WO2023216950A1 - 一种易拆装、受力脱出门轴系统和采用它的车载冰箱 - Google Patents

一种易拆装、受力脱出门轴系统和采用它的车载冰箱 Download PDF

Info

Publication number
WO2023216950A1
WO2023216950A1 PCT/CN2023/091940 CN2023091940W WO2023216950A1 WO 2023216950 A1 WO2023216950 A1 WO 2023216950A1 CN 2023091940 W CN2023091940 W CN 2023091940W WO 2023216950 A1 WO2023216950 A1 WO 2023216950A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
door
shaft sleeve
sleeve
sliding contact
Prior art date
Application number
PCT/CN2023/091940
Other languages
English (en)
French (fr)
Inventor
程鸿翔
潘魁
Original Assignee
宁波婷微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210506665.4A external-priority patent/CN114992963A/zh
Priority claimed from CN202210506638.7A external-priority patent/CN114991607A/zh
Priority claimed from CN202221113907.5U external-priority patent/CN217353994U/zh
Priority claimed from CN202221114117.9U external-priority patent/CN217330379U/zh
Application filed by 宁波婷微电子科技有限公司 filed Critical 宁波婷微电子科技有限公司
Publication of WO2023216950A1 publication Critical patent/WO2023216950A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D7/00Hinges or pivots of special construction
    • E05D7/08Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions
    • E05D7/081Hinges or pivots of special construction for use in suspensions comprising two spigots placed at opposite edges of the wing, especially at the top and the bottom, e.g. trunnions the pivot axis of the wing being situated near one edge of the wing, especially at the top and bottom, e.g. trunnions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D9/00Flaps or sleeves specially designed for making from particular material, e.g. hoop-iron, sheet metal, plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers

Definitions

  • the invention relates to an easy-to-disassemble, forced-release door shaft system and a vehicle-mounted refrigerator using the same.
  • Storage boxes usually use door shafts to connect the doors.
  • the door opening handle is usually located at the far end of the door away from the connection point of the door shaft.
  • the door In order to facilitate the removal of stored items in the box, the door is usually It needs to be opened to more than 90 degrees. When the door body is opened to the maximum angle and continues to receive force in the opening direction, the stress is concentrated in the door shaft area. Repeated opening may easily cause the door shaft area to be deformed or even damaged.
  • vehicle-mounted refrigerators since they need to be transported frequently and are limited by the space inside the vehicle, they need to meet specific requirements in terms of volume and weight design.
  • the material used to prepare the vehicle-mounted refrigerator casing cannot be too thick, and the door axis area can withstand the stress.
  • the impact is limited, especially when the door is repeatedly subjected to large unexpected forces in the open state, fatigue damage or damage will occur due to stress concentration in the door shaft area, affecting the performance and use of the vehicle refrigerator.
  • the present invention proposes the following technical solutions, including the following implementation modes:
  • Embodiment 1 An easy-to-disassemble door shaft system, which includes a box body and a door body.
  • the box body is provided with a shaft body
  • the door body is provided with a shaft sleeve.
  • the door body and/or the box body A limiting device is provided on the upper body, and the characteristic is that the outer surface of the shaft body includes a sliding contact surface of the shaft body and a rotational contact surface of the shaft body, wherein the rotational contact surface of the shaft body coincides with the outer surface of the cylinder where the shaft body is located.
  • the sliding contact surface of the shaft body includes two opposite parts on the shaft body, and the minimum distance between parallel tangent lines of the shaft body in contact with the sliding contact surface of the shaft body (called the minimum parallel tangent distance) is less than
  • the diameter of the cylinder where the shaft body is located the shaft sleeve has an inner opening and a side opening, and the side opening has two opposite sliding contact surfaces of the shaft sleeve for cooperating with the sliding contact surface of the shaft body;
  • the inner opening has a rotation contact surface of the shaft sleeve for cooperating with the rotation contact surface of the shaft body, so that the shaft body can slide through the side opening of the shaft sleeve along the direction of the minimum parallel tangent line.
  • the limiting device limits the rotation of the shaft body in the shaft sleeve when the door body is fully opened, and when the door body is fully opened: the two ends of the shaft sleeve
  • Embodiment 2 The easy-to-disassemble door shaft system according to Embodiment 1, characterized in that the material with elastic deformation is selected from the group consisting of polyethylene, polyvinyl chloride, polypropylene, polystyrene, ABS plastic, and polycarbonate. ester, nylon, polyurethane, polytetrafluoroethylene, polyethylene terephthalate.
  • Embodiment 3 The easy-to-disassemble door shaft system according to Embodiment 1, characterized in that the F acts on the distal end of the door body, and its magnitude is 5-30 Newtons.
  • Embodiment 4 The easily disassembled door shaft system according to Embodiment 1, characterized in that a groove is provided at the side opening of the shaft sleeve to increase the elastic deformation size at the side opening.
  • Embodiment 5 The easy-to-disassemble door shaft system according to Embodiment 1, characterized in that the limiting device is provided on the door body and/or the box body close to the door body rotation axis. When the door body is fully opened, In this case, the door body and the box body abut each other through the limiting device. On the rotation plane when the door body is opened, the distance from the mutual abutment point of the door body and the box body to the side opening is 1/20 of the width of the door body. to 1/5.
  • Embodiment 6 The easy-to-disassemble door shaft system according to Embodiment 1, characterized in that the sliding contact surface of the shaft body includes parallel planes, or is mainly composed of one or more groups of parallel planes.
  • the distance between the planes is between 1/3 and 5/6 of the diameter of the cylinder where the shaft body is located, preferably between 2/5 and 2/3.
  • Embodiment 7 The easy-to-disassemble door shaft system according to Embodiment 1, characterized in that the sliding contact surface of the shaft body includes one or two elliptical surfaces, wherein the minimum parallel tangent distance is where the shaft body is located. Between 1/3 and 5/6 of the diameter of the cylinder.
  • Embodiment 8 The easy-to-disassemble door shaft system according to Embodiment 1, characterized in that there are two sets of shaft sliding contact surfaces, and two sets of shafts in contact with the two sets of shaft sliding contact surfaces.
  • the angle between the parallel tangent lines of the body is between 30 and 120 degrees, and the difference between the minimum distance between any set of parallel tangent lines and the distance between the two opposite sleeve sliding contact surfaces is less than the machining error 2x, 3x, 4x, or 5x the difference.
  • Embodiment 9 The easy-to-disassemble door shaft system according to Embodiment 1, characterized in that the outer side of the side opening of the shaft sleeve has an expansion of the sliding contact surface of the shaft sleeve, and the width of the expansion is greater than that of the two sides. The distance between the sliding contact surfaces of two opposite bushings.
  • Embodiment 10 The easily disassembled door shaft system according to Embodiment 1, characterized in that the area of the sliding contact surface of the shaft body is less than or equal to the area of the rotational contact surface of the shaft body.
  • Embodiment 11 A vehicle-mounted refrigerator using the easily detachable door shaft system described in any one of embodiments 1 to 10.
  • the technical effects of the present invention include: the shaft body of the door shaft system slides into the shaft sleeve and then rotates at a certain angle to form a stable connection; after rotating at the opposite angle, the shaft body slides out of the shaft sleeve and can be quickly separated, which is very convenient for installation. and disassembly. Since the shaft sleeve is made of elastically deformable material, when the door body continues to receive force after it is fully opened, the opening on the side of the shaft sleeve will be elastically deformed due to the interaction between the limiting device, the shaft body and the shaft sleeve.
  • Expansion causes the distance between the sliding contact surfaces of the two opposite shaft sleeves to increase, and the shaft body comes out of the shaft sleeve along the expanded side opening.
  • the shaft body can come out of the shaft sleeve repeatedly.
  • a storage box such as the connection structure between the box and the door of a car refrigerator
  • the door can be removed and the storage box fully opened by rotating the door at a small angle.
  • the shaft body comes out of the sleeve and the door body and the box body are separated to avoid damage to the connection area between the door body and the box body due to excessive force.
  • the technical solution of the present application also brings many other advantages, which will be described in detail in the specific embodiments.
  • Figure 1 is a perspective view of the vehicle-mounted refrigerator according to Embodiment 1 of the present application.
  • Figure 2 is a schematic cross-sectional view of the connection point of the door shaft system of the vehicle refrigerator
  • FIG 3 is a partial schematic diagram of the door shaft system in the dotted circle in Figure 2;
  • FIGS 4 to 7 are schematic diagrams of the shaft body and bushing described in Embodiment 1;
  • Figures 8 and 9 are schematic diagrams of the door axis area when the door body is fully opened
  • Figure 10 is a schematic diagram of elastic deformation at the side opening of the shaft sleeve
  • Figures 11 and 12 are schematic views of the door shaft area when the door body is fully opened in Embodiment 2.
  • This application discloses an easy-to-disassemble door shaft system, which includes a box body and a door body.
  • the box body is provided with a shaft body
  • the door body is provided with a shaft sleeve.
  • the door body and/or the box body A limiting device is provided on the upper body, and the characteristic is that the outer surface of the shaft body includes a sliding contact surface of the shaft body and a rotational contact surface of the shaft body, wherein the rotational contact surface of the shaft body coincides with the outer surface of the cylinder where the shaft body is located.
  • the sliding contact surface of the shaft body includes two opposite parts on the shaft body, and the minimum distance between parallel tangent lines of the shaft body in contact with the sliding contact surface of the shaft body (called the minimum parallel tangent distance) is less than
  • the diameter of the cylinder where the shaft body is located the shaft sleeve has an inner opening and a side opening, and the side opening has two opposite sliding contact surfaces of the shaft sleeve for cooperating with the sliding contact surface of the shaft body;
  • the inner opening has a rotation contact surface of the shaft sleeve for cooperating with the rotation contact surface of the shaft body, so that the shaft body can slide through the side opening of the shaft sleeve along the direction of the minimum parallel tangent line.
  • the shaft sleeve is inserted into or slid out of the shaft sleeve.
  • the rotation contact surface of the shaft sleeve and the rotation contact surface of the shaft body cooperate with each other to realize the rotation of the shaft body in the shaft sleeve.
  • the shaft sleeve is made of elastically deformable material.
  • the door body and the box body are connected through the shaft body and the shaft sleeve.
  • the limiting device limits the rotation of the shaft body in the shaft sleeve when the door body is fully opened, and when the door body is fully opened:
  • the distance between the two opposite sliding contact surfaces of the shaft sleeve when elastic deformation occurs under the interaction of the gravity of the door body itself, the limiting device, the shaft body and the shaft sleeve is less than the distance of the cylinder where the shaft body is located. diameter (L 0 + L G ⁇ d axis ), when the two opposite sliding contact surfaces of the shaft sleeve undergo elastic deformation under the interaction of the door body force F, the limit device, the shaft body and the shaft sleeve.
  • the distance can be greater than or equal to the diameter of the cylinder where the axis is located (L 0 +L G+F ⁇ d axis ).
  • the cylinder in which the shaft body is located in this application is a virtual cylinder, and the rotational contact surface of the shaft body coincides with at least part of the cylindrical surface of the virtual cylinder.
