants thereof, are inclusive or open, and do not exclude other unlisted elements or method steps.
  • chemotherapeutic agent or “chemotherapeutic drug” refers to chemotherapeutic drugs that can kill tumor cells, and these drugs can act on different stages of tumor cell growth and reproduction, thereby inhibit or kill tumor cells.
  • alkyl refers to an unsubstituted straight or branched aliphatic hydrocarbon containing from 1 to 12 carbon atoms (ie, C 1-12 alkyl) or an indicated number of carbon atoms, for example, C 1 alkyl such as methyl, C 2 alkyl such as ethyl, C 3 alkyl such as n-propyl or isopropyl, C 1-3 alkyl such as methyl, ethyl, n-propyl or isopropyl, or the like. In one embodiment, the alkyl is C 1-4 alkyl.
  • Non-limiting examples of C 1-12 alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, isobutyl, 3-pentyl, hexyl, heptyl, octyl, nonyl and decyl.
  • Examples of C 1-4 alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, and isobutyl.
  • cycloalkyl refers to a saturated or partially unsaturated (containing one or two double bonds) cyclic aliphatic hydrocarbon, which comprises 1 or 2 rings having 3 to 12 carbon atoms or an indicated number of carbon atoms (i.e., C 3-12 cycloalkyl) .
  • the cycloalkyl has two rings.
  • the cycloalkyl has one ring.
  • the cycloalkyl group is selected from the group consisting of C 3-8 cycloalkyl groups.
  • the cycloalkyl group is selected from the group consisting of C 3-6 cycloalkyl groups.
  • Non-limiting examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norbornyl, decahydronaphthyl, adamantyl, cyclohexenyl, and cyclopentenyl.
  • alkoxyl or “alkoxy” as used herein, alone or as part of another group, refers to an oxygen linked to an alkyl group as defined above.
  • alkenyl is intended to include hydrocarbon chains of either straight or branched configuration having the specified number of carbon atoms and one or more, preferably one to two, carbon-carbon double bonds that may occur in any stable point along the chain.
  • C 2 -C 6 alkenyl is intended to include C 2 , C 3 , C 4 , C 5 , and C 6 alkenyl groups.
  • alkenyl examples include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 2-pentenyl, 3, pentenyl, 4-pentenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-methyl-2-propenyl, and 4-methyl-3-pentenyl.
  • aryl and “heteroaryl” and “aromatic heterocyclic” refer to stable mono-or polycyclic, heterocyclic, polycyclic, and polyheterocyclic unsaturated moieties having preferably 3-14 carbon atoms, each of which may be substituted or unsubstituted.
  • aryl refers to a mono-or bicyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, and the like.
  • heteroaryl refers to a monocyclic, bicyclic or tricyclic aromatic radical having from five to fifteen, preferably five to ten ring atoms of which one ring atom is selected from S, O, and N; zero, one, or two ring atoms are additional heteroatoms independently selected from S, O, and N; and the remaining ring atoms are carbon, the radical being joined to the rest of the molecule via any of the ring atoms, such as, for example, pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, and the like.
  • heterocyclyl refers to a non-aromatic 5-, 6-, or 7-membered ring or a polycyclic group, including, but not limited to a bi-or tri-cyclic group comprising fused six-membered rings or seven-membered rings, wherein at least one carbon atom of one of the rings is replaced by a heteroatom.
  • Each heteroatom is independently selected from the group consisting of atoms of oxygen, sulfur (including sulfoxide and sulfone) and/or nitrogen (which may be oxidized or quaternized) .
  • cyclic ureido such as 2-imidazolidinone
  • cyclic amido such as ⁇ -lactam, ⁇ -
  • heterocycles include, but are not limited to, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, and tetrahydrofuryl.
  • a "substituted aryl, heteroaryl, heterocyclyl or heterocycle” group refers to an aryl, heteroaryl, heterocyclyl or heterocycle group, as defined above, substituted by the independent replacement of one, two or three of the hydrogen atoms thereon with but are not limited to alkyl; heteroalkyl; aryl; heteroaryl; arylalkyl; heteroarylalkyl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; -F;-Cl;-Br;-I; -OH;-NO 2 ;-CN;-CF 3 ; -CH 2 CF 3 ;-CHC1 2 ;-CH 2 OH;-CH 2 CH 2 OH;-CH 2 NH 2 ;-CH 2 SO 2 CH 3 ;-C (O) R x ; -
  • coumarine means the molecule having the following structure
  • coumarine or its derivatives means the molecules having the following skeleton structure, wherein one or more hydrogen atoms, preferably one hydrogen atom in the skeleton structure can be replaced with a substituting group, such as alkyl, e.g. C 1 to C 4 alkyl, or halogen.
  • the 4-position hydrogen atom in the skeleton structure is replaced with an alkyl group, e.g. C 1 to C 4 alkyl.
  • a coumarine group or its derivatives it means the group generated when a hydrogen radical is removed from a coumarine molecule or its derivatives, for example, a hydrogen radical on the aromatic ring, such as the hydrogen radical at the 7-position.
  • 1, 8-naphthalic imide means the molecule having the following structure
  • 1, 8-naphthalic imide means the molecules having the following skeleton structure, wherein one or more hydrogen atoms (such as the hydrogen atom on the aromatic ring, or the hydrogen atom connected to the nitrogen atom) , preferably one hydrogen atom in the skeleton structure can be replaced with a substituting group, such as alkyl, e.g. C 1 to C 4 alkyl, or halogen.
  • the hydrogen atom connected to the nitrogen atom is replaced with an alkyl group, e.g. C 1 to C 4 alkyl.
  • a 1, 8-naphthalic imide group or its derivatives it means the group generated when a hydrogen radical is removed from a 1, 8-naphthalic imide molecule or its derivatives, such as the hydrogen radical at the 4-position.
  • halogen comprises F, Cl, Br, I, etc.
  • pharmaceutically acceptable salt includes both acid addition salts and base addition salts of a compound.
  • Suitable acid addition salts are formed from acids which form non-toxic salts. Examples include acetate, adipate, aspartate, benzoate, besylate, bicarbonate/carbonate, bisulfate/sulfate, borate, camphorsulfonate, citrate, cyclohexylaminosulfonate, ethanedisulfonate, ethanesulfonate, formate, fumarate, glucoheptonate, gluconate, glucuronate, hexafluorophosphate, hibenzate, hydrochloride/chloride, hydrobromide/bromide, hydroiodide/iodide, isethionate, lactate, malate, maleate, malonate, methanesulfonate, methylsulfate, naphthylate, 2-naphthalenesulfonate, nicotinate, nitrate, orotate, oxalate, palmitate, pa
  • Suitable base addition salts are formed from bases which form non-toxic salts. Examples include aluminum salts, arginine salts, benzathine benzylpenicillin salts, calcium salts, choline salts, diethylamine salts, diethanolamine salts, glycine salts, lysine salts, magnesium salts, meglumine salts, ethanolamine salts, potassium salts, sodium salts, tromethamine salts and zinc salts.
  • solvate is a substance formed by combination, physical binding and/or solvation of a compound of the invention with a solvent molecule, such as a disolvate, a monosolvate or a hemisolvate, wherein the ratio of the solvent molecule to the compound of the invention is about 2: 1, about 1: 1 or about 1: 2, respectively.
  • This kind of physical bonding involves ionization and covalent bonding (including hydrogen bonding) in different degrees.
  • the solvate can be isolated.
  • the solvate comprises both solution phase and isolatable solvates.
  • the compounds of the invention may be in solvated forms with pharmaceutically acceptable solvents (such as water, methanol and ethanol) , and the present application is intended to encompass both solvated and unsolvated forms of the compounds of the invention.
  • solvate is a hydrate.
  • "Hydrate” relates to a specific subset of solvates wherein the solvent molecule is water.
  • Solvates generally function in the form of pharmacological equivalents.
  • the preparation of solvates is known in the art, see for example, M. Caira et al, J. Pharmaceut. Sci., 93 (3) : 601-611 (2004) , which describes the preparation of a solvate of fluconazole with ethyl acetate and water. Similar methods for the preparation of solvates, hemisolvates, hydrates and the like are described by van Tonder et al, AAPS Pharm. Sci. Tech., 5 (1) : Article 12 (2004) and A.L.
  • a representative and non-limiting method for the preparation of solvate involves dissolving a compound of the invention in a desired solvent (organic solvent, water or a mixture thereof) at a temperature above 20 °C to about 25 °C, and then the solution is cooled at a rate sufficient to form a crystal, and the crystal is separated by a known method such as filtration. Analytical techniques such as infrared spectroscopy can be used to confirm the presence of the solvent in the crystal of the solvate.
  • “Pharmaceutically acceptable carrier” in the context of the present invention refers to a diluent, adjuvant, excipient or vehicle together with which the therapeutic agent is administered, and which is suitable for contacting a tissue of human and/or other animals within the scope of reasonable medical judgment, and without excessive toxicity, irritation, allergic reactions, or other problems or complications corresponding to a reasonable benefit/risk ratio.
  • the pharmaceutically acceptable carriers that can be used in the pharmaceutical compositions of the invention include, but are not limited to, sterile liquids such as water and oils, including those oils derived from petroleum, animals, vegetables or synthetic origins, for example, peanut oil, soybean oil, mineral oil, sesame oil, etc. Water is an exemplary carrier when the pharmaceutical composition is administered intravenously. It is also possible to use physiological saline and an aqueous solution of glucose and glycerin as a liquid carrier, particularly for injection.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, maltose, chalk, silica gel, sodium stearate, glyceryl monostearate, talc, sodium chloride, skimmed milk powder, glycerin, propylene glycol, water, ethanol and the like.
  • the pharmaceutical composition may further contain a small amount of a wetting agent, an emulsifier or a pH buffering agent as needed.
  • Oral formulations may contain standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like. Examples of suitable pharmaceutically acceptable carriers are as described in Remington’s Pharmaceutical Sciences (1990) .
  • compositions of the invention may act systemically and/or locally.
  • they may be administered via a suitable route, for example by injection (e.g., intravenous, intraarterial, subcutaneous, intraperitoneal, intramuscular administration, including instillation) or transdermal administration; or by oral, buccal, nasal, transmucosal, topical administration, in form of ophthalmic preparation or by inhalation.
  • injection e.g., intravenous, intraarterial, subcutaneous, intraperitoneal, intramuscular administration, including instillation
  • transdermal administration e.g., transdermal administration
  • oral, buccal, nasal, transmucosal, topical administration in form of ophthalmic preparation or by inhalation.
  • compositions of the invention may be administered in a suitable dosage form.
  • the dosage forms include, but are not limited to, tablets, capsules, troches, hard candy, pulvis, sprays, creams, ointments, suppositories, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups.
  • an effective amount refers to an amount of active ingredient that, after administration, will relieve to some extent one or more symptoms of the condition being treated.
  • “individual” includes a human or a non-human animal.
  • exemplary human individual includes a human individual (referred to as a patient) suffering from a disease (such as the disease described herein) or a normal individual.
  • Non-human animal in the present invention includes all vertebrates, such as non-mammals (e.g., birds, amphibians, reptiles) and mammals, such as non-human primates, domestic animals, and/or domesticated animals (e.g., sheep, dogs, cats, cows, pigs, etc. ) .
  • the invention provides a method for activating N-oxide compound with radiation, characterized in that the N-oxide compound comprises at least one aryl or heteroaryl group, and the N-oxide compound can be reduced to a corresponding tertiary amine after irradiated with the radiation.
  • the nitrogen atom in the N-oxide group is directly bonded to the at least one aryl or heteroaryl group, or the nitrogen atom in the N-oxide group is an aromatic atom constituting the at least one aryl or heteroaryl group.
  • the N-oxide compound has the general formula I,
  • R is independently selected from the group consisting of alkyl, such as C 1-4 alkyl, and cycloalkyl, such as C 3-6 cycloalkyl,
  • R 1 and R’ are independently selected from the group consisting of hydrogen and alkyl, such as C 1-4 alkyl.
  • R is independently selected from the group consisting of C 1 -C 4 alkyl, and is preferably selected from the group consisting of methyl and ethyl, and/or
  • R 1 and R’ are independently selected from the group consisting of hydrogen and alkyl, such as C 1-4 alkyl,
