WO2023216697A1 - 一种球形复合发电单元及其发电设备 - Google Patents

一种球形复合发电单元及其发电设备 Download PDF

Info

Publication number
WO2023216697A1
WO2023216697A1 PCT/CN2023/080511 CN2023080511W WO2023216697A1 WO 2023216697 A1 WO2023216697 A1 WO 2023216697A1 CN 2023080511 W CN2023080511 W CN 2023080511W WO 2023216697 A1 WO2023216697 A1 WO 2023216697A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
permanent magnet
wall
friction
electrode
Prior art date
Application number
PCT/CN2023/080511
Other languages
English (en)
French (fr)
Inventor
洪占勇
张中
蒋涛
王中林
Original Assignee
北京纳米能源与系统研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米能源与系统研究所 filed Critical 北京纳米能源与系统研究所
Publication of WO2023216697A1 publication Critical patent/WO2023216697A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the field of new energy power generation, and in particular to a spherical composite power generation unit and its power generation equipment.
  • Triboelectric nanopower generation is a power generation technology based on the coupling of frictional electrification and electrostatic induction. Triboelectric nanopower generation technology can convert various forms of collected mechanical energy into electrical energy; it is especially suitable for collecting mechanical energy with low energy density and various forms of motion. Therefore, it is very suitable for applications in ocean energy, wind energy, tidal energy and other fields.
  • Existing triboelectric nanopower generation equipment that collects wave energy has the advantages of high power generation voltage, light weight, and flexible installation.
  • the existing nanotriboelectric power generation equipment has problems such as low energy conversion rate and low power generation per unit volume, making it difficult to promote and apply it.
  • the existing triboelectric nanopower generation equipment has a high efficiency in converting the potential energy of wind energy and waves under periodic motion conditions.
  • the activity intensity is uneven and the disordered environment, frictional nanometer power generation equipment has a high conversion efficiency. The energy conversion efficiency of power generation equipment will be significantly reduced.
  • a spherical composite power generation unit is composed of different components such as a shell, a coil, an isolation layer, a permanent magnet, a friction electrode and a plurality of friction balls.
  • the structural forms of spherical composite power generation units are mainly divided into three types, the first two are hemispherical, and the latter is global.
  • the housing includes a detachable circular top cover and a hemispherical shell.
  • a plurality of fixed support columns are evenly arranged on the inner wall of the hemispherical shell; a universal ball is connected to the top of each support column.
  • the coil is in the shape of a hemispherical spiral.
  • the coil is arranged on the inner wall of the hemispherical shell; both ends of the coil are connected to a first terminal electrode and a second terminal electrode respectively.
  • the isolation layer covers the inner wall of the hemispherical shell and is located on the upper layer of the coil.
  • the isolation layer needs to be made of insulating materials.
  • the permanent magnet is in the shape of a hemispherical shell, and the central angle corresponding to the arc length in the spherical structure of the permanent magnet is not greater than 120°.
  • the convex surface of the permanent magnet overlaps the support column in the housing and abuts with the universal ball.
  • the spherical surface where the assembled permanent magnet is located is concentric with the spherical surface where the hemispherical shell is located.
  • the friction electrode includes a first wall electrode and a second wall electrode that are spaced apart.
  • the first wall electrode includes a plurality of first polar angles that are expanded into an orange petal shape, and each first polar angle is connected in series through a connecting ring on the inside.
  • the second wall electrode includes a plurality of second pole angles that are sequentially engaged at the gaps between the first pole angles; each second pole angle is connected in series through a connecting ring on the outside.
  • the combination of the first wall electrode and the second wall electrode matches the inner wall structure of the hemispherical shell, and the combination covers the upper surface of the isolation layer in the half-shell.
  • the first wall electrode and the second wall electrode are made of conductive triboelectric power generation materials with the same polarity.
  • the surface of the friction ball is made of an insulating friction power generation material with opposite polarity to the first wall electrode or the second wall electrode.
  • the friction ball is located in the housing and placed below the permanent magnet. The diameter of the friction ball is smaller than the length of the support column.
  • the permanent magnet adopts a hollow structure, the hollows are non-uniformly distributed on the surface of the permanent magnet, and the hollows are filled with insulating triboelectric power generation materials with the same polarity as the surface material of the friction ball.
  • a buffer rubber pad is provided at the annular edge of the upper part of the permanent magnet.
  • one or more backing rods are fixedly connected to the bottom of the top cover in the housing.
  • the extending direction of the backing rods points to the upper surface of the permanent magnet, and the end of the backing rods is close to but not close to the permanent magnet. touch.
  • the second structural form of the spherical composite power generation unit is as follows:
  • the housing includes a removable round top cover and a hemispherical shell.
  • a first ball head mounting seat with an opening facing downward is provided in the center of the circular top cover close to the inner cavity of the housing.
  • the coil is in the shape of a hemispherical spiral.
  • the coil is arranged on the inner wall of the hemispherical shell; both ends of the coil are connected to a first terminal electrode and a second terminal electrode respectively.
  • the isolation layer covers the inner wall of the hemispherical shell and is located on the upper layer of the coil.
  • the isolation layer is made of insulating material.
  • the permanent magnet is in the shape of a hemispherical shell, and the central angle corresponding to the arc length in the spherical structure of the permanent magnet is not greater than 120°.
  • a second ball head mounting seat with an upward opening is provided in the center of the concave surface of the permanent magnet.
  • the permanent magnet is rotatably connected to the top cover in the housing through a connecting rod with ball heads at both ends.
  • the ball heads at both ends of the connecting rod are respectively sleeved in the first ball head mounting seat and the second ball head mounting seat.
  • the spherical surface where the assembled permanent magnet is located is concentric with the spherical surface where the hemispherical shell is located.
  • the friction electrode includes a first wall electrode and a second wall electrode that are spaced apart.
  • the first wall electrode includes a plurality of first polar angles that are expanded into an orange petal shape, and each first polar angle is electrically connected through a connecting ring on the inside.
  • the second wall electrode includes a plurality of second pole angles that are sequentially engaged at the gaps between the first pole angles, and each second pole angle is electrically connected through a connecting ring on the outside.
  • the combination of the first wall electrode and the second wall electrode matches the inner wall structure of the hemispherical shell, and the combination covers the upper surface of the isolation layer in the half-shell.
  • the first wall electrode and the second wall electrode are made of conductive triboelectric power generation materials with the same polarity.
  • the surface of the friction ball is made of an insulating friction power generation material with opposite polarity to the first wall electrode or the second wall electrode.
  • the friction ball is located at the gap between the housing and the permanent magnet, and the diameter of the friction ball is smaller than the width of the gap.
  • the surface of the permanent magnet has a non-uniformly distributed hollow structure, and the hollow structure includes at least one hole larger than the maximum cross-section of the friction ball.
  • a buffer rubber pad is provided at the annular edge of the upper part of the permanent magnet.
  • the third structural form of the spherical composite power generation unit is as follows:
  • the housing consists of two removable hemispherical shells. At least six support columns are installed on the inner wall of the shell, each support column is located on the three-dimensional coordinate axis with the center of the sphere as the origin; the extension direction of each support column points to the center of the sphere; the top of each support column is equipped with a million. Toward the ball.
  • the coil is composed of multiple sections of wire, and the overall shape is a spherical spiral.
  • the coil is arranged on the inner wall of the hemispherical shell; both ends of the coil are connected to a first terminal electrode and a second terminal electrode respectively.
  • the isolation layer covers the inner wall of the housing and is located on the upper layer of the coil.
  • the isolation layer is made of insulating material.
  • the permanent magnet is in the shape of a spherical shell; the permanent magnet and the shell are concentric spherical shells.
  • the surface of the permanent magnet is provided with unevenly distributed hollow structures, and the hollow structures are filled with non-magnetic insulating materials of equal thickness.
  • the difference between the outer diameter of the permanent magnet and the inner diameter of the housing is equal to the height of the support column.
  • each group of friction electrodes in this solution also includes first wall electrodes and second wall electrodes arranged at intervals.
  • the first wall electrode includes a plurality of first polar angles that are expanded into an orange petal shape, and each first polar angle is electrically connected through a connecting ring on the inside.
  • the second wall electrode includes a plurality of second pole angles that are sequentially engaged at the gaps between the first pole angles, and each second pole angle is electrically connected through a connecting ring on the outside.
  • the combination of the first wall electrode and the second wall electrode matches the inner wall structure of the hemispherical shell, and the combination covers the upper surface of the isolation layer in the half-shell.
  • the first wall electrode and the second wall electrode are made of conductive triboelectric power generation materials with the same polarity. In the two sets of friction electrodes, the corresponding wall electrodes are electrically connected to each other;
  • the surface of the friction ball is made of an insulating friction power generation material with opposite polarity to the first wall electrode or the second wall electrode.
  • the friction ball is located in the gap between the housing and the permanent magnet, and the diameter of the friction ball is smaller than the length of the support column.
  • the inner wall of the spherical structural part contains a groove extending in a spiral shape, and the coil is located in the groove.
  • the first wall electrode and the second wall electrode are respectively prepared from any one of electropositive metals, alloys, indium tin oxide and conductive organic polymer materials.
  • the friction ball is made of stone balls, plastic balls or other materials with strong hardness and easy production, such as acrylic.
  • the surface of the friction ball is fully covered with a sheath layer made of electronegative insulating organic polymer materials.
  • the isolation layer is made of waterproof rubber or resin material.
  • the invention also includes a power generation equipment, which includes a rectifier module and an energy storage module.
  • the power generation equipment uses multiple groups of one or more spherical composite power generation units as in the aforementioned solutions 1 to 3 as power generation modules.
  • the rectification module includes a first rectification unit and a second rectification unit.
  • the first rectification unit is electrically connected to the first terminal electrode and the second terminal electrode in each spherical composite power generation unit.
  • the second rectifying unit is electrically connected to the first wall electrode and the second wall electrode in each spherical composite power generation unit.
  • the rectifier module is used to rectify and output different types of electric energy generated by each spherical composite power generation unit.
  • the energy storage module is used to receive and Store the electric energy output by the rectifier module.
  • the invention provides a spherical composite power generation unit and its power generation equipment, which have the following beneficial effects:
  • the technical solution provided by the present invention integrates two different power generation modules, friction power generation and electromagnetic induction power generation, in a small structural space, thereby improving the power generation capacity output per unit volume of the power generation unit.
  • this embodiment applies the structure of components such as Foucault's pendulum and damper to the power generation unit, which greatly improves the power generation unit's conversion efficiency of the potential energy of micro-fluid motions such as swinging and shaking.
  • the relevant components of electromagnetic power generation can also suppress the ineffective movement of the relevant components of friction power generation, thereby increasing the output power of the power generation unit.
  • the spherical composite power generation unit provided by this embodiment has a variety of application forms, and can effectively utilize waves, ocean currents, tides, wind, turbulence generated when cars on both sides of the road are driving, and even sound waves in the vibration field to generate electricity; it has outstanding economical efficiency and environmental benefits.
  • Figure 1 is a schematic disassembly of the structure of a spherical composite power generation unit provided in Embodiment 1 of the present invention.
  • Figure 2 is a schematic structural assembly diagram of a spherical composite power generation unit provided in Embodiment 1 of the present invention (some components are not shown).
  • Figure 3 is a top view of the friction electrode in the spherical composite power generation unit according to Embodiment 1 of the present invention.
  • Figure 4 is a schematic diagram of the half-section structure of the friction ball in Embodiment 1 of the present invention.
  • Figure 5 is a schematic disassembly of the structure of a spherical composite power generation unit provided in Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural assembly diagram of a spherical composite power generation unit using connecting rods provided in Embodiment 2 of the present invention.
  • Figure 7 is a schematic structural diagram of a spherical composite power generation unit connected by ropes provided in Embodiment 2 of the present invention.
  • Figure 8 is a schematic disassembly of the structure of a spherical composite power generation unit provided in Embodiment 3 of the present invention.
  • Figure 9 is a schematic structural assembly diagram of a spherical composite power generation unit provided in Embodiment 3 of the present invention.
  • the spherical composite power generation unit includes a housing 1 , a coil 2 , an isolation layer, a permanent magnet 3 , a friction electrode 4 and a plurality of friction balls 5 .
  • the housing 1 includes a detachable circular top cover 11 and a hemispherical shell 12 .
  • a plurality of fixed support columns 13 are evenly arranged on the inner wall of the hemispherical shell 12; a universal ball is connected to the top of each support column 13.
  • the coil 2 is in the shape of a hemispherical spiral.
  • the coil 2 is arranged on the inner wall of the hemispherical shell 12; the coil 2 can be a single type or a multi-section structure.
  • the two ends of each section of coil 2 are respectively connected to a first terminal electrode and a second terminal electrode.
  • the isolation layer covers the inner wall of the hemispherical shell 12 and is located on the upper layer of the coil 2 .
  • the isolation layer needs to be made of insulating materials.
