WO2023216780A1 - 一种梯级水光互补发电系统的调峰优化调度方法 - Google Patents

一种梯级水光互补发电系统的调峰优化调度方法 Download PDF

Info

Publication number
WO2023216780A1
WO2023216780A1 PCT/CN2023/086902 CN2023086902W WO2023216780A1 WO 2023216780 A1 WO2023216780 A1 WO 2023216780A1 CN 2023086902 W CN2023086902 W CN 2023086902W WO 2023216780 A1 WO2023216780 A1 WO 2023216780A1
Authority
WO
WIPO (PCT)
Prior art keywords
cascade
power generation
hydropower station
generation system
hydro
Prior art date
Application number
PCT/CN2023/086902
Other languages
English (en)
French (fr)
Inventor
周建
李杨
李大成
江薇
吴峰
项华伟
田耘
包逸凡
吴迪
李旭
史林军
黄文波
段兴林
林克曼
张艳青
Original Assignee
华能澜沧江水电股份有限公司
河海大学
中国电建集团贵阳勘测设计研究院有限公司
华能集团技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能澜沧江水电股份有限公司, 河海大学, 中国电建集团贵阳勘测设计研究院有限公司, 华能集团技术创新中心有限公司 filed Critical 华能澜沧江水电股份有限公司
Priority to US18/331,949 priority Critical patent/US20230367280A1/en
Publication of WO2023216780A1 publication Critical patent/WO2023216780A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to the technical field of optimal dispatching of multi-energy complementary power generation systems, and in particular to a peak-shaving optimization dispatching method for a cascade hydro-solar complementary power generation system.
  • the purpose of the present invention is to provide a peak-shaving optimization dispatching method for a cascade hydro-solar complementary power generation system, and to provide a unit combination power generation plan for the cascade hydro-solar complementary power generation system that meets the peak shaving requirements of the power grid.
  • the invention provides a peak-shaving optimization dispatching method for a cascade hydro-solar complementary power generation system, which includes:
  • the mixed integer linear model of the peak-shaving optimization dispatch of the cascade hydro-solar complementary power generation system is solved to obtain the scheduling plan of the cascade hydro-solar complementary power generation system.
  • the objective function for establishing the peak-shaving optimization dispatch of the cascade hydro-solar hybrid power generation system includes:
  • f is the maximum residual load of the receiving end power grid
  • Pload(t) is the load at time t
  • Pi is the load at time t
  • Pi is the load at time t
  • g(t) is the active output of the g-th generating unit in the i-th cascade hydropower station at time t
  • T is the total period of the dispatch cycle
  • Nh is the total number of cascade hydropower stations
  • Gi is the number of generating units included in the i-th cascade hydropower station.
  • ⁇ i,g is the hydropower conversion coefficient of the g-th generating unit in the i-th cascade hydropower station
  • Hi(t) is the power generation head of the unit in the i-th cascade hydropower station at time t
  • qi, g(t) is the power generation flow of the g-th generation unit in the i-th cascade hydropower station at time t
  • ui, g(t) are the operating status variables of the g-th generating unit in the i-th cascade hydropower station, which are 1 if they are turned on, otherwise they are 0 ;
  • yi, g(t) are respectively the start-up and shutdown operation variables of the g-th generating unit in the i-th cascade hydropower station at time t. If the unit performs the start-up operation, yi, g(t) is 1, otherwise it is yi, g(t) 0. If the unit performs the start-up operation, yi, g(t) is 1. Execute shutdown operation rules is 1, otherwise is 0; ⁇ i, g, ⁇ i, g are respectively the minimum start-up and minimum shutdown duration of the g-th generating unit in the i-th cascade hydropower station;
  • si(t) is the total abandoned water flow (m3/s) of the i-th cascade hydropower station at time t, is the upper limit of the abandoned water flow rate of the i-th cascade hydropower station;
  • Zi(t) is the water level of the reservoir corresponding to the i-th cascade hydropower station at time t, are the lower limit and upper limit of the reservoir water level corresponding to the i-th cascade hydropower station, respectively, taking the dead water level and normal water storage level of the reservoir;
  • Vi(t) is the water storage capacity of the reservoir corresponding to the i-th cascade hydropower station at time t
  • Ii(t) is the natural water flow of the i-th cascade hydropower station at time t
  • Ti-1 is the i-1th cascade The flow lag between the hydropower station and the i-th cascade hydropower station
  • ⁇ t is the length of a period within the dispatch period
  • Tailwater level-discharge flow relationship constraints :
  • linearization processing is performed on the constraints, including:
  • the McCormick convex envelope relaxation method is used to convert the hydropower unit output constraints into the following linear constraints:
  • K is the number of vibration zones of the g-th generating unit in the i-th cascade hydropower station
  • K+1 is the number of safe operation zones of the g-th generating unit in the i-th cascade hydropower station
  • is an indicator variable if the output of the g-th generating unit in the i-th cascade hydropower station at time t is within the k-th safe operation zone It is 1, otherwise it is 0, are respectively the upper and lower limits (MW) of the k-th safe operation zone of the g-th generating unit in the i-th cascade hydropower station, and satisfy
  • the mixed integer linear model of the peak-shaving optimization dispatch of the cascade hydro-solar complementary power generation system is solved to obtain the scheduling plan of the cascade hydro-solar complementary power generation system, including:
  • the CPLEX 12.9 solver is used to solve the mixed integer linear model of peak-shaving optimization dispatch of the cascade hydro-solar hybrid power generation system, and the active power output of each generating unit in the cascade hydropower station at each time is obtained.
  • the invention takes into account the unit combination of the hydropower station and the reservoir operation plan, can make full use of the easy-to-adjust characteristics of the hydropower unit to absorb photovoltaic output, and meet the peak regulation needs of the power grid, and has strong practicability.
  • Figure 1 is a diagram showing the peak-shaving optimization dispatch results of the cascade hydro-solar combined complementary power generation system in the embodiment of the present invention
  • Figure 2 is a unit combination result diagram of No. 1 hydropower station in the cascade hydropower station group in the embodiment of the present invention
  • Figure 3 is a unit combination result diagram of No. 2 hydropower station in the cascade hydropower station group in the embodiment of the present invention
  • Figure 4 is a unit combination result diagram of No. 3 hydropower station in the cascade hydropower station group in the embodiment of the present invention.
  • the invention provides a peak-shaving optimization dispatching method for a cascade hydro-solar complementary power generation system, which includes the following steps:
  • the objective function for the peak-shaving optimization dispatch of the cascade hydro-solar hybrid power generation system is established, including:
  • Pload(t) is the load (MW) at time t
  • Pi Pi
  • g(t) is the active output (MW) of the g-th generating unit in the i-th cascade hydropower station at time t
  • MW the photovoltaic power station at time t
  • T is the total period of the dispatch cycle
