WO2023216382A1 - 一种基于北斗卫星的电网故障定位方法 - Google Patents

一种基于北斗卫星的电网故障定位方法 Download PDF

Info

Publication number
WO2023216382A1
WO2023216382A1 PCT/CN2022/100983 CN2022100983W WO2023216382A1 WO 2023216382 A1 WO2023216382 A1 WO 2023216382A1 CN 2022100983 W CN2022100983 W CN 2022100983W WO 2023216382 A1 WO2023216382 A1 WO 2023216382A1
Authority
WO
WIPO (PCT)
Prior art keywords
power grid
detection device
positioning
data
detection
Prior art date
Application number
PCT/CN2022/100983
Other languages
English (en)
French (fr)
Inventor
张卫平
丁烨
岑全
张思琪
向荣
Original Assignee
环球数科集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 环球数科集团有限公司 filed Critical 环球数科集团有限公司
Publication of WO2023216382A1 publication Critical patent/WO2023216382A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/425Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between signals derived from different satellite radio beacon positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the present invention relates to satellite positioning technology. Specifically, it involves a power grid fault location method based on Beidou satellites.
  • the technical solution with the publication number CN113848426 (A) proposes a method to use the three-phase unbalance of multiple power terminals in the power grid to calculate, collect statistics and analyze one or more fault points existing in the power grid. method, and then match the transformer data in the distribution network diagram and model system to find the faulty grid component;
  • the technical solution with the public number CN107167709A proposes a method to use the instantaneous current information on three-phase lines at multiple monitoring points , calculate the zero-sequence current at each monitoring point, and determine whether the power grid is faulty based on the zero-sequence current value, and locate the faulty line segment in the power grid.
  • the object of the present invention is to provide a power grid fault locating method based on Beidou satellites; the positioning method performs basic monitoring through a monitoring module configured on the power grid line, and finds line segments with abnormal operating conditions on the power grid line; and thereafter , by assigning the first detection device to quickly detect the abnormal line segment, and discover suspicious power grid components that may be defective or damaged, and upload the positioning coordinates of the suspicious power grid components to the mobile base station; then assign the second detection device The device further checks the positioning coordinates of the suspicious power grid component to determine the correctness of the positioning coordinates obtained by the first detection device. After secondary positioning, it calculates the deviation between the second detection device and the first detection device, thereby ensuring that the overall Consistency and accuracy of positioning systems.
  • a power grid fault location method based on Beidou satellite includes the following steps:
  • the monitoring module monitors the power grid lines and discovers abnormal operating conditions in the power grid, and provides the offset number of the power grid area with abnormal operating conditions and the number of the suspected faulty line;
  • the first detection device arrives at the abnormal power grid area, performs detection on multiple power grid components in the area, and feeds back to the mobile base station the component descriptions of the multiple power grid components and one or more sets of first inspection data corresponding to each power grid component. and the first positioning coordinates corresponding to each set of first inspection data;
  • the mobile base station determines and identifies the described power grid component from the component description and the first inspection data, and determines whether there is an abnormality in the power grid component by analyzing the first inspection data, and assigns the abnormal power grid component to the The component is marked as suspicious;
  • the second detection device reaches the position indicated by the first positioning coordinates according to the first positioning coordinates of the suspicious component and reviews the first positioning coordinates, determines the review positioning coordinates and calculates the first positioning coordinates. The amount of deviation between the positioning coordinates and the review positioning coordinates;
  • the second detection device re-examines the suspicious component, determines the faulty component, and records the positioning coordinates of the faulty component as the second positioning coordinates;
  • step S4 includes the following sub-steps:
  • the second detection device After arriving at the location of one of the suspicious components according to the first positioning coordinates of the suspicious component, the second detection device applies to the mobile base station to obtain one or more sets of first positioning coordinates corresponding to the suspicious component.
  • a set of the first inspection data wherein the first inspection data at least includes the RGB image and the structured light image of the power grid component, and uses the RGB image and the structured light image as the first image data; and also includes the thermal image of the suspect component.
  • the imaging detection image is used as the first thermal imaging data;
  • the second detection device cyclically captures multiple sets of image data for the suspicious component as second image data
  • S403 Match multiple sets of second image data with the first image data, and select a set of image data from the second image data that is most similar to the first image data as a review image. data;
  • step S2 the following sub-steps are included:
  • the first detection device starts detection at time t1, and sends all detection data within the time period ⁇ t to the mobile base station at time t1+ ⁇ t;
  • the component description includes a power grid component description, a power grid component structure label, and a power grid component equipment identification;
  • the first inspection data includes at least an RGB image and a structured light image of the power grid component, and uses the RGB image and the structured light image as first image data; further including the thermal imaging detection image of the suspicious component as the first thermal imaging data;
  • positioning coordinates include horizontal positioning coordinates (x, y) and elevation coordinates h;
  • the operation mode of the first detection device includes manual remote control operation and automatic remote control operation
  • the matching algorithm of the first image data and the second image data is a multi-point matching algorithm of three-dimensional structured light
  • the positioning method includes a power grid fault positioning system based on Beidou satellites.
  • the positioning system includes:
  • the monitoring module is configured at several power grid nodes in the power grid and is used to monitor the power grid between multiple node segments and obtain the operating status parameters of the power grid;
  • the detection device including a first detection device and a second detection device, is configured to perform detection procedures on the power grid and power grid components;
  • a mobile base station configured to be communicatively coupled to the monitoring module and the detection device, and process data requests from the monitoring module and the detection device, including upload data requests and data acquisition requests;
  • the first detection device and the second detection device are one or a combination of two or more unmanned aerial vehicles, ground robots, and unmanned vehicles;
  • each of the detection devices includes a positioning module, a detection module, a communication module, a driving module and a control module;
  • the positioning module is based on the Beidou satellite positioning system and is used to obtain the positioning coordinates of the detection device; the positioning module further includes a gyroscope sensor, an acceleration sensor and a magnetic sensor, used to determine the real-time attitude of the detection device and pointing angle; the positioning module also includes a barometric altimeter for determining the altitude where the detection device is located;
  • the detection module includes a high-definition camera, a structured light sensor, and a thermal imaging sensor;
  • the communication module is used to communicate and transmit the positioning data and detection data of the detection device with the mobile base station; and is further used to receive control instructions for the detection device issued by the mobile base station;
  • the driving module is configured to drive the detection device to move, including ground movement and air movement;
  • the control module includes a processor; the control module is communicatively connected with the positioning module, the detection module, the communication module and the driving module, and is used to control the collaborative work of the above modules.
  • the positioning method of the present invention is based on the high-resolution positioning of the Beidou satellite and adopts a secondary review positioning method to further reduce the positioning error and offset under limited resolution, and can improve the accuracy of the positioning coordinates of the faulty component. Further improve;
