WO2023214520A1 - Deceleration control device - Google Patents
Deceleration control device Download PDFInfo
- Publication number
- WO2023214520A1 WO2023214520A1 PCT/JP2023/016116 JP2023016116W WO2023214520A1 WO 2023214520 A1 WO2023214520 A1 WO 2023214520A1 JP 2023016116 W JP2023016116 W JP 2023016116W WO 2023214520 A1 WO2023214520 A1 WO 2023214520A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- air pressure
- deceleration control
- signal
- control device
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 27
- 230000002159 abnormal effect Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000881 depressing effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/24—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
- B60T13/26—Compressed-air systems
- B60T13/36—Compressed-air systems direct, i.e. brakes applied directly by compressed air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
- B60T13/68—Electrical control in fluid-pressure brake systems by electrically-controlled valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
Definitions
- the present invention relates to a deceleration control device that performs deceleration control to decelerate and stop a vehicle when a driver is abnormal.
- An emergency driving stop system (EDSS) is known, which is a technology for decelerating and stopping a vehicle when the driver is abnormal.
- EDSS emergency driving stop system
- Patent Document 1 in deceleration control by EDSS, when the driver is in an abnormal state, a stop control that applies braking force to the vehicle to stop the vehicle, and a stop control that stops the vehicle by applying a braking force to the vehicle, and after the vehicle is stopped by the stop control, An apparatus is disclosed that performs stop-holding control to keep a vehicle in a stopped state.
- the ECU that controls the EDSS when the ECU that controls the EDSS receives that a switch installed in the driver's seat or the passenger seat of the vehicle has been operated, it sends a deceleration instruction value to the brake ECU that controls the service brake.
- the brake ECU performs deceleration control by controlling the brakes in accordance with the external deceleration request.
- Such a mechanism is based on the premise that the brake ECU supports deceleration control that finely controls the current supplied to the valve that drives the brakes in accordance with an external deceleration request. Vehicles were not necessarily equipped with braking systems that controlled deceleration according to the
- an object of the present invention is to enable EDSS deceleration control without requiring a brake system that responds to external deceleration requests.
- a deceleration control device is a deceleration control device that performs deceleration control to decelerate and stop a vehicle when a driver is abnormal
- the deceleration control device is a deceleration control device that implements deceleration control to decelerate and stop a vehicle when a driver is abnormal.
- a valve is provided in the road and supplies compressed air to the brake mechanism when opened, and does not supply compressed air to the brake mechanism when closed.
- a sensor that detects air pressure, which is the pressure of compressed air
- a brake instruction acquisition unit that acquires a brake instruction signal indicating that a predetermined switch has been operated to perform deceleration control
- an air pressure acquisition unit that acquires the air pressure from the sensor.
- valve control unit that controls the valve to either an open state or a closed state, and the valve control unit starts deceleration control when a brake instruction signal is acquired, and performs deceleration control.
- the valve is controlled to be closed when the air pressure exceeds a predetermined first threshold, and the valve is controlled to be opened when the air pressure becomes equal to or less than a second predetermined threshold, which is smaller than the first threshold. to control.
- the valve that supplies the compressed air to the brake mechanism when the air pressure of the compressed air is below the second threshold value, the valve that supplies the compressed air to the brake mechanism is controlled to be in an open state, and the air pressure of the compressed air reaches the first threshold value.
- the valve that supplies compressed air to the brake mechanism is controlled to be closed, so that the air pressure is maintained between the first threshold and the second threshold. Then, the vehicle is decelerated by the deceleration generated by the brake mechanism according to the air pressure maintained between the first and second threshold values. Therefore, desired deceleration control can be achieved by simple control such as controlling the valve to either an open state or a closed state. Further, since deceleration control is realized by controlling the air pressure of compressed air in a single system, the configuration for supplying compressed air can be simplified.
- the valve control unit receives the first signal for controlling the valve to an open state, and the first signal for controlling the valve to a closed state. sending one of the second signals to the valve, and when the first signal is being sent, sending the second signal to the valve when the air pressure becomes equal to or higher than the first threshold; When the second signal is being sent, the first signal may be sent to the valve when the air pressure becomes equal to or less than the second threshold value.
- the valve can be controlled to either the open state or the closed state by sending either the first signal or the second signal to the valve. Therefore, it becomes possible to easily implement deceleration control.
- the valve in the deceleration control device according to the third aspect, is in an open state when current is supplied, and is in a closed state when no current is supplied.
- the valve control unit may supply current to the valve as the first signal, and may not supply current to the valve as the second signal.
- the first signal or the second signal can be transmitted by supplying or not supplying current. Therefore, it is possible to easily control the opening and closing of the valve.
- the first threshold value is larger than a given target value regarding air pressure
- the second threshold value is larger than a given target value regarding air pressure. may be smaller than the target value
- the air pressure is controlled near the target value.
- Suitable deceleration control can be achieved by setting an air pressure that generates a desired deceleration as a target value.
- the valve control section maintains the valve in an open state after the vehicle has stopped. You can also use it as
- the valve control section is configured such that the air pressure is equal to or higher than the first threshold after the vehicle has stopped.
- the valve may be controlled to be closed when the air pressure becomes equal to or lower than the second threshold, and the valve may be controlled to be opened when the air pressure becomes equal to or less than the second threshold.
- EDSS deceleration control is possible without requiring a brake system that responds to external deceleration requests.
- FIG. 1 is a block diagram showing a functional configuration of a deceleration control device according to an embodiment of the present invention. It is a flowchart which shows deceleration control processing by the deceleration control device of this embodiment.
- FIG. 3 is a diagram showing an example of a change in a valve control signal according to air pressure.
- FIG. 1 is a block diagram showing the functional configuration of a deceleration control device according to an embodiment of the present invention.
- the deceleration control device 1 is a device that is mounted on a vehicle and performs deceleration control to decelerate and stop the vehicle when the driver is abnormal. That is, the deceleration control device constitutes the EDSS.
- the deceleration control device 1 is configured to include a control device 10.
- the control device 10 is configured by, for example, an ECU (Electronic Control Unit).
- the control device 10 configured with an ECU includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and a CAN (Controller Area). Network) Even if it is configured as an electronic control unit with a communication circuit, etc. good.
- the control device 10 realizes various functions by, for example, loading a program stored in a ROM into a RAM via a CAN communication circuit, and executing the program loaded into the RAM with a CPU.
- the control device 10 may be configured from a plurality of electronic control units, and may include, for example, an ASIC (Application Specific Integrated Circuit), a microprocessor, a DSP (Digital Signal Processor), etc. .
- the control device 10 is configured by, for example, an ECU for EDSS (EDSS-ECU), and functionally includes a brake instruction acquisition section 11, an air pressure acquisition section 12, and a valve control section 13. Details of the functions of the control device 10 will be explained later.
- the deceleration control device 1 includes an emergency brake switch (driver's seat) 21, an emergency brake switch (in-vehicle passenger seat) 22, a valve 23, an air tank 24, a pressure reducing valve 25, an air pressure sensor 26, and a DC (double check). It includes a valve 27, a service brake circuit 28, a horn 29, a flasher 30, a brake switch indicator 31, and an air pressure sensor 32.
- the emergency brake switch (driver's seat) 21 is provided in the driver's seat and is a switch for starting deceleration control in EDSS.
- the emergency brake switch (driver's seat) 21 is configured to be depressable, for example, and sends a brake instruction signal to the control device 10 in response to a depressing operation by a driver or the like.
- the emergency brake switch (in-vehicle passenger seat) 22 is provided in the passenger seat in the vehicle and is a switch for starting deceleration control in the EDSS.
- the emergency brake switch (in-vehicle passenger seat) 21 is configured to be depressable, for example, and sends a brake instruction signal to the control device 10 in response to a depressing operation by a passenger or the like.
- the valve 23 is provided in a flow path of compressed air for driving the brake mechanism, and when it is opened, it supplies compressed air to the brake mechanism, and when it is closed, it supplies compressed air to the brake mechanism. supply.
- the valve 23 is controlled to be in an open state and a closed state by a first signal and a second signal sent from the control device 10, respectively.
- the valve 23 may obtain a state in which current is supplied from the control device 10 as a first signal, and may obtain a state in which current is not supplied as a second signal.
- the air tank 24 stores compressed air and is a supply source of compressed air to the valve 23, DC valve 27, and service brake circuit 28.
- the pressure reducing valve 25 reduces the pressure of the compressed air from the air tank 24 to a predetermined pressure, and supplies the compressed air at the predetermined pressure to the valve 23.
- the air pressure sensor 26 is a sensor that detects air pressure, which is the pressure of compressed air supplied to the brake mechanism via the valve 23.
- the air pressure sensor 26 sends detected air pressure to the control device 10.
- the DC valve 27, service brake circuit 28, and air pressure sensor 32 constitute an example of a brake mechanism in this embodiment.