  • the parallel tangent line of the shaft body mentioned in this application means that it is perpendicular to the extension direction of the shaft body (that is, the direction of the rotation axis when the door shaft system rotates) and is in contact with the sliding contact surfaces of the two opposite shaft bodies on the shaft body, and does not Two parallel lines entering the body of the shaft.
  • the parallel tangent line with the smallest distance between two parallel lines is called the minimum parallel tangent line, and this distance is the minimum parallel tangent line distance.
  • the minimum parallel tangent distance of the shaft is less than the diameter of the cylinder where the shaft is located, that is, at least one of the two parallel lines is in contact with the sliding contact surface of the shaft inside the cylinder where the shaft is located.
  • the sliding contact surface of the shaft corresponding to the other line coincides with a part of the rotating contact surface of the shaft, that is, the other line
  • the line is in contact with the outer surface of the cylinder on which the shaft is located.
  • the opening size of the side opening depends on The minimum parallel tangent distance.
  • the size of the inner opening depends on the diameter of the cylinder where the shaft is located. This application defines that the minimum parallel tangent distance of the shaft is smaller than the diameter of the cylinder where the shaft is located, that is, the minimum parallel tangent distance of the shaft is smaller than the diameter of the cylinder where the shaft is located.
  • the opening size of the side opening is smaller than the size of the inner opening, so that the shaft body cannot come out after entering the shaft sleeve and rotating at a certain angle to form a stable connection. Only when the shaft body sleeve is rotated back again can the shaft body enter the shaft sleeve. Only with a certain positional relationship can the separation of the two be realized, thereby realizing the disassembly and installation of the door shaft system and achieving the effect of "easy disassembly and assembly".
  • the opening size of the side opening refers to the distance between the sliding contact surfaces of the two opposite shaft sleeves on the side opening when the shaft sleeve does not elastically deform
  • the size of the inner opening refers to the distance between the sliding contact surfaces of the side opening and the shaft sleeve.
  • the arc of the rotational contact surface of the sleeve on the inner opening at least partially coincides with the diameter of the virtual cylinder.
  • elastic deformation refers to the deformation of a material under the action of external force.
  • the shaft sleeve in this application is made of a material with elastic deformation, so that the side opening expands due to elastic deformation when it is stressed, and the distance between the sliding contact surfaces of the two opposite shaft sleeves increases.
  • the elastic deformation of the side opening disappears.
  • the door body and the box body are connected through the shaft body and the shaft sleeve.
  • the limiting device limits the rotation of the shaft body in the shaft sleeve when the door body is fully opened. At this time, if the door body continues to be opened along the When a force is applied in the direction, the force on the door body is transmitted to the shaft sleeve, and the side opening undergoes elastic deformation.
  • the elastic deformation of the side opening can satisfy: L 0 + L G + F ⁇ d axis .
  • the shaft body comes out of the sleeve and comes out.
  • the elastic deformation of the side opening disappears, and the distance between the sliding contact surfaces of the two opposite sleeves on the side opening returns to L 0 .
  • L 0 refers to the opening size of the side opening
  • L G refers to the elastic deformation size of the side opening under the action of the door body's own gravity G when the door body is fully opened
  • L G+F refers to the elastic deformation size of the side opening when the door body is fully opened.
  • the side opening is subject to the elastic deformation size of the door body under its own gravity G and external force F
  • the d -axis refers to the diameter of the cylinder where the shaft body is located.
  • the elastic deformation size in this application refers to the distance between the two opposite sleeve sliding contact surfaces on the side opening that increases due to elastic deformation when the side opening is stressed and elastically deforms and expands.
  • the door body when the door body is subjected to external force, it can escape within the elastic deformation range of the bushing, achieving the effect of "stressed escape", preventing the bushing and the adjacent door shaft area from suffering irreversible deformation or damage due to excessive force. It is reversible, and this disengagement can be repeated, and after the door body falls off, the shaft body can slide into the shaft sleeve through the side opening of the shaft sleeve along the direction of the minimum parallel tangent line, and form a stable connection.
  • the limiting device described in this application only needs to limit the rotation of the shaft body in the shaft sleeve when the door body is fully opened. It can be set on the door body, on the box body, or between the door body and the The boxes can be set at the same time, or in the area where the door and the box contact each other at the door axis when the door is fully opened. Those skilled in the art can choose to set it up reasonably.
  • the shaft body in the door shaft system is made of metal such as copper, iron or alloy.
  • metal such as copper, iron or alloy.
  • the material with elastic deformation is selected from polyethylene, polyvinyl chloride, polypropylene, polystyrene, ABS plastic, polycarbonate, nylon, polyurethane, polytetrafluoroethylene, polyterephthalate Glycol ester.
  • the selection of the material for the shaft sleeve also needs to consider the difficulty of the material in producing elastic deformation, that is, the material is subject to external forces. The stress required to produce unit elastic deformation under In engineering applications, the elastic modulus can be used to measure the ease of elastic deformation of a material.
  • the elastic modulus of the material is too large, excessive external force will be required to remove the shaft sleeve, and it is difficult to avoid damage to the connection area between the door body and the box due to excessive force. If the elastic modulus of the material is too small, the shaft sleeve and the shaft sleeve will be damaged. The connection is not stable enough, and even when the door is not fully opened, the shaft sleeve may come out due to external force, affecting use.
  • the material described in this application can not only allow the shaft body to slide into the shaft sleeve and then rotate at a certain angle to form a sufficiently stable connection, but also be able to form a sufficiently stable connection under the interaction of the limiting device, the shaft body and the shaft sleeve when the door body is subjected to a large external force.
  • the shaft body protrudes from the side opening within the elastic deformation range of the shaft sleeve.
  • the F acts on the distal end of the portal body and has a magnitude of 5-30 Newtons.
  • the distal end of the door body refers to the far end relative to the rotation axis of the door body, that is, the area of the door body away from the rotation axis. In the plane in which the door body rotates, the distal end of the door body has a larger force arm relative to the proximal end of the door body.
  • the force F acting on the distal end of the door body can move between the limiter, the shaft body and the sleeve. Under the interaction, elastic deformation occurs at the side opening of the shaft sleeve and the door body protrudes.
  • a groove is provided at the side opening of the shaft sleeve, so that the elastic deformation size at the side opening is increased. Setting the groove not only reduces the stress required for unit elastic deformation at the opening on the side of the shaft sleeve, but also increases the displacement at the opening on the side of the shaft sleeve within the same elastic deformation range, that is, increasing the two relative positions of the shaft sleeve. The distance between the sliding contact surfaces of the bushings increases, thereby increasing the elastic deformation capacity of the bushings, making it easier to use materials with poor elastic deformation.
  • the limiting device is provided on the door and/or the box close to the door rotation axis.
  • the door and the box abut each other through the limiting device.
  • the distance from the mutual abutment point of the door body and the box body to the side opening is 1/20 to 1/5 of the width of the door body.
  • the width of the door body refers to the size from the distal edge of the door body to the side opening. Since the limiting device is close to the rotation axis of the door body, the width of the door body is approximately equal to the distance from the distal edge of the door body to the door body and the box body against each other. distance.
  • a lever is formed between the side opening and the force-bearing point of the door body where the force F is exerted, with the mutual abutment point of the door body and the box body as the fulcrum.
  • the distance from the door body stress point to the mutual contact point of the door body and the box body is the power arm.
  • the door body width is the lever power arm, and the distance from the mutual abutment point of the door body and the box body to the side opening is It is a lever resistance arm.
  • the resistance acts on the side opening of the shaft sleeve and causes the side opening to elastically deform and expand, so that the two opposite sides of the shaft sleeve
  • the distance between the sliding contact surfaces of the sleeves increases, causing the shaft body to come out of the sleeves. Since the width of the door body is much larger than the distance from the mutual abutment point of the door body and the box body to the side opening, it is possible to use a small force acting on the far end of the door body and leverage to make the side opening of the shaft sleeve Elastic deformation occurs until the shaft body comes out.
  • the sliding contact surface of the shaft body includes parallel planes, or is mainly composed of one or more sets of parallel planes, and the distance between the parallel planes is the diameter of the cylinder where the shaft body is located. Between 1/3 and 5/6, preferably between 2/5 and 2/3.
  • the sliding contact surface of the shaft body including a flat surface can produce a smooth feel, especially when it has parallel flat surfaces, which can improve comfort.
  • the sliding contact surface of the shaft body includes one or two elliptical surfaces, wherein the minimum parallel tangent distance is between 1/3 and 5/6 of the diameter of the cylinder where the shaft body is located.
  • the elliptical surface means that the cross section of the sliding contact surface of any shaft coincides with a part of the elliptical curve.
  • the elliptical surface makes the sliding contact surface have a narrower end, that is, the position close to the rotating contact surface of the shaft is narrower. This makes it easier for the shaft body to slide into the bushing from the narrow end.
  • the easily disassembled door shaft system has two sets of sliding contact surfaces of the shaft body, and the distance between the parallel tangent lines of the two sets of shaft bodies in contact with the two sets of sliding contact surfaces of the shaft body is The included angle is between 30 and 120 degrees, and the difference between the minimum distance between any set of parallel tangent lines and the distance between the two opposite sleeve sliding contact surfaces is less than 2 times, 3 times, or 3 times the machining error. 4 times, or 5 times.
