WO2023214457A1 - Pulse wave estimation device and pulse wave estimation method - Google Patents

Pulse wave estimation device and pulse wave estimation method Download PDF

Info

Publication number
WO2023214457A1
WO2023214457A1 PCT/JP2022/019552 JP2022019552W WO2023214457A1 WO 2023214457 A1 WO2023214457 A1 WO 2023214457A1 JP 2022019552 W JP2022019552 W JP 2022019552W WO 2023214457 A1 WO2023214457 A1 WO 2023214457A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
source signal
wave source
unit
measurement
Prior art date
Application number
PCT/JP2022/019552
Other languages
French (fr)
Japanese (ja)
Inventor
遼平 村地
雄大 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/019552 priority Critical patent/WO2023214457A1/en
Priority to JP2024519158A priority patent/JPWO2023214457A1/ja
Publication of WO2023214457A1 publication Critical patent/WO2023214457A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present disclosure relates to a pulse wave estimation device and a pulse wave estimation method.
  • human skin is measured based on luminance signals of multiple areas (hereinafter referred to as “measurement areas”) set in an area containing human skin (hereinafter referred to as “skin area”) in a captured image captured by an imaging device.
  • measurement areas multiple areas
  • skin area an area containing human skin
  • signal separation techniques such as independent component analysis or principal component analysis.
  • Patent Document 1 Such technology utilizes the principle that the amount of light absorbed in a person's bloodstream changes in response to pulsations.
  • the present disclosure has been made to solve the above-mentioned problems, and even if there is a phase difference between the luminance signals extracted from multiple measurement regions, a person's pulse wave can be estimated based on the luminance signals.
  • the purpose of the present invention is to provide a pulse wave estimating device that can perform the following steps.
  • the pulse wave estimating device includes a captured image acquisition unit that acquires a captured image of a person, a skin area detection unit that detects a skin area of the person from the captured image, and a skin area that corresponds to the skin area on the captured image.
  • a measurement region setting unit that sets a plurality of measurement regions in the region for extracting pulse wave source signals indicating time-series luminance changes in the first period; a pulse wave source signal extraction unit that extracts a pulse wave source signal based on the change; and a pulse wave source signal extracting unit that extracts a pulse wave source signal for each measurement region, based on the pulse wave source signal extracted from the measurement region, and according to segment generation conditions, pulse wave in the first period.
  • a segment generation unit that generates a plurality of pulse wave source signal segments that are signals obtained by partially extracting the pulse wave source signal for a second period from the original signal, and a plurality of pulse wave source signals generated for each measurement area. and a pulse wave estimator that estimates a person's pulse wave based on the segments.
  • a person's pulse wave can be estimated based on the luminance signals.
  • FIG. 1 is a diagram showing a configuration example of a pulse wave estimating device according to Embodiment 1.
  • FIG. FIG. 3 is a diagram for explaining a phase difference in luminance signals caused by characteristics of human blood flow that occurs between a plurality of measurement regions.
  • 3A, FIG. 3B, and FIG. 3C are diagrams for explaining an example of a method for setting a measurement region by a measurement region setting section in the pulse wave estimating device according to the first embodiment.
  • FIG. 3 is a diagram for explaining an example of a pulse wave source signal segment generated by a segment generation unit in the first embodiment.
  • FIG. 7 is a diagram for explaining a flow in which the signal separation unit analyzes a principal component based on a plurality of pulse wave source signal segments and generates a separated signal indicating the analyzed principal component in the first embodiment.
  • FIG. 3 is a diagram for explaining an example of details of a separated signal indicating a main component, which is generated by a signal separation unit in the first embodiment. 3 is a flowchart for explaining the operation of the pulse wave estimating device according to the first embodiment. 8 is a flowchart for explaining details of pulse wave estimation processing by the pulse wave estimator in step ST6 of FIG. 7.
  • FIG. 9A and 9B are diagrams illustrating an example of the hardware configuration of the pulse wave estimating device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a pulse wave estimating device according to a second embodiment.
  • 7 is a flowchart for explaining the operation of the pulse wave estimating device according to Embodiment 2.
  • FIG. FIG. 7 is a diagram illustrating a configuration example of a pulse wave estimating device according to Embodiment 3.
  • FIG. 7 is a diagram for explaining pulse wave source signal segments used by the pulse wave estimating device to estimate a subject's pulse wave in Embodiment 3; 12 is a flowchart for explaining the operation of the pulse wave estimating device according to Embodiment 3.
  • the pulse wave estimating device sets component weights for a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique
  • FIG. 3 is a diagram illustrating an example of projection coefficient time series information generated by a component weight setting unit.
  • the pulse wave estimating device sets component weights for a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique
  • 12 is a flowchart for explaining the operation of the pulse wave estimating section when it has a function of restoring the pulse wave source signal for each measurement area based on the set component weight for each separated signal.
  • FIG. 1 is a diagram showing a configuration example of a pulse wave estimating device 1 according to the first embodiment.
  • the pulse wave estimating device 1 estimates the pulse wave of a person based on a captured image of the person.
  • a person whose pulse wave is estimated by the pulse wave estimating device 1 is also referred to as a "subject.”
  • the pulse wave estimating device 1 captures a series of frames at a predetermined frame rate Fr, capturing images of at least a range where a skin region that includes the subject's skin should exist (hereinafter referred to as "skin existing range").
  • a captured image consisting of Im(k) is acquired.
  • k indicates a frame number assigned to each frame. For example, the frame given at the next timing after frame Im(k) is frame Im(k+1).
  • the skin area is an area corresponding to the subject's face.
  • the skin area may be an area other than the subject's face.
  • the skin area may be an area corresponding to a part of the face such as the subject's eyes, eyebrows, nose, mouth, forehead, cheeks, or chin.
  • the skin area may be an area corresponding to a body part other than the face, such as the subject's head, shoulders, hands, neck, or feet.
  • the skin area may be a plurality of areas, such as a skin area corresponding to the cheek, a skin area corresponding to the forehead, or a skin area corresponding to the neck.
  • the pulse wave estimating device 1 generates a series of frames Im(
  • the pulse wave of the subject is estimated from k ⁇ Tp+1) to Im(k), and pulse wave estimation result P(t), which is information indicating the estimated pulse wave (hereinafter referred to as “pulse wave information”), is output.
  • the pulse wave estimating device 1 sets a plurality of regions (hereinafter referred to as "measurement regions") for the subject's skin region in a series of frames Im(k-Tp+1) to Im(k).
  • the pulse wave estimating device 1 performs independent component analysis (hereinafter referred to as "ICA") or Pulse wave components are separated using a general signal separation technique such as principal component analysis (hereinafter referred to as "PCA”), and the subject's pulse wave is estimated from the separated pulse wave components.
  • ICA independent component analysis
  • PCA principal component analysis
  • the pulse wave estimation device 1 partially extracts the pulse wave source signal of a preset period (hereinafter referred to as "second period”) from the pulse wave source signal of the first period.
  • a plurality of pulse wave source signals hereinafter referred to as “pulse wave source signal segments" are generated, and ICA or PCA is performed on the plurality of pulse wave source signal segments.
  • t indicates an output number assigned to each specific number of frames Tp acquired in the first period.
  • the pulse wave estimation result given at the next timing of the pulse wave estimation result P(t) is the pulse wave estimation result P(t+1).
  • the frame number k and the output number t are integers of 1 or more.
  • the number of frames Tp is an integer of 2 or more.
  • FIG. 2 is a diagram for explaining a phase difference in luminance signals due to characteristics of human blood flow that occurs between a plurality of measurement regions.
  • the left side of the figure is a diagram showing a skin area in a captured image of a subject.
  • the subject is indicated by “H” and the skin area is indicated by “sr".
  • four measurement regions are set in the skin region.
  • four measurement regions are indicated by "R1", “R2”, “R3”, and “R4". Note that the details of the method of detecting the skin area and the method of setting the measurement area will be described later.
  • the upper right side of the figure shows a diagram (indicated by 22 in FIG.
  • FIG. 3 is a diagram (indicated by 21 in FIG. 2) showing the luminance values indicated by the luminance signals in the time axis.
  • a phase difference occurs in the luminance signal extracted from the measurement area. If a phase difference occurs between multiple luminance signals extracted from multiple measurement regions, it is possible to use a general signal separation technique such as ICA or PCA on the pulse wave source signal for each measurement region. If the pulse wave component is separated, the separation of the pulse wave component ends in failure.
  • the pulse wave estimating device 1 according to the first embodiment generates a plurality of pulse wave source signal segments and performs ICA on the generated pulse wave source signal segments in consideration of the occurrence of the phase difference as described above.
  • a general signal separation technique such as PCA
  • the phase difference can be The pulse wave of the subject can be estimated by absorbing it.
  • the number of subjects included in the captured image may be one or more. To simplify the explanation, in the following first embodiment, the number of subjects included in the captured image is one.
  • the pulse wave estimating device 1 is mounted on a vehicle (not shown), and the subject is a driver of the vehicle. That is, the pulse wave estimating device 1 estimates the pulse wave of the driver of the vehicle.
  • the driver's pulse wave information estimated by the pulse wave estimating device 1 is output to, for example, a state estimating device (not shown) mounted on the vehicle.
  • the state estimating device estimates the driver's state based on the driver's pulse wave estimation result P(t) output from the pulse wave estimating device 1. For example, when the state estimating device estimates that the driver's state is not suitable for driving, it outputs a warning sound to the driver.
  • the pulse wave estimation device 1 includes a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, a segment generation section 15, and a pulse wave estimation section 16. , and an output section 17.
  • the pulse wave estimating section 16 includes a signal separating section 161, a restoring section 162, and an estimating section 163.
  • the pulse wave estimating device 1 is connected to an imaging device 3 mounted on a vehicle.
  • the imaging device 3 is installed to be able to image the skin area of the subject, here the driver.
  • the imaging device 3 may be shared with an imaging device included in a so-called "Driver Monitoring System (DMS)" that is installed in a vehicle to monitor the condition of the driver in the vehicle. .
  • DMS Driver Monitoring System
  • the captured image acquisition unit 11 acquires a captured image of the subject from the imaging device 3.
  • the captured image acquisition unit 11 outputs the acquired captured image to the skin area detection unit 12.
  • the skin area detection unit 12 detects the skin area of the subject from the frame Im(k) included in the captured image acquired by the captured image acquisition unit 11.
  • the skin area detection unit 12 may detect the skin area using a known means.
  • the skin area detection unit 12 can detect a skin area using a cascade type face detector using Haar-like features.
  • the skin area detection unit 12 generates skin area information S(k) indicating the detected skin area.
  • the skin area information S(k) can include information indicating whether or not a skin area has been detected, and information indicating the position and size of the detected skin area on the captured image.
  • the skin area information S(k) includes information indicating the position and size of the rectangular area on the captured image.
  • the skin area information S(k) includes, for example, whether or not the subject's face is detected and the rectangle surrounding the subject's face on the captured image.
  • the center coordinates Fc (Fcx, Fcy) of the rectangle, and the width Fcw and height Fch of this rectangle are shown.
  • the presence or absence of detection of the subject's face is represented by, for example, "1" if it is detected, and "0" if it is not detected.
  • the center coordinates of the rectangle surrounding the face are expressed in the coordinate system of frame Im(k).
  • the skin area detection unit 12 can also detect multiple skin areas.
  • the skin area detection unit 12 outputs the generated skin area information S(k) to the measurement area setting unit 13.
  • the measurement area setting unit 13 determines the area on the frame Im(k) based on the frame Im(k) of the captured image acquired by the captured image acquisition unit 11 and the skin area information S(k) outputted by the skin area detection unit 12. A plurality of measurement regions are set in the image region corresponding to the skin region indicated by the skin region information S(k) of , for extracting the pulse wave source signal indicating the time-series luminance change in the first period. Note that the measurement area setting unit 13 may acquire the captured image acquired by the captured image acquisition unit 11 via the skin area detection unit 12. When the measurement area setting unit 13 sets a plurality of measurement areas, it generates measurement area information R(k) indicating the plurality of measurement areas that have been set.
  • the measurement region ri(k) is a quadrilateral, and the position and size of the measurement region ri(k) are the coordinate values of the four vertices of the quadrilateral on the captured image.
  • FIG. 3A, FIG. 3B, and FIG. 3C are diagrams for explaining an example of a method for setting the measurement region ri(k) by the measurement region setting section 13 in the pulse wave estimating device 1 according to the first embodiment. be.
  • An example of a method by which the measurement area setting unit 13 sets a plurality of measurement areas ri(k) will be described with reference to FIG. 3.
  • the measurement region setting unit 13 selects facial organs such as the outer corners of the eyes, inner corners of the eyes, nose, and mouth in the skin region sr indicated by the skin region information S(k). Detect Ln (positive integer) landmarks.
  • Ln positive integer
  • landmarks are shown as circles.
  • the measurement area setting unit 13 sets a vector storing the coordinate values of the detected landmarks to L(k).
  • the measurement area setting unit 13 may detect facial organs using a known method such as using a model called a Constrained Local Model (CLM).
  • CLM Constrained Local Model
  • the measurement area setting unit 13 sets the coordinates of the vertices of the quadrilateral of the measurement area ri(k) using the detected landmark as a reference. For example, the measurement area setting unit 13 sets the vertex coordinates of a quadrilateral as shown in FIG. 3C, and sets N measurement areas ri(k).
  • the measurement area setting unit 13 sets the landmark LA1 of the facial contour and the nose.
  • Select landmark LA2. The measurement area setting unit 13 first selects the nasal landmark LA2, and then selects the facial contour landmark LA1 closest to the nasal landmark LA2. Then, the measurement area setting unit 13 sets auxiliary landmarks a1, a2, and a3 so as to equally divide the line segment between the landmark LA1 and the landmark LA2 into four. Similarly, the measurement area setting unit 13 selects the facial contour landmark LB1 and the nose landmark LB2.
  • the measurement area setting unit 13 sets auxiliary landmarks b1, b2, and b3 so as to equally divide the line segment between the landmark LB1 and the landmark LB2 into four.
  • the landmarks LB1 and LB2 may be selected from, for example, the contour of the face or the landmark of the nose adjacent to the landmarks LA1 and LA2, respectively.
  • the measurement area setting unit 13 sets a quadrilateral area surrounded by the auxiliary landmarks a1, b1, b2, and a2 as one measurement area R5.
  • the auxiliary landmarks a1, b1, b2, and a2 each have vertex coordinates corresponding to the measurement region R5.
  • the measurement area setting unit 13 sets one measurement area R6 surrounded by the auxiliary landmarks a2, b2, b3, and a3 and the vertex coordinates of the measurement area R6.
  • the measurement region setting unit 13 can set the measurement region ri(k) on the part corresponding to the cheek. Similarly, the measurement region ri(k) and the vertex coordinates of the measurement region ri(k) are set for the region sr. Although not shown in FIG. 3C, the measurement region setting unit 13 sets a measurement region ri(k ) may be set.
  • the measurement region setting unit 13 may set the measurement region ri(k) using a method other than CLM.
  • the measurement region setting unit 13 may set the measurement region ri(k) using a tracking technique such as a Kanade-Lucas-Tomasi (KLT) tracker.
  • KLT Kanade-Lucas-Tomasi
  • the measurement area setting unit 13 detects the coordinates of facial organ points using CLM for the skin area of the first frame Im(1) of the series of frames Im(k-Tp+1) to Im(k).
  • the facial organ points may be tracked by the KLT tracker and the facial organ points for the skin region of each frame Im(k) may be calculated.
  • the measurement area setting unit 13 may perform a reset process such as executing CLM once every several frames and resetting the coordinate positions of facial organ points.
  • the measurement area setting unit 13 outputs the generated measurement area information R(k) to the pulse wave source signal extraction unit 14.
  • the pulse wave source signal extraction unit 14 extracts the frame Im( A pulse wave source signal indicating a luminance change in the first period is extracted from each of a plurality of measurement regions ri(k) shown by measurement region information R(k) on k).
  • the pulse wave source signal is a signal that is the source of the pulse wave.
  • the pulse wave estimating device 1 estimates the pulse wave of the subject using the pulse wave source signal.
  • the pulse wave estimation unit 16 estimates the pulse wave of the subject. Details of the pulse wave estimation section 16 will be described later.
  • the pulse wave source signal extraction unit 14 may acquire the captured image acquired by the captured image acquisition unit 11 via the skin area detection unit 12 and the measurement area setting unit 13. After extracting the pulse wave source signal, the pulse wave source signal extraction unit 14 generates pulse wave source signal information W(t) indicating the extracted pulse wave source signal.
  • the pulse wave source signal information W(t) includes information indicating the pulse wave source signal wi(t) extracted in the measurement region ri(k).
  • the pulse wave source signal wi(t) is time-series data for Tp, for example, frames Im(k-Tp+1), Im(k-Tp+2), ..., Im(k) for the past Tp, It is extracted based on the measurement area information R(k-Tp+1), R(k-Tp+2), . . . , R(k).
  • the pulse wave source signal extracting unit 14 extracts the difference between the previous frame Im(k-1) and the previous frame Im(k-1) for each frame Im(k) of the captured image.
  • the luminance feature amount is a value calculated for each measurement region ri(j) based on the luminance value on frame Im(j) of the captured image.
  • the brightness feature amount is the average or variance of the brightness values of pixels included in the measurement region ri(j). In the first embodiment, as an example, the brightness feature amount is the average brightness value of pixels included in the measurement region ri(j).
  • the pulse wave source signal extraction unit 14 extracts the pulse wave source signal wi(t) by calculating the luminance feature amount of each measurement region ri(k) for each frame Im(k) of the captured image. May be extracted.
  • the pulse wave source signal extraction unit 14 generates pulse wave source signal information W(t) indicating the pulse wave source signal wi(t) in each measurement region ri(k).
  • the pulse wave source signal information W(t) includes the pulse wave source signal wi(t) in each measurement region ri(k) and the pulse wave source signal wi(t) from which measurement region ri(k). and information indicating whether the wave source signal wi(t) is the wave source signal wi(t).
  • the pulse wave source signal extraction section 14 outputs the generated pulse wave source signal information W(t) to the segment generation section 15.
  • the segment generation unit 15 generates preset conditions (hereinafter referred to as “segment generation conditions”) for each measurement region ri(k) based on the pulse wave source signal information W(t) output from the pulse wave source signal extraction unit 14. ), the pulse wave source signal segment is a signal obtained by partially extracting the pulse wave source signal wi(t) for the second period from the pulse wave source signal wi(t) for the first period. Generate multiple.