- the DC valve 27 receives compressed air supplied via the valve 23 and compressed air supplied from a separate service brake air supply path (not shown), and receives the compressed air from the two input systems. This is a valve that sends higher pressure compressed air to the service brake circuit 28.
- the service brake circuit 28 consists of a regular brake in the vehicle and a control circuit that controls the brake in accordance with the compressed air supplied via the DC valve 27.
- the brake mechanism including the DC valve 27 and the service brake circuit 28 causes the vehicle to decelerate in accordance with the air pressure of compressed air supplied in response to the opening and closing of the valve 23.
- the air pressure sensor 32 is a sensor that detects the pressure of compressed air supplied to the service brake compressed air via the DC valve 27.
- the air pressure sensor 32 sends the detected air pressure to the control device 10.
- the control device 10 determines whether there is an abnormality in the supply of compressed air to the service brake circuit 28 by comparing the detected value obtained from the air pressure sensor 32 with the air pressure detected by the air pressure sensor 26. can do.
- the horn 29 is a device that emits an alarm sound to the outside of the vehicle, and when deceleration control by EDSS is performed, the horn 29 notifies the surroundings of the occurrence of an abnormality by emitting the alarm sound.
- the flasher 30 is a lamp provided inside and/or outside the vehicle, and when performing deceleration control by EDSS, it notifies passengers inside the vehicle and/or outside the vehicle of the occurrence of an abnormality by, for example, flashing.
- the brake switch indicator 31 is a device that is provided inside the vehicle and displays, lights up, or flashes to make the driver and/or passengers aware that deceleration control by EDSS is being implemented.
- the brake instruction acquisition unit 11 acquires a brake instruction signal indicating that a predetermined switch for performing deceleration control has been operated.
- the brake instruction acquisition unit 11 acquires a brake instruction signal sent from the emergency brake switch (driver's seat) 21 or the emergency brake switch (in-vehicle passenger seat) 22.
- the air pressure acquisition unit 12 acquires air pressure from a sensor.
- the air pressure acquisition unit 12 acquires the air pressure of the compressed air supplied from the valve 23 to the DC valve 27, which is acquired by the air pressure sensor 26.
- the valve control unit 13 controls the valve 23 to either an open state or a closed state.
- the valve control unit 13 of this embodiment starts deceleration control in EDSS when the brake instruction acquisition unit 11 acquires a brake instruction signal.
- the valve control unit 13 controls the valve 23 to close when the air pressure becomes equal to or greater than a predetermined first threshold, and when the air pressure becomes equal to or less than a predetermined second threshold that is smaller than the first threshold.
- the valve is controlled to open when the In this way, by controlling the valve to be in the open or closed state, the air pressure is maintained between the first threshold value and the second threshold value during deceleration control. Then, the vehicle is decelerated by the deceleration generated by the brake mechanism according to the air pressure maintained between the first and second threshold values.
- the first threshold is set to a value larger than a given target value
- the second threshold is set to a value smaller than the target value.
- Suitable deceleration control can be achieved by setting an air pressure that generates a desired deceleration as a target value. For example, if a suitable deceleration occurs in the brake mechanism (DC valve 27, service brake circuit 28) when the air pressure is 2.5 bar, the first threshold value is set to 2.6 bar, and the second threshold value is set to 2.6 bar.
- the threshold value By setting the threshold value to 2.4 bar, it becomes possible to maintain the air pressure at 2.4 bar to 2.6 bar, which is around 2.5 bar.
- the valve control unit 13 sends either a first signal for controlling the valve 23 to an open state or a second signal for controlling the valve 23 to a closed state to the valve 23 as a control signal. Good too.
- the valve 23 is controlled to be open when receiving the first signal, and controlled to be closed when receiving the second signal.
- the first signal is a so-called ON signal for opening the valve 23, and the second signal is a so-called OFF signal for closing the valve 23.
- the valve control unit 13 sends out a second signal to the valve 23 when the air pressure becomes equal to or higher than the first threshold while sending out the first signal, and The first signal is sent to the valve 23 when the air pressure becomes equal to or less than the second threshold value. In this way, the valve control unit 13 can control the valve to either the open state or the closed state by sending either the first signal or the second signal to the valve 23. Therefore, it becomes possible to easily implement deceleration control.
- the valve 23 may be in an open state when current is supplied, and may be in a closed state when no current is supplied. That is, the valve 23 may recognize a state in which current is supplied as an ON signal, and may recognize a state in which current is not supplied as an OFF signal. In this case, the valve control unit 13 supplies current to the valve 23 as the first signal, and does not supply current to the valve 23 as the second signal. In this way, by supplying or not supplying the current, the first signal or the second signal is transmitted, so the valve control unit 13 can easily control the opening and closing of the valve.
- valve control unit 13 may maintain the vehicle in a stopped state by keeping the valve 23 open after the deceleration control ends, that is, after the vehicle has stopped. Such control makes it possible to maintain the vehicle in a stopped state after the deceleration control ends, without requiring a separate control system and air supply system.
- the valve control unit 13 controls the valve 23 to close when the air pressure becomes equal to or higher than the first threshold, as before the end of the deceleration control.
- the vehicle may be maintained in a stopped state by controlling the valve to open when the temperature becomes equal to or less than the second threshold. This type of control makes it possible to maintain the vehicle in a stopped state by maintaining the air pressure within the desired range even after deceleration control is completed, without requiring a separate control system or air supply system. .
- FIG. 2 is a flowchart showing the deceleration control process.
- FIG. 3 is a diagram showing an example of a change in a valve control signal depending on air pressure.
- step S1 the brake instruction acquisition unit 11 determines whether an emergency brake instruction has been acquired. If it is determined that an emergency brake instruction has been obtained, the process proceeds to step S2. If it is not determined that an emergency brake instruction has been obtained, the process of step S1 is repeated, and monitoring of the emergency brake instruction is continued.
- step S2 the valve control unit 13 starts deceleration control.
- the valve 23 is normally in a closed state, so the valve control unit 13 sends the first signal to the valve 23 in step S3.
- the valve 23 that receives the first signal is controlled to be open. Then, the vehicle is decelerated by the deceleration generated by the brake mechanism in accordance with the air pressure of the compressed air supplied from the valve 23.
- step S4 the valve control unit 13 determines whether the vehicle has stopped. That is, it is determined whether or not the deceleration control can be terminated.
- the valve control unit 13 may recognize a stop based on a vehicle speed sensor, other predetermined control signals, and the like. If it is determined that the vehicle has stopped, the process proceeds to step S9. On the other hand, if it is not determined that the vehicle has stopped, the process proceeds to step S5.
- step S5 the valve control unit 13 determines whether the air pressure acquired by the air pressure acquisition unit 12 has reached the first threshold value. If it is determined that the air pressure has reached the first threshold value, the process proceeds to step S6. On the other hand, if it is not determined that the air pressure has reached the first threshold value, the process proceeds to step S4.
- step S6 the valve control unit 13 sends a second signal to the valve 23.
- Valve 23 receiving the second signal is controlled to be closed. This stops the supply of compressed air to the brake mechanism.
- step S7 the valve control unit 13 determines whether the vehicle has stopped. That is, it is determined whether or not the deceleration control can be terminated. If it is determined that the vehicle has stopped, the process proceeds to step S9. On the other hand, if it is not determined that the vehicle has stopped, the process proceeds to step S8.
- step S8 the valve control unit 13 determines whether the air pressure acquired by the air pressure acquisition unit 12 has decreased to the second threshold value. If it is determined that the air pressure has decreased to the second threshold value, the process proceeds to step S3. On the other hand, if it is not determined that the air pressure has decreased to the second threshold value, the process proceeds to step S7.
- step S4 If it is determined in step S4 or step S7 that the vehicle has stopped, the deceleration control ends in step S9.
- FIG. 3 shows the transition of the valve control signal sent by the valve control unit 13 to the valve 23 and the change in the air pressure acquired by the air pressure sensor 26 in steps S3 to S8 and S9. That is, when the ON signal (first signal) is sent from the valve control section 13 (S3), the valve 23 is controlled to be in the open state, so that the air pressure increases. Subsequently, when the increased air pressure reaches the first threshold value (S5), an OFF signal (second signal) is sent from the valve control unit 13 (S6). Since the valve 23 is controlled to be closed in response to the sending of the OFF signal, the air pressure decreases. When the reduced air pressure falls to the second threshold value (S8), the ON signal is sent again from the valve control unit 13 (S3).
- the vehicle is decelerated by the deceleration generated by the brake mechanism according to the air pressure maintained between the first threshold value and the second threshold value.
- the stop flag is an example of a control signal that indicates the state of the vehicle, and is a signal that is set when it is recognized that the vehicle is in a stopped state based on the vehicle speed sensor and other predetermined control signals. , may not necessarily be provided in the deceleration control device 1.
