WO2023216867A1 - 一种布袋除尘器脉冲阀的控制电路 - Google Patents
一种布袋除尘器脉冲阀的控制电路 Download PDFInfo
- Publication number
- WO2023216867A1 WO2023216867A1 PCT/CN2023/090373 CN2023090373W WO2023216867A1 WO 2023216867 A1 WO2023216867 A1 WO 2023216867A1 CN 2023090373 W CN2023090373 W CN 2023090373W WO 2023216867 A1 WO2023216867 A1 WO 2023216867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control circuit
- pulse valve
- terminal
- circuit
- column selection
- Prior art date
Links
- 239000011159 matrix material Substances 0.000 claims abstract description 111
- 239000000428 dust Substances 0.000 claims description 49
- 238000010276 construction Methods 0.000 abstract description 8
- 230000007547 defect Effects 0.000 abstract 1
- 238000003860 storage Methods 0.000 description 29
- 238000010586 diagram Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/42—Auxiliary equipment or operation thereof
- B01D46/44—Auxiliary equipment or operation thereof controlling filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/02—Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/02—Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
- B01D46/04—Cleaning filters
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
Definitions
- the present application relates to the technical field of pulse valve control for bag dust collectors, and specifically relates to a control circuit for the pulse valve of bag dust collectors.
- the pulse bag dust collector is a new and improved high-efficiency pulse bag dust collector based on the bag dust collector.
- the modified pulse bag dust collector retains the high purification efficiency and large gas processing capacity. , stable performance, easy operation, long filter bag life and small maintenance workload.
- the existing bag dust collector pulse valve control has the following problems: (1) Single point control of the bag dust collector pulse valve, that is, using a point-to-point control scheme, triggering a pulse valve through a switching output point switch of the PLC/DCS module, but due to A large number of pulse valves requires a large number of PLC/DCS modules, which increases a lot of production and construction workload in terms of control system construction, control cabinet production, cabinet installation, construction debugging, etc., especially the waste of cable materials and construction materials. Labor, etc. are not conducive to the cost and construction progress of the project. At the same time, a lot of resources are wasted, and it will also increase the workload of future equipment maintenance. (2) Bag dust collector pulse valve matrix control uses a matrix circuit composed of intermediate relay groups to perform group work.
- Pulse controller or fieldbus control requires a local control box and has extremely high operating environment and communication requirements.
- the embodiment of the present application provides a control circuit for a pulse valve of a bag dust collector.
- the pulse valve of the bag dust collector includes multiple chamber pulse valve groups.
- Each chamber pulse valve group includes multiple pulse valves, including: a control module, a row selector Matrix control circuit and column selection matrix control circuit, wherein the control module includes two input terminals, a plurality of first output terminals and a plurality of second output terminals, and the first input terminal of the control module is connected to the positive power supply terminal of the external power supply, The second input terminal of the control module is connected to the negative power supply terminal of the external power supply; the row selection matrix control circuit has multiple input terminals and multiple output terminals, and each input terminal of the row selection matrix control circuit is connected to a first terminal of the control module.
- the output terminal is connected; the column selection matrix control circuit includes a common input terminal, a common output terminal, multiple non-public input terminals and multiple non-public output terminals.
- the common input terminal of the column selection matrix control circuit and the row selection matrix control circuit are One output end is connected, the common output end of the column selection matrix control circuit is connected to the first end of each pulse valve of a warehouse pulse valve group, and each non-common input end of the column selection matrix control circuit is connected to one of the control modules.
- the row selection matrix control circuit includes: multiple row selection control circuits, wherein the input end of each row selection control circuit is connected to a first output end of the control module, and the input end of each row selection control circuit is connected to a first output end of the control module.
- the output terminal is connected to the common input terminal of a column selection matrix control circuit.
- the row selection control circuit includes: a first diode and a first fuse, wherein the cathode of the first diode is connected to a first output terminal of the control module, and the anode of the first diode The first end of the first fuse is connected to the second end of the first fuse and the common input end of a column selection matrix control circuit.
- the column selection matrix control circuit includes: a common circuit and a plurality of column selection control circuits, wherein the input end of the common circuit is connected to the first output end of the row selection matrix control circuit, and the output end of the common circuit is connected to a The first end of each pulse valve of the warehouse pulse valve group is connected; the input end of each column selection control circuit is connected to a second output end of the control module, and the output end of each column selection control circuit is connected to the same warehouse The second end of one pulse valve of the chamber pulse valve group is connected.
- each column selection control circuit includes: a second diode and a second fuse, wherein the anode of the second diode is connected to a second output terminal of the control module, and the second diode The cathode is connected to the first end of the second fuse; the second end of the second fuse is connected to the second end of a pulse valve of the same chamber pulse valve group.
- each column selection control circuit further includes: a freewheeling circuit, wherein the first end of the freewheeling circuit is connected to the cathode of the second diode, and the second end of the freewheeling circuit is connected to the input of the common circuit. terminals and output terminals.
- each freewheeling circuit includes: a freewheeling resistor and a freewheeling diode, wherein the cathode of the freewheeling diode is connected to the cathode of the second diode through the freewheeling resistor, and the anode of the freewheeling diode is connected to the common circuit. input and output connections.
- the freewheeling diode is a light emitting diode.
- the column selection matrix control circuit further includes: a third diode, wherein the anode of the third diode is connected to the input terminal and the output terminal of the common circuit, and the cathode of the third diode is connected to each The second terminal of the freewheeling circuit is connected.
- the control circuit of the pulse valve of the bag dust collector provided by this application is equipped with a row selection matrix control circuit and a column selection matrix control circuit.
- the control module is connected to the negative power supply terminal of the external power supply by controlling the corresponding input terminal of the row selection matrix control circuit. to select the corresponding chamber pulse valve group; the control module connects the corresponding non-public input terminal of the corresponding column selection matrix control circuit to the positive power supply terminal of the external power supply to select the corresponding pulse valve, thereby realizing the control of the pulse valve.
- the pulse valve is electrically activated, overcoming the single-point control of the pulse valve in the bag dust collector in the prior art. This results in the disadvantages of heavy investment in electrical equipment, large construction projects, and high labor costs.