  • At least one of the two parallel lines in any one of the two groups of parallel tangents of the shaft is in contact with the sliding contact surface of the shaft inside the cylinder where the shaft is located, and the minimum parallel tangent of any group of the shaft is The distance is less than the diameter of the cylinder where the shaft body is located, so that the shaft body can slide into or out of the shaft sleeve through the side opening of the shaft sleeve along the direction of any set of minimum parallel tangent lines, That is, the door shaft system can be disassembled and assembled from two different angles.
  • the distance between the two opposite sleeve sliding contact surfaces is the minimum size of the shaft sleeve side opening, and the minimum distance between any set of parallel tangents (ie, the minimum parallel tangent distance) is the The difference between the maximum size of the shaft body in the sliding direction is less than 2 times, 3 times, 4 times, or 5 times the machining error, so that when the shaft body slides into the sleeve through the side opening, the two can be closer together.
  • the outer side of the side opening of the sleeve has a sleeve sliding contact surface expansion, and the width of the expansion is greater than the distance between the two opposite sleeve sliding contact surfaces. This allows the shaft body to slide into the side opening through the expanded opening, making installation easier.
  • the area of the sliding contact surface of the shaft body is less than or equal to the area of the rotating contact surface of the shaft body.
  • the larger shaft rotation contact area can provide relatively stable rotation performance.
  • This application also discloses a vehicle-mounted refrigerator using the easy-to-detachable door shaft system described in any of the preceding items.
  • the door body can be disassembled by sliding the shaft body out of the shaft sleeve, making it easier to take things out of the vehicle-mounted refrigerator.
  • the elastic deformation and expansion of the shaft sleeve can be used to make the shaft body come out of the shaft sleeve to achieve quick disassembly of the door body, especially when the door body is subject to unexpected force when it is fully open.
  • the shaft body comes out of the bushing, causing the door body and the box body to separate, preventing damage to the connection area between the door body and the box body due to excessive force, and extending the service life of the vehicle refrigerator.
  • this embodiment discloses a vehicle-mounted refrigerator connected by an easily removable door shaft system. It includes a box body 10, a door body 20 and a limiting device 30.
  • the box body 10 is provided with two There is a shaft body 100, and two shaft sleeves 200 are provided on the door body 20.
  • the limiting device 30 is a protrusion provided near the shaft sleeves 200 on the door body 20.
  • the box body 10 and the door body 20 By connecting two sets of oppositely arranged shafts 100 and bushings 200 (as shown in FIG. 1 ), the limiting device 30 can abut against the upper edge of the box 10 when the door 20 is fully opened, thereby limiting the The shaft body 100 rotates within the sleeve 200 .
  • the outer surface of the shaft 100 includes a sliding contact surface 110 and a rotating contact surface 120, wherein the rotating contact surface 120 is in contact with the outer surface of the cylinder where the shaft is located.
  • Overlapping (the dotted line in Figure 5 shows the cross-section of the virtual cylinder), the diameter of the cylinder where the shaft is located is 1.2cm, and the sliding contact surface 110 of the shaft includes two mutually opposite surfaces on the shaft 100 Parallel planes, the minimum distance between the parallel tangent lines of the shaft body in contact with the two shaft body sliding contact surfaces 110 is 0.9cm (called the minimum parallel tangent line distance, Figure 5 shows the distance between the parallel tangent lines of the shaft body Parallel tangent lines), the minimum parallel tangent line distance is smaller than the diameter of the cylinder where the shaft body is located.
  • the bushing 200 has an inner opening 210 and a side opening 220.
  • the side opening 220 has two opposite bushing sliding contact surfaces 221 for mating with the shaft body 110.
  • the inner opening 210 has two opposite sliding contact surfaces 221.
  • the rotation contact surface 211 of the sleeve and the The shaft rotation contact surfaces 120 cooperate with each other to realize the rotation of the shaft 100 in the sleeve 200 .
  • the outer side of the side opening 220 of the sleeve has a sleeve sliding contact surface expansion 222.
  • the width of the expansion 222 is greater than the distance between the two opposite sleeve sliding contact surfaces 221.
  • the expansion 222 The maximum width is 1.5 cm, so that the shaft body 100 can be guided into the side opening 220 through the expanded opening 222, making installation easier.
  • the difference between the opening size of the side opening and the minimum parallel tangent distance is less than 2 times the processing error, that is, the opening size of the side opening is slightly larger than 0.9cm, so that the shaft body and sleeves can achieve a tight fit.
  • the bushing 200 is made of elastically deformable ABS plastic, so that the side opening expands due to elastic deformation when it is stressed, and the distance between the sliding contact surfaces of the two opposite bushings increases. When the external force is removed, The elastic deformation of the side opening disappears.
  • the shaft 100 slides into the sleeve 200 and rotates at a certain angle to form a stable connection
  • FIG. 7 shows from left to right that the shaft slides into the sleeve from the side opening and the sleeve rotates.
  • the door 20 abuts against the mutual abutment point 301 between the door and the box located on the upper edge of the box 10 through the limiting device 30 , thereby limiting the position of the shaft 100 . rotation within the sleeve 200.
  • the shaft sleeve 200 undergoes elastic deformation under the interaction of the gravity of the door body itself, the limiting device, the shaft body and the shaft sleeve.
  • the elastic deformation of the side opening satisfies: L 0 + L G ⁇ d axis , where , L 0 is the opening size of the side opening 0.9cm, the d axis is the diameter of the cylinder where the shaft is located 1.2cm, L G is the elastic deformation size of the side opening under the action of the door's own gravity G. At this time, the shaft body cannot come out of the shaft sleeve.
  • the distance from the far end edge of the door to the mutual abutment point 301 between the door and the box is 40cm (i.e. the width of the door, not shown in the figure)
  • the distance from the mutual abutment point 301 of the door body and the box body to the side opening is approximately 1/15 of the width of the door body.
  • the force F acts on the side opening of the shaft sleeve through the lever, causing the side opening to elastically deform and expand.
  • the elastic deformation of the side opening can satisfy Foot: L 0 +L G+F ⁇ d axis , where L G+F refers to the elastic deformation size of the side opening under the combined action of the door's own gravity G and the external force F when the door is fully opened, that is, L G+F ⁇ 0.3cm.
  • the door body can come out within the elastic deformation range of the shaft sleeve, achieving the effect of "stressed release", so that the door body can fall off from the box body, which facilitates disassembly and at the same time avoids the shaft sleeve and the adjacent door shaft area from being damaged.
  • Excessive force causes irreversible deformation or damage. Due to the reversibility of elastic deformation, this kind of detachment can be repeated, and after the door body falls off, as shown in Figure 10(b), the elastic deformation of the side opening disappears, and the opening of the side opening disappears.
  • the shaft body can slide into the shaft sleeve through the side opening of the shaft sleeve along the direction of the minimum parallel tangent line, and form a stable connection.
  • this embodiment discloses a vehicle-mounted refrigerator connected by an easily removable door shaft system, which includes a box body 10, a door body 20 and a limiting device 30, the settings of which are consistent with those in Embodiment 1.
  • a number of grooves 223 are provided at the side opening of the shaft sleeve 200.
  • the grooves not only reduce the stress required for unit elastic deformation at the side opening of the shaft sleeve, but also increase the size of the shaft sleeve within the same elastic deformation range.
  • the displacement at the side opening that is, increasing the distance between the two opposite sliding contact surfaces of the shaft sleeve, causes the elastic deformation size at the side opening to increase, thereby increasing the elastic deformation capacity of the shaft sleeve.
  • the door 20 When the door is fully opened, the door 20 abuts against the mutual abutment point 301 between the door and the box located on the upper edge of the box 10 through the limiting device 30 , thereby limiting the shaft 100 within the sleeve 200 of rotation.
  • the shaft sleeve 200 undergoes elastic deformation under the interaction of the gravity of the door body itself, the limiting device, the shaft body and the shaft sleeve.
  • the elastic deformation of the side opening satisfies: L 0 + L G ⁇ d axis , where , L 0 is the opening size of the side opening 0.9cm, the d axis is the diameter of the cylinder where the shaft is located 1.2cm, L G is the elastic deformation size of the side opening under the action of the door's own gravity G. At this time, the shaft body cannot come out of the shaft sleeve.
  • the distance from the far edge 201 of the door to the mutual abutment point 301 of the door and the box is 40cm (i.e. the width of the door).
  • the distance from the abutment 301 to the side opening (refer to the distance a shown by the dotted line in Figure 9 of Embodiment 1) is approximately 1/15 of the width of the door body.
  • a lever is formed with the mutual abutment point 301 of the door body and the box body as the fulcrum.
  • the force F acts on the side opening of the shaft sleeve through the lever and causes the side opening to elastically deform and expand.
  • the elastic deformation of the side opening The deformation can satisfy: L 0 + L G + F ⁇ d axis , where L G + F refers to the elastic deformation size of the side opening under the combined action of the door's own gravity G and the external force F when the door is fully opened, that is, L G +F ⁇ 0.3cm.
  • the door body can come out within the elastic deformation range of the shaft sleeve, achieving the effect of "stressed release", so that the door body can fall off from the box body, which facilitates disassembly and at the same time avoids the shaft sleeve and the adjacent door shaft area from being damaged.
  • Excessive force causes irreversible deformation or damage. Due to the reversibility of elastic deformation, this kind of prolapse can be repeated.
  • the elastic deformation of the side opening disappears, the opening size of the side opening returns to 0.9cm, and the shaft body returns to 0.9cm.
  • the shaft sleeve can be slid into the shaft sleeve through the side opening of the shaft sleeve along the direction of the minimum parallel tangent line and form a stable connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)