  • the positioning method of the present invention is suitable for additional configuration of equipment and devices on the established power grid, and by differentially configuring the first detection device and the second detection device, low operating costs and operating benefits can be further ensured;
  • the positioning method of the present invention is suitable for unmanned remote control troubleshooting operations in large-scale power grid construction, and brings practical application significance to vast remote areas;
  • Each part of the positioning system of the present invention and the device adopt modular design and coordination, and can be flexibly optimized and changed through software and hardware in the later stage, saving a lot of later maintenance and upgrade costs.
  • Figure 1 is a schematic diagram of the steps of the positioning method according to the present invention.
  • Figure 2 is a schematic diagram of the detection principle of the first detection device in the positioning method of the present invention.
  • Figure 3 is a schematic diagram of the detection and positioning principle of the second detection device in the positioning method of the present invention.
  • Figure 4 is a schematic diagram of the detection device in the present invention performing thermal imaging detection on power grid components
  • Figure 5 is a schematic diagram of the present invention using three-dimensional structured light for image comparison.
  • the location method includes the following steps:
  • the monitoring module monitors the power grid lines and discovers abnormal operating conditions in the power grid, and provides the offset number of the power grid area with abnormal operating conditions and the number of the suspected faulty line;
  • the first detection device reaches the abnormal power grid area, performs detection on multiple power grid components in the area, and feeds back to the mobile base station the component descriptions of the multiple power grid components and one or more groups corresponding to each power grid component.
  • the mobile base station determines and identifies the described power grid component from the component description and the first inspection data, and determines whether there is an abnormality in the power grid component by analyzing the first inspection data, and assigns the abnormal power grid component to the The component is marked as suspicious;
  • the second detection device reaches the position indicated by the first positioning coordinates according to the first positioning coordinates of the suspicious component and reviews the first positioning coordinates to determine the review positioning. coordinates and calculate the deviation between the first positioning coordinates and the review positioning coordinates;
  • the second detection device re-examines the suspicious component, determines the faulty component, and records the positioning coordinates of the faulty component as the second positioning coordinates;
  • step S4 includes the following sub-steps:
  • the second detection device After arriving at the location of one of the suspicious components according to the first positioning coordinates of the suspicious component, the second detection device applies to the mobile base station to obtain one or more sets of first positioning coordinates corresponding to the suspicious component.
  • a set of the first inspection data wherein the first inspection data at least includes the RGB image and the structured light image of the power grid component, and uses the RGB image and the structured light image as the first image data; and also includes the thermal image of the suspect component.
  • the imaging detection image is used as the first thermal imaging data;
  • the second detection device cyclically captures multiple sets of image data for the suspicious component as second image data
  • S403 Match multiple sets of second image data with the first image data, and select a set of image data from the second image data that is most similar to the first image data as a review image. data;
  • step S2 the following sub-steps are included:
  • the first detection device starts detection at time t1, and sends all detection data within the time period ⁇ t to the mobile base station at time t1+ ⁇ t;
  • the component description includes a power grid component description, a power grid component structure label, and a power grid component equipment identification;
  • the first inspection data includes at least an RGB image and a structured light image of the power grid component, and uses the RGB image and the structured light image as first image data; further including the thermal imaging detection image of the suspicious component as the first thermal imaging data;
  • positioning coordinates include horizontal positioning coordinates (x, y) and elevation coordinates h;
  • the operation mode of the first detection device includes manual remote control operation and automatic remote control operation
  • the matching algorithm of the first image data and the second image data is a multi-point matching algorithm of three-dimensional structured light
  • the positioning method includes a power grid fault positioning system based on Beidou satellites.
  • the positioning system includes:
  • the monitoring module is configured at several power grid nodes in the power grid and is used to monitor the power grid between multiple node segments and obtain the operating status parameters of the power grid;
  • the detection device including a first detection device and a second detection device, is configured to perform detection procedures on the power grid and power grid components;
  • a mobile base station configured to be communicatively coupled to the monitoring module and the detection device, and process data requests from the monitoring module and the detection device, including upload data requests and data acquisition requests;
  • the first detection device and the second detection device are one or a combination of two or more unmanned aerial vehicles, ground robots, and unmanned vehicles;
  • each of the detection devices includes a positioning module, a detection module, a communication module, a driving module and a control module;
  • the positioning module is based on the Beidou satellite positioning system and is used to obtain the positioning coordinates of the detection device; the positioning module further includes a gyroscope sensor, an acceleration sensor and a magnetic sensor, used to determine the real-time attitude of the detection device and pointing angle; the positioning module also includes a barometric altimeter for determining the altitude where the detection device is located;
  • the detection module includes a high-definition camera, a structured light sensor, and a thermal imaging sensor;
  • the communication module is used to communicate and transmit the positioning data and detection data of the detection device with the mobile base station; and is further used to receive control instructions for the detection device issued by the mobile base station;
  • the driving module is configured to drive the detection device to move, including ground movement and air movement;
  • the control module includes a processor; the control module is communicatively connected with the positioning module, the detection module, the communication module and the driving module, and is used to control the collaborative work of the above modules.
  • the monitoring module may be a monitoring device based on terminal transformer data; the monitoring module periodically collects the power quality data of the terminal transformer in the power grid line segment; in some embodiments, the monitoring module includes comparison The three-phase unbalance data of the previous collection period and the current collection period;
  • V 1 , V 2 , and V 3 are the effective value of the phase voltage of each phase in the three-phase circuit collected by the terminal distribution transformer; D is the intermediate variable; ⁇ is the unbalanced degree of the three-phase voltage in the power grid section;
  • the mobile base station includes setting up a mobile base station every 10 kilometers or 15 kilometers; the mobile base station includes power supply through the power grid to maintain the normal operation of all its internal equipment and systems; In some embodiments, the mobile base station includes a charging platform configured for charging the detection device to ensure that the detection device can receive continuous power replenishment and ensure its battery life during long-distance remote control operation;
  • the mobile base station includes a transceiver device configured for wireless data communication with the detection device, such as based on radio communication, spread spectrum microwave communication, 5G mobile network communication, or short message communication based on the Beidou satellite system ;
  • the mobile base station includes a server terminal configured for data communication, data processing and data storage;
  • the server can be a desktop computer, a mobile computer, a diskless cloud server, etc.;
  • the servers of multiple mobile base stations include One or more local area networks, used for data transmission between the mobile base stations, and to achieve data backup, data processing and other purposes;
