WO2023216179A1 - Collisions between unified transmission configuration indicators (tcis) indicated for physical uplink shared channel (pusch) transmissions - Google Patents

Collisions between unified transmission configuration indicators (tcis) indicated for physical uplink shared channel (pusch) transmissions Download PDF

Info

Publication number
WO2023216179A1
WO2023216179A1 PCT/CN2022/092396 CN2022092396W WO2023216179A1 WO 2023216179 A1 WO2023216179 A1 WO 2023216179A1 CN 2022092396 W CN2022092396 W CN 2022092396W WO 2023216179 A1 WO2023216179 A1 WO 2023216179A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
srs resource
srs
unified
tci
Prior art date
Application number
PCT/CN2022/092396
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/092396 priority Critical patent/WO2023216179A1/en
Publication of WO2023216179A1 publication Critical patent/WO2023216179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for physical uplink shared channel (PUSCH) transmissions based on unified Transmission Configuration Indicator (TCI) states.
  • PUSCH physical uplink shared channel
  • TCI Transmission Configuration Indicator
  • Wireless communications systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, or other similar types of services. These wireless communications systems may employ multiple-access technologies capable of supporting communications with multiple users by sharing available wireless communications system resources with those users.
  • wireless communications systems have made great technological advancements over many years, challenges still exist. For example, complex and dynamic environments can still attenuate or block signals between wireless transmitters and wireless receivers. Accordingly, there is a continuous desire to improve the technical performance of wireless communications systems, including, for example: improving speed and data carrying capacity of communications, improving efficiency of the use of shared communications mediums, reducing power used by transmitters and receivers while performing communications, improving reliability of wireless communications, avoiding redundant transmissions and/or receptions and related processing, improving the coverage area of wireless communications, increasing the number and types of devices that can access wireless communications systems, increasing the ability for different types of devices to intercommunicate, increasing the number and type of wireless communications mediums available for use, and the like. Consequently, there exists a need for further improvements in wireless communications systems to overcome the aforementioned technical challenges and others.
  • One aspect provides a method of wireless communications by a user equipment (UE) .
  • the method includes receiving first signaling configuring the UE with: 1) a sounding reference signal (SRS) resource set, and 2) one or more unified Transmission Configuration Indicator (TCI) states; receiving second signaling scheduling a physical uplink shared channel (PUSCH) ; and transmitting the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states.
  • SRS sounding reference signal
  • TCI Transmission Configuration Indicator
  • an apparatus operable, configured, or otherwise adapted to perform any one or more of the aforementioned methods and/or those described elsewhere herein; a non-transitory, computer-readable media comprising instructions that, when executed by a processor of an apparatus, cause the apparatus to perform the aforementioned methods as well as those described elsewhere herein; a computer program product embodied on a computer-readable storage medium comprising code for performing the aforementioned methods as well as those described elsewhere herein; and/or an apparatus comprising means for performing the aforementioned methods as well as those described elsewhere herein.
  • an apparatus may comprise a processing system, a device with a processing system, or processing systems cooperating over one or more networks.
  • FIG. 1 depicts an example wireless communications network.
  • FIG. 2 depicts an example disaggregated base station architecture.
  • FIG. 3 depicts aspects of an example base station and an example user equipment.
  • FIGS. 4A, 4B, 4C, and 4D depict various example aspects of data structures for a wireless communications network.
  • FIG. 5 is a call flow diagram illustrating an example of codebook based UL transmission, in accordance with certain aspects of the present disclosure.
  • FIG. 6 is a call flow diagram illustrating an example of non-codebook based UL transmission, in accordance with certain aspects of the present disclosure.
  • FIG. 7 depicts a call flow diagram for PUSCH transmissions, in accordance with certain aspects of the present disclosure.
  • FIG. 8 depicts a method for wireless communications.
  • FIG. 9 depicts aspects of an example communications device.
  • aspects of the present disclosure provide apparatuses, methods, processing systems, and computer-readable mediums for physical uplink shared channel (PUSCH) transmissions based on unified Transmission Configuration Indicator (TCI) states.
  • PUSCH physical uplink shared channel
  • TCI Transmission Configuration Indicator
  • the beam of PUSCH typically follows the beam of sounding reference signal (SRS) indicated by an SRS resource indicator (SRI) .
  • SRS sounding reference signal
  • SRI SRS resource indicator
  • the beam of PUSCH typically follows the beam of a channel state information reference signal (CSI-RS) associated with the SRS resource set configured for non-codebook based MIMO.
  • CSI-RS channel state information reference signal
  • unified transmission configuration indications are indicated for multiple channels.
  • SRS and CSI-RS may or may not share the indicated unified TCIs.
  • a UE may be configured with different unified TCI for SRS and CSI-RS. Thus, there may be some ambiguity when is a potential conflict between different unified TCI configured for SRS and CSI-RS.
  • aspects of the present disclosure provide techniques that may help resolve this potential conflict between unified TCI configured for SRS and CSI-RS.
  • the techniques may provide what may be considered deterministic rules that a UE can apply to determine a spatial domain transmission filter for PUSCH when configured with different unified TCI for SRS and CSI-RS.
  • the techniques may help a UE select an optimal beam, which may help improve performance.
  • FIG. 1 depicts an example of a wireless communications network 100, in which aspects described herein may be implemented.
  • wireless communications network 100 includes various network entities (alternatively, network elements or network nodes) .
  • a network entity is generally a communications device and/or a communications function performed by a communications device (e.g., a user equipment (UE) , a base station (BS) , a component of a BS, a server, etc. ) .
  • a communications device e.g., a user equipment (UE) , a base station (BS) , a component of a BS, a server, etc.
  • UE user equipment
  • BS base station
  • a component of a BS a component of a BS
  • server a server
  • wireless communications network 100 includes terrestrial aspects, such as ground-based network entities (e.g., BSs 102) , and non-terrestrial aspects, such as satellite 140 and aircraft 145, which may include network entities on-board (e.g., one or more BSs) capable of communicating with other network elements (e.g., terrestrial BSs) and user equipments.
  • terrestrial aspects such as ground-based network entities (e.g., BSs 102)
  • non-terrestrial aspects such as satellite 140 and aircraft 145
  • network entities on-board e.g., one or more BSs
  • other network elements e.g., terrestrial BSs
  • wireless communications network 100 includes BSs 102, UEs 104, and one or more core networks, such as an Evolved Packet Core (EPC) 160 and 5G Core (5GC) network 190, which interoperate to provide communications services over various communications links, including wired and wireless links.
  • EPC Evolved Packet Core
  • 5GC 5G Core
  • FIG. 1 depicts various example UEs 104, which may more generally include: a cellular phone, smart phone, session initiation protocol (SIP) phone, laptop, personal digital assistant (PDA) , satellite radio, global positioning system, multimedia device, video device, digital audio player, camera, game console, tablet, smart device, wearable device, vehicle, electric meter, gas pump, large or small kitchen appliance, healthcare device, implant, sensor/actuator, display, internet of things (IoT) devices, always on (AON) devices, edge processing devices, or other similar devices.
  • IoT internet of things
  • AON always on
  • edge processing devices or other similar devices.
  • UEs 104 may also be referred to more generally as a mobile device, a wireless device, a wireless communications device, a station, a mobile station, a subscriber station, a mobile subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a remote device, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, and others.
  • the BSs 102 wirelessly communicate with (e.g., transmit signals to or receive signals from) UEs 104 via communications links 120.
  • the communications links 120 between BSs 102 and UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a BS 102 and/or downlink (DL) (also referred to as forward link) transmissions from a BS 102 to a UE 104.
  • UL uplink
  • DL downlink
  • the communications links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity in various aspects.
  • MIMO multiple-input and multiple-output
  • BSs 102 may generally include: a NodeB, enhanced NodeB (eNB) , next generation enhanced NodeB (ng-eNB) , next generation NodeB (gNB or gNodeB) , access point, base transceiver station, radio base station, radio transceiver, transceiver function, transmission reception point, and/or others.
  • Each of BSs 102 may provide communications coverage for a respective geographic coverage area 110, which may sometimes be referred to as a cell, and which may overlap in some cases (e.g., small cell 102’ may have a coverage area 110’ that overlaps the coverage area 110 of a macro cell) .
  • a BS may, for example, provide communications coverage for a macro cell (covering relatively large geographic area) , a pico cell (covering relatively smaller geographic area, such as a sports stadium) , a femto cell (relatively smaller geographic area (e.g., a home) ) , and/or other types of cells.
  • BSs 102 are depicted in various aspects as unitary communications devices, BSs 102 may be implemented in various configurations.
  • one or more components of a base station may be disaggregated, including a central unit (CU) , one or more distributed units (DUs) , one or more radio units (RUs) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, to name a few examples.
  • CU central unit
  • DUs distributed units
  • RUs radio units
  • RIC Near-Real Time
  • Non-RT Non-Real Time
  • a base station may be virtualized.
  • a base station e.g., BS 102
  • BS 102 may include components that are located at a single physical location or components located at various physical locations.
  • a base station includes components that are located at various physical locations
  • the various components may each perform functions such that, collectively, the various components achieve functionality that is similar to a base station that is located at a single physical location.
  • a base station including components that are located at various physical locations may be referred to as a disaggregated radio access network architecture, such as an Open RAN (O-RAN) or Virtualized RAN (VRAN) architecture.
  • FIG. 2 depicts and describes an example disaggregated base station architecture.
  • Different BSs 102 within wireless communications network 100 may also be configured to support different radio access technologies, such as 3G, 4G, and/or 5G.
  • BSs 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., an S1 interface) .
  • BSs 102 configured for 5G e.g., 5G NR or Next Generation RAN (NG-RAN)
  • 5G e.g., 5G NR or Next Generation RAN (NG-RAN)
  • BSs 102 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over third backhaul links 134 (e.g., X2 interface) , which may be wired or wireless.
  • third backhaul links 134 e.g., X2 interface
  • Wireless communications network 100 may subdivide the electromagnetic spectrum into various classes, bands, channels, or other features. In some aspects, the subdivision is provided based on wavelength and frequency, where frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, or a subband.
  • frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, or a subband.
  • 3GPP currently defines Frequency Range 1 (FR1) as including 410 MHz –7125 MHz, which is often referred to (interchangeably) as “Sub-6 GHz” .
  • FR2 Frequency Range 2
  • FR2 includes 24, 250 MHz –52, 600 MHz, which is sometimes referred to (interchangeably) as a “millimeter wave” ( “mmW” or “mmWave” ) .
  • a base station configured to communicate using mmWave/near mmWave radio frequency bands may utilize beamforming (e.g., 182) with a UE (e.g., 104) to improve path loss and range.
  • beamforming e.g., 182
  • UE e.g., 104
  • the communications links 120 between BSs 102 and, for example, UEs 104 may be through one or more carriers, which may have different bandwidths (e.g., 5, 10, 15, 20, 100, 400, and/or other MHz) , and which may be aggregated in various aspects. Carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) .
  • BS 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • BS 180 may transmit a beamformed signal to UE 104 in one or more transmit directions 182’.
  • UE 104 may receive the beamformed signal from the BS 180 in one or more receive directions 182”.
  • UE 104 may also transmit a beamformed signal to the BS 180 in one or more transmit directions 182”.
  • BS 180 may also receive the beamformed signal from UE 104 in one or more receive directions 182’. BS 180 and UE 104 may then perform beam training to determine the best receive and transmit directions for each of BS 180 and UE 104. Notably, the transmit and receive directions for BS 180 may or may not be the same. Similarly, the transmit and receive directions for UE 104 may or may not be the same.
  • Wireless communications network 100 further includes a Wi-Fi AP 150 in communication with Wi-Fi stations (STAs) 152 via communications links 154 in, for example, a 2.4 GHz and/or 5 GHz unlicensed frequency spectrum.
  • STAs Wi-Fi stations
  • D2D communications link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , a physical sidelink control channel (PSCCH) , and/or a physical sidelink feedback channel (PSFCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , a physical sidelink control channel (PSCCH) , and/or a physical sidelink feedback channel (PSFCH) .
  • PSBCH physical sidelink broadcast channel
  • PSDCH physical sidelink discovery channel
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • FCH physical sidelink feedback channel
  • EPC 160 may include various functional components, including: a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and/or a Packet Data Network (PDN) Gateway 172, such as in the depicted example.
  • MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • MME 162 provides bearer and connection management.
  • IP Internet protocol
  • Serving Gateway 166 which itself is connected to PDN Gateway 172.
  • PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • PDN Gateway 172 and the BM-SC 170 are connected to IP Services 176, which may include, for example, the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switched (PS) streaming service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switched
  • BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and/or may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • MBMS Gateway 168 may be used to distribute MBMS traffic to the BSs 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and/or may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • 5GC 190 may include various functional components, including: an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • AMF 192 may be in communication with Unified Data Management (UDM) 196.
  • UDM Unified Data Management
  • AMF 192 is a control node that processes signaling between UEs 104 and 5GC 190.
  • AMF 192 provides, for example, quality of service (QoS) flow and session management.
  • QoS quality of service
  • IP Internet protocol
  • UPF 195 which is connected to the IP Services 197, and which provides UE IP address allocation as well as other functions for 5GC 190.
  • IP Services 197 may include, for example, the Internet, an intranet, an IMS, a PS streaming service, and/or other IP services.
  • a network entity or network node can be implemented as an aggregated base station, as a disaggregated base station, a component of a base station, an integrated access and backhaul (IAB) node, a relay node, a sidelink node, to name a few examples.
  • IAB integrated access and backhaul
  • FIG. 2 depicts an example disaggregated base station 200 architecture.
  • the disaggregated base station 200 architecture may include one or more central units (CUs) 210 that can communicate directly with a core network 220 via a backhaul link, or indirectly with the core network 220 through one or more disaggregated base station units (such as a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) 225 via an E2 link, or a Non-Real Time (Non-RT) RIC 215 associated with a Service Management and Orchestration (SMO) Framework 205, or both) .
  • a CU 210 may communicate with one or more distributed units (DUs) 230 via respective midhaul links, such as an F1 interface.
  • DUs distributed units
  • the DUs 230 may communicate with one or more radio units (RUs) 240 via respective fronthaul links.
  • the RUs 240 may communicate with respective UEs 104 via one or more radio frequency (RF) access links.
  • RF radio frequency
  • the UE 104 may be simultaneously served by multiple RUs 240.
  • Each of the units may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
  • Each of the units, or an associated processor or controller providing instructions to the communications interfaces of the units can be configured to communicate with one or more of the other units via the transmission medium.
  • the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units.
  • the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as a radio frequency (RF) transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • a wireless interface which may include a receiver, a transmitter or transceiver (such as a radio frequency (RF) transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
  • RF radio frequency
  • the CU 210 may host one or more higher layer control functions.
  • control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 210.
  • the CU 210 may be configured to handle user plane functionality (e.g., Central Unit –User Plane (CU-UP) ) , control plane functionality (e.g., Central Unit –Control Plane (CU-CP) ) , or a combination thereof.
  • the CU 210 can be logically split into one or more CU-UP units and one or more CU-CP units.
  • the CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration.
  • the CU 210 can be implemented to communicate with the DU 230, as necessary, for network control and signaling.
  • the DU 230 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 240.