  • the segment generation conditions are generated in advance by an administrator or the like, and are held by the segment generation unit 15. For example, the following conditions (1) to (5) are set as the segment generation conditions.
  • the segment generation unit 15 generates a plurality of pulse wave source signal segments so as to satisfy all of (1) to (5).
  • (1) The second period is shorter than the first period.
  • one pulse wave source signal segment partially overlaps with another pulse wave source signal segment on the time axis.
  • each measurement area the length of partial overlap between a certain pulse wave source signal segment and another pulse wave source signal segment on the time axis is the same (5)
  • Multiple pulse wave source signal segments in each measurement area The lengths of the pulse wave source signal segments on the time axis are the same.
  • FIG. 4 is a diagram for explaining an example of a pulse wave source signal segment generated by the segment generation unit 15 in the first embodiment.
  • the upper left diagram in FIG. 4 is a diagram (hereinafter referred to as "skin area diagram") showing the skin region sr in which the measurement region ri(k) is set.
  • the subject is indicated by "H".
  • four measurement regions ri(k) are now set in the skin region sr. Specifically, two measurement regions ri(k) (indicated by “n 1 ” and “n 2 ” on the skin area map) are placed on the subject's chin area, and two measurement areas ri(k) are placed on the subject's forehead area.
  • the measurement region ri(k) indicated by “n 1 " is referred to as the "first measurement region”
  • the measurement region ri(k) indicated by “n 2 " is referred to as the “second measurement region”
  • the measurement region ri(k) indicated by “f 1 " is referred to as the "first measurement region”.
  • the measurement region ri(k) shown is called a “third measurement region”
  • the measurement region ri(k) shown by "f 2 " is called a "fourth measurement region”.
  • the middle diagram in the upper part of FIG. 4 is a diagram for explaining an example of a pulse wave source signal segment generated by the segment generation unit 15 for the first measurement area and the third measurement area (hereinafter referred to as a "segment generation diagram").
  • segment generation diagram the luminance value indicated by the pulse wave source signal wi(t) in the first period (indicated by "X” in the segment generation diagram) is shown on the time axis.
  • the segment generation unit 15 generates the pulse wave source signal for the second period from the pulse wave source signal wi(t) (indicated by "401" on the segment generation diagram) extracted from the first measurement area.
  • the segment generation unit 15 For each measurement region ri(k), the segment generation unit 15 generates a pulse wave source signal wi(t ), M (M is an integer of 2 or more) pulse wave source signal segments are generated by partially extracting the pulse wave source signal wi(t) for the second period.
  • each pulse wave source signal segment is generated from the pulse wave source signal wi(t) of which measurement region ri(k) and the pulse wave source signal is generated from which pulse wave source signal wi(t) in which measurement region ri(k)
  • Information indicating whether it is a segment and information indicating the time range on the time axis of the time-series pulse wave source signal wi(t) that is the extraction source are provided.
  • the pulse wave source signal segment p1-1 is the first pulse wave signal segment on the time axis among the plurality of pulse wave source signal segments generated for the pulse wave source signal wi(t) in the first measurement area. This indicates that it is the original signal segment, in other words, the pulse wave original signal segment in the earliest time period.
  • the pulse wave source signal segment p1-1 is the pulse wave source signal wi(t) of the first measurement region from 0:00:00 minutes to ⁇ hours, ⁇ minutes, and ⁇ seconds is attached to the pulse wave source signal segment p1-1. has been done.
  • the second measurement area has almost no difference in distance from the heart from the first measurement area, so the M pulse wave source signal segments for the second measurement area are the same as the M pulse wave source signals for the first measurement area.
  • the signal has the same content as the original signal segment.
  • the M pulse wave source signal segments for the fourth measurement region are the same as the M pulse wave source signal segments for the third measurement region.
  • the signal has the same content as the pulse wave source signal segment. Note that in the first embodiment, "the same” is not limited to completely matching, but includes “substantially matching" within a permissible range.
  • the segment generation unit 15 After generating a plurality of pulse wave source signal segments for each measurement region ri(k), the segment generation unit 15 generates a trajectory matrix from the generated pulse wave source signal segments, and stores this in a storage unit (not shown). Stack.
  • the storage unit is provided at a location that can be referenced by the pulse wave estimating device 1. In FIG. 4, there are four measurement regions ri(k), so when the segment generation unit 15 generates M pulse wave source signal segments for each measurement region ri(k), M ⁇ 4 rows of pulse wave source signal segments are generated.
  • Trajectory matrix [p1-1, p1-2, p1-3, p1-4, p1-5, ..., p1-M], ..., [p4-1, p4-2, p4-3 , p4-4, p4-5, ..., p4-M]) (see the upper right diagram in FIG. 4).
  • the segment generation unit 15 When the segment generation unit 15 stacks the trajectory matrices, it notifies the pulse wave estimation unit 16 of this fact.
  • the pulse wave estimation unit 16 calculates the pulse wave of the subject based on the plurality of pulse wave source signal segments generated for each measurement region ri(k). Estimate. Specifically, first, the signal separation unit 161 generates a signal (hereinafter referred to as a "separated signal") indicating a plurality of signal components (hereinafter referred to as "principal component") based on a plurality of pulse wave source signal segments. . Specifically, the signal separation unit 161 analyzes a plurality of principal components using a general signal separation technique such as PCA or ICA, and generates a separated signal indicating the analyzed plurality of principal components.
  • a general signal separation technique such as PCA or ICA
  • the signal separation unit 161 By analyzing signal components using general signal separation techniques such as PCA or ICA, the signal separation unit 161 separates components that appear to be pulse wave components and components that appear to be noise components from a plurality of pulse wave source signal segments. To separate. Note that the signal separation unit 161 generates separated signals indicating a plurality of principal components based on a plurality of pulse wave source signal segments corresponding to all measurement regions ri(k).
  • FIG. 5 shows the flow in Embodiment 1 until the signal separation unit 161 analyzes a principal component based on a plurality of pulse wave source signal segments and generates a separated signal indicating the analyzed principal component.
  • the measurement area ri(k) there are four measurement areas ri(k) as shown in FIG. 4: the first measurement area, the second measurement area, the third measurement area, and the fourth measurement area. Assume that it is set.
  • a plurality of pulse wave source signal segments are generated for each of the first measurement region, second measurement region, third measurement region, and fourth measurement region shown on the left side of the figure, and a trajectory matrix of M ⁇ 4 rows is generated.
  • the flow of processing up to stacking is the flow of processing performed by the segment generation unit 15, and has already been explained using FIG. 4, so repeated explanation will be omitted.
  • the signal separation unit 161 performs principal component analysis on the M ⁇ 4 row trajectory matrix stacked by the segment generation unit 15 using a known general signal separation technique such as PCA or ICA. As a result, the signal separation unit 161 analyzes C (positive integer) principal components and generates a separated signal indicating the analyzed C principal components. Note that in general signal separation techniques, main components are generated in order from the one with the most information possible. That is, the first principal component c1, the second principal component c2, the third principal component c3, . . . , the C-th principal component cC are arranged in order of increasing information amount.
  • FIG. 6 is a diagram for explaining an example of details of a separated signal indicating a main component, which is generated by the signal separation unit 161 in the first embodiment.
  • Each separated signal includes a locus matrix of a plurality of pulse wave source signal segments from which the amount of information contained in the principal components indicated by the separated signal is analyzed. In the example shown in FIG.
  • the projection coefficient is a coefficient assigned according to the information amount of the principal component, and is assigned in the process of analyzing the principal component using a known general signal separation technique.
  • a projection coefficient is assigned to each pulse wave source signal segment in each measurement region ri(k) for each separated signal. For example, in the example shown in FIG. 6, for the first principal component c1, projection coefficients corresponding to M pulse wave source signal segments in the first measurement region and M pulse wave source signal segments in the second measurement region are used.
  • the projection coefficient (q1, 1-1) given to the separated signal indicating the first principal component c1 is the projection coefficient (q1, 1-1) given to the separated signal indicating the first principal component c1. This indicates that the projection coefficient corresponds to the pulse wave source signal segment.
  • the projection coefficient (q1, 4-M) given to the separated signal indicating the first principal component c1 is M on the time axis in the fourth measurement region of the first principal component c1.
  • the projection coefficient corresponds to the th pulse wave source signal segment.
  • the projection coefficient (qC, 1-1) given to the separated signal indicating the C-th principal component cC is 1 on the time axis in the first measurement region of the C-th principal component cC. This indicates that the projection coefficient corresponds to the th pulse wave source signal segment.
  • the signal separation unit 161 outputs to the restoration unit 162 the plurality of generated separated signals, specifically, separated signal information Sep(t) regarding the plurality of separated signals indicating the generated plurality of principal components.
  • the separated signal information Sep(t) includes C separated signals generated from a plurality (M ⁇ N) of pulse wave source signal segments generated based on the pulse wave source signal information W(t).
  • the restoration unit 162 restores the pulse wave source signal wi(t) for each measurement region ri(k) based on the separated signal information Sep(t) output from the signal separation unit 161.
  • each separated signal included in the separated signal information Sep(t) includes a plurality of pulse wave sources generated based on each pulse wave source signal wi(t) of each measurement region ri(k). Since the signal segment is included, the restoring unit 162 can restore the pulse wave source signal wi(t) for each measurement region ri(k) from the plurality of separated signals included in the separated signal information Sep(t). .
  • the restoration unit 162 When restoring the pulse wave source signal wi(t) for each measurement area ri(k), the restoration unit 162 generates a restored pulse wave source indicating the restored pulse wave source signal wi(t) for each measurement area ri(k). Generate signal information RW(t).
  • the restored pulse wave source signal information RW(t) includes the pulse wave source signal wi(t) (hereinafter referred to as "restored pulse wave source signal") for each restored measurement region ri(k).
  • the restoration unit 162 outputs the generated restored pulse wave source signal information RW(t) to the estimation unit 163.
  • the estimation unit 163 estimates the subject's pulse wave based on the restored pulse wave source signal information RW(t) output from the restoration unit 162.
  • Estimating section 163 outputs pulse wave estimation result P(t), which is pulse wave information indicating the estimated pulse wave, to output section 17 .
  • the pulse wave information may be, for example, time series data of the subject's pulse wave estimated by the estimation unit 163, the subject's pulse rate, or the subject's pulse interval.
  • the pulse wave information is assumed to be the subject's pulse rate (number of pulses per minute).
  • the estimation unit 163 calculates, for example, the S/N ratio of the restored pulse wave source signal of each measurement region ri(k).
  • the estimation unit 163 weights the restored pulse wave source signal of each measurement region ri(k) based on the S/N ratio obtained, and then calculates the restored pulse wave signal corresponding to each measurement region ri(k).
  • Composite pulse wave signal information D(t) is calculated by summing the original signals. That is, the estimation unit 163 calculates one composite pulse wave signal information D(t) for all measurement regions ri(k).
  • the estimation unit 163 performs Fourier transform on the composite pulse wave signal information D(t), and calculates the peak frequency in the frequency power spectrum within a predetermined frequency range as the pulse rate.
  • the predetermined frequency range is set in consideration of the range of human heart rates.
  • the output unit 17 outputs the pulse wave estimation result P(t) output from the pulse wave estimation unit 16 to, for example, a state estimation device. Note that the function of the output section 17 may be provided in the pulse wave estimating section 16.
  • FIG. 7 is a flowchart for explaining the operation of the pulse wave estimating device 1 according to the first embodiment. For example, when the vehicle is powered on, the pulse wave estimating device 1 repeats the process shown in the flowchart of FIG. 7 until the vehicle is powered off.
  • the captured image acquisition unit 11 acquires a captured image of the subject from the imaging device 3 (step ST1).
  • the captured image acquisition unit 11 outputs the acquired captured image to the skin area detection unit 12.
  • the skin area detection unit 12 detects the subject's skin area from the frame Im(k) included in the captured image acquired by the captured image acquisition unit 11 in step ST1 (step ST2).
  • the skin area detection unit 12 outputs the generated skin area information S(k) to the measurement area setting unit 13.
  • the measurement area setting unit 13 uses the frame Im(k) of the captured image acquired by the captured image acquisition unit 11 in step ST1 and the skin area information S(k) outputted by the skin area detection unit 12 in step ST2. Based on the image area corresponding to the skin area indicated by the skin area information S(k) on the frame Im(k), a pulse wave source signal wi(t) indicating a time-series luminance change in the first period is extracted. A plurality of measurement regions ri(k) are set for the measurement (step ST3). The measurement area setting unit 13 outputs the generated measurement area information R(k) to the pulse wave source signal extraction unit 14.
  • the pulse wave source signal extraction unit 14 extracts the frame Im(k) of the captured image acquired by the captured image acquisition unit 11 in step ST1 and the measurement area information R(k) output from the measurement area setting unit 13 in step ST3. ), a pulse wave source signal wi(t ) is extracted (step ST4).
  • the pulse wave source signal extraction unit 14 generates pulse wave source signal information W(t) indicating the pulse wave source signal wi(t) in each measurement region ri(k).
  • the pulse wave source signal extraction section 14 outputs the generated pulse wave source signal information W(t) to the segment generation section 15.
  • the segment generation section 15 Based on the pulse wave source signal information W(t) outputted from the pulse wave source signal extractor 14 in step ST4, the segment generation section 15 generates the first segment generation condition for each measurement region ri(k).
  • a plurality of pulse wave source signal segments which are signals obtained by partially extracting the pulse wave source signal wi(t) for the second period from the pulse wave source signal wi(t) in the period, are generated (step ST5).
  • the segment generation section 15 After generating a plurality of pulse wave source signal segments for each measurement region ri(k), the segment generation section 15 generates a trajectory matrix from the generated pulse wave source signal segments and stacks this in the storage section. When the segment generation unit 15 stacks the trajectory matrices, it notifies the pulse wave estimation unit 16 of this fact.
  • the pulse wave estimating unit 16 calculates the following based on the plurality of pulse wave source signal segments generated for each measurement region ri(k). Pulse wave estimation processing for estimating the subject's pulse wave is performed (step ST6). Pulse wave estimation section 16 outputs pulse wave estimation result P(t), which is pulse wave information indicating the estimated pulse wave, to output section 17 . The output unit 17 outputs the pulse wave estimation result P(t) output from the pulse wave estimation unit 16 to, for example, a state estimation device.
  • FIG. 8 is a flowchart for explaining details of the pulse wave estimation process by the pulse wave estimation unit 16 in step ST6 of FIG. 7.
  • the signal separation unit 161 generates separated signals indicating a plurality of principal components based on the plurality of pulse wave source signal segments (step ST11).
  • the signal separation section 161 outputs the plurality of generated separated signals, specifically, separated signal information Sep(t) regarding the generated separated signals indicating the plurality of generated principal components, to the restoration section 162.
  • the restoring unit 162 restores the pulse wave source signal wi(t) for each measurement region ri(k) based on the separated signal information Sep(t) output from the signal separating unit 161 in step ST11 (step ST12 ).
  • the restoring unit 162 outputs the restored pulse wave source signal information RW(t) to the estimating unit 163.
  • the estimation unit 163 estimates the subject's pulse wave based on the restored pulse wave original signal information RW(t) output from the restoration unit 162 in step ST12 (step ST13).
  • Estimating section 163 outputs pulse wave estimation result P(t), which is pulse wave information indicating the estimated pulse wave, to output section 17 .
  • the output unit 17 outputs the pulse wave estimation result P(t) output from the pulse wave estimation unit 16 to, for example, a state estimation device.
  • the pulse wave estimation device 1 sets a plurality of measurement regions ri(k) in regions corresponding to skin regions on the captured image detected from the captured image of the subject, For each measurement region ri(k), a pulse wave source signal wi(t) is extracted based on the luminance change in a first period, which is a period during which pulse wave estimation is performed once, in the measurement region ri(k). The pulse wave estimating device 1 calculates the pulse wave source in the first period for each measurement area ri(k) based on the pulse wave source signal wi(t) extracted from the measurement area ri(k) and according to the segment generation conditions.
  • a plurality of pulse wave source signal segments are generated by partially extracting the pulse wave source signal wi(t) for the second period from the signal wi(t), and the test subject's pulse wave source signal segment is determined based on the plurality of pulse wave source signal segments. Estimate the pulse wave.
  • the pulse wave estimating device 1 extracts a pulse wave source signal wi(t) for a second period shorter than the first period based on the pulse wave source signal wi(t) for the first period. By generating a plurality of signal segments, the pulse wave source signal wi(t) can be brought into a state in which there are pairs whose phases are aligned.
  • the pulse wave estimating device 1 estimates the subject's pulse wave based on the pulse wave source signal wi(t) in a state where there is a pair with the same phase, in other words, a plurality of pulse wave source signal segments. Separation of pulse wave components using a known general signal separation technique such as ICA or PCA for a plurality of pulse wave source signals wi(t) can be prevented from failing, and as a result, the pulse wave of the subject can be estimated. In this way, the pulse wave estimating device 1 can estimate the subject's pulse wave based on the luminance signals even if there is a phase difference in the luminance signals extracted from the plurality of measurement regions ri(k). .
  • FIG. 9A and 9B are diagrams showing an example of the hardware configuration of the pulse wave estimating device 1 according to the first embodiment.
  • the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output The functions of the unit 17 are realized by the processing circuit 101. That is, the pulse wave estimating device 1 generates a pulse wave source signal wi(t) indicating the brightness change of a plurality of measurement regions ri(k) set for the subject's skin region in the captured image acquired in the first period.
  • a plurality of pulse wave source signal segments are generated by partially extracting the pulse wave signal, and pulse wave components are separated from the pulse wave source signal segments using techniques such as independent component analysis or principal component analysis.
  • a processing circuit 101 is provided to perform control for estimating the pulse wave of the user.
  • the processing circuit 101 may be dedicated hardware as shown in FIG. 9A, or may be a processor 104 that executes a program stored in memory as shown in FIG.
  • the processing circuit 101 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Circuit). Gate Array), or a combination of these.
  • the processing circuit is the processor 104
  • the functions of the output unit 17 are realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is written as a program and stored in memory 105.
  • the processor 104 reads out and executes the program stored in the memory 105, thereby controlling the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, and the segment
  • the functions of the generation unit 15, pulse wave estimation unit 16, and output unit 17 are executed.
  • the pulse wave estimating device 1 includes a memory 105 for storing a program that, when executed by the processor 104, results in the execution of steps ST1 to ST6 in FIG.
  • the programs stored in the memory 105 include the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, and the pulse wave estimation unit 12.
  • the computer is caused to execute the processing procedure or method of the unit 16 and the output unit 17.
  • the memory 105 includes, for example, RAM, ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (Electrically EEPROM).