  • the mobile base station includes a communication connection with a general base station; the general base station is configured to implement overall control and scheduling of a plurality of the mobile base stations, and is used to coordinate a plurality of the first detection devices and the second detection device. Recording and arrangement of testing progress and sequence of testing devices;
  • the detection device is preferably a small unmanned aerial vehicle, or an unmanned aerial vehicle; the small unmanned aerial vehicle configured with the first detection device and the second detection device may have the same or different functional module configurations;
  • the detection device is preferably a rotor-type drone;
  • the drive module of the rotor-type drone includes a plurality of rotor groups and motors that drive the rotor groups, as well as energy that drives the motors to rotate; wherein, the energy supply of the motor It may include using a battery pack to provide power for driving; and in some embodiments, it may include using fossil fuels, such as gasoline, diesel, etc., to be driven by an internal combustion engine motor;
  • the rotary-wing UAV can include six or eight rotor groups; by controlling the rotation speed of each rotor group and the tilt of the center of gravity of the rotor-type UAV, the UAV can perform up/down movements in four directions.
  • horizontal movement and includes hovering at a fixed height in the air to perform continuous detection of the power grid and power grid components, and includes correcting the positioning module through hovering or small-scale gyration flight, or providing a positioning drone The required positioning execution time;
  • the detection device includes one or more sensor devices for image capture, such as cameras or other image capture devices, further including infrared thermal imaging sensors, structured light sensors, multispectral sensors, hyperspectral sensors, lasers Sensors, etc.; in embodiments where the drone is equipped with a camera, the camera may be permanently fixed or removably attached; the camera may capture images of the environment in which the drone is located; in some embodiments, the captured The image data is streamed from the UAV to the mobile base station through the communication module, and further streamed to the main base station to provide real-time flight pictures to the controller; in other implementations, the image data can be Saved in the on-board memory, and also remotely saved in the server of the mobile base station; the captured image data can then be retrieved from the on-board memory of the detection device, external storage media, etc.;
  • the structured light sensor configured in the detection device uses an infrared laser to project light with certain structural characteristics onto the photographed object, such as the power grid components and cables in this embodiment, and then uses a special infrared camera to collect the reflection.
  • the structured light pattern calculates depth information based on the principle of triangulation; the structured light method does not rely on the color and texture of the object itself, and uses the method of actively projecting known patterns to achieve fast and robust matching of feature points, which can achieve a relatively high High accuracy; compared with traditional image recording technology that can only record flat images and its two-dimensional contour and color performance data, three-dimensional structured light can quickly and accurately collect depth information and record three-dimensional data of the photographed object;
  • the use of image data based on structured light can be further used to match two similar images; by comparing two sets of image data based on structured light, it can be determined whether the subject of the current two sets of data is The same object, and further, it can be determined whether the shooting angle and the distance to the object during shooting are consistent or similar; therefore, through image comparison based on structured light, the second image data can be distinguished from the first image Whether there is the same or similar image data in the data, so as to determine whether the second detection device reaches the same point when shooting the second image data as when the first detection device shoots the first image data. Location, including whether it has the same shooting height and the same shooting angle;
  • the first detection device needs to be based on its battery life, Factors such as the coverage of the power grid to be checked are to be quickly checked. Therefore, the first detection device is in a continuous moving state and may not be able to wait for its positioning module to provide sufficient positioning coordinate identification and confirmation processes due to the short stay time in one position;
  • the second detection device After the second detection device conducts a preliminary investigation through the first detection device, it can inspect only the suspicious components in a targeted manner, and based on the effectiveness and stability of the detection, the second detection device can
  • the positioning module is configured to have a more stable hovering capability, and a configuration of the positioning module with higher accuracy, thereby having more accurate positioning coordinates;
  • the current general positioning resolution of the Beidou satellite positioning system can reach about 0.1 meters.
  • the positioning offset caused by certain satellite signal drift errors or space obstacle errors can be eliminated through secondary positioning, thus Implement rechecking of positioning coordinates;
  • a set of offset values is obtained; if the offset is found If there is an excessive offset in the horizontal coordinate or elevation coordinate part of the value, it is possible that the positioning module of one or more of the detection devices is defective and needs to be returned to the mobile base station in time for further detection.
  • this embodiment further optimizes the positioning method
  • At least one of the first detection devices and at least one of the second detection devices form a joint positioning group; each of the detection devices in one of the joint positioning groups serves as a member of the joint positioning group;
  • the positioning modules of the members in the joint positioning group respectively obtain original satellite positioning data such as the carrier phase of the Beidou satellite navigation signal;
  • the first member obtains the satellite positioning data and inertial navigation observation information of the second member;
  • the first member performs information processing and fusion on its own and the second member's satellite positioning data and inertial navigation observation information, and determines the availability of the Beidou satellites by observing changes in the observation data of the Beidou satellites; according to the Beidou satellites Perform fusion calculation based on the availability and data fusion situation, and measure the high-precision relative position vectors of the first member and the second member;
  • the orbit error and clock error of Beidou satellites can be reduced, the real-time positioning accuracy can be improved, which is beneficial to long-distance operation and operation under harsh satellite signal conditions, and can achieve all-weather operation and data transmission, and obtain real-time observations. data;
  • the original observation data includes broadcast ephemeris and pseudorange observation values and carrier phase observation values of different frequencies.
  • the correction data includes the orbit correction number, clock error correction number and inter-code deviation correction number corresponding to the broadcast time.
  • the broadcast satellite The orbit correction number of the ephemeris and the current time determines the satellite precise orbit at the current time.
  • the broadcast ephemeris and the clock error correction number of the current time determine the satellite precision clock error of the current time.
  • the inter-code deviation correction number is used for pseudorange observations of different frequencies. Correction, obtain corrected pseudo-range observations of different frequencies, and determine the position of the device to be positioned at the current moment based on the satellite's precise orbit, satellite precision clock error and corrected pseudo-range observations;
  • the GNSS antenna receives the BDSB1 signal and the GPSL1 signal, amplifies them and transmits them to the GNSS positioning and timing calculation module, and the GNSS positioning and timing calculation module is connected to the communication module based on the 4G or 5G communication network segment to track and capture BDSB1 signal and GPSL1 signal resolve positioning information and time information;
  • the communication module includes a gateway and a remote mobile terminal; the communication module receives RTK differential data and transmits it to the communication module for the joint positioning Data exchange is performed between group members and between each member and the mobile base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种基于北斗卫星的电网故障定位方法,该定位方法通过配置于电网线路上的监测模块进行基础监测,并发现电网线路上出异常运行状态的线路段;其后,通过指派第一检测装置对出现异常状态的线路段进行快速检测,并发现其中可能存在缺陷或损坏的可疑电网组件,并将可疑电网组件的定位坐标上传到移动基站;其后指派第二检测装置进一步对可疑电网组件进行定位坐标的复核,以确定由第一检测装置获得的定位坐标的正确性并通过二次定位后,计算第二检测装置与第一检测装置的偏差量,从而保证整体定位系统的一致性和精确性。