  • the DU 230 may host one or more of a radio link control (RLC) layer, a medium access control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3 rd Generation Partnership Project (3GPP) .
  • the DU 230 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 230, or with the control functions hosted by the CU 210.
  • Lower-layer functionality can be implemented by one or more RUs 240.
  • an RU 240 controlled by a DU 230, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split.
  • the RU (s) 240 can be implemented to handle over the air (OTA) communications with one or more UEs 104.
  • OTA over the air
  • real-time and non-real-time aspects of control and user plane communications with the RU (s) 240 can be controlled by the corresponding DU 230.
  • this configuration can enable the DU (s) 230 and the CU 210 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
  • the SMO Framework 205 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
  • the SMO Framework 205 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) .
  • the SMO Framework 205 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 290) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) .
  • a cloud computing platform such as an open cloud (O-Cloud) 290
  • network element life cycle management such as to instantiate virtualized network elements
  • a cloud computing platform interface such as an O2 interface
  • Such virtualized network elements can include, but are not limited to, CUs 210, DUs 230, RUs 240 and Near-RT RICs 225.
  • the SMO Framework 205 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 211, via an O1 interface. Additionally, in some implementations, the SMO Framework 205 can communicate directly with one or more RUs 240 via an O1 interface.
  • the SMO Framework 205 also may include a Non-RT RIC 215 configured to support functionality of the SMO Framework 205.
  • the Non-RT RIC 215 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 225.
  • the Non-RT RIC 215 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 225.
  • the Near-RT RIC 225 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 210, one or more DUs 230, or both, as well as an O-eNB, with the Near-RT RIC 225.
  • the Non-RT RIC 215 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 225 and may be received at the SMO Framework 205 or the Non-RT RIC 215 from non-network data sources or from network functions. In some examples, the Non-RT RIC 215 or the Near-RT RIC 225 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 215 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 205 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
  • SMO Framework 205 such as reconfiguration via O1
  • A1 policies such as A1 policies
  • FIG. 3 depicts aspects of an example BS 102 and a UE 104.
  • BS 102 includes various processors (e.g., 320, 330, 338, and 340) , antennas 334a-t (collectively 334) , transceivers 332a-t (collectively 332) , which include modulators and demodulators, and other aspects, which enable wireless transmission of data (e.g., data source 312) and wireless reception of data (e.g., data sink 339) .
  • BS 102 may send and receive data between BS 102 and UE 104.
  • BS 102 includes controller/processor 340, which may be configured to implement various functions described herein related to wireless communications.
  • UE 104 includes various processors (e.g., 358, 364, 366, and 380) , antennas 352a-r (collectively 352) , transceivers 354a-r (collectively 354) , which include modulators and demodulators, and other aspects, which enable wireless transmission of data (e.g., retrieved from data source 362) and wireless reception of data (e.g., provided to data sink 360) .
  • UE 104 includes controller/processor 380, which may be configured to implement various functions described herein related to wireless communications.
  • BS 102 includes a transmit processor 320 that may receive data from a data source 312 and control information from a controller/processor 340.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical HARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , and/or others.
  • the data may be for the physical downlink shared channel (PDSCH) , in some examples.
  • Transmit processor 320 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 320 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , PBCH demodulation reference signal (DMRS) , and channel state information reference signal (CSI-RS) .
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • DMRS PBCH demodulation reference signal
  • CSI-RS channel state information reference signal
  • Transmit (TX) multiple-input multiple-output (MIMO) processor 330 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) in transceivers 332a-332t.
  • Each modulator in transceivers 332a-332t may process a respective output symbol stream to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from the modulators in transceivers 332a-332t may be transmitted via the antennas 334a-334t, respectively.
  • UE 104 In order to receive the downlink transmission, UE 104 includes antennas 352a-352r that may receive the downlink signals from the BS 102 and may provide received signals to the demodulators (DEMODs) in transceivers 354a-354r, respectively.
  • Each demodulator in transceivers 354a-354r may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples to obtain received symbols.
  • MIMO detector 356 may obtain received symbols from all the demodulators in transceivers 354a-354r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • Receive processor 358 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 104 to a data sink 360, and provide decoded control information to a controller/processor 380.
  • UE 104 further includes a transmit processor 364 that may receive and process data (e.g., for the PUSCH) from a data source 362 and control information (e.g., for the physical uplink control channel (PUCCH) ) from the controller/processor 380. Transmit processor 364 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 364 may be precoded by a TX MIMO processor 366 if applicable, further processed by the modulators in transceivers 354a-354r (e.g., for SC-FDM) , and transmitted to BS 102.
  • data e.g., for the PUSCH
  • control information e.g., for the physical uplink control channel (PUCCH)
  • Transmit processor 364 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 364 may
  • the uplink signals from UE 104 may be received by antennas 334a-t, processed by the demodulators in transceivers 332a-332t, detected by a MIMO detector 336 if applicable, and further processed by a receive processor 338 to obtain decoded data and control information sent by UE 104.
  • Receive processor 338 may provide the decoded data to a data sink 339 and the decoded control information to the controller/processor 340.
  • Memories 342 and 382 may store data and program codes for BS 102 and UE 104, respectively.
  • Scheduler 344 may schedule UEs for data transmission on the downlink and/or uplink.
  • BS 102 may be described as transmitting and receiving various types of data associated with the methods described herein.
  • “transmitting” may refer to various mechanisms of outputting data, such as outputting data from data source 312, scheduler 344, memory 342, transmit processor 320, controller/processor 340, TX MIMO processor 330, transceivers 332a-t, antenna 334a-t, and/or other aspects described herein.
  • “receiving” may refer to various mechanisms of obtaining data, such as obtaining data from antennas 334a-t, transceivers 332a-t, RX MIMO detector 336, controller/processor 340, receive processor 338, scheduler 344, memory 342, and/or other aspects described herein.
  • UE 104 may likewise be described as transmitting and receiving various types of data associated with the methods described herein.
  • transmitting may refer to various mechanisms of outputting data, such as outputting data from data source 362, memory 382, transmit processor 364, controller/processor 380, TX MIMO processor 366, transceivers 354a-t, antenna 352a-t, and/or other aspects described herein.
  • receiving may refer to various mechanisms of obtaining data, such as obtaining data from antennas 352a-t, transceivers 354a-t, RX MIMO detector 356, controller/processor 380, receive processor 358, memory 382, and/or other aspects described herein.
  • a processor may be configured to perform various operations, such as those associated with the methods described herein, and transmit (output) to or receive (obtain) data from another interface that is configured to transmit or receive, respectively, the data.
  • FIGS. 4A, 4B, 4C, and 4D depict aspects of data structures for a wireless communications network, such as wireless communications network 100 of FIG. 1.
  • FIG. 4A is a diagram 400 illustrating an example of a first subframe within a 5G (e.g., 5G NR) frame structure
  • FIG. 4B is a diagram 430 illustrating an example of DL channels within a 5G subframe
  • FIG. 4C is a diagram 450 illustrating an example of a second subframe within a 5G frame structure
  • FIG. 4D is a diagram 480 illustrating an example of UL channels within a 5G subframe.
  • Wireless communications systems may utilize orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) on the uplink and downlink. Such systems may also support half-duplex operation using time division duplexing (TDD) .
  • OFDM and single-carrier frequency division multiplexing (SC-FDM) partition the system bandwidth (e.g., as depicted in FIGS. 4B and 4D) into multiple orthogonal subcarriers. Each subcarrier may be modulated with data. Modulation symbols may be sent in the frequency domain with OFDM and/or in the time domain with SC-FDM.
  • a wireless communications frame structure may be frequency division duplex (FDD) , in which, for a particular set of subcarriers, subframes within the set of subcarriers are dedicated for either DL or UL.
  • Wireless communications frame structures may also be time division duplex (TDD) , in which, for a particular set of subcarriers, subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplex
  • TDD time division duplex
  • the wireless communications frame structure is TDD where D is DL, U is UL, and X is flexible for use between DL/UL.
  • UEs may be configured with a slot format through a received slot format indicator (SFI) (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) .
  • SFI received slot format indicator
  • DCI DL control information
  • RRC radio resource control
  • a 10 ms frame is divided into 10 equally sized 1 ms subframes.
  • Each subframe may include one or more time slots.
  • each slot may include 7 or 14 symbols, depending on the slot format.
  • Subframes may also include mini-slots, which generally have fewer symbols than an entire slot.
  • Other wireless communications technologies may have a different frame structure and/or different channels.
  • the number of slots within a subframe is based on a slot configuration and a numerology. For example, for slot configuration 0, different numerologies ( ⁇ ) 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ ⁇ 15 kHz, where ⁇ is the numerology 0 to 5.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends, for example, 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • some of the REs carry reference (pilot) signals (RS) for a UE (e.g., UE 104 of FIGS. 1 and 3) .
  • the RS may include demodulation RS (DMRS) and/or channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DMRS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and/or phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 4B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including, for example, nine RE groups (REGs) , each REG including, for example, four consecutive REs in an OFDM symbol.
  • CCEs control channel elements
  • REGs RE groups
  • a primary synchronization signal may be within symbol 2 of particular subframes of a frame.
  • the PSS is used by a UE (e.g., 104 of FIGS. 1 and 3) to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DMRS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block.
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and/or paging messages.
  • SIBs system information blocks
  • some of the REs carry DMRS (indicated as R for one particular configuration, but other DMRS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DMRS for the PUCCH and DMRS for the PUSCH.
  • the PUSCH DMRS may be transmitted, for example, in the first one or two symbols of the PUSCH.
  • the PUCCH DMRS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • UE 104 may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted, for example, in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 4D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • a UE it is important for a UE to know which assumptions it can make on a channel corresponding to different transmissions. For example, the UE may need to know which reference signals it can use to estimate the channel in order to decode a transmitted signal (e.g., PDCCH or PDSCH) . It may also be important for the UE to be able to report relevant channel state information (CSI) to the BS (gNB) for scheduling, link adaptation, and/or beam management purposes.
  • CSI channel state information
  • gNB BS
  • the concept of quasi co-location (QCL) and transmission configuration indicator (TCI) states is used to convey information about these assumptions.
  • TCI states generally include configurations such as QCL-relationships, for example, between the DL RSs in one CSI-RS set and the PDSCH DMRS ports.
  • a UE may be configured with up to M TCI-States. Configuration of the M TCI-States can come about via higher layer signalling, while a UE may be signalled to decode PDSCH according to a detected PDCCH with DCI indicating one of the TCI states.
  • Each configured TCI state may include one RS set TCI-RS-SetConfig that indicates different QCL assumptions between certain source and target signals.
  • TCI-RS-SetConfig may indicate a source reference signal (RS) is indicated in the top block and is associated with a target signal indicated in the bottom block.
  • a target signal generally refers to a signal for which channel properties may be inferred by measuring those channel properties for an associated source signal.
  • a UE may use the source RS to determine various channel parameters, depending on the associated QCL type, and use those various channel properties (determined based on the source RS) to process the target signal.
  • a target RS does not necessarily need to be PDSCH’s DMRS, rather it can be any other RS: PUSCH DMRS, CSIRS, TRS, and SRS.
  • Each TCI-RS-SetConfig may contain various parameters. These parameters can, for example, configure quasi co-location relationship (s) between reference signals in the RS set and the DM-RS port group of the PDSCH.
  • the RS set contains a reference to either one or two DL RSs and an associated quasi co-location type (QCL-Type) for each one configured by the higher layer parameter QCL-Type.
  • QCL-Type quasi co-location type
  • the QCL types can take on a variety of arrangements. For example, QCL types may not be the same, regardless of whether the references are to the same DL RS or different DL RSs.
  • SSB is associated with Type C QCL for P-TRS
  • CSI-RS for beam management (CSIRS–BM) is associated with Type D QCL.
  • QCL information and/or types may in some scenarios depend on or be a function of other information.
  • the quasi co-location (QCL) types indicated to the UE can be based on higher layer parameter QCL-Type and may take one or a combination of the following types:
  • QCL-TypeA ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ,
  • Spatial QCL assumptions may be used to help a UE to select an analog Rx beam (e.g., during beam management procedures) .
  • an SSB resource indicator may indicate a same beam for a previous reference signal should be used for a subsequent transmission.
  • An initial CORESET (e.g., CORESET ID 0 or simply CORESET#0) in NR may be identified during initial access by a UE (e.g., via a field in the MIB) .
  • a ControlResourceSet information element (CORESET IE) sent via radio resource control (RRC) signaling may convey information regarding a CORESET configured for a UE.
  • the CORESET IE generally includes a CORESET ID, an indication of frequency domain resources (e.g., number of RBs) assigned to the CORESET, contiguous time duration of the CORESET in a number of symbols, and Transmission Configuration Indicator (TCI) states.
  • TCI Transmission Configuration Indicator
  • a subset of the TCI states provide quasi co-location (QCL) relationships between DL RS (s) in one RS set (e.g., TCI-Set) and PDCCH demodulation RS (DMRS) ports.
  • a particular TCI state for a given UE may be conveyed to the UE by the Medium Access Control (MAC) Control Element (MAC-CE) .
  • the particular TCI state is generally selected from the set of TCI states conveyed by the CORESET IE, with the initial CORESET (CORESET#0) generally configured via MIB.
  • Search space information may also be provided via RRC signaling.
  • the SearchSpace IE is another RRC IE that defines how and where to search for PDCCH candidates for a given CORESET. Each search space is associated with one CORESET.
  • the SearchSpace IE identifies a search space configured for a CORESET by a search space ID.
  • the search space ID associated with CORESET #0 is SearchSpace ID #0.
  • the search space is generally configured via PBCH (MIB) .
  • Codebook-based UL transmission is based on BS configuration and can be used in cases where reciprocity may not hold.
  • FIG. 5 is a call flow diagram 500 illustrating an example of conventional codebook based UL transmission using a wideband precoder.
  • a UE transmits (non-precoded) SRS with up to 2 SRS resources (with each resource having 1, 2 or 4 ports) .
  • the gNB measures the SRS and, based on the measurement, selects one SRS resource and a wideband precoder to be applied to the SRS ports within the selected resource.
  • the gNB configures the UE with the selected SRS resource via an SRS resource indictor (SRI) and with the wideband precoder via a transmit precoder matrix indicator (TPMI) .
  • SRI SRS resource indictor
  • TPMI transmit precoder matrix indicator
  • the SRI and TPMI may be configured via DCI format 0_1.
  • SRI and TPMI may be configured via RRC or DCI.
  • the UE determines the selected SRS resource from the SRI and precoding from TPMI and transmits PUSCH accordingly.
  • FIG. 6 is a call flow diagram 600 illustrating an example of non-codebook based UL transmission.
  • a UE transmits (precoded) SRS. While the example shows 2 SRS resources, the UE may transmit with up to 4 SRS resources (with each resource having 1 port) .
  • the gNB measures the SRS and, based on the measurement, selects one or more SRS resource. In this case, since the UE sent the SRS precoded, by selecting the SRS resource, the gNB is effectively also selecting precoding.
  • each SRS resource corresponds to a layer.
  • the precoder of the layer is actually the precoder of the SRS which is emulated by the UE. Selecting N SRS resources means the rank is N.
  • the UE is to transmit PUSCH using the same precoder as the SRS.
  • the gNB configures the UE with the selected SRS resource via an SRS resource indictor (SRI) .
  • SRI SRS resource indictor
  • the SRI may be configured via DCI format 0_1.
  • the SRI may be configured via RRC or DCI.
  • a unified TCI state may indicate a common beam applicable to multiple DL/UL channels.
  • a unified TCI state may be applied for a CSI-RS, a CORESET, and a PDSCH.