  • Ar is naphythyl optionally substituted with alkyl, or aminosulfonyl (NH 2 -SO 2 -) , or Ar with two substituting groups thereon form heterocycle is a coumarine group or its derivatives, or a 1, 8-naphthalic imide group or its derivatives.
  • the N-oxide compound has the general formula II,
  • R 2 , R 3 , R 4 , R 5 and R 6 are independently selected from the group consisting of hydrogen, alkyl, amino, hydroxyl, amido, which can be in turn substituted with heterocycle, the heterocycle is optionally substituted with alkylcarbonatealkoxyl group; and optionally the substituting groups on the above illustrated ring can form one or two aryl or heteroaryl groups or heterocycles condensed on the above illustrated ring, said one or two aryl or heteroaryl groups or heterocycle can in turn be substituted by amino, halogen, alkyl, hydroxyl, carboxyl alkyl or heterocycle, which heterocycle is optionally substituted with alkoxylcarbonyl group;
  • R 2 , R 3 , R 4 , R 5 and R 6 are not simultaneously hydrogen.
  • R 2 , R 3 , R 4 , R 5 and R 6 are independently selected from the group consisting of hydrogen, C 1 -C 4 alkyl, amino, hydroxyl, amido, which can be in turn substituted with5-, 6-, or 7-membered heterocycle, the heterocycle is optionally substituted with (C 1 -C 4 ) alkylcarbonate (C 1 -C 4 ) alkoxyl group; and optionally the substituting groups on the above illustrated ring can form one or two phenylene or5-, 6-, or 7-membered heteroaryl groups or heterocycles condensed on the above illustrated ring, said one or two aryl or heteroaryl groups or heterocycle can in turn be substituted by amino, halogen, C 1 -C 4 alkyl, hydroxyl, carboxyl (C 1 -C 4 ) alkyl or 5-, 6-, or 7-membered heterocycle, which heterocycle is optionally substituted with (C 1 -C 4
  • R 2 , R 3 , R 4 , R 5 and R 6 are not simultaneously hydrogen.
  • the N-oxide compound has the general formula IIa, IIb, IIc, IId, IIe or IIf:
  • R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , and R 14 are independently selected from the group consisting of hydrogen, hydroxyl, amino, halogen, C 1 -C 5 alkyl, (C 1 -C 4 ) alkyl-O (CO) - (C 1 -C 4 ) alkyl, and (C 1 -C 4 ) alkyl-O (CO) H, and
  • optionally one or more hydrogen atoms on the ring in the general formula IIa, IIb, IIc, IId, IIe or IIf can be replaced with hydroxyl, amino, halogen, or C 1 -C 5 alkyl, preferably halogen or C 1 -C 4 alkyl;
  • R 7 , R 9 , and R 13 are independently selected from the group consisting of hydrogen, hydroxyl, amino, and halogen,
  • R 8 , R 10 , R 11 , R 12 , and R 14 are independently selected from the group consisting of C 1 -C 5 alkyl, (C 1 -C 4 ) alkyl-O (CO) - (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkyl-O (CO) H, and
  • optionally one or more hydrogen atoms on the aromatic ring in the general formula IIa, IIb, IIc, IId, IIe or IIf can be replaced with halogen or C 1 -C 4 alkyl.
  • the tertiary amine is a biologically active compound, such as a fluorescent compound, preferably a coumarin derivative, or a chemotherapeutic agent.
  • the N-oxide compound is aniline N-oxide or aromatic heterocyclic N-oxide, such as a compound in the following table or a pharmaceutically acceptable salt or solvate thereof:
  • the invention provides a method of treating or diagnosing a disease, the method comprises administering to an individual a therapeutically effective amount of an N-oxide prodrug, and radiating the individual with a therapeutically effective amount of radiation.
  • the N-oxide prodrug is the one as defined above.
  • said method is for treating or suppressing a cancer, reducing its severity, lowering its risk or inhibiting its metastasis in an individual.
  • the cancer is selected from the group consisting of colon cancer, small cell lung cancer, Hodgkin's lymphoma, and malignant lymphoma.
  • the individual is radiated after administering the N-oxide prodrug, preferably 20 mins, 1 hour, 2 hours, 4 hours after administering the N-oxide prodrug.
  • the N-oxide prodrug is administrated in an amount of from about 0.005 mg/kg to about 100 mg/kg, such as an amount of about 0.005, 0.05, 0.5, 5, 10, 20, 30, 40, 50, 100mg/kg.
  • the N-oxide prodrug and radiation are administered once every two days, once every three days, once every four days, once every five days, once every seven days, once every ten days, once every two weeks, once every three weeks, once every four weeks, and the N-oxide prodrug and radiation are administered continuously for at least 3 rounds, at least 4 rounds, at least 5 rounds, at least 6 rounds, at least 7 rounds, at least 8 rounds, at least 9 rounds, at least 10 rounds.
  • the N-oxide prodrug is administrated orally or parenterally.
  • the radiation is X-ray or gamma ray
  • the intensity of the X-ray or gamma ray is 60 Gy or lower, 50 Gy or lower, 40 Gy or lower, 30 Gy or lower, 20 Gy or lower, 10 Gy or lower, 8 Gy or lower, 6 Gy or lower, 4 Gy or lower.
  • Example 1 Study of radiation induced reduction of NO-1 in aqueous solution and in biological environment
  • N-oxide an oxidation state of tertiary amine
  • e - aq an oxidation state of tertiary amine
  • e - aq is one of the major products (G-value ⁇ 280 nM/Gy, the number of molecules formed by absorbing 100 eV energy in the system) of water radiolysis, and also one of the strongest reductants. It is speculated that radiation may decompose water to locally generate e - aq that would efficiently reduce N-oxides ( Figure 2a) .
  • a coumarin-based N-oxide NO-1 (an oxidation product of A-1) was synthesized as a model compound. Firstly, a deoxygenated solution of NO-1 (10 ⁇ M in PBS) was irradiated by X-ray (radiotherapy-dose, 10-60 Gy) from a small animal irradiator.
  • NO-1 100 ⁇ M in PBS
  • the amount of generated A-1 from each group was determined by UPLC.
  • the amount of generated A-1 with i-PrOH and CH 3 OONa increased, as they are known to produce extra e - aq under irradiation.
  • KNO 3 a quencher of e - aq
  • significantly reduced the amount of generated A-1 Figure 9 .
  • NO-1 10 ⁇ M
  • FBS fetal bovine serum
  • Figure 8f fluorescence emission spectrum
  • CT26 and HCT116 cell lines were pretreated with NO-1 (10 ⁇ M) , followed by low-dose radiation (0, 4, 8, 16 Gy) in hypoxia milieu.
  • Example 2 Screening N-oxides that can undergo the radiation induced reduction
  • N-oxides including aniline types (NO-2, NO-3, NO-4, NO-5, NO-6) , aromatic heterocyclic types (NO-7, NO-8) , and alkyl types (NO-9, NO-10) were synthesized and screened (10 ⁇ M in PBS) via 60 Gy radiation.
  • the G-value of generated reduction products from NO-2 to NO-10 were quantified by UPLC and shown in Figure 3b. No reduction products from NO-6, NO-9, and NO-10 were detected.
  • aromatic heterocyclic N-oxides such as NO-7 and NO-8 were efficiently reduced by radiation (Figure 3b, c) , which expanded the scope of radiation-responsive substrates.
  • the B3LYP method was used for density functional theory (DFT) calculation.
  • DFT density functional theory
  • the energy difference (E gap ) between HOMO and LUMO can also reflect the conjugation degree of molecules
  • the energy levels of HOMO and LUMO as well as the E gap of representative N-oxides including NO-1 (aniline N-oxide) , NO-7 (aromatic heterocyclic N-oxide) and NO-9 (alkylated N-oxide) are calculated and shown in Figure 4d.
  • these N-oxide drugs were termed as NO-Imiquimod (NO-IMQ) , NO-Ampiroxicam (NO-APX) , NO-Pranoprofen (NO-PNP) , NO-Loratadine (NO-LRT) , and NO-Camptothecin (NO-CPT) .
  • NO-IMQ NO-Imiquimod
  • NO-APX NO-Ampiroxicam
  • NO-PNP NO-Pranoprofen
  • NO-LRT NO-Loratadine
  • NO-CPT NO-Camptothecin
  • the cytotoxicity of NO-CPT and CPT was tested by incubating with HCT116 and CT26 cells, respectively, for 48 h ( Figure 13) .
  • the half-maximal inhibitory concentration (IC 50 ) of NO-CPT against CT26 cells is7.71 ⁇ 0.56 ⁇ M, which is 22-fold over the parent drug.
  • IC 50 of NO-CPT against HCT116 cells is 2.18 ⁇ 0.13 ⁇ M, which is 42-fold over the parent drug.
  • HCT116 and CT26 cells were treated with NO-CPT, 16 Gy X-ray, CPT, X-ray treated NO-CPT (activated NO-CPT) , and NO-CPT + 16 Gy X-ray (NO-CPT and CPT are both 0.5 ⁇ M for each group) .
  • NO-CPT and CPT are both 0.5 ⁇ M for each group.
  • cell viability of group treated with activated NO-CPT and NO-CPT + 16 Gy X-ray were close to that of CPT treated group ( Figure 5d, e) .
  • NO-CPT only group showed almost no treatment efficacy in hypoxia conditions. The results suggest that NO-CPT has good stability in living cells and efficient reactivity toward radiation.
  • m-Chloroperbenzoic acid m-CPBA
  • 7- (diethylamino) -4-methylcoumarin A-1)
  • 7- (diethylamino) coumarin A-2)
  • 7-Dimethylamino-4-methylcoumarin A-3
  • Dansylamide A-5)
  • dimethyl (2-phenoxy ethyl) amine were purchased from Macklin and used as received.
  • Quinoline N-oxide (A-7) , 8-hydroxyquinoline N-oxide (A-8) , 4-methyl-morpholin N-oxide (NO-9) , dimethyl (2-phenoxyethyl) amine (A-10) was purchased from Energy Chemical and used as received.
  • Imiquimod (IMQ) , Ampiroxicam (APX) , Pranoprofen (PNP) , Loratadine (LRT) , Camptothecin (CPT) were purchased from J&K and used as received.
  • KNO 3 (AR) , CH 3 OONa (AR) , methanol (MeOH) (AR) , isopropyl alcohol (i-PrOH) (AR) , and dichloromethane (DCM) (AR) , H 2 O 2 , acetic acid (AR) were purchased from Beijing Chemical Works, and used as received.
  • Glutathione (GSH) , tryptophan (Try) , phenylalanine (Phe) , cysteine (Cys) , Vitamin C (Vc) were purchased from Sigma-Aldrich and used as received.
  • UPLC Solvents were of HPLC quality and were purchased from Sigma-Aldrich.
  • PBS Phosphate-buffered saline
  • FBS Fetal bovine serum
  • penicillin penicillin
  • streptomycin and RPMI-1640 medium
  • Cell Counting Kit-8 (CCK-8) was purchased from Beyotime Biotechnology Institute.
  • Ultrapure water was deionized with a Milli-Q SP reagent water system (Millipore) to a specific resistivity of 18.4 M ⁇ cm.
  • 4-Dimethylamino-N-butyl-1, 8-naphthalic imide (A-4) , 1 N, N-dimethylaniline N-oxide (NO-6) 2 were synthesized according to previously reported literature procedures. All of the chemicals were used as received without further purification.
  • Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AVANCE 400 MHz spectrometer.
  • Ultra-performance liquid chromatography (UPLC) was performed on ACQUITY UPLC H-Class PLUS instrument equipped with Waters PDA e ⁇ Detector and a Waters Acquity QDA mass spectrometer.
  • High-resolution mass spectroscopy was performed on a Bruker Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.
  • Fluorescence spectra were measured on an F-7000 spectrophotometer (Hitachi, Japan) .
  • Confocal fluorescence images were recorded on an A1R-si Laser Scanning Confocal Microscope (Nikon, Japan) .
  • NO-2, NO-3, NO-4, NO-5, NO-10, NO-IMQ, NO-APX, NO-PNP, NO-LRT were synthesized according to similar procedures.
  • NO-CPT was synthesized according to previously reported literature procedures. 3 To CPT (1 mmol, 1 eq. ) suspended in acetic acid (20 mL) was added 30%hydrogen peroxide (5 mL) . The reaction mixture was stirred overnight at 80 °C, then poured into ice water (100 mL) . The precipitated needle crystals are collected by filtration and dried under reduced pressure (yield: 83%) .
  • CT26 and HCT116 cells were cultured in RPMI-1640 medium. The media were supplemented with 10% (v/v) fetal bovine serum (FBS) , penicillin (100 units/mL) and streptomycin (100 ⁇ g/mL) . All these cells were cultured in a 5%CO 2 incubator at 37°C and the medium was replaced every 2-3 days. After growing to 80%confluence, the cells were treated with trypsin and then seeded on dishes or 96-well plates overnight for further experiments.
  • FBS fetal bovine serum
  • penicillin 100 units/mL
  • streptomycin 100 ⁇ g/mL
  • Cell viability assays were assessed with the CCK-8 assay following the protocol and treatment groups were normalized to controls.
  • HCT116 and CT26 were seeded in a 96-well plate at a concentration of 1 ⁇ 10 4 /mL in 100 ⁇ L of RPMI-1640 medium with 10%FBS and 1%penicillin/streptomycin and maintained at 37 °C for 24 h. Then the cells were incubated with different concentrations of NO-1 for 12 h. Then the medium of each well was replaced by a blank medium containing a final concentration of 0.5 mg/mL CCK-8. The cells were incubated at 37 °C for 2 h and the absorbance was measured at 450 nm. The absorbance of treated cells was compared with the absorbance of the control group, of which the viability was set as 100%.
  • HCT116 and CT26 were seeded in a 96-well plate at a concentration of 1 ⁇ 10 4 /mL in 100 ⁇ L of RPMI-1640 medium with 10%FBS and 1%penicillin/streptomycin and maintained at 37 °C for 24 h. Then the cells were incubated with different concentrations of CPT and NO-CPT, respectively, for 48 h. Then the medium of each well was replaced by a blank medium containing a final concentration of 0.5 mg/mL CCK-8. The cells were incubated at 37 °C for 2 h and the absorbance was measured at 450 nm. The absorbance of treated cells was compared with the absorbance of the control group, of which the viability was set as 100%.
  • mice Animal Model. 6 ⁇ 8-week-old female BALB/c nude mice were ordered from Vital River Laboratories (Beijing, China) and kept under Specific Pathogen Free (SPF) condition with free access to standard food and water. Approximately 2 ⁇ 10 6 HCT116 cells suspended in 100 ⁇ L of PBS were implanted subcutaneously into the right thigh of BALB/c nude mice.
  • SPF Pathogen Free