- step S10 the control device 10 maintains the braking of the vehicle. Specifically, as shown by the solid line in the graph of the valve control signal and air pressure sensor value in FIG. It may be maintained in the open state to maintain the stopped state of the vehicle. This makes it possible to maintain the vehicle in a stopped state after the deceleration control ends, without requiring a separate control system and air supply system. Specifically, when the valve control unit 13 recognizes that the vehicle is stopped based on the vehicle speed sensor, other predetermined control signals, the above-mentioned stop flag, etc., the valve control unit 13 may maintain sending of the first signal.
- the vehicle may be maintained in a stopped state by controlling the valve 23 to be closed when the air pressure is lower than the second threshold, and by controlling the valve 23 to be opened when the air pressure is equal to or less than the second threshold.
- This type of control makes it possible to maintain the vehicle in a stopped state by maintaining the air pressure within the desired range even after deceleration control is completed, without requiring a separate control system or air supply system. .
- step S11 the control device 10 determines whether the key has been turned off. If it is determined that the key has been turned off, the deceleration control process ends. On the other hand, if it is not determined that the key has been turned OFF, the process for maintaining the brake in step S10 is repeated.
- the valve 23 that supplies compressed air to the brake mechanism when the air pressure of compressed air is below the second threshold value, the valve 23 that supplies compressed air to the brake mechanism is controlled to be in the open state, When the air pressure of the compressed air is equal to or higher than the first threshold value, the valve 23 that supplies compressed air to the brake mechanism is controlled to be closed, so that the air pressure is equal to or greater than the first threshold value and the second threshold value. maintained between. Then, the vehicle is decelerated by the deceleration generated by the brake mechanism according to the air pressure maintained between the first and second threshold values. Therefore, desired deceleration control can be achieved by simple control such as controlling the valve to either an open state or a closed state. Further, since deceleration control is realized by controlling the air pressure of compressed air in a single system, the configuration for supplying compressed air can be simplified.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Braking Systems And Boosters (AREA)
- Regulating Braking Force (AREA)
- Valves And Accessory Devices For Braking Systems (AREA)
Abstract
This deceleration control device is provided with: a valve that is opened to thereby supply compressed air to a brake mechanism and is closed to thereby stop the supply of the compressed air to the brake mechanism; a sensor for detecting the air pressure of the compressed air supplied to the brake mechanism; a brake instruction acquisition unit for acquiring a brake instruction signal for deceleration control; an air pressure acquisition unit for acquiring the air pressure from the sensor; and a valve control unit for controlling the valve to open or close the same. The valve control unit starts the deceleration control if the brake instruction signal has been acquired and, in the deceleration control, controls the valve to close when the air pressure has risen to at or above a predetermined first threshold value, and controls the valve to open when the air pressure has fallen to at or below a predetermined second threshold value smaller than the first threshold value.
Description
本発明は、ドライバの異常時に車両を減速及び停止させるための減速制御を実施する減速制御装置に関する。
The present invention relates to a deceleration control device that performs deceleration control to decelerate and stop a vehicle when a driver is abnormal.
ドライバの異常時に、車両を減速及び停止させる技術であるドライバ異常時対応システム(EDSS:Emergency Driving Stop System)が知られている。例えば、特許文献1には、EDSSによる減速制御において、運転者が異常状態にある場合、車両に制動力を付与して車両を停止させる停止制御、及び、停止制御により車両を停止させた以降において車両を停止状態に保持する停止保持制御を実行する装置が開示されている。
An emergency driving stop system (EDSS) is known, which is a technology for decelerating and stopping a vehicle when the driver is abnormal. For example, in Patent Document 1, in deceleration control by EDSS, when the driver is in an abnormal state, a stop control that applies braking force to the vehicle to stop the vehicle, and a stop control that stops the vehicle by applying a braking force to the vehicle, and after the vehicle is stopped by the stop control, An apparatus is disclosed that performs stop-holding control to keep a vehicle in a stopped state.
従来のEDSSのシステムでは、EDSSの制御を実施するECUが、運転席及び車内客席等に設けられたスイッチが操作されたことを受信すると、サービスブレーキを制御するブレーキECUに、減速度の指示値を含む外部減速度要求を送出し、ブレーキECUが、外部減速度要求に従ってブレーキを制御して減速制御を実施していた。このような機構は、ブレーキECUが外部減速度要求に従って、ブレーキを駆動するバルブに供給する電流を細密に制御する減速制御に対応していることが前提であって、そのような外部減速度要求に応じて減速制御を行うブレーキシステムが必ずしも車両に搭載されるとは限らなかった。
In the conventional EDSS system, when the ECU that controls the EDSS receives that a switch installed in the driver's seat or the passenger seat of the vehicle has been operated, it sends a deceleration instruction value to the brake ECU that controls the service brake. The brake ECU performs deceleration control by controlling the brakes in accordance with the external deceleration request. Such a mechanism is based on the premise that the brake ECU supports deceleration control that finely controls the current supplied to the valve that drives the brakes in accordance with an external deceleration request. Vehicles were not necessarily equipped with braking systems that controlled deceleration according to the
そこで、本発明は、外部減速度要求に対応したブレーキシステムを要することなく、EDSSの減速制御を可能にすることを目的とする。
Therefore, an object of the present invention is to enable EDSS deceleration control without requiring a brake system that responds to external deceleration requests.
本発明の第1の一側面に係る減速制御装置は、ドライバの異常時に車両を減速及び停止させるための減速制御を実施する減速制御装置であって、ブレーキ機構を駆動するための圧縮エアの流路に設けられ、開状態とされることにより圧縮エアをブレーキ機構に供給し、閉状態とされることにより圧縮エアをブレーキ機構に非供給とするバルブと、バルブを介してブレーキ機構に供給される圧縮エアの圧力であるエア圧を検出するセンサと、減速制御を実施させるための所定のスイッチが操作されたことを示すブレーキ指示信号を取得するブレーキ指示取得部と、エア圧をセンサから取得するエア圧力取得部と、バルブを開状態及び閉状態のいずれかに制御するバルブ制御部と、を備え、バルブ制御部は、ブレーキ指示信号が取得された場合に減速制御を開始し、減速制御において、エア圧が所定の第1の閾値以上になったときにバルブを閉状態に制御し、エア圧が第1の閾値より小さい所定の第2の閾値以下になったときにバルブを開状態に制御する。
A deceleration control device according to a first aspect of the present invention is a deceleration control device that performs deceleration control to decelerate and stop a vehicle when a driver is abnormal, and the deceleration control device is a deceleration control device that implements deceleration control to decelerate and stop a vehicle when a driver is abnormal. A valve is provided in the road and supplies compressed air to the brake mechanism when opened, and does not supply compressed air to the brake mechanism when closed. a sensor that detects air pressure, which is the pressure of compressed air, a brake instruction acquisition unit that acquires a brake instruction signal indicating that a predetermined switch has been operated to perform deceleration control, and an air pressure acquisition unit that acquires the air pressure from the sensor. and a valve control unit that controls the valve to either an open state or a closed state, and the valve control unit starts deceleration control when a brake instruction signal is acquired, and performs deceleration control. , the valve is controlled to be closed when the air pressure exceeds a predetermined first threshold, and the valve is controlled to be opened when the air pressure becomes equal to or less than a second predetermined threshold, which is smaller than the first threshold. to control.
このような側面においては、圧縮エアのエア圧が第2の閾値以下である場合には、ブレーキ機構に圧縮エアを供給するバルブが開状態に制御され、圧縮エアのエア圧が第1の閾値以上である場合には、ブレーキ機構に圧縮エアを供給するバルブが閉状態に制御されるので、エア圧が第1の閾値と第2の閾値との間に維持される。そして、第1及び第2の閾値の間に維持されたエア圧に応じてブレーキ機構により発生された減速度により車両が減速される。従って、バルブを開状態及び閉状態のいずれかに制御するといった容易な制御により、所望の減速制御を実現できる。また、単一系統の圧縮エアのエア圧の制御により減速制御が実現されるので、圧縮エアの供給のための構成を単純化できる。
In this aspect, when the air pressure of the compressed air is below the second threshold value, the valve that supplies the compressed air to the brake mechanism is controlled to be in an open state, and the air pressure of the compressed air reaches the first threshold value. In this case, the valve that supplies compressed air to the brake mechanism is controlled to be closed, so that the air pressure is maintained between the first threshold and the second threshold. Then, the vehicle is decelerated by the deceleration generated by the brake mechanism according to the air pressure maintained between the first and second threshold values. Therefore, desired deceleration control can be achieved by simple control such as controlling the valve to either an open state or a closed state. Further, since deceleration control is realized by controlling the air pressure of compressed air in a single system, the configuration for supplying compressed air can be simplified.