  • Nonvolatile or volatile such as rasable Programmable Read-Only Memory
  • the functions of the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output unit 17 A portion of the information may be realized using dedicated hardware, and a portion may be realized using software or firmware.
  • the functions of the captured image acquisition section 11 and the output section 17 are realized by a processing circuit 101 as dedicated hardware, and the functions of the captured image acquisition section 11 and the output section 17 are realized by a processing circuit 101 as dedicated hardware, and a skin region detection section 12, a measurement region setting section 13, and a pulse wave source signal extraction section 14.
  • the functions of the segment generating section 15 and the pulse wave estimating section 16 can be realized by the processor 104 reading and executing programs stored in the memory 105.
  • a storage unit (not shown) is configured by, for example, the memory 105.
  • the pulse wave estimating device 1 also includes a device such as an imaging device 3, and an input interface device 102 and an output interface device 103 that perform wired or wireless communication.
  • the subject was a vehicle driver, but this is only an example.
  • the subject may be a passenger other than the driver of the vehicle.
  • the pulse wave estimation device 1 is an in-vehicle device, and includes a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, The segment generation section 15, the pulse wave estimation section 16, and the output section 17 were included in the on-vehicle device.
  • the invention is not limited to this, but the captured image acquisition section 11, the skin region detection section 12, the measurement region setting section 13, the pulse wave source signal extraction section 14, the segment generation section 15, the pulse wave estimation section 16, and the output section Of the 17, a part may be installed in an on-vehicle device of a vehicle, and the other part may be provided in a server connected to the on-vehicle device via a network, thereby configuring a system with the on-vehicle device and the server.
  • the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output unit 17 are all It may be provided in the server.
  • the pulse wave estimating device 1 is not limited to an in-vehicle device mounted on a vehicle, but can also be applied to, for example, home appliances.
  • the test subject is not limited to the occupant of the vehicle, but can be a variety of other people.
  • the pulse wave estimating device 1 may be installed in a television set in the living room of a residence. In this case, the subject is a user, such as a resident of the residence.
  • the pulse wave estimating device 1 estimates a user's pulse wave based on a captured image captured by an imaging device installed in a television.
  • the pulse wave estimation device 1 includes the captured image acquisition unit 11 that acquires a captured image of a person (subject), and the captured image acquisition unit 11 that detects the skin area of the person (subject) from the captured image.
  • the skin area detection unit 12 and a plurality of measurement areas ri(k) for extracting a pulse wave source signal wi(t) indicating a time-series luminance change in the first period are provided in areas corresponding to skin areas on the captured image. ), and a pulse wave generator that extracts a pulse wave source signal wi(t) based on the luminance change in the first period in the measurement region ri(k) for each measurement region ri(k).
  • the original signal extraction unit 14 generates a pulse wave source in the first period based on the pulse wave source signal wi(t) extracted from the measurement area ri(k) for each measurement area ri(k) according to the segment generation conditions.
  • a segment generation unit 15 that generates a plurality of pulse wave source signal segments by partially extracting the pulse wave source signal wi(t) for the second period from the signal wi(t);
  • the pulse wave estimation unit 16 estimates the pulse wave of a person (subject) based on the plurality of generated pulse wave source signal segments. Therefore, the pulse wave estimating device 1 can estimate a person's pulse wave based on the luminance signals even if there is a phase difference in the luminance signals extracted from the plurality of measurement regions ri(k).
  • Embodiment 2 In the first embodiment, the length of the second period used to generate the pulse wave source signal segment is uniform. In Embodiment 2, an embodiment will be described in which the length of the second period used to generate the pulse wave source signal segment is adjusted. In addition, in the following Embodiment 2, similarly to Embodiment 1, it is assumed that the pulse wave estimating device is installed in a vehicle, and the subject is the driver of the vehicle.
  • FIG. 10 is a diagram showing a configuration example of a pulse wave estimating device 1a according to the second embodiment.
  • the pulse wave estimating device 1a according to the second embodiment differs from the pulse wave estimating device 1 according to the first embodiment in that it includes a parameter setting section 18.
  • the parameter setting section 18 sets a segment parameter that includes at least information indicating the length of the second period, based on the subject's pulse wave estimated by the pulse wave estimating section 16. Specifically, the parameter setting unit 18 sets the length of the second period based on the pulse wave of the subject estimated by the pulse wave estimating unit 16 so that the second period corresponds to one period of the subject's pulse wave. A segment parameter including information indicating the calculated length of the second period is set. Note that the second period does not have to be the same as the time for one cycle of the subject's pulse wave, and the parameter setting unit 18 sets the second period to be longer than the time for one cycle of the subject's pulse wave. Therefore, it is sufficient to calculate the second period.
  • the parameter setting unit 18 sets, for example, information regarding the size of partial overlap of the second period as a segment parameter. From the viewpoint of processing load, the parameter setting unit 18 can variably set the amount of overlap between pulse wave source signal segments depending on the length of the pulse wave source signal segments.
  • the parameter setting section 18 outputs the set segment parameters to the segment generation section 15.
  • the estimation unit 163 outputs the pulse wave estimation result P(t), which is pulse wave information indicating the estimated pulse wave, to the output unit 17 and the parameter setting unit 18. Furthermore, in the second embodiment, the segment generation unit 15 generates the pulse wave source signal segment using the second period set by the parameter setting unit 18 based on the segment parameters. Specifically, based on the segment parameters, the segment generation unit 15 sets the length of the second period set by the parameter setting unit 18 to the length of the second period used to generate the pulse wave source signal segment. Above, for each measurement region ri(k), the pulse wave source signal wi(t) for the second period is partially extracted from the pulse wave source signal wi(t) for the first period according to the segment generation conditions. Generate multiple extracted pulse wave source signal segments.
  • the segment generation unit 15 when the segment generation unit 15 generates the pulse wave source signal segment, such as immediately after the pulse wave estimation device 1a starts estimating the subject's pulse wave, there may be cases where the segment parameters are not obtained from the parameter setting unit 18. .
  • the segment generation unit 15 may generate the pulse wave source signal segment using, for example, the initial value of the second period that is set in advance by the administrator or the like and held by the segment generation unit 15. Thereafter, if the parameter setting unit 18 has not obtained information for segment parameter setting, in other words, pulse wave estimation results, the parameter setting unit 18 uses the most recently set segment parameters among the previously set segment parameters. Continuously set the segment parameters or reset the second period to the initial value.
  • FIG. 11 is a flowchart for explaining the operation of the pulse wave estimating device 1a according to the second embodiment.
  • the pulse wave estimating device 1a repeats the process shown in the flowchart of FIG. 11 until the vehicle is powered off.
  • the specific operations of steps ST21 to ST24 and steps ST28 to ST29 are respectively the same as the specific operations of steps ST1 to ST6 in FIG. 7, which have already been explained in the first embodiment. Since they are similar, redundant explanation will be omitted.
  • the segment generation section 15 determines whether the segment parameters have been set by the parameter setting section 18, or in other words, whether the segment parameters have been set by the parameter setting section 18, or in other words, the parameter setting It is determined whether segment parameters have been output from the unit 18 (step ST25).
  • the segment generation unit 15 determines that the segment parameters have been set (“YES” in step ST25)
  • the segment generation unit 15 sets the second period set by the parameter setting unit 18 based on the segment parameters.
  • the length is set to the length of the second period used to generate the pulse wave source signal segment (step ST26).
  • the segment generation unit 15 determines that the segment parameters have not been set (“NO” in step ST25), the segment generation unit 15 sets the initial value in the second period (step ST27).
  • the parameter setting section 18 sets information indicating the length of the second period based on the subject's pulse wave estimated by the pulse wave estimating section 16.
  • the segment parameters to be included are set (step ST30).
  • the pulse wave estimating device 1a calculates the second period based on the subject's pulse wave estimated by the pulse wave estimation unit 16, and sets a segment parameter including information indicating the length of the second period. , and setting a second period according to the set segment parameters. Then, the pulse wave estimating device 1a extracts the pulse wave source signal wi(t) for the second period from among the pulse wave source signals wi(t) in the first period using the second period set according to the segment parameters. A plurality of partially extracted pulse wave source signal segments are generated. When estimating pulse waves, it is necessary to capture the subject's pulse wave components that repeatedly appear. However, the period of the subject's pulse wave varies depending on the subject's condition or the subject.
  • the pulse wave estimating device 1a will take one cycle of the subject's pulse wave to estimate. change. For example, if the subject's pulse rate is 60 bpm (beats per minute), the time for one cycle of the subject's pulse wave is 1 second, and if the subject's pulse rate is 100 bpm, the time for one cycle of the subject's pulse wave is 1 second. The time is 0.6 seconds. As described above, the pulse wave estimating device 1a according to the second embodiment determines the length of the second period used to generate the pulse wave source signal segment for estimating the pulse wave of the subject based on the already estimated pulse wave of the subject.
  • the length can be adjusted in consideration of the wave period.
  • the pulse wave estimating device 1a can estimate the pulse wave of the subject from the pulse wave source signal segment generated using the second period set without considering the cycle of the subject's pulse wave.
  • the pulse wave of the subject can be estimated with high accuracy.
  • the pulse wave estimation device 1a once the pulse wave estimation device 1a starts estimating the pulse wave of the subject, it continues to estimate the pulse wave of the subject for a certain period of time, such as repeating the first period several times, and then sets the parameters.
  • the unit 18 assumes that the second period is calculated based on the subject's pulse wave estimated by the estimation unit 163 in the previous first period, this is only an example.
  • the pulse wave estimating device 1a starts estimating the subject's pulse wave
  • the past pulse wave estimation result P(t) of the subject estimated by the pulse wave estimating device 1a is accumulated in the storage unit.
  • the parameter setting unit 18 may be configured to be able to calculate the second period based on the pulse wave estimation result P(t) stored in the storage unit.
  • the subject may be able to register information regarding the subject's average pulse wave in the storage unit, and the parameter setting unit 18 may be configured based on the information regarding the subject's average pulse wave registered in the storage unit. It may also be possible to calculate the second period. For example, the parameter setting unit 18 calculates the second period based on the pulse wave estimation result P(t) obtained by referring to the storage unit or the subject's average pulse wave and the subject's pulse wave estimated by the estimation unit 163. may be calculated.
  • the hardware configuration of the pulse wave estimating device 1a according to the second embodiment is the same as the hardware configuration of the pulse wave estimating device 1 described using FIGS. 9A and 9B in the first embodiment, so illustration thereof is omitted. do.
  • the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output The functions of the section 17 and the parameter setting section 18 are realized by the processing circuit 101. That is, the pulse wave estimating device 1a generates a pulse wave source signal wi(t) indicating the luminance change of a plurality of measurement regions ri(k) set for the subject's skin region in the captured image acquired in the first period.
  • a plurality of pulse wave source signal segments are generated by partially extracting the pulse wave signal, and pulse wave components are separated from the pulse wave source signal segments using techniques such as independent component analysis or principal component analysis.
  • a processing circuit 101 is provided to perform control for estimating the pulse wave of the user.
  • the processing circuit 101 reads out and executes a program stored in the memory 105, thereby controlling the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, The functions of the segment generation section 15, pulse wave estimation section 16, output section 17, and parameter setting section 18 are executed. That is, the pulse wave estimating device 1a includes a memory 105 for storing a program that, when executed by the processing circuit 101, results in the execution of steps ST21 to ST30 in FIG. 11 described above. Further, the programs stored in the memory 105 include the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, and the pulse wave estimation unit 12.
  • the computer is caused to execute the processing procedure or method of the section 16, the output section 17, and the parameter setting section 18.
  • a storage unit (not shown) is configured by, for example, the memory 105.
  • the pulse wave estimating device 1a also includes a device such as the imaging device 3, and an input interface device 102 and an output interface device 103 that perform wired or wireless communication.
  • test subject is a vehicle driver, but this is only an example.
  • the subject may be a passenger other than the driver of the vehicle.
  • the pulse wave estimation device 1a is an in-vehicle device, and includes a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, The segment generation section 15, the pulse wave estimation section 16, the output section 17, and the parameter setting section 18 were included in the on-vehicle device.
  • the invention is not limited to this, but the captured image acquisition section 11, the skin region detection section 12, the measurement region setting section 13, the pulse wave source signal extraction section 14, the segment generation section 15, the pulse wave estimation section 16, and the output section 17 and the parameter setting unit 18, part of which is installed in the on-vehicle device of the vehicle, and the other part is provided in a server connected to the in-vehicle device via a network, so that the in-vehicle device and the server constitute a system. It's okay. Further, a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, a segment generation section 15, a pulse wave estimation section 16, an output section 17, The entire parameter setting unit 18 may be provided in the server.
  • the pulse wave estimating device 1a according to the second embodiment described above is not limited to an in-vehicle device mounted on a vehicle, but can also be applied to, for example, home appliances.
  • the test subject is not limited to the occupant of the vehicle, but can be a variety of other people.
  • the pulse wave estimating device 1a has the configuration of the pulse wave estimating device 1 according to the first embodiment, and also includes the pulse wave estimating device 1a that has the pulse wave estimating device 1a according to the first embodiment.
  • the segment generation unit 15 includes a parameter setting unit 18 that calculates a second period based on the wave and sets a segment parameter including information indicating the length of the second period, and a segment generation unit 15 that sets the second period according to the segment parameter. It was configured as follows. Therefore, the pulse wave estimating device 1a is more accurate than when estimating a person's pulse wave from the pulse wave source signal segment generated using the second period set without considering the period of the person's pulse wave. A person's pulse wave can be estimated.
  • the parameter setting unit 18 sets the second period so that the second period corresponds to one cycle of the pulse wave of the person (subject) estimated by the pulse wave estimating unit 16. is calculated, and a segment parameter including information indicating the length of the second period is set. Then, the segment generation unit 15 sets the second period according to the segment parameters. Therefore, the pulse wave estimating device 1a is more accurate than when estimating a person's pulse wave from the pulse wave source signal segment generated using the second period set without considering the period of the person's pulse wave. A person's pulse wave can be estimated.
  • the pulse wave estimating device uses the plurality of generated pulse wave source signal segments as they are for estimating the pulse wave of the subject.
  • Embodiment 3 an embodiment will be described in which a plurality of pulse wave source signal segments are weighted and a pulse wave of a subject is estimated.
  • the pulse wave estimating device is installed in a vehicle, and the subject is a driver of the vehicle.
  • FIG. 12 is a diagram showing a configuration example of a pulse wave estimating device 1b according to the third embodiment.
  • the pulse wave estimating device 1b according to the third embodiment differs from the pulse wave estimating device 1 according to the first embodiment in that it includes a weighting coefficient calculating section 19.
  • the weighting coefficient calculation unit 19 calculates a weighting coefficient (hereinafter referred to as “segment weight”) for each of the plurality of pulse wave source signal segments generated by the segment generation unit 15 for each measurement region ri(k).
  • segment weight a weighting coefficient
  • the weighting coefficient calculation unit 19 calculates the weighting factor for each of the plurality of pulse wave source signal segments based on the magnitude of signal fluctuation in the pulse wave source signal wi(t) from which the pulse wave source signal segment is extracted. Calculate segment weights.
  • the segment generation unit 15 generates information on a plurality of generated pulse wave source signal segments of each measurement region ri(k) and the pulse wave source signal generated by the pulse wave source signal extraction unit 14.
  • the information W(t) is output to the weighting coefficient calculating section 19.
  • the weighting coefficient calculation unit 19 calculates a preset threshold value (hereinafter referred to as "variation determination threshold value”) for the time-series pulse wave source signal wi(t) of the first period from which the pulse wave source signal segment is extracted. ) or not.
  • the weighting coefficient calculation unit 19 calculates the relevant pulse wave source signal wi(t) from the time series pulse wave source signal wi(t) of the first period.
  • a segment weight of "0" is calculated for the pulse wave source signal segment whose extraction source is the pulse wave source signal wi(t) of the portion where the fluctuation occurred.
  • a signal in a portion of the pulse wave source signal wi(t) that fluctuates by more than the fluctuation determination threshold is a signal that contains a lot of noise.
  • the weighting coefficient calculation unit 19 sets a segment weight of "1" to the pulse wave source signal segment whose extraction source is the pulse wave source signal wi(t) in a portion other than the portion where the fluctuation occurs.
  • the weighting coefficient calculation unit 19 determines that there is no fluctuation greater than the fluctuation determination threshold in the time-series pulse wave source signal wi(t) of the first period from which the pulse wave source signal segment is extracted. , a segment weight of "1" is calculated for all the pulse wave source signal segments whose extraction source is the time-series pulse wave source signal wi(t) of the first period in which there is no variation.
  • the weighting coefficient calculation unit 19 receives information regarding segment weights (hereinafter referred to as “segment weight information”) calculated for each of the plurality of pulse wave source signal segments generated by the segment generation unit 15 for each measurement region ri(k). , is output to the pulse wave estimation section 16.
  • the segment weight information is information in which information that allows the measurement region ri(k) to be specified, information that allows the identification of the pulse wave source signal segment, and the segment weight of the pulse wave source signal segment are associated with each other.
  • the segment weight calculated by the weighting coefficient calculation unit 19 is used by the pulse wave estimation unit 16 to determine whether or not to use the pulse wave source signal segment generated by the segment generation unit 15 when estimating the subject's pulse wave. This will serve as an indicator.
  • the pulse wave estimating unit 16 does not use the pulse wave source signal segment to which segment weight "0" is assigned for estimating the pulse wave of the subject.
  • the signal separation unit 161 of the pulse wave estimation unit 16 discards the pulse wave source signal segment to which segment weight “0” has been assigned, and performs PCA based on the remaining plurality of pulse wave source signal segments.
  • a common signal separation technique such as ICA is used to analyze the plurality of principal components and generate a separated signal indicative of the analyzed plurality of principal components. In this way, in the third embodiment, the pulse wave estimation unit 16 estimates the subject's pulse wave based on the pulse wave source signal segment and the segment weight.
  • FIG. 13 is a diagram for explaining pulse wave source signal segments used by the pulse wave estimating device 1b to estimate the pulse wave of the subject in the third embodiment.
  • FIG. 13 shows the luminance values indicated by the time-series pulse wave source signal wi(t) of the first period extracted from a certain measurement region ri(k) among the plurality of measurement regions ri(k) on the time axis. The figure is shown in .
  • the pulse wave source signals wi(t) in the portion surrounded by the dotted line have large signal fluctuations.
  • the weighting factor calculation unit 19 extracts the pulse wave source signal wi(t) of the portion surrounded by the dotted line from among the plurality of pulse wave source signal segments generated by the segment generation unit 15 for a certain measurement region ri(k).
  • the segment weight for the original pulse wave source signal segment is calculated as "0".
