WO2023216528A1 - 仿生神经肌肉纤维及其制备方法与应用 - Google Patents

仿生神经肌肉纤维及其制备方法与应用 Download PDF

Info

Publication number
WO2023216528A1
WO2023216528A1 PCT/CN2022/129916 CN2022129916W WO2023216528A1 WO 2023216528 A1 WO2023216528 A1 WO 2023216528A1 CN 2022129916 W CN2022129916 W CN 2022129916W WO 2023216528 A1 WO2023216528 A1 WO 2023216528A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
neuromuscular
bionic
layer
sensing
Prior art date
Application number
PCT/CN2022/129916
Other languages
English (en)
French (fr)
Inventor
邸江涛
董立忠
李清文
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Publication of WO2023216528A1 publication Critical patent/WO2023216528A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • D01D5/0084Coating by electro-spinning, i.e. the electro-spun fibres are not removed from the collecting device but remain integral with it, e.g. coating of prostheses
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/31Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated nitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Definitions

  • the present application belongs to the field of materials science and technology, especially the field of artificial muscle technology, and particularly relates to a bionic neuromuscular fiber and its preparation method and application.
  • bionic muscle fibers The driving performance of bionic muscle fibers is steadily developing and is sufficient to adapt to the complex movements of different structures of soft robots.
  • the electrochemical carbon nanotube yarn muscle reported by Wang et al. achieved an ultra-large contraction of 62.4%.
  • Haines et al. further demonstrated that electrothermally driven nylon muscle fibers can achieve a maximum specific work of 2.48J g -1 and a maximum mechanical output power of 27.1W g -1 . Nonetheless, the development of multifunctional integration of biomimetic muscle fibers remains a challenge, especially in terms of signal sensing and feedback.
  • Bionic muscle fibers that combine sensing and driving are mostly based on piezoresistive sensing, which has limited application scenarios; and the sensing and driving units are designed separately, which cannot meet the requirements of structural integration. requirements, increasing device complexity.
  • the feedback signal of bionic muscle fibers that combine drive and feedback has problems such as low accuracy, weak linear correlation, and poor cycle stability, which restricts the further development of self-sensing bionic muscle fibers.
  • the purpose of this application is to provide a bionic neuromuscular fiber and its preparation method and application.
  • the present application provides a bionic neuromuscular fiber, which includes a carbon nanotube fiber core wrapping an intermediate layer, a substrate layer and a sensing layer of the carbon nanotube fiber core sequentially from the inside out, and the bionic neuromuscular fiber The fibers are twisted into a spiral shape;
  • the intermediate layer and the substrate layer are both made of polymer materials, and the thermal expansion coefficient of the intermediate layer is greater than the thermal expansion coefficient of the substrate layer;
  • the sensing layer includes a carbon-based conductive material, and the carbon-based conductive material at least includes MXene.
  • this application also provides a method for preparing the above-mentioned bionic neuromuscular fibers, including:
  • the carbon-based conductive material at least includes MXene
  • the thermal expansion coefficient of the first polymer material is greater than that of the second polymer material.
  • this application also provides the use of the above-mentioned bionic neuromuscular fibers in preparing soft robots.
  • the beneficial effects of this application at least include:
  • the bionic neuromuscular fiber and its preparation method and application provided by this application realize the electrothermal driving function through the electrothermal effect of the carbon nanotube fiber core and the thermal driving phenomenon of at least the middle layer. Capacitance changes realize the proximity sensing function. At the same time, the resistance changes caused by the dynamic changes of neuromuscular fibers in the sensing layer are used to realize the action feedback function.
  • the sensing layer, carbon nanotube core and middle layer are all multi-functional.
  • the sensing layer serves as both a capacitive electrode and a resistive sensing element
  • the carbon nanotube core serves as both an electric heating element and a capacitive electrode
  • the middle layer serves as both a thermal drive element and a dielectric layer. Therefore, this application has a low structural complexity.
  • the integration of three functions is achieved, providing a broader space for the development of flexible robots.
  • Figure 1 is a schematic flow chart of a method for preparing bionic neuromuscular fibers provided in a typical implementation case of this application;
  • Figures 2a-2e are electron microscope photos of the local microstructure of a bionic neuromuscular fiber provided in a typical implementation case of this application;
  • Figure 3 is a diagram of the test results of the proximity sensing function of a bionic neuromuscular fiber provided in a typical implementation case of this application;
  • Figure 4 is a diagram of the driving and feedback performance test results of a bionic neuromuscular fiber provided in a typical implementation case of this application;
  • Figure 5 is a schematic diagram of the working principle of a bionic neuromuscular fiber provided in a typical implementation case of this application.
  • the inventor of this case was able to propose the technical solution of this application after long-term research and extensive practice.
  • the purpose of this application is to provide a bionic neuromuscular fiber with integrated sensing-drive-feedback functions for the driving and sensing unit of an intelligent robot, and to flexibly and miniaturize the mechanical structure of the intelligent robot.
  • the technical solution, its implementation process and principles will be further explained below.
  • a bionic neuromuscular fiber including a carbon nanotube fiber core, an intermediate layer, a substrate layer and a sensing layer that are coaxially sleeved from the inside to the outside, and the bionic nerve
  • the muscle fibers are twisted into a spiral shape;
  • the middle layer and the substrate layer are both made of polymer materials, and the thermal expansion coefficient of the middle layer is greater than the thermal expansion coefficient of the substrate layer;
  • the sensing layer contains carbon-based conductive materials and contain at least MXene.
  • the above-mentioned substrate layer and sensing layer together can be called the sheath layer.
  • the biomimetic neuromuscular fiber is composed of a multi-layered coaxial structure, including a carbon nanotube fiber core, a polydimethylsiloxane middle layer, and a polyacrylonitrile electrospun nanofiber substrate layer wrapped with MXene/single-walled carbon nanotubes.
  • this biomimetic neuromuscular fiber can sense proximity excitation signals to execute electrothermal response-driven commands while providing feedback throughout the drive contraction and relaxation process.
  • the maximum proximity sensing range of the bionic neuromuscular fiber in non-contact mode is 14cm.
  • the relative resistance change signal fed back in real time during the driving process has better linear relationship and cycle stability, and its entire driving process The self-induction signal is completely linear.