第2の側面に係る減速制御装置では、第1の側面に係る減速制御装置において、バルブ制御部は、バルブを開状態に制御するための第1の信号、及び、バルブを閉状態に制御するための第2の信号のいずれかをバルブに送出し、第1の信号を送出している場合に、エア圧が第1の閾値以上になったときに第2の信号をバルブに送出し、第2の信号を送出している場合に、エア圧が第2の閾値以下になったときに第1の信号をバルブに送出することとしてもよい。
In the deceleration control device according to the second aspect, in the deceleration control device according to the first aspect, the valve control unit receives the first signal for controlling the valve to an open state, and the first signal for controlling the valve to a closed state. sending one of the second signals to the valve, and when the first signal is being sent, sending the second signal to the valve when the air pressure becomes equal to or higher than the first threshold; When the second signal is being sent, the first signal may be sent to the valve when the air pressure becomes equal to or less than the second threshold value.
このような側面によれば、第1の信号及び第2の信号のいずれかをバルブに送出することにより、バルブを開状態及び閉状態のいずれかに制御できる。従って、容易に減速制御を実現させることが可能となる。
According to this aspect, the valve can be controlled to either the open state or the closed state by sending either the first signal or the second signal to the valve. Therefore, it becomes possible to easily implement deceleration control.
第3の側面に係る減速制御装置では、第2の側面に係る減速制御装置において、バルブは、電流を供給されている場合に開状態とされ、電流を供給されていない場合に閉状態とされ、バルブ制御部は、第1の信号としてバルブに電流を供給し、第2の信号としてバルブに電流を非供給とすることとしてもよい。
In the deceleration control device according to the third aspect, in the deceleration control device according to the second aspect, the valve is in an open state when current is supplied, and is in a closed state when no current is supplied. The valve control unit may supply current to the valve as the first signal, and may not supply current to the valve as the second signal.
このような側面によれば、電流を供給または非供給とすることにより、第1の信号または第2の信号の送出が実現される。従って、バルブの開閉制御を容易に実施できる。
According to this aspect, the first signal or the second signal can be transmitted by supplying or not supplying current. Therefore, it is possible to easily control the opening and closing of the valve.
第4の側面に係る減速制御装置では、第1~3の側面のいずれか一つに係る減速制御装置において、第1の閾値は、エア圧に関する所与の狙い値より大きく、第2の閾値は、狙い値より小さいこととしてもよい。
In the deceleration control device according to the fourth aspect, in the deceleration control device according to any one of the first to third aspects, the first threshold value is larger than a given target value regarding air pressure, and the second threshold value is larger than a given target value regarding air pressure. may be smaller than the target value.
このような側面によれば、エア圧が狙い値近傍に制御される。所望の減速度が発生されるようなエア圧を狙い値として設定することにより、好適な減速制御が実現される。
According to this aspect, the air pressure is controlled near the target value. Suitable deceleration control can be achieved by setting an air pressure that generates a desired deceleration as a target value.
第5の側面に係る減速制御装置では、第1~4の側面のいずれか一つに係る減速制御装置において、バルブ制御部は、車両が停止した時以後において、バルブを開状態に維持することとしてもよい。
In the deceleration control device according to the fifth aspect, in the deceleration control device according to any one of the first to fourth aspects, the valve control section maintains the valve in an open state after the vehicle has stopped. You can also use it as
このような側面によれば、別途の制御系統及びエア供給系統を要することなく、減速制御終了後において車両を停車状態に維持することが可能となる。
According to this aspect, it is possible to maintain the vehicle in a stopped state after the deceleration control ends without requiring a separate control system and air supply system.
第6の側面に係る減速制御装置では、第1~4の側面のいずれか一つに係る減速制御装置において、バルブ制御部は、車両が停止した時以後において、エア圧が第1の閾値以上になったときにバルブを閉状態に制御し、エア圧が第2の閾値以下になったときにバルブを開状態に制御することとしてもよい。
In the deceleration control device according to the sixth aspect, in the deceleration control device according to any one of the first to fourth aspects, the valve control section is configured such that the air pressure is equal to or higher than the first threshold after the vehicle has stopped. The valve may be controlled to be closed when the air pressure becomes equal to or lower than the second threshold, and the valve may be controlled to be opened when the air pressure becomes equal to or less than the second threshold.
このような側面によれば、別途の 制御系統及びエア供給系統を要することなく、減速制御終了後においても、エア圧を所望の範囲に維持することにより、車両を停車状態に維持することが可能となる。
According to this aspect, it is possible to maintain the vehicle in a stopped state by maintaining the air pressure within the desired range even after the deceleration control ends, without requiring a separate control system or air supply system. becomes.
本発明の一側面によれば、外部減速度要求に対応したブレーキシステムを要することなく、EDSSの減速制御が可能となる。
According to one aspect of the present invention, EDSS deceleration control is possible without requiring a brake system that responds to external deceleration requests.
以下、本発明に係る実施形態について、図面を参照しつつ詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. In the following description, the same or equivalent elements are given the same reference numerals and redundant description will be omitted.
図1は、本発明の一実施形態に係る減速制御装置の機能的構成を示すブロック図である。減速制御装置1は、車両に搭載されて、ドライバの異常時に車両を減速及び停止させるための減速制御を実施する装置である。即ち、減速制御装置は、EDSSを構成する。
FIG. 1 is a block diagram showing the functional configuration of a deceleration control device according to an embodiment of the present invention. The deceleration control device 1 is a device that is mounted on a vehicle and performs deceleration control to decelerate and stop the vehicle when the driver is abnormal. That is, the deceleration control device constitutes the EDSS.
減速制御装置1は、制御装置10を含んで構成される。制御装置10は、例えば、ECU(Electronic Control Unit)により構成される。ECUにより構成される制御装置10は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、CAN(Controller Area Network)通信回路等を有する電子制御ユニットとして構成されてもよい。制御装置10は、例えば、CAN通信回路を介してROMに記憶されているプログラムをRAMにロードし、RAMにロードされたプログラムをCPUで実行することにより各種の機能を実現する。制御装置10は、複数の電子制御ユニットから構成されていてもよく、例えば、ASIC(Application Specific Integrated Circuit)、マイクロプロセッサ(マイクロコンピュータ)、DSP(Digital Signal Processor)等を含んで構成されてもよい。
The deceleration control device 1 is configured to include a control device 10. The control device 10 is configured by, for example, an ECU (Electronic Control Unit). The control device 10 configured with an ECU includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and a CAN (Controller Area). Network) Even if it is configured as an electronic control unit with a communication circuit, etc. good. The control device 10 realizes various functions by, for example, loading a program stored in a ROM into a RAM via a CAN communication circuit, and executing the program loaded into the RAM with a CPU. The control device 10 may be configured from a plurality of electronic control units, and may include, for example, an ASIC (Application Specific Integrated Circuit), a microprocessor, a DSP (Digital Signal Processor), etc. .
制御装置10は、例えばEDSSのためのECU(EDSS-ECU)により構成され、機能的には、ブレーキ指示取得部11、エア圧力取得部12及びバルブ制御部13を備える。制御装置10の機能の詳細については後に詳述する。
The control device 10 is configured by, for example, an ECU for EDSS (EDSS-ECU), and functionally includes a brake instruction acquisition section 11, an air pressure acquisition section 12, and a valve control section 13. Details of the functions of the control device 10 will be explained later.
減速制御装置1は、制御装置10の他、非常ブレーキスイッチ(運転席)21、非常ブレーキスイッチ(車内客席)22、バルブ23、エアタンク24、減圧弁25、エア圧センサ26、DC(ダブルチェック)弁27、サービスブレーキ回路28、ホーン29、フラッシャー30、ブレーキスイッチインジケータ31及びエア圧センサ32を備える。
In addition to the control device 10, the deceleration control device 1 includes an emergency brake switch (driver's seat) 21, an emergency brake switch (in-vehicle passenger seat) 22, a valve 23, an air tank 24, a pressure reducing valve 25, an air pressure sensor 26, and a DC (double check). It includes a valve 27, a service brake circuit 28, a horn 29, a flasher 30, a brake switch indicator 31, and an air pressure sensor 32.
非常ブレーキスイッチ(運転席)21は、運転席に設けられ、EDSSにおける減速制御を開始させるためのスイッチである。非常ブレーキスイッチ(運転席)21は、例えば押下操作可能に構成されており、ドライバ等による押下操作に応じて、制御装置10にブレーキ指示信号を送出する。
The emergency brake switch (driver's seat) 21 is provided in the driver's seat and is a switch for starting deceleration control in EDSS. The emergency brake switch (driver's seat) 21 is configured to be depressable, for example, and sends a brake instruction signal to the control device 10 in response to a depressing operation by a driver or the like.