  • the weighting coefficient calculation unit 19 calculates the pulse wave source signal wi(t) other than the portion surrounded by the dotted line among the plurality of pulse wave source signal segments generated by the segment generation unit 15 for a certain measurement region ri(k).
  • the segment weight for the pulse wave source signal segment to be extracted is calculated as "1".
  • the pulse wave estimation unit 16 uses the pulse wave source signal segment whose extraction source is the pulse wave source signal wi(t) of the part surrounded by the dotted line and whose segment weight is "0" to estimate the subject's pulse wave. Not used.
  • FIG. 14 is a flowchart for explaining the operation of the pulse wave estimating device 1b according to the third embodiment.
  • the pulse wave estimating device 1b repeats the process shown in the flowchart of FIG. 14 until the vehicle is powered off.
  • the specific operations of steps ST31 to ST35 are the same as the specific operations of steps ST1 to ST5 in FIG. 7, which have already been explained in Embodiment 1. omitted.
  • the weighting coefficient calculating unit 19 calculates segment weights for each of the plurality of pulse wave source signal segments generated by the segment generating unit 15 in step ST35 (step ST36). In detail, the weighting coefficient calculation unit 19 calculates the weighting factor for each of the plurality of pulse wave source signal segments based on the magnitude of signal fluctuation in the pulse wave source signal wi(t) from which the pulse wave source signal segment is extracted. Calculate segment weights.
  • the weighting coefficient calculating section 19 outputs the segment weighting information to the pulse wave estimating section 16.
  • the pulse wave estimating unit 16 calculates the following based on the plurality of pulse wave source signal segments generated for each measurement region ri(k). Perform pulse wave estimation processing to estimate the subject's pulse wave. At this time, the pulse wave estimation unit 16 determines, based on the segment weight information output from the weighting coefficient calculation unit 19, that the pulse wave source signal segments to which segment weight “0” is assigned are used for estimating the subject's pulse wave. (step ST37). Note that the pulse wave estimating unit 16 may receive a notification that the trajectory matrices have been stacked, for example, via the weighting coefficient calculating unit 19.
  • the signal separation unit 161 when generating the separated signal (see step ST11 in FIG. 8), discards pulse wave source signal segments with a segment weight of "0" and removes the remaining pulse wave source signal segments. Based on the segments, multiple principal components are analyzed using common signal separation techniques, such as PCA or ICA, to generate separated signals indicative of the analyzed multiple principal components.
  • common signal separation techniques such as PCA or ICA
  • the pulse wave estimating device 1b calculates segment weights for each of a plurality of pulse wave source signal segments, and estimates the subject's pulse wave based on the pulse wave source signal segments and the segment weights. Specifically, the pulse wave estimating device 1b determines whether or not each of the plurality of pulse wave source signal segments is determined based on the magnitude of signal fluctuation in the pulse wave source signal wi(t) from which the pulse wave source signal segment is extracted. Calculate segment weights. As a result, when the pulse wave source signal wi(t) extracted from the plurality of measurement regions ri(k) is a signal containing many noise components, the pulse wave estimating device 1b can remove the subject's pulse wave can be estimated.
  • the pulse wave estimating device 1b can improve the accuracy of the test for the subject compared to the case where it does not take into consideration whether or not the pulse wave source signal wi(t) extracted from the plurality of measurement regions ri(k) is a signal containing many noise components. It is possible to estimate the pulse wave of
  • the hardware configuration of pulse wave estimating device 1b according to Embodiment 3 is the same as the hardware configuration of pulse wave estimating device 1 described using FIGS. 9A and 9B in Embodiment 1, so illustration is omitted. do.
  • the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output The functions of the section 17 and the weighting coefficient calculation section 19 are realized by the processing circuit 101. That is, the pulse wave estimating device 1b generates a pulse wave source signal wi(t) indicating the luminance change of a plurality of measurement regions ri(k) set for the subject's skin region in the captured image acquired in the first period.
  • a plurality of pulse wave source signal segments are generated by partially extracting the pulse wave signal, and pulse wave components are separated from the pulse wave source signal segments using techniques such as independent component analysis or principal component analysis.
  • a processing circuit 101 is provided to perform control for estimating the pulse wave of the user.
  • the processing circuit 101 reads out and executes a program stored in the memory 105, thereby controlling the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, The functions of the segment generation section 15, pulse wave estimation section 16, output section 17, and weighting coefficient calculation section 19 are executed. That is, the pulse wave estimating device 1b includes a memory 105 for storing a program that, when executed by the processing circuit 101, results in the execution of steps ST31 to ST37 in FIG. 14 described above. Further, the programs stored in the memory 105 include the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, and the pulse wave estimation unit 12.
  • the computer is caused to execute the processing procedure or method of the unit 16, the output unit 17, and the weighting coefficient calculation unit 19.
  • a storage unit (not shown) is configured by, for example, the memory 105.
  • the pulse wave estimating device 1b also includes a device such as the imaging device 3, and an input interface device 102 and an output interface device 103 that perform wired or wireless communication.
  • the subject was a vehicle driver, but this is only an example.
  • the subject may be a passenger other than the driver of the vehicle.
  • the pulse wave estimation device 1b is an in-vehicle device, and includes a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, The segment generation section 15, the pulse wave estimation section 16, the output section 17, and the weighting coefficient calculation section 19 were included in the vehicle-mounted device.
  • the invention is not limited to this, but the captured image acquisition section 11, the skin region detection section 12, the measurement region setting section 13, the pulse wave source signal extraction section 14, the segment generation section 15, the pulse wave estimation section 16, and the output section 17 and the weighting coefficient calculation unit 19, a part of which is installed in an on-vehicle device of a vehicle, and the other part is provided in a server connected to the in-vehicle device via a network, and the in-vehicle device and the server constitute a system. You may. Further, a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, a segment generation section 15, a pulse wave estimation section 16, an output section 17, All of the weighting coefficient calculation units 19 may be included in the server.
  • the pulse wave estimating device 1b according to the third embodiment described above is not limited to an in-vehicle device mounted on a vehicle, but can also be applied to, for example, home appliances.
  • the test subject is not limited to the occupant of the vehicle, but can be a variety of other people.
  • the pulse wave estimating device 1b has a weighting coefficient (segment weight) for each of a plurality of pulse wave source signal segments in addition to the configuration of the pulse wave estimating device 1 according to the first embodiment ), and the pulse wave estimation section 16 was configured to estimate the pulse wave of a person (subject) based on the pulse wave source signal segment and the weighting coefficient (segment weight). Therefore, the pulse wave estimating device 1b can be used more accurately than when it does not take into consideration whether or not the pulse wave source signal wi(t) extracted from the plurality of measurement regions ri(k) is a signal containing many noise components. It is possible to estimate the pulse wave of
  • the weighting coefficient calculation unit 19 calculates a plurality of A weighting coefficient (segment weight) for each pulse wave source signal segment is calculated. Therefore, the pulse wave estimating device 1b can be used more accurately than when it does not take into consideration whether or not the pulse wave source signal wi(t) extracted from the plurality of measurement regions ri(k) is a signal containing many noise components. It is possible to estimate the pulse wave of
  • the pulse wave estimating devices 1, 1a, and 1b apply weighting coefficients ( (hereinafter referred to as "component weight”), and restores the pulse wave source signal wi(t) for each measurement region ri(k) based on a plurality of separated signals and the set component weight for each separated signal. May have.
  • component weight weighting coefficients
  • FIG. 15 shows how the pulse wave estimating devices 1, 1a, and 1b, in Embodiments 1 to 3, calculate components for a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique.
  • a pulse wave estimating section 16a as shown in FIG. 15 is provided instead of the pulse wave estimating section 16.
  • the restoration section 162 of the pulse wave estimation section 16a includes a component weight setting section 1621 that sets component weights for each separated signal output from the signal separation section 161.
  • the restoration unit 162 generates the pulse wave source signal wi for each measurement region ri(k) based on the plurality of separated signals output from the signal separation unit 161 and the component weight for each separated signal set by the component weight setting unit 1621. (t) is restored.
  • the estimating unit 163 estimates the subject's pulse wave based on the generated pulse wave original signal wi(t) that is restored by the restoring unit 162 based on the plurality of separated signals and the component weights for each separated signal.
  • the component weight setting unit 1621 sets a component weight for each separated signal, for example, based on the similarity of frequency characteristics between a plurality of separated signals. Specifically, the component weight setting unit 1621 first performs fast Fourier transform or the like on each separated signal, and calculates the peak frequency in the frequency power spectrum of each separated signal. Next, the component weight setting unit 1621 creates a pair of adjacent separated signals for the plurality of separated signals indicating the plurality of principal components, and calculates the difference in peak frequencies of the adjacent separated signals (hereinafter referred to as "peak difference"). calculate.
  • peak difference the difference in peak frequencies of the adjacent separated signals
  • the component weight setting unit 1621 determines whether the calculated peak difference is larger than a preset threshold (hereinafter referred to as "peak difference determination threshold"). When the peak difference is larger than the threshold for peak difference determination, the component weight setting unit 1621 sets the component weight of the separated signal for which the peak difference is calculated to "0", and sets the component weight of the separated signal for which the peak difference is calculated to be "0", If it is below the threshold, the component weight is set to "1".
  • peak difference determination threshold a preset threshold
  • the component weight setting unit 1621 assigns a large component weight to the separated signal that appears to be a pulse wave component, thereby allowing the estimation unit 163 to estimate the subject's pulse wave based on the separated signal that appears to be a pulse wave component.
  • the plurality of separated signals output from the signal separation unit 161 are the first principal components c1, .
  • the separated signal indicating the first principal component c1 is the first separated signal
  • the separated signal indicating the second principal component c2 is the second separated signal
  • the separated signal indicating the third principal component c3 is the third separated signal
  • the separated signal indicating the third principal component c3 is the third separated signal.
  • a separated signal indicating the principal component c4 is a fourth separated signal
  • a separated signal indicating the fifth principal component c5 is a fifth separated signal
  • a separated signal indicating the (C-1)th principal component c (C-1) Let be the (C-1)th separated signal, and let the signal indicating the C-th principal component cC be the C-th separated signal.
  • the component weight setting unit 1621 creates a pair of the first separated signal and the second separated signal, calculates the peak difference between the peak frequency of the first separated signal and the peak frequency of the second separated signal, and calculates the peak frequency of the calculated peak frequency. It is determined whether the difference is larger than a peak difference determination threshold.
  • the component weight setting unit 1621 sets the component weights of both the first separated signal and the second separated signal to "0" when the peak difference is larger than the peak difference judgment threshold, and when the peak difference is less than or equal to the peak difference judgment threshold. In this case, the component weights of the first separated signal and the second separated signal are both set to "1". Further, the component weight setting unit 1621 creates a pair of the third separated signal and the fourth separated signal, calculates the peak difference between the peak frequency of the third separated signal and the peak frequency of the fourth separated signal, and calculates the peak difference between the peak frequency of the third separated signal and the peak frequency of the fourth separated signal. It is determined whether or not is larger than a peak difference determination threshold.
  • the component weight setting unit 1621 sets the component weights of both the third separated signal and the fourth separated signal to "0" when the peak difference is larger than the peak difference judgment threshold, and when the peak difference is less than or equal to the peak difference judgment threshold. In this case, the component weights of the third separated signal and the fourth separated signal are both set to "1".
  • the component weight setting unit 1621 sets a pair of a fifth separated signal and a sixth separated signal, a pair of a seventh separated signal and an eighth separated signal, a pair of a (C-1)th separated signal and a C-th separated signal, etc. , the above-described processing is also performed, and component weights are set for all separated signals.
  • the restoration section 162 discards the separated signals for which the component weight setting section 1621 has set the component weight "0", and the component weight setting section 1621 has set the component weight "0".
  • the pulse wave source signal wi(t) for each measurement region ri(k) is restored based only on the separated signal set to ⁇ 1''.
  • the estimating unit 163 estimates the subject's pulse wave based on the pulse wave original signal wi(t) that the restoring unit 162 restored based only on the separated signal with the component weight “1”. Since the estimation unit 163 can estimate the subject's pulse wave based on the separated signal that is likely to be a pulse wave component, it is possible to improve the estimation accuracy of the subject's pulse wave.
  • the component weight setting unit 1621 creates a pair of adjacent separated signals and calculates the peak difference between the peak frequencies of the adjacent separated signals, but this is only an example.
  • the component weight setting unit 1621 may calculate the differences between all pairs and use the weighted average value as the component weight.
  • the component weight setting unit 1621 calculates the difference in peak frequency of a certain separated signal (to be referred to as a reference separated signal) among the C separated signals and the other (C-1) separated signals. , the weighted average value of the calculated (C-1) differences is set as the difference value of the reference separated signal.
  • the component weight setting unit 1621 sets the component weight for the reference separated signal to "0" if the difference value of the reference separated signal is larger than the threshold value, and sets the component weight to the reference separated signal to "1" if it is less than or equal to the threshold value.
  • the component weight setting unit 1621 performs the above processing using all separated signals as reference separated signals.
  • the component weight setting unit 1621 may set a value corresponding to the magnitude of the weighted average value as the component weight.
  • the component weight setting unit 1621 calculates, for example, a correlation coefficient of projection coefficients between a plurality of separated signals based on a projection coefficient given to the separated signals when the plurality of separated signals are generated, and calculates the correlation coefficient of the projection coefficients between the plurality of separated signals.
  • the component weight for each separated signal may be set based on the above.
  • the component weight setting unit 1621 first assigns, for each measurement region ri(k), to a plurality of pulse wave source signal segments corresponding to the measurement region ri(k) for each separated signal.
  • Information expressing projection coefficients in time series (hereinafter referred to as "projection coefficient time series information") is generated.
  • the component weight setting unit 1621 generates projection coefficient time series information for each separated signal for the number of measurement regions ri(k) (N pieces). That is, assuming that there are C separated signals, the component weight setting unit 1621 generates C ⁇ N projection coefficient time series information.
  • the component weight setting unit 1621 determines the correlation of the generated projection coefficient time series information for each separated signal, and calculates the correlation coefficient.
  • the component weight setting unit 1621 creates all pairs of N pieces of projection coefficient time series information generated in a certain separated signal, and sets the correlation coefficient for each pair of projection coefficient time series information. Calculate each. Note that the correlation coefficient indicates the degree of phase matching of the projection coefficient time series information. The component weight setting unit 1621 sets the average value of the correlation coefficients calculated for each pair as the component weight of the separated signal.
  • the pulse wave estimating devices 1, 1a, and 1b assume that signal components that are in phase are likely pulse wave components, and that the time-series changes in projection coefficients are similar between measurement regions ri(k). In other words, if the phases of the projection coefficient time series information are aligned between measurement regions ri(k), such projection coefficients for each pulse wave source signal segment of each measurement region ri(k) are It is assumed that the applied separated signal is a separated signal that contains many pulse wave components and is likely to be a pulse wave component.
  • the component weight setting unit 1621 assigns a large weighting coefficient to the separated signal that appears to be a pulse wave component, thereby allowing the estimation unit 163 to estimate the subject's pulse wave based on the separated signal that appears to be a pulse wave component.
  • the plurality of separated signals output from the signal separation unit 161 are the first principal components c1, .
  • the separated signal indicating the first principal component c1 is the first separated signal
  • the separated signal indicating the second principal component c2 is the second separated signal
  • the separated signal indicating the third principal component c3 is the third separated signal
  • the separated signal indicating the third principal component c3 is the third separated signal.
  • a separated signal indicating the principal component c4 is a fourth separated signal
  • a separated signal indicating the fifth principal component c5 is a fifth separated signal
  • a separated signal indicating the (C-1)th principal component c (C-1) Let be the (C-1)th separated signal, and let the separated signal showing the C-th principal component cC be the C-th separated signal.
  • the component weight setting unit 1621 first projects each measurement region ri(k) (first measurement region, second measurement region, third measurement region, and fourth measurement region) for each separated signal. Generate coefficient time series information.
  • FIG. 16 is a diagram illustrating an example of projection coefficient time series information generated by the component weight setting unit 1621.
  • FIG. 16 shows, as an example, projection coefficient time series information generated by the component weight setting unit 1621 for the first separated signal.
  • the component weight setting unit 1621 generates projection coefficient time series information for each of the first measurement area, the second measurement area, the third measurement area, and the fourth measurement area for the first separated signal.
  • FIG. 16 shows projection coefficient time series information generated for the first separated signal as an example, the component weight setting unit 1621 also sets the measurement area ri for the second to C-th separated signals. (k) of projection coefficient time series information is generated.
  • the component weight setting unit 1621 first sets the projection coefficient time series information of the first measurement region (indicated by 1601 in FIG. 16), the projection coefficient time series information of the second measurement region ( 1602 in FIG. 16), projection coefficient time series information of the third measurement region (indicated by 1603 in FIG. 16), and projection coefficient time series information of the fourth measurement region (indicated by 1604 in FIG. 16). Create all pairs for .
  • the component weight setting unit 1621 includes a pair (referred to as a first pair) of projection coefficient time series information of the first measurement region and projection coefficient time series information of the second measurement region, a projection coefficient time series of the first measurement region A pair of information and projection coefficient time series information of the third measurement area (referred to as the second pair), a pair of projection coefficient time series information of the first measurement area and projection coefficient time series information of the fourth measurement area (referred to as the third pair) ), a pair of projection coefficient time series information of the second measurement area and projection coefficient time series information of the third measurement area (referred to as the fourth pair), a pair of projection coefficient time series information of the second measurement area and projection coefficient time series information of the fourth measurement area A pair of projection coefficient time series information (referred to as a fifth pair) and a pair of projection coefficient time series information of the third measurement area and projection coefficient time series information of the fourth measurement area (referred to as a sixth pair) are created.
  • a pair of projection coefficient time series information referred to as a fifth pair
  • the component weight setting unit 1621 sets the first pair of correlation coefficients, the second pair of correlation coefficients, the third pair of correlation coefficients, the fourth pair of correlation coefficients, the fifth pair of correlation coefficients, and , the correlation coefficient of the sixth pair is calculated.
  • the component weight setting unit 1621 calculates the calculated correlation coefficient of the first pair, correlation coefficient of the second pair, correlation coefficient of the third pair, correlation coefficient of the fourth pair, correlation coefficient of the fifth pair, The average value of the correlation coefficients of the fifth pair is set as the component weight of the first separated signal indicating the first principal component c1.