- the control circuit of the pulse valve of the bag dust collector provided by this application has a first diode in the reverse direction, a second diode in the forward direction, and two fuses to effectively prevent the pulse valve from malfunctioning and short-circuit damage. ;
- Add a freewheeling circuit, and the third diode of the freewheeling circuit is a light-emitting diode, thereby increasing the effective feedback monitoring function for each pulse action, and fully releasing the residual induced current after the pulse valve action, allowing the pulse valve switch to be controlled on and off. Ventilation time control is more precise.
- Figure 1 is a schematic diagram of a specific example of a pulse valve for a bag dust collector provided by an embodiment of the present application
- FIG. 2 is a schematic diagram of a specific example of the control circuit of the pulse valve of the bag dust collector provided by the embodiment of the present application;
- Figure 4 is a specific circuit structure diagram of the row selection control circuit provided by the embodiment of the present application.
- FIG. 5 is a schematic diagram of another specific example of the control circuit of the pulse valve of the bag dust collector provided by the embodiment of the present application;
- Figure 6 is a specific circuit structure diagram of the column selection control circuit provided by the embodiment of the present application.
- FIG. 7 is a schematic diagram of another specific example of the control circuit of the pulse valve of the bag dust collector provided by the embodiment of the present application.
- connection should be understood in a broad sense.
- connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary; it can also be an internal connection between two components; it can be a wireless connection or a wired connection connect.
- connection or integral connection
- connection or integral connection
- connection can be a mechanical connection or an electrical connection
- it can be a direct connection or an indirect connection through an intermediary
- it can also be an internal connection between two components
- it can be a wireless connection or a wired connection connect.
- An embodiment of the present application provides a control circuit for a pulse valve of a bag dust collector.
- the pulse valve of the bag dust collector includes multiple chamber pulse valve groups, and each chamber pulse valve group includes multiple pulse valves.
- control circuit of the pulse valve of the bag dust collector in the embodiment of the present application includes: control module 1, row selection matrix control circuit 2, and column selection matrix control circuit 3.
- the control module 1 includes two input terminals, a plurality of first output terminals and a plurality of second output terminals.
- the first input terminal of the control module 1 is connected to the positive power supply terminal of the external power supply.
- the second input terminal is connected to the negative power supply terminal of the external power supply;
- the row selection matrix control circuit 2 has multiple input terminals and multiple output terminals, and each input terminal of the row selection matrix control circuit 2 is connected to a first terminal of the control module 1
- the output terminal is connected;
- the column selection matrix control circuit 3 includes a common input terminal, a common output terminal, a plurality of non-public input terminals and a plurality of non-public output terminals.
- the input terminals and output terminals of the row selection matrix control circuit 2 in the embodiment of the present application appear in pairs, and the number of input terminals and the number of output terminals of the row selection matrix control circuit 2 are consistent with the chamber pulse valve included in the bag dust collector.
- each column selection matrix control circuit 3 corresponds to a bin pulse valve group, that is, the number of column selection matrix control circuits 3 is the same as the number of bin pulse valve groups, and the non-common input of each column selection matrix control circuit 3 Terminals and non-public output terminals appear in pairs, and the number of non-public input terminals and the number of non-common output terminals of each column selection matrix control circuit 3 is the same as the number of pulse valves contained in its corresponding chamber pulse valve group.
- both storage pulse valve group #A and storage pulse valve group #B contain 3 pulses.
- the control module 1 in the embodiment of the present application includes two first output terminals and two groups of second output terminals, each group of second output terminals includes 3 second output terminals, and the row selection matrix control circuit 2 includes 2 Input terminal and two output terminals.
- the embodiment of the present application includes two column selection matrix control circuits 3 (column selection matrix control circuit #31 and column selection matrix control circuit #32).
- the common input terminal of column selection matrix control circuit #31 Connected to an output end of row selection matrix control circuit 2, the common output end of column selection matrix control circuit #31 is connected to the first end of each pulse valve of storage pulse valve group #A, and the common output end of column selection matrix control circuit #31 is connected to the first end of each pulse valve of storage pulse valve group #A.
- Each non-public input terminal is connected to the corresponding second output terminal in a group of second output terminals of the control module 1, and each non-public output terminal of the column selection matrix control circuit #31 is connected to the corresponding pulse of the storage pulse valve group #A The second end of the valve is connected.
- the common input end of the column selection matrix control circuit #32 is connected to an output end of the row selection matrix control circuit 2, and the common output end of the column selection matrix control circuit #32 is connected to the storage pulse valve group.
- the first end of each pulse valve of #B is connected, and each non-public input end of the column selection matrix control circuit #32 is connected to the corresponding second output end in a set of second output ends of the control module 1.
- the column selection matrix Each non-common output end of the control circuit #32 is connected to the second end of the corresponding pulse valve of the storage pulse valve group #B.
- control module 1 controls the corresponding input terminal of the row selection matrix control circuit 2 to connect with the negative power supply terminal of the external power supply to select the corresponding warehouse pulse valve group; the control module 1 controls the corresponding column selection matrix control circuit 3
- the corresponding non-public input terminal is connected to the positive power supply terminal of the external power supply to select the corresponding pulse valve.
- control module 1 of the embodiment of the present application performs row positioning of the pulse valve to be controlled by strobing the internal circuit of the row matrix control circuit, and performs column positioning of the pulse valve to be controlled by strobing the internal circuit of the column matrix control circuit.
- the bag dust collector includes 2 storage pulse valve groups (storage pulse valve group #A and storage pulse valve group #B)
- the storage pulse valve group #A includes 3 pulse valves (pulse valve #A1, pulse valve Valve #A2, pulse valve #A3)
- storage pulse valve group #B include 3 pulse valves (pulse valve #B1, pulse valve #B2, pulse valve #B3)
- column selection matrix control circuit #31 and storage pulse valve group Corresponding to #A, column selection matrix control circuit #32 corresponds to storage pulse valve group #B.
- control module 1 first controls the connection between row selection matrix control circuit 2 and column selection matrix control circuit #31.
- the output terminal connected to the common input terminal is connected to the negative power supply terminal of the external power supply.
- the internal circuit between the non-public output terminal and the non-common input terminal of control circuit #31 only has one-way conductivity and no switching properties. Therefore, as long as the non-public input terminal is connected to the positive power supply terminal of the external power supply, the corresponding The non-public output end is connected to the positive power supply end of the external power supply. Therefore, the second end of the pulse valve #A1 is connected to the positive power supply end of the external power supply through the column selection matrix control circuit #31. At this point, the control of the pulse valve #A1 is realized. Column positioning. After the above process, the first end and the second end of the pulse valve #11 are connected to the negative power supply end and the positive power supply end of the external power supply respectively, and the pulse valve #A1 is electrically activated.