  • the above-mentioned bionic neuromuscular fibers can be composed of a multi-layer coaxial structure, including a carbon nanotube fiber core, a polydimethylsiloxane intermediate layer, and polyacrylonitrile wrapped with MXene and single-walled carbon nanotubes. Electrospun nanofiber substrate layer and sensing layer. Through this simple coaxial structural design, integrated bionic neuromuscular fibers can reduce the complexity of the sensing and driving units of intelligent robots.
  • the diameter of the carbon nanotube fiber core may preferably be 150-170 ⁇ m
  • the thickness of the intermediate layer is preferably 230-250 ⁇ m
  • the thickness of the substrate layer is preferably 22-25 ⁇ m
  • the thickness of the sensing layer is preferably 5-7 ⁇ m.
  • the thermal expansion coefficient of the intermediate layer may preferably be 330-350 ppm/°C, and the thermal expansion coefficient of the substrate layer may preferably be 150-175 ppm/°C.
  • the material of the middle layer includes any one or a combination of two or more of polydimethylsiloxane, nylon, and polytetrafluoroethylene;
  • the electrothermally inert responsive substrate layer includes a three-dimensional porous structure formed by interweaving polymer nanofibers, and the pore size of the three-dimensional porous structure may preferably be 0.8-1 ⁇ m.
  • the material of the substrate layer includes any one or a combination of polyacrylonitrile and polyvinylidene fluoride.
  • the carbon-based conductive material may also include any one or a combination of two or more of single-walled carbon nanotubes, multi-walled carbon nanotubes, and sheet graphene.
  • the mass ratio of carbon nanotubes and/or graphene to MXene in the carbon-based conductive material may preferably be 1:15-1:25.
  • the bionic neuromuscular fiber has at least three functions of electrothermal drive, motion feedback, and proximity sensing at the same time.
  • Figure 3 shows the schematic diagram of a biomimetic neuromuscular fiber with proximity sensing function, which can be simply equivalently viewed as consisting of polydimethylsilane sandwiched between two carbon-based electrodes. Composed of oxane dielectric layer. This simple sandwich structure utilizes the mutual capacitance created by the polydimethylsiloxane dielectric layer between orthogonal electrodes to provide highly sensitive capacitance changes.
  • Proximity sensing can be defined as an object inserted into a fringe electric field, causing the capacitance of the device to decrease.
  • the self-inductance capacitance which exists between the two carbon-based electrodes
  • the mutual inductance capacitance which exists between the sensor and the object.
  • the human body acts as a ground conductor so the charge can be transferred to the ground through our body with the help of electric field lines. This reduces the electric field strength between the two electrode plates of the self-inductance capacitor, thereby reducing the charge stored in the self-induction capacitor.
  • the proximity sensor senses the approach of a finger, the distance between the two electrode plates of the mutual capacitor decreases, causing the capacitance to increase.
  • the self-inductance and mutual inductance capacitors are connected in series, the total measured capacitance is reduced. In theory, any approaching object can be detected by using the same mechanism, since the total capacitance value of the series capacitors will depend on the dielectric constant of the approaching object.
  • the contraction of the above-mentioned bionic neuromuscular fibers is accompanied by changes in the resistance of the sheath structure.
  • changes in the relative resistance of the MXene/single-walled carbon nanotube sensing layer can be used to track the movement position of the fibers in real time.
  • the bionic neuromuscular fibers show linear changes in relative resistance throughout the entire process under different driving amounts. Through the feedback of the relative resistance change signal, the movement position of the bionic neuromuscular fiber can be detected at all times without the need for a rangefinder.
  • the above-mentioned changes in resistance and motion position are very close to linear, which improves the accuracy and adaptability of motion feedback.
  • Figure 5 shows the working principle diagram of the above-mentioned bionic neuromuscular fiber, and also shows the control system for controlling the above-mentioned neuromuscular fiber.
  • the working principle of the bionic neuromuscular fiber is mainly manifested in that it can sense non-normal The contact capacitance excites the signal. When the capacitance signal exceeds a certain threshold, the fiber senses the signal and responds to electrical heating to complete the driving action. At the same time, the sensing layer of the epidermis can feedback the shrinkage state of the fiber through the momentary change in resistance.
  • embodiments of the present application also provide a method for preparing bionic neuromuscular fibers, which includes the following steps:
  • the carbon-based conductive material at least includes MXene.
  • the thermal expansion coefficient of the first polymer material is greater than that of the second polymer material.
  • step 1) specifically includes the following steps:
  • the carbon nanotube fiber core is wrapped with a film composed of the first polymer material to obtain an assembly.
  • a first twist is applied to the assembly to obtain the first precursor fiber.
  • the first polymer material is attached to the carbon nanotube fiber core through electrospinning to form the intermediate layer.
  • the first twist may preferably range from 750 to 950 turns/m.
  • step 2) specifically includes the following steps:
  • a precursor solution is provided, and the precursor solution includes the second polymer material and the first solvent.
  • the precursor solution is electrospun and the first solvent is removed to form the substrate layer.
  • a second twist is applied to the entirety of the substrate layer and the first precursor fiber to twist it into a spiral shape.
  • the voltage of the electrospinning can preferably be 12-20kV
  • the flow rate can be preferably 0.5-1.5mL/h
  • the working distance can preferably be 6-12cm.
  • the second twist may preferably be between 4300 and 4700 turns/m.
  • step 3) specifically includes the following steps:
  • a dispersion comprising a carbon-based conductive material, MXene, and a second solvent.
  • the bionic neuromuscular fiber is obtained.
  • the embodiments of the present application also provide the use of the above-mentioned bionic neuromuscular fibers in preparing soft robots.
  • bionic neuromuscular fibers Based on the non-contact capacitive sensing response of bionic neuromuscular fibers with a multi-layer coaxial structure, bionic neuromuscular fibers achieve multi-functional integration of sensing-drive-feedback, greatly simplifying the structure of the sensing unit, and are expected to Applied to next-generation intelligent robots to further reduce the complexity and bulkiness of drive and sensing units.
  • This embodiment provides an example of the preparation process of bionic neuromuscular fibers, which is specifically as follows:
  • Step 1 After the 40cm long, 5mm wide and 50 ⁇ m thick polydimethylsiloxane film completely wraps the 44cm long carbon nanotube fiber, fix one end to the tip of the stepper motor and hang the other end with a 10g clip. The entire narrow strip is suspended between the clamp and stepper motor, and then inserted with 818turns/m of twist.
  • Step 2 Dissolve 4.8g polyacrylonitrile powder in 35.2g N,N-dimethylformamide solvent to prepare a precursor solution with a mass fraction of 12%.
  • the solution was stirred in an 80°C water bath for 4 h and then at room temperature for 20 h.
  • Electrospinning was performed at a flow rate of 0.8 mLh -1 and the applied voltage was 16 kV.
  • the ends of the twisted straight polydimethylsiloxane-coated carbon nanotube fibers were fixed on a metal clamp and rotated around the axis at 300 rpm to receive the electrospun nanofibers. Keep the fiber 8cm away from the injection nozzle.
  • the obtained product was placed in a vacuum oven and kept at 50 °C for 10 h to remove residual solvent. Subsequently, the obtained fiber was inserted with a twist of 4410 turns/m to form a helical fiber.
  • Step 3 Add 0.1g multilayer MXene powder to 5ml single-walled carbon nanotube dispersion (0.1wt%) to achieve uniform ultrasonic dispersion. Then, this MXene/single-walled carbon nanotube uniform dispersion was used to coat the polyacrylonitrile-wrapped spiral fibers to obtain biomimetic neuromuscular fibers with a three-dimensional conductive layer.
  • Figure 2a shows the morphology of the above-mentioned bionic neuromuscular fiber. It can be seen that the spiral structure of the fiber is relatively uniform after twisting, and the diameter of the fiber is approximately 600um.
  • Figure 2b shows an enlarged view of the surface morphology of the above-mentioned bionic neuromuscular fiber. It can be seen from the figure that the MXene/single-walled carbon nanotube dispersion is very uniformly coated on the electrospun polyacrylonitrile nanofibers.
  • Figure 2c-e is a cross-sectional view of the above-mentioned bionic neuromuscular fiber. From the picture, we can clearly see the coaxial structure of the fiber, including carbon nanotube fiber core, polydimethylsiloxane intermediate layer, MXene and single wall Carbon nanotube-wrapped polyacrylonitrile electrospun nanofiber sheath.
  • FIG. 3 is a test chart of the non-contact sensing performance of the above-mentioned bionic neuromuscular fibers.
  • the bionic neuromuscular fibers can sense non-contact relative capacitance changes at a maximum distance of 14cm.
  • Figure 4 is a test diagram of the driving and feedback performance of the above-mentioned bionic neuromuscular fiber.
  • Figure 4a is a diagram showing the relative resistance of the above-mentioned bionic neuromuscular fiber and the change of contraction amount with time.
  • Figure 4b is a diagram showing the relative resistance of the above-mentioned bionic neuromuscular fiber. Correspondence diagram with contraction amount. It can be seen from the figure that the maximum contraction amount of the above-mentioned bionic neuromuscular fibers at 10V voltage is 14%. At the same time, they show different contraction amounts under different voltages, and they shrink as the voltage increases. The amount increases linearly. The contraction of bionic neuromuscular fibers is accompanied by changes in the resistance of the sheath structure, and the resistance changes follow and are linear.
  • This embodiment provides an example of the preparation process of bionic neuromuscular fibers, which is basically the same as Embodiment 1, and the only difference is:
  • step 1 the same conditions and process parameters are used to form a nylon intermediate layer on the carbon nanotube fiber core through electrospinning.
  • the produced bionic neuromuscular fiber has the same three functions of electrothermal drive, motion feedback and proximity sensing as in Example 1, and its feedback linearity, proximity sensing distance and sensitivity are also similar to Example 1.
  • This embodiment provides an example of the preparation process of bionic neuromuscular fibers, which is basically the same as Embodiment 1, and the only difference is:
  • step 2 similar conditions and process parameters are used to form a polyvinylidene fluoride substrate layer through electrospinning (electrospinning voltage is 20kv, flow rate is 1mL/h, and working distance is 8cm).
  • the produced bionic neuromuscular fiber has the same three functions of electrothermal drive, motion feedback and proximity sensing as in Example 1, and its feedback linearity, proximity sensing distance and sensitivity are also similar to Example 1.
  • This embodiment provides an example of the preparation process of bionic neuromuscular fibers, which is basically the same as Embodiment 1, and the only difference is:
  • step 3 use multi-walled carbon nanotubes to replace the single-walled carbon nanotubes.
  • the produced bionic neuromuscular fiber has the same three functions of electrothermal drive, motion feedback and proximity sensing as in Example 1, and its feedback linearity, proximity sensing distance and sensitivity are also similar to Example 1.
  • the substrate layer is not a porous structure of three-dimensional electrospun nanowires, but a dense structure.
  • the surface carbon-based material has poor adhesion and is easy to fall off, causing device damage; in addition, the linear relationship of the feedback signal will be very poor.
  • MXene is omitted and only single-walled carbon nanotubes are used as the sensing layer. MXene has a multi-layered sheet structure. Subtle pressure changes can be captured by changes in the layer structure. MXene increases the sensitivity of the strain sensing sensing layer. When this comparative example does not contain MXene, the sensitivity of the device and the lowest detection limit will be affected.
  • metal nanowires are rigid materials, if metal nanowires are used to replace carbon-based conductive materials in the sensing layer, it will directly affect the driving of bionic neuromuscular fibers. performance.
  • the bionic neuromuscular fiber and its preparation method and application provided in this application realize the electrothermal driving function through the electrothermal effect of the carbon nanotube fiber core and the thermal driving phenomenon of at least the middle layer.
  • the capacitance change between the sensing layer and the carbon nanotube fiber core realizes the proximity sensing function.
  • the resistance change caused by the dynamic change of the neuromuscular fiber in the sensing layer is used to realize the action feedback function.
  • the sensing layer, carbon nanotube core And the middle layer is multi-functional.
  • the sensing layer serves as both a capacitive electrode and a resistance sensing element.
  • the carbon nanotube core serves as both an electric heating element and a capacitive electrode.
  • the middle layer serves as both a thermal drive element and a dielectric layer. Therefore, This application realizes the integration of three functions at a low structural complexity, providing a broader development space for the development of flexible robots. Moreover, the motion feedback function provided by this application is extremely linear, ensuring Accuracy and adaptability of motion feedback.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本申请公开了一种仿生神经肌肉纤维及其制备方法与应用。所述仿生神经肌肉纤维包括同轴由内向外依次套设的碳纳米管纤维芯、中间层、衬底层以及传感层,并且所述仿生神经肌肉纤维加捻至螺旋的形状;所述中间层和衬底层均由高分子材料制成,且所述中间层的热膨胀系数大于所述衬底层的热膨胀系数;所述传感层包含碳基导电材料,至少包含MXene。本申请所提供的仿生神经肌肉纤维及其制备方法与应用中,传感层以及中间层均是多功能化的,传感层既作为电容电极又作为电阻感应元件,中间层既作为热驱动元件又作为介电层,因此本申请在较低的结构复杂度上实现了接近感知、电热驱动以及运动反馈三种功能的集成化,为柔性机器人的发展提供了更加广阔的空间。