  • the component weight setting unit 1621 similarly sets the projection coefficient time series information of the first measurement region, the projection coefficient time series information of the second measurement region, and the projection coefficient time series information of the third measurement region for the second to C-th separation signals. All pairs of the coefficient time series information and the projection coefficient time series information of the fourth measurement area are created, and the correlation is determined for each created pair to calculate the correlation coefficient. Then, the component weight setting unit 1621 sets the calculated average value of the correlation coefficients for each pair as the component weight.
  • the restoration unit 162 weights the plurality of separated signals output from the signal separation unit 161 according to the component weights set by the component weight setting unit 1621, and generates the pulse wave source signal wi for each measurement region ri(k). (t) is restored.
  • the restoring unit 162 performs (component weight of first separated signal x [p1-1, p1-2, ..., p1-M] + component weight of second separated signal x [p1-1, p1-2 , ..., p1-M] + component weight of the third separated signal x [p1-1, p1-2, ..., p1-M] + ... + component weight of the C-th separated signal x [p1 -1, p1-2, . . . , p1-M]) is the restored pulse wave source signal (t) of the first measurement region.
  • the estimation unit 163 estimates the subject's pulse wave based on the pulse wave original signal wi(t) restored by the restoration unit 162 by weighting according to the component weights. Since the estimation unit 163 can estimate the subject's pulse wave based on the separated signal that is likely to be a pulse wave component, it is possible to improve the estimation accuracy of the subject's pulse wave.
  • the component weight setting unit 1621 creates all pairs of projection coefficient time series information for each separated signal, but this is only an example.
  • the component weight setting unit 1621 may create a pair using two pieces of projection coefficient time series information among a plurality of pieces of projection coefficient time series information.
  • the component weight setting unit 1621 sets a pair of projection coefficient time series information of the first measurement region and projection coefficient time series information of the second measurement region (referred to as the seventh pair), a third Two pairs may be created: the projection coefficient time series information of the measurement area and the projection coefficient time series information of the fourth measurement area (referred to as the eighth pair).
  • the component weight setting unit 1621 calculates the correlation coefficient of the seventh pair and the correlation coefficient of the eighth pair, and calculates the average value of the correlation coefficient of the sixth pair and the correlation coefficient of the seventh pair. Let be the component weight of the first separated signal indicating the first principal component c1.
  • the component weight setting unit 1621 uses the average value of the calculated correlation coefficients as the component weight of the separated signal, but this is only an example.
  • the component weight setting unit 1621 may set the calculated variance value of the correlation coefficient as the component weight of the separated signal.
  • the pulse wave estimation devices 1, 1a, and 1b apply component weights to a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique.
  • the pulse wave in the case where the function is configured to restore the pulse wave source signal wi(t) for each measurement region ri(k) based on a plurality of separated signals and the component weight for each separated signal set.
  • the operation of the estimator 16a will be explained using FIG. 17.
  • the pulse wave estimation devices 1, 1a, and 1b set component weights for a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique.
  • step ST11 and step ST13 in FIG. 17 are the same as the specific operations of step ST11 and step ST13 in FIG. 8, which have already been explained, so a redundant explanation will be omitted.
  • the component weight setting section 1621 of the pulse wave estimation section 16a sets the component weight for each separated signal output from the signal separation section 161 in step ST11 (step ST12-1).
  • the restoring unit 162 restores the measurement region ri based on the plurality of separated signals output from the signal separating unit 161 in step ST1 and the component weight for each separated signal set by the component weight setting unit 1621 in step ST12-1. (k) pulse wave source signal wi(t) is restored (step ST12-2).
  • step ST13 the estimating unit 163 calculates the pulse wave of the subject based on the generated pulse wave source signal wi(t) restored by the restoring unit 162 based on the plurality of separated signals and the component weight for each separated signal. will be estimated.
  • the restoring unit 162a calculates the weighting coefficient for each separated signal.
  • the restoring unit 162a includes a component weight setting unit 1621 that sets a component weight (component weight), and a restoring unit 162a performs a pulse wave element for each measurement region ri(k) based on a plurality of separated signals and a weighting coefficient (component weight) for each separated signal.
  • the pulse wave estimating devices 1, 1a, and 1b can estimate the subject's pulse wave based on the separated signal that seems to be a pulse wave component, thereby improving the accuracy of estimating the subject's pulse wave. be able to.
  • a captured image acquisition unit that acquires a captured image of a person; a skin area detection unit that detects the skin area of the person from the captured image; a measurement area setting unit that sets a plurality of measurement areas for extracting a pulse wave source signal indicating a time-series luminance change in a first period in an area corresponding to the skin area on the captured image; a pulse wave source signal extracting unit that extracts the pulse wave source signal for each measurement area based on the luminance change in the first period in the measurement area; For each measurement area, based on the pulse wave source signal extracted from the measurement area and according to the segment generation conditions, the pulse wave source signal for the second period is selected from among the pulse wave source signals in the first period.
  • a pulse wave estimation device comprising: a pulse wave estimation unit that estimates a pulse wave of the person based on a plurality of the pulse wave source signal segments generated for each of the measurement regions.
  • the conditions for generating the segment are: the second period is a shorter period than the first period; Regarding the plurality of pulse wave source signal segments in a certain measurement region, a certain pulse wave source signal segment is a signal that does not completely match with other pulse wave source signal segments on the time axis; Regarding the plurality of pulse wave source signal segments in a certain measurement region, a certain pulse wave source signal segment is a signal that partially overlaps with another pulse wave source signal segment on the time axis; In each measurement region, the length at which a certain pulse wave source signal segment partially overlaps with another pulse wave source signal segment on the time axis is the same;
  • the pulse wave estimating device according to supplementary note 1, further comprising: the plurality of pulse wave source signal segments in each measurement region have the same length on the time axis.
  • (Additional note 3) a parameter setting unit that calculates the second period based on the pulse wave of the person estimated by the pulse wave estimation unit and sets a segment parameter that includes at least information indicating the length of the second period;
  • the pulse wave estimating device according to Supplementary note 1 or 2, wherein the segment generation unit sets the second period according to the segment parameter.
  • Supplementary note 4 Supplementary note 3, wherein the parameter setting unit calculates the second period so that the second period corresponds to one period of the pulse wave of the person estimated by the pulse wave estimating unit.
  • (Appendix 5) comprising a weighting coefficient calculation unit that calculates a weighting coefficient for each of the plurality of pulse wave source signal segments, The pulse wave according to any one of appendices 1 to 4, wherein the pulse wave estimation unit estimates the pulse wave of the person based on the pulse wave source signal segment and the weighting coefficient.
  • Wave estimation device. (Appendix 6) The weighting coefficient calculation unit calculates the weighting coefficient for each of the plurality of pulse wave source signal segments based on the magnitude of signal fluctuation in the pulse wave source signal from which the pulse wave source signal segment is extracted.
  • the pulse wave estimating device characterized in that: (Appendix 7)
  • the pulse wave estimator includes: a signal separation unit that generates a separation signal indicating a plurality of signal components based on the plurality of pulse wave source signal segments; a restoring unit that restores the pulse wave source signal for each of the measurement regions based on the plurality of separated signals;
  • the restoration unit is comprising a component weight setting unit that sets a weighting coefficient for each of the separated signals, The pulse wave estimating device according to appendix 7, wherein the pulse wave source signal for each measurement area is restored based on the plurality of separated signals and the weighting coefficient for each separated signal.
  • the component weight setting section includes: The pulse wave estimating device according to appendix 8, wherein the weighting coefficient for each of the separated signals is set based on similarity of frequency characteristics between the plurality of separated signals.
  • the component weight setting section includes: A correlation coefficient of the projection coefficients between the plurality of separated signals is calculated based on a projection coefficient given to the separated signals when the plurality of separated signals are generated, and the correlation coefficient of the projection coefficients is calculated between the plurality of separated signals.
  • the pulse wave estimating device according to appendix 8, wherein the weighting coefficient is set for each pulse wave estimation device.
  • (Appendix 11) a step in which the captured image acquisition unit acquires a captured image of a person; a skin area detection unit detecting the skin area of the person from the captured image; a step in which the measurement area setting unit sets a plurality of measurement areas for extracting a pulse wave source signal indicating a time-series luminance change in a first period in an area corresponding to the skin area on the captured image; a step in which the pulse wave source signal extracting unit extracts the pulse wave source signal for each measurement area based on the brightness change in the first period in the measurement area; A segment generation unit generates a pulse wave source signal for a second period from among the pulse wave source signals in the first period based on the pulse wave source signal extracted from the measurement area and according to segment generation conditions for each measurement area.
  • a pulse wave estimating method comprising: a pulse wave estimating unit estimating a pulse wave of the person based on a plurality of the pulse wave source signal segments generated for each of the measurement regions.
  • the pulse wave estimating device can estimate a person's pulse wave based on the luminance signals even if there is a phase difference in the luminance signals extracted from a plurality of measurement regions.
  • 1, 1a, 1b pulse wave estimation device 11 captured image acquisition unit, 12 skin area detection unit, 13 measurement area setting unit, 14 pulse wave source signal extraction unit, 15 segment generation unit, 16, 16a pulse wave estimation unit, 161 Signal separation unit, 162, 162a Restoration unit, 1621 Component weight setting unit, 163 Estimation unit, 17 Output unit, 18 Parameter setting unit, 19 Weighting coefficient calculation unit, 3 Imaging device, 101 Processing circuit, 102 Input interface device, 103 Output Interface device, 104 processor, 105 memory.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

This pulse wave estimation device is provided with: a captured image acquisition unit (11) for acquiring a captured image obtained by imaging a human; a skin region detection unit (12) for detecting a skin region in the human from the captured image; a measurement region setting unit (13) for setting a plurality of measurement regions in a region corresponding to the skin region on the captured image, in which each of the measurement regions is used for extracting therefrom a pulse wave original signal that shows the change in brightness over time in a first period; a pulse wave original signal extraction unit (14) for extracting a pulse wave original signal with respect to each of the measurement regions on the basis of the change in brightness in the first period in each of the measurement regions; a segment generation unit (15) for generating a plurality of pulse wave original signal segments with respect to the measurement regions on the basis of the pulse wave original signal extracted from each of the measurement regions in accordance with a segment generation condition, in which each of the pulse wave original signal segments is a signal produced by partially extracting a pulse wave original signal for a second period from the pulse wave original signals in the first period; and a pulse wave estimation unit (16) for estimating the pulse wave of the human on the basis of the plurality of purse wave original signal segments generated with respect to the measurement regions.

Description

脈波推定装置及び脈波推定方法Pulse wave estimation device and pulse wave estimation method
 本開示は、脈波推定装置及び脈波推定方法に関する。 The present disclosure relates to a pulse wave estimation device and a pulse wave estimation method.
 従来、撮像装置が撮像した撮像画像における人の肌を含む領域(以下「肌領域」という。)において設定された複数の領域(以下「計測領域」という。)の輝度信号に基づいて人の肌表面の微小な輝度変化を抽出し、独立成分分析又は主成分分析等の信号分離技術を用いて当該輝度変化を示す信号から脈波成分を分離して、人の脈波を推定する技術が知られている(例えば、特許文献1)。このような技術は、人の血流における光の吸収量が脈動に応じて変化するという原理を利用している。 Conventionally, human skin is measured based on luminance signals of multiple areas (hereinafter referred to as "measurement areas") set in an area containing human skin (hereinafter referred to as "skin area") in a captured image captured by an imaging device. There is a known technology for estimating a person's pulse wave by extracting minute changes in brightness on the surface and separating the pulse wave component from the signal indicating the brightness change using signal separation techniques such as independent component analysis or principal component analysis. (For example, Patent Document 1). Such technology utilizes the principle that the amount of light absorbed in a person's bloodstream changes in response to pulsations.
特開2017-93760号公報JP2017-93760A
 人の血液は、心臓から動脈にて出て行き、全身を循環すると静脈から心臓に戻る。このような人の血流の特性上、脈波を推定するために設定される複数の計測領域の間の、心臓からの距離の差が大きいと、当該複数の計測領域で、当該複数の計測領域から抽出される輝度信号の位相差が生じる。複数の計測領域間で抽出される輝度信号の位相差が生じると、輝度変化を示す信号からの脈波成分の分離が行えず、脈波の推定精度が低下してしまうおそれがある。
 従来技術では、複数の計測領域から抽出される輝度信号に位相差が生じる場合、当該位相差が生じている輝度信号に基づく人の脈波の推定を行えない可能性があるという課題があった。
Blood leaves the heart in arteries, circulates throughout the body, and then returns to the heart through veins. Due to the characteristics of such human blood flow, if there is a large difference in distance from the heart between multiple measurement areas set for estimating pulse waves, the multiple measurement areas may A phase difference occurs in the luminance signals extracted from the regions. If a phase difference occurs in the brightness signals extracted between a plurality of measurement regions, the pulse wave component cannot be separated from the signal indicating the brightness change, and there is a possibility that the accuracy of estimating the pulse wave will decrease.
With conventional technology, if a phase difference occurs in the luminance signals extracted from multiple measurement regions, there is a problem that it may not be possible to estimate a person's pulse wave based on the luminance signal with the phase difference. .
 本開示は上記のような課題を解決するためになされたもので、複数の計測領域から抽出された輝度信号に位相差が生じていても、当該輝度信号に基づく人の脈波の推定を行うことができる脈波推定装置を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and even if there is a phase difference between the luminance signals extracted from multiple measurement regions, a person's pulse wave can be estimated based on the luminance signals. The purpose of the present invention is to provide a pulse wave estimating device that can perform the following steps.
 本開示に係る脈波推定装置は、人を撮像した撮像画像を取得する撮像画像取得部と、撮像画像から人の肌領域を検出する肌領域検出部と、撮像画像上の肌領域に対応する領域に、第1期間における時系列の輝度変化を示す脈波元信号を抽出するための複数の計測領域を設定する計測領域設定部と、計測領域毎に、当該計測領域における第1期間の輝度変化に基づき、脈波元信号を抽出する脈波元信号抽出部と、計測領域毎に、当該計測領域から抽出された脈波元信号に基づき、セグメント生成用条件に従って、第1期間における脈波元信号のうちから第2期間分の脈波元信号を部分的に抽出した信号である脈波元信号セグメントを複数生成するセグメント生成部と、計測領域毎に生成された複数の脈波元信号セグメントに基づいて人の脈波を推定する脈波推定部とを備えたものである。 The pulse wave estimating device according to the present disclosure includes a captured image acquisition unit that acquires a captured image of a person, a skin area detection unit that detects a skin area of the person from the captured image, and a skin area that corresponds to the skin area on the captured image. A measurement region setting unit that sets a plurality of measurement regions in the region for extracting pulse wave source signals indicating time-series luminance changes in the first period; a pulse wave source signal extraction unit that extracts a pulse wave source signal based on the change; and a pulse wave source signal extracting unit that extracts a pulse wave source signal for each measurement region, based on the pulse wave source signal extracted from the measurement region, and according to segment generation conditions, pulse wave in the first period. A segment generation unit that generates a plurality of pulse wave source signal segments that are signals obtained by partially extracting the pulse wave source signal for a second period from the original signal, and a plurality of pulse wave source signals generated for each measurement area. and a pulse wave estimator that estimates a person's pulse wave based on the segments.
 本開示によれば、複数の計測領域から抽出された輝度信号に位相差が生じていても、当該輝度信号に基づく人の脈波の推定を行うことができる。 According to the present disclosure, even if a phase difference occurs in the luminance signals extracted from a plurality of measurement regions, a person's pulse wave can be estimated based on the luminance signals.
実施の形態1に係る脈波推定装置の構成例を示す図である。1 is a diagram showing a configuration example of a pulse wave estimating device according to Embodiment 1. FIG. 複数の計測領域間で生じる、人の血流の特性による輝度信号の位相差について説明するための図である。FIG. 3 is a diagram for explaining a phase difference in luminance signals caused by characteristics of human blood flow that occurs between a plurality of measurement regions. 図3A、図3B及び図3Cは、実施の形態1に係る脈波推定装置における、計測領域設定部による計測領域の設定方法の一例について説明するための図である。3A, FIG. 3B, and FIG. 3C are diagrams for explaining an example of a method for setting a measurement region by a measurement region setting section in the pulse wave estimating device according to the first embodiment. 実施の形態1において、セグメント生成部が生成する脈波元信号セグメントの一例について説明するための図である。FIG. 3 is a diagram for explaining an example of a pulse wave source signal segment generated by a segment generation unit in the first embodiment. 実施の形態1において、信号分離部が、複数の脈波元信号セグメントに基づいて主成分を分析し、分析した主成分を示す分離信号を生成するまでの流れについて説明するための図である。FIG. 7 is a diagram for explaining a flow in which the signal separation unit analyzes a principal component based on a plurality of pulse wave source signal segments and generates a separated signal indicating the analyzed principal component in the first embodiment. 実施の形態1において、信号分離部が生成する、主成分を示す分離信号の詳細の一例について説明するための図である。FIG. 3 is a diagram for explaining an example of details of a separated signal indicating a main component, which is generated by a signal separation unit in the first embodiment. 実施の形態1に係る脈波推定装置の動作について説明するためのフローチャートである。3 is a flowchart for explaining the operation of the pulse wave estimating device according to the first embodiment. 図7のステップST6における、脈波推定部による脈波推定処理の詳細を説明するためのフローチャートである。8 is a flowchart for explaining details of pulse wave estimation processing by the pulse wave estimator in step ST6 of FIG. 7. FIG. 図9A,図9Bは、実施の形態1に係る脈波推定装置のハードウェア構成の一例を示す図である。9A and 9B are diagrams illustrating an example of the hardware configuration of the pulse wave estimating device according to the first embodiment. 実施の形態2に係る脈波推定装置の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a pulse wave estimating device according to a second embodiment. 実施の形態2に係る脈波推定装置の動作について説明するためのフローチャートである。7 is a flowchart for explaining the operation of the pulse wave estimating device according to Embodiment 2. FIG. 実施の形態3に係る脈波推定装置の構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a pulse wave estimating device according to Embodiment 3. 実施の形態3において、脈波推定装置が被験者の脈波の推定に用いる脈波元信号セグメントについて説明するための図である。FIG. 7 is a diagram for explaining pulse wave source signal segments used by the pulse wave estimating device to estimate a subject's pulse wave in Embodiment 3; 実施の形態3に係る脈波推定装置の動作について説明するためのフローチャートである。12 is a flowchart for explaining the operation of the pulse wave estimating device according to Embodiment 3. 実施の形態1~3において、脈波推定装置が、公知の一般的な信号分離技術を用いて推定した複数の主成分を示す複数の分離信号に対して成分重みを設定し、複数の分離信号と設定した分離信号毎の成分重みとに基づいて計測領域毎の脈波元信号を復元する機能を有するようにした場合の、脈波推定部の構成例を示す図である。In Embodiments 1 to 3, the pulse wave estimating device sets component weights for a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique, and It is a figure which shows the example of a structure of the pulse wave estimating part in the case where it has the function of restoring the pulse wave source signal for each measurement area based on the component weight for each separated signal which was set. 成分重み設定部が生成する射影係数時系列情報の一例のイメージを示す図である。FIG. 3 is a diagram illustrating an example of projection coefficient time series information generated by a component weight setting unit. 実施の形態1~3において、脈波推定装置が、公知の一般的な信号分離技術を用いて推定した複数の主成分を示す複数の分離信号に対して成分重みを設定し、複数の分離信号と設定した分離信号毎の成分重みとに基づいて計測領域毎の脈波元信号を復元する機能を有するようにした場合の、脈波推定部の動作について説明するためのフローチャートである。In Embodiments 1 to 3, the pulse wave estimating device sets component weights for a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique, and 12 is a flowchart for explaining the operation of the pulse wave estimating section when it has a function of restoring the pulse wave source signal for each measurement area based on the set component weight for each separated signal.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係る脈波推定装置1の構成例を示す図である。
Embodiments of the present disclosure will be described in detail below with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a pulse wave estimating device 1 according to the first embodiment.