Description

一种基于北斗卫星的电网故障定位方法 技术领域
本发明涉及卫星定位技术。具体而言,涉及一种基于北斗卫星的电网故障定位方法。
背景技术
当前由于大量电网设置于偏远地区,其物理定位的难度较大,当电网发生故障时,要求调度员根据接收到的电网故障信息,准确快速地判断出故障,并且能够采取相应的处理措施,并快速定位到发生故障的设施所在物理定位处,及时恢复电网的正常运行,这就要求调度员必须具备丰富大量的电力系统运行理论知识和充足的实践经验。若能通过最新的卫星定位系统,尤其采用我国自研的北斗卫星定位系统进行电网故障的定位,更能优化处理电网故障问题所需要的时间和成本。
查阅相关已公开的技术方案,公开号为CN113848426 (A) 的技术方案提出一种利用电网中多个用电终端的三相不平衡度计算、统计及分析电网中存在的一个或多个故障点的方式,再在配网图模系统中进行变压器数据的匹配,从而找到出现故障的电网元件;公开号为CN107167709A的技术方案提出一种利用多个监测点处的三相线路上的瞬时电流信息,计算每个监测点的零序电流,并根据零序电流值判断电网是否有故障的技术方案,定位电网中出现故障的线路段。
背景技术的前述论述仅意图便于理解本发明。此论述并不认可或承认提及的材料中的任一种公共常识的一部分。
技术解决方案
本发明的目的在于,提供一种基于北斗卫星的电网故障定位方法;所述定位方法通过配置于电网线路上的监测模块进行基础监测,并发现电网线路上出异常运行状态的线路段;其后,通过指派第一检测装置对出现异常状态的线路段进行快速检测,并发现其中可能存在缺陷或损坏的可疑电网组件,并将可疑电网组件的定位坐标上传到移动基站;其后指派第二检测装置进一步对可疑电网组件进行定位坐标的复核,以确定由第一检测装置获得的定位坐标的正确性并通过二次定位后,计算第二检测装置与第一检测装置的偏差量,从而保证整体定位系统的一致性和精确性。
本发明采用如下技术方案:
一种基于北斗卫星的电网故障定位方法,所述定位方法包括以下步骤:
S1:监测模块对电网线路进行监测,并发现电网中的异常运行状态,提供异常运行状态的电网区域偏号以及疑似故障线路编号;
S2:第一检测装置到达异常电网区域,对区域内多个电网组件执行检测,向移动基站反馈多个电网组件的组件描述以及对应每个电网组件的一组或多组的第一检查数据,以及每组第一检查数据所对应的第一定位坐标;
S3:移动基站从所述组件描述以及所述第一检查数据中确定并识别所描述的电网组件,并通过分析所述第一检查数据,判断该电网组件是否存在异常,并将存在异常的电网组件标记为可疑组件;
S4:第二检测装置根据所述可疑组件的所述第一定位坐标,到达所述第一定位坐标所指示位置并对所述第一定位坐标进行复核,确定复核定位坐标并计算所述第一定位坐标与所述复核定位坐标的偏差量;
S5:所述第二检测装置对所述可疑组件进行复检,确定故障组件,并记录所述故障组件的定位坐标作为第二定位坐标;
其中,在步骤S4,包括以下子步骤:
S401:第二检测装置根据所述可疑组件的所述第一定位坐标,到达一个所述可疑组件的所在位置后,向移动基站申请获取对应可疑组件的所述第一定位坐标的一组或多组所述第一检查数据;其中,所述第一检查数据至少包括电网组件的RGB图像以及结构光图像,并将RGB图像以及结构光图像作为第一图像数据;还包括所述可疑组件的热成像检测图像作为第一热成像数据;
S402:所述第二检测装置对所述可疑组件循环拍摄多组图像数据作为第二图像数据;
S403:将多组所述第二图像数据与所述第一图像数据进行匹配,并在所述第二图像数据中选出一组与所述第一图像数据中最相似的图像数据作为复核图像数据;
S404:将拍摄所述复核图像数据时的定位坐标作为复核定位坐标;
可选地,在步骤S2中,包括以下子步骤:
S201:所述第一检测装置在t1时刻开始检测,并在t1+Δt时刻向所述移动基站发送时间周期Δt内的所有检测数据;
S202:所述第一检测装置继续在t2=t1+Δt时刻执行下一周期的检测;同时等待所述移动基站对t1时刻的第一检测数据进行确认;
S203:所述移动基站在获取到t1时刻的第一检查数据后,校验检查数据中的所述第一图像数据,并确认其清晰度以及可辨析度合格后,指示所述第一检测装置完成t1时刻的检测;
S204:若t1时刻的第一检查数据中的第一图像数据不合格,则指示所述第一检测装置在结束t2时刻的检测后,返回重新检测t1时刻中不合格的数据部分;直到t1时刻和t2时刻的第一检查数据都合格后,再开启t3时刻的检查程序,即所述第一检测装置最多同时等待两个时间周期Δt内的所述第一检查数据的确认;
可选地,所述组件描述包括电网组件描述、电网组件结构标签、电网组件设备标识;所述第一检查数据至少包括电网组件的RGB图像以及结构光图像,并将RGB图像以及结构光图像作为第一图像数据;还包括所述可疑组件的热成像检测图像作为第一热成像数据;
进一步的,所述定位坐标包括水平定位坐标(x,y)以及高程坐标h;
进一步的,所述第一检测装置的操作方式包括人工遥控操作以及自动遥控操作;
可选地,所述第一图像数据以及所述第二图像数据的匹配算法为三维结构光的多点匹配算法;
进一步的,所述定位方法包括一种基于北斗卫星的电网故障定位系统,所述定位系统包括:
监测模块,被配置于电网中的若干个电网节点,用于对多个节点段之间的电网进行监测,获取电网的运行状态参数;
检测装置,包括第一检测装置以及第二检测装置,被配置为对电网以及电网组件执行检测程序;
移动基站,用于通讯耦合到所述监测模块以及所述检测装置,并处理所述监测模块以及所述检测装置的数据请求,包括上传数据请求以及获取数据请求;
可选地,所述第一检测装置以及所述第二检测装置为无人飞行器、地面机器人、无人车辆的一种或两种以上的组合;
进一步的,每台所述检测装置的均包括定位模块、检测模块、通讯模块、驱动模块以及控制模块;
其中,所述定位模块基于北斗卫星定位系统,用于获取所述检测装置的定位坐标;所述定位模块进一步包括陀螺仪传感器、加速度传感器以及磁强传感器,用于确定所述检测装置的实时姿态以及指向角度;所述定位模块还包括气压高度计,用于确定所述检测装置所处的海拔高度;
所述检测模块包括高清摄像头、结构光传感器、热成像传感器;
所述通讯模块用于将所述检测装置的定位数据以及检测数据与所述移动基站进行通讯传输;并且进一步用于接收由所述移动基站发出的对所述检测装置的控制指令;
所述驱动模块被配置为驱动所述检测装置进行移动,包括地面移动以及空中移动;
所述控制模块包括处理器;所述控制模块与所述定位模块、所述检测模块、所述通讯模块以及所述驱动模块通讯连接,用于控制以上各模块的协同工作。
有益效果
本发明所取得的有益效果是:
1. 本发明的定位方法在基于北斗卫星高分辨率定位的基础上,采用二次复核定位的方法,进一步减少在有限分辨率下的定位误差和偏移,能够将故障组件的定位坐标的精度进一步提高;
2. 本发明的定位方法适用于在已组建的电网上进行设备和装置的额外配置,并且通过对第一检测装置以及第二检测装置进行差异化配置,可以进一步保证低运行成本以及运行效益;
3. 本发明的定位方法适用于在大范围电网建设中进行无人化的远程遥控排障操作,对于广大偏远地区带来实际的应用意义;
4. 本发明的定位系统各部分模化以及装置采用模块化设计和配合,后期可通过软件、硬件进行灵活优化和变更,节省了大量后期维护升级成本。
附图说明
从以下结合附图的描述可以进一步理解本发明。图中的部件不一定按比例绘制,而是将重点放在示出实施例的原理上。在不同的视图中,相同的附图标记指定对应的部分。
图1为本发明所述定位方法的步骤示意图;
图2为本发明所述定位方法中第一检测装置的检测原理示意图;
图3为本发明所述定位方法中第二检测装置的检测并进行定位原理示意图;
图4为本发明中所述检测装置对电网组件进行热成像检测的示意图;
图5为本发明使用三维结构光进行图像比对的示意图。