- the row selection matrix control circuit 2 includes: multiple row selection control circuits 21 , wherein the input end of each row selection control circuit 21 is connected to a first input terminal of the control module 1 . The output terminal is connected, and the output terminal of each row selection control circuit 21 is connected to the common input terminal of a column selection matrix control circuit 3 .
- the number of row selection control circuits 21 in the embodiment of the present application is the same as the number of pulse valve groups in the bin.
- the control module 1 gates the corresponding row selection control circuit 21 so that the pulses in the corresponding bin pulse valve group are
- the first end of the valve is connected to the negative power supply end of the external power supply.
- the number of row selection control circuits 21 is 2 (row selection control circuit #21 and row selection control circuit #22), wherein row selection control circuit #21 corresponds to storage pulse valve group #A, and row selection control circuit #22 corresponds to storage pulse valve group #B.
- the cathode of the first diode D1 of the row selection control circuit 21 is connected to the negative supply terminal of the external power supply, and the first fuse of the row selection control circuit 21
- the second end of FR1 is connected to the first ends of all pulse valves in the chamber pulse valve group corresponding to the row selection control circuit 21, thereby connecting the first ends of all pulse valves in the selected chamber pulse valve group.
- the terminal is connected to the negative power supply terminal of the external power supply.
- the first diode D1 is set in the reverse direction to ensure that the direction of the operating current can only flow from the output end of the row selection control circuit 21 to its input end, and the current flows in one direction, effectively preventing the pulse valve from malfunctioning.
- the column selection matrix control circuit 3 includes: a common circuit 31 and a plurality of column selection control circuits 32 .
- the input end of the common circuit 31 is connected to the first output end of the row selection matrix control circuit 2, and the output end of the common circuit 31 is connected to the first end of each pulse valve of a chamber pulse valve group;
- the input end of each column selection control circuit 32 is connected to a second output end of the control module 1, and the output end of each column selection control circuit 32 is connected to the second end of a pulse valve of the same chamber pulse valve group.
- the common circuit 31 in the embodiment of the present application is a common line, which directly connects the common input terminal and the common output terminal.
- the common input terminal is connected to the negative power supply terminal of the external power supply through the row selection control circuit 21, the corresponding warehouse
- the first ends of all the pulse valves in the pulse valve group are connected to the negative power supply end of the external power supply through the common output end, the common input end, and the row selection control circuit 21.
- One column selection matrix control circuit 3 in the embodiment of the present application corresponds to one chamber pulse valve group, and the number of column selection control circuits 32 corresponds to the number of pulse valves in the chamber pulse valve group.
- a bag dust collector It includes 2 storage pulse valve groups (storage pulse valve group #A and storage pulse valve group #B)
- the number of row selection control circuits 21 is 2 (row selection control circuit #21 and row selection control circuit #22)
- the number of column selection matrix control circuits 3 is 2 (column selection matrix control circuit #31 and column selection matrix control circuit #32), among which, row selection control circuit #21, column selection matrix control circuit #31 and storage pulse valve Group #A corresponds, row selection control circuit #22, column selection matrix control circuit #32 corresponds to storage pulse valve group #B.
- the control module 1 first connects the input terminal of the row selection control circuit #21 to the negative power supply terminal of the external power supply.
- the first pulse valve #A1 ⁇ pulse valve #A3
- the terminal is connected to the negative power supply terminal of the external power supply through the common circuit 31 of the column selection matrix control circuit #31 and the row selection control circuit #21 to realize the row positioning of the pulse valve #A1, and then the control module 1 switches the column selection control circuit #321
- the input end of the pulse valve #A1 is connected to the positive power supply end of the external power supply.
- the second end of the pulse valve #A1 is connected to the positive power supply end of the external power supply through the column selection control circuit #321, and the pulse valve #A1 is electrically activated.
- each column selection control circuit 32 includes: a second diode D2 and a second fuse FR2, wherein the anode of the second diode D2 is connected to the anode of the control module 1 A second output terminal is connected, the cathode of the second diode D2 is connected to the first terminal of the second fuse FR2; the second terminal of the second fuse FR2 is connected to the third terminal of a pulse valve of the same chamber pulse valve group. Two-terminal connection.
- each freewheeling circuit includes: a freewheeling resistor R and a freewheeling diode D3, wherein the cathode of the freewheeling diode D3 is connected to the cathode of the second diode D2 through the freewheeling resistor R, The anode of the freewheeling diode D3 is connected to the input terminal and the output terminal of the common circuit 31 .
- the freewheeling circuit in the embodiment of the present application not only has a freewheeling function but also a monitoring function.
- the freewheeling diode D3 is a light-emitting diode to monitor the action state of the pulse valve.
- the column selection matrix control circuit 3 also includes: a third diode D4, wherein the anode of the third diode D4 is connected to the input terminal and the output terminal of the common circuit 31.
- the cathode of diode D4 is connected to the second terminal of each freewheel circuit.
- control circuit of the pulse valve of the bag dust collector also includes: a power supply 4, the two power supply terminals of the power supply 4 are connected correspondingly to the two input terminals of the control module 1.
- the function of the power supply 4 is equivalent to the above-mentioned external power supply, which will not be described again here.