  • Nh is the total number of cascade hydropower stations
  • 1 ⁇ i ⁇ Nh Gi is the number of generating units included in the i-th cascade hydropower station, 1 ⁇ g ⁇ Gi.
  • ⁇ i, g is the hydropower conversion coefficient of the g-th generating unit in the i-th cascade hydropower station
  • Hi(t) is the power generation head (m) of the unit in the i-th cascade hydropower station at time t
  • qi, g(t ) is the power generation flow (m3/s) of the g-th generating unit in the i-th cascade hydropower station at time t
  • ui, g(t) are the operating status variables of the g-th generating unit in the i-th cascade hydropower station, which are 1 if they are turned on, otherwise they are 0 .
  • yi, g(t) are respectively the start-up and shutdown operation variables of the g-th generating unit in the i-th cascade hydropower station at time t. If the unit performs the start-up operation, yi, g(t) is 1, otherwise it is yi, g(t) 0. If the unit performs the start-up operation, yi, g(t) is 1. Execute shutdown operation rules is 1, otherwise is 0; ⁇ i, g, ⁇ i, g are respectively the minimum start-up and minimum shutdown duration of the g-th generating unit in the i-th cascade hydropower station.
  • si(t) is the total abandoned water flow (m3/s) of the i-th cascade hydropower station at time t, is the upper limit of the abandoned water flow rate (m3/s) of the i-th cascade hydropower station.
  • Zi(t) is the water level (m) of the reservoir corresponding to the i-th cascade hydropower station at time t, are the lower limit and upper limit (m) of the reservoir water level corresponding to the i-th cascade hydropower station, respectively, taking the dead water level and normal water storage level of the reservoir respectively.
  • Vi(t) is the water storage capacity (m3) of the reservoir corresponding to the i-th cascade hydropower station at time t
  • Ii(t) is the natural water flow (m3/s) of the i-th cascade hydropower station at time t
  • Ti -1 is the flow lag (h) between the i-1th cascade hydropower station and the i-th cascade hydropower station
  • ⁇ t is the length of a period within the dispatch period (s).
  • This functional relationship can be approximated by establishing a piecewise linear function based on the actual data of water level-storage capacity.
  • Tailwater level-discharge flow relationship constraints :
  • constraints are linearized and a mixed integer linear model for peak-shaving optimization scheduling of the cascade hydro-solar hybrid power generation system is established, including:
  • hydropower unit output constraints The hydropower unit output constraints, unit vibration zone limit constraints, water level-storage capacity relationship constraints, and tail water level-discharge flow relationship constraints are linearized respectively.
  • K is the number of vibration zones of the g-th generating unit in the i-th cascade hydropower station
  • K+1 is the number of safe operation zones of the g-th generating unit in the i-th cascade hydropower station
  • is an indicator variable it is 1 if the output of the g-th generating unit in the i-th cascade hydropower station at time t is within the k-th safe operation zone, otherwise it is 0, are respectively the upper and lower limits (MW) of the k-th safe operation zone of the g-th generating unit in the i-th cascade hydropower station, and satisfy
  • the mixed integer linear model for optimal peak load regulation of the cascade hydro-solar hybrid power generation system is solved to obtain the dispatch plan of the cascade hydro-solar hybrid power generation system.
  • the CPLEX 12.9 solver is used to solve the mixed integer linear model of the peak shaving optimization dispatch of the cascade hydro-solar complementary power generation system, and the scheduling plan of the cascade hydro-solar complementary power generation system is obtained, that is, the active output of the generating units in the cascade hydropower station at time t Pi,g(t).
  • the embodiment of the present invention includes a photovoltaic power station and a cascade hydropower station group composed of three hydropower stations.
  • the objective function of the peak-shaving optimization dispatch of the cascade hydro-solar hybrid power generation system is established as follows:
  • Pload(t) is the load (MW) at time t
  • Pi g(t) is the g-th cascade hydropower station in the i-th
  • the active power output (MW) of the generator set at time t is the generating power (MW) of the photovoltaic power station at time t
  • T is the total period of the dispatch cycle
  • Nh is the total number of cascade hydropower stations, 1 ⁇ i ⁇ Nh
  • Gi is the number of generating units included in the i-th cascade hydropower station, 1 ⁇ g ⁇ Gi.
  • MW the expected value of the power that the photovoltaic power plant can generate at time t
  • MW the power deviation of the photovoltaic power station at time t
  • MW the lower limit and upper limit
  • ⁇ i, g is the hydropower conversion coefficient of the g-th generating unit in the i-th cascade hydropower station
  • Hi(t) is the power generation head (m) of the unit in the i-th cascade hydropower station at time t
  • qi, g(t ) is the power generation flow (m3/s) of the g-th generating unit in the i-th cascade hydropower station at time t
  • ui, g(t) are the operating status variables of the g-th generating unit in the i-th cascade hydropower station, which are 1 if they are turned on, otherwise they are 0 .
  • yi, g(t) are respectively the start-up and shutdown operation variables of the g-th generating unit in the i-th cascade hydropower station at time t. If the unit performs the start-up operation, then yi, g(t) is 1, otherwise it is yi, g(t)0, if the unit performs shutdown operation, then is 1, otherwise is 0; ⁇ i, g, ⁇ i, g are respectively the minimum start-up and minimum shutdown duration of the g-th generating unit in the i-th cascade hydropower station.
  • si(t) is the total abandoned water flow (m3/s) of the i-th cascade hydropower station at time t, is the upper limit of the abandoned water flow rate (m3/s) of the i-th cascade hydropower station.
  • Zi(t) is the water level (m) of the reservoir corresponding to the i-th cascade hydropower station at time t, are the lower limit and upper limit (m) of the reservoir water level corresponding to the i-th cascade hydropower station, respectively, taking the dead water level and normal water storage level of the reservoir respectively.
  • Vi(t) is the water storage capacity (m3) of the reservoir corresponding to the i-th cascade hydropower station at time t
  • Ii(t) is the natural water flow (m3/s) of the i-th cascade hydropower station at time t
  • Ti -1 is the flow lag (h) between the i-1th cascade hydropower station and the i-th cascade hydropower station
  • ⁇ t is the length of a period within the dispatch period (s).
  • K is the number of vibration zones of the g-th generating unit in the i-th cascade hydropower station
  • K+1 is the number of safe operation zones of the g-th generating unit in the i-th cascade hydropower station
  • is an indicator variable it is 1 if the output of the g-th generating unit in the i-th cascade hydropower station at time t is within the k-th safe operation zone, otherwise it is 0, are respectively the upper and lower limits (MW) of the k-th safe operation zone of the g-th generating unit in the i-th cascade hydropower station, and satisfy
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Abstract