附图中标号说明:11-第n号电网组件;12-第n+1号电网组件;13-第n+2号电网组件;100-电网线路;101-监测模块;102-第一检测装置;103-移动基站;104-第二检测装置。
本发明的实施方式
为了使得本发明的目的技术方案及优点更加清楚明白,以下结合其实施例,对本发明进行进一步详细说明;应当理解,此处所描述的具体实施例仅用于解释本发明 ,并不用于限定本发明。对于本领域技术人员而言,在查阅以下详细描述之后,本实施例的其它系统.方法和/或特征将变得显而易见。旨在所有此类附加的系统、方法、特征和优点都包括在本说明书内.包括在本发明的范围内,并且受所附权利要求书的保护。在以下详细描述描述了所公开的实施例的另外的特征,并且这些特征根据以下将详细描述将是显而易见的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或组件必须具有特定的方位.以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
实施例一:
目前随着偏远地区中供电设备的完善,其中即包括了大量长距离电网的建设;然而由于部分地区交通不便且交通环境恶劣,电网故障难以进行精确定位,多数时候需要人工进行现场逐一进行电网组件排查以确定具体的故障组件,其中,工作人员就需要花费大量时间进行故障点定位;因此提出一种一种基于北斗卫星的电网故障定位方法;
如附图1所示,包括一种基于北斗卫星的电网故障定位方法,所述定位方法包括以下步骤:
S1:监测模块对电网线路进行监测,并发现电网中的异常运行状态,提供异常运行状态的电网区域偏号以及疑似故障线路编号;
S2:如附图2所示,第一检测装置到达异常电网区域,对区域内多个电网组件执行检测,向移动基站反馈多个电网组件的组件描述以及对应每个电网组件的一组或多组的第一检查数据,以及每组第一检查数据所对应的第一定位坐标;
S3:移动基站从所述组件描述以及所述第一检查数据中确定并识别所描述的电网组件,并通过分析所述第一检查数据,判断该电网组件是否存在异常,并将存在异常的电网组件标记为可疑组件;
S4:如附图3所示,第二检测装置根据所述可疑组件的所述第一定位坐标,到达所述第一定位坐标所指示位置并对所述第一定位坐标进行复核,确定复核定位坐标并计算所述第一定位坐标与所述复核定位坐标的偏差量;
S5:所述第二检测装置对所述可疑组件进行复检,确定故障组件,并记录所述故障组件的定位坐标作为第二定位坐标;
其中,在步骤S4,包括以下子步骤:
S401:第二检测装置根据所述可疑组件的所述第一定位坐标,到达一个所述可疑组件的所在位置后,向移动基站申请获取对应可疑组件的所述第一定位坐标的一组或多组所述第一检查数据;其中,所述第一检查数据至少包括电网组件的RGB图像以及结构光图像,并将RGB图像以及结构光图像作为第一图像数据;还包括所述可疑组件的热成像检测图像作为第一热成像数据;
S402:所述第二检测装置对所述可疑组件循环拍摄多组图像数据作为第二图像数据;
S403:将多组所述第二图像数据与所述第一图像数据进行匹配,并在所述第二图像数据中选出一组与所述第一图像数据中最相似的图像数据作为复核图像数据;
S404:将拍摄所述复核图像数据时的定位坐标作为复核定位坐标;
可选地,在步骤S2中,包括以下子步骤:
S201:所述第一检测装置在t1时刻开始检测,并在t1+Δt时刻向所述移动基站发送时间周期Δt内的所有检测数据;
S202:所述第一检测装置继续在t2=t1+Δt时刻执行下一周期的检测;同时等待所述移动基站对t1时刻的第一检测数据进行确认;
S203:所述移动基站在获取到t1时刻的第一检查数据后,校验检查数据中的所述第一图像数据,并确认其清晰度以及可辨析度合格后,指示所述第一检测装置完成t1时刻的检测;
S204:若t1时刻的第一检查数据中的第一图像数据不合格,则指示所述第一检测装置在结束t2时刻的检测后,返回重新检测t1时刻中不合格的数据部分;直到t1时刻和t2时刻的第一检查数据都合格后,再开启t3时刻的检查程序,即所述第一检测装置最多同时等待两个时间周期Δt内的所述第一检查数据的确认;
可选地,所述组件描述包括电网组件描述、电网组件结构标签、电网组件设备标识;所述第一检查数据至少包括电网组件的RGB图像以及结构光图像,并将RGB图像以及结构光图像作为第一图像数据;还包括所述可疑组件的热成像检测图像作为第一热成像数据;
进一步的,所述定位坐标包括水平定位坐标(x,y)以及高程坐标h;
进一步的,所述第一检测装置的操作方式包括人工遥控操作以及自动遥控操作;
可选地,所述第一图像数据以及所述第二图像数据的匹配算法为三维结构光的多点匹配算法;
进一步的,所述定位方法包括一种基于北斗卫星的电网故障定位系统,所述定位系统包括:
监测模块,被配置于电网中的若干个电网节点,用于对多个节点段之间的电网进行监测,获取电网的运行状态参数;
检测装置,包括第一检测装置以及第二检测装置,被配置为对电网以及电网组件执行检测程序;
移动基站,用于通讯耦合到所述监测模块以及所述检测装置,并处理所述监测模块以及所述检测装置的数据请求,包括上传数据请求以及获取数据请求;
可选地,所述第一检测装置以及所述第二检测装置为无人飞行器、地面机器人、无人车辆的一种或两种以上的组合;
进一步的,每台所述检测装置的均包括定位模块、检测模块、通讯模块、驱动模块以及控制模块;
其中,所述定位模块基于北斗卫星定位系统,用于获取所述检测装置的定位坐标;所述定位模块进一步包括陀螺仪传感器、加速度传感器以及磁强传感器,用于确定所述检测装置的实时姿态以及指向角度;所述定位模块还包括气压高度计,用于确定所述检测装置所处的海拔高度;
所述检测模块包括高清摄像头、结构光传感器、热成像传感器;
所述通讯模块用于将所述检测装置的定位数据以及检测数据与所述移动基站进行通讯传输;并且进一步用于接收由所述移动基站发出的对所述检测装置的控制指令;
所述驱动模块被配置为驱动所述检测装置进行移动,包括地面移动以及空中移动;
所述控制模块包括处理器;所述控制模块与所述定位模块、所述检测模块、所述通讯模块以及所述驱动模块通讯连接,用于控制以上各模块的协同工作。
实施例二:
本实施例应当理解为至少包含前述任意一个实施例的全部特征,并在其基础上进一步改进;
在本实施例中,所述监测模块可以为一种基于终端变压器数据的监测装置;所述监测模块周期性地采集所在电网线路段中终端变压器的电能质量数据;在一些实施方式中,包括对比前一采集周期与当前采集周期的三相不平衡度数据;
具体地,使用以下公式:
其中,V 1、V 2、V 3为终端配电变压器采集的三相电路中每相的相电压有效值;D为中间变量;γ为该段电网线路段的三相电压的不平衡度;通过统计和对比当前周期与前一周期中,多个电网线路段多个所述监测模块的不平衡度,可以监测到电网线路段中是否出现了电路故障;并且进一步的,通过配网图模系统中,对终端变压器数据匹配的数值,可以进一步确定出现故障的电网范围以电网段;其中,上述每个周期的间隔时间可以为30分钟或60分钟;
进一步的,在本实施例中,包括每隔10公里或者15公里,设置一个所述移动基站;所述移动基站包括通过所述电网进行供电以维持其内部所有的设备、系统的正常运行;在一些实施方式中,所述移动基站包括配置有供所述检测装置进行充电的充电平台,以保证所述检测装置在长距离的遥控工作中能够得到持续的电能补充保证其续航;
可选地,所述移动基站包括配置有用于与所述检测装置进行无线数据通讯的收发设备,例如基于无线电通讯、扩频微波通讯、5G移动网络通讯,或者基于北斗卫星系统的短报文通讯;
可选地,所述移动基站包括配置有用于数据通讯、数据处理以及数据存储的服务器终端;所述服务器可以为台式计算机、移动计算机、无盘云服务器等型式;多个移动基端的服务器包括组成一个或多个局域网,用于所述移动基站之间的数据互传,并且实现数据备份、数据加工等目的;
进一步的,所述移动基站包括与一个总基站进行通讯连接;所述总基站被配置为对多个所述移动基站实施总控制以及调度,并用于协调多个所述第一检测装置以及第二检测装置的检测进度、顺序的记录和安排;