非常ブレーキスイッチ(車内客席)22は、車両内の客席に設けられ、EDSSにおける減速制御を開始させるためのスイッチである。非常ブレーキスイッチ(車内客席)21は、例えば押下操作可能に構成されており、乗客等による押下操作に応じて、制御装置10にブレーキ指示信号を送出する。
The emergency brake switch (in-vehicle passenger seat) 22 is provided in the passenger seat in the vehicle and is a switch for starting deceleration control in the EDSS. The emergency brake switch (in-vehicle passenger seat) 21 is configured to be depressable, for example, and sends a brake instruction signal to the control device 10 in response to a depressing operation by a passenger or the like.
バルブ23は、ブレーキ機構を駆動するための圧縮エアの流路に設けられ、開状態とされることにより圧縮エアをブレーキ機構に供給し、閉状態とされることにより圧縮エアをブレーキ機構に非供給とする。
The valve 23 is provided in a flow path of compressed air for driving the brake mechanism, and when it is opened, it supplies compressed air to the brake mechanism, and when it is closed, it supplies compressed air to the brake mechanism. supply.
バルブ23は、制御装置10から送出される第1の信号及び第2の信号によりそれぞれ開状態及び閉状態に制御される。バルブ23は、制御装置10からの電流が供給されている状態を第1の信号として取得し、電流が非供給をされている状態を第2の信号として取得してもよい。
The valve 23 is controlled to be in an open state and a closed state by a first signal and a second signal sent from the control device 10, respectively. The valve 23 may obtain a state in which current is supplied from the control device 10 as a first signal, and may obtain a state in which current is not supplied as a second signal.
エアタンク24は、圧縮エアを格納しており、バルブ23、DC弁27及びサービスブレーキ回路28に対する圧縮エアの供給源である。
The air tank 24 stores compressed air and is a supply source of compressed air to the valve 23, DC valve 27, and service brake circuit 28.
減圧弁25は、エアタンク24からの圧縮エアの圧力を所定の圧力に低下させて、所定圧力の圧縮エアをバルブ23に供給する。
The pressure reducing valve 25 reduces the pressure of the compressed air from the air tank 24 to a predetermined pressure, and supplies the compressed air at the predetermined pressure to the valve 23.
エア圧センサ26は、バルブ23を介してブレーキ機構に供給される圧縮エアの圧力であるエア圧を検出するセンサである。エア圧センサ26は、検出したエア圧を制御装置10に送出する。
The air pressure sensor 26 is a sensor that detects air pressure, which is the pressure of compressed air supplied to the brake mechanism via the valve 23. The air pressure sensor 26 sends detected air pressure to the control device 10.
DC弁27、サービスブレーキ回路28及びエア圧センサ32は、本実施形態におけるブレーキ機構の一例を構成する。DC弁27は、バルブ23を介して供給される圧縮エア、及び、図示されない別途のサービスブレーキ用エアの供給経路から供給される圧縮エアを入力とし、入力された2系統の圧縮エアのうち、より高圧の圧縮エアをサービスブレーキ回路28に送出するバルブである。
The DC valve 27, service brake circuit 28, and air pressure sensor 32 constitute an example of a brake mechanism in this embodiment. The DC valve 27 receives compressed air supplied via the valve 23 and compressed air supplied from a separate service brake air supply path (not shown), and receives the compressed air from the two input systems. This is a valve that sends higher pressure compressed air to the service brake circuit 28.
サービスブレーキ回路28は、車両における常用のブレーキ及びDC弁27を介して供給される圧縮エアに応じて当該ブレーキを制御する制御回路からなる。DC弁27及びサービスブレーキ回路28を含むブレーキ機構は、バルブ23の開閉に応じて供給される圧縮エアのエア圧に応じた減速度を車両に発生させる。
The service brake circuit 28 consists of a regular brake in the vehicle and a control circuit that controls the brake in accordance with the compressed air supplied via the DC valve 27. The brake mechanism including the DC valve 27 and the service brake circuit 28 causes the vehicle to decelerate in accordance with the air pressure of compressed air supplied in response to the opening and closing of the valve 23.
エア圧センサ32は、DC弁27を介してサービスブレーキ用の圧縮エアに供給される圧縮エアの圧力を検出するセンサである。エア圧センサ32は、検出したエアの圧力を制御装置10に送出する。制御装置10は、例えば、エア圧センサ32から取得した検出値を、エア圧センサ26において検出されたエア圧と比較することにより、圧縮エアのサービスブレーキ回路28への供給の異常の有無を判断することができる。
The air pressure sensor 32 is a sensor that detects the pressure of compressed air supplied to the service brake compressed air via the DC valve 27. The air pressure sensor 32 sends the detected air pressure to the control device 10. For example, the control device 10 determines whether there is an abnormality in the supply of compressed air to the service brake circuit 28 by comparing the detected value obtained from the air pressure sensor 32 with the air pressure detected by the air pressure sensor 26. can do.
ホーン29は、車外に対して警報音を発する装置であり、EDSSによる減速制御の実施時に、警報音を発することにより、異常の発生を周囲に報知する。
The horn 29 is a device that emits an alarm sound to the outside of the vehicle, and when deceleration control by EDSS is performed, the horn 29 notifies the surroundings of the occurrence of an abnormality by emitting the alarm sound.
フラッシャー30は、車内及び/又は車外に設けられたランプであり、EDSSによる減速制御の実施時に、例えば点滅等することにより、異常の発生を車内乗客及び/又は車外に報知する。
The flasher 30 is a lamp provided inside and/or outside the vehicle, and when performing deceleration control by EDSS, it notifies passengers inside the vehicle and/or outside the vehicle of the occurrence of an abnormality by, for example, flashing.
ブレーキスイッチインジケータ31は、車内に設けられ、表示、点灯または点滅することにより、EDSSによる減速制御が実施されていることを、ドライバ及び/又は乗客に認識させるための装置である。
The brake switch indicator 31 is a device that is provided inside the vehicle and displays, lights up, or flashes to make the driver and/or passengers aware that deceleration control by EDSS is being implemented.
次に、制御装置10の各機能部を説明する。ブレーキ指示取得部11は、減速制御を実施させるための所定のスイッチが操作されたことを示すブレーキ指示信号を取得する。本実施形態では、ブレーキ指示取得部11は、非常ブレーキスイッチ(運転席)21または非常ブレーキスイッチ(車内客席)22から送出されたブレーキ指示信号を取得する。
Next, each functional section of the control device 10 will be explained. The brake instruction acquisition unit 11 acquires a brake instruction signal indicating that a predetermined switch for performing deceleration control has been operated. In this embodiment, the brake instruction acquisition unit 11 acquires a brake instruction signal sent from the emergency brake switch (driver's seat) 21 or the emergency brake switch (in-vehicle passenger seat) 22.
エア圧力取得部12は、エア圧をセンサから取得する。本実施形態では、エア圧力取得部12は、エア圧センサ26により取得された、バルブ23からDC弁27に供給されている圧縮エアのエア圧を取得する。
The air pressure acquisition unit 12 acquires air pressure from a sensor. In this embodiment, the air pressure acquisition unit 12 acquires the air pressure of the compressed air supplied from the valve 23 to the DC valve 27, which is acquired by the air pressure sensor 26.
バルブ制御部13は、バルブ23を開状態または閉状態のいずれかに制御する。本実施形態のバルブ制御部13は、ブレーキ指示取得部11によりブレーキ指示信号が取得された場合に、EDSSにおける減速制御を開始する。
The valve control unit 13 controls the valve 23 to either an open state or a closed state. The valve control unit 13 of this embodiment starts deceleration control in EDSS when the brake instruction acquisition unit 11 acquires a brake instruction signal.
減速制御において、バルブ制御部13は、エア圧が所定の第1の閾値以上になったときにバルブ23を閉状態に制御し、エア圧が第1の閾値より小さい所定の第2の閾値以下になったときにバルブを開状態に制御する。このように、バルブが開状態または閉状態に制御されることにより、減速制御中において、エア圧が第1の閾値と第2の閾値との間に維持される。そして、第1及び第2の閾値の間に維持されたエア圧に応じてブレーキ機構により発生された減速度により車両が減速される。
In deceleration control, the valve control unit 13 controls the valve 23 to close when the air pressure becomes equal to or greater than a predetermined first threshold, and when the air pressure becomes equal to or less than a predetermined second threshold that is smaller than the first threshold. The valve is controlled to open when the In this way, by controlling the valve to be in the open or closed state, the air pressure is maintained between the first threshold value and the second threshold value during deceleration control. Then, the vehicle is decelerated by the deceleration generated by the brake mechanism according to the air pressure maintained between the first and second threshold values.