本发明公开了一种梯级水光互补发电系统的调峰优化调度方法,包括:建立以调度周期内受端电网剩余负荷最大值最小作为目标函数的梯级水光互补发电系统调峰优化调度的目标函数;建立考虑机组组合的梯级水电约束条件及考虑不确定性的光伏电站出力约束条件;对所述约束条件进行线性化处理,以所述目标函数和线性化处理后的约束条件构建梯级水光互补发电系统调峰优化调度的混合整数线性模型;对所述梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,获得梯级水光互补发电系统的调度方案。本发明考虑了水电站的机组组合情况及水库运行方案,能够充分利用水电机组易于调节的特性消纳光伏出力,并满足电网调峰需求,实用性强。

Description

一种梯级水光互补发电系统的调峰优化调度方法 技术领域
本发明涉及多能源互补发电系统优化调度技术领域,具体涉及一种梯级水光互补发电系统的调峰优化调度方法。
背景技术
随着可再生清洁能源发电技术的迅速发展,近十年来,光伏电站的装机容量大幅增长。由于光伏发电具有随机性强、间歇性强、波动性大的特点,光伏出力难以与电力系统中的负荷需求相匹配,为满足电力系统的调峰需求,需引入灵活性电源与光伏发电相配合,而水力发电机组具有启停迅速、可调节范围大、调节速度快等特点,能够为电力系统提供足够的调峰容量。因此,梯级水光互补发电能够充分梯级水电站群的调节性能,实现可再生能源的高效利用及电网的安全稳定运行。
目前,国内外已有学者针对含光伏并网的发电系统的优化调度问题开展了研究,但多数仅将一个水电站作为一个整体来考虑,尚未涉及梯级水电站内的机组组合问题,且针对梯级水电机组和光伏电站协同调峰问题尚未有深入研究。
发明内容
本发明的目的在于提供一种梯级水光互补发电系统的调峰优化调度方法,给出满足电网调峰需求的梯级水光互补发电系统的机组组合发电方案。
为达到上述目的,本发明采用的技术方案如下:
本发明提供一种梯级水光互补发电系统的调峰优化调度方法,包括:
建立梯级水光互补发电系统调峰优化调度的目标函数;以及建立考虑机组组合的梯级水电约束条件及考虑不确定性的光伏电站出力约束条件;
对所述约束条件进行线性化处理,以所述目标函数和线性化处理后的约束条件构建梯级水光互补发电系统调峰优化调度的混合整数线性模型;
对所述梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,获得梯级水光互补发电系统的调度方案。
进一步的,所述建立梯级水光互补发电系统调峰优化调度的目标函数,包括:
以调度周期内受端电网剩余负荷最大值最小作为目标函数:
其中,f为受端电网剩余负荷最大值,Pload(t)为t时刻的负荷,Pi,g(t)为第i个梯级水电站中第g个发电机组在t时刻的有功出力,为光伏电站在t时刻的可发电功率,T为调度周期总时段,Nh为梯级水电站总数,Gi为第i个梯级水电站所包含的发电机组数。
进一步的,所述建立考虑机组组合的梯级水电约束条件及考虑不确定性的光伏电站出力约束条件,包括:
光伏电站出力约束为:

其中,为光伏电站在t时刻可发电功率的期望值,为光伏电站在t时刻的功率偏差,分别为t时刻功率偏差的下限和上限;
考虑机组组合的梯级水电约束包括:
水电机组出力约束:
Pi,g(t)=ηi,gHi(t)qi,g(t)
其中,ηi,g为第i个梯级水电站中第g个发电机组的水电转换系数,Hi(t) 为第i个梯级水电站中机组在t时刻的发电水头,qi,g(t)为第i个梯级水电站中第g个发电机组在t时刻的发电流量,为第i个梯级水电站中第g个发电机组有功出力的下限和上限,ui,g(t)为第i个梯级水电站的第g个发电机组运行状态变量,若开机则为1,否则为0;
水电机组振动区限制约束:
其中,分别为第i个梯级水电站中第g个发电机组第k个振动区的出力上限和下限;
水电机组爬坡能力限制约束:
其中,为第i个梯级水电站中第g个发电机组的爬坡能力;
水电机组开停机及最小开/停机持续时间约束:




其中,yi,g(t)和分别为第i个梯级水电站中第g个发电机组在t时刻的开机和停机操作变量,若机组执行开机操作则yi,g(t)为1,否则为yi,g(t)0,若机组执行停机操作则为1,否则为0;αi,g,βi,g分别为第i个梯级水电站中第g个发电机组的最小开机和最小停机持续时间;
水电机组发电流量限制约束:
其中,分别为第i个梯级水电站中第g个发电机组的发电流量上下限;
弃水流量限制约束:
其中,si(t)为第i个梯级水电站t时刻的总弃水流量(m3/s),为第i个梯级水电站的弃水流量上限;
水库水位限制约束:
其中,Zi(t)为第i个梯级水电站所对应水库t时刻的水位,分别为第i个梯级水电站所对应水库水位下限和上限,分别取水库的死水位和正常蓄水位;
梯级水量平衡约束:
其中,Vi(t)为第i个梯级水电站所对应水库t时刻的蓄水量,Ii(t)为第i个梯级水电站t时刻的天然来水流量,Ti-1为第i-1个梯级水电站到第i个梯级水电站之间的水流时滞;Δt为调度周期内一个时段的长度;
水位-库容关系约束:
Zi(t)=f(Vi(t))。
尾水位-下泄流量关系约束:
其中,为第i个梯级水电站所对应水库t时刻的尾水位;
水头约束:

其中,分别为第i个梯级水电站中机组的发电水头下限和上限。
进一步的,对所述约束条件进行线性化处理,包括:
采用McCormick凸包络松弛法将水电机组出力约束转换为以下线性约束:



对机组振动区限制约束进行线性化:

其中,K为第i个梯级水电站中第g个发电机组的振动区数量,K+1为第i个梯级水电站中第g个发电机组的安全运行区数量,为指示变量,若第i个梯级水电站中第g个发电机组在t时刻的出力处于第k个安全运行区内 则为1,否则为0,分别为第i个梯级水电站中第g个发电机组第k个安全运行区的上下限(MW),且满足
对水位-库容关系约束和尾水位-下泄流量关系约束进行分段线性化。
进一步的,对所述梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,获得梯级水光互补发电系统的调度方案,包括:
采用CPLEX 12.9求解器对梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,得到梯级水电站中各发电机组在各时刻的有功出力。
本发明所达到的有益效果为:
本发明考虑了水电站的机组组合情况及水库运行方案,能够充分利用水电机组易于调节的特性消纳光伏出力,并满足电网调峰需求,实用性强。
附图说明
图1为本发明实施例中梯级水光联合互补发电系统的调峰优化调度结果图;
图2为本发明实施例中梯级水电站群中1号水电站的机组组合结果图;
图3为本发明实施例中梯级水电站群中2号水电站的机组组合结果图;
图4为本发明实施例中梯级水电站群中3号水电站的机组组合结果图。
具体实施方式
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提供一种梯级水光互补发电系统的调峰优化调度方法,包括以下步骤:
1)建立梯级水光互补发电系统调峰优化调度的目标函数;
2)获取梯级水电站及光伏电站的具体信息,建立考虑机组组合的梯级水电约束条件及考虑不确定性的光伏电站出力约束条件;
3)对约束条件进行线性化处理,建立梯级水光互补发电系统调峰优化调度的混合整数线性模型;
4)对梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,获得梯级水光互补发电系统的调度方案。
具体的,建立梯级水光互补发电系统调峰优化调度的目标函数,包括:
以受端电网剩余负荷最大值最小作为目标函数:
式中,Pload(t)为t时刻的负荷(MW),Pi,g(t)为第i个梯级水电站中第g个发电机组在t时刻的有功出力(MW),为光伏电站在t时刻的可发电功率(MW),T为调度周期总时段,Nh为梯级水电站总数,1≤i≤Nh,Gi为第i个梯级水电站所包含的发电机组数,1≤g≤Gi。
具体的,建立考虑机组组合的梯级水电约束条件及考虑不确定性的光伏电站出力约束条件,包括:
光伏电站出力约束为:

式中,为光伏电站在t时刻可发电功率的期望值(MW),为光伏电站在t时刻的功率偏差(MW),根据历史数据可以得出,分别为t时刻功率偏差的下限和上限(MW)。
考虑机组组合的梯级水电约束包括:
水电机组出力约束:
Pi,g(t)=ηi,gHi(t)qi,g(t)
式中,ηi,g为第i个梯级水电站中第g个发电机组的水电转换系数,Hi(t)为第i个梯级水电站中机组在t时刻的发电水头(m),qi,g(t)为第i个梯级水电站中第g个发电机组在t时刻的发电流量(m3/s),为第i个梯级水电站中第g个发电机组有功出力的下限和上限,ui,g(t)为第i个梯级水电站的第g个发电机组运行状态变量,若开机则为1,否则为0。
水电机组振动区限制约束:
式中,分别为第i个梯级水电站中第g个发电机组第k个振动区的出力上限和下限(MW)。
水电机组爬坡能力限制约束:
式中,为第i个梯级水电站中第g个发电机组的爬坡能力(MW/h)。
水电机组开停机及最小开/停机持续时间约束:




式中,yi,g(t)和分别为第i个梯级水电站中第g个发电机组在t时刻的开机和停机操作变量,若机组执行开机操作则yi,g(t)为1,否则为yi,g(t)0,若机组执行停机操作则为1,否则为0;αi,g,βi,g分别为第i个梯级水电站中第g个发电机组的最小开机和最小停机持续时间。
水电机组发电流量限制约束:
式中,分别为第i个梯级水电站中第g个发电机组的发电流量上下限(m3/s)。
弃水流量限制约束:
式中,si(t)为第i个梯级水电站t时刻的总弃水流量(m3/s),为第i个梯级水电站的弃水流量上限(m3/s)。
水库水位限制约束:
式中,Zi(t)为第i个梯级水电站所对应水库t时刻的水位(m),分别为第i个梯级水电站所对应水库水位下限和上限(m),分别取水库的死水位和正常蓄水位。
梯级水量平衡约束:
式中,Vi(t)为第i个梯级水电站所对应水库t时刻的蓄水量(m3),Ii(t)为第i个梯级水电站t时刻的天然来水流量(m3/s),Ti-1为第i-1个梯级水电站到第i个梯级水电站之间的水流时滞(h);Δt为调度期内一个时段的长度(s)。
水位-库容关系约束:
Zi(t)=f(Vi(t))。
该函数关系可以根据水位-库容实际数据,建立分段线性函数近似得到。
尾水位-下泄流量关系约束:
式中,为第i个梯级水电站所对应水库t时刻的尾水位(m)。该函数关系根据水库实际数据近似得到。
水头约束:

式中,分别为第i个梯级水电站中机组的发电水头下限和上限(m)。
具体的,对约束条件进行线性化处理,建立梯级水光互补发电系统调峰优化调度的混合整数线性模型,包括:
分别对水电机组出力约束、机组振动区限制约束、水位-库容关系约束、尾水位-下泄流量关系约束进行线性化处理。
1)采用McCormick凸包络松弛法将水电机组出力约束转换为以下线性约束:



2)对机组振动区限制约束进行线性化:

式中,K为第i个梯级水电站中第g个发电机组的振动区数量,K+1为第i个梯级水电站中第g个发电机组的安全运行区数量,为指示变量,若第i个梯级水电站中第g个发电机组在t时刻的出力处于第k个安全运行区内则为1,否则为0,分别为第i个梯级水电站中第g个发电机组第k个安全运行区的上下限(MW),且满足
3)对水位-库容关系约束、尾水位-下泄流量关系约束进行分段线性化。
对梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,获得梯级水光互补发电系统的调度方案。
具体的,采用CPLEX 12.9求解器对梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,获得梯级水光互补发电系统的调度方案,即梯级水电站中发电机组在t时刻的有功出力Pi,g(t)。
实施例
本发明实施例包含1个光伏电站和1个由3个水电站构成的梯级水电站群,首先建立梯级水光互补发电系统调峰优化调度的目标函数如下:
式中,Pload(t)为t时刻的负荷(MW),Pi,g(t)为第i个梯级水电站中第g个 发电机组在t时刻的有功出力(MW),为光伏电站在t时刻的可发电功率(MW),T为调度周期总时段,Nh为梯级水电站总数,1≤i≤Nh,Gi为第i个梯级水电站所包含的发电机组数,1≤g≤Gi。
Pload(t)取值见表1:
表1系统负荷
接着获取梯级水电站及光伏电站的具体信息,建立梯级水光互补发电系统调峰优化调度的约束条件如下:
1)建立光伏电站出力约束:

式中,为光伏电站在t时刻可发电功率的期望值(MW),为光伏电站在t时刻的功率偏差(MW),分别为t时刻功率偏差的下限和上限(MW)。
光伏出力参数见表2:
表2光伏出力
2)建立水电机组出力约束:
Pi,g(t)=ηi,gHi(t)qi,g(t)
式中,ηi,g为第i个梯级水电站中第g个发电机组的水电转换系数,Hi(t)为第i个梯级水电站中机组在t时刻的发电水头(m),qi,g(t)为第i个梯级水电站中第g个发电机组在t时刻的发电流量(m3/s),为第i个梯级水电站中第g个发电机组有功出力的下限和上限,ui,g(t)为第i个梯级水电站的第g个发电机组运行状态变量,若开机则为1,否则为0。
梯级水电相关参数见表3:
表3梯级水电站相关参数
3)建立机组振动区限制约束:
式中,分别为第i个梯级水电站中第g个发电机组第k个振动区的出力上限和下限(MW)。
4)机组爬坡能力限制约束:
式中,为第i个梯级水电站中第g个发电机组的爬坡能力(MW/h)。
5)建立机组开停机及最小开/停机持续时间约束:




式中,yi,g(t)和分别为第i个梯级水电站中第g个发电机组在t时刻的开机和停机操作变量,若机组执行开机操作则yi,g(t)为1,否则为 yi,g(t)0,若机组执行停机操作则为1,否则为0;αi,g,βi,g分别为第i个梯级水电站中第g个发电机组的最小开机和最小停机持续时间。
6)建立发电流量限制约束:
式中,分别为第i个梯级水电站中第g个发电机组的发电流量上下限(m3/s)。
7)建立弃水流量限制约束:
式中,si(t)为第i个梯级水电站t时刻的总弃水流量(m3/s),为第i个梯级水电站的弃水流量上限(m3/s)。
8)建立水库水位限制约束:
式中,Zi(t)为第i个梯级水电站所对应水库t时刻的水位(m),分别为第i个梯级水电站所对应水库水位下限和上限(m),分别取水库的死水位和正常蓄水位。
9)建立梯级水量平衡约束:
式中,Vi(t)为第i个梯级水电站所对应水库t时刻的蓄水量(m3),Ii(t)为第i个梯级水电站t时刻的天然来水流量(m3/s),Ti-1为第i-1个梯级水电站到第i个梯级水电站之间的水流时滞(h);Δt为调度期内一个时段的长度(s)。
10)建立水位-库容关系约束:
Zi(t)=f(Vi(t))
11)建立尾水位-下泄流量关系约束:
式中,为第i个梯级水电站所对应水库t时刻的尾水位(m)。
12)建立水头约束:

式中,分别为第i个梯级水电站中机组的发电水头下限和上限(m)。
接着对约束进行线性化处理,建立梯级水光互补发电系统的调峰优化调度的混合整数线性模型:
1)采用McCormick凸包络松弛法将水电机组出力约束转换为以下线性约束:



2)对机组振动区限制约束进行线性化:

式中,K为第i个梯级水电站中第g个发电机组的振动区数量,K+1为第i个梯级水电站中第g个发电机组的安全运行区数量,为指示变量,若第i个梯级水电站中第g个发电机组在t时刻的出力处于第k个安全运行区内则为1,否则为0,分别为第i个梯级水电站中第g个发电机组第k个安全运行区的上下限(MW),且满足
3)对水位-库容关系约束、尾水位-下泄流量约束进行分段线性化。
最后,采用CPLEX 12.9求解器对所建立的梯级水光互补发电系统的调峰优化调度的混合整数线性模型进行求解,获得梯级水光互补发电系统的机组组合调度方案参见图1和如下表4。图2,图3和图4分别显示了梯级水电站群中1号水电站,2号水电站和3号水电站的各机组出力结果。
表4梯级水光互补发电系统的机组组合调度方案
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (5)

  1. 一种梯级水光互补发电系统的调峰优化调度方法,其特征在于,包括:
    建立梯级水光互补发电系统调峰优化调度的目标函数;以及建立考虑机组组合的梯级水电约束条件及考虑不确定性的光伏电站出力约束条件;
    对所述约束条件进行线性化处理,以所述目标函数和线性化处理后的约束条件构建梯级水光互补发电系统调峰优化调度的混合整数线性模型;
    对所述梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,获得梯级水光互补发电系统的调度方案。
  2. 根据权利要求1所述的一种梯级水光互补发电系统的调峰优化调度方法,其特征在于,所述建立梯级水光互补发电系统调峰优化调度的目标函数,包括:
    以调度周期内受端电网剩余负荷最大值最小作为目标函数:
    其中,f为受端电网剩余负荷最大值,Pload(t)为t时刻的负荷,Pi,g(t)为第i个梯级水电站中第g个发电机组在t时刻的有功出力,为光伏电站在t时刻的可发电功率,T为调度周期总时段,Nh为梯级水电站总数,Gi为第i个梯级水电站所包含的发电机组数。
  3. 根据权利要求2所述的一种梯级水光互补发电系统的调峰优化调度方法,其特征在于,所述建立考虑机组组合的梯级水电约束条件及考虑不确定性的光伏电站出力约束条件,包括:
    光伏电站出力约束为:

    其中,为光伏电站在t时刻可发电功率的期望值,为光伏电站在t时刻的功率偏差,分别为t时刻功率偏差的下限和上限;
    考虑机组组合的梯级水电约束包括:
    水电机组出力约束:
    Pi,g(t)=ηi,gHi(t)qi,g(t)
    其中,ηi,g为第i个梯级水电站中第g个发电机组的水电转换系数,Hi(t)为第i个梯级水电站中机组在t时刻的发电水头,qi,g(t)为第i个梯级水电站中第g个发电机组在t时刻的发电流量,为第i个梯级水电站中第g个发电机组有功出力的下限和上限,ui,g(t)为第i个梯级水电站的第g个发电机组运行状态变量,若开机则为1,否则为0;
    水电机组振动区限制约束:
    其中,分别为第i个梯级水电站中第g个发电机组第k个振动区的出力上限和下限;
    水电机组爬坡能力限制约束:
    其中,为第i个梯级水电站中第g个发电机组的爬坡能力;
    水电机组开停机及最小开/停机持续时间约束:




    其中,yi,g(t)和分别为第i个梯级水电站中第g个发电机组在t时刻的开机和停机操作变量,若机组执行开机操作则yi,g(t)为1,否则为yi,g(t)0,若机组执行停机操作则为1,否则为0;αi,g,βi,g分别为第i个梯级水电站中第g个发电机组的最小开机和最小停机持续时间;
    水电机组发电流量限制约束:
    其中,分别为第i个梯级水电站中第g个发电机组的发电流量上下限;
    弃水流量限制约束:
    其中,si(t)为第i个梯级水电站t时刻的总弃水流量(m3/s),为第i个梯级水电站的弃水流量上限;水库水位限制约束:
    其中,Zi(t)为第i个梯级水电站所对应水库t时刻的水位,分别为第i个梯级水电站所对应水库水位下限和上限,分别取水库的死水位和正常蓄水位;
    梯级水量平衡约束:
    其中,Vi(t)为第i个梯级水电站所对应水库t时刻的蓄水量,li(t)为第i个梯级水电站t时刻的天然来水流量,Ti-1为第i-1个梯级水电站到第i个梯级水电站之间的水流时滞;Δt为调度周期内一个时段的长度;
    水位-库容关系约束:
    Zi(t)=f(Vi(t))。
    尾水位-下泄流量关系约束:
    其中,为第i个梯级水电站所对应水库t时刻的尾水位;
    水头约束:

    其中,分别为第i个梯级水电站中机组的发电水头下限和上限。
  4. 根据权利要求3所述的一种梯级水光互补发电系统的调峰优化调度方法,其特征在于,对所述约束条件进行线性化处理,包括:
    采用McCormick凸包络松弛法将水电机组出力约束转换为以下线性约束:



    对机组振动区限制约束进行线性化:

    其中,K为第i个梯级水电站中第g个发电机组的振动区数量,K+1为第i个梯级水电站中第g个发电机组的安全运行区数量,为指示变量,若第i个梯级水电站中第g个发电机组在t时刻的出力处于第k个安全运行区内则为1,否则为0,分别为第i个梯级水电站中第g个发电机组第k个安全运行区的上下限,且满足对水位-库容关系约束和尾水位-下泄流量关系约束进行分段线性化。
  5. 根据权利要求4所述的一种梯级水光互补发电系统的调峰优化调度方法,其特征在于,对所述梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,获得梯级水光互补发电系统的调度方案,包括:
    采用CPLEX 12.9求解器对梯级水光互补发电系统调峰优化调度的混合整数线性模型进行求解,得到梯级水电站中各发电机组在各时刻的有功出力。
PCT/CN2023/086902 2022-05-12 2023-04-07 一种梯级水光互补发电系统的调峰优化调度方法 WO2023216780A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/331,949 US20230367280A1 (en) 2022-05-12 2023-06-09 Optimal scheduling method for peak regulation of cascade hydro-photovoltaic complementary power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210532492.3A CN115018260A (zh) 2022-05-12 2022-05-12 一种梯级水光互补发电系统的调峰优化调度方法
CN202210532492.3 2022-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/331,949 Continuation US20230367280A1 (en) 2022-05-12 2023-06-09 Optimal scheduling method for peak regulation of cascade hydro-photovoltaic complementary power generation system

Publications (1)

Publication Number Publication Date
WO2023216780A1 true WO2023216780A1 (zh) 2023-11-16

Family

ID=83068720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086902 WO2023216780A1 (zh) 2022-05-12 2023-04-07 一种梯级水光互补发电系统的调峰优化调度方法

Country Status (2)