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided herein pertains to the biomedical field, and particularly relates to a method for activating N-oxide prodrugs with radiation, and a method of treating or suppressing a cancer, reducing its severity, lowering its risk or inhibiting its metastasis in an individual. The method comprises administering to the individual a therapeutically effective amount of an N-oxide prodrug, and radiating the individual with a therapeutically effective amount of radiotherapy.

Description

Prodrug activation of N-oxides by radiotherapy Technical Field
The present invention pertains to the biomedical field, and particularly relates to a method for activating N-oxide prodrugs with radiation, and a method of treating or suppressing a cancer, reducing its severity, lowering its risk or inhibiting its metastasis in an individual. The method comprises administering to the individual a therapeutically effective amount of an N-oxide prodrug, and radiating the individual with a therapeutically effective amount of radiotherapy.
Background of the Invention
Since first introduced in 1958, prodrug strategies have been widely used to address drug delivery problems in tumor therapy. Ideally, prodrugs can deliver over 50-fold the normal dose to the desired location and cure tumors normally resistant to chemotherapy. Effectively activating the parent drugs is perhaps the most critical step of prodrug strategy. However, controlled activation of prodrug is still a long-standing challenge in clinics due to the lack of tumor-selective activating strategies. Therefore, spatiotemporally precise prodrug activation in a tumor-selective manner is a pressing need and full of challenges, prompting us to look for suitable chemical tools.
Inspired by the application of light in phototherapy, clinically relevant ionizing radiation (X-ray, γ-ray, etc. ) also has the potential to be a precise perturbing tool in living bodies as it features precision and deep tissue penetration (up to 15 cm) . Besides, though over 50%of cancer patients take radiotherapy, radiotherapy may fail because the total dose limitation (generally less than 60 Gy) and hypoxia resistance since oxygen is involved in the fixation of radiation-induced DNA damage. Consequently, radiotherapy combined with chemotherapy has better chances to treat cancers. Establishing site-directed radiotherapy-activated chemotherapy strategies are expected to  reduce the combined toxicities of the dual treatments and achieve better therapeutic efficacy.
Radiochemical alterations towards molecules include direct and indirect effects. Among them, the indirect radiochemical effect that radiation deposits on environment components is dominant in living systems. It is mainly through water radiolysis as water accounts for 70-80%of tissue weight. As shown in Figure 1, various reactive particles instantly formed through the water radiolysis, followed by a cascade of reactions that complete within 10-4 seconds. Cleavage chemistry on prodrug molecules induced by hydroxyl radical (·OH, as one of the major products from water radiolysis) and hydrogen radical (·H) has been reported previously. Nevertheless, due to the instant ·OH quenching in the reductive environments (e.g., hypoxia tumors) , the application in living systems is hampered. Interestingly, another major product, hydrated electron (e- aq) , which is reported as a “super reductant” for challenging reactions, increases in the reductive environment. Hence in the present invention, we seek to investigate whether an e- aq-mediated reaction induced by radiotherapy will function as a chemical tool applied for prodrug activation in a tumor-selective manner.
Summary of the Invention
Precise activating chemotherapeutic prodrugs in a tumor-selective manner is an ideal way to cure cancers without causing systemic toxicities. Though many efforts have been made, developing spatiotemporally controllable activation methods is still an unmet challenge. Here the present invention reports a novel prodrug activation strategy using radiotherapy (X-ray) . Due to its precision and deep tissue penetration, X-ray matches the need for altering molecules in tumors through water radiolysis. It is first demonstrated that N-oxides can be effectively reduced by hydrated electron (e- aq) generated from radiation both in tubes and living cells. A screening is performed to investigate the structure-reduction relationship and mechanism  of the e- aq-mediated reductions. The present invention then applies the strategy to activate N-oxide prodrugs. The anticancer drug camptothecin (CPT) based N-oxide prodrug shows a remarkable anticancer effect upon activation by radiotherapy. This radiation-induced in vivo chemistry may enable versatile designs of radiotherapy-activated prodrugs, which are of remarkable clinical relevance, as over 50%of cancer patients take radiotherapy. This radiation-induced in vivo chemistry can also greatly increase the selectivity of chemotherapy or fluorescent compounds, increase the efficacy of the radiotherapy, and reduce the toxicity of administering chemotherapeutic drugs or fluorescent compounds through controlled release of the corresponding chemotherapeutic prodrugs or fluorescent prodrugs.
In one aspect, the invention provides a method for activating N-oxide compound with radiation, characterized in that the N-oxide compound comprises at least one aryl or heteroaryl group, and the N-oxide compound can be reduced to a corresponding tertiary amine after irradiated with the radiation.
In another aspect, the invention provides a method of treating or diagnosing a disease, the method comprises administering to an individual a therapeutically effective amount of an N-oxide prodrug, and radiating the individual with a therapeutically effective amount of radiation.
In another aspect, the invention provides use of an N-oxide prodrug for preparing a medicament for treating or diagnosing a disease in an individual, wherein the individual is also radiated with radiation.
Brief Description of the Drawings
Figure 1 shows radiation-induced prodrug activation in tumors. The water radiolysis by ionizing radiation generates various reactive particles (G-value means the number of molecules formed by absorbing 100 eV energy  in the system) . Among them, hydroxyl radical (·OH) was previously reported for controlled drug release. In this work, N-oxides are found to be reduced by hydrated electrons (e- aq) generated from water radiolysis. Benefiting from this reaction, nitrogen-containing drugs (mainly tertiary amine and N-heterocyclic ones) can be “caged” in a high atom economic way (by single oxygen atom) and spatiotemporally activated at tumor sites by radiotherapy.
Figure 2 shows Radiation-induced reduction of N-oxides. (a) Schematic illustration: fluorogenic reaction of a model N-oxide compound (NO-1) with e- aq from water radiolysis. Radiation dosage–dependent generation of A-1 from NO-1 (10 μM in PBS) determined by (b) UPLC-UV (detected λabs= 380 nm) and (c) fluorescence spectrum (λex= 380 nm and λem= 460 nm) . Inset: photography of radiation dosage-dependent fluorescence (d) Fluorescence emission assay (λex= 380 nm and λem= 460 nm) of possible reduction of NO-1 (10 μM) by biologically reductants (1 mM) for 24 h in PBS compared with 60 Gy radiation-induced instant reduction, n = 3. (e) Representative confocal fluorescence images of living CT26 and HCT116 cell lines. The cells were pretreated with NO-1 (10 μM in RPMI-1640 medium) followed by different amounts of radiation. Scale bar: 20 μm.
Figure 3 shows structure screening of N-oxides for radiation-induced reduction. (a) Chemical structures of N-oxides (NO-2 to NO-10) that have been assayed by radiation-induced reduction (10 μM in PBS, 60 Gy) . Reduction products are detected by UPLC-MS. (b) G-values of generated reduction products from NO-2 to NO-10. (c) Radiation dosage–dependent generation of reduction products (A-8) from aromatic heterocyclic NO-8 (10 μM in PBS) determined by UPLC-MS (m/z = 146) .
Figure 4 shows mechanism study of the e- aq-mediated reduction of N-oxides. (a) Proposed mechanism of the e- aq-mediated reduction. (b) Molecular orbitals of NO-1 which indicates e- aq is captured by π system instead of the antibonding orbital of the N+-O- bond. (c) |ΔG| between the anion radical  intermediate and ground state of N-oxides compared with |ΔG| of e- aq. (d) For representative N-oxides: NO-1 (aniline N-oxide) , NO-7 (heterocyclic N-oxide) and NO-9 (alkyl N-oxide) , the energy levels of HOMO and LUMO as well as the energy gap (Egap) are indicated.
Figure 5 shows radiation-induced activation of N-oxide prodrug. (a) Chemical structures of synthesized N-oxide drugs (10 μM in PBS) that have been assayed by 60 Gy radiation-induced reduction. (b) G-value of generated reduction products shown in (a) , n = 3. The dash lines are G-value of DHBC (3, 5-dihydroxylbenzyl carbamate, which is the most efficient group that could be removed by hydroxyl radicals from water radiolysis) . (c) Schematic of single oxygen atom “caging” and radiotherapy “decaging” prodrug strategy. NO-CPT was used as a model prodrug. Cell viability assay of radiation-activated NO-CPT in (d) HCT116 and (e) CT26 cells. (16 Gy X-ray, [NO-CPT] = 0.5 μM, n = 6, two-tailed unpaired Student’s t-test, ***P < 0.001) .
Figure 6 shows radiotherapy activates a prodrug that rejects tumor growth. (a) Treatment scheme. Nu/Nu mice were implanted subcutaneously with HCT116 cells, followed by intravenous (iv) injection of NO-CPT (10 mg/kg) and radiotherapy (4 Gy each treatment) . (b) Time-dependent accumulation of NO-CPT in tumor tissue detected by UPLC-UV, n = 3. (c) Tumor growth curves of tumor-bearing mice after the indicated treatments. (d) Average tumor weight at day 27after the first treatment. (e) Weight change curves of mice subjected to different treatment. n = 6, two-tailed unpaired Student’s t-test, ***P < 0.001.
Figure 7 shows chemical structures of both synthetic raw materials and proposed reduction products of N-oxides (NO-1 to -NO-10, NO-IMQ, NO-APX, NO-PNP, NO-LRT, NO-CPT, respectively) .
Figure 8 shows, (a) UPLC-MS spectra (selected-ion monitoring signal of [A-1+H] +, m/z = 232) of generated A-1 from NO-1 (10 μM in PBS) after 60 Gy  radiation. (b) Positive ion mode mass spectrum is shown for reduction product A-1 (retention time = 4.08 min in (a) ) . (c) UPLC-UV spectra (λabs= 320 nm) and (d) UV-Vis absorbance spectra of NO-1 (10 μM in PBS) after radiation. (e) Radiation dosage–dependent generation of A-1 (10 μM NO-1 in PBS under X-ray radiation) determined by fluorescence emission spectrum (λex= 380 nm) . (f) Fluorescence emission spectrum of NO-1 (10 μM in PBS with 10%FBS) before and after 60 Gy radiation (λex= 380 nm) .
Figure 9 shows normalized amount of generated A-1 from NO-1 (100 μM in PBS, treated with e- aq quencher and hydroxyl radical quenchers, respectively) after 60 Gy radiation determined by UPLC-UV (λabs= 380 nm) .
Figure 10 shows cell viability assay of NO-1 incubated with (a) HCT116 and (b) CT26 cells for 12 h, n = 5.
Figure 11 shows radiation dosage–dependent reduction of NO-CPT (10 μM in PBS) determined by (a) UPLC-MS, m/z = 349, (b) positive ion mode mass spectrum is shown for CPT (retention time = 2.66 min) and (c) fluorescence emission spectrum (λex= 380 nm) .
Figure 12 shows radiation-induced reduction of 10 μM NO-CPT in (a) PBS containing 10%FBS, (b) HCT116 cell lysate, determined by UPLC-MS (selected-ion monitoring signal of [CPT+H] +, m/z = 349) and (c) PBS containing 10%FBS, (d) HCT116 cell lysate, determined by UPLC-UV (λabs= 380 nm) .
Figure 13 shows cell viability assays of (a) HCT116 and (b) CT26 cells incubated with CPT and NO-CPT, respectively, for48 h. n = 5.
Figure 14 shows photographs of representative tumors at day 27 after different treatments.
Figure 15 shows hematoxylin & eosin (H&E) stained tissue sections from the major organs (heart, liver, spleen, lung, kidney) . No noticeable abnormality can be observed in these major organs of mice after treatment.
Detailed Description of the Invention
Definitions
Unless otherwise defined below, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. References to techniques used herein are intended to refer to techniques that are generally understood in the art, including those obvious changes or equivalent replacements of the techniques for those skilled in the art. While it is believed that the following terms are well understood by those skilled in the art, the following definitions are set forth to better explain the invention.
As used herein, the terms "including" , "comprising" , "having" , "containing" or "comprising" , and other variants thereof, are inclusive or open, and do not exclude other unlisted elements or method steps.
As used herein, “chemotherapeutic agent” or “chemotherapeutic drug” refers to chemotherapeutic drugs that can kill tumor cells, and these drugs can act on different stages of tumor cell growth and reproduction, thereby inhibit or kill tumor cells.
The term "alkyl" as used herein, alone or as part of another group, refers to an unsubstituted straight or branched aliphatic hydrocarbon containing from 1 to 12 carbon atoms (ie, C1-12 alkyl) or an indicated number of carbon atoms, for example, C1 alkyl such as methyl, C2 alkyl such as ethyl, C3 alkyl such as n-propyl or isopropyl, C1-3 alkyl such as methyl, ethyl, n-propyl or isopropyl, or the like. In one embodiment, the alkyl is C1-4 alkyl. Non-limiting examples of C1-12 alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, isobutyl, 3-pentyl, hexyl, heptyl, octyl, nonyl and decyl. Examples of C1-4 alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, and isobutyl.
The term "cycloalkyl" as used herein, alone or as part of another group, refers to a saturated or partially unsaturated (containing one or two double bonds) cyclic aliphatic hydrocarbon, which comprises 1 or 2 rings having 3 to 12 carbon atoms or an indicated number of carbon atoms (i.e., C3-12 cycloalkyl) . In one embodiment, the cycloalkyl has two rings. In one embodiment, the cycloalkyl has one ring. In another embodiment, the cycloalkyl group is selected from the group consisting of C3-8 cycloalkyl groups. In another embodiment, the cycloalkyl group is selected from the group consisting of C3-6 cycloalkyl groups. Non-limiting examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norbornyl, decahydronaphthyl, adamantyl, cyclohexenyl, and cyclopentenyl.
The term "alkoxyl" or “alkoxy” as used herein, alone or as part of another group, refers to an oxygen linked to an alkyl group as defined above.
The term “heteroalkyl” as used herein, alone or as part of another group, refers to an alkyl group wherein one carbon atom is replaced with a heteroatom (such as N, O or S) or a carbonyl group (C=O) .
The term "alkenyl" is intended to include hydrocarbon chains of either straight or branched configuration having the specified number of carbon atoms and one or more, preferably one to two, carbon-carbon double bonds that may occur in any stable point along the chain. For example, "C2-C6 alkenyl" is intended to include C2, C3, C4, C5, and C6 alkenyl groups. Examples of alkenyl include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 2-pentenyl, 3, pentenyl, 4-pentenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-methyl-2-propenyl, and 4-methyl-3-pentenyl.