- the control circuit of the pulse valve of the bag dust collector provided by the embodiment of the present application can be modularized by curing and encapsulating diode printed circuits, making the matrix control circuit simple in structure, convenient and reliable in installation, maintenance and replacement, and more adaptable with dustproof, anti-vibration and waterproof functions. Bag dust collector application environment.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Electronic Switches (AREA)
Abstract
一种布袋除尘器脉冲阀的控制电路,包括:控制模块(1)、行选矩阵控制电路(2)、列选矩阵控制电路(3),控制模块(1)通过控制行选矩阵控制电路(2)的相应输入端与外接电源的负极供电端连通,以选择对应的仓室脉冲阀组;控制模块(1)通过控制相应的列选矩阵控制电路(3)的相应的非公共输入端与外接电源的正极供电端连通,以选择对应的脉冲阀,从而实现对脉冲阀的行定位及列定位后,脉冲阀得电动作,克服现有技术中的布袋除尘器脉冲阀单点控制而造成电气设备投入多、建设工程量大和人工成本高的缺陷。
Description
相关申请的交叉引用
本申请要求在2022年05月07日提交中国专利局、申请号为202210494574.3、发明名称为“一种布袋除尘器脉冲阀的控制电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及布袋除尘器脉冲阀控制技术领域,具体涉及一种布袋除尘器脉冲阀的控制电路。
脉冲布袋除尘器是在布袋除尘器的基础上,改进的新型高效脉冲袋式除尘器,为了进一步完善脉冲袋式除尘器,改后的脉冲袋式除尘器保留了净化效率高、处理气体能力大、性能稳定、操作方便、滤袋寿命长和维修工作量小等优点。现有的布袋除尘器脉冲阀控制存在以下问题:(1)布袋除尘器脉冲阀单点控制,即采用点对点控制方案,通过PLC/DCS模块的一个开关量输出点开关触发一个脉冲阀,但由于脉冲阀数量较多,所需PLC/DCS模块数量就多,在控制系统搭建,控制柜制作,柜体安装,施工调试等方面增加很多的制作和施工工作量,尤其浪费电缆材料,施工材料,人工等,不利于工程的造价与施工进展,同时浪费很多资源,对日后设备维护也增加不少的工作量。(2)布袋除尘器脉冲阀矩阵控制,采用中间继电器组组成的矩阵电路,进行分组工作,虽然一定程度上减少了控制中的PLC/DCS输出点,但在传统的矩阵电路中容易造成脉冲阀的误动作,因此在每一脉冲阀的回路中串联了一个二极管,根据二极管的单向导通性,有效解决了脉冲阀的误动作,但该种电路无法监控当前脉冲阀的工作状态,且无法释放脉冲阀动作后残余感应电流,导致二极管工作寿命严重缩短,且无法毫秒级精确控制脉冲阀开关时间,严重影响除尘器的清灰效果。(3)
脉冲控制仪或现场总线控制,需要就地设置控制箱,且对运行环境及通讯要求极高,但除尘器顶部运行环境存在高灰尘、大振动的特点,假设就地控制箱通讯出现故障,该控制箱内所有脉冲阀都无法正常工作,虽然能解决部分材料及设备问题,但仍然未解决可靠性和精确性的问题。
发明内容
因此,本申请的目的在于提供一种布袋除尘器脉冲阀的控制电路,以克服现有技术中的布袋除尘器脉冲阀单点控制而造成电气设备投入多、建设工程量大和人工成本高的缺陷。
为达到上述目的,本申请提供如下技术方案:
本申请实施例提供一种布袋除尘器脉冲阀的控制电路,布袋除尘器脉冲阀包括多个仓室脉冲阀组,每个仓室脉冲阀组包括多个脉冲阀,包括:控制模块、行选矩阵控制电路、列选矩阵控制电路,其中,控制模块包括两个输入端、多个第一输出端及多个第二输出端,控制模块的第一输入端与外接电源的正极供电端连接,控制模块的第二输入端与外接电源的负极供电端连接;行选矩阵控制电路具有多个输入端及多个输出端,行选矩阵控制电路的每个输入端均与控制模块的一个第一输出端连接;列选矩阵控制电路包括一个公共输入端、一个公共输出端、多个非公共输入端及多个非公共输出端,列选矩阵控制电路的公共输入端与行选矩阵控制电路的一个输出端连接,列选矩阵控制电路的公共输出端与一个仓室脉冲阀组的每个脉冲阀的第一端连接,列选矩阵控制电路的每个非公共输入端均与控制模块的一个第二输出端连接,列选矩阵控制电路的每个非公共输出端与同一个仓室脉冲阀组的一个脉冲阀的第二端连接;控制模块通过控制行选矩阵控制电路的相应输入端与外接电源的负极供电端连通,以选择对应的仓室脉冲阀组;控制模块通过控制相应的列选矩阵控制电路的相应的非公共输入端与外接电源的正极供电端连通,以选择对应的脉冲阀。
在一实施例中,行选矩阵控制电路包括:多个行选控制电路,其中,每个行选控制电路的输入端均与控制模块的一个第一输出端连接,每个行选控制电路的输出端与一个列选矩阵控制电路的公共输入端连接。
在一实施例中,行选控制电路包括:第一二极管及第一熔断器,其中,第一二极管的阴极与控制模块的一个第一输出端连接,第一二极管的阳极
与第一熔断器的第一端连接,第一熔断器的第二端与一个列选矩阵控制电路的公共输入端连接。
在一实施例中,列选矩阵控制电路包括:公共电路及多个列选控制电路,其中,公共电路的输入端与行选矩阵控制电路的第一输出端连接,公共电路的输出端与一个仓室脉冲阀组的每个脉冲阀的第一端连接;每个列选控制电路的输入端均与控制模块的一个第二输出端连接,每个列选控制电路的输出端与同一个仓室脉冲阀组的一个脉冲阀的第二端连接。
在一实施例中,每个列选控制电路包括:第二二极管及第二熔断器,其中,第二二极管的阳极与控制模块的一个第二输出端连接,第二二极管的阴极与第二熔断器的第一端连接;第二熔断器的第二端与同一个仓室脉冲阀组的一个脉冲阀的第二端连接。
在一实施例中,每个列选控制电路还包括:续流电路,其中,续流电路的第一端与第二二极管的阴极连接,续流电路的第二端与公共电路的输入端、输出端连接。
在一实施例中,每个续流电路包括:续流电阻及续流二极管,其中,续流二极管的阴极通过续流电阻与第二二极管的阴极连接,续流二极管的阳极与公共电路的输入端、输出端连接。
在一实施例中,续流二极管为发光二极管。