Description

仿生神经肌肉纤维及其制备方法与应用
本申请基于并要求于2022年5月7日递交的申请号为202210495760.9、发明名称为“仿生神经肌肉纤维及其制备方法与应用”的中国专利申请的优先权。
技术领域
本申请属于材料科学技术领域,特别是人工肌肉技术领域,尤其涉及一种仿生神经肌肉纤维及其制备方法与应用。
背景技术
传统的刚性机器人通过机械结构和电机实现驱动,基于金属的重力传感器和摄像系统来实现信号识别和反馈功能。然而,庞大的机械设备和复杂的电路集成往往限制了这些机器人的小型化和灵活性。近年来,模仿生物肌肉结构的人工肌肉技术飞速发展,为制备更小型化、更灵活的驱动单元开辟了新的思路。此外,多功能集成(双向驱动、信号识别、自感知等)的仿生肌肉纤维简化了运动系统的复杂性,为柔性机器人的发展提供了宝贵的基础。
仿生肌肉纤维的驱动性能正在稳步发展,足以适应软体机器人不同结构的复杂运动。Wang等人报道的电化学碳纳米管纱线肌肉实现了62.4%的超大收缩。Haines等人进一步证明了电热驱动的尼龙肌肉纤维可以实现2.48J g -1的最大比功和27.1W g -1的最大机械输出功率。尽管如此,仿生肌肉纤维多功能集成的发展仍然是一个挑战,特别是在信号感知和反馈方面。
在感知刺激信号完成驱动动作的协同作用中,由于基于纤维的人造肌肉的复杂性,目前仅有少数基于薄膜的驱动器实现了感知功能。He等人模仿躯体反射弧制备了具有感知功能的电化学薄膜执行器,该执行器可以响应触觉压力的刺激而被激发,但是压力传感单元和执行单元的独立设计增加了系统的复杂性。此外,目前报道的自感知仿生肌肉纤维的反馈信号精度低、线性相关性弱、循环稳定性差等问题,制约了自感知仿生肌肉纤维的进一步发展。在同一根纤维上集成感知-驱动-反馈功能的多功能仿生肌肉纤维目前还没有被报道。
综上所述,现有技术主要存在以下缺点:1)感知与驱动结合的仿生肌肉纤维多以压阻感知为主,应用场景受限;且感知与驱动单元分开设计,不能满足结构一体化的要求,增加了器件的复杂性。2)驱动与反馈结合的仿生肌肉纤维的反馈信号精度低、线性相关性弱、循环稳定性差等问题,制约了自感知仿生肌肉纤维的进一步发展。3)感知、驱动和反馈的三种功能同时集成在同一根的纤维上的设计目前没有报道,多数以各个单元分开设计为主,增加了 系统的笨重性和复杂性。
因此,有必要开发具有集成感知-驱动-反馈功能的多功能仿生肌肉纤维,进一步减少智能机器人驱动和传感单元的复杂性和笨重性。
发明内容
针对现有技术的不足,本申请的目的在于提供一种仿生神经肌肉纤维及其制备方法与应用。
为实现前述发明目的,本申请采用的技术方案包括:
第一方面,本申请提供一种仿生神经肌肉纤维,包括碳纳米管纤维芯由内而外依次包裹所述碳纳米管纤维芯的中间层、衬底层以及传感层,并且所述仿生神经肌肉纤维加捻至螺旋的形状;
所述中间层和衬底层均由高分子材料制成,且所述中间层的热膨胀系数大于所述衬底层的热膨胀系数;
所述传感层包含碳基导电材料,所述碳基导电材料至少包括MXene。
第二方面,本申请还提供一种上述仿生神经肌肉纤维的制备方法,包括:
1)使第一高分子材料包裹于碳纳米管纤维芯上形成中间层,获得第一前体纤维;
2)使第二高分子材料包裹于所述第一前体纤维上形成衬底层,并加捻至螺旋状,获得第二前体纤维;
3)在所述第二前体纤维表面构建包含碳基导电材料的传感层,获得仿生神经肌肉纤维,所述碳基导电材料至少包括MXene;
其中,所述第一高分子材料的热膨胀系数大于第二高分子材料。
第三方面,本申请还提供上述仿生神经肌肉纤维在制备软机器人中的用途。
基于上述技术方案,与现有技术相比,本申请的有益效果至少包括:
本申请所提供的仿生神经肌肉纤维及其制备方法与应用通过碳纳米管纤维芯的电热效应以及至少中间层的热驱动现象实现电热驱动功能,通过传感层与碳纳米管纤维芯之间的电容变化实现接近感知功能,同时,利用传感层随神经肌肉纤维的动态变化而导致的电阻变化实现动作反馈功能,其中传感层、碳纳米管芯以及中间层均是多功能化的,传感层既作为电容电极又作为电阻感应元件,碳纳米管芯既作为电发热原件又作为电容电极,中间层既作为热驱动元件又作为介电层,因此本申请在较低的结构复杂度上实现了三种功能的集成化,为柔性机器人的发展提供了更加广阔的空间。
上述说明仅是本申请技术方案的概述,为了能够使本领域技术人员能够更清楚地了解本 申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合详细附图说明如后。
附图说明
图1是本申请一典型实施案例提供的一种仿生神经肌肉纤维的制备方法的流程示意图;
图2a-图2e是本申请一典型实施案例提供的一种仿生神经肌肉纤维的局部微观结构电镜照片;
图3是本申请一典型实施案例提供的一种仿生神经肌肉纤维的接近感知功能测试结果图;
图4是本申请一典型实施案例提供的一种仿生神经肌肉纤维的驱动与反馈性能测试结果图;
图5是本申请一典型实施案例提供的一种仿生神经肌肉纤维的工作原理示意图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。本申请的目的为:提供一种具有感知-驱动-反馈一体化功能的仿生神经肌肉纤维用于智能机器人的驱动与传感单元,灵活化和小型化智能机器人的机械结构。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