  • the permanent magnet 3 is in the shape of a hemispherical shell 12, and the central angle corresponding to the arc length in the spherical structure of the permanent magnet 3 is not greater than 120°.
  • the convex surface of the permanent magnet 3 overlaps the support column 13 in the housing 1 and is in contact with the universal ball.
  • the spherical surface where the assembled permanent magnet 3 is located is concentric with the spherical surface where the hemispherical shell 12 is located.
  • the friction electrode 4 includes a first wall electrode 41 and a second wall electrode 42 that are spaced apart.
  • the first wall electrode 41 includes a plurality of first polar angles that are expanded into an orange petal shape, and each first polar angle is connected in series through a connecting ring on the inside.
  • the second wall electrode 42 includes a plurality of second pole angles that are sequentially engaged at the gaps between the first pole angles; each second pole angle is connected in series through a connecting ring on the outside.
  • the combination of the first wall electrode 41 and the second wall electrode 42 matches the inner wall structure of the hemispherical shell 12 , and the combination covers the upper surface of the isolation layer in the half-shell 1 .
  • the first wall electrode 41 and the second wall electrode 42 are made of conductive triboelectric power generation materials with the same polarity.
  • the surface of the friction ball 5 is made of an insulating friction power generation material with opposite polarity to the first wall electrode 41 or the second wall electrode 42 .
  • the friction ball 5 is located in the housing 1 and placed below the permanent magnet 3 .
  • the diameter of the friction ball 5 is smaller than the length of the support column 13 .
  • the spherical composite power generation unit provided in this embodiment can be placed in water when used as a device for generating electricity using ocean currents, waves or tides. Or it can be fixed by hanging or supported by thin rods at the bottom, and used as a device to generate electricity using wind power.
  • the power generation principle of the product provided in this embodiment is as follows:
  • the friction ball 5 When the power generation device is swayed by external driving force (such as wind, waves, ocean currents), the friction ball 5 will shuttle back and forth in the gap between the housing 1 and the permanent magnet 3 . And since the friction ball 5 is blocked by the permanent magnet 3 above, the ineffective motion such as the beating of the friction ball 5 will be greatly suppressed. Therefore, the friction ball 5 will contact the friction electrode 4 on the inner wall of the housing 1 to the maximum extent and roll and rub with each other. When the friction ball 5 and the friction electrode 4 contact and rub, the first wall electrode 41 and the The charge amount on the two wall electrodes 42 changes, thereby generating an alternating current between the first wall electrode 41 and the second wall electrode 42 .
  • external driving force such as wind, waves, ocean currents
  • the power generation device in this embodiment is shaken by force, since the mass, density and structure of the housing 1 and the permanent magnet 3 are very different, the inertial effects of the two when driven by external force are not the same.
  • the permanent magnet 3 inside the housing 1 will also swing inside the housing 1 , that is, the permanent magnet 3 will move relative to the housing 1 inside the housing 1 .
  • the permanent magnet 3 moves relative to the housing 1 (ie, the coil 2 )
  • the magnetic field environment around the coil 2 will change, thereby generating an alternating current in the coil 2 .
  • the friction ball 5 is used as one group of frictional power generation materials
  • the friction electrode 4 is used as the other group of frictional power generation materials.
  • charge transfer occurs. Since the friction electrode 4 in this embodiment is actually composed of two independent wall electrodes, the friction ball 5 will only contact one of the wall electrodes at any time, so charge transfer occurs between the friction ball 5 and the friction electrode 4 At this time, there is also a difference in the amount of charge on the two wall electrodes. At this time, a potential difference is generated between the two wall electrodes, which achieves the technical effect of power generation.
  • the entire active area of the friction ball 5 ie, the hemispherical inner wall in the housing 1 is used as a separate area of the friction electrode 4, and a special hemispherical base is designed based on the Brand new friction electrode 4.
  • the space utilization rate of the spherical wall electrode designed in this embodiment is extremely high (almost 100%). No matter where the friction ball 5 rolls, it can contact the friction electrode 4 and generate an effective alternating current. Therefore, the solution of this embodiment can effectively improve the power generation efficiency of the power generation unit.
  • the function of installing the support column 13 on the housing 1 includes two points. First, it supports the permanent magnet 3 above and provides movement space for the friction ball 5 below. Secondly, the friction force between the support rod and the permanent magnet 3 is reduced through the universal ball on the top of the support column 13, so that the permanent magnet 3 slides relative to the housing 1 more smoothly.
  • this embodiment uses two power generation mechanisms, friction power generation and electromagnetic power generation, in the same hemispherical space.
  • the two sets of mechanisms greatly improve the space utilization of the device, thereby improving the unit volume of the equipment.
  • this embodiment uses ingenious structural design so that the two sets of power generation structures not only do not affect each other in function, but can also synergize each other.
  • the power generation efficiency effect produced by this structure mainly includes the following two points:
  • the distance between the permanent magnet 3 and the friction electrode 4 is set to a specification slightly larger than the outer diameter of the friction ball 5, so that the friction ball 5 can roll freely in the gap, and the permanent magnet 3 can be perpendicular to the friction ball 5 and the friction electrode. Surface The movement trend is suppressed and the friction ball 5 is prevented from beating.
  • the structure of the permanent magnet 3, friction ball 5 and casing 1 effectively reduces the center of gravity of the entire power generation unit, making the entire structure more "stable". Therefore, the entire device will not flip over even under the influence of strong wind or waves. Moreover, the permanent magnet 3 can play a role similar to a pendulum damper. Even if the power generation unit swings at a large angle, the power generation unit can automatically "return to normal” due to the force of gravity. This allows the power generation unit provided in this embodiment to be in an upright position most of the time during use. The upright position is a state in which the device can generate power normally. After the power generation unit is inverted, the device will be difficult to generate effective power. Therefore, the special structure adopted in this embodiment can also reduce the "duty cycle" during the operation cycle of the power generation unit and thereby improve the energy conversion efficiency of the power generation unit.
  • the housing 1 is a carrier for installing various internal components.
  • the outer shape of the housing 1 is designed to have a hemispherical structure with a round top cover 11 .
  • the shell 1 only needs to have a hemispherical inner cavity to facilitate the installation of components such as the coil 2, the permanent magnet 3, the friction electrode 4, the friction ball 5 and the isolation layer into the shell 1.
  • This solution is very effective for the shell.
  • the outer contour of body 1 is not limited. Specifically, in order to achieve better power generation efficiency, technicians can even design a special fluid shape and set up multiple hemispherical cavities inside, and install in each cavity except the casing 1 in this embodiment. of each component. From the perspective of ease of processing and production, using a hemispherical shell is the most economical and efficient option.
  • a detachable structure is adopted between the housing 1 and the top cover 11.
  • various connection methods such as threaded connection, snap connection, interference fit, etc. can be used. It is considered that the product of this embodiment can be applied to various application scenarios such as ocean current power generation, tidal power generation, and wind power generation.
  • the housing 1 In order to improve the power generation performance and service life of the equipment, the housing 1 must adopt a waterproof sealing structure.
  • the hemispherical shell 12 and the top cover 11 are both integrally formed structural parts, and the tight connection position between the hemispherical shell 12 and the top cover 11 contains a sealing gasket or sealant; thus, the hemispherical shell 12 and the top cover 11 are tightly connected.
  • the shell 1 should also be made of materials with high structural strength, corrosion resistance, and anti-aging, such as resin materials, metal or alloy materials, etc. If necessary, high-performance corrosion-resistant materials should be used on the outer surface of the shell 1 coating.
  • the outer layer of the metal shell 1 is chromium-plated to achieve rust-proof and corrosion-resistant effects.
  • the permanent magnet 3 is used to generate an alternating magnetic field around the coil 2 and change the magnetic flux around the coil 2 . Therefore, the size of the permanent magnet 3 should be such that the shell 1 can move freely within the maximum swing range of the spherical shell, which requires that the permanent magnet 3 should be as small as possible.
  • the range of the magnetic field generated by the permanent magnet 3 is related to both the strength and shape of the magnetic field, in order to increase the power generation on the coil 2, the range of the magnetic field generated by the permanent magnet 3 should try to cover most of the area in the coil 2, so the permanent magnet 3 cannot Excessively small.
  • the permanent magnet 3 is designed in the shape of a hemispherical shell 12, and the central angle corresponding to the arc length in the spherical structure of the permanent magnet 3 is not greater than 120°. In this state, the permanent magnet 3 can exert its best effect and establish a balance between different needs.
  • the permanent magnet 3 used in this embodiment adopts a hollow structure, and the hollow is non-uniform on the surface of the permanent magnet 3 distributed, and the hollows are filled with insulating triboelectric power generation materials having the same polarity as the surface material of the friction ball 5 .
  • the effect of using the hollow structure in this embodiment includes the following three points:
  • the product provided in this embodiment needs to generate electricity by swinging with wind or waves, so the equipment should be as lightweight as possible. If the equipment is too heavy, it will have difficulty converting mechanical energy into electrical energy.
  • the casing 1 is made of thin plate material, and the weight of the internal components such as the coil 2 and the isolation layer is almost negligible.
  • the friction ball 5 has a large gravity, but the friction ball 5 cannot be excessively weighted, otherwise it will not be able to generate frictional electricity. Therefore, in this embodiment, the hollow permanent magnet 3 is used to further reduce the weight of the equipment and improve the energy conversion rate of the power generation unit. .
  • the ferromagnetic materials and rare earth materials used in the permanent magnet 3 are relatively expensive materials, and the production cost of the permanent magnet 3 is also relatively high. After this embodiment adopts a hollow design and fills it with other materials, the production cost of the permanent magnet 3 will be significantly reduced. Therefore, the cost of the power generation unit will also be reduced, making it suitable for large-scale promotion and application.
  • the inner wall of the spherical structural part contains a groove extending in a spiral shape, and the coil 2 is located in the groove.
  • the coil 2 is arranged on the surface of the housing 1 .
  • the coil 2 used in this embodiment can be a copper strip-shaped coil 2 that has been prepared in advance and is sequentially applied in the groove. For example, cut the circular copper foil in the shape of a mosquito coil, and then pull the cut copper foil up in the vertical direction to obtain the desired hemispherical spiral shape.
  • the coil 2 can also be obtained by coating the groove with a low melting point liquid metal conductor material and sealing the groove with a sticky resin.
  • the specific preparation or assembly method of the coil 2 is not limited in the technical solution of this embodiment.
  • a groove is opened on the inner wall of the housing 1 and the coil 2 is "buried” in the groove. This ensures that the inner wall of the housing 1 remains smooth after assembly and prevents uneven base surfaces; thereby improving friction. The smoothness of the frictional movement between the ball 5 and the friction electrode 4 on the inner wall of the housing 1 improves the power generation efficiency of the power generation unit.
  • a buffer rubber pad is provided at the upper edge of the permanent magnet 3 in this embodiment.
  • the buffer pad can be made of flexible materials such as rubber and silicone.
  • one or more backing rods 14 are fixedly connected to the bottom of the top cover 11 in the housing 1 .
  • the extending direction of the backing rods 14 points to the upper surface of the permanent magnet 3 , and the ends of the backing rods 14 are close to the permanent magnet 3 But no contact.
  • the purpose of the resisting rod 14 is to limit the sliding direction of the permanent magnet 3 so that the permanent magnet 3 can only slide within the allowed hemispherical range, thereby exerting the aforementioned functional effects. arrive at the same time
  • the rod 14 does not contact the permanent magnet 3 in a natural state, and the contact between the rod 14 and the permanent magnet 3 will not affect the normal sliding of the permanent magnet 3 .
  • the first wall electrode 41 , the second wall electrode 42 and the friction ball 5 generate electricity through the principle of triboelectricity, so they should be made of materials with obvious electrical differences.
  • the first wall electrode 41 and the second wall electrode 42 are made of electropositive materials.
  • the electropositive materials that can be selected include metals, alloys, indium tin oxide and conductive organic polymer materials.
  • the metal can be any one of copper, aluminum, gold, silver, platinum, nickel, titanium, chromium and selenium.
  • the alloy can be an alloy formed by two or more substances among the aforementioned metal materials.
  • Conductive organic polymer materials can be selected from polypyrrole, polyphenylene sulfide, polyphthalocyanine compounds, polyaniline, polythiophene, etc.
  • the friction ball 5 in this embodiment adopts a double-layer structure, including an inner core 52 and an outer sheath layer 51 .
  • the core 52 of the friction ball 5 is made of stone, plastic, or a material with good hardness and easy production, such as acrylic. It is low cost, wear-resistant, durable, and has a large density, which can produce large compressive stress.
  • the sheath layer 51 on the surface of the friction ball 5 is made of an electronegative insulating organic polymer material.
  • the sheath layer 51 on the surface of the friction ball 5 can also be made of a material with the same electrical properties as the material of the friction electrode 4, as long as there is a significant difference in the ability of the two materials to bind charges. Charge transfer can occur during mutual friction.
  • the material options for the sheath layer 51 of the friction ball 5 include: perfluoroethylene propylene copolymer (FEP), polyimide (Kapton), polytetrafluoroethylene (PTFE), polydimethyl Silicone, polydiphenylpropane carbonate, polyethylene terephthalate, aniline formaldehyde resin, polyformaldehyde, ethyl cellulose, polyamide, melamine formaldehyde, polyethylene glycol succinate, fiber Cellulose acetate, polyethylene adipate, polydiallyl phthalate, regenerated fiber sponge, polyurethane elastomer, styrene propylene copolymer, styrene butadiene copolymer, artificial Fiber, polymethacrylate, polyvinyl alcohol, polyester, polyisobutylene, polyurethane flexible sponge, polyethylene terephthalate, polyvinyl butyral, phenolic resin, neoprene,