在一实施例中,列选矩阵控制电路还包括:第三二极管,其中,第三二极管的阳极与公共电路的输入端、输出端连接,第三二极管的阴极与每个续流电路的第二端连接。
在一实施例中,布袋除尘器脉冲阀的控制电路还包括:供电电源,供电电源的两个供电端与控制模块的两个输入端对应连接。
本申请技术方案,具有如下优点:
1.本申请提供的布袋除尘器脉冲阀的控制电路,设置行选矩阵控制电路及列选矩阵控制电路,控制模块通过控制行选矩阵控制电路的相应输入端与外接电源的负极供电端连通,以选择对应的仓室脉冲阀组;控制模块通过控制相应的列选矩阵控制电路的相应的非公共输入端与外接电源的正极供电端连通,以选择对应的脉冲阀,从而实现对脉冲阀的行定位及列定位后,脉冲阀得电动作,克服现有技术中的布袋除尘器脉冲阀单点控制而
造成电气设备投入多、建设工程量大和人工成本高的缺陷。
2.本申请提供的布袋除尘器脉冲阀的控制电路,反向设置第一二极管、正向设置第二二极管,并设置两个熔断器从而有效防止脉冲阀的误动作和短路损坏;增加续流电路,续流电路的第三二极管为发光二极管,从而增加每次脉冲动作得到有效反馈监控功能,且充分释放脉冲阀动作后存在残余感应电流,使得控制脉冲阀开关通断通气时间控制更加精确。
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的布袋除尘器脉冲阀的一个具体示例的示意图;
图2为本申请实施例提供的布袋除尘器脉冲阀的控制电路的一个具体示例的示意图;
图3为本申请实施例提供的布袋除尘器脉冲阀的控制电路的另一个具体示例的示意图;
图4为本申请实施例提供的行选控制电路的具体电路结构图;
图5为本申请实施例提供的布袋除尘器脉冲阀的控制电路的另一个具体示例的示意图;
图6为本申请实施例提供的列选控制电路的具体电路结构图;
图7为本申请实施例提供的布袋除尘器脉冲阀的控制电路的另一个具体示例的示意图。
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例
本申请实施例提供一种布袋除尘器脉冲阀的控制电路,如图1所示,布袋除尘器脉冲阀包括多个仓室脉冲阀组,每个仓室脉冲阀组包括多个脉冲阀。
如图2所示,本申请实施例的布袋除尘器脉冲阀的控制电路包括:控制模块1、行选矩阵控制电路2、列选矩阵控制电路3。
如图2所示,控制模块1包括两个输入端、多个第一输出端及多个第二输出端,控制模块1的第一输入端与外接电源的正极供电端连接,控制模块1的第二输入端与外接电源的负极供电端连接;行选矩阵控制电路2具有多个输入端及多个输出端,行选矩阵控制电路2的每个输入端均与控制模块1的一个第一输出端连接;列选矩阵控制电路3包括一个公共输入端、一个公共输出端、多个非公共输入端及多个非公共输出端,列选矩阵控制电路3的公共输入端与行选矩阵控制电路2的一个输出端连接,列选矩阵控制电路3的公共输出端与一个仓室脉冲阀组的每个脉冲阀的第一端连接,列选矩阵控制电路3的每个非公共输入端均与控制模块1的一个第二输出端连接,列选矩阵控制电路3的每个非公共输出端与同一个仓室脉
冲阀组的一个脉冲阀的第二端连接。
具体地,本申请实施例的行选矩阵控制电路2的输入端与输出端成对出现,且行选矩阵控制电路2的输入端数量及其输出端数量与布袋除尘器所包含的仓室脉冲阀组数量相同,每个列选矩阵控制电路3对应一个仓室脉冲阀组,即列选矩阵控制电路3的数量与仓室脉冲阀组数量相同,每个列选矩阵控制电路3的非公共输入端与非公共输出端成对出现,且每个列选矩阵控制电路3的非公共输入端数量与非公共输出端数量,与其所对应的仓室脉冲阀组所包含的脉冲阀数量相同。
示例性地,若布袋除尘器内包括2个仓储脉冲阀组(仓储脉冲阀组#A及仓储脉冲阀组#B),仓储脉冲阀组#A及仓储脉冲阀组#B均包含3个脉冲阀,则本申请实施例的控制模块1包括两个第一输出端,两组第二输出端,每组第二输出端均包含3个第二输出端,行选矩阵控制电路2包括2个输入端、2个输出端,本申请实施例包括两个列选矩阵控制电路3(列选矩阵控制电路#31及列选矩阵控制电路#32),列选矩阵控制电路#31的公共输入端与行选矩阵控制电路2的一个输出端连接,列选矩阵控制电路#31的公共输出端与仓储脉冲阀组#A的每个脉冲阀的第一端连接,列选矩阵控制电路#31的每个非公共输入端与控制模块1的一组第二输出端内的对应第二输出端连接,列选矩阵控制电路#31的每个非公共输出端与仓储脉冲阀组#A的相应脉冲阀的第二端连接,同理,列选矩阵控制电路#32的公共输入端与行选矩阵控制电路2的一个输出端连接,列选矩阵控制电路#32的公共输出端与仓储脉冲阀组#B的每个脉冲阀的第一端连接,列选矩阵控制电路#32的每个非公共输入端与控制模块1的一组第二输出端内的对应第二输出端连接,列选矩阵控制电路#32的每个非公共输出端与仓储脉冲阀组#B的相应脉冲阀的第二端连接。
进一步地,控制模块1通过控制行选矩阵控制电路2的相应输入端与外接电源的负极供电端连通,以选择对应的仓室脉冲阀组;控制模块1通过控制相应的列选矩阵控制电路3的相应的非公共输入端与外接电源的正极供电端连通,以选择对应的脉冲阀。
具体地,本申请实施例的控制模块1通过选通行选矩阵控制电路2内部电路使得脉冲阀的第一端先与外接电源接通,然后再通过选通列选矩阵
控制电路内部电路使得脉冲阀的第二端再与外接电源接通。即本申请实施例的控制模块1通过矩阵的方式对全部脉冲阀进行控制,将每个仓室脉冲阀作为矩阵的一行,每个仓室脉冲阀所包含的脉冲阀作为该行的每列的元素,本申请实施例的控制模块1通过选通行矩阵控制电路内部电路,对待控脉冲阀进行行定位,通过选通列矩阵控制电路内部电路,对待控脉冲阀进行列定位。
示例性地,若布袋除尘器内包括2个仓储脉冲阀组(仓储脉冲阀组#A及仓储脉冲阀组#B),仓储脉冲阀组#A包含3个脉冲阀(脉冲阀#A1、脉冲阀#A2、脉冲阀#A3)及仓储脉冲阀组#B包含3个脉冲阀(脉冲阀#B1、脉冲阀#B2、脉冲阀#B3),列选矩阵控制电路#31与仓储脉冲阀组#A对应,列选矩阵控制电路#32与仓储脉冲阀组#B对应,当需要脉冲阀#A1动作时,首先控制模块1控制行选矩阵控制电路2中与列选矩阵控制电路#31的公共输入端连接的输出端,与外接电源的负极供电端接通,由于列选矩阵控制电路#31的公共输入端与公共输出端可以由一条公共线直连,因此,脉冲阀#A1~脉冲阀#A3的第一端均依次通过列选矩阵控制电路#31的输出端、列选矩阵控制电路#31的输入端、行选矩阵控制电路2与外接电源的负极供电端连通,至此实现对仓储脉冲阀组定位,即实现对脉冲阀#A1的行定位。然后控制模块1控制列选矩阵控制电路#31中与脉冲阀#A1的第二端连接的非公共输出端所对应的非公共输入端,与外接电源的正极供电端接通,由于列选矩阵控制电路#31的非公共输出端及非公共输入端之间的电路内部仅具有单向导电性、不具备开关性,因此只要非公共输入端与外接电源的正极供电端接通,则所对应的非公共输出端与外接电源的正极供电端接通,故,脉冲阀#A1的第二端通过列选矩阵控制电路#31与外接电源的正极供电端连通,至此实现对脉冲阀#A1的列定位。经过上述过程,脉冲阀#11的第一端、第二端分别与外接电源的负极供电端、正极供电端连接,脉冲阀#A1得电动作。