第1の閾値は、所与の狙い値より大きい値に設定され、第2の閾値は、狙い値より小さい値に設定される。このように、第1及び第2の閾値が設定されることにより、エア圧が狙い値近傍に制御される。所望の減速度が発生されるようなエア圧を狙い値として設定することにより、好適な減速制御が実現される。例えば、エア圧が2.5barであるときにブレーキ機構(DC弁27、サービスブレーキ回路28)において好適な減速度が発生する場合には、例えば第1の閾値を2.6barとし、第2の閾値を2.4barとすることにより、エア圧を2.5bar近傍の2.4bar~2.6barに維持させることが可能となる。
The first threshold is set to a value larger than a given target value, and the second threshold is set to a value smaller than the target value. By setting the first and second threshold values in this manner, the air pressure is controlled to be close to the target value. Suitable deceleration control can be achieved by setting an air pressure that generates a desired deceleration as a target value. For example, if a suitable deceleration occurs in the brake mechanism (DC valve 27, service brake circuit 28) when the air pressure is 2.5 bar, the first threshold value is set to 2.6 bar, and the second threshold value is set to 2.6 bar. By setting the threshold value to 2.4 bar, it becomes possible to maintain the air pressure at 2.4 bar to 2.6 bar, which is around 2.5 bar.
バルブ制御部13は、バルブ23を開状態に制御するための第1の信号、及び、バルブ23を閉状態に制御するための第2の信号のいずれかを制御信号としてバルブ23に送出してもよい。バルブ23は、第1の信号を受けている場合には、開状態に制御され、第2の信号を受けている場合には、閉状態に制御される。第1の信号は、バルブ23を開状態にするための、いわゆるON信号であり、第2の信号は、バルブ23を閉状態にするための、いわゆるOFF信号である。
The valve control unit 13 sends either a first signal for controlling the valve 23 to an open state or a second signal for controlling the valve 23 to a closed state to the valve 23 as a control signal. Good too. The valve 23 is controlled to be open when receiving the first signal, and controlled to be closed when receiving the second signal. The first signal is a so-called ON signal for opening the valve 23, and the second signal is a so-called OFF signal for closing the valve 23.
バルブ制御部13は、EDSSにおける減速制御として、第1の信号を送出している場合に、エア圧が第1の閾値以上になったときに第2の信号をバルブ23に送出し、第2の信号を送出している場合に、エア圧が第2の閾値以下になったときに第1の信号をバルブ23に送出する。このように、バルブ制御部13は、第1の信号及び第2の信号のいずれかをバルブ23に送出することにより、バルブを開状態及び閉状態のいずれかに制御できる。従って、容易に減速制御を実現させることが可能となる。
As deceleration control in EDSS, the valve control unit 13 sends out a second signal to the valve 23 when the air pressure becomes equal to or higher than the first threshold while sending out the first signal, and The first signal is sent to the valve 23 when the air pressure becomes equal to or less than the second threshold value. In this way, the valve control unit 13 can control the valve to either the open state or the closed state by sending either the first signal or the second signal to the valve 23. Therefore, it becomes possible to easily implement deceleration control.
バルブ23は、電流を供給されている場合に開状態とされ、電流を供給されていない場合に閉状態とされてもよい。即ち、バルブ23は、電流が供給されている状態をON信号として認識し、電流が供給されていない状態をOFF信号として認識してもよい。この場合には、バルブ制御部13は、第1の信号としてバルブ23に電流を供給し、第2の信号としてバルブ23に電流を非供給とする。このように、電流を供給または非供給とすることにより、第1の信号または第2の信号の送出が実現されるので、バルブ制御部13は、バルブの開閉制御を容易に実施できる。
The valve 23 may be in an open state when current is supplied, and may be in a closed state when no current is supplied. That is, the valve 23 may recognize a state in which current is supplied as an ON signal, and may recognize a state in which current is not supplied as an OFF signal. In this case, the valve control unit 13 supplies current to the valve 23 as the first signal, and does not supply current to the valve 23 as the second signal. In this way, by supplying or not supplying the current, the first signal or the second signal is transmitted, so the valve control unit 13 can easily control the opening and closing of the valve.
また、バルブ制御部13は、減速制御の終了後、即ち、車両が停止した時以後において、バルブ23を開状態に維持することにより、車両を停車状態に維持してもよい。このような制御により、別途の制御系統及びエア供給系統を要することなく、減速制御終了後において車両を停車状態に維持することが可能となる。
Further, the valve control unit 13 may maintain the vehicle in a stopped state by keeping the valve 23 open after the deceleration control ends, that is, after the vehicle has stopped. Such control makes it possible to maintain the vehicle in a stopped state after the deceleration control ends, without requiring a separate control system and air supply system.
また、バルブ制御部13は、減速制御の終了後において、減速制御の終了以前と同様に、エア圧が第1の閾値以上になったときにバルブ23を閉状態に制御し、エア圧が第2の閾値以下になったときにバルブを開状態に制御することにより、車両を停車状態に維持してもよい。このような制御により、別途の制御系統及びエア供給系統を要することなく、減速制御終了後においても、エア圧を所望の範囲に維持することにより、車両を停車状態に維持することが可能となる。
Further, after the deceleration control ends, the valve control unit 13 controls the valve 23 to close when the air pressure becomes equal to or higher than the first threshold, as before the end of the deceleration control. The vehicle may be maintained in a stopped state by controlling the valve to open when the temperature becomes equal to or less than the second threshold. This type of control makes it possible to maintain the vehicle in a stopped state by maintaining the air pressure within the desired range even after deceleration control is completed, without requiring a separate control system or air supply system. .
続いて、図2及び図3を参照しながら、本実施形態の減速制御装置1による減速制御処理を説明する。図2は、減速制御処理を示すフローチャートである。図3は、エア圧に応じたバルブ制御信号の変化の例を示す図である。
Next, the deceleration control process by the deceleration control device 1 of this embodiment will be explained with reference to FIGS. 2 and 3. FIG. 2 is a flowchart showing the deceleration control process. FIG. 3 is a diagram showing an example of a change in a valve control signal depending on air pressure.
ステップS1において、ブレーキ指示取得部11は、非常ブレーキ指示を取得したか否かを判定する。非常ブレーキ指示を取得したと判定された場合には、処理はステップS2に進む。非常ブレーキ指示を取得したと判定されなかった場合には、ステップS1の処理が繰り返され、非常ブレーキ指示の監視が続けられる。
In step S1, the brake instruction acquisition unit 11 determines whether an emergency brake instruction has been acquired. If it is determined that an emergency brake instruction has been obtained, the process proceeds to step S2. If it is not determined that an emergency brake instruction has been obtained, the process of step S1 is repeated, and monitoring of the emergency brake instruction is continued.
ステップS2において、バルブ制御部13は、減速制御を開始する。減速制御の開始時には、通常の場合であればバルブ23は閉状態であるので、ステップS3において、バルブ制御部13は、第1の信号をバルブ23に送出する。第1の信号を受けたバルブ23は、開状態に制御される。そして、バルブ23から供給される圧縮エアのエア圧に応じてブレーキ機構により発生された減速度により車両が減速される。
In step S2, the valve control unit 13 starts deceleration control. At the start of deceleration control, the valve 23 is normally in a closed state, so the valve control unit 13 sends the first signal to the valve 23 in step S3. The valve 23 that receives the first signal is controlled to be open. Then, the vehicle is decelerated by the deceleration generated by the brake mechanism in accordance with the air pressure of the compressed air supplied from the valve 23.
ステップS4において、バルブ制御部13は、車両が停車したか否かを判定する。即ち、減速制御の終了の可否を判定する。バルブ制御部13は、車速センサ及びその他の所定の制御信号等に基づいて、停車を認識してもよい。車両が停車したと判定された場合には、処理はステップS9に進む。一方、車両が停車したと判定されなかった場合には、処理はステップS5に進む。
In step S4, the valve control unit 13 determines whether the vehicle has stopped. That is, it is determined whether or not the deceleration control can be terminated. The valve control unit 13 may recognize a stop based on a vehicle speed sensor, other predetermined control signals, and the like. If it is determined that the vehicle has stopped, the process proceeds to step S9. On the other hand, if it is not determined that the vehicle has stopped, the process proceeds to step S5.
ステップS5において、バルブ制御部13は、エア圧力取得部12により取得されたエア圧が第1の閾値に達したか否かを判定する。エア圧が第1の閾値に達したと判定された場合には、処理はステップS6に進む。一方、エア圧が第1の閾値に達したと判定されなかった場合には、処理はステップS4に進む。
In step S5, the valve control unit 13 determines whether the air pressure acquired by the air pressure acquisition unit 12 has reached the first threshold value. If it is determined that the air pressure has reached the first threshold value, the process proceeds to step S6. On the other hand, if it is not determined that the air pressure has reached the first threshold value, the process proceeds to step S4.
ステップS6において、バルブ制御部13は、第2の信号をバルブ23に送出する。第2の信号を受けたバルブ23は、閉状態に制御される。これにより、ブレーキ機構に対する圧縮エアの供給が停止される。
In step S6, the valve control unit 13 sends a second signal to the valve 23. Valve 23 receiving the second signal is controlled to be closed. This stops the supply of compressed air to the brake mechanism.