  • a common beam may also be applied for uplink channels/signals, e.g., a PUSCH, a dedicated PUCCH, and an SRS, depending on how the UE is configured
  • unified TCI types may include:
  • Type 1 Joint downlink (DL) /UL common TCI state to indicate a common beam; for at least one DL channel/reference signal (RS_plus at least one UL channel/RS
  • Type 2 Separate DL common TCI state to indicate a common beam for more than one DL channel/RS;
  • Type 3 Separate UL common TCI state to indicate a common beam for more than one UL channel/RS;
  • Type 4 Separate DL single channel/RS TCI state to indicate a beam for a single DL channel/RS
  • Type 5 Separate UL single channel/RS TCI state to indicate a beam for a single UL channel/RS.
  • aspects of the present disclosure provide apparatuses, methods, processing systems, and computer-readable mediums for PUSCH transmissions based on unified TCI states.
  • the beam of PUSCH typically follows the beam of SRS indicated by an SRI.
  • the beam of PUSCH typically follows the beam of a CSI-RS associated with the SRS resource set configured for non-codebook based MIMO.
  • unified transmission configuration indications are indicated for multiple channels.
  • SRS and CSI-RS may or may not share the indicated unified TCIs.
  • a UE may be configured with different unified TCI for SRS and CSI-RS.
  • aspects of the present disclosure provide techniques that may help resolve this potential conflict between unified TCI configured for SRS and CSI-RS.
  • the UE may be receiving first signaling configuring the UE with: 1) a sounding reference signal (SRS) resource set, and 2) one or more unified Transmission Configuration Indicator (TCI) states.
  • the UE may also receive signaling (e.g., a DCI) scheduling a physical uplink shared channel (PUSCH) .
  • SRS sounding reference signal
  • TCI Transmission Configuration Indicator
  • the UE may transmit the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states.
  • aspects of the present disclosure provide various options, for codebook-based UL MIMO transmissions, if an SRS resource set with parameter of usage set to 'codebook' is not configured by higher layer such as RRC signaling with a parameter such as followUnifiedTCIstateSRS, when user equipment (UE) is scheduled with a PUSCH associated with the SRS resource set, and when the UE is indicated with an SRI corresponding to the PUSCH transmission, or when UE is configured with a single SRS resource in the SRS resource set such that there is no SRI indication and UE is configured DLorJointTCIState or UL-TCIState.
  • UE user equipment
  • the UE may determine a spatial domain transmission filter based on a determined SRS, where the determined SRS may be a SRS indicated by the SRI indication, or the single SRS resource in the SRS resource set.
  • the UE may be configured with a TCI for the determined SRS by a higher layer signaling such as RRC or MAC-CE, and the UE may determine a spatial domain transmission filter based on the configured TCI of the determined SRS, .
  • the UE may also determine a spatial domain transmission filter based on the indicated unified TCI which is applicable to a set of uplink channels including PUSCH.
  • the parameter followUnifiedTCIstateSRS may be configured to indicate that the SRS to share the indicated unified TCI for the PUSCH.
  • the UE may use a spatial domain filter that is same as the spatial domain transmission filter associated with the determined SRS for the scheduled PUSCH transmission, where the scheduled PUSCH may apply a precoder associated with the determined SRS.
  • the UE may expect that the configured unified TCI for the determined SRS is always equal to the indicated unified TCI which is applicable to a set of uplink channels including PUSCH.
  • the UE may expect that the spatial domain transmission filter for the determined SRS is always equal to the spatial domain transmission filter determined from the indicated unified TCI for PUSCH.
  • aspects of the present disclosure provide various options, for non-codebook-based UL MIMO transmissions.
  • an SRS resource set with parameter of usage set to ‘noncodebook’ is configured by a higher layer-signaling with the parameter such as followUnifiedTCIstateSRS
  • the SRS resource set may be not configured with an associated NZP-CSI-RS, and the associated NZP-CSI-RS for the SRS resource set is determined as the NZP-CSI-RS included in the indicated unified TCI for the PUSCH.
  • aspects of the present disclosure provide various options f or non-codebook-based UL MIMO transmission, if the CSI-RS associated with an SRS resource set with parameter of usage set to ‘noncodebook’ is not configured with a parameter followUnifiedTCIstateSRS, when UE is scheduled with a PUSCH associated with the SRS resource set, and when UE is configured DLorJointTCIState or UL-TCIState.
  • the UE may use a spatial domain filter that is same as the spatial domain transmission filter associated with the associated CSI-RS for the scheduled PUSCH transmission.
  • the UE may expect that the configured unified TCI for the associated CSI-RS is always equal to the indicated unified TCI for the PUSCH. In some aspects, according to a second option, the UE may expect that the spatial domain transmission filter for the associated CSI-RS is always equal to the spatial domain transmission filter determined from the indicated unified TCI for PUSCH.
  • a UE when a UE is configured DLorJointTCIState or UL-TCIState, and an SRS resource set with parameter of usage set to 'codebook' is not configured with followUnifiedTCIstate, and when UE is indicated with an SRI corresponding to the UL transmission, or when there is only a single SRS resource in the SRS set, if the spatial domain transmission filter associated with the determined SRS is different from the one the UE may use to receive the DL reference signal associated with the indicated TCI state, the UE may use a spatial domain filter that is same as the spatial domain transmission filter associated with the determined SRS.
  • the SRS resource set may be not configured with an associated NZP-CSI-RS, and the associated NZP-CSI-RS for the SRS resource set is the NZP-CSI-RS included in the indicated unified TCI.
  • the UE does not expect to be configured or indicated with spatialRelationInfo, DLorJoint-TCIState, or UL-TCIState for SRS resource and configured with associatedCSI-RS in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' .
  • the UE can be either configured or indicated with spatialRelationInfo, DLorJoint-TCIState, or UL-TCIState for SRS resource, or configured with associatedCSI-RS in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' .
  • the UE does not expect to be both configured with the associated CSI-RS not following the indicated unified TCI and any SRS resource with separately signaled TCI (e.g. either following the indicated unified TCI or with a configured TCI) in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' .
  • the UE can be either configured with the associated CSI-RS not following the indicated unified TCI, or configured with SRS resources with separately signaled TCI (e.g. either following the indicated unified TCI or with a configured TCI) in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook'
  • the UE may be configured with both the associated CSI-RS following the indicated unified TCI and all SRS resources following the indicated unified TCI in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' .
  • the UE may be configured with both the associated CSI-RS not following the indicated unified TCI (e.g. with or without configured TCI ) and all SRS resources having no signaled TCI (e.g., without configured TCI and not following indicated TCI) in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' .
  • the UE may be configured with all SRS resources having signaled TCI (e.g., with configured TCI or following indicated TCI) in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' , and not configured with an associated CSI-RS.
  • TCI e.g., with configured TCI or following indicated TCI
  • the UE may be indicated with a TCI state for a SRS transmission in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' or “codebook” which is identical to the indicated TCI state for the PUSCH.
  • the UE may not expect the latest SRS transmission in the SRS set has previously indicated TCI, but the PUSCH after the SRS has a newly indicated TCI.
  • the UE may not expect the latest SRS transmission in the SRS set have a TCI not following the indicated TCI, but the PUSCH after the SRS follows the indicated TCI.
  • aspects of the present disclosure may help a UE select an optimal beam, which may help improve performance.
  • FIG. 8 shows an example of a method 800 for wireless communications by a UE, such as UE 104 of FIGS. 1 and 3.
  • Method 800 begins at step 805 with receiving first signaling configuring the UE with: 1) a SRS resource set, and 2) one or more unified TCI states.
  • the operations of this step refer to, or may be performed by, circuitry for receiving and/or code for receiving as described with reference to FIG. 9.
  • Method 800 then proceeds to step 810 with receiving second signaling scheduling a PUSCH.
  • the operations of this step refer to, or may be performed by, circuitry for receiving and/or code for receiving as described with reference to FIG. 9.
  • Method 800 then proceeds to step 815 with transmitting the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states.
  • the operations of this step refer to, or may be performed by, circuitry for transmitting and/or code for transmitting as described with reference to FIG. 9.
  • the first signaling indicates a plurality of SRS resource sets including the SRS resource set, each SRS resource set including one or more SRS resources.
  • each of the unified TCI states indicates a common beam associated with multiple signals.
  • the PUSCH is transmitted as a codebook-based uplink MIMO transmission; and the SRS resource set is not configured to follow a unified TCI state.
  • the method 800 further includes determining an SRS resource based on: an SRI indicated via the second signaling; or a single SRS resource in the SRS resource set.
  • the operations of this step refer to, or may be performed by, circuitry for determining and/or code for determining as described with reference to FIG. 9.
  • the PUSCH is transmitted using a spatial domain transmission filter associated with the determined SRS resource.
  • the method 800 further includes transmitting the PUSCH only if a spatial domain transmission filter associated with the determined SRS resource is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH.
  • the operations of this step refer to, or may be performed by, circuitry for transmitting and/or code for transmitting as described with reference to FIG. 9.
  • the PUSCH is transmitted as a non-codebook-based uplink MIMO transmission; and the SRS resource set is configured to follow a unified TCI state.
  • the PUSCH is transmitted using a spatial domain transmission filter associated with a CSI-RS configured for a unified TCI state indicated for the PUSCH.
  • the PUSCH is transmitted as a non-codebook-based uplink MIMO transmission; and the SRS resource set is not configured to follow a unified TCI state.
  • the PUSCH is transmitted using a spatial domain transmission filter associated with a CSI-RS associated with the SRS resource set.
  • the method 800 further includes transmitting the PUSCH only if a spatial domain transmission filter associated with a CSI-RS associated with the SRS resource set is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH.
  • the operations of this step refer to, or may be performed by, circuitry for transmitting and/or code for transmitting as described with reference to FIG. 9.
  • method 800 may be performed by an apparatus, such as communications device 900 of FIG. 9, which includes various components operable, configured, or adapted to perform the method 800.
  • Communications device 900 is described below in further detail.
  • FIG. 8 is just one example of a method, and other methods including fewer, additional, or alternative steps are possible consistent with this disclosure.
  • FIG. 9 depicts aspects of an example communications device 900.
  • communications device 900 is a user equipment, such as UE 104 described above with respect to FIGS. 1 and 3.
  • the communications device 900 includes a processing system 905 coupled to the transceiver 955 (e.g., a transmitter and/or a receiver) .
  • the transceiver 955 is configured to transmit and receive signals for the communications device 900 via the antenna 960, such as the various signals as described herein.
  • the processing system 905 may be configured to perform processing functions for the communications device 900, including processing signals received and/or to be transmitted by the communications device 900.
  • the processing system 905 includes one or more processors 910.
  • the one or more processors 910 may be representative of one or more of receive processor 358, transmit processor 364, TX MIMO processor 366, and/or controller/processor 380, as described with respect to FIG. 3.
  • the one or more processors 910 are coupled to a computer-readable medium/memory 930 via a bus 950.
  • the computer-readable medium/memory 930 is configured to store instructions (e.g., computer-executable code) that when executed by the one or more processors 910, cause the one or more processors 910 to perform the method 800 described with respect to FIG. 8, or any aspect related to it.
  • instructions e.g., computer-executable code
  • reference to a processor performing a function of communications device 900 may include one or more processors 910 performing that function of communications device 900.
  • computer-readable medium/memory 930 stores code (e.g., executable instructions) , such as code for receiving 935, code for transmitting 940, and code for determining 945. Processing of the code for receiving 935, code for transmitting 940, and code for determining 945 may cause the communications device 900 to perform the method 800 described with respect to FIG. 8, or any aspect related to it.
  • code e.g., executable instructions
  • the one or more processors 910 include circuitry configured to implement (e.g., execute) the code stored in the computer-readable medium/memory 930, including circuitry such as circuitry for receiving 915, circuitry for transmitting 920, and circuitry for determining 925. Processing with circuitry for receiving 915, circuitry for transmitting 920, and circuitry for determining 925 may cause the communications device 900 to perform the method 800 described with respect to FIG. 8, or any aspect related to it.
  • Various components of the communications device 900 may provide means for performing the method 800 described with respect to FIG. 8, or any aspect related to it.
  • means for transmitting, sending or outputting for transmission may include transceivers 354 and/or antenna (s) 352 of the UE 104 illustrated in FIG. 3 and/or the transceiver 955 and the antenna 960 of the communications device 900 in FIG. 9.
  • Means for receiving or obtaining may include transceivers 354 and/or antenna (s) 352 of the UE 104 illustrated in FIG. 3 and/or the transceiver 955 and the antenna 960 of the communications device 900 in FIG. 9.
  • a method for wireless communications at a UE comprising: receiving first signaling configuring the UE with: 1) a SRS resource set, and 2) one or more unified TCI states; receiving second signaling scheduling a PUSCH; and transmitting the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states.
  • Clause 2 The method of Clause 1, wherein the first signaling indicates a plurality of SRS resource sets including the SRS resource set, each SRS resource set including one or more SRS resources.
  • Clause 3 The method of any one of Clauses 1 and 2, wherein each of the unified TCI states indicates a common beam associated with multiple signals.
  • Clause 4 The method of any one of Clauses 1-3, wherein: the PUSCH is transmitted as a codebook-based uplink MIMO transmission; and the SRS resource set is not configured to follow a unified TCI state.
  • Clause 5 The method of Clause 4, further comprising determining an SRS resource based on: an SRI indicated via the second signaling; or a single SRS resource in the SRS resource set.
  • Clause 6 The method of Clause 5, wherein the PUSCH is transmitted using a spatial domain transmission filter associated with the determined SRS resource.
  • Clause 7 The method of Clause 5, further comprising: transmitting the PUSCH only if a spatial domain transmission filter associated with the determined SRS resource is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH.
  • Clause 8 The method of any one of Clauses 1-7, wherein: the PUSCH is transmitted as a non-codebook-based uplink MIMO transmission; and the SRS resource set is configured to follow a unified TCI state.
  • Clause 9 The method of Clause 8, wherein the PUSCH is transmitted using a spatial domain transmission filter associated with a CSI-RS configured for a unified TCI state indicated for the PUSCH.
  • Clause 10 The method of any one of Clauses 1-9, wherein: the PUSCH is transmitted as a non-codebook-based uplink MIMO transmission; and the SRS resource set is not configured to follow a unified TCI state.
  • Clause 11 The method of Clause 10, wherein the PUSCH is transmitted using a spatial domain transmission filter associated with a CSI-RS associated with the SRS resource set.
  • Clause 12 The method of Clause 10, further comprising: transmitting the PUSCH only if a spatial domain transmission filter associated with a CSI-RS associated with the SRS resource set is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH.
  • Clause 13 An apparatus, comprising: a memory comprising executable instructions; and a processor configured to execute the executable instructions and cause the apparatus to perform a method in accordance with any one of Clauses 1-12.
  • Clause 14 An apparatus, comprising means for performing a method in accordance with any one of Clauses 1-12.
  • Clause 15 A non-transitory computer-readable medium comprising executable instructions that, when executed by a processor of an apparatus, cause the apparatus to perform a method in accordance with any one of Clauses 1-12.
  • Clause 16 A computer program product embodied on a computer-readable storage medium comprising code for performing a method in accordance with any one of Clauses 1-12.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • the scope of the disclosure is intended to cover such an apparatus or method that is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, a system on a chip (SoC) , or any other such configuration.
  • SoC system on a chip
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the methods disclosed herein comprise one or more actions for achieving the methods.
  • the method actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific actions may be modified without departing from the scope of the claims.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure provide techniques for method for wireless communications at a user equipment (UE), generally including receiving first signaling configuring the UE with: 1) a sounding reference signal (SRS) resource set, and 2) one or more unified Transmission Configuration Indicator (TCI) states, receiving second signaling scheduling a physical uplink shared channel (PUSCH), and transmitting the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states.