在一具体实施例中,如图3所示,行选矩阵控制电路2包括:多个行选控制电路21,其中,每个行选控制电路21的输入端均与控制模块1的一个第一输出端连接,每个行选控制电路21的输出端与一个列选矩阵控制电路3的公共输入端连接。
具体地,本申请实施例的行选控制电路21的数量与仓室脉冲阀组的数量相同,控制模块1通过选通相应的行选控制电路21,使得对应的仓室脉冲阀组内的脉冲阀的第一端与外接电源的负极供电端接通。
示例性地,若布袋除尘器内包括2个仓储脉冲阀组(仓储脉冲阀组#A及仓储脉冲阀组#B),则行选控制电路21的数量为2个(行选控制电路#21及行选控制电路#22),其中,行选控制电路#21与仓储脉冲阀组#A对应,行选控制电路#22与仓储脉冲阀组#B对应。
在一具体实施例中,如图4所示,行选控制电路21包括:第一二极管D1及第一熔断器FR1,其中,第一二极管D1的阴极(IN1端)与控制模块1的一个第一输出端连接,第一二极管D1的阳极与第一熔断器FR1的第一端连接,第一熔断器FR1的第二端(OUT1端)与一个列选矩阵控制电路3的公共输入端连接。
具体地,当控制模块1选通行选控制电路21时,该行选控制电路21的第一二极管D1的阴极与外接电源的负极供电端连通,该行选控制电路21的第一熔断器FR1的第二端与该行选控制电路21对应的仓室脉冲阀组内全部的脉冲阀的第一端连通,由此,将选定的仓室脉冲阀组内全部的脉冲阀的第一端与外接电源的负极供电端连通。此外,第一二极管D1反向设置,从而保证工作电流方向只能由行选控制电路21的输出端流向其输入端,电流单向流动,有效防止脉冲阀误动作。
在一具体实施例中,如图5所示,列选矩阵控制电路3包括:公共电路31及多个列选控制电路32。
如图5所示,公共电路31的输入端与行选矩阵控制电路2的第一输出端连接,公共电路31的输出端与一个仓室脉冲阀组的每个脉冲阀的第一端连接;每个列选控制电路32的输入端均与控制模块1的一个第二输出端连接,每个列选控制电路32的输出端与同一个仓室脉冲阀组的一个脉冲阀的第二端连接。
本申请实施例的公共电路31为一条公共线,其直接将公共输入端与公共输出端连通,当公共输入端通过行选控制电路21与外接电源的负极供电端连通后,所对应的仓室脉冲阀组内全部的脉冲阀的第一端通过公共输出端、公共输入端、行选控制电路21与外接电源的负极供电端连通。
本申请实施例的一个列选矩阵控制电路3与一个仓室脉冲阀组对应,列选控制电路32的数量与该仓室脉冲阀组的脉冲阀的数量对应,示例性地,若布袋除尘器内包括2个仓储脉冲阀组(仓储脉冲阀组#A及仓储脉冲阀组#B),则行选控制电路21的数量为2个(行选控制电路#21及行选控制电路#22),列选矩阵控制电路3的数量为2个(列选矩阵控制电路#31及列选矩阵控制电路#32),其中,行选控制电路#21、列选矩阵控制电路#31与仓储脉冲阀组#A对应,行选控制电路#22、列选矩阵控制电路#32与仓储脉冲阀组#B对应。若仓储脉冲阀组#A内包括3个脉冲阀(脉冲阀#A1~脉冲阀#A3),则列选矩阵控制电路#31包括3个列选控制电路32(列选控制电路#321~列选控制电路#323),列选控制电路#321~列选控制电路#323分别与脉冲阀#A1~脉冲阀#A3相对应。
基于上述举例,当需要脉冲阀#A1动作时,控制模块1首先将行选控制电路#21的输入端与外接电源的负极供电端连通,至此,脉冲阀#A1~脉冲阀#A3的第一端通过列选矩阵控制电路#31的公共电路31、行选控制电路#21与外接电源的负极供电端连通,实现对脉冲阀#A1的行定位,然后控制模块1将列选控制电路#321的输入端与外接电源的正极供电端连通,至此,脉冲阀#A1的第二端通过列选控制电路#321与外接电源的正极供电端连通,脉冲阀#A1得电动作。
在一具体实施例中,如图6所示,每个列选控制电路32包括:第二二极管D2及第二熔断器FR2,其中,第二二极管D2的阳极与控制模块1的一个第二输出端连接,第二二极管D2的阴极与第二熔断器FR2的第一端连接;第二熔断器FR2的第二端与同一个仓室脉冲阀组的一个脉冲阀的第二端连接。
具体地,本申请实施例的列选控制电路32中设置正向的第二二极管D2,保证工作电流方向只能由输入端流向输出端,电流单向流动,有效防止脉冲阀误动作。并且设置第二熔断器FR2,保证工作电流不过载短路等故障。
具体地,每个列选控制电路32还包括:续流电路,其中,续流电路的第一端与第二二极管D2的阴极连接,续流电路的第二端与公共电路31的输入端、输出端连接。其中,每次脉冲阀开关动作后,续流电路充分释放
脉冲阀动作后存在残余感应电流。
具体地,如图6所示,每个续流电路包括:续流电阻R及续流二极管D3,其中,续流二极管D3的阴极通过续流电阻R与第二二极管D2的阴极连接,续流二极管D3的阳极与公共电路31的输入端、输出端连接。
具体地,本申请实施例的续流回路不仅具有续流功能还具有监控功能,将续流二极管D3为发光二极管,以监控脉冲阀动作状态。
具体地,如图6所示,列选矩阵控制电路3还包括:第三二极管D4,其中,第三二极管D4的阳极与公共电路31的输入端、输出端连接,第三二极管D4的阴极与每个续流电路的第二端连接。
在一具体实施例中,如图7所示,布袋除尘器脉冲阀的控制电路还包括:供电电源4,供电电源4的两个供电端与控制模块1的两个输入端对应连接。其中,供电电源4的功能等同于上述外接电源,在此不再赘述。
本申请实施例提供的布袋除尘器脉冲阀的控制电路,可以通过固化封装二极管印刷电路模块化,使得矩阵式控制电路结构简单,安装检修替换方便可靠,具有防尘、防振、防水功能更加适应布袋除尘器应用环境。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请创造的保护范围之中。
Claims (10)