在本实施例中,所述检测装置优选地为小型无人机,或者称为无人驾驶飞行器;其中所述第一检测装置与所述第二检测装置所配置的小型无人机可以具有相同的或不同的功能模块配置;
其中,所述检测装置优选地为旋翼式无人机;旋翼式无人机的所述驱动模块包括多个旋翼组以及驱动旋翼组的马达,以及驱动马达旋转的能源;其中,马达的能源供给可以包括由电池组提供电源进行驱动;而在一些实施方式中,可以包括采用化石类燃料,例如汽油、柴油等通过内燃机式马达进行驱动;
其中,旋翼式无人机可以包括六组或八组的旋翼组;可以通过控制每个旋翼组的转速以及旋翼式无人机的机体重心倾斜,使无人机执行升/降移动,四向的水平移动,并且包括在空中固定高度进行悬停以执行对电网及电网组件的持续性的检测,并且包括通过悬停或者小范围的回旋飞行,校正所述定位模块,或者提供定位无人机所需要的定位执行时长;
在一些实施例中,所述检测装置包括一个或多个传感器设备用于图像捕获,例如摄像机或者其它图像捕获设备,进一步包括红外热成像传感器、结构光传感器、多光谱传感器、高光谱传感器、激光传感器等;在其中无人机配有摄像机的实施例中,摄像机可永久被固定或者可移除地附接;摄像机可捕获无人机所处环境的图像;在一些实施例中,所捕获的图像数据通过所述通讯模块从无人机实况串流传输所述移动基站,并进一步串流到所述总基站,以向控制人员提供实时飞行画面;在另一些实施方式中,图像数据可被保存于机载存储器,同时亦远程保存到所述移动基站的服务器中;随后可从所述检测装置的机载存储器、外部存储介质等等取回所捕获的图像数据;
如附图4所示,通过红外热成像传感器对多个位置的电网组件进行热成像检测,可发现其中出现异常热量溢出或者热量堆积的组件及其位置;
其中,所述检测装置配置的所述结构光传感器是通过红外激光器,将具有一定结构特征的光线投射到被拍摄物体,例如本实施方式的电网组件、电缆,再由专门的红外摄像头进行采集反射的结构光图案,根据三角测量原理进行深度信息的计算;结构光法不依赖于物体本身的颜色和纹理,采用了主动投影已知图案的方法来实现快速鲁棒的匹配特征点,能够达到较高的精度;对比于传统的图片记录技术仅能记录平面图像以及及其二维轮廓以及颜色表现数据,三维结构光能够快速、精确地实现深度信息采集,对被拍摄对象实现三维数据的记录;
同时,如附图5所示,使用基于结构光的图像数据可进一步用于两个类似图像的匹配;通过比对两组基于结构光的图像数据,可以分辨当前两组数据的拍摄对象是否为同一物件,并进一步的,可以确定拍摄角度、拍摄时与被摄物的距离是否一致或相近;因此,通过基于结构光的图像比对,可以判别所述第二图像数据与所述第一图像数据中,是否具有相同或相近的图像数据,从而确定所述第二检测装置在拍摄所述第二图像数据时,是否到达了与所述第一检测装置拍摄所述第一图像数据时的相同位置,并且包括是否具有了相同的拍摄高度以及相同的拍摄角度;
进一步的,设定通过比对后,选出相同或最接近图像数据的一组所述第一图像数据以及所述第二图像数据;其中所述第一图像数据其对应的第一定位坐标为(x 1,y 1,h 1),所述第二图像数据其对应的所述复核定位坐标为(x 2,y 2,h 2);由于所述第一检测装置需要根据其续航电量、待检查电网覆盖范围等因素进行快速排查,因此所述第一检测装置处于连续移动状态,并且可能由于在一个位置停留时间过短,从而无法等待其定位模块提供足够的定位坐标识别及确认过程;
而所述第二检测装置通过所述第一检测装置进行初步排查后,可以有针对性地仅对所述可疑组件进行检查,并且基于检测的有效性以及稳定性,所述第二检测装置可以被配置为具有更稳定的悬停能力,以及具有更高精度的所述定位模块的配置,从而具有更准确的定位坐标;
进一步的,当前北斗卫星定位系统的普遍定位分辨率可以达到0.1米左右,采用以上定位方法,可以通过二次定位方式,消除一定的卫星信号飘移误差或者空间障碍误差所导致的定位偏移,从而实现定位坐标的复检;
并且进一步的,通过将第一定位坐标(x 1,y 1,h 1)与第二定位坐标(x 2,y 2,h 2)进行比较,获得一组偏移值;若发现其偏移值中水平坐标或者高程坐标部分存在偏移过大现象,则可能其中一台或者以及的所述检测装置的定位模块存在缺陷,需要及时返回所述移动基站等待进一步检测。
实施例三:
本实施例应当理解为至少包含前述任意一个实施例的全部特征,并在其基础上进一步改进;
为进一步提高所述检测装置的定位坐标精度,本实施例作进一步的定位方法优化;
可选地,至少一台所述第一检测装置以及至少一台所述第二检测装置组成联合定位组;一个所述联合定位组内的各个所述检测装置作为该联合定位组的成员;
可选地,所述联合定位组内的成员的所述定位模块分别获取北斗卫星导航信号的载波相位等原始卫星定位数据;
所述联合定位组内的成员包括通过其陀螺仪传感器以及加速度传感器分别获取惯性导航测量信息;
将其中两个成员分别设定为第一成员以及第二成员;所述第一成员获取所述第二成员的卫星定位数据和惯性导航观测信息;
所述第一成员对自身以及所述第二成员的卫星定位数据和惯性导航观测信息进行信息处理和融合,并通过观察北斗卫星的观测数据的变化情况对北斗卫星的可用性进行判别;根据北斗卫星的可用性和数据融合情况进行融合解算,测量所述第一成员和所述第二成员的高精度相对位置矢量;
通过以上定位步骤,可以减小北斗卫星的轨道误差和钟差误差,提高实时定位精度,有利于在长距离运行以及恶劣卫星信号条件下运行,并可实现全天候工作和数据传输,得到实时的观测数据;
其中,所述原始观测数据包括广播星历以及不同频率的伪距观测值和载波相位观测值,改正数据包括与播发时刻对应的轨道改正数、钟差改正数和码间偏差改正数,广播星历和当前时刻的轨道改正数确定当前时刻的卫星精密轨道,广播星历和当前时刻的钟差改正数确定当前时刻的卫星精密钟差;码间偏差改正数对不同频率的伪距观测值进行修正,得到不同频率的修正后的伪距观测值,并根据卫星精密轨道、卫星精密钟差和修正后的伪距观测值确定待定位设备在当前时刻的位置;
可选地,GNSS天线接收BDSB1信号和GPSL1信号,并将其进行放大后传输至GNSS定位授时解算模块,且GNSS定位授时解算模块与基于4G或5G通讯网段的通讯模块相连,以跟踪捕获BDSB1信号和GPSL1信号,解算定位信息与时间信息;所述通讯模块包括网关和远程移动终端;所述通讯模块接收RTK差分数据,并将其传输至所述通信模块,用于所述联合定位组成员间、以及每个成员与所述移动基站之间进行数据互通。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
虽然上面已经参考各种实施例描述了本发明,但是应当理解,在不脱离本发明的范围的情况下,可以进行许多改变和修改。也就是说上面讨论的方法,系统和设备是示例。各种配置可以适当地省略,替换或添加各种过程或组件。例如,在替代配置中,可以以与所描述的顺序不同的顺序执行方法,和/或可以添加,省略和/或组合各种部件。而且,关于某些配置描述的特征可以以各种其他配置组合,如可以以类似的方式组合配置的不同方面和元素。此外,随着技术发展其中的元素可以更新,即许多元素是示例,并不限制本公开或权利要求的范围。
在说明书中给出了具体细节以提供对包括实现的示例性配置的透彻理解。然而,可以在没有这些具体细节的情况下实践配置例如,已经示出了众所周知的电路,过程,算法,结构和技术而没有不必要的细节,以避免模糊配置。该描述仅提供示例配置,并且不限制权利要求的范围,适用性或配置。相反,前面对配置的描述将为本领域技术人员提供用于实现所描述的技术的使能描述。在不脱离本公开的精神或范围的情况下,可以对元件的功能和布置进行各种改变。
综上,其旨在上述详细描述被认为是例示性的而非限制性的,并且应当理解,以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。