  • both the friction electrode 4 and the friction ball 5 should be comprehensively considered based on multiple factors such as the wear resistance, anti-aging properties and cost of different materials, and then the best materials can be selected.
  • the isolation layer can effectively seal and cover the coil 2 installed below it to avoid contact between the friction ball 5 and the coil 2, causing wear of the coil 2.
  • the isolation layer can also serve as the base material of the friction electrode 4 to facilitate the sticking of the friction electrode 4 material. Therefore, the friction electrode 4 must be made of insulating material to prevent the materials of the two friction electrodes 4 from being electrically connected to each other.
  • the isolation layer should also be made of flexible and wear-resistant materials. At this time, the isolation layer can also produce a buffering effect and reduce the impact damage caused to the coil 2, shell 1 and other components during the movement of the friction ball 5.
  • this embodiment The isolation layer is made of waterproof rubber or resin material.
  • the isolation layer in the spherical composite power generation unit provided in this embodiment can be manufactured using a variety of production processes. For example, technicians can first prepare the material into a film, and then stick it to the inside of the housing 1 where the coil 2 has been assembled using an adhesive. Liquid resin or rubber material can also be added to the inside of the housing 1 with the coil 2 installed, and then the resin or rubber can be evenly distributed inside the housing 1 through centrifugation, and finally specific reaction conditions can be used to promote the solidification of the resin or rubber. Get the isolation you need.
  • This embodiment provides a spherical composite power generation unit.
  • the spherical composite power generation unit in this embodiment has the same working principle as the product in Embodiment 1, but there are differences in their structural forms.
  • the structural form of the spherical power generation unit provided in this embodiment is as follows:
  • the housing 1 includes a detachable circular top cover 11 and a hemispherical shell 12 .
  • a first ball head mounting seat with a downward opening is provided in the center of the circular top cover 11 close to the inner cavity of the housing 1 .
  • the coil 2 is in the shape of a hemispherical spiral.
  • the coil 2 is arranged on the inner wall of the hemispherical shell 12; the two ends of the coil 2 are respectively connected to a first terminal electrode and a second terminal electrode.
  • the isolation layer covers the inner wall of the hemispherical shell 12 and is located on the upper layer of the coil 2 .
  • the isolation layer is made of insulating material.
  • the permanent magnet 3 is in the shape of a hemispherical shell 12, and the central angle corresponding to the arc length in the spherical structure of the permanent magnet 3 is not greater than 120°.
  • a second ball head mounting seat with an upward opening is provided in the center of the concave surface of the permanent magnet 3 .
  • the permanent magnet 3 is rotatably connected to the top cover 11 in the housing 1 through a connecting rod 31 with ball heads at both ends.
  • the ball heads at both ends of the connecting rod 31 are respectively sleeved on the first ball head installation seat and the second ball head installation seat.
  • the spherical surface where the assembled permanent magnet 3 is located is concentric with the spherical surface where the hemispherical shell 12 is located.
  • the friction electrode 4 includes a first wall electrode 41 and a second wall electrode 42 that are spaced apart.
  • the first wall electrode 41 includes a plurality of first polar angles that are expanded into an orange petal shape, and each first polar angle is electrically connected through a connecting ring on the inside.
  • the second wall electrode 42 includes a plurality of second pole angles that are sequentially engaged at the gaps between the first pole angles, and each second pole angle is electrically connected through a connecting ring on the outside.
  • the combination of the first wall electrode 41 and the second wall electrode 42 matches the inner wall structure of the hemispherical shell 12 , and the combination covers the upper surface of the isolation layer in the half-shell 1 .
  • the first wall electrode 41 and the second wall electrode 42 are made of conductive triboelectric power generation materials with the same polarity.
  • the surface of the friction ball 5 is made of an insulating friction power generation material with opposite polarity to the first wall electrode 41 or the second wall electrode 42 .
  • the friction ball 5 is located at the gap between the housing 1 and the permanent magnet 3, and the diameter of the friction ball 5 is smaller than the width of the gap.
  • the surface of the permanent magnet 3 has an unevenly distributed hollow structure, and the hollow structure includes at least one hole larger than the maximum cross-section of the friction ball 5 . And/or a buffer rubber pad is provided at the annular edge of the upper part of the permanent magnet 3 .
  • Embodiment 1 Compared with Embodiment 1, the main differences between the technical solution of this embodiment are the following two points: 1. The structure of the permanent magnet 3 is different, and the connection method between the permanent magnet 3 and the housing 1 is different. 2. There is no support rod installed on the housing 1.
  • Embodiment 1 in order to ensure that both the permanent magnet 3 and the housing 1 can swing in response to external forces, the swings of the two are not synchronized.
  • a support rod is used below the permanent magnet 3 and a support rod 14 is used above the permanent magnet 3 to limit the position of the permanent magnet 3 .
  • the hollow structure provided in the permanent magnet 3 in this embodiment can also play a fourth function. That is, when the impact of the spherical composite power generation unit exceeds the preset load and rolls over or flips over, the friction ball 5 may fall above the permanent magnet 3. After a hollow structure is provided on the permanent magnet 3, the power generation unit can be guaranteed to After remaining upright, the friction ball 5 can fall back under the permanent magnet 3 through the hollow gap.
  • the reason why the solution in Embodiment 1 requires the hollow structure to be filled, but the reason why the solution in this embodiment does not fill it is that the permanent magnet 3 in Embodiment 1 is overlapped on the support column 13 , if a non-filled hollow structure is used, the support column 13 may be inserted into the hollow position, causing the permanent magnet 3 to be stuck; affecting the electromagnetic power generation performance of the device.
  • the permanent magnet 3 is assembled using a hanging solution.
  • the hollow structure will not have any impact on the free movement of the permanent magnet 3. Therefore, there is no need to fill the hollow structure in the permanent magnet 3 in this embodiment. .
  • the manufacturing cost and weight of the permanent magnet 3 can be further reduced.
  • a ball head mounting seat and a connecting rod 31 are used to connect the permanent magnet 3 and the housing 1 .
  • the connecting rod and ball head seat allow the permanent magnet 3 to slide only along a hemispherical area.
  • ropes can also be used to connect the two.
  • the number of ropes can be one, connected to the center of the permanent magnet 3; the number of ropes can also be multiple, connected to the edges of the permanent magnet 3.
  • the difference between the rope and the connecting rod is that the rope cannot restrict the movement of the permanent magnet 3 in the radial direction of the sphere like the connecting rod 31 does.
  • the cost of the product using ropes is lower than using connecting rods 31 .
  • the use of ropes or connecting rods 31 can be reasonably selected according to specific needs.
  • This embodiment provides a spherical composite power generation unit.
  • the working principle of this product is the same as that of Embodiment 1-2, and most of the components used are also the same.
  • the spherical composite power generation unit provided in this embodiment also includes a housing 1, a coil 2, a permanent magnet 3, an isolation layer, a friction electrode 4 and a friction ball.
  • the main difference between this embodiment and other embodiments lies in the different structural forms.
  • the housing 1 includes two detachable hemispherical shells 12 . At least six supporting columns are installed on the inner wall of the housing 1 13. Each support column 13 is located on the three-dimensional coordinate axis with the center of the sphere as the origin; the extension direction of each support column 13 points to the center of the sphere; the top of each support column 13 is equipped with a universal ball.
  • the coil 2 is composed of multiple sections of wires and is in the shape of a spherical spiral as a whole.
  • the coil 2 is arranged on the inner wall of the hemispherical shell 12; the two ends of the coil 2 are respectively connected to a first terminal electrode and a second terminal electrode.
  • the isolation layer covers the inner wall of the housing 1 and is located on the upper layer of the coil 2 .
  • the isolation layer is made of insulating material.
  • the permanent magnet 3 is in the shape of a complete spherical shell; the permanent magnet 3 and the housing 1 are concentric spherical shells.
  • the surface of the permanent magnet 3 is provided with unevenly distributed hollow structures, and the hollow structures are filled with non-magnetic insulating materials of equal thickness.
  • the difference between the outer diameter of the permanent magnet 3 and the inner diameter of the housing 1 is equal to the height of the support column 13 .
  • each group of friction electrodes 4 in this solution also includes first wall electrodes 41 and second wall electrodes 42 that are spaced apart.
  • the first wall electrode 41 includes a plurality of first polar angles that are expanded into an orange petal shape, and each first polar angle is electrically connected through a connecting ring on the inside.
  • the second wall electrode 42 includes a plurality of second pole angles that are sequentially engaged at the gaps between the first pole angles, and each second pole angle is electrically connected through a connecting ring on the outside.
  • the combination of the first wall electrode 41 and the second wall electrode 42 matches the inner wall structure of the hemispherical shell 12 , and the combination covers the upper surface of the isolation layer in the half-shell 1 .
  • the first wall electrode 41 and the second wall electrode 42 are made of conductive triboelectric power generation materials with the same polarity. In the two sets of friction electrodes 4, corresponding wall electrodes are electrically connected to each other.
  • the surface of the friction ball 5 is made of an insulating friction power generation material with opposite polarity to the first wall electrode 41 or the second wall electrode 42 .
  • the friction ball 5 is located in the gap between the housing 1 and the permanent magnet 3 , and the diameter of the friction ball 5 is smaller than the length of the support column 13 .
  • this embodiment has a more optimized structure, and the product itself does not have polarity (that is, it does not distinguish between upright and inverted), and has omnidirectional power generation performance. No matter what state the spherical power generation unit is in, as long as the power generation is shaken by the driving force, an alternating current can be generated.
  • the friction electrode 4 can be made by piecing together the same products as in Embodiments 1 and 2, or the structure can be redesigned so that the friction ball 5 moves in any direction, and the friction electrode 4 will move in different directions. shuttle between the wall electrodes.
  • the movement direction of the friction ball 5 in a specific scenario may be relatively simple or may be relatively complex.
  • the number of times the friction ball 5 shuttles between the first wall electrode 41 and the second wall electrode 42 per unit time is related to the frequency of the generated alternating current.
  • the movement of the friction ball on a single wall electrode The distance is related to the amplitude of the alternating current generated. Therefore, the application scenario of the power generation unit and the shape of the friction electrode 4 will have an impact on the quality of the generated alternating current.
  • the positions of the first wall electrode 41 and the second wall electrode 42 in the friction electrode 4 are The location distribution is not limited to the state described in the foregoing embodiments. When a better location distribution with higher power generation effect in a certain scenario can be designed, the corresponding form can also be adopted.
  • the first wall electrode 41 and the second wall electrode 42 adopt a position distribution method similar to the Tai Chi diagram.
  • the density of the assembly composed of the housing 1, the coil 2, the isolation layer, and the friction electrode 4 should be roughly evenly distributed in all directions.
  • the internal spherical shell-shaped permanent magnet 3 should have uneven density distribution. In its natural state, the permanent magnet 3 always maintains a specific direction upward, that is, the density distribution of the permanent magnet 3 has "polarity" in the direction. This allows the housing 1 to freely swing with wind or waves during the application of the power generation unit provided in this embodiment, while the internal permanent magnet 3 will remain stationary or swing with a small amplitude. Obvious displacement occurs between the housing 1 and the permanent magnet 3, achieving the effect of electromagnetic power generation.
  • the permanent magnet 3 in this embodiment and the previous two embodiments is not necessarily limited to a complete structure.
  • the permanent magnet 3 may be made of some magnetic particles or small magnetic units and other non-magnetic insulating materials to form a spherical shell, or a hemispherical shell 12 as a whole.
  • the uneven distribution of the magnetic field around the permanent magnet 3 is caused by the uneven position distribution of the magnetic particles or small magnetic units therein.
  • This embodiment provides a power generation equipment, which includes a rectifier module and an energy storage module.
  • the power generation equipment uses multiple groups of spherical composite power generation units as in Examples 1-3 as power generation modules.
  • the power generation module can use one of the three power generation units mentioned above, or any number of them.
  • the rectification module includes a first rectification unit and a second rectification unit.
  • the first rectification unit is electrically connected to the first terminal electrode and the second terminal electrode in each spherical composite power generation unit.
  • the second rectifying unit is electrically connected to the first wall electrode 41 and the second wall electrode 42 in each spherical composite power generation unit.
  • the rectifier module is used to rectify and output different types of electric energy generated by each spherical composite power generation unit.
  • the energy storage module is used to receive and store the electric energy output by the rectifier module.
  • This embodiment considers that the quality of electric energy generated by the friction power generation part and the electromagnetic power generation part in the power generation unit is quite different, so two independent rectification units are used for output.
  • the power generation equipment can float on the sea and use wave or tidal energy to generate electricity. It can also be connected to a tall tower through elastic thin rods or hanging ropes and use wind power to generate electricity. It can also be installed on both sides of highways or municipal roads and use the air flow fluctuations generated by high-speed transportation to generate electricity.
  • the spherical composite power generation unit provided in this embodiment can not only effectively convert the potential energy contained in high impact forces such as waves, but also effectively utilize the energy in the breeze to generate electricity. It can not only use the impact force in a single direction such as streams and ocean currents to generate electricity, but also can use uneven and non-directional gas disturbance to generate electricity.
  • the power generation device of this embodiment is installed on an object that vibrates at high speed through a thin elastic rod, the device can even use the energy contained in the vibration waves to generate electricity.