- 一种布袋除尘器脉冲阀的控制电路,所述布袋除尘器脉冲阀包括多个仓室脉冲阀组,每个仓室脉冲阀组包括多个脉冲阀,其特征在于,包括:控制模块、行选矩阵控制电路、列选矩阵控制电路,其中,所述控制模块包括两个输入端、多个第一输出端及多个第二输出端,所述控制模块的第一输入端与外接电源的正极供电端连接,所述控制模块的第二输入端与外接电源的负极供电端连接;所述行选矩阵控制电路具有多个输入端及多个输出端,所述行选矩阵控制电路的每个输入端均与所述控制模块的一个第一输出端连接;所述列选矩阵控制电路包括一个公共输入端、一个公共输出端、多个非公共输入端及多个非公共输出端,所述列选矩阵控制电路的公共输入端与所述行选矩阵控制电路的一个输出端连接,所述列选矩阵控制电路的公共输出端与一个仓室脉冲阀组的每个脉冲阀的第一端连接,所述列选矩阵控制电路的每个非公共输入端均与所述控制模块的一个第二输出端连接,所述列选矩阵控制电路的每个非公共输出端与同一个仓室脉冲阀组的一个脉冲阀的第二端连接;所述控制模块通过控制所述行选矩阵控制电路的相应输入端与外接电源的负极供电端连通,以选择对应的仓室脉冲阀组;所述控制模块通过控制相应的所述列选矩阵控制电路的相应的非公共输入端与外接电源的正极供电端连通,以选择对应的脉冲阀。
- 根据权利要求1所述的布袋除尘器脉冲阀的控制电路,其特征在于,所述行选矩阵控制电路包括:多个行选控制电路,其中,每个行选控制电路的输入端均与所述控制模块的一个第一输出端连接,每个所述行选控制电路的输出端与一个列选矩阵控制电路的公共输入端连接。
- 根据权利要求2所述的布袋除尘器脉冲阀的控制电路,其特征在于,所述行选控制电路包括:第一二极管及第一熔断器,其中,所述第一二极管的阴极与所述控制模块的一个第一输出端连接,所述第一二极管的阳极与所述第一熔断器的第一端连接,所述第一熔断器的第二端与一个列选矩阵控制电路的公共输入端连接。
- 根据权利要求1所述的布袋除尘器脉冲阀的控制电路,其特征在于,所述列选矩阵控制电路包括:公共电路及多个列选控制电路,其中,所述公共电路的输入端与所述行选矩阵控制电路的第一输出端连接,所述公共电路的输出端与一个仓室脉冲阀组的每个脉冲阀的第一端连接;每个所述列选控制电路的输入端均与所述控制模块的一个第二输出端连接,每个所述列选控制电路的输出端与同一个仓室脉冲阀组的一个脉冲阀的第二端连接。
- 根据权利要求4所述的布袋除尘器脉冲阀的控制电路,其特征在于,每个所述列选控制电路包括:第二二极管及第二熔断器,其中,所述第二二极管的阳极与所述控制模块的一个第二输出端连接,所述第二二极管的阴极与所述第二熔断器的第一端连接;所述第二熔断器的第二端与同一个仓室脉冲阀组的一个脉冲阀的第二端连接。
- 根据权利要求5所述的布袋除尘器脉冲阀的控制电路,其特征在于,每个所述列选控制电路还包括:续流电路,其中,所述续流电路的第一端与所述第二二极管的阴极连接,所述续流电路的第二端与所述公共电路的输入端、输出端连接。
- 根据权利要求6所述的布袋除尘器脉冲阀的控制电路,其特征在于,每个所述续流电路包括:续流电阻及续流二极管,其中,所述续流二极管的阴极通过所述续流电阻与所述第二二极管的阴极连接,所述续流二极管的阳极与所述公共电路的输入端、输出端连接。
- 根据权利要求7所述的布袋除尘器脉冲阀的控制电路,其特征在于,所述续流二极管为发光二极管。
- 根据权利要求6所述的布袋除尘器脉冲阀的控制电路,其特征在于,所述列选矩阵控制电路还包括:第三二极管,其中,所述第三二极管的阳极与所述公共电路的输入端、输出端连接,所述第三二极管的阴极与每个续流电路的第二端连接。
- 根据权利要求1-9任一项所述的布袋除尘器脉冲阀的控制电路,其特征在于,还包括:供电电源,所述供电电源的两个供电端与所述控制模块的两个输入端 对应连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210494574.3A CN114870531B (zh) | 2022-05-07 | 2022-05-07 | 一种布袋除尘器脉冲阀的控制电路 |
CN202210494574.3 | 2022-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023216867A1 true WO2023216867A1 (zh) | 2023-11-16 |
Family
ID=82674260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/090373 WO2023216867A1 (zh) | 2022-05-07 | 2023-04-24 | 一种布袋除尘器脉冲阀的控制电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114870531B (zh) |
WO (1) | WO2023216867A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114870531B (zh) * | 2022-05-07 | 2023-09-29 | 西安热工研究院有限公司 | 一种布袋除尘器脉冲阀的控制电路 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1216473A (en) * | 1967-01-31 | 1970-12-23 | Post Office | Electronic switching circuits |
US20090016038A1 (en) * | 2006-03-14 | 2009-01-15 | Omron Corporation | Matrix relay |
CN204147694U (zh) * | 2014-06-11 | 2015-02-11 | 光大环保技术研究院(深圳)有限公司 | 用于布袋除尘器的脉冲电磁阀控制电路 |
CN205461515U (zh) * | 2016-04-06 | 2016-08-17 | 北京龙电宏泰环保科技有限公司 | 一种用于布袋除尘器脉冲阀喷吹的冗余控制电路 |
CN208065990U (zh) * | 2018-03-20 | 2018-11-09 | 沈阳韩星自动化有限公司 | 布袋除尘器脉冲阀矩阵控制电路 |
CN109647073A (zh) * | 2018-12-29 | 2019-04-19 | 四川华宇环保有限公司 | 一种布袋除尘器矩阵控制电路 |
CN212548718U (zh) * | 2020-05-28 | 2021-02-19 | 江苏琥珀环境技术有限公司 | 基于矩阵模式的布袋除尘中的手动喷吹控制系统 |
CN113082869A (zh) * | 2021-04-29 | 2021-07-09 | 西安热工研究院有限公司 | 一种布袋除尘器矩阵式脉冲阀喷吹控制系统 |