Description

COLLISIONS BETWEEN UNIFIED TRANSMISSION CONFIGURATION INDICATORS (TCIS) INDICATED FOR PHYSICAL UPLINK SHARED CHANNEL (PUSCH) TRANSMISSIONS BACKGROUND
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for physical uplink shared channel (PUSCH) transmissions based on unified Transmission Configuration Indicator (TCI) states.
Description of Related Art
Wireless communications systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, or other similar types of services. These wireless communications systems may employ multiple-access technologies capable of supporting communications with multiple users by sharing available wireless communications system resources with those users.
Although wireless communications systems have made great technological advancements over many years, challenges still exist. For example, complex and dynamic environments can still attenuate or block signals between wireless transmitters and wireless receivers. Accordingly, there is a continuous desire to improve the technical performance of wireless communications systems, including, for example: improving speed and data carrying capacity of communications, improving efficiency of the use of shared communications mediums, reducing power used by transmitters and receivers while performing communications, improving reliability of wireless communications, avoiding redundant transmissions and/or receptions and related processing, improving the coverage area of wireless communications, increasing the number and types of devices that can access wireless communications systems, increasing the ability for different types of devices to intercommunicate, increasing the number and type of wireless communications mediums available for use, and the like. Consequently, there exists a need for further improvements in wireless communications systems to overcome the aforementioned technical challenges and others.
SUMMARY
One aspect provides a method of wireless communications by a user equipment (UE) . The method includes receiving first signaling configuring the UE with: 1) a sounding reference signal (SRS) resource set, and 2) one or more unified Transmission Configuration Indicator (TCI) states; receiving second signaling scheduling a physical uplink shared channel (PUSCH) ; and transmitting the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states.
Other aspects provide: an apparatus operable, configured, or otherwise adapted to perform any one or more of the aforementioned methods and/or those described elsewhere herein; a non-transitory, computer-readable media comprising instructions that, when executed by a processor of an apparatus, cause the apparatus to perform the aforementioned methods as well as those described elsewhere herein; a computer program product embodied on a computer-readable storage medium comprising code for performing the aforementioned methods as well as those described elsewhere herein; and/or an apparatus comprising means for performing the aforementioned methods as well as those described elsewhere herein. By way of example, an apparatus may comprise a processing system, a device with a processing system, or processing systems cooperating over one or more networks.
The following description and the appended figures set forth certain features for purposes of illustration.
BRIEF DESCRIPTION OF DRAWINGS
The appended figures depict certain features of the various aspects described herein and are not to be considered limiting of the scope of this disclosure.
FIG. 1 depicts an example wireless communications network.
FIG. 2 depicts an example disaggregated base station architecture.
FIG. 3 depicts aspects of an example base station and an example user equipment.
FIGS. 4A, 4B, 4C, and 4D depict various example aspects of data structures for a wireless communications network.
FIG. 5 is a call flow diagram illustrating an example of codebook based UL transmission, in accordance with certain aspects of the present disclosure.
FIG. 6 is a call flow diagram illustrating an example of non-codebook based UL transmission, in accordance with certain aspects of the present disclosure.
FIG. 7 depicts a call flow diagram for PUSCH transmissions, in accordance with certain aspects of the present disclosure.
FIG. 8 depicts a method for wireless communications.
FIG. 9 depicts aspects of an example communications device.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatuses, methods, processing systems, and computer-readable mediums for physical uplink shared channel (PUSCH) transmissions based on unified Transmission Configuration Indicator (TCI) states.
In some systems (e.g., NR Release 15/16) , for codebook based multiple input multiple output (MIMO) , the beam of PUSCH typically follows the beam of sounding reference signal (SRS) indicated by an SRS resource indicator (SRI) . For non-codebook based MIMO, the beam of PUSCH typically follows the beam of a channel state information reference signal (CSI-RS) associated with the SRS resource set configured for non-codebook based MIMO.
In some systems (e.g., NR Release 17) , unified transmission configuration indications (TCIs) are indicated for multiple channels. SRS and CSI-RS may or may not share the indicated unified TCIs. A UE may be configured with different unified TCI for SRS and CSI-RS. Thus, there may be some ambiguity when is a potential conflict between different unified TCI configured for SRS and CSI-RS.
Aspects of the present disclosure, however, provide techniques that may help resolve this potential conflict between unified TCI configured for SRS and CSI-RS. For example, the techniques may provide what may be considered deterministic rules that a UE can apply to determine a spatial domain transmission filter for PUSCH when configured with different unified TCI for SRS and CSI-RS. The techniques may help a UE select an optimal beam, which may help improve performance.
Introduction to Wireless Communications Networks
The techniques and methods described herein may be used for various wireless communications networks. While aspects may be described herein using terminology commonly associated with 3G, 4G, and/or 5G wireless technologies, aspects of the present disclosure may likewise be applicable to other communications systems and standards not explicitly mentioned herein.
FIG. 1 depicts an example of a wireless communications network 100, in which aspects described herein may be implemented.
Generally, wireless communications network 100 includes various network entities (alternatively, network elements or network nodes) . A network entity is generally a communications device and/or a communications function performed by a communications device (e.g., a user equipment (UE) , a base station (BS) , a component of a BS, a server, etc. ) . For example, various functions of a network as well as various devices associated with and interacting with a network may be considered network entities. Further, wireless communications network 100 includes terrestrial aspects, such as ground-based network entities (e.g., BSs 102) , and non-terrestrial aspects, such as satellite 140 and aircraft 145, which may include network entities on-board (e.g., one or more BSs) capable of communicating with other network elements (e.g., terrestrial BSs) and user equipments.
In the depicted example, wireless communications network 100 includes BSs 102, UEs 104, and one or more core networks, such as an Evolved Packet Core (EPC) 160 and 5G Core (5GC) network 190, which interoperate to provide communications services over various communications links, including wired and wireless links.
FIG. 1 depicts various example UEs 104, which may more generally include: a cellular phone, smart phone, session initiation protocol (SIP) phone, laptop, personal digital assistant (PDA) , satellite radio, global positioning system, multimedia device, video device, digital audio player, camera, game console, tablet, smart device, wearable device, vehicle, electric meter, gas pump, large or small kitchen appliance, healthcare device, implant, sensor/actuator, display, internet of things (IoT) devices, always on (AON) devices, edge processing devices, or other similar devices. UEs 104 may also be referred to more generally as a mobile device, a wireless device, a wireless communications device, a station, a mobile station, a subscriber station, a mobile  subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a remote device, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, and others.
BSs 102 wirelessly communicate with (e.g., transmit signals to or receive signals from) UEs 104 via communications links 120. The communications links 120 between BSs 102 and UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a BS 102 and/or downlink (DL) (also referred to as forward link) transmissions from a BS 102 to a UE 104. The communications links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity in various aspects.
BSs 102 may generally include: a NodeB, enhanced NodeB (eNB) , next generation enhanced NodeB (ng-eNB) , next generation NodeB (gNB or gNodeB) , access point, base transceiver station, radio base station, radio transceiver, transceiver function, transmission reception point, and/or others. Each of BSs 102 may provide communications coverage for a respective geographic coverage area 110, which may sometimes be referred to as a cell, and which may overlap in some cases (e.g., small cell 102’ may have a coverage area 110’ that overlaps the coverage area 110 of a macro cell) . A BS may, for example, provide communications coverage for a macro cell (covering relatively large geographic area) , a pico cell (covering relatively smaller geographic area, such as a sports stadium) , a femto cell (relatively smaller geographic area (e.g., a home) ) , and/or other types of cells.
While BSs 102 are depicted in various aspects as unitary communications devices, BSs 102 may be implemented in various configurations. For example, one or more components of a base station may be disaggregated, including a central unit (CU) , one or more distributed units (DUs) , one or more radio units (RUs) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC, to name a few examples. In another example, various aspects of a base station may be virtualized. More generally, a base station (e.g., BS 102) may include components that are located at a single physical location or components located at various physical locations. In examples in which a base station includes components that are located at various physical locations, the various components may each perform functions such that, collectively, the various components achieve functionality that is similar to a base station that is located at a single physical location. In some aspects, a base station including  components that are located at various physical locations may be referred to as a disaggregated radio access network architecture, such as an Open RAN (O-RAN) or Virtualized RAN (VRAN) architecture. FIG. 2 depicts and describes an example disaggregated base station architecture.
Different BSs 102 within wireless communications network 100 may also be configured to support different radio access technologies, such as 3G, 4G, and/or 5G. For example, BSs 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., an S1 interface) . BSs 102 configured for 5G (e.g., 5G NR or Next Generation RAN (NG-RAN) ) may interface with 5GC 190 through second backhaul links 184. BSs 102 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over third backhaul links 134 (e.g., X2 interface) , which may be wired or wireless.
Wireless communications network 100 may subdivide the electromagnetic spectrum into various classes, bands, channels, or other features. In some aspects, the subdivision is provided based on wavelength and frequency, where frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, or a subband. For example, 3GPP currently defines Frequency Range 1 (FR1) as including 410 MHz –7125 MHz, which is often referred to (interchangeably) as “Sub-6 GHz” . Similarly, 3GPP currently defines Frequency Range 2 (FR2) as including 24, 250 MHz –52, 600 MHz, which is sometimes referred to (interchangeably) as a “millimeter wave” ( “mmW” or “mmWave” ) . A base station configured to communicate using mmWave/near mmWave radio frequency bands (e.g., a mmWave base station such as BS 180) may utilize beamforming (e.g., 182) with a UE (e.g., 104) to improve path loss and range.
The communications links 120 between BSs 102 and, for example, UEs 104, may be through one or more carriers, which may have different bandwidths (e.g., 5, 10, 15, 20, 100, 400, and/or other MHz) , and which may be aggregated in various aspects. Carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) .
Communications using higher frequency bands may have higher path loss and a shorter range compared to lower frequency communications. Accordingly, certain base  stations (e.g., 180 in FIG. 1) may utilize beamforming 182 with a UE 104 to improve path loss and range. For example, BS 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming. In some cases, BS 180 may transmit a beamformed signal to UE 104 in one or more transmit directions 182’. UE 104 may receive the beamformed signal from the BS 180 in one or more receive directions 182”. UE 104 may also transmit a beamformed signal to the BS 180 in one or more transmit directions 182”. BS 180 may also receive the beamformed signal from UE 104 in one or more receive directions 182’. BS 180 and UE 104 may then perform beam training to determine the best receive and transmit directions for each of BS 180 and UE 104. Notably, the transmit and receive directions for BS 180 may or may not be the same. Similarly, the transmit and receive directions for UE 104 may or may not be the same.
Wireless communications network 100 further includes a Wi-Fi AP 150 in communication with Wi-Fi stations (STAs) 152 via communications links 154 in, for example, a 2.4 GHz and/or 5 GHz unlicensed frequency spectrum.
Certain UEs 104 may communicate with each other using device-to-device (D2D) communications link 158. D2D communications link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , a physical sidelink control channel (PSCCH) , and/or a physical sidelink feedback channel (PSFCH) .
EPC 160 may include various functional components, including: a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and/or a Packet Data Network (PDN) Gateway 172, such as in the depicted example. MME 162 may be in communication with a Home Subscriber Server (HSS) 174. MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, MME 162 provides bearer and connection management.
Generally, user Internet protocol (IP) packets are transferred through Serving Gateway 166, which itself is connected to PDN Gateway 172. PDN Gateway 172 provides UE IP address allocation as well as other functions. PDN Gateway 172 and the BM-SC 170 are connected to IP Services 176, which may include, for example, the  Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switched (PS) streaming service, and/or other IP services.
BM-SC 170 may provide functions for MBMS user service provisioning and delivery. BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and/or may be used to schedule MBMS transmissions. MBMS Gateway 168 may be used to distribute MBMS traffic to the BSs 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and/or may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
5GC 190 may include various functional components, including: an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. AMF 192 may be in communication with Unified Data Management (UDM) 196.
AMF 192 is a control node that processes signaling between UEs 104 and 5GC 190. AMF 192 provides, for example, quality of service (QoS) flow and session management.
Internet protocol (IP) packets are transferred through UPF 195, which is connected to the IP Services 197, and which provides UE IP address allocation as well as other functions for 5GC 190. IP Services 197 may include, for example, the Internet, an intranet, an IMS, a PS streaming service, and/or other IP services.
In various aspects, a network entity or network node can be implemented as an aggregated base station, as a disaggregated base station, a component of a base station, an integrated access and backhaul (IAB) node, a relay node, a sidelink node, to name a few examples.