Claims (7)

  1. 一种基于北斗卫星的电网故障定位方法,其特征在于,所述定位方法包括以下步骤:
    S1:监测模块对电网线路进行监测,并发现电网中的异常运行状态,提供异常运行状态的电网区域偏号以及疑似故障线路编号;
    S2:第一检测装置到达异常电网区域,对区域内多个电网组件执行检测,向移动基站反馈多个电网组件的组件描述以及对应每个电网组件的一组或多组的第一检查数据,以及每组第一检查数据所对应的第一定位坐标;
    S3:移动基站从所述组件描述以及所述第一检查数据中确定并识别所描述的电网组件,并通过分析所述第一检查数据,判断该电网组件是否存在异常,并将存在异常的电网组件标记为可疑组件;
    S4:第二检测装置根据所述可疑组件的所述第一定位坐标,到达所述第一定位坐标所指示位置并对所述第一定位坐标进行复核,确定复核定位坐标并计算所述第一定位坐标与所述复核定位坐标的偏差量;
    S5:所述第二检测装置对所述可疑组件进行复检,确定故障组件,并记录所述故障组件的定位坐标作为第二定位坐标;
    其中,在步骤S4,包括以下子步骤:
    S401:第二检测装置根据所述可疑组件的所述第一定位坐标,到达一个所述可疑组件的所在位置后,向移动基站申请获取对应可疑组件的所述第一定位坐标的一组或多组所述第一检查数据;其中,所述第一检查数据至少包括电网组件的RGB图像以及结构光图像,并将RGB图像以及结构光图像作为第一图像数据;还包括所述可疑组件的热成像检测图像作为第一热成像数据;
    S402:所述第二检测装置对所述可疑组件循环拍摄多组图像数据作为第二图像数据;
    S403:将多组所述第二图像数据与所述第一图像数据进行匹配,并在所述第二图像数据中选出一组与所述第一图像数据中最相似的图像数据作为复核图像数据;
    S404:将拍摄所述复核图像数据时的定位坐标作为复核定位坐标;
    在步骤S2中,包括以下子步骤:
    S201:所述第一检测装置在t1时刻开始检测,并在t1+Δt时刻向所述移动基站发送时间周期Δt内的所有检测数据;
    S202:所述第一检测装置继续在t2=t1+Δt时刻执行下一周期的检测;同时等待所述移动基站对t1时刻的第一检测数据进行确认;
    S203:所述移动基站在获取到t1时刻的第一检查数据后,校验检查数据中的所述第一图像数据,并确认其清晰度以及可辨析度合格后,指示所述第一检测装置完成t1时刻的检测;
    S204:若t1时刻的第一检查数据中的第一图像数据不合格,则指示所述第一检测装置在结束t2时刻的检测后,返回重新检测t1时刻中不合格的数据部分;直到t1时刻和t2时刻的第一检查数据都合格后,再开启t3时刻的检查程序,即所述第一检测装置最多同时等待两个时间周期Δt内的所述第一检查数据的确认;
    每台所述检测装置的均包括定位模块、检测模块、通讯模块、驱动模块和控制模块;
    其中,所述定位模块基于北斗卫星定位系统,用于获取所述检测装置的定位坐标;所述定位模块进一步包括陀螺仪传感器、加速度传感器以及磁强传感器,用于确定所述检测装置的实时姿态以及指向角度;所述定位模块还包括气压高度计,用于确定所述检测装置所处的海拔高度;
    所述检测模块包括高清摄像头、结构光传感器、热成像传感器;
    所述通讯模块用于将所述检测装置的定位数据以及检测数据与所述移动基站进行通讯传输;并且进一步用于接收由所述移动基站发出的对所述检测装置的控制指令;
    所述驱动模块被配置为驱动所述检测装置进行移动,包括地面移动以及空中移动;
    所述控制模块包括处理器;所述控制模块与所述定位模块、所述检测模块、所述通讯模块以及所述驱动模块通讯连接,用于控制以上各模块的协同工作。
  2. 根据权利要求1所述一种基于北斗卫星的电网故障定位方法,其特征在于,所述组件描述包括电网组件描述、电网组件结构标签和电网组件设备标识。
  3. 根据权利要求2所述一种基于北斗卫星的电网故障定位方法,其特征在于,所述定位坐标包括水平定位坐标(x,y)以及高程坐标h。
  4. 根据权利要求3所述一种基于北斗卫星的电网故障定位方法,其特征在于,所述第一检测装置的操作方式包括人工遥控操作以及自动遥控操作。
  5. 根据权利要求4所述的一种基于北斗卫星的电网故障定位方法,其特征在于,所述第一图像数据以及所述第二图像数据的匹配算法为基于三维结构光的多点匹配算法。
  6. 根据权利要求5所述的一种基于北斗卫星的电网故障定位方法,其特征在于,所述定位方法包括一种基于北斗卫星的电网故障定位系统,所述定位系统包括:
    监测模块,被配置于电网中的若干个电网节点,用于对多个节点段之间的电网进行监测,获取电网的运行状态参数;
    检测装置,包括第一检测装置以及第二检测装置,被配置为对电网以及电网组件执行检测;
    移动基站,用于通讯耦合到所述监测模块以及所述检测装置,并处理所述监测模块以及所述检测装置的数据请求,包括上传数据请求以及获取数据请求。
  7. 根据权利要求6所述的一种基于北斗卫星的电网故障定位方法,其特征在于,所述第一检测装置以及所述第二检测装置为无人飞行器、地面机器人、无人车辆的一种或两种以上的组合。
PCT/CN2022/100983 2022-05-09 2022-06-24 一种基于北斗卫星的电网故障定位方法 WO2023216382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210496220.2 2022-05-09
CN202210496220.2A CN114578188B (zh) 2022-05-09 2022-05-09 一种基于北斗卫星的电网故障定位方法