Abstract

本发明提供一种易拆装门轴系统,其包括箱体和门体,所述箱体上设置有轴体,所述门体上设置有轴套,所述门体和/或箱体上设置有限位装置,所述轴套采用具有弹性变形的材料制成,所述门体和箱体通过所述轴体和轴套连接,所述限位装置在门体完全打开的情况下限制轴体在轴套内的转动,并且在门体完全打开的情况下:所述轴套的两个相对的轴套滑动接触面在受门体本身的重力、限位装置、轴体和轴套相互作用下发生弹性变形时的距离小于所述轴体所在的圆柱体的直径,所述轴套的两个相对的轴套滑动接触面在门体受力F、限位装置、轴体和轴套相互作用下发生弹性变形时的距离能够大于等于所述轴体所在的圆柱体的直径。

Description

一种易拆装、受力脱出门轴系统和采用它的车载冰箱 技术领域
本发明涉及一种易拆装、受力脱出门轴系统和采用它的车载冰箱。
背景技术
储物箱体通常采用门轴连接门体,为了方便开启门体,开启门体的握持部通常位于门体上远离门轴连接点的远端,为了方便取出箱体内储存物品,门体通常需要开启到90度以上,当门体开启到最大角度后继续受到开启方向的作用力时,应力集中于门轴区域,反复开启易使门轴区域发生变形甚至损坏。对于车载冰箱而言,由于其需要经常搬运且受限于车内空间,需在体积和重量设计上满足特定要求,因此制备车载冰箱壳体的材料不能太厚重,其门轴区域所能承受应力冲击有限,尤其是门体在开启状态下反复受较大的意外受力时,会因门轴区域应力集中而产生疲劳损伤或损害,影响车载冰箱的性能和使用。
发明内容
本发明针对上述现有技术中的缺陷,提出了如下技术方案,包括如下实施方式:
实施方式1.一种易拆装门轴系统,其包括箱体和门体,所述箱体上设置有轴体、所述门体上设置有轴套,所述门体和/或箱体上设置有限位装置,其特征在于,所述轴体的外表面包含轴体滑动接触面和轴体转动接触面,其中,所述轴体转动接触面与轴体所在的圆柱体的外表面重合,所述轴体滑动接触面包括在轴体上相对的两个部分,与所述轴体滑动接触面接触的所述轴体的平行切线之间的最小距离(称为最小平行切线距离)小于所述轴体所在的圆柱体的直径,所述轴套具有内开口和侧开口,所述侧开口上具有两个相对的轴套滑动接触面,用于与所述轴体滑动接触面配合;所述内开口上具有轴套转动接触面,用于与所述轴体转动接触面配合,从而使得,所述轴体可以沿着所述最小平行切线的方向经由所述轴套的侧开口滑入或滑出所述轴 套,所述轴套转动接触面和所述轴体转动接触面相互配合,实现轴体在轴套内的转动,所述轴套采用具有弹性变形的材料制成,所述门体和箱体通过所述轴体和轴套连接,所述限位装置在门体完全打开的情况下限制轴体在轴套内的转动,并且在门体完全打开的情况下:所述轴套的两个相对的轴套滑动接触面在受门体本身的重力、限位装置、轴体和轴套相互作用下发生弹性变形时的距离小于所述轴体所在的圆柱体的直径(L0+LG<d),所述轴套的两个相对的轴套滑动接触面在门体受力F、限位装置、轴体和轴套相互作用下发生弹性变形时的距离能够大于等于所述轴体所在的圆柱体的直径(L0+LG+F≥d)。
实施方式2.根据实施方式1所述的易拆装门轴系统,其特征在于,所述具有弹性变形的材料选自聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、ABS塑料、聚碳酸酯、尼龙、聚氨酯、聚四氟乙烯、聚对苯二甲酸乙二醇酯。
实施方式3.根据实施方式1所述的易拆装门轴系统,其特征在于,所述F作用于所述门体的远端,其大小为5-30牛顿。
实施方式4.根据实施方式1所述的易拆装门轴系统,其特征在于,在所述轴套的侧开口处开设凹槽,使得侧开口处的弹性形变尺寸增大。
实施方式5.根据实施方式1所述的易拆装门轴系统,其特征在于,所述限位装置设置在靠近门体旋转轴的门体和/或箱体上,在门体完全打开的情况下,门体和箱体通过限位装置相互抵靠,在门体开启的旋转平面上,从门体和箱体相互抵靠处到所述侧开口的距离为门体宽度的1/20至1/5。
实施方式6.根据实施方式1所述的易拆装门轴系统,其特征在于,所述轴体滑动接触面包括平行的平面,或主要由一组或多组平行的平面组成,所述平行平面之间的距离为所述轴体所在的圆柱体的直径的1/3至5/6之间,优选2/5至2/3之间。
实施方式7.根据实施方式1所述的易拆装门轴系统,其特征在于,所述轴体滑动接触面包括一个或两个椭圆形表面,其中最小平行切线距离为所述轴体所在的圆柱体的直径的1/3至5/6之间。
实施方式8.根据实施方式1所述的易拆装门轴系统,其特征在于,存在两组所述轴体滑动接触面,与两组所述轴体滑动接触面接触的两组所述轴体的平行切线之间的夹角为30至120度之间,并且任一组平行切线之间的最小距离与所述两个相对的轴套滑动接触面之间的距离之差都小于加工误 差的2倍、3倍、4倍、或5倍。
实施方式9.根据实施方式1所述的易拆装门轴系统,其特征在于,所述轴套的侧开口的外侧具有轴套滑动接触面扩口,所述扩口的宽度大于所述两个相对的轴套滑动接触面之间的距离。
实施方式10.根据实施方式1所述的易拆装门轴系统,其特征在于,所述轴体滑动接触面的面积小于等于所述轴体转动接触面的面积。
实施方式11.采用实施方式1至10中任一项所述易拆装门轴系统的车载冰箱。
本发明的技术效果包括:所述门轴系统的轴体滑入轴套后转动一定角度便可形成稳固的连接,旋转相反角度后轴体从轴套中滑出便可快速分离,非常便于安装和拆卸。由于所述轴套采用具有弹性变形的材料制成,门体在完全打开后受继续受力时,在限位装置、轴体和轴套相互作用下,轴套侧开口处受力产生弹性变形扩张,使得两个相对的轴套滑动接触面之间的距离增大,所述轴体沿着扩张的侧开口脱出所述轴套,轴体脱出轴套可反复进行。将该门轴系统结构应用于储物箱体例如车载冰箱的箱体和门体之间的连接结构时,能够通过门体的小角度旋转后即可拆下门体完全开启储物箱体,门体在完全开启状态下受较大的意外受力时,轴体脱出轴套使得门体和箱体分离,避免门体和箱体连接区域受力过大发生损坏。此外,本申请的技术方案还带来了许多其他的优点,这些优点将会在具体实施方式中详细说明。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是本申请实施例1所述车载冰箱的立体图;
图2是车载冰箱门轴系统连接处的剖面示意图;
图3是图2中虚线圈内门轴系统的局部示意图;
图4至图7为实施例1所述轴体和轴套的示意图;
图8和图9是门体完全打开下门轴区域的示意图;
图10是轴套侧开口处弹性形变示意图;
图11和图12是实施例2中门体完全打开时门轴区域的示意图。
附图标记:10-箱体,20-门体,30-限位装置,100-轴体,110-轴体滑动接触面,120-轴体转动接触面,200-轴套,201-门体的远端边缘处,210-内开口,211-轴套转动接触面,220-侧开口,221-轴套滑动接触面,222-扩口,223-凹槽,301-门体和箱体相互抵靠处。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请中的术语具有本领域技术人员通常理解的含义,否则会明确定义或者作出相反的说明。
本申请公开了一种易拆装门轴系统,其包括箱体和门体,所述箱体上设置有轴体,所述门体上设置有轴套,所述门体和/或箱体上设置有限位装置,其特征在于,所述轴体的外表面包含轴体滑动接触面和轴体转动接触面,其中,所述轴体转动接触面与轴体所在的圆柱体的外表面重合,所述轴体滑动接触面包括在轴体上相对的两个部分,与所述轴体滑动接触面接触的所述轴体的平行切线之间的最小距离(称为最小平行切线距离)小于所述轴体所在的圆柱体的直径,所述轴套具有内开口和侧开口,所述侧开口上具有两个相对的轴套滑动接触面,用于与所述轴体滑动接触面配合;所述内开口上具有轴套转动接触面,用于与所述轴体转动接触面配合,从而使得,所述轴体可以沿着所述最小平行切线的方向经由所述轴套的侧开口滑入或滑出所述轴套,所述轴套转动接触面和所述轴体转动接触面相互配合,实现轴体在轴套内的转动,所述轴套采用具有弹性变形的材料制成,所述门体和箱体通过所述轴体和轴套连接,所述限位装置在门体完全打开的情况下限制轴体在轴套内的转动,并且在门体完全打开的情况下:所述轴套的两个相对的轴套滑动接触面在受门体本身的重力、限位装置、轴体和轴套相互作用下发生弹性变形时的距离小于所述轴体所在的圆柱体的直径(L0+LG<d),所述轴套的两个相对的轴套滑动接触面在门体受力F、限位装置、轴体和轴套相互作用下发生弹性变形时的距离能够大于等于所述轴体所在的圆柱体的直径(L0+LG+F≥d)。
本申请所述轴体所在的圆柱体为一个虚拟圆柱体,所述轴体转动接触面与该虚拟圆柱体的至少部分圆柱面重合。本申请所述轴体的平行切线是指与轴体的延伸方向(即门轴系统转动时转动轴的方向)相垂直并且分别与轴体上相对的两个轴体滑动接触面接触,又不进入轴体的两条平行线。在所有的平行切线中,两条平行线之间的距离最小的平行切线,称为最小平行切线,该距离为最小平行切线距离。本申请限定所述轴体的最小平行切线距离小于所述轴体所在的圆柱体的直径,即该两条平行线中至少有一条在轴体所在的圆柱体的内部与轴体滑动接触面接触。当两条平行线中仅有一条线在轴体所在的圆柱体内部与轴体滑动接触面接触时,另一条线对应的轴体滑动接触面与轴体转动接触面的一部分重合,即另一条线与所述轴体所在的圆柱体的外表面接触。
本申请中,为了形成轴套滑动接触面与轴体滑动接触面之间的配合关系,以及轴套转动接触面与轴体转动接触面之间的配合关系,所述侧开口的开口尺寸取决于最小平行切线距离,所述内开口的尺寸取决于所述轴体所在的圆柱体的直径,本申请限定所述轴体的最小平行切线距离小于所述轴体所在的圆柱体的直径,即所述侧开口的开口尺寸小于所述内开口的尺寸,使得所述轴体进入轴套并转动一定角度后即无法脱出从而形成稳固连接,只有将轴体轴套再次旋转回轴体进入轴套时刻的位置关系才可实现二者分离,从而实现门轴体统的拆卸和安装,达到“易拆装”的效果。本申请中,所述侧开口的开口尺寸指所述轴套未发生弹性形变时所述侧开口上两个相对的轴套滑动接触面之间的距离,所述内开口的尺寸指与所述内开口上的轴套转动接触面的弧线至少部分重合的虚拟圆柱体的直径。
本申请中,弹性变形(也称弹性形变)指材料在外力作用下产生变形,当外力取消后,材料变形即消失并完全恢复原来形状的形变,弹性变形的重要特征是其可逆性。本申请所述轴套采用具有弹性变形的材料制成,使得所述侧开口在受力时因产生弹性形变扩张,两个相对的轴套滑动接触面之间的距离增大,当外力取消后,侧开口弹性形变消失。
所述门体和箱体通过所述轴体和轴套连接,所述限位装置在门体完全打开的情况下限制轴体在轴套内的转动,此时若门体继续受到沿着开启方向的作用力时,门体受力传递至轴套,侧开口发生弹性形变。
在门体完全打开的情况下,所述侧开口的弹性形变满足:L0+LG<d, 此时,所述轴体无法脱出轴套。
在门体完全打开的情况下,当门体受力F时,所述侧开口的弹性形变能够满足:L0+LG+F≥d,此时,所述轴体脱出轴套,脱出后所述侧开口的弹性形变消失,所述侧开口上两个相对的轴套滑动接触面之间的距离恢复到L0
其中,L0指所述侧开口的开口尺寸;LG指在门体完全打开时,侧开口在门体自身重力G作用下的弹性形变尺寸;LG+F指在门体完全打开时,侧开口受门体自身重力G和外力F共同作用下的弹性形变尺寸;d指所述轴体所在的圆柱体的直径。本申请所述弹性形变尺寸指所述侧开口受力产生弹性形变扩张时,所述侧开口上两个相对的轴套滑动接触面之间因弹性形变而增大的距离。
即门体受到外力时能在轴套弹性形变的范围内脱出,达到“受力脱出”的效果,避免轴套以及临近的门轴区域因受力过大而遭受不可逆变形或破坏,由于弹性形变的可逆性,这种脱出可反复进行,且门体脱落后,轴体又可沿着所述最小平行切线的方向经由所述轴套的侧开口滑入轴套,并形成稳固连接。
本申请所述限位装置只需满足在门体完全打开的情况下限制轴体在轴套内的转动即可,可设置在门体上,也可设置在箱体上,或者在门体和箱体同时设置,也可以是门体完全打开时门体和箱体在门轴处相互接触的区域,本领域技术人员可以合理选择进行设置。
本申请所述“脱出”或“受力脱出”是指轴体在轴套弹性形变范围内,经扩张的轴套侧开口脱离轴套的过程,“滑入”或者“进入”、“滑出”是指轴体和轴套沿着轴套滑动接触面实现连接、分离的过程。
本申请中,所述门轴系统中的轴体由金属例如铜、铁或者合金制成。所述金属的具体选择没有限制,只要能够满足具体的应用场景需要即可,本领域技术人员可以根据实际需要进行恰当的选择。