The term "aryl" and "heteroaryl" and “aromatic heterocyclic” , as used herein, refer to stable mono-or polycyclic, heterocyclic, polycyclic, and polyheterocyclic unsaturated moieties having preferably 3-14 carbon atoms, each of which may be substituted or unsubstituted. In certain embodiments of  the present invention, "aryl" refers to a mono-or bicyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, and the like. In certain embodiments of the present invention, the term "heteroaryl" , as used herein, refers to a monocyclic, bicyclic or tricyclic aromatic radical having from five to fifteen, preferably five to ten ring atoms of which one ring atom is selected from S, O, and N; zero, one, or two ring atoms are additional heteroatoms independently selected from S, O, and N; and the remaining ring atoms are carbon, the radical being joined to the rest of the molecule via any of the ring atoms, such as, for example, pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, and the like.
The term "heterocyclyl" , "heterocyclic" or "heterocycle" , as used herein, refers to a non-aromatic 5-, 6-, or 7-membered ring or a polycyclic group, including, but not limited to a bi-or tri-cyclic group comprising fused six-membered rings or seven-membered rings, wherein at least one carbon atom of one of the rings is replaced by a heteroatom. Each heteroatom is independently selected from the group consisting of atoms of oxygen, sulfur (including sulfoxide and sulfone) and/or nitrogen (which may be oxidized or quaternized) . The term "heterocyclyl" , "heterocyclic" or "heterocycle" is intended to include a group wherein -CH2-in the ring is replaced by -C (=O) -, for example, cyclic ureido (such as 2-imidazolidinone) and cyclic amido (such as β-lactam, γ-lactam, δ-lactam, ε-lactam) and piperazin-2-one; wherein (i) each 5-membered ring has 0 to 1 double bond and each 6-membered ring has 0 to 2 double bonds, (ii) the nitrogen and sulfur heteroatoms may be optionally be oxidized, (iii) the nitrogen heteroatom may optionally be quaternized, and (iv) any of the above heterocyclic rings may be fused to an aryl or heteroaryl ring, such as a benzene ring. Representative heterocycles include, but are not limited to, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl,  imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, and tetrahydrofuryl.
In certain embodiments, a "substituted aryl, heteroaryl, heterocyclyl or heterocycle" group is utilized and as used herein, refers to an aryl, heteroaryl, heterocyclyl or heterocycle group, as defined above, substituted by the independent replacement of one, two or three of the hydrogen atoms thereon with but are not limited to alkyl; heteroalkyl; aryl; heteroaryl; arylalkyl; heteroarylalkyl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; -F;-Cl;-Br;-I; -OH;-NO2;-CN;-CF3; -CH2CF3;-CHC12;-CH2OH;-CH2CH2OH;-CH2NH2;-CH2SO2CH3;-C (O) Rx; -CO2 (Rx) ;-CON(Rx2; -OC (O) Rx; -OCO2Rx; -OCON (Rx2; -N (RX2; -S (O) 2Rx; -NRx (CO)Rx, wherein each occurrence of Rx independently includes, but is not limited to, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl, wherein any of the alkyl, heteroalkyl, arylalkyl, or heteroarylalkyl substituents described above and herein may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted. Additional examples of generally applicable substitutents are illustrated by the specific embodiments shown in the Examples which are described herein.
The term “coumarine” means the molecule having the following structure, and the term “coumarine or its derivatives” means the molecules having the following skeleton structure, wherein one or more hydrogen atoms, preferably one hydrogen atom in the skeleton structure can be replaced with a substituting group, such as alkyl, e.g. C1 to C4 alkyl, or halogen. Preferably, the 4-position hydrogen atom in the skeleton structure is replaced with an alkyl group, e.g. C1 to C4 alkyl. When mentioning “a coumarine group or its derivatives” , it means the group generated when a hydrogen radical is removed from a coumarine molecule or its derivatives, for example, a hydrogen radical on the aromatic ring, such as the hydrogen radical at the 7-position.
The term “1, 8-naphthalic imide” means the molecule having the following structure, and the term “1, 8-naphthalic imide” means the molecules having the following skeleton structure, wherein one or more hydrogen atoms (such as the hydrogen atom on the aromatic ring, or the hydrogen atom connected to the nitrogen atom) , preferably one hydrogen atom in the skeleton structure can be replaced with a substituting group, such as alkyl, e.g. C1to C4 alkyl, or halogen. Preferably, the hydrogen atom connected to the nitrogen atom is replaced with an alkyl group, e.g. C1to C4 alkyl. When mentioning “a 1, 8-naphthalic imide group or its derivatives” , it means the group generated when a hydrogen radical is removed from a 1, 8-naphthalic imide molecule or its derivatives, such as the hydrogen radical at the 4-position.
The term “halogen” , as used herein, comprises F, Cl, Br, I, etc.
The term "pharmaceutically acceptable salt", as used herein, includes both acid addition salts and base addition salts of a compound.
Suitable acid addition salts are formed from acids which form non-toxic salts. Examples include acetate, adipate, aspartate, benzoate, besylate, bicarbonate/carbonate, bisulfate/sulfate, borate, camphorsulfonate, citrate, cyclohexylaminosulfonate, ethanedisulfonate, ethanesulfonate, formate, fumarate, glucoheptonate, gluconate, glucuronate, hexafluorophosphate, hibenzate, hydrochloride/chloride, hydrobromide/bromide, hydroiodide/iodide, isethionate, lactate, malate, maleate, malonate, methanesulfonate, methylsulfate, naphthylate, 2-naphthalenesulfonate, nicotinate, nitrate, orotate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen phosphate, pyroglutamate, aldarate, stearate, succinate, tannate, tartrate,  tosylate, trifluoroacetate and xinofoate.
Suitable base addition salts are formed from bases which form non-toxic salts. Examples include aluminum salts, arginine salts, benzathine benzylpenicillin salts, calcium salts, choline salts, diethylamine salts, diethanolamine salts, glycine salts, lysine salts, magnesium salts, meglumine salts, ethanolamine salts, potassium salts, sodium salts, tromethamine salts and zinc salts.
For a review of suitable salts, see "Handbook of Pharmaceutical Salts: Properties, Selection, and Use" by Stahl and Wermuth (Wiley-VCH, 2002) . Methods for preparing the pharmaceutically acceptable salts of the compounds of the invention are known to those skilled in the art.
The term "solvate" as used herein is a substance formed by combination, physical binding and/or solvation of a compound of the invention with a solvent molecule, such as a disolvate, a monosolvate or a hemisolvate, wherein the ratio of the solvent molecule to the compound of the invention is about 2: 1, about 1: 1 or about 1: 2, respectively. This kind of physical bonding involves ionization and covalent bonding (including hydrogen bonding) in different degrees. In some cases (e.g., when one or more solvent molecules are incorporated into crystal lattice of crystalline solid) , the solvate can be isolated. Thus, the solvate comprises both solution phase and isolatable solvates. The compounds of the invention may be in solvated forms with pharmaceutically acceptable solvents (such as water, methanol and ethanol) , and the present application is intended to encompass both solvated and unsolvated forms of the compounds of the invention.
One type of solvate is a hydrate. "Hydrate" relates to a specific subset of solvates wherein the solvent molecule is water. Solvates generally function in the form of pharmacological equivalents. The preparation of solvates is known in the art, see for example, M. Caira et al, J. Pharmaceut. Sci., 93 (3) : 601-611  (2004) , which describes the preparation of a solvate of fluconazole with ethyl acetate and water. Similar methods for the preparation of solvates, hemisolvates, hydrates and the like are described by van Tonder et al, AAPS Pharm. Sci. Tech., 5 (1) : Article 12 (2004) and A.L. Bingham et al, Chem. Commun. 603-604 (2001) . A representative and non-limiting method for the preparation of solvate involves dissolving a compound of the invention in a desired solvent (organic solvent, water or a mixture thereof) at a temperature above 20 ℃ to about 25 ℃, and then the solution is cooled at a rate sufficient to form a crystal, and the crystal is separated by a known method such as filtration. Analytical techniques such as infrared spectroscopy can be used to confirm the presence of the solvent in the crystal of the solvate.
"Pharmaceutically acceptable carrier" in the context of the present invention refers to a diluent, adjuvant, excipient or vehicle together with which the therapeutic agent is administered, and which is suitable for contacting a tissue of human and/or other animals within the scope of reasonable medical judgment, and without excessive toxicity, irritation, allergic reactions, or other problems or complications corresponding to a reasonable benefit/risk ratio.
The pharmaceutically acceptable carriers that can be used in the pharmaceutical compositions of the invention include, but are not limited to, sterile liquids such as water and oils, including those oils derived from petroleum, animals, vegetables or synthetic origins, for example, peanut oil, soybean oil, mineral oil, sesame oil, etc. Water is an exemplary carrier when the pharmaceutical composition is administered intravenously. It is also possible to use physiological saline and an aqueous solution of glucose and glycerin as a liquid carrier, particularly for injection. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, maltose, chalk, silica gel, sodium stearate, glyceryl monostearate, talc, sodium chloride, skimmed milk powder, glycerin, propylene glycol, water, ethanol and the like. The pharmaceutical composition may further contain a small amount of a  wetting agent, an emulsifier or a pH buffering agent as needed. Oral formulations may contain standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like. Examples of suitable pharmaceutically acceptable carriers are as described in Remington’s Pharmaceutical Sciences (1990) .
The pharmaceutical compositions of the invention may act systemically and/or locally. For this purpose, they may be administered via a suitable route, for example by injection (e.g., intravenous, intraarterial, subcutaneous, intraperitoneal, intramuscular administration, including instillation) or transdermal administration; or by oral, buccal, nasal, transmucosal, topical administration, in form of ophthalmic preparation or by inhalation.
For these routes of administration, the pharmaceutical compositions of the invention may be administered in a suitable dosage form.
The dosage forms include, but are not limited to, tablets, capsules, troches, hard candy, pulvis, sprays, creams, ointments, suppositories, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups.
The term "effective amount" as used herein refers to an amount of active ingredient that, after administration, will relieve to some extent one or more symptoms of the condition being treated.
As used herein, "individual" includes a human or a non-human animal. Exemplary human individual includes a human individual (referred to as a patient) suffering from a disease (such as the disease described herein) or a normal individual. "Non-human animal" in the present invention includes all vertebrates, such as non-mammals (e.g., birds, amphibians, reptiles) and mammals, such as non-human primates, domestic animals, and/or domesticated animals (e.g., sheep, dogs, cats, cows, pigs, etc. ) .
Therapeutic methods and uses
In one embodiment, the invention provides a method for activating N-oxide compound with radiation, characterized in that the N-oxide compound comprises at least one aryl or heteroaryl group, and the N-oxide compound can be reduced to a corresponding tertiary amine after irradiated with the radiation.
In a preferred embodiment, the nitrogen atom in the N-oxide group is directly bonded to the at least one aryl or heteroaryl group, or the nitrogen atom in the N-oxide group is an aromatic atom constituting the at least one aryl or heteroaryl group.
In a preferred embodiment, the N-oxide compound has the general formula I,
ArR2N+-O-Formula I,
wherein R is independently selected from the group consisting of alkyl, such as C1-4 alkyl, and cycloalkyl, such as C3-6 cycloalkyl,
Ar is C6-C20 aryl group, preferably C6-C14 aryl group, most preferably C6-C10 aryl group, wherein the aryl group is optionally substituted with alkyl, hydroxyl, amino, aminosulfonyl (NH2-SO2-) , -C (O) HR’, -OC (O) HR’, -C (O) -NR1, wherein optionally two substituting groups on the aryl group can form heterocycle, preferably 6-membered unsaturated heterocycle, preferably 6-membered heterocycle comprising O, NR1, CR1, C=O as the ring member,
R1 and R’ are independently selected from the group consisting of hydrogen and alkyl, such as C1-4 alkyl.
In a preferred embodiment of Formula I, R is independently selected from the group consisting of C1-C4 alkyl, and is preferably selected from the group consisting of methyl and ethyl, and/or
Ar is phenyl or naphthyl, wherein the phenyl or naphthyl is unsubstituted or substituted with alkyl, alkenyl, hydroxyl, amino, aminosulfonyl (NH2-SO2-) , -C (O) HR’, -OC (O) HR’, -C (O) -NR1, wherein optionally two substituting groups on the phenyl or naphthyl group can form heterocycle, preferably 6-membered unsaturated heterocycle, preferably6-membered heterocycle comprising O, NR1, CR1, C=O as the ring member,
R1 and R’ are independently selected from the group consisting of hydrogen and alkyl, such as C1-4 alkyl,
preferably, Ar is naphythyl optionally substituted with alkyl, or aminosulfonyl (NH2-SO2-) , or Ar with two substituting groups thereon form heterocycle is a coumarine group or its derivatives, or a 1, 8-naphthalic imide group or its derivatives.
In another preferred embodiment, the N-oxide compound has the general formula II,
wherein R2, R3, R4, R5 and R6 are independently selected from the group consisting of hydrogen, alkyl, amino, hydroxyl, amido, which can be in turn substituted with heterocycle, the heterocycle is optionally substituted with alkylcarbonatealkoxyl group; and optionally the substituting groups on the above illustrated ring can form one or two aryl or heteroaryl groups or heterocycles condensed on the above illustrated ring, said one or two aryl or heteroaryl groups or heterocycle can in turn be substituted by amino, halogen, alkyl, hydroxyl, carboxyl alkyl or heterocycle, which heterocycle is optionally substituted with alkoxylcarbonyl group;
with the proviso that R2, R3, R4, R5 and R6 are not simultaneously  hydrogen.
In a preferred embodiment of Formula II, R2, R3, R4, R5 and R6 are independently selected from the group consisting of hydrogen, C1-C4 alkyl, amino, hydroxyl, amido, which can be in turn substituted with5-, 6-, or 7-membered heterocycle, the heterocycle is optionally substituted with (C1-C4) alkylcarbonate (C1-C4) alkoxyl group; and optionally the substituting groups on the above illustrated ring can form one or two phenylene or5-, 6-, or 7-membered heteroaryl groups or heterocycles condensed on the above illustrated ring, said one or two aryl or heteroaryl groups or heterocycle can in turn be substituted by amino, halogen, C1-C4 alkyl, hydroxyl, carboxyl (C1-C4) alkyl or 5-, 6-, or 7-membered heterocycle, which heterocycle is optionally substituted with (C1-C4) alkoxylcarbonyl group;
with the proviso that R2, R3, R4, R5 and R6 are not simultaneously hydrogen.
In a preferred embodiment of Formula II, the N-oxide compound has the general formula IIa, IIb, IIc, IId, IIe or IIf:
wherein, R7, R8, R9, R10, R11, R12, R13, and R14 are independently selected from the group consisting of hydrogen, hydroxyl, amino, halogen, C1-C5 alkyl, (C1-C4) alkyl-O (CO) - (C1-C4) alkyl, and (C1-C4) alkyl-O (CO) H, and
optionally one or more hydrogen atoms on the ring in the general  formula IIa, IIb, IIc, IId, IIe or IIf can be replaced with hydroxyl, amino, halogen, or C1-C5 alkyl, preferably halogen or C1-C4 alkyl;
preferably, R7, R9, and R13 are independently selected from the group consisting of hydrogen, hydroxyl, amino, and halogen,
R8, R10, R11, R12, and R14 are independently selected from the group consisting of C1-C5 alkyl, (C1-C4) alkyl-O (CO) - (C1-C4) alkyl, (C1-C4) alkyl-O (CO) H, and
optionally one or more hydrogen atoms on the aromatic ring in the general formula IIa, IIb, IIc, IId, IIe or IIf can be replaced with halogen or C1-C4 alkyl.
In a preferred embodiment, the tertiary amine is a biologically active compound, such as a fluorescent compound, preferably a coumarin derivative, or a chemotherapeutic agent.
In a preferred embodiment, the N-oxide compound is aniline N-oxide or aromatic heterocyclic N-oxide, such as a compound in the following table or a pharmaceutically acceptable salt or solvate thereof:
In an embodiment, the invention provides a method of treating or diagnosing a disease, the method comprises administering to an individual a therapeutically effective amount of an N-oxide prodrug, and radiating the individual with a therapeutically effective amount of radiation.
In a preferred embodiment, the N-oxide prodrug is the one as defined above.
In a preferred embodiment, said method is for treating or suppressing a cancer, reducing its severity, lowering its risk or inhibiting its metastasis in an individual.
In a preferred embodiment, the cancer is selected from the group consisting of colon cancer, small cell lung cancer, Hodgkin's lymphoma, and malignant lymphoma.
In a preferred embodiment, the individual is radiated after administering the N-oxide prodrug, preferably 20 mins, 1 hour, 2 hours, 4 hours after administering the N-oxide prodrug.
In a preferred embodiment, the N-oxide prodrug is administrated in an amount of from about 0.005 mg/kg to about 100 mg/kg, such as an amount of about 0.005, 0.05, 0.5, 5, 10, 20, 30, 40, 50, 100mg/kg.
In a preferred embodiment, the N-oxide prodrug and radiation are administered once every two days, once every three days, once every four days, once every five days, once every seven days, once every ten days, once every two weeks, once every three weeks, once every four weeks, and the N-oxide prodrug and radiation are administered continuously for at least 3 rounds, at least 4 rounds, at least 5 rounds, at least 6 rounds, at least 7 rounds, at least 8 rounds, at least 9 rounds, at least 10 rounds..
In a preferred embodiment, the N-oxide prodrug is administrated orally or parenterally.
In a preferred embodiment, the radiation is X-ray or gamma ray, and the intensity of the X-ray or gamma ray is 60 Gy or lower, 50 Gy or lower, 40 Gy or lower, 30 Gy or lower, 20 Gy or lower, 10 Gy or lower, 8 Gy or lower, 6 Gy or lower, 4 Gy or lower.
Examples
In order to make the objects and technical solutions of the present invention clearer, the present invention will be further described below in conjunction with specific example. It should be understood that the examples are not intended to limit the scope of the invention. Further, specific experimental methods not mentioned in the following examples were carried out in accordance with a conventional experimental method.
Example 1: Study of radiation induced reduction of NO-1 in aqueous solution and in biological environment
To pursue the present invention, it is important to design molecules that are not only stable in the biological environment, but also selectively reactive to e- aq. It is noticed that N-oxide, an oxidation state of tertiary amine, was reported as a bio-orthogonal reagent, and is biocompatible and stable in the blood circulation. Therefore, remotely reducing N-oxides with e- aq in the living system may provide an opportunity for developing in vivo chemical tools, yet has not been established.
Of note, e- aq is one of the major products (G-value~280 nM/Gy, the number of molecules formed by absorbing 100 eV energy in the system) of water radiolysis, and also one of the strongest reductants. It is speculated that radiation may decompose water to locally generate e- aq that would efficiently reduce N-oxides (Figure 2a) . To test this idea, a coumarin-based N-oxide NO-1 (an oxidation product of A-1) was synthesized as a model compound. Firstly, a deoxygenated solution of NO-1 (10 μM in PBS) was irradiated by X-ray (radiotherapy-dose, 10-60 Gy) from a small animal irradiator. Interestingly, radiation dosage–dependent reduction instantly occurred and generation of the product A-1 was detected by UPLC (Figure 2b) . As fluorophore always loses its fluoresce emission when its amine is blocked by N-oxide group, the reduction of NO-1 can be readily indicated by the released fluorescence from  coumarin (A-1) . The fluorescence data and corresponding photography suggested that the amount of released coumarin is linearly correlated to the given radiation dose (Figure 2c) .
To confirm that radiation-induced reduction is mediated by e- aq from water radiolysis, NO-1 (100 μM in PBS) was irradiated along with 10 mM of isopropyl alcohol (i-PrOH) , sodium formate (CH3OONa) , and KNO3, respectively. The amount of generated A-1 from each group was determined by UPLC. As expected, compared with the control group, the amount of generated A-1 with i-PrOH and CH3OONa increased, as they are known to produce extra e- aq under irradiation. In contrast, the addition of KNO3, a quencher of e- aq, significantly reduced the amount of generated A-1 (Figure 9) .
It was further investigated whether such radiation-induced reduction could work in the biological environment, which is often a balance between biological stability and reactivity. To determine the stability of the N-oxide in a reducing environment, NO-1 (10 μM in PBS) was treated with biological reductants including glutathione (GSH, 1mM) , cysteine (Cys, 1 mM) and ascorbate (Vc, 1 mM) , respectively, for 24 h. The result was determined by the fluorescence emission spectrum, indicating the reductions of NO-1 by these reductants are almost negligible compared with the instant reduction after radiation (Figure 2d) .
Next, it was tested the biocompatibility of radiation-induced reduction. NO-1 (10 μM) in PBS containing 10%fetal bovine serum (FBS) was subjected to 60 Gy radiation and analyzed by fluorescence emission spectrum (Figure 8f) . The generated fluorescence shows that the reduction works even in serum environment, which is promising to be operated in the living systems. Furthermore, NO-1 was also used as a fluorogenic probe to confirm that the reduction worked in living cells. CT26 and HCT116 cell lines were pretreated with NO-1 (10 μM) , followed by low-dose radiation (0, 4, 8, 16 Gy) in hypoxia milieu. Representative confocal fluorescence images of living cells are shown in Figure 2e, indicating that after radiation the fluorescent A-1  molecules were released and the intensity is positively correlated to the radiation dose. The aforementioned data indicate that radiation-induced reduction of N-oxides does have the potential to be a chemical tool for radiotherapy-activated prodrug strategy.
Example 2: Screening N-oxides that can undergo the radiation induced reduction
A screening of N-oxides was performed to investigate the structure-reduction relationship for the purpose of developing N-oxides based prodrug systems. As shown in Figure 3a, N-oxides including aniline types (NO-2, NO-3, NO-4, NO-5, NO-6) , aromatic heterocyclic types (NO-7, NO-8) , and alkyl types (NO-9, NO-10) were synthesized and screened (10 μM in PBS) via 60 Gy radiation. The G-value of generated reduction products from NO-2 to NO-10 were quantified by UPLC and shown in Figure 3b. No reduction products from NO-6, NO-9, and NO-10 were detected. Interestingly, aromatic heterocyclic N-oxides such as NO-7 and NO-8 were efficiently reduced by radiation (Figure 3b, c) , which expanded the scope of radiation-responsive substrates.
It is worth noting that G-values of generated reduction products are almost half that of e- aq (280 nM/Gy) , suggesting the two-electron reduction mechanism. Accordingly, for e- aq-mediated N-oxides reduction we propose a hypothesis that the reaction progresses mainly in two steps (Figure 4a) . Firstly, N-oxide captures e- aq from water radiolysis to become an N-oxide anion radical intermediate. Then the intermediate abstracts a proton from the surrounding environment, deoxidizes via electron transfer to release a tertiary amine and an·OH which continues capturing another e- aq to produce a water molecule.
To further test this hypothesis, the B3LYP method was used for density functional theory (DFT) calculation. According to the LUMO orbital distribution of the model compound NO-1 (Figure 4b) , it is suggested that the e- aq should fill in the π system of N-oxide instead of directly in the antibonding  orbital of the N+-O-bond. Due to the tunnel effect of e- aq in the reaction process, the first step is diffusion controlled. Hence only thermodynamic factors need to be considered in the first step reaction: the reaction occurs when the absolute value of Gibbs free energy change (|ΔG|) between N-oxide and its anion radical intermediate in the aqueous phase, is greater than that of e- aq. The |ΔG| of different N-oxides compared with that of e- aq are shown in Figure 4c, among them, NO-1, NO-2, NO-3, NO-4, NO-5, NO-7, and NO-8with larger π system have better reactivity, which is consistent with the experimental data (Figure 3b, Table 1) . In consideration of that e- aq fills in the π system of N-oxide, the conjugation degree of π system will also affect the accessing of e- aq to LUMO. Since the energy difference (Egap) between HOMO and LUMO can also reflect the conjugation degree of molecules, the energy levels of HOMO and LUMO as well as the Egap of representative N-oxides including NO-1 (aniline N-oxide) , NO-7 (aromatic heterocyclic N-oxide) and NO-9 (alkylated N-oxide) are calculated and shown in Figure 4d.
Example 3: Study of radiation induced reduction of aromatic heterocyclic N-oxide drug molecules
Having found that aromatic heterocyclic NO-7 and NO-8 can be efficiently reduced by X-ray (Figure 3b-c) , it was noted that the percentage of aromatic N-heterocycles in FDA-approved small molecule pharmacophores continue to rise for the last five years. The nitrogen atoms of many biologically active N-heterocycles are readily interacting with DNA or proteins through hydrogen bonding, showing the structural significance of N-heterocycles for drug design and discovery. Thus, we synthesized a series of aromatic heterocyclic N-oxide drug molecules through one-spot oxidation (Figure 5a) . According to the parent drugs, these N-oxide drugs were termed as NO-Imiquimod (NO-IMQ) , NO-Ampiroxicam (NO-APX) , NO-Pranoprofen (NO-PNP) , NO-Loratadine (NO-LRT) , and NO-Camptothecin (NO-CPT) . Next, we tested their radiation-responsive reactivities. After being treated with  60 Gy radiation, the reduction of these N-oxide drugs was analyzed by UPLC. Compared with DHBCs (3, 5-dihydroxylbenzyl carbamate, the most efficient group that could be removed by hydroxyl radicals from water radiolysis) , the reduction G-value of the N-oxide drugs are much higher, indicating that e- aq mediated reaction is much more efficient than that mediated by ·OH (Figure 5b) .
Encouraged by the reactivity of these N-oxide drugs with relatively complex chemical structures, towards radiation-induced reduction, we took into account establishing a strategy that radiotherapy activates chemotherapeutic prodrugs of which activity are “caging” by a single oxygen atom (Figure 5c) . Anticancer drug CPT, known as a topoisomerase inhibitor containing a pyrrolo [3, 4-β] -quinoline moiety, was selected to prepare a model prodrug NO-CPT (Scheme S2) . After oxidation by hydrogen peroxide (H2O2) , the chemical structure of NO-CPT is similar to that of CPT besides an extra oxygen atom, which is highly atom economic. As expected, in vitro reduction (10 μM in PBS) took place in a radiation-dose-dependent manner, yielding CPT as a reduction product (Figure 11) . Moreover, activation of NO-CPT (10 μM) in PBS containing 10%FBS and cell lysate also have been tested and analyzed by UPLC (Figure 12) , indicating the NO-CPT can be activated in the biological environment by radiation.
Example 4: In vitro study of radiation induced reduction of NO-CPT
The cytotoxicity of NO-CPT and CPT was tested by incubating with HCT116 and CT26 cells, respectively, for 48 h (Figure 13) . The half-maximal inhibitory concentration (IC50) of NO-CPT against CT26 cells is7.71 ±0.56 μM, which is 22-fold over the parent drug. IC50of NO-CPT against HCT116 cells is 2.18 ±0.13 μM, which is 42-fold over the parent drug. In hypoxia conditions, HCT116 and CT26 cells were treated with NO-CPT, 16 Gy X-ray, CPT, X-ray treated NO-CPT (activated NO-CPT) , and NO-CPT + 16 Gy X-ray (NO-CPT and CPT are both 0.5 μM for each group) . After 48 h incubation, cell  viability of group treated with activated NO-CPT and NO-CPT + 16 Gy X-ray were close to that of CPT treated group (Figure 5d, e) . As a contrast, NO-CPT only group showed almost no treatment efficacy in hypoxia conditions. The results suggest that NO-CPT has good stability in living cells and efficient reactivity toward radiation.
Example 5: In vivo study of radiation induced reduction of NO-CPT
The anti-tumor efficacy of the radiotherapy-induced prodrug activation was further investigated (Figure 6a) . To achieve the best therapeutic efficacy, it is crucial to determine the right time point for radiotherapy. Time-dependent accumulation of NO-CPT in tumor tissue shows that about 1 h post-injection is the best time point for irradiation (Figure 6b) . HCT116 tumor–bearing mice were randomly divided into 4 groups including the control group (PBS) , then were treated by NO-CPT, X-ray, and NO-CPT + X-ray (Figure 6 a) via intravenous injection. After four rounds of NO-CPT + X-ray treatments (the NO-CPT + X-ray treatment is administrated once every three days, which is called “a round” ) , the growth of tumors was inhibited (Figure 6c) . As for comparisons, treatments with PBS, NO-CPT, and X-ray could not prevent the growth of tumors. Tumor weight measurements and photography of harvested tumors confirmed the antitumor effect caused by radiotherapy combined with activated chemotherapy (Figure 6d, Figure 14) . Importantly, evaluations of body weight changes showed that the radiotherapy-activated prodrug displayed no gross toxicities (Figure 6e) . The biosafety has been further evaluated via histology analysis after NO-CPT + X-ray treatment, the results shown almost no tissue damage in the primary organs was observed (Figure 15) .
Materials and Synthesis