而且,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个与另一个具有相同名称的部件或方法步骤区分开来,而不一定要求或者暗示这些部件或方法步骤之间存在任何这种实际的关系或者顺序。
参见图1-图5,本申请实施例提供一种仿生神经肌肉纤维,包括同轴由内向外依次套设的碳纳米管纤维芯、中间层、衬底层以及传感层,并且所述仿生神经肌肉纤维加捻至螺旋的形状;所述中间层和衬底层均由高分子材料制成,且所述中间层的热膨胀系数大于所述衬底层的热膨胀系数;所述传感层包含碳基导电材料且至少含有MXene。
在本申请中,上述衬底层以及传感层一起可以被称之为鞘层,我们模仿哺乳动物的神经肌肉系统,首次报道了一种在同一纤维上具有感知-驱动-反馈功能的仿生神经肌肉纤维。仿生神经肌肉纤维由多层同轴结构组成,包括碳纳米管纤维芯、聚二甲基硅氧烷中间层和MXene/单壁碳纳米管包裹的聚丙烯腈电纺纳米纤维衬底层。通过这种简单的同轴结构设计,一体化 的仿生神经肌肉纤维可以降低智能机器人传感和驱动单元的复杂性。此外,这种仿生神经肌肉纤维可以感知接近激发信号以执行电热响应驱动的命令,同时提供整个驱动收缩和放松过程的反馈功能。仿生神经肌肉纤维在非接触模式下的最大接近感知范围为14cm,与之前报道的工作相比,驱动过程中实时反馈的相对电阻变化信号具有更好的线性关系和循环稳定性,其整个驱动过程的自感信号是完全线性的。
作为一些典型的应用实例,上述仿生神经肌肉纤维可以由多层同轴结构组成,包括碳纳米管纤维芯、聚二甲基硅氧烷中间层和MXene及单壁碳纳米管包裹的聚丙烯腈电纺纳米纤维衬底层和传感层。通过这种简单的同轴结构设计,一体化的仿生神经肌肉纤维可以降低智能机器人传感和驱动单元的复杂性。
在一些实施方案中,所述碳纳米管纤维芯的直径优选可以为150-170μm;
在一些实施方案中,所述中间层的厚度优选可以为230-250μm,所述衬底层的厚度优选可以为22-25μm,所述传感层的厚度优选可以为5-7μm。
在一些实施方案中,所述中间层的热膨胀系数优选可以为330-350ppm/℃,所述衬底层的热膨胀系数优选可以为150-175ppm/℃。
在一些实施方案中,所述中间层的材质包括聚二甲基硅氧烷、尼龙以及聚四氟乙烯中的任意一种或两种以上的组合;
在一些实施方案中,所述电热惰性响应衬底层包含由聚合物纳米纤维交织形成的三维多孔结构,所述三维多孔结构的孔径优选可以为0.8-1μm。
在一些实施方案中,所述衬底层的材质包括聚丙烯腈以及聚偏氟乙烯中的任意一种或两种的组合。
在一些实施方案中,所述碳基导电材料还可以包括单壁碳纳米管、多壁碳纳米管以及片层石墨烯中的任意一种或两种以上的组合。
在一些实施方案中,所述碳基导电材料中碳纳米管和/或石墨烯与MXene的质量比优选可以为1∶15-1∶25。
在一些实施方案中,所述仿生神经肌肉纤维至少同时具有电热驱动、运动反馈以及接近感知三种功能。
作为一些典型的应用示例,图3展示了具有接近感知功能的仿生神经肌肉纤维的原理图,该纤维可以简单等效地看做是由夹在两个碳基电极之间的聚二甲基硅氧烷介电层构成。这种简单的三明治结构利用正交电极之间的聚二甲基硅氧烷介电层产生的互感电容来提供高灵敏的电容变化。接近感知可以定义为插入边缘电场的物体,导致设备的电容降低。在这个简单的电路中存在两个有效电容:自感电容(存在于两个碳基电极之间)和互感电容(存在于传 感器和物体之间)。人体充当接地导体,因此电荷可以在电场线的帮助下通过我们的身体转移到地面。这降低了自感电容器的两个电极板之间的电场强度,从而减少了存储在自感电容器中的电荷。当接近传感器感知到手指的接近时,互感电容器的两个电极板之间的距离减小,导致电容增加。但是,由于自感和互感电容器串联连接,因此测得的总电容会降低。理论上,任何接近的物体都可以通过使用相同的机制来检测,因为串联电容器的总电容值将取决于接近物体的介电常数。
同时,上述仿生神经肌肉纤维收缩的同时伴随着鞘层结构电阻的变化,例如,利用MXene/单壁碳纳米管传感层相对电阻的变化可以实时追踪纤维的运动位置状态。此外,仿生神经肌肉纤维在不同的驱动量下都表现出全过程的相对电阻线性变化。通过反馈的相对电阻变化信号,不需要测距器便可以时时刻刻检测仿生神经肌肉纤维的运动位置。并且,由于热膨胀系数较低的衬底层的存在,使得上述电阻和运动位置的变化非常接近于线性,这使得运动反馈的准确性和适应性均得以提升。
图5示出了上述仿生神经肌肉纤维的工作原理图,同时也可以示出控制上述神经肌肉纤维的控制系统,其中,通过简单的电路设计,仿生神经肌肉纤维的工作原理主要表现在可以感知非接触电容激发信号,当电容信号超过一定的阈值后,纤维感知到信号后响应电加热完成驱动动作,同时表皮的传感层可以通过电阻的时刻变化反馈纤维的收缩状态。
继续参见图1,本申请实施例还提供一种仿生神经肌肉纤维的制备方法,包括如下的步骤:
1)使第一高分子材料包裹于碳纳米管纤维芯上形成中间层,获得第一前体纤维。
2)使第二高分子材料包裹于所述第一前体纤维上形成衬底层,并加捻至螺旋状,获得第二前体纤维。
3)在所述第二前体纤维表面构建包含碳基导电材料,获得仿生神经肌肉纤维,所述碳基导电材料至少包括MXene。
其中,所述第一高分子材料的热膨胀系数大于第二高分子材料。
在一些实施方案中,步骤1)具体包括如下的步骤:
使第一高分子材料构成的薄膜包裹所述碳纳米管纤维芯,获得组合体。
对所述组合体施加第一捻度,获得所述第一前体纤维。
或,通过静电纺丝使所述第一高分子材料附着在所述碳纳米管纤维芯上,形成所述中间层。