Abstract

本发明涉及新能源发电领域,特别是涉及一种球形复合发电单元及其发电设备。该复合发电单元包括壳体、线圈、隔离层、永磁体、摩擦电极和多个摩擦球等不同的组成部分构成,具有多种不同的结构形式。其中,壳体呈球形或半球形。永磁体位于壳体内。线圈呈螺旋线状分布在壳体内壁上。隔离层覆盖线圈上;摩擦电极贴在隔离层上,包括间隔设置的第一壁电极和第二壁电极。第一壁电极和第二壁电极的组合体与球壳的内壁结构相匹配;摩擦球的表面采用与摩擦电极材料极性相反的绝缘型摩擦发电材料制备而成。摩擦球位于壳体内,并置于永磁体的下方。本发明解决了现有纳米摩擦发电设备的能量转化率不高,设备单位体积发电功率低,应用场景有限的问题。

Description

一种球形复合发电单元及其发电设备 技术领域
本发明涉及新能源发电领域,特别是涉及一种球形复合发电单元及其发电设备。
背景技术
摩擦纳米发电是基于摩擦起电和静电感应相耦合的发电技术,摩擦纳米发电技术能够将收集到的各种形式的机械能转化为电能;尤其适合收集能量密度较低运动形式多样的机械能。因此非常适合在海洋能、风能、潮汐能等领域的应用。现有的收集波浪能的摩擦纳米发电设备具有发电电压高、质量轻、安装灵活等优点。
但是现有的纳米摩擦发电设备大多存在能量转化率不高,设备单位体积的发电功率低,难以进行推广应用的问题。例如,现有的摩擦纳米发电设备在周期运动条件下对风能和波浪具有的势能的转化效率较高,但是当风力或波浪的运动方向多变,活动强度不均衡且无序环境下,摩擦纳米发电设备的能量转化效率便会显著降低。
发明内容
基于此,有必要针对现有纳米摩擦发电设备的能量转化率不高,设备单位体积发电功率低,应用场景有限的问题;提供一种球形复合发电单元及其发电设备。
本发明提供的技术方案如下:
一种球形复合发电单元,该复合发电单元包括壳体、线圈、隔离层、永磁体、摩擦电极和多个摩擦球等不同的组成部分构成。球形复合发电单元的结构形式主要分为三种,前两种为半球形,后一种为全球形。
具体地,在第一种的结构形式中,壳体包括可拆卸的圆形顶盖和半球壳。半球壳的内壁上均匀设置有多个固定的支撑柱;每个支撑柱的顶部连接有一个万向滚珠。
线圈呈半球形螺旋线状。线圈布设在半球壳的内壁上;线圈的两端分别连接有第一端电极和第二端电极。隔离层覆盖在半球壳的内壁上,并位于线圈的上层。隔离层需要采用绝缘材料制备而成。
本发明中,永磁体呈半球壳状,且永磁体的球面结构中弧长对应的圆心角不大于120°。永磁体的凸面搭接在壳体内的支撑柱上,并与万向滚珠抵接。装配后的永磁体所在球面与半球壳所在球面同心。
摩擦电极包括间隔设置的第一壁电极和第二壁电极。第一壁电极中包括多个展开后呈橘瓣形的第一极角,各个第一极角通过内侧的一个连接环相互串连。第二壁电极中包括多个依次啮合在第一极角间空隙处的第二极角;各个第二极角通过外侧的一个连接环相互串联。第一壁电极和第二壁电极的组合体与半球壳的内壁结构相匹配,组合体覆盖在半壳体内的隔离层的上表面。第一壁电极和第二壁电极由极性相同的导电型摩擦发电材料制备而成。
摩擦球的表面采用与第一壁电极或第二壁电极极性相反的绝缘型摩擦发电材料制备而成。摩擦球位于壳体内,并置于永磁体的下方,摩擦球的直径小于支撑柱的长度。
作为本发明方案一中进一步地改进,永磁体采用镂空状结构,镂空处在永磁体表面非均匀分布,且镂空处填充有与摩擦球表面材料极性相同的绝缘型摩擦发电材料。
且/或永磁体上部的环形边缘处设置有缓冲胶垫。
作为本发明方案一中进一步地改进,壳体中顶盖的底部固定连接有一根或多根抵杆,抵杆的延伸方向指向永磁体的上表面,且抵杆端部与永磁体靠近但不接触。
球形复合发电单元的第二种结构形式如下:
壳体包括可拆卸的圆形顶盖和半球壳。圆形顶盖上靠近壳体内腔一侧的中央设有开口向下的第一球头安装座。线圈呈半球形螺旋线状。
线圈布设在半球壳的内壁上;线圈的两端分别连接有第一端电极和第二端电极。隔离层覆盖在所述半球壳的内壁上,并位于线圈的上层。隔离层采用绝缘材料制备而成。
永磁体呈半球壳状,且永磁体的球面结构中弧长对应的圆心角不大于120°。永磁体的凹面中央设有一个开口向上的第二球头安装座。永磁体通过一个两端具有球头的连接杆与壳体中的顶盖可转动连接,连接杆两端的球头分别套接在第一球头安装和第二球头安装座内。装配后的永磁体所在球面与半球壳所在球面同心。
摩擦电极包括间隔设置的第一壁电极和第二壁电极。第一壁电极中包括多个展开后呈橘瓣形的第一极角,各个第一极角通过内侧的一个连接环电连接。第二壁电极中包括多个依次啮合在第一极角间空隙处的第二极角,各个第二极角通过外侧的一个连接环电连接。第一壁电极和第二壁电极的组合体与半球壳的内壁结构相匹配,组合体覆盖在半壳体内的隔离层的上表面。第一壁电极和第二壁电极由极性相同的导电型摩擦发电材料制备而成。
摩擦球的表面采用与第一壁电极或第二壁电极极性相反的绝缘型摩擦发电材料制备而成。摩擦球位于壳体和永磁体的间隙处,且摩擦球的直径小于间隙的宽度。
作为本发明方案二的进一步改进,永磁体表面具有不均匀分布的镂空结构,且镂空结构中至少包括一个大于摩擦球的最大截面的孔洞。
且/或永磁体上部的环形边缘处设置有缓冲胶垫。
球形复合发电单元的第三种结构形式如下:
壳体包括两个可拆卸的半球壳。壳体内壁上安装有至少六个支撑柱,每个支撑柱分别位于以球心为原点的三维坐标轴上;各个支撑柱的延伸方向指向球心处;各个支撑柱的顶部均装配有一个万向滚珠。
线圈由多段导线构成,整体呈球形螺旋线状。线圈布设在半球壳的内壁上;线圈的两端分别连接有第一端电极和第二端电极。隔离层覆盖在壳体的内壁上,并位于线圈的上层。隔离层采用绝缘材料制备而成。
永磁体呈球壳状;永磁体与壳体为同心球壳。永磁体表面设有不均匀分布的镂空结构,镂空结构处填充有等厚度的非磁性的绝缘材料。永磁体的外径与壳体内径之差等于支撑柱的高度。
方案三中摩擦电极的数量为两组,两组摩擦电极堆成设置进而构成一个完整的球壳形。与前两个方案一致,本方案中的每组摩擦电极也包括间隔设置的第一壁电极和第二壁电极。第一壁电极中包括多个展开后呈橘瓣形的第一极角,各个第一极角通过内侧的一个连接环电连接。第二壁电极中包括多个依次啮合在第一极角间空隙处的第二极角,各个第二极角通过外侧的一个连接环电连接。第一壁电极和第二壁电极的组合体与半球壳的内壁结构相匹配,组合体覆盖在半壳体内的隔离层的上表面。第一壁电极和第二壁电极由极性相同的导电型摩擦发电材料制备而成。两组摩擦电极中,对应的壁电极相互电连接;
摩擦球的表面采用与第一壁电极或第二壁电极极性相反的绝缘型摩擦发电材料制备而成。摩擦球位于壳体和永磁体之间的间隙内,摩擦球的直径小于支撑柱的长度。
作为本发明方案一~三进一步地改进,在壳体中,球面结构部分的内壁中含有呈螺旋线状延伸的凹槽,线圈位于凹槽内。
作为本发明方案一~三进一步地改进,第一壁电极和第二壁电极分别采用具备电正性的金属、合金、氧化铟锡和导电有机物高分子材料中的任意一种制备而成。摩擦球采用石球、塑料球或者其它硬度较强、方便制作的材质如亚克力等制备而成,摩擦球表面全包覆有由电负性的绝缘型有机高分子材料制备的护套层。
作为本发明方案一~三进一步地改进,隔离层采用防水的橡胶或树脂材料制备而成。
本发明还包括一种发电设备,发电设备包括整流模块和储能模块。发电设备采用多组如前述方案一~三中的一种或多种球形复合发电单元作为发电模组。整流模块包括第一整流单元和第二整流单元,第一整流单元与各个球形复合发电单元中的第一端电极和第二端电极电连接。第二整流单元与各球形复合发电单元中的第一壁电极和第二壁电极电连接。整流模块用于对各个球形复合发电单元产生的不同类型的电能进行整流和输出。储能模块用于接收并 存储整流模块输出的电能。
本发明提供的一种球形复合发电单元及其发电设备,具有如下有益效果:
本发明提供的技术方案在较小的结构空间内集成了摩擦发电和电磁感应发电两种不同的发电模组,进而提高了发电单元单位体积内的发电能力输出。同时本实施例将傅科摆、阻尼器等组件的结构应用到发电单元中,大大提升了发电单元对摆动和摇晃等微型流体运动具有的势能的转化效率。本发明中,电磁发电的相关组件还可以抑制摩擦发电的相关组件的无效运动,进而提高了发电单元输出功率。
本实施例提供的球形复合发电单元具有多种应用形式,可以有效利用波浪,洋流、潮汐、风力、道路两旁汽车行驶时产生的扰流,甚至是振动场内的声波进行发电;具有突出的经济效益和环保效益。
附图说明
图1为本发明实施例1提供的一种球形复合发电单元的结构拆解示意图。
图2为本发明实施例1提供的一种球形复合发电单元的结构装配示意图(部分组件未示出)。
图3为本发明实施例1的球形复合发电单元中摩擦电极的俯视图。
图4为本发明实施例1中摩擦球的半剖结构示意图。
图5为本发明实施例2提供的一种球形复合发电单元的结构拆解示意图。
图6为本发明实施例2提供的采用连接杆的球形复合发电单元的结构装配示意图。
图7为本发明实施例2中提供的采用绳索连接的球形复合发电单元的结构示意图。
图8为本发明实施例3提供的一种球形复合发电单元的结构拆解示意图。
图9为本发明实施例3提供的一种球形复合发电单元的结构装配示意图。
图中标记为:
1、壳体;2、线圈;3、永磁体;4、摩擦电极;5、摩擦球;11、顶盖;12、半球壳;13、支撑柱;14、抵杆;31、连接杆;41、第一壁电极;42、第二壁电极;51、护套层;52、球芯。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人 员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
本实施例提供一种球形复合发电单元,如图1和图2所示,球形复合发电单元包括壳体1、线圈2、隔离层、永磁体3、摩擦电极4和多个摩擦球5。
具体地,壳体1包括可拆卸的圆形顶盖11和半球壳12。半球壳12的内壁上均匀设置有多个固定的支撑柱13;每个支撑柱13的顶部连接有一个万向滚珠。线圈2呈半球形螺旋线状。