CN114870531A (zh) * | 2022-05-07 | 2022-08-09 | 西安热工研究院有限公司 | 一种布袋除尘器脉冲阀的控制电路 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1422324A (en) * | 1971-12-21 | 1976-01-28 | Lucas Electrical Co Ltd | Process control apparatus |
CN200942320Y (zh) * | 2006-04-11 | 2007-09-05 | 福建龙湖环保科技有限公司 | 矩阵式离线清灰控制装置 |
CN101303576A (zh) * | 2008-06-16 | 2008-11-12 | 山东大学 | 基于矩阵输出的新型脉冲控制仪 |
CN202661832U (zh) * | 2012-07-09 | 2013-01-09 | 大连德维电子科技有限公司 | 布袋除尘器的电磁阀控制系统 |
CN207745630U (zh) * | 2017-12-15 | 2018-08-21 | 攀枝花钢城集团瑞天安全环保有限公司 | 袋式除尘器矩阵式清灰系统 |
-
2022
- 2022-05-07 CN CN202210494574.3A patent/CN114870531B/zh active Active
-
2023
- 2023-04-24 WO PCT/CN2023/090373 patent/WO2023216867A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1216473A (en) * | 1967-01-31 | 1970-12-23 | Post Office | Electronic switching circuits |
US20090016038A1 (en) * | 2006-03-14 | 2009-01-15 | Omron Corporation | Matrix relay |
CN204147694U (zh) * | 2014-06-11 | 2015-02-11 | 光大环保技术研究院(深圳)有限公司 | 用于布袋除尘器的脉冲电磁阀控制电路 |
CN205461515U (zh) * | 2016-04-06 | 2016-08-17 | 北京龙电宏泰环保科技有限公司 | 一种用于布袋除尘器脉冲阀喷吹的冗余控制电路 |
CN208065990U (zh) * | 2018-03-20 | 2018-11-09 | 沈阳韩星自动化有限公司 | 布袋除尘器脉冲阀矩阵控制电路 |
CN109647073A (zh) * | 2018-12-29 | 2019-04-19 | 四川华宇环保有限公司 | 一种布袋除尘器矩阵控制电路 |
CN212548718U (zh) * | 2020-05-28 | 2021-02-19 | 江苏琥珀环境技术有限公司 | 基于矩阵模式的布袋除尘中的手动喷吹控制系统 |
CN113082869A (zh) * | 2021-04-29 | 2021-07-09 | 西安热工研究院有限公司 | 一种布袋除尘器矩阵式脉冲阀喷吹控制系统 |
CN114870531A (zh) * | 2022-05-07 | 2022-08-09 | 西安热工研究院有限公司 | 一种布袋除尘器脉冲阀的控制电路 |
Also Published As
Publication number | Publication date |
---|---|
CN114870531B (zh) | 2023-09-29 |
CN114870531A (zh) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9837811B2 (en) | Power source apparatus formed by combining a plurality of modules | |
US11539212B2 (en) | Photovoltaic power generation system and photovoltaic power transmission method | |
WO2023216867A1 (zh) | 一种布袋除尘器脉冲阀的控制电路 | |
CN102664568A (zh) | 一种新型的针对三相交流电机运行方向控制的固态继电器及方法 | |
JP2014514899A5 (zh) | ||
CN112217260A (zh) | 一种蓄电池组充放电控制模块及控制方法 | |
CN217469748U (zh) | 一种可变换输出电源极性的驱动电路 | |
CN102768505A (zh) | 一种基于plc带隔离和旁路的数字信号驱动接口卡 | |
CN206790207U (zh) | 一种三电源冗余互备直流稳压电源系统 | |
CN116505632B (zh) | 电池充放电电路及控制系统与方法 | |
CN203589831U (zh) | 一种冗余热备份工业以太网交换机电源 | |
CN103236725A (zh) | 一种太阳能控制器控制电路的供电方法及其电路 | |
CN206461398U (zh) | 一种电池组正极端专用的三状态开关 | |
CN214850544U (zh) | 一种硬件控制逻辑优先的电池模组均衡电路 | |
KR102258823B1 (ko) | 메쉬 네트워크 연결 방식을 이용한 전기자동차 충전 장치 및 방법 | |
CN212085875U (zh) | Agv电池切换电路 | |
CN115579532A (zh) | 一种模块化锂电池系统 | |
CN214707281U (zh) | 一种电力路径自动切换控制装置 | |
CN109831201B (zh) | 一种单通道输入电路 | |
CN210652709U (zh) | 一种双母线充电电路及其系统 | |
CN221862801U (zh) | 一种多mppt光伏逆变器 | |
CN106786986B (zh) | 一种电池组正极端专用的三状态开关控制方法 | |
CN215580512U (zh) | 一种用于过程层的双电源工业交换机 | |
CN202565213U (zh) | 一种新型的针对三相交流电机运行方向控制的固态继电器 | |
CN206640693U (zh) | 一种用于工业重载摄像系统的控制板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23802641 Country of ref document: EP Kind code of ref document: A1 |