在一些实施方案中,所述第一捻度优选可以为750-950turns/m。
在一些实施方案中,步骤2)具体包括如下的步骤:
提供前驱体溶液,所述前驱体溶液中包括所述第二高分子材料以及第一溶剂。
使所述前驱体溶液通过静电纺丝并去除所述第一溶剂以形成所述衬底层。
对所述衬底层以及第一前体纤维构成的整体施加第二捻度,以加捻至螺旋状。
在一些实施方案中,所述静电纺丝的电压优选可以为12-20kV,流速优选可以为0.5-1.5mL/h,工作间距优选可以为6-12cm。
在一些实施方案中,所述第二捻度优选可以为4300-4700turns/m。
在一些实施方案中,步骤3)具体包括如下的步骤:
提供分散液,所述分散液包含碳基导电材料、MXene以及第二溶剂。
使所述分散液涂覆于所述第二前体纤维的表面并去除第二溶剂后,获得所述仿生神经肌肉纤维。
本申请实施例还提供上述仿生神经肌肉纤维在制备软机器人中的用途。
基于上述仿生神经肌肉纤维以及其制备方法的示例性技术方案,本申请人认为,相比于现有技术,本申请的部分实施方式至少具备如下的优点:
1):由于碳纳米管纤维具有很好的电学性能,聚二甲基硅氧烷具有很好的热膨胀系数,制备的仿生神经肌肉纤维具有优异的驱动性能和循环稳定性,有望应用于下一代智能机器人的驱动单元中,减少驱动单元的复杂性和笨重性。
2):借助于聚丙烯腈电纺三维多孔纳米线电热惰性响应鞘层,仿生神经肌肉纤维驱动与放松全过程的反馈信号完美的接近于线性关系,这在先前的报导中是没有实现的。
3):基于多层同轴结构的仿生神经肌肉纤维的非接触电容感知响应,仿生神经肌肉纤维实现了感知-驱动-反馈一体化的多功能集成,大大减化了传感单元的结构,有望应用于下一代智能机器人,进一步减少驱动和传感单元的复杂性和笨重性。
4):所用到的仿生神经肌肉纤维制备方法简单,易于实用。
以下通过若干实施例并结合附图进一步详细说明本申请的技术方案。然而,所选的实施例仅用于说明本申请,而不限制本申请的范围。
实施例1
本实施例提供一种仿生神经肌肉纤维的制备过程示例,具体如下所示:
步骤1:40cm长、5mm宽和50μm厚的聚二甲基硅氧烷薄膜完全包裹44cm长的碳纳米管纤维后,将一端固定在步进电机的尖端,另一端用10g夹子悬挂。整个窄带悬挂在夹子和步进电机之间,然后插入818turns/m捻度。
步骤2:将4.8g聚丙烯腈粉末溶解在35.2gN,N-二甲基甲酰胺溶剂中,制备成质量分数为12%的前驱体溶液。将溶液在80℃水浴中搅拌4h,然后在室温下搅拌20h。静电纺丝以0.8mLh -1 的流速进行,施加电压为16kV。将加捻的直的聚二甲基硅氧烷包裹的碳纳米管纤维的末端固定在金属夹具上并以300rpm的速度绕轴旋转以接收静电纺丝纳米纤维。将纤维与注射喷头保持8cm的距离。将获得的产品置于真空烘箱中并在50℃下保持10h以去除残留溶剂。随后,将获得的纤维插入4410turns/m的捻度以形成螺旋纤维。
步骤3:将0.1g多层MXene粉末添加到5ml单壁碳纳米管分散液(0.1wt%)中,以实现均匀的超声分散。然后,用这种MXene/单壁碳纳米管均匀分散液涂覆聚丙烯腈包裹的螺旋纤维上以获得具有三维导电层的仿生神经肌肉纤维。
图2a示出了上述仿生神经肌肉纤维的形貌图,可以看出,加捻后纤维螺旋结构比较均匀,纤维的直径大约600um。图2b示出了上述仿生神经肌肉纤维的表面形貌放大图,从图中可以看出来MXene/单壁碳纳米管分散液非常均匀的涂敷在静电纺丝聚丙烯腈纳米纤维上。图2c-e是上述仿生神经肌肉纤维的截面图,从图中可以非常清楚的看出纤维的同轴结构,包括碳纳米管纤维芯、聚二甲基硅氧烷中间层和MXene及单壁碳纳米管包裹的聚丙烯腈电纺纳米纤维鞘层。
图3是上述仿生神经肌肉纤维的非接触感知性能测试图,仿生神经肌肉纤维可以感知最大14cm距离的非接触相对电容变化。
图4是上述仿生神经肌肉纤维的驱动与反馈性能测试图,其中,图4a为上述仿生神经肌肉纤维的相对电阻以及收缩量随时间的变化关系图,图4b为上述仿生神经肌肉纤维的相对电阻与收缩量的对应关系图,从图中可以看出来上述仿生神经肌肉纤维在10V电压下的最大收缩量为14%,同时在不同电压下表现出不同的收缩量,且随着电压的增加收缩量线性增加。仿生神经肌肉纤维收缩的同时伴随着鞘层结构电阻的变化,并且其电阻变化的跟随性和线性程度俱佳。
实施例2
本实施例提供一种仿生神经肌肉纤维的制备过程示例,与实施例1基本相同,区别仅在于:
步骤1中,采用相同的条件和过程参数,通过静电纺丝在碳纳米管纤维芯上形成尼龙中间层。
所制得的仿生神经肌肉纤维具有与实施例1同样的电热驱动、运动反馈以及接近感知三种功能,且其反馈线性程度以及接近感知距离和灵敏性与实施例1亦相似。
实施例3
本实施例提供一种仿生神经肌肉纤维的制备过程示例,与实施例1基本相同,区别仅在于:
步骤2中,采用相似的条件和过程参数,通过静电纺丝(静电纺丝的电压为20kv,流速为1mL/h,工作间距为8cm)形成聚偏氟乙烯衬底层。
所制得的仿生神经肌肉纤维具有与实施例1同样的电热驱动、运动反馈以及接近感知三种功能,且其反馈线性程度以及接近感知距离和灵敏性与实施例1亦相似。
实施例4
本实施例提供一种仿生神经肌肉纤维的制备过程示例,与实施例1基本相同,区别仅在于:
步骤3中,使用多壁碳纳米管替换单壁碳纳米管。
所制得的仿生神经肌肉纤维具有与实施例1同样的电热驱动、运动反馈以及接近感知三种功能,且其反馈线性程度以及接近感知距离和灵敏性与实施例1亦相似。
对比例1