Materials. m-Chloroperbenzoic acid (m-CPBA) , 7- (diethylamino) -4-methylcoumarin (A-1) , 7- (diethylamino) coumarin (A-2) , 7-Dimethylamino-4-methylcoumarin (A-3)  was purchased from Sigma-Aldrich and used as received. Dansylamide (A-5) , dimethyl (2-phenoxy ethyl) amine were purchased from Macklin and used as received. Quinoline N-oxide (A-7) , 8-hydroxyquinoline N-oxide (A-8) , 4-methyl-morpholin N-oxide (NO-9) , dimethyl (2-phenoxyethyl) amine (A-10) was purchased from Energy Chemical and used as received. Imiquimod (IMQ) , Ampiroxicam (APX) , Pranoprofen (PNP) , Loratadine (LRT) , Camptothecin (CPT) were purchased from J&K and used as received. KNO3 (AR) , CH3OONa (AR) , methanol (MeOH) (AR) , isopropyl alcohol (i-PrOH) (AR) , and dichloromethane (DCM) (AR) , H2O2, acetic acid (AR) were purchased from Beijing Chemical Works, and used as received. Glutathione (GSH) , tryptophan (Try) , phenylalanine (Phe) , cysteine (Cys) , Vitamin C (Vc) were purchased from Sigma-Aldrich and used as received. UPLC Solvents were of HPLC quality and were purchased from Sigma-Aldrich. 1x Phosphate-buffered saline (PBS) was purchased from Meryer. Fetal bovine serum (FBS) , penicillin, streptomycin, and RPMI-1640 medium were purchased from GIBCO and used as received. Cell Counting Kit-8 (CCK-8) was purchased from Beyotime Biotechnology Institute. Ultrapure water was deionized with a Milli-Q SP reagent water system (Millipore) to a specific resistivity of 18.4 MΩ cm. 4-Dimethylamino-N-butyl-1, 8-naphthalic imide (A-4) , 1 N, N-dimethylaniline N-oxide (NO-6) 2were synthesized according to previously reported literature procedures. All of the chemicals were used as received without further purification.
Characterization. Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AVANCE 400 MHz spectrometer. Ultra-performance liquid chromatography (UPLC) was performed on ACQUITY UPLC H-Class PLUS instrument equipped with Waters PDA eλ Detector and a Waters Acquity QDA mass spectrometer. High-resolution mass spectroscopy was performed on a Bruker Fourier Transform Ion  Cyclotron Resonance Mass Spectrometer. Fluorescence spectra were measured on an F-7000 spectrophotometer (Hitachi, Japan) . Confocal fluorescence images were recorded on an A1R-si Laser Scanning Confocal Microscope (Nikon, Japan) .
Synthesis.
Scheme S1. Chemical synthesis of NO-1.
General synthetic route of N-oxides: A-1 (1 mmol, 1.0 eq. ) was dissolved in DCM (5 mL, anhydrous) and cooled in the ice bath to 0℃. m-CPBA (1.5 mmol, 1.5 eq. ) was added. The reaction mixture was warmed to room temperature and stirred for 2 h, monitored by thin-layer chromatography (TLC) . The reaction mixture was then evaporated under reduced pressure and the obtained crude product was purified by flash chromatography with DCM/MeOH (10: 1) as eluents successively. NO-1was afforded as a pink powder (yield: 58%) : 1H NMR (DMSO-d6, δ, ppm, 400 MHz) : 8.11 (s, 1H) , 7.97 (dd, J= 8.7, 2.1 Hz, 1H) , 7.88 (d, J= 8.7 Hz, 1H) , 6.49 (s, 1H) , 3.88 (dt, J = 13.6, 6.8 Hz, 2H) , 3.46 (dq, J= 13.9, 7.1 Hz, 2H) , 2.53 (s, 3H) , 0.93 (t, J= 6.9 Hz, 6H) . 13C NMR (DMSO, δ, ppm, 126 MHz) : 159.62, 153.88, 152.73, 125.58, 119.27, 118.16, 114.88, 111.26, 66.26, 40.16, 38.90, 18.19, 7.90. High-resolution mass: m/z calculated for [M + H] +, 248.1280; found, 248.1281.
NO-2, NO-3, NO-4, NO-5, NO-10, NO-IMQ, NO-APX, NO-PNP, NO-LRT were synthesized according to similar procedures.
NO-2, yellow powder (yield: 54%) : 1H NMR (DMSO-d6, δ, ppm, 400 MHz) : 8.13-8.02 (m, 2H) , 7.90 (dd, J= 8.5, 2.0 Hz, 1H) , 7.79 (d, J= 8.5 Hz, 1H) , 6.54 (d, J= 9.6 Hz, 1H) , 3.84 (dq, J= 11.7, 6.9 Hz, 2H) , 3.42 (dq, J= 11.7, 7.1 Hz, 2H) , 0.89 (t, J= 7.0 Hz, 6H) . 13C NMR (DMSO, δ, ppm, 126 MHz) : 160.64, 155.43, 144.35, 128.79, 123.49, 110.69, 99.92, 66.21, 49.48, 40.03, 10.58. High-resolution mass: m/z calculated for [M + H] +, 234.1124; found, 234.1125.
NO-3, yellow powder (yield: 55%) : 1H NMR (DMSO-d6, δ, ppm, 400 MHz) : 8.24 (d, J = 2.2 Hz, 1H) , 8.13 (dd, J= 8.7, 2.3 Hz, 1H) , 7.90 (d, J= 8.7 Hz, 1H) , 6.50 (d, J= 1.4 Hz, 1H) , 3.41 (s, 3H) , 2.49 (d, J= 1.3 Hz, 6H) . 13C NMR (DMSO, δ, ppm, 126 MHz) : 159.59, 158.61, 152.59, 125.79, 119.47, 116.71, 114.92, 109.31, 63.26, 39.36, 18.16. High-resolution mass: m/z calculated for [M + H] +, 220.0968; found, 220.0968.
NO-4, yellow powder (yield: 49%) : 1H NMR (DMSO-d6, δ, ppm, 400 MHz) : 8.51-8.36 (m, 3H) , 7.78 (dd, J= 8.4, 7.3 Hz, 1H) , 7.61 (d, J= 8.4 Hz, 1H) , 4.07-3.94 (m, 2H) , 2.90 (s, 6H) , 1.66-1.53 (m, 2H) , 1.33 (h, J= 7.4 Hz, 2H) , 0.91 (t, J= 7.4 Hz, 3H) . 13C NMR (DMSO, δ, ppm, 126 MHz) : 163.53, 162.88, 159.24, 133.51, 131.03, 128.64, 127.74, 126.29, 121.92, 120.92, 114.39, 107.80, 47.76, 44.38, 41.87, 39.36, 29.71, 19.79, 13.71. High-resolution mass: m/z calculated for [M + H] +, 313.1545; found, 313.1547.
NO-5, pale yellow powder (yield: 51%) : 1H NMR (MeOD, δ, ppm, 400 MHz) : 9.64 (dt, J= 8.9, 1.1 Hz, 1H) , 9.01-8.88 (m, 1H) , 8.36 (dd, J= 7.4, 1.1 Hz, 1H) , 8.26-8.16 (m, 1H) , 8.09 (dd, J= 8.0, 0.9 Hz, 1H) , 7.72 (ddd, J= 20.4, 8.8, 7.6 Hz, 3H) , 3.94 (s, 6H) . 13C NMR (MeOH, δ, ppm, 126 MHz) : 148.02, 141.72, 131.94, 131.65, 129.67, 128.76, 127.92, 126.95, 126.49, 119.59, 62.47. High-resolution mass: m/z calculated for [M +H]+, 267.0798; found, 267.0798.
NO-10, yellow solid (yield: 57%) : 1H NMR (DMSO-d6, δ, ppm, 400 MHz) : 7.37-7.22 (m, 2H) , 7.01-6.87 (m, 3H) , 4.55-4.40 (m, 2H) , 3.50 (d, J= 9.6 Hz, 2H) , 3.06 (s, 6H) . 13C NMR (DMSO, δ, ppm, 126 MHz) : 158.41, 130.05, 121.34, 115.02, 68.80, 62.67, 60.29. High-resolution mass: m/z calculated for [M + H] +, 182.1175; found, 182.1176.
NO-IMQ, pale grey powder (yield: 60%) : 1H NMR (MeOD, δ, ppm, 400 MHz) : 8.52 (d,J= 8.7 Hz, 1H) , 8.28-8.10 (m, 2H) , 7.77 (t, J= 7.9 Hz, 1H) , 7.60 (t, J= 7.7 Hz, 1H) , 4.47 (d, J= 7.5 Hz, 2H) , 3.35 (s, 2H) , 2.28 (dq, J= 14.0, 6.9 Hz, 1H) , 1.02 (d, J= 6.7 Hz, 6H) . 13C NMR (MeOH, δ, ppm, 126 MHz) : 145.96, 145.56, 137.38, 129.49, 129.01, 127.48, 125.40, 121.99, 118.17, 113.38, 55.03, 29.33, 19.14. High-resolution mass: m/z calculated for [M + H] +, 257.1397; found, 257.1397.
NO-APX, white powder (yield: 62%) : 1H NMR (MeOD, δ, ppm, 400 MHz) : 8.65 (dd, J= 8.6, 1.8 Hz, 1H) , 8.01-7.91 (m, 6H) , 7.47 (t, J= 7.9 Hz, 2H) , 6.36 (q, J= 5.3 Hz, 1H) , 4.03 (qq, J= 10.6, 7.1 Hz, 2H) , 3.02 (s, 3H) , 1.88 (d, J= 5.3 Hz, 3H) , 1.13 (t, J=7.1 Hz, 3H) . 13C NMR (MeOH, δ, ppm, 126 MHz) : 168.52, 139.05, 136.88, 135.71, 134.33, 134.05, 133.72, 131.69, 131.35, 130.74, 129.23, 127.74, 124.80, 121.29, 116.84, 100.76, 65.93, 37.29, 20.65, 14.43. High-resolution mass: m/z calculated for [M + H] +, 257.1397; found, 257.1397.
NO-PNP, white powder (yield: 55%) : 1H NMR (DMSO-d6, δ, ppm, 400 MHz) : 12.38 (s, 1H) , 8.17 (dd, J= 6.5, 1.5 Hz, 1H) , 7.34-6.98 (m, 5H) , 4.16 (s, 2H) , 3.68 (q, J= 7.1 Hz, 1H) , 1.36 (d, J= 7.1 Hz, 3H) . 13C NMR (DMSO, δ, ppm, 126 MHz) : 175.03, 151.54, 148.59, 137.72, 127.77, 127.20, 125.86, 119.42, 119.26, 118.64, 116.42, 43.76, 26.38, 18.32. High-resolution mass: m/z calculated for [M + H] +, 272.0915; found, 272.0917.
NO-LRT, white powder (yield: 48%) : 1H NMR (MeOD, δ, ppm, 400 MHz) : 8.18 (dd, J= 6.5, 1.2 Hz, 1H) , 7.48 (dd, J= 7.7, 1.2 Hz, 1H) , 7.41-7.26 (m, 2H) , 7.18 (dq, J=5.2, 2.3 Hz, 2H) , 4.13 (q, J= 7.1 Hz, 2H) , 3.75 (dq, J= 13.1, 7.2, 6.5 Hz, 2H) , 3.50-3.32 (m, 4H) , 3.01-2.82 (m, 2H) , 2.51 (ddd, J= 13.4, 8.4, 4.5 Hz, 1H) , 2.35 (ddd, J= 14.2, 6.5, 4.1 Hz, 1H) , 2.25 (ddd, J= 13.4, 8.4, 4.4 Hz, 1H) , 1.97 (ddd, J= 14.1, 6.5, 4.0 Hz, 1H) , 1.26 (t, J= 7.1 Hz, 3H) . 13C NMR (MeOH, δ, ppm, 126 MHz) :  157.04, 150.59, 142.65, 140.20, 138.36, 134.72, 133.42, 131.13, 130.01, 126.89, 126.03, 124.39, 62.65, 45.35, 44.93, 32.68, 30.96, 14.80. HIGH-RESOLUTION MASS: m/z calculated for [M + H] +, 399.1470; found, 399.1470.
Scheme S2. Chemical synthesis of NO-CPT.
NO-CPT was synthesized according to previously reported literature procedures. 3To CPT (1 mmol, 1 eq. ) suspended in acetic acid (20 mL) was added 30%hydrogen peroxide (5 mL) . The reaction mixture was stirred overnight at 80 ℃, then poured into ice water (100 mL) . The precipitated needle crystals are collected by filtration and dried under reduced pressure (yield: 83%) . 1H NMR (DMSO-d6, δ, ppm, 400 MHz) : 8.61 (d, J= 8.6 Hz, 1H) , 8.18 (d, J= 8.5 Hz, 2H) , 8.08 (s, 1H) , 7.89 (ddd, J=8.5, 6.9, 1.4 Hz, 1H) , 7.80 (ddd, J= 8.1, 6.9, 1.3 Hz, 1H) , 6.52 (s, 1H) , 5.41 (s, 2H) , 5.26 (s, 2H) , 1.98-1.71 (m, J= 7.1 Hz, 2H) , 0.88 (t, J= 7.3 Hz, 3H) . 13C NMR (DMSO, δ, ppm, 126 MHz) : 172.57, 156.50, 150.00, 141.41, 140.61, 137.34, 132.01, 130.65, 130.01, 129.66, 129.18, 119.97, 119.56, 118.46, 101.67, 72.47, 65.39, 50.94, 30.71, 7.92. High-resolution mass: m/z calculated for [M + H] +, 365.1131; found, 365.1132.
Test assays
Reduction of N-oxides under X-ray radiation. As a representative example, detailed procedures employed for the X-ray-induced reduction of NO-1 are described below. A stock solution of NO-1 (10 mM in DMSO) was diluted in PBS to a final concentration of 10 μM. The solution was carefully degassed by three freeze-pump-thaw cycles and  bubbling N2 before X-ray radiation from 0 to 60 Gy (RS2000 PRO, 225 kV, 17.7 mA, Radsource Corporation) . The reaction mixtures were analyzed by UPLC and fluorescence spectra.
Computational studies with DFT calculation.
Computational methods. All of the density functional theory (DFT) calculations were performed with the Gaussian 09 series of programs. The B3LYP functional with the 6-311+G (d, p) basis set was used to calculate the single-point energies in water solvent to provide more accurate energy information. The solvent effect was considered by single-point calculations based on the gas-phase N-oxides with the SMD continuum solvation model. The Gibbs free energies of the N-oxides calculated using the B3LYP functional are used to discuss the energies. And the molecular orbital energies and distributions of the N-oxides, especially HOMO and LUMO, calculated using the B3LYP functional are used to study.
Calculation on comparing the reactivity of N-oxides with hydrated electrons It has been known that the reaction of hydrated electrons with N-oxides is diffusion-controlled, it is reliable to consider only thermodynamics. The electron affinity N-oxides (ΔG) refers to the free energy change of N-oxide to its anion (1 Hartree = 2625.5kJ/mol) :
ΔG= [NO] --NO
Comparing the ΔG with the enthalpy of formation of hydrated electrons, the reactivity of N-oxides can be judged. Electron affinity can be obtained by calculating the Gibbs free energies of N-oxides and N-oxides anion, respectively. Comparing ΔG with the absolute free energy of solvation of electrons (ΔGe=35.5 kcal/mol) in water, it is possible to judge whether the reaction can occur. Using electrode potentials to represent the reactivity of different nitrogen oxides:
Table 1. Calculation Data of Representative N-oxides.
a Free energy of N-oxides calculated by B3-LYP in water solvent; b free energy of N-oxides anion calculated by B3-LYP in water solvent; c the electron affinity of N-oxides (ΔG) ; d The electrode potentials of N-oxides
Cell Culture. CT26 and HCT116 cells were cultured in RPMI-1640 medium. The media were supplemented with 10% (v/v) fetal bovine serum (FBS) , penicillin (100 units/mL) and streptomycin (100 μg/mL) . All these cells were cultured in a 5%CO2 incubator at 37℃ and the medium was replaced every 2-3 days. After growing to 80%confluence, the cells were treated with trypsin and then seeded on dishes or 96-well plates overnight for further experiments.
Confocal imaging. Cells were typically seeded at a density of 2×105 cells/mL in a 35-mm confocal dish and incubated in an incubator containing 5%CO2 at 37 ℃ for 24  h. Stock solutions of NO-1 (10 mM) were prepared in DMSO. The adherent cells were washed twice with PBS before the addition of NO-1 (10 μM final concentration) in 1 mL in RPMI-1640 medium. The cells were then incubated with AnaeroPack (Mitsubishi Gas Chemical Company, Inc. ) at 37 ℃ for another 30 min to construct a hypoxic environment, followed by exposure to X-ray radiation. The fluorescent images were taken by a laser scanning confocal microscope, the excitation wavelength is 405 nm.
Cell viability assays. Cell viability was assessed with the CCK-8 assay following the protocol and treatment groups were normalized to controls.
To assay the cytotoxicity of NO-1, HCT116 and CT26 were seeded in a 96-well plate at a concentration of 1×104/mL in 100 μL of RPMI-1640 medium with 10%FBS and 1%penicillin/streptomycin and maintained at 37 ℃ for 24 h. Then the cells were incubated with different concentrations of NO-1 for 12 h. Then the medium of each well was replaced by a blank medium containing a final concentration of 0.5 mg/mL CCK-8. The cells were incubated at 37 ℃ for 2 h and the absorbance was measured at 450 nm. The absorbance of treated cells was compared with the absorbance of the control group, of which the viability was set as 100%.
To assay the cytotoxicity of CPT and NO-CPT, HCT116 and CT26 were seeded in a 96-well plate at a concentration of 1×104/mL in 100 μL of RPMI-1640 medium with 10%FBS and 1%penicillin/streptomycin and maintained at 37 ℃ for 24 h. Then the cells were incubated with different concentrations of CPT and NO-CPT, respectively, for 48 h. Then the medium of each well was replaced by a blank medium containing a final concentration of 0.5 mg/mL CCK-8. The cells were incubated at 37 ℃ for 2 h and the absorbance was measured at 450 nm. The absorbance of treated cells was compared with the absorbance of the control group, of which the viability was set as 100%.
To assay the cytotoxicity of NO-CPT activated by X-ray, HCT116, and CT26 were seeded in a 96-well plate at a concentration of 1×104/mL in 100 μL of RPMI-1640 medium with 10%FBS and 1%penicillin/streptomycin, and maintained at 37 ℃ for 24 h and then treated with different ways:
1. Cells were incubated with NO-CPT (0.5 μM) for 48 h.
2. Cells were incubated with AnaeroPack for 30 min and exposed to 16 Gy X-ray, then incubated in the normoxic environment for 48 h.
3. Cells were incubated with CPT (0.5 μM) for 48 h.
4. Cells were incubated with 16 Gy X-ray irradiated NO-CPT (0.5 μM) for 48 h.
5. Cells were incubated with NO-CPT (0.5 μM) in an AnaeroPack for 30 min and exposed to 16 Gy X-ray, then incubated in the normoxic environment for 48 h.
Then the medium of each well was replaced by a blank medium containing a final concentration of 0.5 mg/mL CCK-8. The cells were incubated at 37℃ for 2 h and the absorbance was measured at 450 nm. The absorbance of treated cells was compared with the absorbance of the control group, of which the viability was set as 100%.
Animal Model. 6~8-week-old female BALB/c nude mice were ordered from Vital River Laboratories (Beijing, China) and kept under Specific Pathogen Free (SPF) condition with free access to standard food and water. Approximately 2×106HCT116 cells suspended in 100 μL of PBS were implanted subcutaneously into the right thigh of BALB/c nude mice.
Biodistribution analysis. HCT116 tumor-bearing mice were injected with NO-CPT (10 mg/kg) via the intravenous route. The mice were then sacrificed at preset time points post-injection and tumor tissues were collected, wet weighed, and the concentration of NO-CPT was measured by UPLC-UV (detected λabs= 380 nm) .
Radiation-induced activation of NO-CPT in vivo. When the tumor size reached approximately 100 mm3, the mice were randomly divided into 4 groups (n = 6) for the treatment with PBS, X-ray, NO-CPT, NO-CPT+ X-ray (intravenous injection, NO-CPT = 10 mg/kg) . X-ray radiation was conducted at the time point of 1 h after injection (4Gy) . Tumor sizes were measured every other day using a caliper. Tumor volumes were calculated with the formula: the volume = length × width2/2. The body weights were measured every 2 days. After the mice were sacrificed, the solid tumors were taken out, weighed, and photographed.
Statistical Analysis. Statistical analyses were performed using GraphPad Prism 6. Statistical comparisons were analyzed using two-way ANOVA.
.
ABBREVIATIONS AND SPECIALIST TERMS