在一些实施方式中,所述具有弹性变形的材料选自聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、ABS塑料、聚碳酸酯、尼龙、聚氨酯、聚四氟乙烯、聚对苯二甲酸乙二醇酯。轴套材料的选择除了具备能够产生足够的弹性形变尺寸以满足所述轴体在轴套的弹性形变范围内从侧开口脱出外,还需考虑材料产生弹性形变的难易,即材料在外力作用下产生单位弹性形变所需的应力, 工程应用中可以采用弹性模量来衡量材料产生弹性形变的难易。如果材料弹性模量过大,则轴套脱出需要过高的外力作用,难以避免门体和箱体连接区域受力过大发生损坏,如果材料弹性模量过小,则轴体和轴套的连接不够稳固,即使在门体未完全开启的状态下也有可能因外力作用发生轴套脱出从而影响使用。本申请所述材料既能够满足轴体滑入轴套后转动一定角度形成足够稳固的连接,又能够在门体受较大外力作用时在限位装置、轴体和轴套相互作用下,所述轴体在轴套的弹性形变范围内从侧开口脱出。本领域技术人员可以选择与这些材料具备相似性能的材料。
在一些实施方式中,所述F作用于所述门体的远端,其大小为5-30牛顿。这样的设置能使门体能在适当的作用力下脱出,方便使用者在不借助其他工具的情况下能够轻松拆下门体。门体的远端,是指相对于门体旋转轴的远端,即门体远离旋转轴的区域。在门体旋转的平面内,门体的远端相对于门体的近端具有更大的力臂,作用于所述门体的远端的力F能在限位装置、轴体和轴套相互作用下使轴套侧开口处发生弹性形变并使门体脱出。
在一些实施方式中,在所述轴套的侧开口处开设凹槽,使得侧开口处的弹性形变尺寸增大。设置凹槽既降低了轴套侧开口处发生单位弹性形变所需的应力,又可在同等的弹性形变范围内增大轴套侧开口处的位移,即增大所述轴套的两个相对的轴套滑动接触面之间的距离,从而使得所述轴套的弹性变形能力增加,便于采用弹性变形较差的材料。
在一些实施方式中,所述限位装置设置在靠近门体旋转轴的门体和/或箱体上,在门体完全打开的情况下,门体和箱体通过限位装置相互抵靠,在门体开启的旋转平面上,从门体和箱体相互抵靠处到所述侧开口的距离为门体宽度的1/20至1/5。门体宽度指门体的远端边缘处至侧开口的尺寸,由于所述限位装置靠近门体旋转轴,门体宽度约等于门体的远端边缘处到门体和箱体相互抵靠处的距离。在门体完全打开的情况下,在所述侧开口和门体受力F的受力点之间形成以门体和箱体相互抵靠处为支点的杠杆。在门体继续受到沿着开启方向的作用力(动力)并使所述轴体脱出轴套的过程中,从门体受力点至门体和箱体相互抵靠处的距离即为动力臂,当沿着开启方向的作用力(动力)作用于门体的远端边缘处时,门体宽度即为杠杆动力臂,从门体和箱体相互抵靠处到所述侧开口的距离即为杠杆阻力臂,所述阻力作用于轴套侧开口处,并使侧开口发生弹性形变扩张,使得所述轴套的两个相对的 轴套滑动接触面之间的距离增大,并使轴体脱出轴套。由于门体宽度远大于从门体和箱体相互抵靠处到所述侧开口的距离,从而能够通过较小的作用于门体的远端的力,通过杠杆作用,使轴套侧开口处发生弹性形变直至轴体脱出。
在一些实施方式中,所述轴体滑动接触面包括平行的平面,或主要由一组或多组平行的平面组成,所述平行平面之间的距离为所述轴体所在的圆柱体的直径的1/3至5/6之间,优选2/5至2/3之间。包含平面的轴体滑动接触面能够产生顺滑的手感,尤其是具备平行的平面时,能够提高舒适性。
在一些实施方式中,所述轴体滑动接触面包括一个或两个椭圆形表面,其中最小平行切线距离为所述轴体所在的圆柱体的直径的1/3至5/6之间。椭圆型表面指任一轴体滑动接触面的截面与椭圆形曲线的一部分重合,该椭圆形表面使得滑动接触面具有更为狭窄的端部,即靠近轴体转动接触面的位置更为狭窄,从而使得轴体从狭窄的端部更加方便的滑入轴套内。
在一些实施方式中,所述的易拆装门轴系统存在两组所述轴体滑动接触面,与两组所述轴体滑动接触面接触的两组所述轴体的平行切线之间的夹角为30至120度之间,并且任一组平行切线之间的最小距离与所述两个相对的轴套滑动接触面之间的距离之差都小于加工误差的2倍、3倍、4倍、或5倍。两组所述轴体的平行切线中任一组的两条平行线中至少有一条在轴体所在的圆柱体的内部与轴体滑动接触面接触,任一组所述轴体的最小平行切线距离小于所述轴体所在的圆柱体的直径,从而使得,所述轴体可以沿着任一组所述最小平行切线的方向经由所述轴套的侧开口滑入或滑出所述轴套,即可以从两个不同的角度实现所述门轴系统的拆装。所述两个相对的轴套滑动接触面之间的距离即为所述轴套侧开口的最小尺寸,所述任一组平行切线之间的最小距离(即最小平行切线距离)即为所述轴体在滑动方向上的最大尺寸,二者之差小于加工误差的2倍、3倍、4倍、或5倍,使得轴体经所述侧开口滑入轴套时实现二者更加紧密的配合。
在一些实施方式中,所述轴套的侧开口的外侧具有轴套滑动接触面扩口,所述扩口的宽度大于所述两个相对的轴套滑动接触面之间的距离。从而使得轴体能够经所述扩口引导滑入所述侧开口,更加便于安装。
在一些实施方式中,所述轴体滑动接触面的面积小于等于所述轴体转动接触面的面积。更大的轴体转动接触面积可以提供比较稳定的转动性能。
本申请还公开了采用前述任一项所述易拆装门轴系统的车载冰箱。所述车载冰箱将闭合状态的门体旋转一定角度后,通过轴体从轴套中滑出便可实现门体的拆卸,便于从车载冰箱内取物。在门体完全开启的状态下,通过对门体施加外力,可通过轴套的弹性形变扩张,使轴体脱出轴套实现门体的快速拆卸,尤其是门体在完全开启状态下受意外受力时,轴体脱出轴套使得门体和箱体分离,避免门体和箱体连接区域受力过大发生损坏,延长车载冰箱的使用寿命。
以上所述的范围可以单独使用或者组合使用。通过下面实施例,能够更容易理解本申请。
实施例
实施例1
参照图1至图3,本实施例公开了一种采用易拆装门轴系统连接的车载冰箱,其包括箱体10、门体20和限位装置30,所述箱体10上设置有两个轴体100,所述门体20上设置有两个轴套200,所述限位装置30为设置在门体20上的轴套200附近的凸起,所述箱体10和门体20通过相对设置的两组所述轴体100和轴套200连接(如图1所示),所述限位装置30能在门体20完全打开时抵靠在箱体10的上沿,从而限制轴体100在轴套200内的转动。
参照图4和图5,所述轴体100的外表面包含轴体滑动接触面110和轴体转动接触面120,其中,所述轴体转动接触面120与轴体所在的圆柱体的外表面重合(图5的虚线示出了该虚拟圆柱体的截面),所述轴体所在的圆柱体的直径为1.2cm,所述轴体滑动接触面110包括在轴体100上相对的两个相互平行的平面,与两个所述轴体滑动接触面110接触的所述轴体的平行切线之间的最小距离为0.9cm(称为最小平行切线距离,图5示出了所述轴体的平行切线),所述最小平行切线距离小于所述轴体所在的圆柱体的直径。
所述轴套200具有内开口210和侧开口220,所述侧开口220上具有两个相对的轴套滑动接触面221,用于与所述轴体滑动接触110配合,所述内开口210上具有轴套转动接触面211,用于与所述轴体转动接触面120配合,从而使得,所述轴体100可以沿着所述最小平行切线的方向经由所述轴套200的侧开口220滑入或滑出所述轴套200,所述轴套转动接触面211和所 述轴体转动接触面120相互配合,实现轴体100在轴套200内的转动。所述轴套的侧开口220的外侧具有轴套滑动接触面扩口222,所述扩口222的宽度大于所述两个相对的轴套滑动接触面221之间的距离,所述扩口222最大宽度为1.5cm,从而使得轴体100能够经所述扩口222引导进入所述侧开口220,更加便于安装。所述侧开口的开口尺寸与最小平行切线距离之差小于加工误差的2倍,即所述侧开口的开口尺寸略大于0.9cm,使得轴体轴套之间实现紧密配合。
所述轴套200采用弹性变形材料ABS塑料制成,使得所述侧开口在受力时因产生弹性形变扩张,两个相对的轴套滑动接触面之间的距离增大,当外力取消后,侧开口弹性形变消失。
参照图6和图7,所述轴体100滑入轴套200并转动一定角度后即形成稳固连接(图7从左至右依次示出了轴体从侧开口滑入轴套,轴套旋转后形成稳固连接的过程),只有将轴体轴套再次旋转回轴体进入轴套时刻的位置关系才可实现二者分离,从而实现门轴系统的快速拆装。采用该门轴系统的车载冰箱可实现门体的快速拆装,当开启门体20时,轴套200围绕轴体100转动,当旋转到特定角度时轴体100滑出即可拆下整个门体20,方便取出箱内物品,或者将门体20快速安装并形成稳固连接。
参照图8,在门体完全打开的情况下,门体20通过所述限位装置30抵靠在位于箱体10上沿的门体和箱体相互抵靠处301,从而限制轴体100在轴套200内的转动。此时,所述轴套200受门体本身的重力、限位装置、轴体和轴套相互作用下发生弹性变形,所述侧开口的弹性形变满足:L0+LG<d,其中,L0为所述侧开口的开口尺寸0.9cm,d为所述轴体所在的圆柱体的直径1.2cm,LG为侧开口在门体自身重力G作用下的弹性形变尺寸。此时,所述轴体无法脱出轴套。
参照图9和图10,在门体完全打开的情况下,门体的远端边缘处到门体和箱体相互抵靠处301的距离为40cm(即门体宽度,图中未示出),从门体和箱体相互抵靠处301到所述侧开口的距离(图9中虚线所示距离a)约为门体宽度的1/15。此时,若沿着门体开启方向在门体的远端边缘处施加30N的力F,则在所述侧开口和门体受力F的受力点之间形成以门体和箱体相互抵靠处301为支点的杠杆,力F通过杠杆作用于轴套侧开口处,并使侧开口发生弹性形变扩张,如图10(a)所示,所述侧开口的弹性形变能够满 足:L0+LG+F≥d,其中,LG+F指在门体完全打开时侧开口受门体自身重力G和外力F共同作用下的弹性形变尺寸,即LG+F≥0.3cm。此时门体能在轴套弹性形变的范围内脱出,达到“受力脱出”的效果,从而使门体从箱体上脱落,在方便拆卸的同时,避免轴套以及临近的门轴区域因受力过大而遭受不可逆变形或破坏,由于弹性形变的可逆性,这种脱出可反复进行,且门体脱落后,如图10(b)所示,侧开口的弹性形变消失,侧开口的开口尺寸恢复到0.9cm,轴体又可沿着所述最小平行切线的方向经由所述轴套的侧开口滑入轴套,并形成稳固连接。
实施例2
参照图11和图12,本实施例公开了一种采用易拆装门轴系统连接的车载冰箱,其包括箱体10、门体20和限位装置30,其设置和实施例1中一致。在所述轴套200的侧开口处开设有若干凹槽223,设置凹槽既降低了轴套侧开口处发生单位弹性形变所需的应力,又可在同等的弹性形变范围内增大轴套侧开口处的位移,即增大所述轴套的两个相对的轴套滑动接触面之间的距离,使得侧开口处的弹性形变尺寸增大,从而使得所述轴套的弹性变形能力增加。
在门体完全打开的情况下,门体20通过所述限位装置30抵靠在位于箱体10上沿的门体和箱体相互抵靠处301,从而限制轴体100在轴套200内的转动。此时,所述轴套200受门体本身的重力、限位装置、轴体和轴套相互作用下发生弹性变形,所述侧开口的弹性形变满足:L0+LG<d,其中,L0为所述侧开口的开口尺寸0.9cm,d为所述轴体所在的圆柱体的直径1.2cm,LG为侧开口在门体自身重力G作用下的弹性形变尺寸。此时,所述轴体无法脱出轴套。
参照图11,在门体完全打开的情况下,门体的远端边缘处201到门体和箱体相互抵靠处301的距离为40cm(即门体宽度),从门体和箱体相互抵靠处301到所述侧开口的距离(参照实施例1图9中虚线所示距离a)约为门体宽度的1/15。此时,若沿着门体开启方向在门体的远端边缘处201施加10N的力F,则在所述侧开口和门体受力F的受力点(即门体的远端边缘处201)之间形成以门体和箱体相互抵靠处301为支点的杠杆,力F通过杠杆作用于轴套侧开口处,并使侧开口发生弹性形变扩张,所述侧开口的弹性形 变能够满足:L0+LG+F≥d,其中,LG+F指在门体完全打开时侧开口受门体自身重力G和外力F共同作用下的弹性形变尺寸,即LG+F≥0.3cm。此时门体能在轴套弹性形变的范围内脱出,达到“受力脱出”的效果,从而使门体从箱体上脱落,在方便拆卸的同时,避免轴套以及临近的门轴区域因受力过大而遭受不可逆变形或破坏,由于弹性形变的可逆性,这种脱出可反复进行,且门体脱落后,侧开口的弹性形变消失,侧开口的开口尺寸恢复到0.9cm,轴体又可沿着所述最小平行切线的方向经由所述轴套的侧开口滑入轴套,并形成稳固连接。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (10)