线圈2布设在半球壳12的内壁上;线圈2可以采用单根式的,也可以采用多段式的结构。每段线圈2的两端分别连接有第一端电极和第二端电极。隔离层覆盖在半球壳12的内壁上,并位于线圈2的上层。隔离层需要采用绝缘材料制备而成。
本实施例中,永磁体3呈半球壳12状,且永磁体3的球面结构中弧长对应的圆心角不大于120°。永磁体3的凸面搭接在壳体1内的支撑柱13上,并与万向滚珠抵接。装配后的永磁体3所在球面与半球壳12所在球面同心。
如图3所示,摩擦电极4包括间隔设置的第一壁电极41和第二壁电极42。第一壁电极41中包括多个展开后呈橘瓣形的第一极角,各个第一极角通过内侧的一个连接环相互串连。第二壁电极42中包括多个依次啮合在第一极角间空隙处的第二极角;各个第二极角通过外侧的一个连接环相互串联。第一壁电极41和第二壁电极42的组合体与半球壳12的内壁结构相匹配,组合体覆盖在半壳体1内的隔离层的上表面。第一壁电极41和第二壁电极42由极性相同的导电型摩擦发电材料制备而成。
摩擦球5的表面采用与第一壁电极41或第二壁电极42极性相反的绝缘型摩擦发电材料制备而成。摩擦球5位于壳体1内,并置于永磁体3的下方,摩擦球5的直径小于支撑柱13的长度。
本实施例提供的球形复合发电单元在使用时可以放置在水中,作为利用洋流、波浪或潮汐发电的装置。或者通过吊挂或者在底部通过细杆支撑的方式进而固定,并作为利用风力进行发电的装置。本实施例提供的产品的发电原理如下:
当该发电装置受到外界驱动(如风力、波浪、洋流)作用而摇摆、晃动时,摩擦球5会在壳体1和永磁体3之间的间隙内往复穿梭。且摩擦球5由于受到上方的永磁体3的阻挡,摩擦球5的跳动等无效运动会被极大抑制,因此摩擦球5会最大程度与壳体1内壁上的摩擦电极4接触并相互滚动摩擦。摩擦球5和摩擦电极4接触摩擦时会导致第一壁电极41和第 二壁电极42上的电荷量发生变化,进而在第一壁电极41和第二壁电极42之间产生交变电流。
同时,本实施例中的发电装置受力晃动时,由于壳体1和永磁体3的质量、密度和结构差异很大,因此二者在受外力驱动时的惯性作用并不相同。壳体1内部的永磁体3也会在壳体1内摇摆,即:永磁体3会在壳体1内相对壳体1移动。当永磁体3相对壳体1(即线圈2)移动时,线圈2周围的磁场环境会发生变化,因而可以在线圈2中产生交变电流。
本实施例中,将摩擦球5作为其中一组摩擦发电材料,将摩擦电极4作为另一组摩擦发电材料。二者相互摩擦后就会发生电荷转移。由于本实施例中的摩擦电极4实际上是由两个相互独立的壁电极构成,因此摩擦球5在任意时刻仅会与其中一个壁电极接触,因此在摩擦球5和摩擦电极4发生电荷转移时,两个壁电极上的电荷量也是存在差异的,此时两个壁电极之间就产生了电势差,即实现发电的技术效果。
为了实现这一发电目标,本实施例将摩擦球5的活动区域(即:壳体1内的半球形内壁)整体作为摩擦电极4的分别区域,并结合该特殊的半球形基面设计了一个全新的摩擦电极4。本实施例的设计出球面型壁电极的空间利用率极高(几乎达到100%),无论摩擦球5滚动到任何位置,均可以和摩擦电极4接触,并产生有效的交变电流。因而本实施例的方案可以有效提升发电单元的发电效率。
本实施例在壳体1上安装支撑柱13的作用包括两点,首先是支撑起上方的永磁体3,为下方的摩擦球5提供活动空间。其次是通过支撑柱13顶部的万向滚珠降低支撑杆和永磁体3间的摩擦力,使得永磁体3相对壳体1的滑动更加顺畅。
结合上述分析可以发现:本实施例在同样的一个半球形空间内,同时使用了摩擦发电和电磁发电两种发电机构,两组机构大大提高了装置的空间利用率,进而提升了设备单位体积的发电功率和发单效率。同时,本实施例通过巧妙的结构设计使得二组发电结构在功能上不仅不会相互产生影响,还可以起到彼此增效的作用。该结构产生的发电增效效应主要包括以下两点:
一、摩擦球5在相对摩擦电极4跳动时,是无法在摩擦电极4上产生交变电流的,跳动过程属于摩擦球5的无效运动。且摩擦球5跳动时是还会与上方的永磁体发生碰撞,碰撞过程不仅可能造成永磁体3变形,也会消耗摩擦球5自身具有的动能,进而降低整个装置的发电功率。因此,在本实施例中,为了使得球形复合发电单元晃动过程中,摩擦球5尽贴合在摩擦电极4上滚动,而不会在永磁体3和摩擦电极4之间反复跳动(跳动过程无法产生有效的发电效应)。本实施例将永磁体3和摩擦电极4的间距设置为略大于摩擦球5外径的规格,以使得摩擦球5可以在间隙中自由滚动,且永磁体3可以对摩擦球5垂直于摩擦电极表面的 运动趋势进行抑制,阻止摩擦球5跳动。
二、永磁体3、摩擦球5和壳体1的结构有效降低了整个发电单元的重心,使得整个结构更加“稳定”。因此即使在较大风力或波浪的作用下,整个装置也不会发生翻转。而且永磁体3可以发挥类似摆式阻尼器的作用,即使发电单元发生大角度摆动,发电单元也可以在重力作用力自动“回正”。这使得,本实施例提供的发电单元在使用过程的大部分时间均可以处于正立位,正立位是装置可以进行正常发电的状态,在发电单元倒立后,装置将难以产生有效发电。因此本实施例采用的特殊结构还可以降低发电单元运行周期内的“占空比”进而提高发电单元的能量转化效率。
在本实施例提供的产品中,壳体1是安装各个内部组件的载体,具体地,本实施例中将壳体1的外形设计为带有圆形顶盖11半球形结构。事实上,壳体1只需要具有一个半球形的内腔,便于将线圈2、永磁体3、摩擦电极4、摩擦球5和隔离层等组件安装到壳体1内即可,该方案对壳体1的外部轮廓并不做限定。具体的为了达到更好的发电效率,技术人员甚至可以设计为特殊流体造型,并在内部设置多个半球形的空腔,并在每个空腔内安装如本实施例中除壳体1以外的各个组件。只是从便于加工和生产的角度,采用半球形的外壳为最经济、最有效率的选项。
本实施例的技术方案中,壳体1和顶盖11之间采用可拆卸的结构,具体地,可以采用螺纹连接,卡扣连接,过盈配合等多种连接方式。考虑到本实施例的产品可以应用于洋流发电,潮汐发电,风能发电等多种应用场景。为了提高设备的发电性能和使用寿命,壳体1必须采用防水的密封结构。具体地,本实施例中的半球壳12和顶盖11均采用一体成型的结构件,而半球壳12和顶盖11的密合连接位置含有密封垫或密封胶;进而使得半球壳12和顶盖11装配完成后保持密封状态。此外,壳体1还应当采用结构强度高、耐腐蚀、抗老化的材料制备而成,例如采用树脂材料、金属或合金材料等,必要时还应当在壳体1外表面使用高性能的耐腐蚀涂层。例如在金属壳体1的外层镀铬,达到防锈耐腐蚀的效果。
本实施例的技术方案中,永磁体3用于在线圈2周围产生交变磁场,改变线圈2周围的磁通量。因此,永磁体3的尺寸应当满足在球壳的最大摆动幅度内,壳体1都可以进行自由地移动,这就要求永磁体3应当尽量小。但是因为永磁体3产生的磁场范围与磁场强度和形态均有关,为了提高线圈2上的发电功率,永磁体3产生的磁场范围应该尽量能够覆盖线圈2中的大部分区域,因此永磁体3不能过度地小。本实施例中将永磁体3设计为半球壳12状,并且永磁体3的球面结构中弧长对应的圆心角不大于120°。在这种状态下,永磁体3可以发挥最佳的效果,在不同需求间建立平衡。
特别地,本实施例中的使用的永磁体3采用镂空状结构,镂空处在永磁体3表面非均匀 分布,且镂空处填充有与摩擦球5表面材料极性相同的绝缘型摩擦发电材料。本实施例中采用镂空结构的作用包括如下三点:
(1)降低整个设备的重力,提高发电效率。本实施例提供的产品需要随风或波浪摆动而发电,因此设备应当尽量轻质化。如果设备过重,将难以将机械能转化为电能。本实施例的发电单元中壳体1采用薄型板材,内部的线圈2和隔离层等组件的重量也几乎可以忽略不计。摩擦球5重力较大,但是摩擦球5无法进行过度减重,否则将无法产生摩擦生电效果,因此本实施例通过采用镂空的永磁体3进一步实现设备减重,提升发电单元的能量转化率。
(2)使得线圈2周围磁场环境更加复杂,提高发电效率。当使用镂空的永磁体3后,永磁体3周围的磁场环境相对整块的永磁体3而言更加复杂,不同区域的磁通量分布差异较大。因此在永磁体3相对壳体1以及线圈2发生位移时,线圈2周围的磁场变化也更加剧烈,这就进一步提高设备的电磁发电效率。
(3)降低设备生产成本,永磁体3采用的铁磁性材料和稀土材料均属于价格较高的材料,永磁体3的生产成本也相对较高。本实施例采用镂空设计并填充其它材料后,永磁体3的生成成本就会明显降低。因此发电单元的成本也会得到降低,进而适用于进行大规模推广应用。
在本实施例中,球面结构部分的内壁中含有呈螺旋线状延伸的凹槽,线圈2位于凹槽内。线圈2布设在壳体1的表面。本实施例中使用的线圈2可以采用预先制备完成的铜制的条带状线圈2,并依次贴敷在凹槽内。例如将圆形铜箔按照蚊香的形状进行裁剪,然后将裁剪后的铜箔沿竖直方向拉起,即为所需的半球形螺旋形状。当然线圈2也可以采用低熔点的液体金属导体材料涂覆在凹槽内,并采用粘性树脂擦了对凹槽进行密封进而得到。线圈2具体的制备或装配方法在本实施例的技术方案中并不做限定。
本实施例在壳体1内壁上开设凹槽,并将线圈2“埋设”在凹槽内,可以保证壳体1内壁在装配完成后保持表面光滑,防止出现凹凸不平的基面;进而提高摩擦球5与壳体1内壁上的摩擦电极4间摩擦运动的顺滑度,提高发电单元的发电效率。
本实施例中的永磁体3在滑动过程,上部的环形边缘处会与壳体1发生摩擦或撞击。因此为了避免摩擦或撞击过程中永磁体3和壳体1受到损伤,本实施例在永磁体3的上沿处设置缓冲胶垫。缓冲胶垫可以采用橡胶、硅胶等柔性材料制备而成。
为了防止永磁体3在相对壳体1运动过程中发生偏移或翻转。本实施例进一步在壳体1中顶盖11的底部固定连接有一根或多根抵杆14,抵杆14的延伸方向指向永磁体3的上表面,且抵杆14端部与永磁体3靠近但不接触。抵杆14的用途是对永磁体3的滑动方向进行限位,使得永磁体3仅能够在被允许的半球形范围内滑动,进而发挥前述的各项功能效果。同时抵 杆14与永磁体3在自然状态下不接触,抵杆14不会对永磁体3的正常滑动造成影响。