ステップS7において、バルブ制御部13は、車両が停車したか否かを判定する。即ち、減速制御の終了の可否を判定する。車両が停車したと判定された場合には、処理はステップS9に進む。一方、車両が停車したと判定されなかった場合には、処理はステップS8に進む。
In step S7, the valve control unit 13 determines whether the vehicle has stopped. That is, it is determined whether or not the deceleration control can be terminated. If it is determined that the vehicle has stopped, the process proceeds to step S9. On the other hand, if it is not determined that the vehicle has stopped, the process proceeds to step S8.
ステップS8において、バルブ制御部13は、エア圧力取得部12により取得されたエア圧が第2の閾値に低下したか否かを判定する。エア圧が第2の閾値に低下したと判定された場合には、処理はステップS3に進む。一方、エア圧が第2の閾値に低下したと判定されなかった場合には、処理はステップS7に進む。
In step S8, the valve control unit 13 determines whether the air pressure acquired by the air pressure acquisition unit 12 has decreased to the second threshold value. If it is determined that the air pressure has decreased to the second threshold value, the process proceeds to step S3. On the other hand, if it is not determined that the air pressure has decreased to the second threshold value, the process proceeds to step S7.
ステップS4またはステップS7において車両が停車したと判定された場合に、ステップS9において、減速制御が終了する。
If it is determined in step S4 or step S7 that the vehicle has stopped, the deceleration control ends in step S9.
図3は、ステップS3~S8,S9における、バルブ制御部13がバルブ23に送出するバルブ制御信号の遷移、及び、エア圧センサ26により取得されるエア圧の変化を示している。即ち、バルブ制御部13からON信号(第1の信号)が送出されると(S3)、バルブ23が開状態に制御されるので、エア圧が上昇する。続いて、上昇したエア圧が第1の閾値に達すると(S5)、バルブ制御部13からOFF信号(第2の信号)が送出される(S6)。OFF信号の送出に応じてバルブ23が閉状態に制御されるので、エア圧が低下する。低下されたエア圧が第2の閾値に低下すると(S8)、バルブ制御部13からON信号が再び送出される(S3)。ステップS3,S5,S6,S8の処理が繰り返されることにより、第1の閾値と第2の閾値との間に維持されたエア圧に応じてブレーキ機構により発生された減速度により車両が減速され、停車フラグに示されるように車両が停車した場合に(S4またはS7)、減速制御が終了される(S9)。なお、停車フラグは、車両の状態を示す制御信号の一例であり、車速センサ及びその他の所定の制御信号等に基づいて車両が停車状態にあることが認識された場合に立てられる信号であって、当該減速制御装置1において必須に備えられなくてもよい。
FIG. 3 shows the transition of the valve control signal sent by the valve control unit 13 to the valve 23 and the change in the air pressure acquired by the air pressure sensor 26 in steps S3 to S8 and S9. That is, when the ON signal (first signal) is sent from the valve control section 13 (S3), the valve 23 is controlled to be in the open state, so that the air pressure increases. Subsequently, when the increased air pressure reaches the first threshold value (S5), an OFF signal (second signal) is sent from the valve control unit 13 (S6). Since the valve 23 is controlled to be closed in response to the sending of the OFF signal, the air pressure decreases. When the reduced air pressure falls to the second threshold value (S8), the ON signal is sent again from the valve control unit 13 (S3). By repeating steps S3, S5, S6, and S8, the vehicle is decelerated by the deceleration generated by the brake mechanism according to the air pressure maintained between the first threshold value and the second threshold value. , when the vehicle has stopped as indicated by the stop flag (S4 or S7), the deceleration control is ended (S9). The stop flag is an example of a control signal that indicates the state of the vehicle, and is a signal that is set when it is recognized that the vehicle is in a stopped state based on the vehicle speed sensor and other predetermined control signals. , may not necessarily be provided in the deceleration control device 1.
ステップS10において、制御装置10は、車両の制動保持を実施する。具体的には、図3のバルブ制御信号及びエア圧のセンサ値のグラフの実線に示されるように、バルブ制御部13は、バルブ23に対する第1の信号の送出を維持することによりバルブ23を開状態に維持し、車両の停車状態の維持を実現させてもよい。これにより、別途の制御系統及びエア供給系統を要することなく、減速制御終了後において車両の停車状態に維持することが可能となる。具体的には、バルブ制御部13は、車速センサ、その他の所定の制御信号及び上記の停車フラグ等に基づいて停車を認識した場合に、第1の信号の送出を維持することとしてもよい。
In step S10, the control device 10 maintains the braking of the vehicle. Specifically, as shown by the solid line in the graph of the valve control signal and air pressure sensor value in FIG. It may be maintained in the open state to maintain the stopped state of the vehicle. This makes it possible to maintain the vehicle in a stopped state after the deceleration control ends, without requiring a separate control system and air supply system. Specifically, when the valve control unit 13 recognizes that the vehicle is stopped based on the vehicle speed sensor, other predetermined control signals, the above-mentioned stop flag, etc., the valve control unit 13 may maintain sending of the first signal.
また、図3のバルブ制御信号及びエア圧のセンサ値のグラフの一点鎖線に示されるように、バルブ制御部13は、減速制御の終了以前と同様に、エア圧が第1の閾値以上になったときにバルブ23を閉状態に制御し、エア圧が第2の閾値以下になったときにバルブを開状態に制御することにより、車両を停車状態に維持してもよい。このような制御により、別途の制御系統及びエア供給系統を要することなく、減速制御終了後においても、エア圧を所望の範囲に維持することにより、車両を停車状態に維持することが可能となる。
Further, as shown by the dashed line in the graph of the valve control signal and air pressure sensor value in FIG. The vehicle may be maintained in a stopped state by controlling the valve 23 to be closed when the air pressure is lower than the second threshold, and by controlling the valve 23 to be opened when the air pressure is equal to or less than the second threshold. This type of control makes it possible to maintain the vehicle in a stopped state by maintaining the air pressure within the desired range even after deceleration control is completed, without requiring a separate control system or air supply system. .
ステップS11において、制御装置10は、キーOFFされたか否かを判定する。キーOFFされたと判定された場合には、減速制御処理は終了する。一方、キーOFFされたと判定されなかった場合には、ステップS10の制動保持のための処理が繰り返される。
In step S11, the control device 10 determines whether the key has been turned off. If it is determined that the key has been turned off, the deceleration control process ends. On the other hand, if it is not determined that the key has been turned OFF, the process for maintaining the brake in step S10 is repeated.
以上説明したように、本実施形態の減速制御装置1では、圧縮エアのエア圧が第2の閾値以下である場合には、ブレーキ機構に圧縮エアを供給するバルブ23が開状態に制御され、圧縮エアのエア圧が第1の閾値以上である場合には、ブレーキ機構に圧縮エアを供給するバルブ23が閉状態に制御されるので、エア圧が第1の閾値と第2の閾値との間に維持される。そして、第1及び第2の閾値の間に維持されたエア圧に応じてブレーキ機構により発生された減速度により車両が減速される。従って、バルブを開状態及び閉状態のいずれかに制御するといった容易な制御により、所望の減速制御を実現できる。また、単一系統の圧縮エアのエア圧の制御により減速制御が実現されるので、圧縮エアの供給のための構成を単純化できる。
As explained above, in the deceleration control device 1 of this embodiment, when the air pressure of compressed air is below the second threshold value, the valve 23 that supplies compressed air to the brake mechanism is controlled to be in the open state, When the air pressure of the compressed air is equal to or higher than the first threshold value, the valve 23 that supplies compressed air to the brake mechanism is controlled to be closed, so that the air pressure is equal to or greater than the first threshold value and the second threshold value. maintained between. Then, the vehicle is decelerated by the deceleration generated by the brake mechanism according to the air pressure maintained between the first and second threshold values. Therefore, desired deceleration control can be achieved by simple control such as controlling the valve to either an open state or a closed state. Further, since deceleration control is realized by controlling the air pressure of compressed air in a single system, the configuration for supplying compressed air can be simplified.
以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は前記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
The present invention has been described above in detail based on its embodiments. However, the present invention is not limited to the above embodiments. The present invention can be modified in various ways without departing from the gist thereof.
1…減速制御装置、10…制御装置、11…ブレーキ指示取得部、12…エア圧力取得部、13…バルブ制御部、23…バルブ、24…エアタンク、25…減圧弁、26…エア圧センサ、27…DC弁、28…サービスブレーキ回路、29…ホーン、30…フラッシャー、31…ブレーキスイッチインジケータ、32…エア圧センサ。
DESCRIPTION OF SYMBOLS 1... Deceleration control device, 10... Control device, 11... Brake instruction acquisition part, 12... Air pressure acquisition part, 13... Valve control part, 23... Valve, 24... Air tank, 25... Pressure reducing valve, 26... Air pressure sensor, 27...DC valve, 28...Service brake circuit, 29...Horn, 30...Flasher, 31...Brake switch indicator, 32...Air pressure sensor.