  1. 一种易拆装门轴系统,其包括箱体和门体,所述箱体上设置有轴体,所述门体上设置有轴套,所述门体和/或箱体上设置有限位装置,其特征在于,
    所述轴体的外表面包含轴体滑动接触面和轴体转动接触面,其中,所述轴体转动接触面与轴体所在的圆柱体的外表面重合,所述轴体滑动接触面包括在轴体上相对的两个部分,与所述轴体滑动接触面接触的所述轴体的平行切线之间的最小距离(称为最小平行切线距离)小于所述轴体所在的圆柱体的直径,
    所述轴套具有内开口和侧开口,所述侧开口上具有两个相对的轴套滑动接触面,用于与所述轴体滑动接触面配合;所述内开口上具有轴套转动接触面,用于与所述轴体转动接触面配合,从而使得,所述轴体可以沿着所述最小平行切线的方向经由所述轴套的侧开口滑入或滑出所述轴套,所述轴套转动接触面和所述轴体转动接触面相互配合,实现轴体在轴套内的转动,
    所述轴套采用具有弹性变形的材料制成,
    所述门体和箱体通过所述轴体和轴套连接,所述限位装置在门体完全打开的情况下限制轴体在轴套内的转动,并且在门体完全打开的情况下:
    所述轴套的两个相对的轴套滑动接触面在受门体本身的重力、限位装置、轴体和轴套相互作用下发生弹性变形时的距离小于所述轴体所在的圆柱体的直径(L0+LG<d),所述轴套的两个相对的轴套滑动接触面在门体受力F、限位装置、轴体和轴套相互作用下发生弹性变形时的距离能够大于等于所述轴体所在的圆柱体的直径(L0+LG+F≥d)。
  2. 根据权利要求1所述的易拆装门轴系统,其特征在于,所述具有弹性变形的材料选自聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、ABS塑料、聚碳酸酯、尼龙、聚氨酯、聚四氟乙烯、聚对苯二甲酸乙二醇酯。
  3. 根据权利要求1所述的易拆装门轴系统,其特征在于,所述F作用于所述门体的远端,其大小为5-30牛顿。
  4. 根据权利要求1所述的易拆装门轴系统,其特征在于,在所述轴套的侧开口处开设凹槽,使得侧开口处的弹性形变尺寸增大。
  5. 根据权利要求1所述的易拆装门轴系统,其特征在于,所述限位装 置设置在靠近门体旋转轴的门体和/或箱体上,在门体完全打开的情况下,门体和箱体通过限位装置相互抵靠,在门体开启的旋转平面上,从门体和箱体相互抵靠处到所述侧开口的距离为门体宽度的1/20至1/5。
  6. 根据权利要求1所述的易拆装门轴系统,其特征在于,所述轴体滑动接触面包括平行的平面,或主要由一组或多组平行的平面组成,所述平行平面之间的距离为所述轴体所在的圆柱体的直径的1/3至5/6之间,优选2/5至2/3之间。
  7. 根据权利要求1所述的易拆装门轴系统,其特征在于,所述轴体滑动接触面包括一个或两个椭圆形表面,其中最小平行切线距离为所述轴体所在的圆柱体的直径的1/3至5/6之间。
  8. 根据权利要求1所述的易拆装门轴系统,其特征在于,存在两组所述轴体滑动接触面,与两组所述轴体滑动接触面接触的两组所述轴体的平行切线之间的夹角为30至120度之间,并且任一组平行切线之间的最小距离与所述两个相对的轴套滑动接触面之间的距离之差都小于加工误差的2倍、3倍、4倍、或5倍。
  9. 根据权利要求1所述的易拆装门轴系统,其特征在于,所述轴套的侧开口的外侧具有轴套滑动接触面扩口,所述扩口的宽度大于所述两个相对的轴套滑动接触面之间的距离。
  10. 采用权利要求1至9中任一项所述易拆装门轴系统的车载冰箱。
PCT/CN2023/091940 2022-05-11 2023-05-03 一种易拆装、受力脱出门轴系统和采用它的车载冰箱 WO2023216950A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210506665.4A CN114992963A (zh) 2022-05-11 2022-05-11 一种带有增强轴的把手系统及采用它的车载冰箱
CN202221113907.5 2022-05-11
CN202210506638.7A CN114991607A (zh) 2022-05-11 2022-05-11 一种易拆装、受力脱出门轴系统和采用它的车载冰箱
CN202210506665.4 2022-05-11
CN202221114117.9 2022-05-11
CN202210506638.7 2022-05-11
CN202221113907.5U CN217353994U (zh) 2022-05-11 2022-05-11 一种易拆装、受力脱出门轴系统和采用它的车载冰箱
CN202221114117.9U CN217330379U (zh) 2022-05-11 2022-05-11 一种带有增强轴的把手系统及采用它的车载冰箱