衬底层不是三维静电纺丝纳米线多孔结构,而是密实的结构,表面碳基材料附着性差,容易脱落造成器件损坏;此外反馈信号的线性关系会很差。
对比例2
省去MXene而仅以单壁碳纳米管作为传感层,MXene为多层片状结构,细微的压力变化便可以被层结构的变化所捕捉,MXene增加了应变感知传感层的灵敏性。当本对比例不含MXene时,器件的灵敏性以及最低检测下限会受到影响。
对比例3
相比于实施例1,将碳纳米管替换为金属纳米线,因金属纳米线为刚性材料,如果传感层中用金属纳米线等替代碳基导电材料,会直接影响仿生神经肌肉纤维的驱动性能。
基于上述实施例和对比例,可以明确,本申请所提供的仿生神经肌肉纤维及其制备方法与应用通过碳纳米管纤维芯的电热效应以及至少中间层的热驱动现象实现电热驱动功能,通过传感层与碳纳米管纤维芯之间的电容变化实现接近感知功能,同时,利用传感层随神经肌肉纤维的动态变化而导致的电阻变化实现动作反馈功能,其中传感层、碳纳米管芯以及中间层均是多功能化的,传感层既作为电容电极又作为电阻感应元件,碳纳米管芯既作为电热元件又作为电容电极,中间层既作为热驱动元件又作为介电层,因此本申请在较低的结构复杂度上实现了三种功能的集成化,为柔性机器人的发展提供了更加广阔的发展空间,并且,本申请所提供的运动反馈功能的线性程度极高,保证了运动反馈的准确性和适应性。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种仿生神经肌肉纤维,其特征在于,包括碳纳米管纤维芯由内而外依次包裹所述碳纳米管纤维芯的中间层、衬底层以及传感层,并且所述仿生神经肌肉纤维加捻至螺旋的形状;
    所述中间层和衬底层均由高分子材料制成,且所述中间层的热膨胀系数大于所述衬底层的热膨胀系数;
    所述传感层包含碳基导电材料,所述碳基导电材料至少包括MXene。
  2. 根据权利要求1所述的仿生神经肌肉纤维,其特征在于,所述碳纳米管纤维芯的直径为150-170μm;
    和/或,所述中间层的厚度为230-250μm,所述衬底层的厚度为22-25μm,所述传感层的厚度为5-7μm;
    和/或,所述中间层的热膨胀系数为330-350ppm/℃,所述衬底层的热膨胀系数为150-175ppm/℃。
  3. 根据权利要求1所述的仿生神经肌肉纤维,其特征在于,所述中间层的材质包括聚二甲基硅氧烷、尼龙以及聚四氟乙烯中的任意一种或两种以上的组合;
    和/或,所述电热惰性响应衬底层包含由聚合物纳米纤维交织形成的三维多孔结构,所述三维多孔结构的孔径为0.8-1μm;
    和/或,所述衬底层的材质包括聚丙烯腈以及聚偏氟乙烯中的任意一种或两种的组合。
  4. 根据权利要求1所述的仿生神经肌肉纤维,其特征在于,所述碳基导电材料还包括单壁碳纳米管、多壁碳纳米管以及片层石墨烯中的任意一种或两种以上的组合。
  5. 根据权利要求4所述的仿生神经肌肉纤维,其特征在于,所述碳基导电材料中碳纳米管和/或石墨烯与MXene的质量比为1∶15-1∶25。
  6. 根据权利要求1所述的仿生神经肌肉纤维,其特征在于,所述仿生神经肌肉纤维至少同时具有电热驱动、运动反馈以及接近感知三种功能。
  7. 一种仿生神经肌肉纤维的制备方法,其特征在于,包括:
    1)使第一高分子材料包裹于碳纳米管纤维芯上形成中间层,获得第一前体纤维;
    2)使第二高分子材料包裹于所述第一前体纤维上形成衬底层,并加捻至螺旋状,获得第二前体纤维;
    3)在所述第二前体纤维表面构建包含碳基导电材料的传感层,获得仿生神经肌肉纤维,所述碳基导电材料至少包括MXene;
    其中,所述第一高分子材料的热膨胀系数大于第二高分子材料。
  8. 根据权利要求7所述的制备方法,其特征在于,步骤1)具体包括:
    使第一高分子材料构成的薄膜包裹所述碳纳米管纤维芯,获得组合体;
    对所述组合体施加第一捻度,获得所述第一前体纤维;
    或,通过静电纺丝使所述第一高分子材料附着在所述碳纳米管纤维芯上,形成所述中间层;
    优选的,所述第一捻度为750-950turns/m。
  9. 根据权利要求7所述的制备方法,其特征在于,步骤2)具体包括:
    提供前驱体溶液,所述前驱体溶液包括所述第二高分子材料以及第一溶剂;
    使所述前驱体溶液通过静电纺丝并去除所述第一溶剂以形成所述衬底层;
    对所述衬底层以及第一前体纤维构成的整体施加第二捻度,以加捻至螺旋状;
    优选的,所述静电纺丝的电压为12-20kV,流速为0.5-1.5mL/h,工作间距为6-12cm;
    优选的,所述第二捻度为4300-4700turns/m;
    优选的,步骤3)具体包括:
    提供分散液,所述分散液包含碳基导电材料、MXene以及第二溶剂;
    使所述分散液涂覆于所述第二前体纤维的表面并去除第二溶剂后,获得所述仿生神经肌肉纤维。
  10. 权利要求1-6中任一项所述仿生神经肌肉纤维在制备软机器人中的用途。
PCT/CN2022/129916 2022-05-07 2022-11-04 仿生神经肌肉纤维及其制备方法与应用 WO2023216528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210495760.9A CN114790657B (zh) 2022-05-07 2022-05-07 仿生神经肌肉纤维及其制备方法与应用
CN202210495760.9 2022-05-07