FIG. 2 depicts an example disaggregated base station 200 architecture. The disaggregated base station 200 architecture may include one or more central units (CUs) 210 that can communicate directly with a core network 220 via a backhaul link, or indirectly with the core network 220 through one or more disaggregated base station units (such as a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) 225 via an E2 link, or a Non-Real Time (Non-RT) RIC 215 associated with a Service Management and Orchestration (SMO) Framework 205, or both) . A CU 210 may communicate with one  or more distributed units (DUs) 230 via respective midhaul links, such as an F1 interface. The DUs 230 may communicate with one or more radio units (RUs) 240 via respective fronthaul links. The RUs 240 may communicate with respective UEs 104 via one or more radio frequency (RF) access links. In some implementations, the UE 104 may be simultaneously served by multiple RUs 240.
Each of the units, e.g., the CUs 210, the DUs 230, the RUs 240, as well as the Near-RT RICs 225, the Non-RT RICs 215 and the SMO Framework 205, may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium. Each of the units, or an associated processor or controller providing instructions to the communications interfaces of the units, can be configured to communicate with one or more of the other units via the transmission medium. For example, the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units. Additionally or alternatively, the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as a radio frequency (RF) transceiver) , configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
In some aspects, the CU 210 may host one or more higher layer control functions. Such control functions can include radio resource control (RRC) , packet data convergence protocol (PDCP) , service data adaptation protocol (SDAP) , or the like. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 210. The CU 210 may be configured to handle user plane functionality (e.g., Central Unit –User Plane (CU-UP) ) , control plane functionality (e.g., Central Unit –Control Plane (CU-CP) ) , or a combination thereof. In some implementations, the CU 210 can be logically split into one or more CU-UP units and one or more CU-CP units. The CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration. The CU 210 can be implemented to communicate with the DU 230, as necessary, for network control and signaling.
The DU 230 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 240. In some aspects, the DU 230 may host one or more of a radio link control (RLC) layer, a medium access  control (MAC) layer, and one or more high physical (PHY) layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3 rd Generation Partnership Project (3GPP) . In some aspects, the DU 230 may further host one or more low PHY layers. Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 230, or with the control functions hosted by the CU 210.
Lower-layer functionality can be implemented by one or more RUs 240. In some deployments, an RU 240, controlled by a DU 230, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT) , inverse FFT (iFFT) , digital beamforming, physical random access channel (PRACH) extraction and filtering, or the like) , or both, based at least in part on the functional split, such as a lower layer functional split. In such an architecture, the RU (s) 240 can be implemented to handle over the air (OTA) communications with one or more UEs 104. In some implementations, real-time and non-real-time aspects of control and user plane communications with the RU (s) 240 can be controlled by the corresponding DU 230. In some scenarios, this configuration can enable the DU (s) 230 and the CU 210 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
The SMO Framework 205 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements. For non-virtualized network elements, the SMO Framework 205 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface) . For virtualized network elements, the SMO Framework 205 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 290) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface) . Such virtualized network elements can include, but are not limited to, CUs 210, DUs 230, RUs 240 and Near-RT RICs 225. In some implementations, the SMO Framework 205 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 211, via an O1 interface. Additionally, in some implementations, the SMO Framework 205 can communicate directly with one or more RUs 240 via an O1 interface. The SMO  Framework 205 also may include a Non-RT RIC 215 configured to support functionality of the SMO Framework 205.
The Non-RT RIC 215 may be configured to include a logical function that enables non-real-time control and optimization of RAN elements and resources, Artificial Intelligence/Machine Learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 225. The Non-RT RIC 215 may be coupled to or communicate with (such as via an A1 interface) the Near-RT RIC 225. The Near-RT RIC 225 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or more CUs 210, one or more DUs 230, or both, as well as an O-eNB, with the Near-RT RIC 225.
In some implementations, to generate AI/ML models to be deployed in the Near-RT RIC 225, the Non-RT RIC 215 may receive parameters or external enrichment information from external servers. Such information may be utilized by the Near-RT RIC 225 and may be received at the SMO Framework 205 or the Non-RT RIC 215 from non-network data sources or from network functions. In some examples, the Non-RT RIC 215 or the Near-RT RIC 225 may be configured to tune RAN behavior or performance. For example, the Non-RT RIC 215 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 205 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies) .
FIG. 3 depicts aspects of an example BS 102 and a UE 104.
Generally, BS 102 includes various processors (e.g., 320, 330, 338, and 340) , antennas 334a-t (collectively 334) , transceivers 332a-t (collectively 332) , which include modulators and demodulators, and other aspects, which enable wireless transmission of data (e.g., data source 312) and wireless reception of data (e.g., data sink 339) . For example, BS 102 may send and receive data between BS 102 and UE 104. BS 102 includes controller/processor 340, which may be configured to implement various functions described herein related to wireless communications.
Generally, UE 104 includes various processors (e.g., 358, 364, 366, and 380) , antennas 352a-r (collectively 352) , transceivers 354a-r (collectively 354) , which include  modulators and demodulators, and other aspects, which enable wireless transmission of data (e.g., retrieved from data source 362) and wireless reception of data (e.g., provided to data sink 360) . UE 104 includes controller/processor 380, which may be configured to implement various functions described herein related to wireless communications.
In regards to an example downlink transmission, BS 102 includes a transmit processor 320 that may receive data from a data source 312 and control information from a controller/processor 340. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical HARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , and/or others. The data may be for the physical downlink shared channel (PDSCH) , in some examples.
Transmit processor 320 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. Transmit processor 320 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , PBCH demodulation reference signal (DMRS) , and channel state information reference signal (CSI-RS) .
Transmit (TX) multiple-input multiple-output (MIMO) processor 330 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) in transceivers 332a-332t. Each modulator in transceivers 332a-332t may process a respective output symbol stream to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from the modulators in transceivers 332a-332t may be transmitted via the antennas 334a-334t, respectively.
In order to receive the downlink transmission, UE 104 includes antennas 352a-352r that may receive the downlink signals from the BS 102 and may provide received signals to the demodulators (DEMODs) in transceivers 354a-354r, respectively. Each demodulator in transceivers 354a-354r may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples to obtain received symbols.
MIMO detector 356 may obtain received symbols from all the demodulators in transceivers 354a-354r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 358 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 104 to a data sink 360, and provide decoded control information to a controller/processor 380.
In regards to an example uplink transmission, UE 104 further includes a transmit processor 364 that may receive and process data (e.g., for the PUSCH) from a data source 362 and control information (e.g., for the physical uplink control channel (PUCCH) ) from the controller/processor 380. Transmit processor 364 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 364 may be precoded by a TX MIMO processor 366 if applicable, further processed by the modulators in transceivers 354a-354r (e.g., for SC-FDM) , and transmitted to BS 102.
At BS 102, the uplink signals from UE 104 may be received by antennas 334a-t, processed by the demodulators in transceivers 332a-332t, detected by a MIMO detector 336 if applicable, and further processed by a receive processor 338 to obtain decoded data and control information sent by UE 104. Receive processor 338 may provide the decoded data to a data sink 339 and the decoded control information to the controller/processor 340.
Memories  342 and 382 may store data and program codes for BS 102 and UE 104, respectively.
Scheduler 344 may schedule UEs for data transmission on the downlink and/or uplink.
In various aspects, BS 102 may be described as transmitting and receiving various types of data associated with the methods described herein. In these contexts, “transmitting” may refer to various mechanisms of outputting data, such as outputting data from data source 312, scheduler 344, memory 342, transmit processor 320, controller/processor 340, TX MIMO processor 330, transceivers 332a-t, antenna 334a-t, and/or other aspects described herein. Similarly, “receiving” may refer to various mechanisms of obtaining data, such as obtaining data from antennas 334a-t, transceivers  332a-t, RX MIMO detector 336, controller/processor 340, receive processor 338, scheduler 344, memory 342, and/or other aspects described herein.
In various aspects, UE 104 may likewise be described as transmitting and receiving various types of data associated with the methods described herein. In these contexts, “transmitting” may refer to various mechanisms of outputting data, such as outputting data from data source 362, memory 382, transmit processor 364, controller/processor 380, TX MIMO processor 366, transceivers 354a-t, antenna 352a-t, and/or other aspects described herein. Similarly, “receiving” may refer to various mechanisms of obtaining data, such as obtaining data from antennas 352a-t, transceivers 354a-t, RX MIMO detector 356, controller/processor 380, receive processor 358, memory 382, and/or other aspects described herein.
In some aspects, a processor may be configured to perform various operations, such as those associated with the methods described herein, and transmit (output) to or receive (obtain) data from another interface that is configured to transmit or receive, respectively, the data.
FIGS. 4A, 4B, 4C, and 4D depict aspects of data structures for a wireless communications network, such as wireless communications network 100 of FIG. 1.
In particular, FIG. 4A is a diagram 400 illustrating an example of a first subframe within a 5G (e.g., 5G NR) frame structure, FIG. 4B is a diagram 430 illustrating an example of DL channels within a 5G subframe, FIG. 4C is a diagram 450 illustrating an example of a second subframe within a 5G frame structure, and FIG. 4D is a diagram 480 illustrating an example of UL channels within a 5G subframe.
Wireless communications systems may utilize orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) on the uplink and downlink. Such systems may also support half-duplex operation using time division duplexing (TDD) . OFDM and single-carrier frequency division multiplexing (SC-FDM) partition the system bandwidth (e.g., as depicted in FIGS. 4B and 4D) into multiple orthogonal subcarriers. Each subcarrier may be modulated with data. Modulation symbols may be sent in the frequency domain with OFDM and/or in the time domain with SC-FDM.
A wireless communications frame structure may be frequency division duplex (FDD) , in which, for a particular set of subcarriers, subframes within the set of subcarriers are dedicated for either DL or UL. Wireless communications frame structures may also  be time division duplex (TDD) , in which, for a particular set of subcarriers, subframes within the set of subcarriers are dedicated for both DL and UL.
In FIG. 4A and 4C, the wireless communications frame structure is TDD where D is DL, U is UL, and X is flexible for use between DL/UL. UEs may be configured with a slot format through a received slot format indicator (SFI) (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) . In the depicted examples, a 10 ms frame is divided into 10 equally sized 1 ms subframes. Each subframe may include one or more time slots. In some examples, each slot may include 7 or 14 symbols, depending on the slot format. Subframes may also include mini-slots, which generally have fewer symbols than an entire slot. Other wireless communications technologies may have a different frame structure and/or different channels.
In certain aspects, the number of slots within a subframe is based on a slot configuration and a numerology. For example, for slot configuration 0, different numerologies (μ) 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ×15 kHz, where μ is the numerology 0 to 5. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=5 has a subcarrier spacing of 480 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGS. 4A, 4B, 4C, and 4D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs.
As depicted in FIGS. 4A, 4B, 4C, and 4D, a resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends, for example, 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 4A, some of the REs carry reference (pilot) signals (RS) for a UE (e.g., UE 104 of FIGS. 1 and 3) . The RS may include demodulation RS (DMRS)  and/or channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and/or phase tracking RS (PT-RS) .
FIG. 4B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including, for example, nine RE groups (REGs) , each REG including, for example, four consecutive REs in an OFDM symbol.
A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE (e.g., 104 of FIGS. 1 and 3) to determine subframe/symbol timing and a physical layer identity.
A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DMRS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block. The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and/or paging messages.
As illustrated in FIG. 4C, some of the REs carry DMRS (indicated as R for one particular configuration, but other DMRS configurations are possible) for channel estimation at the base station. The UE may transmit DMRS for the PUCCH and DMRS for the PUSCH. The PUSCH DMRS may be transmitted, for example, in the first one or two symbols of the PUSCH. The PUCCH DMRS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. UE 104 may transmit sounding reference signals (SRS) . The SRS may be transmitted, for example, in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of  the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 4D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
QCL port and TCI States
In many cases, it is important for a UE to know which assumptions it can make on a channel corresponding to different transmissions. For example, the UE may need to know which reference signals it can use to estimate the channel in order to decode a transmitted signal (e.g., PDCCH or PDSCH) . It may also be important for the UE to be able to report relevant channel state information (CSI) to the BS (gNB) for scheduling, link adaptation, and/or beam management purposes. In NR, the concept of quasi co-location (QCL) and transmission configuration indicator (TCI) states is used to convey information about these assumptions.
QCL assumptions are generally defined in terms of channel properties. Per 3GPP TS 38.214, “two antenna ports are said to be quasi-co-located if properties of the channel over which a symbol on one antenna port is conveyed can be inferred from the channel over which a symbol on the other antenna port is conveyed. ” Different reference signals may be considered quasi co-located ( “QCL’d” ) if a receiver (e.g., a UE) can apply channel properties determined by detecting a first reference signal to help detect a second reference signal. TCI states generally include configurations such as QCL-relationships, for example, between the DL RSs in one CSI-RS set and the PDSCH DMRS ports.