Publications (1)

Publication Number Publication Date
WO2023216382A1 true WO2023216382A1 (zh) 2023-11-16

Family

ID=81768943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100983 WO2023216382A1 (zh) 2022-05-09 2022-06-24 一种基于北斗卫星的电网故障定位方法

Country Status (2)

Country Link
CN (1) CN114578188B (zh)
WO (1) WO2023216382A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578188B (zh) * 2022-05-09 2022-07-08 环球数科集团有限公司 一种基于北斗卫星的电网故障定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141866A (ja) * 2006-12-01 2008-06-19 Kyushu Electric Power Co Inc 送配電系統の時刻同期方法およびそれを用いた事故点標定方法および装置
CN109387741A (zh) * 2018-10-18 2019-02-26 国网河北省电力有限公司沧州供电分公司 基于北斗定位系统的线路故障抢修方法
CN111123962A (zh) * 2019-12-16 2020-05-08 中国计量大学 一种用于电力杆塔巡检的旋翼无人机重定位拍照方法
CN111537515A (zh) * 2020-03-31 2020-08-14 国网辽宁省电力有限公司朝阳供电公司 基于三维实景模型的铁塔螺栓缺陷展示方法和系统
CN113984018A (zh) * 2021-10-27 2022-01-28 南方电网数字电网研究院有限公司 一种基于手机定位的现场数字化标准勘察方法
CN114578188A (zh) * 2022-05-09 2022-06-03 环球数科集团有限公司 一种基于北斗卫星的电网故障定位方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505723B2 (ja) * 2010-03-31 2014-05-28 アイシン・エィ・ダブリュ株式会社 画像処理システム及び位置測位システム
CN105222788B (zh) * 2015-09-30 2018-07-06 清华大学 基于特征匹配的飞行器航路偏移误差的自校正方法
CN106559191B (zh) * 2015-09-30 2019-11-22 展讯通信(上海)有限公司 一种数据有效性检查方法及系统以及移动终端
CN107024980A (zh) * 2016-10-26 2017-08-08 阿里巴巴集团控股有限公司 基于增强现实的用户位置定位方法及装置
CN106485751B (zh) * 2016-10-28 2020-03-10 湖北省建筑科学研究设计院 应用于基桩检测中的无人机摄影成像及数据处理方法及系统
CN108364314B (zh) * 2018-01-12 2021-01-29 香港科技大学深圳研究院 一种定位方法、系统及介质
CN111464978A (zh) * 2019-01-22 2020-07-28 岳秀兰 主次无线设备通过物联网连接建立的车辆远程驾驶体系
CN111680709A (zh) * 2019-03-11 2020-09-18 武汉小狮科技有限公司 一种基于环境图片特征匹配的定位方法
CN114330502A (zh) * 2021-12-03 2022-04-12 武汉新电电气股份有限公司 基于uwb和虚实场景相似度度量融合的运维人员精确定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141866A (ja) * 2006-12-01 2008-06-19 Kyushu Electric Power Co Inc 送配電系統の時刻同期方法およびそれを用いた事故点標定方法および装置
CN109387741A (zh) * 2018-10-18 2019-02-26 国网河北省电力有限公司沧州供电分公司 基于北斗定位系统的线路故障抢修方法
CN111123962A (zh) * 2019-12-16 2020-05-08 中国计量大学 一种用于电力杆塔巡检的旋翼无人机重定位拍照方法
CN111537515A (zh) * 2020-03-31 2020-08-14 国网辽宁省电力有限公司朝阳供电公司 基于三维实景模型的铁塔螺栓缺陷展示方法和系统
CN113984018A (zh) * 2021-10-27 2022-01-28 南方电网数字电网研究院有限公司 一种基于手机定位的现场数字化标准勘察方法
CN114578188A (zh) * 2022-05-09 2022-06-03 环球数科集团有限公司 一种基于北斗卫星的电网故障定位方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIN GUOWEI, TANG YAJUN, XU JUNZHOU: "Comparison and Analysis of the Technology of UAV Patrol Line and Route Positioning", INFORMATIZATION RESEARCH., vol. 41, no. 6, 1 December 2015 (2015-12-01), pages 11 - 14, XP093107735 *
LI ZHAOBI: "Design of urban indoor and outdoor synchronous power maintenance system", JOURNAL OF GREEN SCIENCE AND TECHNOLOGY., vol. 16, 1 August 2018 (2018-08-01), pages 248 - 250, XP093107740, DOI: 10.16663/j.cnki.lskj.2018.16.091 *
YANG CHENGYUE: "Power Grid Emergency Command System Based on Internet of Things and Spatial Information Technologies", POWER SYSTEM TECHNOLOGY., vol. 37, no. 6, 1 June 2013 (2013-06-01), pages 1632 - 1638, XP093107736, DOI: 10.13335/j.1000-3673.pst.2013.06.023 *

Also Published As

Publication number Publication date
CN114578188A (zh) 2022-06-03
CN114578188B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
He et al. Research of multi-rotor UAVs detailed autonomous inspection technology of transmission lines based on route planning
US10452078B2 (en) Self-localized mobile sensor network for autonomous robotic inspection
CN105790155B (zh) 一种基于差分gps的输电线路无人机自主巡检系统及方法
JP2019194903A (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
CN109031312B (zh) 适用于烟囱内部作业的飞行平台定位装置和定位方法
CN111259097B (zh) 一种应用于光伏产业无人机巡检的精细化航点校核方法
CN110308457A (zh) 一种基于无人机的输电线路巡检系统
CN110888457A (zh) 利用无人机和机器人对变电设备开展立体巡视系统及方法
CN105700544A (zh) 一种无人机光伏电站电气设备巡检系统及实现方法
CN105184776A (zh) 目标跟踪方法
CN108819775A (zh) 一种电力巡线无人机无线充电中继系统及充电方法
JPWO2015163106A1 (ja) 制御装置、撮像装置、制御方法、撮像方法及びコンピュータプログラム
CN112789672B (zh) 控制和导航系统、姿态优化、映射和定位技术
CN208027170U (zh) 一种电力巡线无人机及系统
WO2020218066A1 (ja) 検査システム
CN112363176B (zh) 电梯井道巡检及建模方法、装置和巡检建模系统
CN108983809A (zh) 基于无人机的精准识别定位环绕的方法及无人机
WO2023216382A1 (zh) 一种基于北斗卫星的电网故障定位方法
CN110989670B (zh) 一种用于输变电工程环水保监测的无人机系统及其航拍方法
CN110441314A (zh) 基于无人机自动化扫描的桥梁梁板底面巡查系统
CN206649347U (zh) 一种基于无人飞行器的应用部署系统
CN110557604A (zh) 用于电力设施智能巡检的无人机影像全自动拍摄方法装置
CN113326752B (zh) 一种基于无人机的光伏电站识别方法及系统
CN210027896U (zh) 一种倒崖立面精细倾斜航摄装置
CN115617080B (zh) 一种变电站无人机巡检系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941328

Country of ref document: EP

Kind code of ref document: A1