Publications (1)

Publication Number Publication Date
WO2023216528A1 true WO2023216528A1 (zh) 2023-11-16

Family

ID=82460914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129916 WO2023216528A1 (zh) 2022-05-07 2022-11-04 仿生神经肌肉纤维及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114790657B (zh)
WO (1) WO2023216528A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790657B (zh) * 2022-05-07 2023-04-07 中国科学院苏州纳米技术与纳米仿生研究所 仿生神经肌肉纤维及其制备方法与应用
CN115323580B (zh) * 2022-08-10 2024-01-16 香港理工大学深圳研究院 基于超螺旋状复合纤维的热驱动变形织物及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509402B1 (ko) * 2014-08-04 2015-04-08 성균관대학교산학협력단 유전 탄성체를 이용한 인공 근육 섬유
US20190096540A1 (en) * 2015-07-16 2019-03-28 Board Of Regents, The University Of Texas System Sheath-core fibers for superelastic electronics, sensors, and muscles
US20190316277A1 (en) * 2018-04-16 2019-10-17 The Hong Kong Polytechnic University Multi-level-architecture multifiber composite yarn
CN110733031A (zh) * 2019-09-26 2020-01-31 广东工业大学 一种快速响应自传感多形形状记忆软体驱动器及其制备方法和应用
CN111735382A (zh) * 2020-07-17 2020-10-02 广德天运新技术股份有限公司 一种纤维状Ti3C2 MXene基扭转角度传感器及其制备方法
CN111826765A (zh) * 2020-03-24 2020-10-27 中国科学院苏州纳米技术与纳米仿生研究所 电化学驱动人工肌肉纤维及其制备方法和应用
WO2020231741A2 (en) * 2019-05-10 2020-11-19 Board Of Regents, The University Of Texas System Sheath-run artificial muscles and methods of use thereof
CN112680966A (zh) * 2020-12-23 2021-04-20 中国科学院苏州纳米技术与纳米仿生研究所 复合纤维及其制备方法和应用
CN113322667A (zh) * 2021-07-19 2021-08-31 青岛大学 一种银纳米线-MXene超弹智能导电纤维的制备方法
CN114060279A (zh) * 2021-11-15 2022-02-18 中国科学院苏州纳米技术与纳米仿生研究所 耐高温仿生驱动器、其制备方法、制备系统及测试方法
CN114150399A (zh) * 2021-12-16 2022-03-08 中国科学院苏州纳米技术与纳米仿生研究所 人工肌肉纤维及其制法、应用和驱动测试装置
CN114790657A (zh) * 2022-05-07 2022-07-26 中国科学院苏州纳米技术与纳米仿生研究所 仿生神经肌肉纤维及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202505522U (zh) * 2012-03-28 2012-10-31 李子怡 仿生肌肉纤维及其制成的仿生肌体
RU2559417C1 (ru) * 2014-05-14 2015-08-10 Дмитрий Андреевич Журавлёв Бионическая конечность и способ ее изготовления
RU2654680C1 (ru) * 2017-06-07 2018-05-21 Дмитрий Андреевич Журавлёв Искусственная мышца с улучшенной точностью движений

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509402B1 (ko) * 2014-08-04 2015-04-08 성균관대학교산학협력단 유전 탄성체를 이용한 인공 근육 섬유
US20190096540A1 (en) * 2015-07-16 2019-03-28 Board Of Regents, The University Of Texas System Sheath-core fibers for superelastic electronics, sensors, and muscles
US20190316277A1 (en) * 2018-04-16 2019-10-17 The Hong Kong Polytechnic University Multi-level-architecture multifiber composite yarn
WO2020231741A2 (en) * 2019-05-10 2020-11-19 Board Of Regents, The University Of Texas System Sheath-run artificial muscles and methods of use thereof
CN110733031A (zh) * 2019-09-26 2020-01-31 广东工业大学 一种快速响应自传感多形形状记忆软体驱动器及其制备方法和应用
CN111826765A (zh) * 2020-03-24 2020-10-27 中国科学院苏州纳米技术与纳米仿生研究所 电化学驱动人工肌肉纤维及其制备方法和应用
CN111735382A (zh) * 2020-07-17 2020-10-02 广德天运新技术股份有限公司 一种纤维状Ti3C2 MXene基扭转角度传感器及其制备方法
CN112680966A (zh) * 2020-12-23 2021-04-20 中国科学院苏州纳米技术与纳米仿生研究所 复合纤维及其制备方法和应用
CN113322667A (zh) * 2021-07-19 2021-08-31 青岛大学 一种银纳米线-MXene超弹智能导电纤维的制备方法
CN114060279A (zh) * 2021-11-15 2022-02-18 中国科学院苏州纳米技术与纳米仿生研究所 耐高温仿生驱动器、其制备方法、制备系统及测试方法
CN114150399A (zh) * 2021-12-16 2022-03-08 中国科学院苏州纳米技术与纳米仿生研究所 人工肌肉纤维及其制法、应用和驱动测试装置
CN114790657A (zh) * 2022-05-07 2022-07-26 中国科学院苏州纳米技术与纳米仿生研究所 仿生神经肌肉纤维及其制备方法与应用

Also Published As

Publication number Publication date
CN114790657B (zh) 2023-04-07
CN114790657A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2023216528A1 (zh) 仿生神经肌肉纤维及其制备方法与应用
CN109431460B (zh) 一种柔性高伸缩的具有褶皱结构的纳米纤维包芯纱应力传感器及其制备方法
CN106705829B (zh) 一种柔性可穿戴导电纤维传感器及其制备方法和应用
CN109137105B (zh) 一种基于石墨烯纳米纤维纱的柔性可拉伸多功能传感器及其制备方法
Huang et al. Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@ silver nanoparticles electrospun membrane strain sensors by multi-conductive network
Yang et al. A robust, flexible, hydrophobic, and multifunctional pressure sensor based on an MXene/aramid nanofiber (ANF) aerogel film
WO2021237908A1 (zh) 柔性混合发电机及制备方法与应用、柔性自充电装置
Guan et al. Fiber-shaped stretchable triboelectric nanogenerator with a novel synergistic structure of opposite Poisson's ratios
Soin et al. Energy harvesting and storage textiles
CN103616097A (zh) 一种柔性薄膜触觉传感器件及其制作方法
Li et al. Self-powered stretchable strain sensors for motion monitoring and wireless control
Dong et al. Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption
CN113916416B (zh) 一种高渗透性应变非敏感型电子皮肤及其制备方法
Qiu et al. Fully nano/micro-fibrous triboelectric on-skin patch with high breathability and hydrophobicity for physiological status monitoring
CN109341736A (zh) 一种柔性可穿戴式应变传感器及其制备方法
CN110567359A (zh) 一种基于形状记忆的多重刺激自传感软体驱动器及其制备方法和应用
CN112205969B (zh) 氧化锌复合pdms材料柔性可穿戴应变传感器及其应用
Wu et al. A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles
Xu et al. Waterproof flexible pressure sensors based on electrostatic self-assembled MXene/NH2-CNTs for motion monitoring and electronic skin
CN203965077U (zh) 一种柔性薄膜触觉传感器
Xu et al. Constructing high-efficiency stretchable-breathable triboelectric fabric for biomechanical energy harvesting and intelligent sensing
Li et al. Ultrathin breathable and stretchable electronics based on patterned nanofiber composite network
Chen et al. Microstructured flexible pressure sensor based on nanofibrous films for human motions and physiological detection
CN110863352B (zh) 一种基于双组份聚氨酯线的高可拉伸柔性应变传感器及其制备方法
Lamuta Perspective on highly twisted artificial muscles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941464

Country of ref document: EP

Kind code of ref document: A1