本实施例中第一壁电极41、第二壁电极42和摩擦球5是通过摩擦生电的原理进行发电,因此两者应当采用具有明显电性差异的材料。本实施例中的第一壁电极41和第二壁电极42材料具备电正性的材料,可选择具备电正性的材料包括金属、合金、氧化铟锡和导电有机物高分子材料等。其中,金属可选为铜、铝、金、银、铂、镍、钛、铬及硒等任意一种。合金可选为前述金属材料中的两种或两种以上物质所形成的合金。导电有机物高分子材料可选为聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺及聚噻吩等。
如图4所示,本实施例中的摩擦球5采用双层结构,包括内部的球芯52和外部的护套层51。摩擦球5的球芯52采用石质、塑料或者硬度较好、方便制作的材质如亚克力等制备而成,成本低,耐磨、耐用,且具有较大的密度,可以产生较大的压应力。而摩擦球5表面的护套层51材料采用具备电负性的绝缘型有机高分子材料。
事实上,在不影响最终发电效率的前提下,摩擦球5表面的护套层51也可以采用与摩擦电极4材料电性相同的材料,只需要两种材料对电荷的束缚能力存在明显差异,在相互摩擦中可以产生电荷转移即可。
在本实施例中,摩擦球5的护套层51材料的可选项包括:全氟乙烯丙烯共聚物(FEP)、聚酰亚胺(Kapton)、聚四氟乙烯(PTFE)、聚二甲基硅氧烷、聚二苯基丙烷碳酸酯、聚对苯二甲酸乙二醇酯、苯胺甲醛树脂、聚甲醛、乙基纤维素、聚酰胺、三聚氰胺甲醛、聚乙二醇丁二酸酯、纤维素、纤维素乙酸酯、聚己二酸乙二醇酯、聚邻苯二甲酸二烯丙酯、再生纤维海绵、聚氨酯弹性体、苯乙烯丙烯共聚物、苯乙烯丁二烯共聚物、人造纤维、聚甲基丙烯酸酯、聚乙烯醇、聚酯、聚异丁烯、聚氨酯柔性海绵、聚对苯二甲酸乙二醇酯、聚乙烯醇缩丁醛、酚醛树脂、氯丁橡胶、丁二烯丙烯共聚物、天然橡胶、聚丙烯腈、聚乙烯丙二酚碳酸盐,聚苯乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、液晶高分子聚合物、聚氯丁二烯、聚丙烯腈、聚双苯酚碳酸酯、聚氯醚、聚三氟氯乙烯、聚偏二氯乙烯、聚乙烯、聚丙烯、聚氯乙烯及派瑞林等。
在实际应用过程中,摩擦电极4和摩擦球5都应当结合不同材料的耐磨性、抗老化特性以及成本等多重因素进行综合考量,进而选择最佳的材料。
在本实施例提供的技术方案中,隔离层可以有效密封和包覆其下方安装线圈2,避免摩擦球5与线圈2之间接触,造成线圈2磨损。同时隔离层还可以作为摩擦电极4的基材,便于粘贴摩擦电极4材料。因此摩擦电极4必须要采用绝缘材料,避免两个摩擦电极4材料相互电连接。隔离层还应当采用柔性且耐磨的材料制备而成,此时,隔离层还可以产生缓冲效果,降低摩擦球5运动过程中对线圈2、壳体1等组件造成的冲击损伤。具体地,本实施例 中的隔离层采用防水的橡胶或树脂材料制备而成。
本实施例提供的球形复合发电单元中的隔离层可以采用多种生产工艺制造。例如,技术人员可以先将材料制备成薄膜,然后通过粘接剂粘贴到已装配线圈2的壳体1内部。也可以将液态的树脂或橡胶材料加入到已装配线圈2的壳体1内部,然后通过离心使得树脂或橡胶均匀分布在壳体1内部上,最后采用特定的反应条件促使树脂或橡胶固化成型,得到所需的隔离层。
实施例2
本实施例提供一种球形复合发电单元,本实施例中球形复合发电单元与实施例1中产品工作原理相同,但是二者的结构形式存在差异。本实施例提供的球形发电单元的结构形式如下:
如图5和图6所示,壳体1包括可拆卸的圆形顶盖11和半球壳12。圆形顶盖11上靠近壳体1内腔一侧的中央设有开口向下的第一球头安装座。线圈2呈半球形螺旋线状。
线圈2布设在半球壳12的内壁上;线圈2的两端分别连接有第一端电极和第二端电极。隔离层覆盖在所述半球壳12的内壁上,并位于线圈2的上层。隔离层采用绝缘材料制备而成。
永磁体3呈半球壳12状,且永磁体3的球面结构中弧长对应的圆心角不大于120°。永磁体3的凹面中央设有一个开口向上的第二球头安装座。永磁体3通过一个两端具有球头的连接杆31与壳体1中的顶盖11可转动连接,连接杆31两端的球头分别套接在第一球头安装和第二球头安装座内。装配后的永磁体3所在球面与半球壳12所在球面同心。
摩擦电极4包括间隔设置的第一壁电极41和第二壁电极42。第一壁电极41中包括多个展开后呈橘瓣形的第一极角,各个第一极角通过内侧的一个连接环电连接。第二壁电极42中包括多个依次啮合在第一极角间空隙处的第二极角,各个第二极角通过外侧的一个连接环电连接。第一壁电极41和第二壁电极42的组合体与半球壳12的内壁结构相匹配,组合体覆盖在半壳体1内的隔离层的上表面。第一壁电极41和第二壁电极42由极性相同的导电型摩擦发电材料制备而成。
摩擦球5的表面采用与第一壁电极41或第二壁电极42极性相反的绝缘型摩擦发电材料制备而成。摩擦球5位于壳体1和永磁体3的间隙处,且摩擦球5的直径小于间隙的宽度。
本实施例中,永磁体3表面具有不均匀分布的镂空结构,且镂空结构中至少包括一个大于摩擦球5的最大截面的孔洞。且/或永磁体3上部的环形边缘处设置有缓冲胶垫。
本实施例的技术方案与实施例1相比,主要的区别在于以下两点:1、永磁体3的结构不同,永磁体3与壳体1间的连接方式不同。2、壳体1上不安装支撑杆。
在实施例1中,为了保证永磁体3和壳体1均可以随外力作用摇摆,且二者的摆动并不同步。分别在永磁体3的下方使用支撑杆,在永磁体3的上方使用的抵杆14,实现对永磁体3进行限位的作用。
而在本实施例中,采用两个球头安装座和一根两端含有球头的连接杆31将永磁体3“吊挂”在顶盖11上。既实现了与实施例其中方案的支撑杆和抵杆14相同的限位效果。同时保证永磁体3可以自由地来回滑动。此外,本实施例的改进不仅实现了结构简化,降低产品的制造成本。而且由于壳体1上未安装支撑杆,因此摩擦球5的滚动过程完全不受阻碍;这会进一步提高摩擦发电部分的发电效率。
需要说明的是,本实施例中永磁体3中设置的镂空结构,除了如实施例1中相同的3个作用之外,还可以发挥第四个作用。即:在球形复合发电单元受到的冲击作用超过预设载荷而发生侧翻或翻转时,摩擦球5可能会落入到永磁体3上方,在永磁体3上设置镂空结构后,可以保证发电单元保持正立后,摩擦球5能够通过镂空的间隙重新落入到永磁体3下方。
需要强调的是,实施例1中的方案之所以需要镂空结构进行填充,而在本实施例的方案不做填充的原因在于:实施例1中的永磁体3是搭接在支撑柱13上的,如果采用非填充的镂空结构,支撑柱13可能会插入到镂空位置,造成永磁体3位置卡死;影响设备的电磁发电性能。而在本实施例中,永磁体3采用吊挂的方案完成装配,镂空结构对永磁体3的自由活动不会造成任何影响,因此在本实施例中无需对永磁体3中的镂空结构进行填充。永磁体3的生产制造成本和重量得以进一步降低。
此外,需要额外说明的是,本实施例中采用球头安装座和连接杆31对永磁体3和壳体1进行连接。连接杆和球头座使得永磁体3仅可以沿着一个半球面的区域滑动。如图7所示,在其它实施例中,也可以采用绳索对二者进行连接。绳索数量可以为一根,连接在永磁体3的中央;绳索的数量也可以为多根连接在永磁体3的边缘。绳索与连杆的区别在于:绳索无法像连接杆31一样,限制永磁体3沿球体径向的移动。但是,使用绳索的产品成本要低于使用连接杆31。在实际生产应用中,采用绳索或连接杆31可以根据具体的需求进行合理选择。
实施例3
本实施例提供一种球形复合发电单元,该产品与实施例1-2的工作原理相同,采用的大部分的组件也相同。本实施例提供的球形复合发电单元也包括壳体1、线圈2、永磁体3、隔离层、摩擦电极4和摩擦小球。本实施例与其它实施例的主要的区别在于结构形式不同。
具体地,如图8和9所示,本实施例提供的方案采用了真正的球形结构(前两者实际为半球形结构)。壳体1包括两个可拆卸的半球壳12。壳体1内壁上安装有至少六个支撑柱 13,每个支撑柱13分别位于以球心为原点的三维坐标轴上;各个支撑柱13的延伸方向指向球心处;各个支撑柱13的顶部均装配有一个万向滚珠。
线圈2由多段导线构成,整体呈球形螺旋线状。线圈2布设在半球壳12的内壁上;线圈2的两端分别连接有第一端电极和第二端电极。隔离层覆盖在壳体1的内壁上,并位于线圈2的上层。隔离层采用绝缘材料制备而成。
永磁体3呈完整的球壳状;永磁体3与壳体1为同心球壳。永磁体3表面设有不均匀分布的镂空结构,镂空结构处填充有等厚度的非磁性的绝缘材料。永磁体3的外径与壳体1内径之差等于支撑柱13的高度。
由于采用球形结构,因此本实施例中的摩擦电极4的数量为两组,两组摩擦电极4对称设置进而构成一个完整的球壳形。与实施例1和2中的方案一致,本方案中的每组摩擦电极4也包括间隔设置的第一壁电极41和第二壁电极42。第一壁电极41中包括多个展开后呈橘瓣形的第一极角,各个第一极角通过内侧的一个连接环电连接。第二壁电极42中包括多个依次啮合在第一极角间空隙处的第二极角,各个第二极角通过外侧的一个连接环电连接。第一壁电极41和第二壁电极42的组合体与半球壳12的内壁结构相匹配,组合体覆盖在半壳体1内的隔离层的上表面。第一壁电极41和第二壁电极42由极性相同的导电型摩擦发电材料制备而成。两组摩擦电极4中,对应的壁电极相互电连接。
摩擦球5的表面采用与第一壁电极41或第二壁电极42极性相反的绝缘型摩擦发电材料制备而成。摩擦球5位于壳体1和永磁体3之间的间隙内,摩擦球5的直径小于支撑柱13的长度。
本实施例与实施例1和2中的产品相比,结构更加优化,且产品本身不具有极性(即不区分正立或倒立),具有全向发电的性能。无论球形发电单元处于何种状态,只要发电受到驱动力作用而发生摇晃就可以产生交变电流。
在本实例的球形复合发电单元中,摩擦电极4可以采用如实施例1和2中相同的产品上下拼合得到,也可以重新进行结构设计,使得摩擦球5移动到任意方向上,均会在不同的壁电极间穿梭。
同时需要强调的是,特定场景下摩擦球5的运动方向可以较为单一也可能较为复杂。在摩擦球5的运动状态中,摩擦球5单位时间在第一壁电极41和第二壁电极42间穿梭的次数与生成的交变电流的频率有关,摩擦小球在单一壁电极上的运动距离与生成的交变电流的幅值有关。因此,发电单元的应用场景和摩擦电极4的形态均会对生成的交变电流的质量产生影响。