In some cases, a UE may be configured with up to M TCI-States. Configuration of the M TCI-States can come about via higher layer signalling, while a UE may be signalled to decode PDSCH according to a detected PDCCH with DCI indicating one of the TCI states. Each configured TCI state may include one RS set TCI-RS-SetConfig that indicates different QCL assumptions between certain source and target signals.
For example, TCI-RS-SetConfig may indicate a source reference signal (RS) is indicated in the top block and is associated with a target signal indicated in the bottom block. In this context, a target signal generally refers to a signal for which channel properties may be inferred by measuring those channel properties for an associated source signal. As noted above, a UE may use the source RS to determine various channel parameters, depending on the associated QCL type, and use those various channel properties (determined based on the source RS) to process the target signal. A target RS does not necessarily need to be PDSCH’s DMRS, rather it can be any other RS: PUSCH DMRS, CSIRS, TRS, and SRS.
Each TCI-RS-SetConfig may contain various parameters. These parameters can, for example, configure quasi co-location relationship (s) between reference signals in the RS set and the DM-RS port group of the PDSCH. The RS set contains a reference to either one or two DL RSs and an associated quasi co-location type (QCL-Type) for each one configured by the higher layer parameter QCL-Type.
For the case of two DL RSs, the QCL types can take on a variety of arrangements. For example, QCL types may not be the same, regardless of whether the references are to the same DL RS or different DL RSs. In the illustrated example, SSB is associated with Type C QCL for P-TRS, while CSI-RS for beam management (CSIRS–BM) is associated with Type D QCL.
QCL information and/or types may in some scenarios depend on or be a function of other information. For example, the quasi co-location (QCL) types indicated to the UE can be based on higher layer parameter QCL-Type and may take one or a combination of the following types:
QCL-TypeA: {Doppler shift, Doppler spread, average delay, delay spread} ,
QCL-TypeB: {Doppler shift, Doppler spread} ,
QCL-TypeC: {average delay, Doppler shift} , and
QCL-TypeD: {Spatial Rx parameter} ,
Spatial QCL assumptions (QCL-TypeD) may be used to help a UE to select an analog Rx beam (e.g., during beam management procedures) . For example, an SSB resource indicator may indicate a same beam for a previous reference signal should be used for a subsequent transmission.
An initial CORESET (e.g., CORESET ID 0 or simply CORESET#0) in NR may be identified during initial access by a UE (e.g., via a field in the MIB) . A ControlResourceSet information element (CORESET IE) sent via radio resource control (RRC) signaling may convey information regarding a CORESET configured for a UE. The CORESET IE generally includes a CORESET ID, an indication of frequency domain resources (e.g., number of RBs) assigned to the CORESET, contiguous time duration of the CORESET in a number of symbols, and Transmission Configuration Indicator (TCI) states.
As noted above, a subset of the TCI states provide quasi co-location (QCL) relationships between DL RS (s) in one RS set (e.g., TCI-Set) and PDCCH demodulation RS (DMRS) ports. A particular TCI state for a given UE (e.g., for unicast PDCCH) may be conveyed to the UE by the Medium Access Control (MAC) Control Element (MAC-CE) . The particular TCI state is generally selected from the set of TCI states conveyed by the CORESET IE, with the initial CORESET (CORESET#0) generally configured via MIB.
Search space information may also be provided via RRC signaling. For example, the SearchSpace IE is another RRC IE that defines how and where to search for PDCCH candidates for a given CORESET. Each search space is associated with one CORESET. The SearchSpace IE identifies a search space configured for a CORESET by a search space ID. In an aspect, the search space ID associated with CORESET #0 is SearchSpace ID #0. The search space is generally configured via PBCH (MIB) .
Example SRS Based Transmissions
Some deployments (e.g., NR Release 15 and 16 systems) support codebook-based transmission and non-codebook-based transmission schemes for uplink transmissions with wideband precoders. Codebook-based UL transmission is based on BS configuration and can be used in cases where reciprocity may not hold.
FIG. 5 is a call flow diagram 500 illustrating an example of conventional codebook based UL transmission using a wideband precoder. As illustrated, a UE transmits (non-precoded) SRS with up to 2 SRS resources (with each resource having 1, 2 or 4 ports) . The gNB measures the SRS and, based on the measurement, selects one SRS resource and a wideband precoder to be applied to the SRS ports within the selected resource.
As illustrated, the gNB configures the UE with the selected SRS resource via an SRS resource indictor (SRI) and with the wideband precoder via a transmit precoder matrix indicator (TPMI) . For a dynamic grant, the SRI and TPMI may be configured via DCI format 0_1. For a configured grant (e.g., for semi-persistent uplink) , SRI and TPMI may be configured via RRC or DCI.
The UE determines the selected SRS resource from the SRI and precoding from TPMI and transmits PUSCH accordingly.
FIG. 6 is a call flow diagram 600 illustrating an example of non-codebook based UL transmission. As illustrated, a UE transmits (precoded) SRS. While the example shows 2 SRS resources, the UE may transmit with up to 4 SRS resources (with each resource having 1 port) . The gNB measures the SRS and, based on the measurement, selects one or more SRS resource. In this case, since the UE sent the SRS precoded, by selecting the SRS resource, the gNB is effectively also selecting precoding. For non-codebook based UL transmission, each SRS resource corresponds to a layer. The precoder of the layer is actually the precoder of the SRS which is emulated by the UE. Selecting N SRS resources means the rank is N. The UE is to transmit PUSCH using the same precoder as the SRS.
As illustrated, the gNB configures the UE with the selected SRS resource via an SRS resource indictor (SRI) . For a dynamic grant, the SRI may be configured via DCI format 0_1. For a configured grant, the SRI may be configured via RRC or DCI.
Overview of Unified TCI Types
In some cases (e.g., according to NR Release 17) , a unified TCI state may indicate a common beam applicable to multiple DL/UL channels. In other words, once a unified TCI state is configured, it can be used for not just a single channel, but for multiple channels/signals simultaneously, which may reduce signalling overhead and latency. For example, a unified TCI state may be applied for a CSI-RS, a CORESET, and a PDSCH. A common beam may also be applied for uplink channels/signals, e.g., a PUSCH, a dedicated PUCCH, and an SRS, depending on how the UE is configured
Various types of unified TCI may be defined. For example, unified TCI types may include:
Type 1: Joint downlink (DL) /UL common TCI state to indicate a common beam; for at least one DL channel/reference signal (RS_plus at least one UL channel/RS
Type 2: Separate DL common TCI state to indicate a common beam for more than one DL channel/RS;
Type 3: Separate UL common TCI state to indicate a common beam for more than one UL channel/RS;
Type 4: Separate DL single channel/RS TCI state to indicate a beam for a single DL channel/RS; and
Type 5: Separate UL single channel/RS TCI state to indicate a beam for a single UL channel/RS.
Aspects Related to Resolving Collisions Between Unified TCIs indicated for SRS/CSI-RS and Non-codebook/Codebook based PUSCH
Aspects of the present disclosure provide apparatuses, methods, processing systems, and computer-readable mediums for PUSCH transmissions based on unified TCI states.
As noted above, for codebook based MIMO, the beam of PUSCH typically follows the beam of SRS indicated by an SRI. For non-codebook based MIMO, the beam of PUSCH typically follows the beam of a CSI-RS associated with the SRS resource set configured for non-codebook based MIMO. However, unified transmission configuration indications (TCIs) are indicated for multiple channels. SRS and CSI-RS may or may not share the indicated unified TCIs. Thus, a UE may be configured with different unified TCI for SRS and CSI-RS.
As illustrated in the call flow diagram of FIG. 7, aspects of the present disclosure, provide techniques that may help resolve this potential conflict between unified TCI configured for SRS and CSI-RS.
As illustrated, the UE may be receiving first signaling configuring the UE with: 1) a sounding reference signal (SRS) resource set, and 2) one or more unified Transmission Configuration Indicator (TCI) states. The UE may also receive signaling (e.g., a DCI) scheduling a physical uplink shared channel (PUSCH) .
The UE may transmit the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states.
Aspects of the present disclosure provide various options, for codebook-based UL MIMO transmissions, if an SRS resource set with parameter of usage set to 'codebook' is not configured by higher layer such as RRC signaling with a parameter such as followUnifiedTCIstateSRS, when user equipment (UE) is scheduled with a PUSCH associated with the SRS resource set, and when the UE is indicated with an SRI corresponding to the PUSCH transmission, or when UE is configured with a single SRS resource in the SRS resource set such that there is no SRI indication and UE is configured DLorJointTCIState or UL-TCIState. The UE may determine a spatial domain transmission filter based on a determined SRS, where the determined SRS may be a SRS indicated by the SRI indication, or the single SRS resource in the SRS resource set. For example, the UE may be configured with a TCI for the determined SRS by a higher layer signaling such as RRC or MAC-CE, and the UE may determine a spatial domain transmission filter based on the configured TCI of the determined SRS, . Meanwhile, the UE may also determine a spatial domain transmission filter based on the indicated unified TCI which is applicable to a set of uplink channels including PUSCH. The parameter followUnifiedTCIstateSRS may be configured to indicate that the SRS to share the indicated unified TCI for the PUSCH.
For example, according to a first option, if the spatial domain transmission filter for the determined SRS is different from the one associated with the indicated unified TCI state, the UE may use a spatial domain filter that is same as the spatial domain transmission filter associated with the determined SRS for the scheduled PUSCH transmission, where the scheduled PUSCH may apply a precoder associated with the determined SRS. According to a second option, the UE may expect that the configured unified TCI for the determined SRS is always equal to the indicated unified TCI which is applicable to a set of uplink channels including PUSCH. In some aspects, according to a second option, the UE may expect that the spatial domain transmission filter for the determined SRS is always equal to the spatial domain transmission filter determined from the indicated unified TCI for PUSCH.
Aspects of the present disclosure provide various options, for non-codebook-based UL MIMO transmissions. In some cases, for non-codebook-based UL MIMO transmission, if an SRS resource set with parameter of usage set to ‘noncodebook’ is configured by a higher layer-signaling with the parameter such as followUnifiedTCIstateSRS, when UE is scheduled with a PUSCH associated with the  SRS resource set, the SRS resource set may be not configured with an associated NZP-CSI-RS, and the associated NZP-CSI-RS for the SRS resource set is determined as the NZP-CSI-RS included in the indicated unified TCI for the PUSCH.
Aspects of the present disclosure provide various options  for non-codebook-based UL MIMO transmission, if the CSI-RS associated with an SRS resource set with parameter of usage set to ‘noncodebook’ is not configured with a parameter followUnifiedTCIstateSRS, when UE is scheduled with a PUSCH associated with the SRS resource set, and when UE is configured DLorJointTCIState or UL-TCIState. For example, according to a first option, if the spatial domain transmission filter for the associated CSI-RS is different from the one associated with the indicated unified TCI state, the UE may use a spatial domain filter that is same as the spatial domain transmission filter associated with the associated CSI-RS for the scheduled PUSCH transmission. According to a second option, the UE may expect that the configured unified TCI for the associated CSI-RS is always equal to the indicated unified TCI for the PUSCH. In some aspects, according to a second option, the UE may expect that the spatial domain transmission filter for the associated CSI-RS is always equal to the spatial domain transmission filter determined from the indicated unified TCI for PUSCH.
According to certain aspects, for codebook-based UL MIMO, when a UE is configured DLorJointTCIState or UL-TCIState, and an SRS resource set with parameter of usage set to 'codebook' is not configured with followUnifiedTCIstate, and when UE is indicated with an SRI corresponding to the UL transmission, or when there is only a single SRS resource in the SRS set, if the spatial domain transmission filter associated with the determined SRS is different from the one the UE may use to receive the DL reference signal associated with the indicated TCI state, the UE may use a spatial domain filter that is same as the spatial domain transmission filter associated with the determined SRS.
According to certain aspects, for non-codebook-based UL MIMO, when UE is configured DLorJointTCIState or UL-TCIState, and an SRS resource set with parameter usage set to ‘non-codebook' is configured with followUnifiedTCIstate, the SRS resource set may be not configured with an associated NZP-CSI-RS, and the associated NZP-CSI-RS for the SRS resource set is the NZP-CSI-RS included in the indicated unified TCI.
According to certain aspects, for non-codebook-based UL MIMO, the UE does not expect to be configured or indicated with spatialRelationInfo, DLorJoint-TCIState, or UL-TCIState for SRS resource and configured with associatedCSI-RS in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' . In some aspects, the UE can be either configured or indicated with spatialRelationInfo, DLorJoint-TCIState, or UL-TCIState for SRS resource, or configured with associatedCSI-RS in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' .
According to certain aspects, for non-codebook-based UL MIMO, the UE does not expect to be both configured with the associated CSI-RS not following the indicated unified TCI and any SRS resource with separately signaled TCI (e.g. either following the indicated unified TCI or with a configured TCI) in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' . In some aspects, the UE can be either configured with the associated CSI-RS not following the indicated unified TCI, or configured with SRS resources with separately signaled TCI (e.g. either following the indicated unified TCI or with a configured TCI) in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook'
According to certain aspects, for non-codebook-based UL MIMO, the UE may be configured with both the associated CSI-RS following the indicated unified TCI and all SRS resources following the indicated unified TCI in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' .
According to certain aspects, for non-codebook-based UL MIMO, the UE may be configured with both the associated CSI-RS not following the indicated unified TCI (e.g. with or without configured TCI ) and all SRS resources having no signaled TCI (e.g., without configured TCI and not following indicated TCI) in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' .
According to certain aspects, for non-codebook-based UL MIMO, the UE may be configured with all SRS resources having signaled TCI (e.g., with configured TCI or following indicated TCI) in the SRS-ResourceSet for SRS resource set with a parameter of usage set to ‘non-codebook' , and not configured with an associated CSI-RS.