 脈波推定装置1は、人を撮像した撮像画像に基づき、当該人の脈波を推定する。以下の説明において、脈波推定装置1が脈波を推定する対象となる人を「被験者」ともいう。
 脈波推定装置1は、予め定められたフレームレートFrで、少なくとも、被験者の肌を含む領域である肌領域が存在すべき範囲(以下「肌存在範囲」という。)を撮像した、一連のフレームIm(k)からなる撮像画像を取得する。ここで、kは、それぞれフレームに割り当てられるフレーム番号を示す。例えば、フレームIm(k)の次のタイミングで与えられるフレームは、フレームIm(k+1)である。
 実施の形態1では、肌領域は、被験者の顔に対応する領域とする。なお、これは一例に過ぎず、肌領域は、被験者の顔以外の領域であってもよい。例えば、肌領域は、被験者の目、眉、鼻、口、おでこ、頬、又は、顎のような、顔に属する部位、に対応する領域であってもよい。また、肌領域は、被験者の頭、肩、手、首、又は、足のような、顔以外の身体部位、に対応する領域であってもよい。肌領域は、例えば、頬に対応する肌領域、額に対応する肌領域、又は、首に対応する肌領域のように複数の領域であってもよい。
The pulse wave estimating device 1 estimates the pulse wave of a person based on a captured image of the person. In the following description, a person whose pulse wave is estimated by the pulse wave estimating device 1 is also referred to as a "subject."
The pulse wave estimating device 1 captures a series of frames at a predetermined frame rate Fr, capturing images of at least a range where a skin region that includes the subject's skin should exist (hereinafter referred to as "skin existing range"). A captured image consisting of Im(k) is acquired. Here, k indicates a frame number assigned to each frame. For example, the frame given at the next timing after frame Im(k) is frame Im(k+1).
In the first embodiment, the skin area is an area corresponding to the subject's face. Note that this is just an example, and the skin area may be an area other than the subject's face. For example, the skin area may be an area corresponding to a part of the face such as the subject's eyes, eyebrows, nose, mouth, forehead, cheeks, or chin. Furthermore, the skin area may be an area corresponding to a body part other than the face, such as the subject's head, shoulders, hands, neck, or feet. The skin area may be a plurality of areas, such as a skin area corresponding to the cheek, a skin area corresponding to the forehead, or a skin area corresponding to the neck.
 そして、脈波推定装置1は、1回の脈波推定を行う期間として予め設定された期間(以下「第1期間」という。)に取得した特定のフレーム数Tp毎に、一連のフレームIm(k-Tp+1)~Im(k)から被験者の脈波を推定し、推定した脈波を示す情報(以下「脈波情報」という。)である脈波推定結果P(t)を出力する。具体的には、脈波推定装置1は、一連のフレームIm(k-Tp+1)~Im(k)における被験者の肌領域に対して複数の領域(以下「計測領域」という。)を設定する。そして、脈波推定装置1は、計測領域毎の輝度変化を示す信号(以下「脈波元信号」という。)に対して、独立成分分析(Independent Component Analysis。以下「ICA」という。)又は主成分分析(Principal Component Analysis。以下「PCA」という。)等の一般的な信号分離技術を用いて脈波成分を分離し、分離した脈波成分から、被験者の脈波を推定する。脈波成分を分離するにあたっては、脈波推定装置1は、第1期間の脈波元信号から予め設定された期間(以下「第2期間」という。)の脈波元信号を部分的に抽出した複数の脈波元信号(以下「脈波元信号セグメント」という。)を生成し、複数の脈波元信号セグメントに対してICA又はPCAを行う。 Then, the pulse wave estimating device 1 generates a series of frames Im( The pulse wave of the subject is estimated from k−Tp+1) to Im(k), and pulse wave estimation result P(t), which is information indicating the estimated pulse wave (hereinafter referred to as “pulse wave information”), is output. Specifically, the pulse wave estimating device 1 sets a plurality of regions (hereinafter referred to as "measurement regions") for the subject's skin region in a series of frames Im(k-Tp+1) to Im(k). Then, the pulse wave estimating device 1 performs independent component analysis (hereinafter referred to as "ICA") or Pulse wave components are separated using a general signal separation technique such as principal component analysis (hereinafter referred to as "PCA"), and the subject's pulse wave is estimated from the separated pulse wave components. In separating the pulse wave components, the pulse wave estimation device 1 partially extracts the pulse wave source signal of a preset period (hereinafter referred to as "second period") from the pulse wave source signal of the first period. A plurality of pulse wave source signals (hereinafter referred to as "pulse wave source signal segments") are generated, and ICA or PCA is performed on the plurality of pulse wave source signal segments.
 ここで、tは、第1期間に取得された特定のフレーム数Tp毎に割り当てられる出力番号を示す。例えば、脈波推定結果P(t)の次のタイミングで与えられる脈波推定結果は、脈波推定結果P(t+1)である。フレーム番号k及び出力番号tは、1以上の整数である。フレーム数Tpは、2以上の整数である。 Here, t indicates an output number assigned to each specific number of frames Tp acquired in the first period. For example, the pulse wave estimation result given at the next timing of the pulse wave estimation result P(t) is the pulse wave estimation result P(t+1). The frame number k and the output number t are integers of 1 or more. The number of frames Tp is an integer of 2 or more.
 被験者の脈波は、肌領域に設定された複数の計測領域の輝度変化から推定されることが効果的である。しかし、人の血流の特性上、複数の計測領域の間の距離が大きいと、当該複数の計測領域で、当該複数の計測領域から抽出される輝度信号には位相差が生じ得る。 It is effective to estimate the subject's pulse wave from the luminance changes of multiple measurement areas set in the skin area. However, due to the characteristics of human blood flow, if the distance between the plurality of measurement regions is large, a phase difference may occur between the luminance signals extracted from the plurality of measurement regions.
 ここで、図2は、複数の計測領域間で生じる、人の血流の特性による輝度信号の位相差について説明するための図である。
 図2において、図上左側は、被験者が撮像された撮像画像における肌領域を示す図である。図2において、被験者は「H」で示し、肌領域は「sr」で示している。肌領域には、4つの計測領域が設定されたものとしている。図2において、4つの計測領域を「R1」、「R2」、「R3」、及び、「R4」で示している。なお、肌領域の検出方法、及び、計測領域の設定方法の詳細は、後述する。
 図上右側は、「R1」で示す計測領域から抽出された輝度信号で示される輝度値を時間軸で示す図(図2において22で示す)、及び、「R3」で示す計測領域から抽出された輝度信号で示される輝度値を時間軸で示す図(図2において21で示す)である。
 被験者の血液は、心臓から送り出され、首から額へと流れる。したがって、「R1」で示す計測領域と「R3」で示す計測領域のように、血流の方向における計測領域間の距離が大きいと、言い換えれば、計測領域間の心臓からの距離の差が大きいと、計測領域から抽出される輝度信号に位相差が生じる。
 複数の計測領域から抽出された複数の輝度信号の間で位相差が生じていた場合、仮に、計測領域毎の脈波元信号に対してICA又はPCA等の一般的な信号分離技術を用いた脈波成分の分離が行われたとすると、当該脈波成分の分離は、失敗におわる。
 実施の形態1に係る脈波推定装置1は、上述したような位相差が生じることを考慮し、複数の脈波元信号セグメントを生成し、生成した複数の脈波元信号セグメントに対してICA又はPCA等の一般的な信号分離技術を用いた脈波成分の分離を行うことで、複数の計測領域から抽出された複数の輝度信号の間で位相差が生じていたとしても、当該位相差を吸収して、被験者の脈波を推定可能とする。
Here, FIG. 2 is a diagram for explaining a phase difference in luminance signals due to characteristics of human blood flow that occurs between a plurality of measurement regions.
In FIG. 2, the left side of the figure is a diagram showing a skin area in a captured image of a subject. In FIG. 2, the subject is indicated by "H" and the skin area is indicated by "sr". It is assumed that four measurement regions are set in the skin region. In FIG. 2, four measurement regions are indicated by "R1", "R2", "R3", and "R4". Note that the details of the method of detecting the skin area and the method of setting the measurement area will be described later.
The upper right side of the figure shows a diagram (indicated by 22 in FIG. 2) on the time axis of the luminance value indicated by the luminance signal extracted from the measurement region indicated by "R1", and a diagram showing the luminance value indicated by the luminance signal extracted from the measurement region indicated by "R3" on the time axis. FIG. 3 is a diagram (indicated by 21 in FIG. 2) showing the luminance values indicated by the luminance signals in the time axis.
The subject's blood is pumped from the heart and flows from the neck to the forehead. Therefore, when the distance between the measurement regions in the direction of blood flow is large, such as the measurement region indicated by "R1" and the measurement region indicated by "R3", in other words, the difference in distance from the heart between the measurement regions is large. Then, a phase difference occurs in the luminance signal extracted from the measurement area.
If a phase difference occurs between multiple luminance signals extracted from multiple measurement regions, it is possible to use a general signal separation technique such as ICA or PCA on the pulse wave source signal for each measurement region. If the pulse wave component is separated, the separation of the pulse wave component ends in failure.
The pulse wave estimating device 1 according to the first embodiment generates a plurality of pulse wave source signal segments and performs ICA on the generated pulse wave source signal segments in consideration of the occurrence of the phase difference as described above. Alternatively, by separating pulse wave components using a general signal separation technique such as PCA, even if a phase difference occurs between multiple luminance signals extracted from multiple measurement regions, the phase difference can be The pulse wave of the subject can be estimated by absorbing it.
 なお、撮像画像に含まれる人である被験者の数は、1人であっても複数人であってもよい。説明を簡単にするため、以下の実施の形態1では、撮像画像に含まれる被験者の数は、1人であるものとして説明する。 Note that the number of subjects included in the captured image may be one or more. To simplify the explanation, in the following first embodiment, the number of subjects included in the captured image is one.
 実施の形態1では、一例として、脈波推定装置1は車両(図示省略)に搭載されているものとし、被験者は車両のドライバとする。つまり、脈波推定装置1は、車両のドライバの脈波を推定する。脈波推定装置1が推定したドライバの脈波情報は、例えば、車両に搭載されている状態推定装置(図示省略)に出力される。状態推定装置は、脈波推定装置1から出力されたドライバの脈波推定結果P(t)に基づいて、ドライバの状態を推定する。状態推定装置は、例えば、ドライバの状態が運転に適していない状態であると推定した場合、ドライバに対する警告音を出力する。 In Embodiment 1, as an example, it is assumed that the pulse wave estimating device 1 is mounted on a vehicle (not shown), and the subject is a driver of the vehicle. That is, the pulse wave estimating device 1 estimates the pulse wave of the driver of the vehicle. The driver's pulse wave information estimated by the pulse wave estimating device 1 is output to, for example, a state estimating device (not shown) mounted on the vehicle. The state estimating device estimates the driver's state based on the driver's pulse wave estimation result P(t) output from the pulse wave estimating device 1. For example, when the state estimating device estimates that the driver's state is not suitable for driving, it outputs a warning sound to the driver.
 図1に示すように、脈波推定装置1は、撮像画像取得部11、肌領域検出部12、計測領域設定部13、脈波元信号抽出部14、セグメント生成部15、脈波推定部16、及び、出力部17を備える。脈波推定部16は、信号分離部161、復元部162、及び、推定部163を備える。
 脈波推定装置1は、車両に搭載されている撮像装置3と接続される。撮像装置3は、被験者、ここでは、ドライバの肌存在範囲を撮像可能に設置されている。撮像装置3は、例えば、車両内のドライバの状態を監視するために車両に搭載される、いわゆる「ドライバーモニタリングシステム(Driver Monitoring System,DMS)」が有する撮像装置と共用のものであってもよい。
As shown in FIG. 1, the pulse wave estimation device 1 includes a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, a segment generation section 15, and a pulse wave estimation section 16. , and an output section 17. The pulse wave estimating section 16 includes a signal separating section 161, a restoring section 162, and an estimating section 163.
The pulse wave estimating device 1 is connected to an imaging device 3 mounted on a vehicle. The imaging device 3 is installed to be able to image the skin area of the subject, here the driver. For example, the imaging device 3 may be shared with an imaging device included in a so-called "Driver Monitoring System (DMS)" that is installed in a vehicle to monitor the condition of the driver in the vehicle. .
 撮像画像取得部11は、撮像装置3から、被験者を撮像した撮像画像を取得する。
 撮像画像取得部11は、取得した撮像画像を、肌領域検出部12に出力する。
The captured image acquisition unit 11 acquires a captured image of the subject from the imaging device 3.
The captured image acquisition unit 11 outputs the acquired captured image to the skin area detection unit 12.
 肌領域検出部12は、撮像画像取得部11が取得した撮像画像に含まれるフレームIm(k)から、被験者の肌領域を検出する。肌領域検出部12は、公知の手段を用いて肌領域を検出すればよい。例えば、肌領域検出部12は、Haar-like特徴量を使用したカスケード型の顔検出器を使用して、肌領域を検出できる。
 肌領域検出部12は、検出した肌領域を示す肌領域情報S(k)を生成する。
 肌領域情報S(k)は、肌領域の検出の有無を示す情報と、検出された肌領域の撮像画像上における位置及びサイズを示す情報とを含むことができる。実施の形態1では、肌領域は撮像画像上の矩形領域であらわされるものとし、肌領域情報S(k)は、当該矩形領域の撮像画像上における位置及びサイズを示す情報を含むものとする。
 具体的には、肌領域が被験者の顔に対応する領域である場合、肌領域情報S(k)は、例えば、被験者の顔の検出の有無と、撮像画像上で当該被験者の顔を囲む矩形の中心座標Fc(Fcx,Fcy)と、この矩形の幅Fcw及び高さFchとを示す。被験者の顔の検出の有無は、例えば、検出できた場合は「1」、検出できなかった場合は「0」であらわされる。また、顔を囲む矩形の中心座標は、フレームIm(k)の座標系で表現される。
 なお、肌領域検出部12は、複数の肌領域を検出することもできる。
 肌領域検出部12は、生成した肌領域情報S(k)を、計測領域設定部13に出力する。
The skin area detection unit 12 detects the skin area of the subject from the frame Im(k) included in the captured image acquired by the captured image acquisition unit 11. The skin area detection unit 12 may detect the skin area using a known means. For example, the skin area detection unit 12 can detect a skin area using a cascade type face detector using Haar-like features.
The skin area detection unit 12 generates skin area information S(k) indicating the detected skin area.
The skin area information S(k) can include information indicating whether or not a skin area has been detected, and information indicating the position and size of the detected skin area on the captured image. In the first embodiment, it is assumed that the skin area is represented by a rectangular area on the captured image, and the skin area information S(k) includes information indicating the position and size of the rectangular area on the captured image.
Specifically, when the skin area is an area corresponding to the subject's face, the skin area information S(k) includes, for example, whether or not the subject's face is detected and the rectangle surrounding the subject's face on the captured image. The center coordinates Fc (Fcx, Fcy) of the rectangle, and the width Fcw and height Fch of this rectangle are shown. The presence or absence of detection of the subject's face is represented by, for example, "1" if it is detected, and "0" if it is not detected. Furthermore, the center coordinates of the rectangle surrounding the face are expressed in the coordinate system of frame Im(k).
Note that the skin area detection unit 12 can also detect multiple skin areas.
The skin area detection unit 12 outputs the generated skin area information S(k) to the measurement area setting unit 13.
 計測領域設定部13は、撮像画像取得部11が取得した撮像画像のフレームIm(k)と、肌領域検出部12が出力した肌領域情報S(k)とに基づき、フレームIm(k)上の、肌領域情報S(k)で示される肌領域に対応する画像領域に、第1期間における時系列の輝度変化を示す脈波元信号を抽出するための複数の計測領域を設定する。なお、計測領域設定部13は、撮像画像取得部11が取得した撮像画像を、肌領域検出部12を介して取得すればよい。
 計測領域設定部13は、複数の計測領域を設定すると、設定した複数の計測領域を示す計測領域情報R(k)を生成する。計測領域情報R(k)は、N(2以上の整数)個の計測領域の撮像画像上における位置及びサイズを示す情報を含む。各計測領域は、計測領域ri(k)(i=2,・・・,N)とする。実施の形態1では、計測領域ri(k)は、四辺形とし、計測領域ri(k)の位置及びサイズは、撮像画像上における、四辺形の4つの頂点の座標値とする。
The measurement area setting unit 13 determines the area on the frame Im(k) based on the frame Im(k) of the captured image acquired by the captured image acquisition unit 11 and the skin area information S(k) outputted by the skin area detection unit 12. A plurality of measurement regions are set in the image region corresponding to the skin region indicated by the skin region information S(k) of , for extracting the pulse wave source signal indicating the time-series luminance change in the first period. Note that the measurement area setting unit 13 may acquire the captured image acquired by the captured image acquisition unit 11 via the skin area detection unit 12.
When the measurement area setting unit 13 sets a plurality of measurement areas, it generates measurement area information R(k) indicating the plurality of measurement areas that have been set. The measurement area information R(k) includes information indicating the positions and sizes of N (an integer greater than or equal to 2) measurement areas on the captured image. Each measurement area is defined as a measurement area ri(k) (i=2, . . . , N). In the first embodiment, the measurement region ri(k) is a quadrilateral, and the position and size of the measurement region ri(k) are the coordinate values of the four vertices of the quadrilateral on the captured image.