基于上述原因,实施例1或2中,摩擦电极4中的第一壁电极41和第二壁电极42的位 置分布也并不局限与前述实施例中所描述的状态。当可以设计出更好,且某个场景下具有更高发电效果的位置分布时,也可以采用相应的形式。例如,第一壁电极41和第二壁电极42采用类似于太极图的位置分布方式。
在本实施例中,为了进一步提高发电效率,壳体1、线圈2、隔离层,以及摩擦电极4构成组合体各向密度应当大致分布均匀。内部的球壳型的永磁体3应当密度分布不均匀,在自然状态,永磁体3总是保持一个特定方向向上,即:永磁体3的密度分布在方向上具有“极性”。这使得本实施例提供的发电单元在应用过程中,壳体1可以随风力或波浪进行自由摇摆,而内部的永磁体3会保持静止或以较小的幅度进行摆动。壳体1和永磁体3间产生明显的位移,实现电磁发电的效果。
需要强调的是,本实施例与前述两个实施例中的永磁体3并不一定限定为一个完整的结构体。永磁体3可以为采用了部分磁性颗粒或磁性小单元再加上其它非磁性绝缘材料拼合而成球壳状,或半球壳12状的整体。永磁体3周围的磁场分布不均匀是由其中的磁性颗粒或磁性小单元位置分布不均匀导致的。
实施例4
本实施例提供一种发电设备,发电设备包括整流模块和储能模块。发电设备采用多组如实施例1-3中的球形复合发电单元作为发电模组。发电模组中既可以采用前述三个发电单元中的其中一种,也可以采用任意多种。
整流模块包括第一整流单元和第二整流单元,第一整流单元与各个球形复合发电单元中的第一端电极和第二端电极电连接。第二整流单元与各球形复合发电单元中的第一壁电极41和第二壁电极42电连接。整流模块用于对各个球形复合发电单元产生的不同类型的电能进行整流和输出。储能模块用于接收并存储整流模块输出的电能。
本实施例考虑到发电单元中的摩擦发电部分和电磁发电部分产生的电能质量差异较大,因此采用两个独立的整流单元进行输出。
在实际应用过程中,该发电设备可以漂浮在海面上,并利用波浪或潮汐能进行发电。也可以通过弹性的细杆或吊绳连接在高塔上,并利用风力进行发电,还可以安装到高速公路或市政道路的两旁,利用运输高速移动产生的气流波动进行发电。本实施例提供的球形复合发电单元既可以有效转换波浪等高冲击力作用中含有的势能,也可以有效利用微风中具有的能量进行发电。既可以利用溪流、洋流等单一方向的冲击力作用进行发电,亦也可以利用不均匀、不定向的气体扰动进行发电。特别地,如果将本实施例的发电设备通过一根弹性细杆安装到一个高速振动的物体上,该装置甚至可以利用振动波中具有能量进行发电。
以上所述实施例仅表达了本发明的其中一种实施方式,其描述较为具体和详细,但并不 能因此而理解为对发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种球形复合发电单元,其特征在于,其包括:
    壳体,其包括可拆卸的圆形顶盖和半球壳;所述半球壳的内壁上均匀设置有多个固定的支撑柱;每个所述支撑柱的顶部连接有一个万向滚珠;
    线圈,其呈半球形螺旋线状;所述线圈布设在所述半球壳的内壁上;所述线圈的两端分别连接有第一端电极和第二端电极;
    隔离层,其覆盖在所述半球壳的内壁上,并位于线圈的上层;所述隔离层采用绝缘材料制备而成;
    永磁体,其呈半球壳状,且所述永磁体的球面结构中弧长对应的圆心角不大于120°;所述永磁体的凸面搭接在所述壳体内的支撑柱上,并与万向滚珠抵接;装配后的所述永磁体所在球面与半球壳所在球面同心;
    摩擦电极,其包括间隔设置的第一壁电极和第二壁电极;所述第一壁电极中包括多个展开后呈橘瓣形的第一极角,各个第一极角通过内侧的一个连接环电连接;所述第二壁电极中包括多个依次啮合在第一极角间空隙处的第二极角,各个第二极角通过外侧的一个连接环电连接;所述第一壁电极和第二壁电极的组合体与所述半球壳的内壁结构相匹配,所述组合体覆盖在半壳体内的隔离层的上表面;所述第一壁电极和第二壁电极由极性相同的导电型摩擦发电材料制备而成;
    多个摩擦球,其表面采用与第一壁电极或第二壁电极极性相反的绝缘型摩擦发电材料制备而成;所述摩擦球位于壳体内,并置于永磁体的下方,所述摩擦球的直径小于所述支撑柱的长度。
  2. 根据权利要求1所述的球形复合发电单元,其特征在于:所述永磁体采用镂空状结构,镂空处在永磁体表面非均匀分布,且镂空处填充有与摩擦球表面材料极性相同的绝缘型摩擦发电材料;且/或所述永磁体上部的环形边缘处设置有缓冲胶垫。
  3. 根据权利要求1所述的球形复合发电单元,其特征在于:所述壳体中顶盖的底部固定连接有一根或多根抵杆,所述抵杆的延伸方向指向所述永磁体的上表面,且抵杆端部与永磁体靠近但不接触。
  4. 一种球形复合发电单元,其特征在于,其包括:
    壳体,其包括可拆卸的圆形顶盖和半球壳;所述圆形顶盖上靠近壳体内腔一侧的中央设有开口向下的第一球头安装座;
    线圈,其呈半球形螺旋线状;所述线圈布设在所述半球壳的内壁上;所述线圈的两端分 别连接有第一端电极和第二端电极;
    隔离层,其覆盖在所述半球壳的内壁上,并位于线圈的上层;所述隔离层采用绝缘材料制备而成;
    永磁体,其呈半球壳状,且所述永磁体的球面结构中弧长对应的圆心角不大于120°;所述永磁体的凹面中央设有一个开口向上的第二球头安装座;所述永磁体通过一个两端具有球头的连接杆与壳体中的顶盖可转动连接,连接杆两端的球头分别套接在第一球头安装和第二球头安装座内;装配后的所述永磁体所在球面与半球壳所在球面同心;
    摩擦电极,其包括间隔设置的第一壁电极和第二壁电极;所述第一壁电极中包括多个展开后呈橘瓣形的第一极角,各个第一极角通过内侧的一个连接环电连接;所述第二壁电极中包括多个依次啮合在第一极角间空隙处的第二极角,各个第二极角通过外侧的一个连接环电连接;所述第一壁电极和第二壁电极的组合体与所述半球壳的内壁结构相匹配,所述组合体覆盖在半壳体内的隔离层的上表面;所述第一壁电极和第二壁电极由极性相同的导电型摩擦发电材料制备而成;
    多个摩擦球,摩擦球的表面采用与第一壁电极或第二壁电极极性相反的绝缘型摩擦发电材料制备而成;所述摩擦球位于壳体和永磁体的间隙处,且摩擦球的直径小于所述间隙的宽度。
  5. 根据权利要求4所述的球形复合发电单元,其特征在于:所述永磁体表面具有不均匀分布的镂空结构,且所述镂空结构中至少包括一个大于所述摩擦球的最大截面的孔洞;且/或所述永磁体上部的环形边缘处设置有缓冲胶垫。
  6. 一种球形复合发电单元,其特征在于,其包括:
    壳体,其包括两个可拆卸的半球壳;所述壳体内壁上安装有至少六个支撑柱,每个支撑柱分别位于以球心为原点的三维坐标轴上;各个支撑柱的延伸方向指向球心处;各个所述支撑柱的顶部均装配有一个万向滚珠;
    线圈,其由多段导线构成,整体呈球形螺旋线状;所述线圈布设在所述半球壳的内壁上;所述线圈的两端分别连接有第一端电极和第二端电极;
    隔离层,其覆盖在所述壳体的内壁上,并位于线圈的上层;所述隔离层采用绝缘材料制备而成;
    永磁体,其呈球壳状;所述永磁体与壳体为同心球壳;所述永磁体表面设有不均匀分布的镂空结构,镂空结构处填充有等厚度的非磁性的绝缘材料;所述永磁体的外径与壳体内径之差等于所述支撑柱的高度;
    两组对称设置的摩擦电极,每组摩擦电极均包括间隔设置的第一壁电极和第二壁电极; 所述第一壁电极中包括多个展开后呈橘瓣形的第一极角,各个第一极角通过内侧的一个连接环电连接;所述第二壁电极中包括多个依次啮合在第一极角间空隙处的第二极角,各个第二极角通过外侧的一个连接环电连接;所述第一壁电极和第二壁电极的组合体与所述半球壳的内壁结构相匹配,所述组合体覆盖在半壳体内的隔离层的上表面;所述第一壁电极和第二壁电极由极性相同的导电型摩擦发电材料制备而成;两组摩擦电极中,对应的壁电极相互电连接;
    多个摩擦球,摩擦球的表面采用与第一壁电极或第二壁电极极性相反的绝缘型摩擦发电材料制备而成;所述摩擦球位于壳体和永磁体之间的间隙内,所述摩擦球的直径小于所述支撑柱的长度。
  7. 根据权利要求1、4、6中任意一项所述的球形复合发电单元,其特征在于:在所述壳体中,球面结构部分的内壁中含有呈螺旋线状延伸的凹槽,所述线圈位于所述凹槽内。
  8. 根据权利要求1、4、6中任意一项所述的球形复合发电单元,其特征在于:所述第一壁电极和第二壁电极分别采用具备电正性的金属、合金、氧化铟锡和导电有机物高分子材料中的任意一种制备而成;所述摩擦球采用石质或亚克力材料制备而成,摩擦球表面全包覆有由电负性的绝缘型有机高分子材料制备的护套层。
  9. 根据权利要求1、4、6中任意一项所述的球形复合发电单元,其特征在于:所述隔离层采用防水的橡胶或树脂材料制备而成。
  10. 一种发电设备,其包括整流模块和储能模块,其特征在于:所述发电设备采用多组如权利要求1、4、6中的一种或多种球形复合发电单元作为发电模组;所述整流模块包括第一整流单元和第二整流单元,所述第一整流单元与各个球形复合发电单元中的第一端电极和第二端电极电连接;所述第二整流单元与各球形复合发电单元中的第一壁电极和第二壁电极电连接;所述整流模块用于对各个球形复合发电单元产生的不同类型的电能进行整流和输出;所述储能模块用于接收并存储整流模块输出的电能。
PCT/CN2023/080511 2022-05-11 2023-03-09 一种球形复合发电单元及其发电设备 WO2023216697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210514226.8A CN114744908B (zh) 2022-05-11 2022-05-11 一种球形复合发电单元及其发电设备
CN202210514226.8 2022-05-11