Country Link
CN (1) CN115018260A (zh)
WO (1) WO2023216780A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117332908A (zh) * 2023-12-01 2024-01-02 长江水利委员会水文局 一种耦合集合预报的梯级水库多目标优化调度方法及系统
CN117454674A (zh) * 2023-12-25 2024-01-26 长江水利委员会水文局 一种水电站实时生态流量智能动态调控方法
CN117674266A (zh) * 2024-01-31 2024-03-08 国电南瑞科技股份有限公司 一种梯级水电与光伏协同运行的超前预测控制方法及系统
CN117791744A (zh) * 2024-02-28 2024-03-29 中国电建集团西北勘测设计研究院有限公司 基于水电储能工厂的多能互补发电系统电源容量配置方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115018260A (zh) * 2022-05-12 2022-09-06 华能澜沧江水电股份有限公司 一种梯级水光互补发电系统的调峰优化调度方法
CN116388301B (zh) * 2023-06-06 2023-08-08 河海大学 梯级水光互补日前鲁棒调峰调度方法、系统、设备及介质
CN117543721B (zh) * 2024-01-05 2024-03-15 河海大学 梯级水风光互补系统的优化调度方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9811061B1 (en) * 2001-05-18 2017-11-07 The Energy Authority, Inc. Method for management and optimization of hydropower generation and consumption
CN114254937A (zh) * 2021-12-23 2022-03-29 清华四川能源互联网研究院 以机组为调度单元的梯级水电及光伏短期互补调度方法和系统
CN115018260A (zh) * 2022-05-12 2022-09-06 华能澜沧江水电股份有限公司 一种梯级水光互补发电系统的调峰优化调度方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9811061B1 (en) * 2001-05-18 2017-11-07 The Energy Authority, Inc. Method for management and optimization of hydropower generation and consumption
CN114254937A (zh) * 2021-12-23 2022-03-29 清华四川能源互联网研究院 以机组为调度单元的梯级水电及光伏短期互补调度方法和系统
CN115018260A (zh) * 2022-05-12 2022-09-06 华能澜沧江水电股份有限公司 一种梯级水光互补发电系统的调峰优化调度方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAO YIFAN; WU FENG; LI YANG; SHI LINJUN; LIN KEMAN; ZHANG YIRAN; JIANG WEI; XU MIN: "Short-term Peak-shaving Strategy for Coordinated Cascade Hydro and Photovoltaic System", 2021 IEEE 4TH INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), IEEE, 28 May 2021 (2021-05-28), pages 1 - 6, XP033961073, DOI: 10.1109/CIEEC50170.2021.9510272 *
SU CHENGGUO; CHENG CHUNTIAN; WANG PEILIN: "An MILP Model for Short-Term Peak Shaving Operation of Cascaded Hydropower Plants Considering Unit Commitment", 2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), IEEE, 12 June 2018 (2018-06-12), pages 1 - 5, XP033422623, DOI: 10.1109/EEEIC.2018.8494460 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117332908A (zh) * 2023-12-01 2024-01-02 长江水利委员会水文局 一种耦合集合预报的梯级水库多目标优化调度方法及系统
CN117332908B (zh) * 2023-12-01 2024-02-13 长江水利委员会水文局 一种耦合集合预报的梯级水库多目标优化调度方法及系统
CN117454674A (zh) * 2023-12-25 2024-01-26 长江水利委员会水文局 一种水电站实时生态流量智能动态调控方法
CN117454674B (zh) * 2023-12-25 2024-04-09 长江水利委员会水文局 一种水电站实时生态流量智能动态调控方法
CN117674266A (zh) * 2024-01-31 2024-03-08 国电南瑞科技股份有限公司 一种梯级水电与光伏协同运行的超前预测控制方法及系统
CN117674266B (zh) * 2024-01-31 2024-04-26 国电南瑞科技股份有限公司 一种梯级水电与光伏协同运行的超前预测控制方法及系统
CN117791744A (zh) * 2024-02-28 2024-03-29 中国电建集团西北勘测设计研究院有限公司 基于水电储能工厂的多能互补发电系统电源容量配置方法

Also Published As

Publication number Publication date
CN115018260A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2023216780A1 (zh) 一种梯级水光互补发电系统的调峰优化调度方法
CN107153885B (zh) 考虑火电机组深度调峰的实时发电计划优化方法
CN103728881B (zh) 一种多楼宇冷热电联供系统的优化运行方法
CN105322535B (zh) 含统一潮流控制器的电力系统两阶段最优潮流计算方法
CN111769553A (zh) 考虑风电不确定性的气电互联系统优化运行方法
CN103580063A (zh) 一种基于需方响应消纳大规模并网风电的方法
CN103414206A (zh) 一种考虑安全约束的水光火联合优化发电计划优化方法
CN103219751A (zh) 一种集群风电场有功功率控制方法
CN104063808A (zh) 一种跨省送电梯级水电站群调峰调度两阶段搜索方法
CN110957717A (zh) 一种多电源电力系统多目标日前优化调度方法
CN104467030A (zh) 一种基于风电与火电联合发电的功率分配方法
CN104993523A (zh) 使含风电电网系统优化运行的抽水蓄能电站特性精确模拟方法
CN110348606A (zh) 一种考虑系统不确定性的微能源网随机区间协同调度方法
CN104993524A (zh) 一种基于改进离散粒子群算法的含风电电力系统动态调度方法
CN106385048A (zh) 一种风光蓄一体化调度策略
US20230367280A1 (en) Optimal scheduling method for peak regulation of cascade hydro-photovoltaic complementary power generation system
CN106602613A (zh) 一种省地两级调度断面协调控制方法
CN104537445B (zh) 一种网省两级多电源短期协调调峰方法
CN106549421B (zh) 一种水电与光电多目标优化设计与协调控制方法
Li et al. Optimal dispatching method for smoothing power fluctuations of the wind-photovoltaic-battery hybrid generation system
CN104239960A (zh) 考虑抽水蓄能机组的发电计划优化方法
Ma et al. Long-term coordination for hydro-thermal-wind-solar hybrid energy system of provincial power grid
CN112134307A (zh) 多能互补系统的电储能/热储能容量联合优化方法及系统
CN112583051B (zh) 变速抽水蓄能机组在区域电网中的优化调度模型构建方法
CN105098839A (zh) 一种基于风电不确定出力的风电并网协调优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802556

Country of ref document: EP

Kind code of ref document: A1