 ここで、図3A、図3B及び図3Cは、実施の形態1に係る脈波推定装置1における、計測領域設定部13による計測領域ri(k)の設定方法の一例について説明するための図である。
 図3を用いて、計測領域設定部13が複数の計測領域ri(k)を設定する方法の一例について説明する。
 まず、図3A及び図3Bに示されているように、計測領域設定部13は、肌領域情報S(k)で示されている肌領域srにおいて、目尻、目頭、鼻及び口等の顔器官のランドマークをLn(正の整数)個検出する。図3A及び図3Bでは、ランドマークは丸で示されている。計測領域設定部13は、検出したランドマークの座標値を格納したベクトルをL(k)とする。
 なお、計測領域設定部13は、Constrained Local Model(CLM)と呼ばれるモデルを用いる等、公知の手段を用いて顔器官を検出すればよい。
Here, FIG. 3A, FIG. 3B, and FIG. 3C are diagrams for explaining an example of a method for setting the measurement region ri(k) by the measurement region setting section 13 in the pulse wave estimating device 1 according to the first embodiment. be.
An example of a method by which the measurement area setting unit 13 sets a plurality of measurement areas ri(k) will be described with reference to FIG. 3.
First, as shown in FIGS. 3A and 3B, the measurement region setting unit 13 selects facial organs such as the outer corners of the eyes, inner corners of the eyes, nose, and mouth in the skin region sr indicated by the skin region information S(k). Detect Ln (positive integer) landmarks. In FIGS. 3A and 3B, landmarks are shown as circles. The measurement area setting unit 13 sets a vector storing the coordinate values of the detected landmarks to L(k).
Note that the measurement area setting unit 13 may detect facial organs using a known method such as using a model called a Constrained Local Model (CLM).
 次に、計測領域設定部13は、検出したランドマークを基準にして、計測領域ri(k)の四辺形の頂点座標を設定する。例えば、計測領域設定部13は、図3Cに示されているような四辺形の頂点座標を設定し、N個の計測領域ri(k)を設定する。 Next, the measurement area setting unit 13 sets the coordinates of the vertices of the quadrilateral of the measurement area ri(k) using the detected landmark as a reference. For example, the measurement area setting unit 13 sets the vertex coordinates of a quadrilateral as shown in FIG. 3C, and sets N measurement areas ri(k).
 計測領域設定部13が肌領域srの頬に対応する部分に計測領域ri(k)を設定する例を挙げて説明すると、計測領域設定部13は、顔の輪郭のランドマークLA1と、鼻のランドマークLA2を選択する。計測領域設定部13は、まず、鼻のランドマークLA2を選択し、当該鼻のランドマークLA2から最も近い顔の輪郭のランドマークLA1を選択すればよい。
 そして、計測領域設定部13は、ランドマークLA1とランドマークLA2との間の線分を4等分するように補助ランドマークa1、a2、a3を設定する。
 同様に、計測領域設定部13は、顔の輪郭のランドマークLB1と、鼻のランドマークLB2とを選択する。また、計測領域設定部13は、ランドマークLB1とランドマークLB2との間の線分を4等分するように補助ランドマークb1、b2、b3を設定する。なお、ランドマークLB1、LB2は、それぞれ、例えば、ランドマークLA1、LA2に隣接する顔の輪郭又は鼻のランドマークから選択されればよい。
 計測領域設定部13は、補助ランドマークa1、b1、b2、a2で囲まれる四辺形領域を一つの計測領域R5として設定する。補助ランドマークa1、b1、b2、a2は、それぞれ、計測領域R5に対応する頂点座標となる。
 計測領域設定部13は、同様に、補助ランドマークa2、b2、b3、a3で囲まれる一つの計測領域R6及び当該計測領域R6の頂点座標を設定する。
To explain using an example in which the measurement area setting unit 13 sets the measurement area ri(k) in the part corresponding to the cheek of the skin area sr, the measurement area setting unit 13 sets the landmark LA1 of the facial contour and the nose. Select landmark LA2. The measurement area setting unit 13 first selects the nasal landmark LA2, and then selects the facial contour landmark LA1 closest to the nasal landmark LA2.
Then, the measurement area setting unit 13 sets auxiliary landmarks a1, a2, and a3 so as to equally divide the line segment between the landmark LA1 and the landmark LA2 into four.
Similarly, the measurement area setting unit 13 selects the facial contour landmark LB1 and the nose landmark LB2. Furthermore, the measurement area setting unit 13 sets auxiliary landmarks b1, b2, and b3 so as to equally divide the line segment between the landmark LB1 and the landmark LB2 into four. Note that the landmarks LB1 and LB2 may be selected from, for example, the contour of the face or the landmark of the nose adjacent to the landmarks LA1 and LA2, respectively.
The measurement area setting unit 13 sets a quadrilateral area surrounded by the auxiliary landmarks a1, b1, b2, and a2 as one measurement area R5. The auxiliary landmarks a1, b1, b2, and a2 each have vertex coordinates corresponding to the measurement region R5.
Similarly, the measurement area setting unit 13 sets one measurement area R6 surrounded by the auxiliary landmarks a2, b2, b3, and a3 and the vertex coordinates of the measurement area R6.
 なお、ここでは、頬の対応する部分に計測領域ri(k)を設定する例を説明したが、計測領域設定部13は、例えば、頬の他の部分、及び、あごに対応する部分の肌領域srに対しても同様に、計測領域ri(k)及び当該計測領域ri(k)の頂点座標を設定する。なお、図3Cでは図示していないが、計測領域設定部13は、被験者の肌領域srの額に対応する部分、首に対応する部分、又は、鼻先に対応する部分に、計測領域ri(k)を設定してもよい。 Although an example has been described here in which the measurement region ri(k) is set on the corresponding part of the cheek, the measurement region setting unit 13 can set the measurement region ri(k) on the part corresponding to the cheek. Similarly, the measurement region ri(k) and the vertex coordinates of the measurement region ri(k) are set for the region sr. Although not shown in FIG. 3C, the measurement region setting unit 13 sets a measurement region ri(k ) may be set.
 なお、計測領域設定部13は、CLM以外の方法で計測領域ri(k)を設定してもよい。例えば、計測領域設定部13は、Kanade-Lucas-Tomasi(KLT)トラッカー等のトラッキング技術を用いて計測領域ri(k)を設定してもよい。具体的には、計測領域設定部13は、一連のフレームIm(k-Tp+1)~Im(k)のうちの最初のフレームIm(1)の肌領域に対しCLMによって顔器官点の座標を検出し、次のフレームIm(2)の肌領域以降は、KLTトラッカーにより顔器官点をトラッキングし、各フレームIm(k)の肌領域に対する顔器官点を算出してもよい。この場合、トラッキングによる検出誤差が蓄積するため、計測領域設定部13は、数フレームに一回CLMを実行し、顔器官点の座標位置をリセットする等のリセット処理を行ってもよい。 Note that the measurement region setting unit 13 may set the measurement region ri(k) using a method other than CLM. For example, the measurement region setting unit 13 may set the measurement region ri(k) using a tracking technique such as a Kanade-Lucas-Tomasi (KLT) tracker. Specifically, the measurement area setting unit 13 detects the coordinates of facial organ points using CLM for the skin area of the first frame Im(1) of the series of frames Im(k-Tp+1) to Im(k). However, from the skin region of the next frame Im(2) onward, the facial organ points may be tracked by the KLT tracker and the facial organ points for the skin region of each frame Im(k) may be calculated. In this case, since detection errors due to tracking accumulate, the measurement area setting unit 13 may perform a reset process such as executing CLM once every several frames and resetting the coordinate positions of facial organ points.
 計測領域設定部13は、生成した計測領域情報R(k)を、脈波元信号抽出部14に出力する。 The measurement area setting unit 13 outputs the generated measurement area information R(k) to the pulse wave source signal extraction unit 14.
 脈波元信号抽出部14は、撮像画像取得部11が取得した撮像画像のフレームIm(k)と、計測領域設定部13から出力された計測領域情報R(k)とに基づき、フレームIm(k)上の、計測領域情報R(k)で示される複数の計測領域ri(k)の各々から、第1期間における輝度変化を示す脈波元信号を抽出する。なお、脈波元信号は、脈波の元となる信号である。脈波推定装置1は、脈波元信号を用いて被験者の脈波を推定する。被験者の脈波の推定は、脈波推定部16が行う。脈波推定部16の詳細は後述する。
 脈波元信号抽出部14は、撮像画像取得部11が取得した撮像画像を、肌領域検出部12及び計測領域設定部13を介して取得すればよい。
 脈波元信号抽出部14は、脈波元信号を抽出すると、抽出した脈波元信号を示す脈波元信号情報W(t)を生成する。
The pulse wave source signal extraction unit 14 extracts the frame Im( A pulse wave source signal indicating a luminance change in the first period is extracted from each of a plurality of measurement regions ri(k) shown by measurement region information R(k) on k). Note that the pulse wave source signal is a signal that is the source of the pulse wave. The pulse wave estimating device 1 estimates the pulse wave of the subject using the pulse wave source signal. The pulse wave estimation unit 16 estimates the pulse wave of the subject. Details of the pulse wave estimation section 16 will be described later.
The pulse wave source signal extraction unit 14 may acquire the captured image acquired by the captured image acquisition unit 11 via the skin area detection unit 12 and the measurement area setting unit 13.
After extracting the pulse wave source signal, the pulse wave source signal extraction unit 14 generates pulse wave source signal information W(t) indicating the extracted pulse wave source signal.
 脈波元信号情報W(t)は、計測領域ri(k)で抽出された脈波元信号wi(t)を示す情報を含む。脈波元信号wi(t)は、Tp分の時系列データであり、例えば、過去Tp分のフレームIm(k-Tp+1),Im(k-Tp+2),・・・,Im(k)と、計測領域情報R(k-Tp+1),R(k-Tp+2),・・・,R(k)とに基づいて抽出される。
 脈波元信号wi(t)を抽出するにあたっては、脈波元信号抽出部14は、撮像画像の各フレームIm(k)に対して、1つ前のフレームIm(k-1)との、各計測領域ri(k)の輝度特徴量の差分Gi(j)(j=k-Tp+1,k-Tp+2,・・・,k)を算出する。輝度特徴量は、各計測領域ri(j)に対し、撮像画像のフレームIm(j)上の輝度値に基づいて算出される値である。輝度特徴量は、計測領域ri(j)内に含まれる画素の輝度値の平均又は分散等である。実施の形態1では、一例として、輝度特徴量は、計測領域ri(j)に含まれる画素の輝度値の平均とする。
 脈波元信号抽出部14は、第1期間に取得された撮像画像の各フレームIm(k)に対し算出したGi(j)を時系列に並べて脈波元信号wi(t)とする。すなわち、脈波元信号抽出部14は、脈波元信号wi(t)=[Gi(k-Tp+1),Gi(k-Tp+2),・・・,Gi(k)]とする。
The pulse wave source signal information W(t) includes information indicating the pulse wave source signal wi(t) extracted in the measurement region ri(k). The pulse wave source signal wi(t) is time-series data for Tp, for example, frames Im(k-Tp+1), Im(k-Tp+2), ..., Im(k) for the past Tp, It is extracted based on the measurement area information R(k-Tp+1), R(k-Tp+2), . . . , R(k).
In extracting the pulse wave source signal wi(t), the pulse wave source signal extracting unit 14 extracts the difference between the previous frame Im(k-1) and the previous frame Im(k-1) for each frame Im(k) of the captured image. A difference Gi(j) (j=k−Tp+1, k−Tp+2, . . . , k) between the luminance features of each measurement region ri(k) is calculated. The luminance feature amount is a value calculated for each measurement region ri(j) based on the luminance value on frame Im(j) of the captured image. The brightness feature amount is the average or variance of the brightness values of pixels included in the measurement region ri(j). In the first embodiment, as an example, the brightness feature amount is the average brightness value of pixels included in the measurement region ri(j).
The pulse wave source signal extracting unit 14 arranges Gi(j) calculated for each frame Im(k) of the captured image acquired in the first period in chronological order to obtain a pulse wave source signal wi(t). That is, the pulse wave source signal extraction unit 14 sets the pulse wave source signal wi(t)=[Gi(k−Tp+1), Gi(k−Tp+2), . . . , Gi(k)].
 なお、脈波元信号抽出部14は、撮像画像の各フレームIm(k)に対して、各計測領域ri(k)の輝度特徴量を算出することで、脈波元信号wi(t)を抽出してもよい。 The pulse wave source signal extraction unit 14 extracts the pulse wave source signal wi(t) by calculating the luminance feature amount of each measurement region ri(k) for each frame Im(k) of the captured image. May be extracted.
 脈波元信号抽出部14は、各計測領域ri(k)における脈波元信号wi(t)を示す脈波元信号情報W(t)を生成する。脈波元信号情報W(t)は、各計測領域ri(k)における脈波元信号wi(t)と当該脈波元信号wi(t)がどの計測領域ri(k)から抽出された脈波元信号wi(t)であるかを示す情報とを含む。
 脈波元信号抽出部14は、生成した脈波元信号情報W(t)を、セグメント生成部15に出力する。
The pulse wave source signal extraction unit 14 generates pulse wave source signal information W(t) indicating the pulse wave source signal wi(t) in each measurement region ri(k). The pulse wave source signal information W(t) includes the pulse wave source signal wi(t) in each measurement region ri(k) and the pulse wave source signal wi(t) from which measurement region ri(k). and information indicating whether the wave source signal wi(t) is the wave source signal wi(t).
The pulse wave source signal extraction section 14 outputs the generated pulse wave source signal information W(t) to the segment generation section 15.
 セグメント生成部15は、脈波元信号抽出部14から出力された脈波元信号情報W(t)に基づき、計測領域ri(k)毎に、予め設定された条件(以下「セグメント生成用条件」という。)に従って、第1期間における脈波元信号wi(t)のうちから、第2期間分の脈波元信号wi(t)を部分的に抽出した信号である脈波元信号セグメントを複数生成する。 The segment generation unit 15 generates preset conditions (hereinafter referred to as “segment generation conditions”) for each measurement region ri(k) based on the pulse wave source signal information W(t) output from the pulse wave source signal extraction unit 14. ), the pulse wave source signal segment is a signal obtained by partially extracting the pulse wave source signal wi(t) for the second period from the pulse wave source signal wi(t) for the first period. Generate multiple.
 セグメント生成用条件は、予め、管理者等によって生成され、セグメント生成部15が保持している。
 セグメント生成用条件には、例えば、以下の(1)~(5)のような条件が設定されている。セグメント生成部15は、(1)~(5)の全てを満たすよう、複数の脈波元信号セグメントを生成する。
 (1)第2期間は第1期間よりも短い期間であること
 (2)ある計測領域における複数の脈波元信号セグメントについて、ある脈波元信号セグメントは他の脈波元信号セグメントと時間軸上で互いに完全に一致しない信号であること
 (3)ある計測領域における複数の脈波元信号セグメントについて、ある脈波元信号セグメントは他の脈波元信号セグメントと時間軸上で部分的に重なる信号であること
 (4)各計測領域において、ある脈波元信号セグメントが他の脈波元信号セグメントと時間軸上で部分的に重なる長さは同じであること
 (5)各計測領域における複数の脈波元信号セグメントの時間軸上の長さは互いに同じであること
The segment generation conditions are generated in advance by an administrator or the like, and are held by the segment generation unit 15.
For example, the following conditions (1) to (5) are set as the segment generation conditions. The segment generation unit 15 generates a plurality of pulse wave source signal segments so as to satisfy all of (1) to (5).
(1) The second period is shorter than the first period. (2) Regarding multiple pulse wave source signal segments in a certain measurement area, one pulse wave source signal segment is connected to other pulse wave source signal segments on the time axis. (3) Regarding multiple pulse wave source signal segments in a certain measurement area, one pulse wave source signal segment partially overlaps with another pulse wave source signal segment on the time axis. (4) In each measurement area, the length of partial overlap between a certain pulse wave source signal segment and another pulse wave source signal segment on the time axis is the same (5) Multiple pulse wave source signal segments in each measurement area The lengths of the pulse wave source signal segments on the time axis are the same.
 ここで、図4は、実施の形態1において、セグメント生成部15が生成する脈波元信号セグメントの一例について説明するための図である。
 図4上、左の図は、計測領域ri(k)が設定された肌領域srを示す図(以下「肌領域図」という。)である。肌領域図において、被験者は「H」で示している。肌領域図に示すように、今、肌領域srには、4つの計測領域ri(k)が設定されたとする。具体的には、被験者の顎部分に2つの計測領域ri(k)(肌領域図上、「n」及び「n」で示す)と、被験者の額部分に2つの計測領域ri(k)(肌領域図上、「f」及び「f」で示す)が設定されたとする。以下の説明において、「n」で示す計測領域ri(k)を「第1計測領域」、「n」で示す計測領域ri(k)を「第2計測領域」、「f」で示す計測領域ri(k)を「第3計測領域」、「f」で示す計測領域ri(k)を「第4計測領域」という。
Here, FIG. 4 is a diagram for explaining an example of a pulse wave source signal segment generated by the segment generation unit 15 in the first embodiment.
The upper left diagram in FIG. 4 is a diagram (hereinafter referred to as "skin area diagram") showing the skin region sr in which the measurement region ri(k) is set. In the skin area diagram, the subject is indicated by "H". As shown in the skin region diagram, it is assumed that four measurement regions ri(k) are now set in the skin region sr. Specifically, two measurement regions ri(k) (indicated by “n 1 ” and “n 2 ” on the skin area map) are placed on the subject's chin area, and two measurement areas ri(k) are placed on the subject's forehead area. ) (indicated by "f 1 " and "f 2 " on the skin area diagram) are set. In the following description, the measurement region ri(k) indicated by "n 1 " is referred to as the "first measurement region", the measurement region ri(k) indicated by "n 2 " is referred to as the "second measurement region", and the measurement region ri(k) indicated by "f 1 " is referred to as the "first measurement region". The measurement region ri(k) shown is called a "third measurement region", and the measurement region ri(k) shown by "f 2 " is called a "fourth measurement region".