Claims (17)

  1. A method for activating N-oxide compound with radiation, characterized in that the N-oxide compound comprises at least one aryl or heteroaryl group, and the N-oxide compound can be reduced to a corresponding tertiary amine after irradiated with the radiation.
  2. The method according to claim 1, wherein the nitrogen atom in the N-oxide group is directly bonded to the at least one aryl or heteroaryl group, or the nitrogen atom in the N-oxide group is an aromatic atom constituting the at least one aryl or heteroaryl group.
  3. The method according to claim 1 or 2, wherein the N-oxide compound has the general formula I,
    ArR2N+-O-Formula I,
    wherein R is independently selected from the group consisting of alkyl, such as C1-4 alkyl, and cycloalkyl, such as C3-6 cycloalkyl,
    Ar is C6-C20 aryl group, preferably C6-C14 aryl group, most preferably C6-C10 aryl group, wherein the aryl group is optionally substituted with alkyl, hydroxyl, amino, aminosulfonyl (NH2-SO2-) , -C (O) HR’, -OC (O) HR’, -C (O) -NR1, wherein optionally two substituting groups on the aryl group can form heterocycle, preferably 6-membered unsaturated heterocycle, preferably 6-membered heterocycle comprising O, NR1, CR1, C=O as the ring member, R1 and R’ are independently selected from the group consisting of hydrogen and alkyl, such as C1-4 alkyl.
  4. The method according to claim 3, wherein R is independently selected from the group consisting of C1-C4 alkyl, and is preferably selected from the group consisting of methyl and ethyl, and/or
    Ar is phenyl or naphthyl, wherein the phenyl or naphthyl is unsubstituted or substituted with alkyl, alkenyl, hydroxyl, amino, aminosulfonyl (NH2-SO2-) , -C (O) HR’, -OC (O) HR’, -C (O) -NR1, wherein optionally two substituting groups on the phenyl or naphthyl group can form heterocycle, preferably 6-membered unsaturated heterocycle, preferably 6-membered heterocycle comprising O, NR1, CR1, C=O as the ring member,
    R1 and R’ are independently selected from the group consisting of hydrogen and alkyl, such as C1-4 alkyl,
    preferably, Ar is naphythyl optionally substituted with alkyl, or aminosulfonyl (NH2-SO2-) , or Ar with two substituting groups thereon form heterocycle is a coumarine group or its derivatives, or a 1, 8-naphthalic imide group or its derivatives.
  5. The method according to claim 1 or 2, wherein the N-oxide compound has the general formula II,
    wherein R2, R3, R4, R5 and R6 are independently selected from the group consisting of hydrogen, alkyl, amino, hydroxyl, amido, which can be in turn substituted with heterocycle, the heterocycle is optionally substituted with alkylcarbonatealkoxyl group; and optionally the substituting groups on the above illustrated ring can form one or two aryl or heteroaryl groups or heterocycles condensed on the above illustrated ring, said one or two aryl or heteroaryl groups or heterocycle can in turn be substituted by amino, halogen, alkyl, hydroxyl, carboxyl alkyl or heterocycle, which heterocycle is optionally substituted with alkoxylcarbonyl group;
    with the proviso that R2, R3, R4, R5 and R6 are not simultaneously hydrogen.
  6. The method according to claim 5, wherein R2, R3, R4, R5 and R6 are independently selected from the group consisting of hydrogen, C1-C4 alkyl, amino, hydroxyl, amido, which can be in turn substituted with 5-, 6-, or 7-membered heterocycle, the heterocycle is optionally substituted with (C1-C4) alkylcarbonate (C1-C4) alkoxyl group; and optionally the substituting groups on the above illustrated ring can form one or two phenylene or 5-, 6-, or 7-membered heteroaryl groups or heterocycles condensed on the above illustrated ring, said one or two aryl or heteroaryl groups or heterocycle can in turn be substituted by amino, halogen, C1-C4 alkyl, hydroxyl, carboxyl (C1-C4) alkyl or 5-, 6-, or 7-membered heterocycle, which heterocycle is optionally substituted with (C1-C4) alkoxylcarbonyl group;
    with the proviso that R2, R3, R4, R5 and R6 are not simultaneously hydrogen.
  7. The method according to claim 1 or 2, wherein the N-oxide compound has the general formula IIa, IIb, IIc, IId, IIe or IIf:
    wherein, R7, R8, R9, R10, R11, R12, R13, and R14 are independently selected from the group consisting of hydrogen, hydroxyl, amino, halogen, C1-C5 alkyl, (C1-C4) alkyl-O (CO) - (C1-C4) alkyl, and (C1-C4) alkyl-O (CO) H, and
    optionally one or more hydrogen atoms on the ring in the general formula IIa, IIb, IIc, IId, IIe or IIf can be replaced with hydroxyl, amino, halogen, or  C1-C5 alkyl, preferably halogen or C1-C4 alkyl;
    preferably, R7, R9, and R13 are independently selected from the group consisting of hydrogen, hydroxyl, amino, and halogen,
    R8, R10, R11, R12, and R14 are independently selected from the group consisting of C1-C5 alkyl, (C1-C4) alkyl-O (CO) - (C1-C4) alkyl, (C1-C4) alkyl-O (CO) H, and
    optionally one or more hydrogen atoms on the aromatic ring in the general formula IIa, IIb, IIc, IId, IIe or IIf can be replaced with halogen or C1-C4 alkyl.
  8. The method according to claim 1 or 2, wherein the tertiary amine is a biologically active compound, such as a fluorescent compound, preferably a coumarin derivative, or a chemotherapeutic agent.
  9. The method according to claim 1 or 2, wherein the N-oxide compound is aniline N-oxide or aromatic heterocyclic N-oxide, such as a compound in the following table or a pharmaceutically acceptable salt or solvate thereof:
  10. A method of treating or diagnosing a disease, the method comprises administering to an individual a therapeutically effective amount of an N-oxide prodrug, and radiating the individual with a therapeutically effective amount of radiation,
    preferably the N-oxide prodrug is the one as defined in claims 1-9.
  11. The method according to claim 10, said method is for treating or suppressing a cancer, reducing its severity, lowering its risk or inhibiting its metastasis in an individual.
  12. The method according to claim 10 or 11, the cancer is selected from the group consisting of colon cancer, small cell lung cancer, Hodgkin's lymphoma, and malignant lymphoma.
  13. The method according to any one of claims 10 to 12, wherein the individual is radiated after administering the N-oxide prodrug, preferably 20 mins, 1 hour, 2 hours, 4 hours after administering the N-oxide prodrug.
  14. The method according to any one of claims 10 to 13, wherein the N-oxide prodrug is administrated in an amount of from about 0.005 mg/kg to about 100 mg/kg, such as an amount of about 0.005, 0.05, 0.5, 5, 10, 20, 30, 40, 50, 100 mg/kg.
  15. The method according to any one of claims 10 to 14, wherein the N-oxide prodrug and radiation are administered once every two days, once every three days, once every four days, once every five days, once every seven days, once every ten days, once every two weeks, once every three weeks, once every four weeks, and the N-oxide prodrug and radiation are administered continuously for at least 3 rounds, at least 4 rounds, at least 5 rounds, at least 6 rounds, at least 7 rounds, at least 8 rounds, at least 9 rounds, at least 10 rounds..
  16. The method according to any one of claims 10 to 15, wherein the N-oxide prodrug is administrated orally or parenterally.
  17. The method according to any one of claims 10 to 16, wherein the radiation is X-ray or gamma ray, and the intensity of the X-ray or gamma ray is 60 Gy or lower, 50 Gy or lower, 40 Gy or lower, 30 Gy or lower, 20 Gy or lower, 10 Gy or lower, 8 Gy or lower, 6 Gy or lower, 4 Gy or lower.
PCT/CN2023/092817 2022-05-07 2023-05-08 Prodrug activation of n-oxides by radiotherapy WO2023217093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/091361 2022-05-07
CN2022091361 2022-05-07