Claims (6)
- ドライバの異常時に車両を減速及び停止させるための減速制御を実施する減速制御装置であって、
ブレーキ機構を駆動するための圧縮エアの流路に設けられ、開状態とされることにより前記圧縮エアを前記ブレーキ機構に供給し、閉状態とされることにより前記圧縮エアを前記ブレーキ機構に非供給とするバルブと、
前記バルブを介して前記ブレーキ機構に供給される前記圧縮エアの圧力であるエア圧を検出するセンサと、
前記減速制御を実施させるための所定のスイッチが操作されたことを示すブレーキ指示信号を取得するブレーキ指示取得部と、
前記エア圧を前記センサから取得するエア圧力取得部と、
前記バルブを開状態及び閉状態のいずれかに制御するバルブ制御部と、を備え、
前記バルブ制御部は、
前記ブレーキ指示信号が取得された場合に前記減速制御を開始し、
前記減速制御において、
前記エア圧が所定の第1の閾値以上になったときに前記バルブを閉状態に制御し、
前記エア圧が前記第1の閾値より小さい所定の第2の閾値以下になったときに前記バルブを開状態に制御する、
減速制御装置。 A deceleration control device that performs deceleration control to decelerate and stop a vehicle when a driver is abnormal,
It is provided in a compressed air flow path for driving a brake mechanism, and when it is in an open state, it supplies the compressed air to the brake mechanism, and when it is in a closed state, it supplies the compressed air to the brake mechanism. a valve as a supply;
a sensor that detects air pressure that is the pressure of the compressed air supplied to the brake mechanism via the valve;
a brake instruction acquisition unit that acquires a brake instruction signal indicating that a predetermined switch for implementing the deceleration control has been operated;
an air pressure acquisition unit that acquires the air pressure from the sensor;
a valve control unit that controls the valve to either an open state or a closed state,
The valve control section includes:
starting the deceleration control when the brake instruction signal is acquired;
In the deceleration control,
controlling the valve to be closed when the air pressure becomes equal to or higher than a predetermined first threshold;
controlling the valve to be in an open state when the air pressure becomes equal to or less than a predetermined second threshold value that is smaller than the first threshold value;
Deceleration control device. - 前記バルブ制御部は、前記バルブを開状態に制御するための第1の信号、及び、前記バルブを閉状態に制御するための第2の信号のいずれかを前記バルブに送出し、
前記第1の信号を送出している場合に、前記エア圧が前記第1の閾値以上になったときに前記第2の信号を前記バルブに送出し、
前記第2の信号を送出している場合に、前記エア圧が前記第2の閾値以下になったときに前記第1の信号を前記バルブに送出する、
請求項1に記載の減速制御装置。 The valve control unit sends to the valve either a first signal for controlling the valve in an open state or a second signal for controlling the valve in a closed state,
when the first signal is being sent, sending the second signal to the valve when the air pressure becomes equal to or higher than the first threshold;
when the second signal is being sent, sending the first signal to the valve when the air pressure becomes equal to or less than the second threshold;
The deceleration control device according to claim 1. - 前記バルブは、電流を供給されている場合に開状態とされ、電流を供給されていない場合に閉状態とされ、
前記バルブ制御部は、前記第1の信号として前記バルブに電流を供給し、前記第2の信号として前記バルブに電流を非供給とする、
請求項2に記載の減速制御装置。 The valve is in an open state when current is supplied, and is in a closed state when no current is supplied,
The valve control unit supplies current to the valve as the first signal and stops supplying current to the valve as the second signal.
The deceleration control device according to claim 2. - 前記第1の閾値は、エア圧に関する所与の狙い値より大きく、
前記第2の閾値は、前記狙い値より小さい、
請求項1~3のいずれか一項に記載の減速制御装置。 the first threshold value is greater than a given target value for air pressure;
the second threshold is smaller than the target value;
The deceleration control device according to any one of claims 1 to 3. - 前記バルブ制御部は、前記車両が停止した時以後において、前記バルブを開状態に維持する、
請求項1に記載の減速制御装置。 The valve control unit maintains the valve in an open state after the vehicle has stopped.
The deceleration control device according to claim 1. - 前記バルブ制御部は、前記車両が停止した時以後において、前記エア圧が前記第1の閾値以上になったときに前記バルブを閉状態に制御し、前記エア圧が前記第2の閾値以下になったときに前記バルブを開状態に制御する、
請求項1に記載の減速制御装置。 The valve control unit controls the valve to close when the air pressure becomes equal to or more than the first threshold after the vehicle stops, and controls the valve to close when the air pressure becomes equal to or less than the second threshold. controlling the valve to open when the
The deceleration control device according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-075932 | 2022-05-02 | ||
JP2022075932A JP2023165187A (en) | 2022-05-02 | 2022-05-02 | Deceleration control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023214520A1 true WO2023214520A1 (en) | 2023-11-09 |
Family
ID=88646430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/016116 WO2023214520A1 (en) | 2022-05-02 | 2023-04-24 | Deceleration control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023165187A (en) |
WO (1) | WO2023214520A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01119326A (en) * | 1987-10-30 | 1989-05-11 | Jidosha Kiki Co Ltd | Air dryer |
WO2020138392A1 (en) * | 2018-12-28 | 2020-07-02 | ナブテスコオートモーティブ株式会社 | Air supply system |
JP2020157960A (en) * | 2019-03-27 | 2020-10-01 | 三菱ふそうトラック・バス株式会社 | Emergency braking system, emergency braking method and emergency braking program |
WO2021054470A1 (en) * | 2019-09-20 | 2021-03-25 | ナブテスコオートモーティブ株式会社 | Air pressure control device, air pressure control method, and air pressure control program for brake |
-
2022
- 2022-05-02 JP JP2022075932A patent/JP2023165187A/en active Pending
-
2023
- 2023-04-24 WO PCT/JP2023/016116 patent/WO2023214520A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01119326A (en) * | 1987-10-30 | 1989-05-11 | Jidosha Kiki Co Ltd | Air dryer |
WO2020138392A1 (en) * | 2018-12-28 | 2020-07-02 | ナブテスコオートモーティブ株式会社 | Air supply system |
JP2020157960A (en) * | 2019-03-27 | 2020-10-01 | 三菱ふそうトラック・バス株式会社 | Emergency braking system, emergency braking method and emergency braking program |
WO2021054470A1 (en) * | 2019-09-20 | 2021-03-25 | ナブテスコオートモーティブ株式会社 | Air pressure control device, air pressure control method, and air pressure control program for brake |
Also Published As
Publication number | Publication date |
---|---|
JP2023165187A (en) | 2023-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5254334B2 (en) | Brake device for vehicle and method for operating vehicle brake device | |
US9956959B2 (en) | Method for controlling a delay device of a vehicle | |
CN105691373B (en) | Method for applying an electric parking brake device | |
CN107750214B (en) | Method for electronically regulating the brake force distribution in a pressure-medium-actuated brake system of a vehicle, and pressure-medium-actuated brake system of a vehicle having such a regulation | |
JP6299837B1 (en) | Parking brake control device | |
CN111791852A (en) | Method and control device for controlling an automatic emergency braking system | |
JP6835830B2 (en) | A method for adjusting the braking pressure of a car, a braking device for carrying out that method and a car | |
KR20120051531A (en) | Control method of automatic emergency brake system based on antilock brake system for vehicle | |
WO2023214520A1 (en) | Deceleration control device | |
CN114728650B (en) | Air pressure control device, air pressure control method, and air pressure control program for brake | |
CN114096446A (en) | Air pressure control device, air pressure circuit, and brake control system | |
US20220379856A1 (en) | Automatic brake control apparatus for vehicle | |
US11535213B2 (en) | Method for learning braking step threshold values of a sustained-action brake operated in braking steps, and braking system | |
JP4788354B2 (en) | Vehicle travel control device | |
JP6933083B2 (en) | Vehicle braking device | |
US20090112438A1 (en) | Vehicle running control apparatus | |
JP6469513B2 (en) | Braking device for vehicle | |
US20240166175A1 (en) | Emergency driving and stop system | |
CN115214573B (en) | Remote braking method and system | |
CN111086508A (en) | Method for automatically avoiding or reducing collision, control system, storage medium and automobile | |
JP2006004242A (en) | Traveling control device for vehicle | |
JP2004268689A (en) | Collision preventive device of vehicle | |
JP2022187137A (en) | Emergency brake control device | |
US20240239315A1 (en) | Vehicle stop holding device | |
KR101134919B1 (en) | Driving auxiliary control system of vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23799451 Country of ref document: EP Kind code of ref document: A1 |