According to certain aspects, the UE may be indicated with a TCI state for a SRS transmission in the SRS-ResourceSet for SRS resource set with a parameter of usage  set to ‘non-codebook' or “codebook” which is identical to the indicated TCI state for the PUSCH. In some aspects, the UE may not expect the latest SRS transmission in the SRS set has previously indicated TCI, but the PUSCH after the SRS has a newly indicated TCI. In some other aspects, The UE may not expect the latest SRS transmission in the SRS set have a TCI not following the indicated TCI, but the PUSCH after the SRS follows the indicated TCI.
By helping resolve potential conflicts between unified TCI configured for SRS and CSI-RS, aspects of the present disclosure may help a UE select an optimal beam, which may help improve performance.
Example Operations of a User Equipment
FIG. 8 shows an example of a method 800 for wireless communications by a UE, such as UE 104 of FIGS. 1 and 3.
Method 800 begins at step 805 with receiving first signaling configuring the UE with: 1) a SRS resource set, and 2) one or more unified TCI states. In some cases, the operations of this step refer to, or may be performed by, circuitry for receiving and/or code for receiving as described with reference to FIG. 9.
Method 800 then proceeds to step 810 with receiving second signaling scheduling a PUSCH. In some cases, the operations of this step refer to, or may be performed by, circuitry for receiving and/or code for receiving as described with reference to FIG. 9.
Method 800 then proceeds to step 815 with transmitting the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states. In some cases, the operations of this step refer to, or may be performed by, circuitry for transmitting and/or code for transmitting as described with reference to FIG. 9.
In some aspects, the first signaling indicates a plurality of SRS resource sets including the SRS resource set, each SRS resource set including one or more SRS resources.
In some aspects, each of the unified TCI states indicates a common beam associated with multiple signals.
In some aspects, the PUSCH is transmitted as a codebook-based uplink MIMO transmission; and the SRS resource set is not configured to follow a unified TCI state.
In some aspects, the method 800 further includes determining an SRS resource based on: an SRI indicated via the second signaling; or a single SRS resource in the SRS resource set. In some cases, the operations of this step refer to, or may be performed by, circuitry for determining and/or code for determining as described with reference to FIG. 9.
In some aspects, the PUSCH is transmitted using a spatial domain transmission filter associated with the determined SRS resource.
In some aspects, the method 800 further includes transmitting the PUSCH only if a spatial domain transmission filter associated with the determined SRS resource is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH. In some cases, the operations of this step refer to, or may be performed by, circuitry for transmitting and/or code for transmitting as described with reference to FIG. 9.
In some aspects, the PUSCH is transmitted as a non-codebook-based uplink MIMO transmission; and the SRS resource set is configured to follow a unified TCI state.
In some aspects, the PUSCH is transmitted using a spatial domain transmission filter associated with a CSI-RS configured for a unified TCI state indicated for the PUSCH.
In some aspects, the PUSCH is transmitted as a non-codebook-based uplink MIMO transmission; and the SRS resource set is not configured to follow a unified TCI state.
In some aspects, the PUSCH is transmitted using a spatial domain transmission filter associated with a CSI-RS associated with the SRS resource set.
In some aspects, the method 800 further includes transmitting the PUSCH only if a spatial domain transmission filter associated with a CSI-RS associated with the SRS resource set is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH. In some cases, the operations of this step refer to, or may be performed by, circuitry for transmitting and/or code for transmitting as described with reference to FIG. 9.
In one aspect, method 800, or any aspect related to it, may be performed by an apparatus, such as communications device 900 of FIG. 9, which includes various components operable, configured, or adapted to perform the method 800. Communications device 900 is described below in further detail.
Note that FIG. 8 is just one example of a method, and other methods including fewer, additional, or alternative steps are possible consistent with this disclosure.
Example Communications Device
FIG. 9 depicts aspects of an example communications device 900. In some aspects, communications device 900 is a user equipment, such as UE 104 described above with respect to FIGS. 1 and 3.
The communications device 900 includes a processing system 905 coupled to the transceiver 955 (e.g., a transmitter and/or a receiver) . The transceiver 955 is configured to transmit and receive signals for the communications device 900 via the antenna 960, such as the various signals as described herein. The processing system 905 may be configured to perform processing functions for the communications device 900, including processing signals received and/or to be transmitted by the communications device 900.
The processing system 905 includes one or more processors 910. In various aspects, the one or more processors 910 may be representative of one or more of receive processor 358, transmit processor 364, TX MIMO processor 366, and/or controller/processor 380, as described with respect to FIG. 3. The one or more processors 910 are coupled to a computer-readable medium/memory 930 via a bus 950. In certain aspects, the computer-readable medium/memory 930 is configured to store instructions (e.g., computer-executable code) that when executed by the one or more processors 910, cause the one or more processors 910 to perform the method 800 described with respect to FIG. 8, or any aspect related to it. Note that reference to a processor performing a function of communications device 900 may include one or more processors 910 performing that function of communications device 900.
In the depicted example, computer-readable medium/memory 930 stores code (e.g., executable instructions) , such as code for receiving 935, code for transmitting 940, and code for determining 945. Processing of the code for receiving 935, code for  transmitting 940, and code for determining 945 may cause the communications device 900 to perform the method 800 described with respect to FIG. 8, or any aspect related to it.
The one or more processors 910 include circuitry configured to implement (e.g., execute) the code stored in the computer-readable medium/memory 930, including circuitry such as circuitry for receiving 915, circuitry for transmitting 920, and circuitry for determining 925. Processing with circuitry for receiving 915, circuitry for transmitting 920, and circuitry for determining 925 may cause the communications device 900 to perform the method 800 described with respect to FIG. 8, or any aspect related to it.
Various components of the communications device 900 may provide means for performing the method 800 described with respect to FIG. 8, or any aspect related to it. For example, means for transmitting, sending or outputting for transmission may include transceivers 354 and/or antenna (s) 352 of the UE 104 illustrated in FIG. 3 and/or the transceiver 955 and the antenna 960 of the communications device 900 in FIG. 9. Means for receiving or obtaining may include transceivers 354 and/or antenna (s) 352 of the UE 104 illustrated in FIG. 3 and/or the transceiver 955 and the antenna 960 of the communications device 900 in FIG. 9.
Example Clauses
Implementation examples are described in the following numbered clauses:
Clause 1: A method for wireless communications at a UE, comprising: receiving first signaling configuring the UE with: 1) a SRS resource set, and 2) one or more unified TCI states; receiving second signaling scheduling a PUSCH; and transmitting the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states.
Clause 2: The method of Clause 1, wherein the first signaling indicates a plurality of SRS resource sets including the SRS resource set, each SRS resource set including one or more SRS resources.
Clause 3: The method of any one of  Clauses  1 and 2, wherein each of the unified TCI states indicates a common beam associated with multiple signals.
Clause 4: The method of any one of Clauses 1-3, wherein: the PUSCH is transmitted as a codebook-based uplink MIMO transmission; and the SRS resource set is not configured to follow a unified TCI state.
Clause 5: The method of Clause 4, further comprising determining an SRS resource based on: an SRI indicated via the second signaling; or a single SRS resource in the SRS resource set.
Clause 6: The method of Clause 5, wherein the PUSCH is transmitted using a spatial domain transmission filter associated with the determined SRS resource.
Clause 7: The method of Clause 5, further comprising: transmitting the PUSCH only if a spatial domain transmission filter associated with the determined SRS resource is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH.
Clause 8: The method of any one of Clauses 1-7, wherein: the PUSCH is transmitted as a non-codebook-based uplink MIMO transmission; and the SRS resource set is configured to follow a unified TCI state.
Clause 9: The method of Clause 8, wherein the PUSCH is transmitted using a spatial domain transmission filter associated with a CSI-RS configured for a unified TCI state indicated for the PUSCH.
Clause 10: The method of any one of Clauses 1-9, wherein: the PUSCH is transmitted as a non-codebook-based uplink MIMO transmission; and the SRS resource set is not configured to follow a unified TCI state.
Clause 11: The method of Clause 10, wherein the PUSCH is transmitted using a spatial domain transmission filter associated with a CSI-RS associated with the SRS resource set.
Clause 12: The method of Clause 10, further comprising: transmitting the PUSCH only if a spatial domain transmission filter associated with a CSI-RS associated with the SRS resource set is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH.
Clause 13: An apparatus, comprising: a memory comprising executable instructions; and a processor configured to execute the executable instructions and cause the apparatus to perform a method in accordance with any one of Clauses 1-12.
Clause 14: An apparatus, comprising means for performing a method in accordance with any one of Clauses 1-12.
Clause 15: A non-transitory computer-readable medium comprising executable instructions that, when executed by a processor of an apparatus, cause the apparatus to perform a method in accordance with any one of Clauses 1-12.
Clause 16: A computer program product embodied on a computer-readable storage medium comprising code for performing a method in accordance with any one of Clauses 1-12.
Additional Considerations
The preceding description is provided to enable any person skilled in the art to practice the various aspects described herein. The examples discussed herein are not limiting of the scope, applicability, or aspects set forth in the claims. Various modifications to these aspects will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other aspects. For example, changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various actions may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method that is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general  purpose processor, a digital signal processor (DSP) , an ASIC, a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, a system on a chip (SoC) , or any other such configuration.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The methods disclosed herein comprise one or more actions for achieving the methods. The method actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of actions is specified, the order and/or use of specific actions may be modified without departing from the scope of the claims. Further, the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
The following claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims. Within a claim, reference to an element in the singular is not intended to mean “one and  only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” . All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Claims (16)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving first signaling configuring the UE with: 1) a sounding reference signal (SRS) resource set, and 2) one or more unified Transmission Configuration Indicator (TCI) states;
    receiving second signaling scheduling a physical uplink shared channel (PUSCH) ; and
    transmitting the PUSCH using a spatial domain transmission filter determined based on 1) an indication provided via the signaling scheduling the PUSCH, or 2) one of the one or more unified TCI states.
  2. The method of claim 1, wherein the first signaling indicates a plurality of SRS resource sets including the SRS resource set, each SRS resource set including one or more SRS resources.
  3. The method of claim 1, wherein each of the unified TCI states indicates a common beam associated with multiple signals.
  4. The method of claim 1, wherein:
    the PUSCH is transmitted as a codebook-based uplink multiple input multiple output (MIMO) transmission; and
    the SRS resource set is not configured to follow a unified TCI state.
  5. The method of claim 4, further comprising determining an SRS resource based on:
    an SRS resource indicator (SRI) indicated via the second signaling; or
    a single SRS resource in the SRS resource set.
  6. The method of claim 5, wherein the PUSCH is transmitted using a spatial domain transmission filter associated with the determined SRS resource.
  7. The method of claim 5, comprising:
    transmitting the PUSCH only if the a spatial domain transmission filter associated with the determined SRS resource is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH.
  8. The method of claim 1, wherein:
    the PUSCH is transmitted as a non-codebook-based uplink multiple input multiple output (MIMO) transmission; and
    the SRS resource set is configured to follow a unified TCI state.
  9. The method of claim 8, wherein the PUSCH is transmitted using a spatial domain transmission filter associated with a channel state information reference signal (CSI-RS) configured for a unified TCI state indicated for the PUSCH.
  10. The method of claim 1, wherein:
    the PUSCH is transmitted as a non-codebook-based uplink multiple input multiple output (MIMO) transmission; and
    the SRS resource set is not configured to follow a unified TCI state.
  11. The method of claim 10, wherein the PUSCH is transmitted using a spatial domain transmission filter associated with a channel state information reference signal (CSI-RS) associated with the SRS resource set.
  12. The method of claim 10, comprising:
    transmitting the PUSCH only if a spatial domain transmission filter associated with a channel state information reference signal (CSI-RS) associated with the SRS resource set is the same as a spatial domain transmission filter for a unified TCI indicated for the PUSCH.
  13. An apparatus, comprising: a memory comprising executable instructions; and a processor configured to execute the executable instructions and cause the apparatus to perform a method in accordance with any one of Claims 1-12.
  14. An apparatus, comprising means for performing a method in accordance with any one of Claims 1-12.
  15. A non-transitory computer-readable medium comprising executable instructions that, when executed by a processor of an apparatus, cause the apparatus to perform a method in accordance with any one of Claims 1-12.
  16. A computer program product embodied on a computer-readable storage medium comprising code for performing a method in accordance with any one of Claims 1-12.
PCT/CN2022/092396 2022-05-12 2022-05-12 Collisions between unified transmission configuration indicators (tcis) indicated for physical uplink shared channel (pusch) transmissions WO2023216179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092396 WO2023216179A1 (en) 2022-05-12 2022-05-12 Collisions between unified transmission configuration indicators (tcis) indicated for physical uplink shared channel (pusch) transmissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092396 WO2023216179A1 (en) 2022-05-12 2022-05-12 Collisions between unified transmission configuration indicators (tcis) indicated for physical uplink shared channel (pusch) transmissions