Publications (1)

Publication Number Publication Date
WO2023217093A1 true WO2023217093A1 (en) 2023-11-16

Family

ID=88729782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092817 WO2023217093A1 (en) 2022-05-07 2023-05-08 Prodrug activation of n-oxides by radiotherapy

Country Status (1)

Country Link
WO (1) WO2023217093A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112168978A (en) * 2019-07-03 2021-01-05 北京大学 Antibody coupling drug, pharmaceutical composition and application thereof
CN113101372A (en) * 2019-12-24 2021-07-13 北京大学 Conjugates with radiation-responsive groups and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112168978A (en) * 2019-07-03 2021-01-05 北京大学 Antibody coupling drug, pharmaceutical composition and application thereof
CN113101372A (en) * 2019-12-24 2021-07-13 北京大学 Conjugates with radiation-responsive groups and uses thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DING ZEXUAN, GUO ZHIBIN, ZHENG YUEDAN, WANG ZIYANG, FU QUNFENG, LIU ZHIBO: "Radiotherapy Reduces N -Oxides for Prodrug Activation in Tumors", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 144, no. 21, 1 June 2022 (2022-06-01), pages 9458 - 9464, XP093108722, ISSN: 0002-7863, DOI: 10.1021/jacs.2c02521 *
J E RUSCOE , H JEWELL, J L MAGGS, P M O'NEILL, R C STORR, S A WARD, B K PARK: "The Effect of Chemical Substitution on the Metabolic Activation, Metabolic Detoxication, and Pharmacological Activity of Amodiaquine in the Mouse", JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, AMERICAN SOCIETY FOR PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, US, vol. 273, no. 1, 31 December 1995 (1995-12-31), US , pages 393 - 404, XP009550428, ISSN: 0022-3565 *
JUSTIN KIM; CAROLYN R. BERTOZZI: "A Bioorthogonal Reaction of N‐Oxide and Boron Reagents", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, HOBOKEN, USA, vol. 54, no. 52, 16 November 2015 (2015-11-16), Hoboken, USA, pages 15777 - 15781, XP072080803, ISSN: 1433-7851, DOI: 10.1002/anie.201508861 *
KERZIG CHRISTOPH, GUO XINGWEI, WENGER OLIVER S.: "Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 141, no. 5, 6 February 2019 (2019-02-06), pages 2122 - 2127, XP093108883, ISSN: 0002-7863, DOI: 10.1021/jacs.8b12223 *

Similar Documents

Publication Publication Date Title
US11787801B2 (en) Protein kinase inhibitors, preparation method and medical use thereof
AU2011288876B2 (en) Phthalazinone ketone derivative, preparation method thereof, and pharmaceutical use thereof
ES2402395T3 (en) Carbazole compounds and therapeutic uses of the compounds
AU2009279944A1 (en) Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP)
AU2016380190B2 (en) Deuterated compounds for treating cancer and related diseases and conditions, and compositions and methods thereof
EP3459952A1 (en) Pyrimidine derivative, method for preparing same and use thereof in medicine
US10501466B2 (en) WDR5 inhibitors and modulators
CN115666561A (en) Treatment of proliferative diseases of the CNS
KR20200014350A (en) Aminothiazole Compounds as Protein Kinase Inhibitors
CN116917288A (en) 7, 9-dihydro purine derivative and pharmaceutical application thereof
WO2023217093A1 (en) Prodrug activation of n-oxides by radiotherapy
WO2022257581A1 (en) A class of imidazolidinopyrimidone compounds and use thereof in treatment of hsclpp-mediated diseases
WO2023143147A1 (en) Pyridazopyridone compounds, pharmaceutical composition thereof and use thereof
EP4324833A1 (en) Alkynylphenylbenzamide compound and use thereof
WO2021126923A1 (en) Cd206 modulators their use and methods for preparation
CN110730782A (en) Photodynamic therapy compounds and methods of photodynamic therapy
WO2021143821A1 (en) Fused heteroaryl derivative, preparation method therefor, and application thereof in medicine
US20230348462A1 (en) Imidazo[4,5-c]quinoline compounds and their use as atm kinase inhibitors
CN118119611A (en) Small molecules for degradation of DOT1L and uses thereof
CA3188077A1 (en) Egfr inhibitor, preparation method therefor and application thereof
CN117756799A (en) Compound and application thereof in preparation of ATM kinase inhibitor
WO2023154762A1 (en) Squaraine fluorophores
EP4293029A1 (en) Azaheteroaryl compound, preparation method therefor, and application thereof
TW202214592A (en) Substituted quinazoline compound, and preparation method therefor, pharmaceutical composition thereof, and use thereof
US9096536B2 (en) Asymmetrically substituted anthrapyridazone derivatives as cytostatics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802863

Country of ref document: EP

Kind code of ref document: A1