Publications (1)

Publication Number Publication Date
WO2023216697A1 true WO2023216697A1 (zh) 2023-11-16

Family

ID=82285095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080511 WO2023216697A1 (zh) 2022-05-11 2023-03-09 一种球形复合发电单元及其发电设备

Country Status (2)

Country Link
CN (1) CN114744908B (zh)
WO (1) WO2023216697A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744908B (zh) * 2022-05-11 2023-08-18 北京纳米能源与系统研究所 一种球形复合发电单元及其发电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181346A (zh) * 2020-01-20 2020-05-19 浙江大学 一种面向海洋机器人的电磁式振动能量收集装置
CN111327172A (zh) * 2019-01-21 2020-06-23 北京纳米能源与系统研究所 基于摩擦和磁感应的发电机
CN111682794A (zh) * 2020-06-20 2020-09-18 上海交通大学 适应复杂激励的无接触传动摩擦-电磁复合波浪能量采集器
US20210211072A1 (en) * 2020-01-08 2021-07-08 Board Of Trustees Of Michigan State University Power generator, wave energy converter or sensor apparatus for water wave energy harvesting
CN114301255A (zh) * 2020-10-07 2022-04-08 现代自动车株式会社 混合型能量采集器
CN114744908A (zh) * 2022-05-11 2022-07-12 北京纳米能源与系统研究所 一种球形复合发电单元及其发电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327172A (zh) * 2019-01-21 2020-06-23 北京纳米能源与系统研究所 基于摩擦和磁感应的发电机
US20210211072A1 (en) * 2020-01-08 2021-07-08 Board Of Trustees Of Michigan State University Power generator, wave energy converter or sensor apparatus for water wave energy harvesting
CN111181346A (zh) * 2020-01-20 2020-05-19 浙江大学 一种面向海洋机器人的电磁式振动能量收集装置
CN111682794A (zh) * 2020-06-20 2020-09-18 上海交通大学 适应复杂激励的无接触传动摩擦-电磁复合波浪能量采集器
CN114301255A (zh) * 2020-10-07 2022-04-08 现代自动车株式会社 混合型能量采集器
CN114744908A (zh) * 2022-05-11 2022-07-12 北京纳米能源与系统研究所 一种球形复合发电单元及其发电设备

Also Published As

Publication number Publication date
CN114744908A (zh) 2022-07-12
CN114744908B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
CN108322083B (zh) 基于摩擦纳米发电机的波浪能高效发电装置
CN203851063U (zh) 一种振动式摩擦发电装置及海浪发电装置
US9394875B2 (en) System for harvesting water wave energy
WO2023216697A1 (zh) 一种球形复合发电单元及其发电设备
US20080074083A1 (en) System and method for storing energy
CN105932904B (zh) 一种多方向响应振动能量采集器
CN111181346B (zh) 一种面向海洋机器人的电磁式振动能量收集装置
CN111980846B (zh) 一种自供能系统的波浪能发电装置及其发电方法
Panda et al. Hybrid nanogenerators for ocean energy harvesting: mechanisms, designs, and applications
US20090295520A1 (en) Magnetic structure
CN109546883B (zh) 一种摩擦纳米发电机
CN110439956B (zh) 一种抑制舞动耗能装置
BRPI0713302A2 (pt) sistema e método para armazenar energia
CN113300630A (zh) 一种基于摩擦纳米发电机的船舶振动能量收集装置
WO2023216698A1 (zh) 一种环形复合发电单元及其制备方法与波浪能发电设备
US20090295253A1 (en) Motor/generator
CN111396236B (zh) 一种基于双螺旋单元的不倒翁式波浪能发电装置
WO2024036925A1 (zh) 一种基于摩擦发电、电磁发电的收集波浪能的复合发电机
US20100013345A1 (en) Bi-metal coil
CN113381637A (zh) 一种洋流发电设备的叶片、叶轮及其辅助发电装置
CN115199462A (zh) 面向波流环境的振动和减摇水舱混合式海洋能量收集平台
CN209748430U (zh) 一种环境机械能复合收集转化装置
CN114977876A (zh) 一种电磁复合摩擦纳米发电装置以及自供能车辆测重系统
WO2008002412A1 (en) Bi-metal coil
CN113904583B (zh) 海洋能收集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802473

Country of ref document: EP

Kind code of ref document: A1