Publications (1)

Publication Number Publication Date
WO2023216179A1 true WO2023216179A1 (en) 2023-11-16

Family

ID=88729380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092396 WO2023216179A1 (en) 2022-05-12 2022-05-12 Collisions between unified transmission configuration indicators (tcis) indicated for physical uplink shared channel (pusch) transmissions

Country Status (1)

Country Link
WO (1) WO2023216179A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172942A1 (en) * 2020-02-27 2021-09-02 Samsung Electronics Co., Ltd. Method and apparatus for supporting beam indication channel
WO2021194273A1 (en) * 2020-03-26 2021-09-30 Samsung Electronics Co., Ltd. Method and apparatus for a multi-beam downlink and uplink wireless system
CN113767697A (en) * 2021-08-05 2021-12-07 北京小米移动软件有限公司 Method and device for transmitting configuration indication TCI state configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172942A1 (en) * 2020-02-27 2021-09-02 Samsung Electronics Co., Ltd. Method and apparatus for supporting beam indication channel
WO2021194273A1 (en) * 2020-03-26 2021-09-30 Samsung Electronics Co., Ltd. Method and apparatus for a multi-beam downlink and uplink wireless system
CN113767697A (en) * 2021-08-05 2021-12-07 北京小米移动软件有限公司 Method and device for transmitting configuration indication TCI state configuration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Enhancements on multi-beam operation", 3GPP TSG RAN WG1 #103-E R1-2008000, 24 October 2020 (2020-10-24), XP051946554 *
MODERATOR (SAMSUNG): "Moderator summary for multi-beam enhancement: proposal categorization", 3GPP TSG RAN WG1 #102-E R1-2006985, 26 August 2020 (2020-08-26), XP051922030 *

Similar Documents

Publication Publication Date Title
US20230142481A1 (en) Control channel carrier switching for subslot-based cells
US20230345445A1 (en) User equipment beam management capability reporting
US20240057095A1 (en) Hybrid automatic repeat request (harq) acknowledgment (ack) resource indication for multi physical downlink shared channel (pdsch) grants
US20230283418A1 (en) Frequency hopping for data channel repetition in full duplex
WO2023216179A1 (en) Collisions between unified transmission configuration indicators (tcis) indicated for physical uplink shared channel (pusch) transmissions
WO2023205986A1 (en) Unified transmission configuration indicator for sounding reference signal set
WO2023225883A1 (en) Unified transmission configuration indicator state activation for sounding reference signals
WO2024000227A1 (en) User equipment capability on maximum number of supported layers for simultaneous uplink transmissions
US20240031840A1 (en) Techniques for autonomous self-interference measurements
WO2024113390A1 (en) Cross -component carrier (cc) transmission configuration indicator (tci) indication
US20230422225A1 (en) User equipment (ue) indication enhanced bandwidth part (bwp) related capability
US20240040417A1 (en) Reporting channel state information per user equipment-supported demodulator
US20230397185A1 (en) Transmission alignment for mini-slots and mixed numerology component carriers
US20240032045A1 (en) Switching for single-frequency network (sfn) physical uplink shared channel (pusch) communication scheme
US20230319727A1 (en) Enhancements on group common downlink control information for sounding reference signal triggering
US20240056280A1 (en) Indicating subband configurations in subband full duplex operation
US20230345518A1 (en) Options for indicating reception quasi co-location (qcl) information
WO2024065620A1 (en) Model selection and switching
WO2024066760A1 (en) Power resetting for unified transmission configuration indicator
US20240014962A1 (en) Precoded reference signals for cross link interference feedback reporting
WO2023184211A1 (en) Enhancement of cross-link interference management
US20240097823A1 (en) Repetition value for uplink communication
US20240114411A1 (en) Transmission configuration indicator state set preconfiguration in candidate cells
US20230413064A1 (en) Spectrum sharing between networks
US20240114561A1 (en) Multiple universal subscriber identity module gap collisions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941137

Country of ref document: EP

Kind code of ref document: A1