Publications (1)

Publication Number Publication Date
WO2023216950A1 true WO2023216950A1 (zh) 2023-11-16

Family

ID=88729643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091940 WO2023216950A1 (zh) 2022-05-11 2023-05-03 一种易拆装、受力脱出门轴系统和采用它的车载冰箱

Country Status (1)

Country Link
WO (1) WO2023216950A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688463A (ja) * 1992-09-09 1994-03-29 Sanyo Electric Co Ltd 扉開閉装置
CN102022889A (zh) * 2010-12-10 2011-04-20 海信科龙电器股份有限公司 一种冰箱吧台门后盖组件结构
CN202032819U (zh) * 2011-03-22 2011-11-09 泰州乐金电子冷机有限公司 可固定翻盖及装置此翻盖的冰箱
CN102494482A (zh) * 2011-12-05 2012-06-13 合肥美的荣事达电冰箱有限公司 用于冰箱的吧台内罩组件及具有它的冰箱
CN217330379U (zh) * 2022-05-11 2022-08-30 宁波婷微电子科技有限公司 一种带有增强轴的把手系统及采用它的车载冰箱
CN114991607A (zh) * 2022-05-11 2022-09-02 宁波婷微电子科技有限公司 一种易拆装、受力脱出门轴系统和采用它的车载冰箱
CN217353994U (zh) * 2022-05-11 2022-09-02 宁波婷微电子科技有限公司 一种易拆装、受力脱出门轴系统和采用它的车载冰箱
CN114992963A (zh) * 2022-05-11 2022-09-02 宁波婷微电子科技有限公司 一种带有增强轴的把手系统及采用它的车载冰箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688463A (ja) * 1992-09-09 1994-03-29 Sanyo Electric Co Ltd 扉開閉装置
CN102022889A (zh) * 2010-12-10 2011-04-20 海信科龙电器股份有限公司 一种冰箱吧台门后盖组件结构
CN202032819U (zh) * 2011-03-22 2011-11-09 泰州乐金电子冷机有限公司 可固定翻盖及装置此翻盖的冰箱
CN102494482A (zh) * 2011-12-05 2012-06-13 合肥美的荣事达电冰箱有限公司 用于冰箱的吧台内罩组件及具有它的冰箱
CN217330379U (zh) * 2022-05-11 2022-08-30 宁波婷微电子科技有限公司 一种带有增强轴的把手系统及采用它的车载冰箱
CN114991607A (zh) * 2022-05-11 2022-09-02 宁波婷微电子科技有限公司 一种易拆装、受力脱出门轴系统和采用它的车载冰箱
CN217353994U (zh) * 2022-05-11 2022-09-02 宁波婷微电子科技有限公司 一种易拆装、受力脱出门轴系统和采用它的车载冰箱
CN114992963A (zh) * 2022-05-11 2022-09-02 宁波婷微电子科技有限公司 一种带有增强轴的把手系统及采用它的车载冰箱

Similar Documents

Publication Publication Date Title
US20160341463A1 (en) Ice storage device and refrigerator
US2937042A (en) Shaft coupling
US7014225B1 (en) Snap connector for the coupling of pipes
CN102235440A (zh) 具有固态润滑的摩擦稳定嵌件的干式离合器
WO2023216950A1 (zh) 一种易拆装、受力脱出门轴系统和采用它的车载冰箱
US20090038119A1 (en) Friction hinge without applied grease
US10280683B1 (en) Mud motor apparatus and system
JP5605967B1 (ja) 偏心型バタフライ弁
US3748869A (en) Transmission coupling with spherical roller
US9609770B2 (en) Hinge torque fixing structure
CN217353994U (zh) 一种易拆装、受力脱出门轴系统和采用它的车载冰箱
US9285055B2 (en) Self lock mechanism for valve actuator
US7780386B2 (en) Torque-limited electrical connector
US1283787A (en) Flexible shaft and universal coupling therefor.
CN114991607A (zh) 一种易拆装、受力脱出门轴系统和采用它的车载冰箱
US20040178686A1 (en) Space-saving, damping coupling mechanism for worms in geared actuators
CN109356945B (zh) 一种新型挠性联轴器结构
US11815139B2 (en) PDM transmission with sliding contact between convex shaft pins and concave bearings surfaces
CN114992963A (zh) 一种带有增强轴的把手系统及采用它的车载冰箱
US1337642A (en) Shaft-coupling
US10408273B2 (en) Cardan shaft
US2870615A (en) Shaft coupling with symmetrical load distribution
CN108389738A (zh) 绝缘操作杆转接组件及绝缘操作装置
US942087A (en) Universal joint.
CN211115316U (zh) 一种水产品低温冰箱用铰链组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802722

Country of ref document: EP

Kind code of ref document: A1