 図4上、真ん中の図は、第1計測領域及び第3計測領域に対してセグメント生成部15が生成する脈波元信号セグメントの一例について説明するための図(以下「セグメント生成図」という。)である。セグメント生成図において、第1期間(セグメント生成図において「X」で示す)における脈波元信号wi(t)で示される輝度値を時間軸で示している。
 セグメント生成図上、上は、セグメント生成部15が第1計測領域から抽出された脈波元信号wi(t)(セグメント生成図上「401」で示す)から第2期間分の脈波元信号wi(t)を部分的に抽出して生成した、第1計測領域に対する複数の脈波元信号セグメント(=p1-1,p1-2,p1-3,p1-4,p1-5,・・・,p1-M)の一例を示し、下は、セグメント生成部15が第3計測領域から抽出された脈波元信号wi(t)(セグメント生成図上「402」で示す)から第2期間分の脈波元信号wi(t)を部分的に抽出して生成した、第3計測領域に対する複数の脈波元信号セグメント(=p3-1,p3-2,p3-3,p3-4,p1-5,・・・,p3-M)の一例を示す。
 セグメント生成部15は、計測領域ri(k)毎に、1回の脈波推定を行う期間である第1期間に対して、セグメント生成用条件に従って、第1期間における脈波元信号wi(t)のうちから第2期間分の脈波元信号wi(t)を部分的に抽出したM(Mは2以上の整数)個の脈波元信号セグメントを生成する。
The middle diagram in the upper part of FIG. 4 is a diagram for explaining an example of a pulse wave source signal segment generated by the segment generation unit 15 for the first measurement area and the third measurement area (hereinafter referred to as a "segment generation diagram"). ). In the segment generation diagram, the luminance value indicated by the pulse wave source signal wi(t) in the first period (indicated by "X" in the segment generation diagram) is shown on the time axis.
In the upper part of the segment generation diagram, the segment generation unit 15 generates the pulse wave source signal for the second period from the pulse wave source signal wi(t) (indicated by "401" on the segment generation diagram) extracted from the first measurement area. A plurality of pulse wave source signal segments (=p1-1, p1-2, p1-3, p1-4, p1-5,...) for the first measurement region are generated by partially extracting wi(t). . A plurality of pulse wave source signal segments (=p3-1, p3-2, p3-3, p3-4, p1-5,..., p3-M) is shown below.
For each measurement region ri(k), the segment generation unit 15 generates a pulse wave source signal wi(t ), M (M is an integer of 2 or more) pulse wave source signal segments are generated by partially extracting the pulse wave source signal wi(t) for the second period.
 なお、各脈波元信号セグメントには、脈波元信号セグメントが、どの計測領域ri(k)の脈波元信号wi(t)から生成された、時間軸上で何番目の脈波元信号セグメントであるかがわかる情報と、抽出元となった時系列の脈波元信号wi(t)の時間軸上の時間の範囲が分かる情報とが付与される。例えば、脈波元信号セグメントp1-1は、第1計測領域の脈波元信号wi(t)に対して生成された複数の脈波元信号セグメントのうち、時間軸上で1番目の脈波元信号セグメント、言い換えれば、一番早い時間帯の脈波元信号セグメントであることを示す。当該脈波元信号セグメントp1-1には、例えば、〇時〇分〇秒~△時△分△秒までの第1計測領域の脈波元信号wi(t)であることが分かる情報が付与されている。 In addition, each pulse wave source signal segment is generated from the pulse wave source signal wi(t) of which measurement region ri(k) and the pulse wave source signal is generated from which pulse wave source signal wi(t) in which measurement region ri(k) Information indicating whether it is a segment and information indicating the time range on the time axis of the time-series pulse wave source signal wi(t) that is the extraction source are provided. For example, the pulse wave source signal segment p1-1 is the first pulse wave signal segment on the time axis among the plurality of pulse wave source signal segments generated for the pulse wave source signal wi(t) in the first measurement area. This indicates that it is the original signal segment, in other words, the pulse wave original signal segment in the earliest time period. For example, information indicating that the pulse wave source signal segment p1-1 is the pulse wave source signal wi(t) of the first measurement region from 0:00:00 minutes to △ hours, △ minutes, and △ seconds is attached to the pulse wave source signal segment p1-1. has been done.
 図4のセグメント生成図では、便宜上、第1計測領域及び第3計測領域に対してのM個の脈波元信号セグメントを図示したが、セグメント生成部15は、第2計測領域及び第4計測領域に対しても、それぞれ、M個の脈波元信号セグメントを生成する。すなわち、セグメント生成部15は、第2計測領域に対するM個の脈波元信号セグメント(=p2-1,p2-2,p2-3,p2-4,p2-5,・・・,p2-M)と、第4計測領域に対するM個の脈波元信号セグメント(=p4-1,p4-2,p4-3,p4-4,p4-5,・・・,p4-M)も生成する。 In the segment generation diagram of FIG. 4, M pulse wave source signal segments for the first measurement area and the third measurement area are illustrated for convenience, but the segment generation unit 15 M pulse wave source signal segments are also generated for each region. That is, the segment generation unit 15 generates M pulse wave source signal segments (=p2-1, p2-2, p2-3, p2-4, p2-5, . . . , p2-M ) and M pulse wave source signal segments (=p4-1, p4-2, p4-3, p4-4, p4-5, . . . , p4-M) for the fourth measurement region are also generated.
 上述したとおり、計測領域ri(k)間の心臓からの距離の差が大きいと、計測領域ri(k)から抽出される輝度信号に位相差が生じる。反対に、計測領域ri(k)間の心臓からの距離の差がほとんどない場合は、計測領域ri(k)から抽出される輝度信号に位相差は生じない。第2計測領域は、第1計測領域とは心臓からの距離の差がほとんどないといえるので、第2計測領域に対するM個の脈波元信号セグメントは、第1計測領域に対するM個の脈波元信号セグメントと同じ内容の信号となる。また、第4計測領域は、第3計測領域とは心臓からの距離の差がほとんどないといえるので、第4計測領域に対するM個の脈波元信号セグメントは、第3計測領域に対するM個の脈波元信号セグメントと同じ内容の信号となる。なお、実施の形態1において、「同じ」とは、完全に一致することに限定されず、許容される範囲内での「略一致」を含む。 As described above, when the difference in distance from the heart between the measurement regions ri(k) is large, a phase difference occurs in the luminance signals extracted from the measurement regions ri(k). On the other hand, when there is almost no difference in distance from the heart between the measurement regions ri(k), no phase difference occurs in the luminance signals extracted from the measurement regions ri(k). It can be said that the second measurement area has almost no difference in distance from the heart from the first measurement area, so the M pulse wave source signal segments for the second measurement area are the same as the M pulse wave source signals for the first measurement area. The signal has the same content as the original signal segment. Furthermore, it can be said that there is almost no difference in distance from the heart between the fourth measurement region and the third measurement region, so the M pulse wave source signal segments for the fourth measurement region are the same as the M pulse wave source signal segments for the third measurement region. The signal has the same content as the pulse wave source signal segment. Note that in the first embodiment, "the same" is not limited to completely matching, but includes "substantially matching" within a permissible range.
 セグメント生成部15は、各計測領域ri(k)に対して複数の脈波元信号セグメントを生成すると、生成した脈波元信号セグメントから軌跡行列を生成し、これを記憶部(図示省略)にスタックする。記憶部は、脈波推定装置1が参照可能な場所に備えられている。
 図4では、計測領域ri(k)は4つとしているので、セグメント生成部15は、各計測領域ri(k)に対してM個の脈波元信号セグメントを生成すると、M×4行の軌跡行列(=[p1-1,p1-2,p1-3,p1-4,p1-5,・・・,p1-M],・・・,[p4-1,p4-2,p4-3,p4-4,p4-5,・・・,p4-M])をスタックする(図4上、右の図参照)。
After generating a plurality of pulse wave source signal segments for each measurement region ri(k), the segment generation unit 15 generates a trajectory matrix from the generated pulse wave source signal segments, and stores this in a storage unit (not shown). Stack. The storage unit is provided at a location that can be referenced by the pulse wave estimating device 1.
In FIG. 4, there are four measurement regions ri(k), so when the segment generation unit 15 generates M pulse wave source signal segments for each measurement region ri(k), M×4 rows of pulse wave source signal segments are generated. Trajectory matrix (=[p1-1, p1-2, p1-3, p1-4, p1-5, ..., p1-M], ..., [p4-1, p4-2, p4-3 , p4-4, p4-5, ..., p4-M]) (see the upper right diagram in FIG. 4).
 なお、ここでは、計測領域ri(k)は4つとしたが、これは一例に過ぎず、計測領域ri(k)はN個設定され得る。セグメント生成部15は、M×N行の軌跡行列(=[p1-1,p1-2,p1-3,p1-4,p1-5,・・・,p1-M],・・・,[pN-1,pN-2,pN-3,pN-4,pN-5,・・・,pN-M])をスタックする。 Note that here, the number of measurement regions ri(k) is four, but this is only an example, and N measurement regions ri(k) may be set. The segment generation unit 15 generates a trajectory matrix of M×N rows (=[p1-1, p1-2, p1-3, p1-4, p1-5, ..., p1-M], ..., [ pN-1, pN-2, pN-3, pN-4, pN-5, ..., pN-M]).
 セグメント生成部15は、軌跡行列をスタックすると、その旨を脈波推定部16に通知する。 When the segment generation unit 15 stacks the trajectory matrices, it notifies the pulse wave estimation unit 16 of this fact.
 脈波推定部16は、セグメント生成部15から軌跡行列をスタックした旨が通知されると、計測領域ri(k)毎に生成された複数の脈波元信号セグメントに基づいて、被験者の脈波を推定する。
 詳細には、まず、信号分離部161が、複数の脈波元信号セグメントに基づいて複数の信号成分(以下「主成分」という。)を示す信号(以下「分離信号」という。)を生成する。具体的には、信号分離部161は、PCA又はICA等、一般的な信号分離技術を用いて、複数の主成分を分析し、分析した複数の主成分を示す分離信号を生成する。PCA又はICA等、一般的な信号分離技術を用いた信号成分の分析を行うことで、信号分離部161は、複数の脈波元信号セグメントから、脈波成分らしい成分とノイズ成分らしい成分とを分離する。
 なお、信号分離部161は、全ての計測領域ri(k)に対応する複数の脈波元信号セグメントに基づいて、複数の主成分を示す分離信号を生成する。
When the pulse wave estimation unit 16 is notified by the segment generation unit 15 that the trajectory matrices have been stacked, the pulse wave estimation unit 16 calculates the pulse wave of the subject based on the plurality of pulse wave source signal segments generated for each measurement region ri(k). Estimate.
Specifically, first, the signal separation unit 161 generates a signal (hereinafter referred to as a "separated signal") indicating a plurality of signal components (hereinafter referred to as "principal component") based on a plurality of pulse wave source signal segments. . Specifically, the signal separation unit 161 analyzes a plurality of principal components using a general signal separation technique such as PCA or ICA, and generates a separated signal indicating the analyzed plurality of principal components. By analyzing signal components using general signal separation techniques such as PCA or ICA, the signal separation unit 161 separates components that appear to be pulse wave components and components that appear to be noise components from a plurality of pulse wave source signal segments. To separate.
Note that the signal separation unit 161 generates separated signals indicating a plurality of principal components based on a plurality of pulse wave source signal segments corresponding to all measurement regions ri(k).
 ここで、図5は、実施の形態1において、信号分離部161が、複数の脈波元信号セグメントに基づいて主成分を分析し、分析した主成分を示す分離信号を生成するまでの流れについて説明するための図である。
 ここでは、計測領域ri(k)として、図4に示すような、第1計測領域、第2計測領域、第3計測領域、及び、第4計測領域の、4つの計測領域ri(k)が設定されているとする。
 図5において図上左側に示す、第1計測領域、第2計測領域、第3計測領域、及び、第4計測領域毎に複数の脈波元信号セグメントが生成されM×4行の軌跡行列がスタックされるまでの処理の流れは、セグメント生成部15によって行われる処理の流れであり、図4を用いて説明済みであるため、重複した説明を省略する。
 信号分離部161は、セグメント生成部15がスタックしたM×4行の軌跡行列に対し、PCA又はICA等、公知の一般的な信号分離技術を用いて、主成分の分析を行う。その結果、信号分離部161は、C(正の整数)個の主成分を分析し、分析したC個の主成分を示す分離信号を生成する。なお、一般的な信号分離技術では、できるだけ多くの情報を持つ主成分から順に生成される。すなわち、第1主成分c1、第2主成分c2、第3主成分c3、・・・、第C主成分cCは、情報量の多い順番となっている。
Here, FIG. 5 shows the flow in Embodiment 1 until the signal separation unit 161 analyzes a principal component based on a plurality of pulse wave source signal segments and generates a separated signal indicating the analyzed principal component. It is a figure for explaining.
Here, as the measurement area ri(k), there are four measurement areas ri(k) as shown in FIG. 4: the first measurement area, the second measurement area, the third measurement area, and the fourth measurement area. Assume that it is set.
In FIG. 5, a plurality of pulse wave source signal segments are generated for each of the first measurement region, second measurement region, third measurement region, and fourth measurement region shown on the left side of the figure, and a trajectory matrix of M×4 rows is generated. The flow of processing up to stacking is the flow of processing performed by the segment generation unit 15, and has already been explained using FIG. 4, so repeated explanation will be omitted.
The signal separation unit 161 performs principal component analysis on the M×4 row trajectory matrix stacked by the segment generation unit 15 using a known general signal separation technique such as PCA or ICA. As a result, the signal separation unit 161 analyzes C (positive integer) principal components and generates a separated signal indicating the analyzed C principal components. Note that in general signal separation techniques, main components are generated in order from the one with the most information possible. That is, the first principal component c1, the second principal component c2, the third principal component c3, . . . , the C-th principal component cC are arranged in order of increasing information amount.
 図6は、実施の形態1において、信号分離部161が生成する、主成分を示す分離信号の詳細の一例について説明するための図である。
 なお、図6は、図5に示す分離信号(=[c1,c2,c3,c4,c5,・・・,cC])、言い換えれば、図4に示す第1計測領域、第2計測領域、第3計測領域、及び、第4計測領域毎に生成された複数の脈波元信号セグメントに基づいて、信号分離部161が生成した分離信号(=[c1,c2,c3,c4,c5,・・・,cC])の詳細としている。
 各分離信号は、その分離信号が示す主成分が含んでいる情報量が分析された元となった、複数の脈波元信号セグメントの軌跡行列を含んでいる。図6に示す例でいうと、第1主成分c1~第C主成分cCを示す分離信号(=[c1,c2,c3,c4,c5,・・・,cC])は、第1計測領域の脈波元信号wi(t)から生成された脈波元信号セグメント(=p1-1,p1-2,p1-3,p1-4,p1-5,・・・,p1-M)、第2計測領域の脈波元信号wi(t)から生成された脈波元信号セグメント(=p2-1,p2-2,p2-3,p2-4,p2-5,・・・,p2-M)、第3計測領域の脈波元信号wi(t)から生成された脈波元信号セグメント(=p3-1,p3-2,p3-3,p3-4,p3-5,・・・,p3-M)、及び、第4計測領域の脈波元信号wi(t)から生成された脈波元信号セグメント(=p4-1,p4-2,p4-3,p4-4,p4-5,・・・,p4-M)に基づいて生成された分離信号である。よって、第1主成分c1~第C主成分cCを示す分離信号は、それぞれ、M×4行の軌跡行列(=[p1-1,p1-2,p1-3,p1-4,p1-5,・・・,p1-M],・・・,[p4-1,p4-2,p4-3,p4-4,p4-5,・・・,p4-M])を含んでいる。
FIG. 6 is a diagram for explaining an example of details of a separated signal indicating a main component, which is generated by the signal separation unit 161 in the first embodiment.
Note that FIG. 6 shows the separated signals (=[c1, c2, c3, c4, c5, ..., cC]) shown in FIG. 5, in other words, the first measurement area, the second measurement area shown in FIG. 4, The separated signal (=[c1, c2, c3, c4, c5, ..., cC]).
Each separated signal includes a locus matrix of a plurality of pulse wave source signal segments from which the amount of information contained in the principal components indicated by the separated signal is analyzed. In the example shown in FIG. 6, the separated signal (=[c1, c2, c3, c4, c5, ..., cC]) indicating the first principal component c1 to the C-th principal component cC is the first measurement area Pulse wave source signal segments (=p1-1, p1-2, p1-3, p1-4, p1-5, ..., p1-M) generated from the pulse wave source signal wi(t), Pulse wave source signal segments (=p2-1, p2-2, p2-3, p2-4, p2-5, ..., p2-M ), pulse wave source signal segments (=p3-1, p3-2, p3-3, p3-4, p3-5, ..., p3-M) and pulse wave source signal segments (=p4-1, p4-2, p4-3, p4-4, p4-5) generated from the pulse wave source signal wi(t) of the fourth measurement area , ..., p4-M). Therefore, the separated signals indicating the first principal component c1 to the C-th principal component cC are each formed by a trajectory matrix of M×4 rows (=[p1-1, p1-2, p1-3, p1-4, p1-5 , ..., p1-M], ..., [p4-1, p4-2, p4-3, p4-4, p4-5, ..., p4-M]).
 また、各分離信号(=[c1,c2,c3,c4,c5,・・・,cC])には、射影係数が付与されている。射影係数は、主成分の情報量に応じて付与される係数であり、公知の一般的な信号分離技術を用いた主成分の分析の過程で付与される。
 射影係数は、分離信号毎に、各計測領域ri(k)における各脈波元信号セグメントに対して付与される。例えば、図6に示す例でいうと、第1主成分c1に対しては、第1計測領域におけるM個の脈波元信号セグメントにそれぞれ対応する射影係数と、第2計測領域におけるM個の脈波元信号セグメントにそれぞれ対応する射影係数と、第3計測領域におけるM個の脈波元信号セグメントにそれぞれ対応する射影係数と、第4計測領域におけるM個の脈波元信号セグメントにそれぞれ対応する射影係数とが付与されている。
 例えば、図6において、第1主成分c1を示す分離信号に付与されている射影係数(q1,1-1)は、第1主成分c1の、第1計測領域における時間軸上で1番目の脈波元信号セグメントに対応する射影係数であることを示している。また、例えば、図6において、第1主成分c1を示す分離信号に付与されている射影係数(q1,4-M)は、第1主成分c1の、第4計測領域における時間軸上でM番目の脈波元信号セグメントに対応する射影係数であることを示している。また、例えば、図6において、第C主成分cCを示す分離信号に付与されている射影係数(qC,1-1)は、第C主成分cCの、第1計測領域における時間軸上で1番目の脈波元信号セグメントに対応する射影係数であることを示している。
Furthermore, a projection coefficient is assigned to each separated signal (=[c1, c2, c3, c4, c5, . . . , cC]). The projection coefficient is a coefficient assigned according to the information amount of the principal component, and is assigned in the process of analyzing the principal component using a known general signal separation technique.
A projection coefficient is assigned to each pulse wave source signal segment in each measurement region ri(k) for each separated signal. For example, in the example shown in FIG. 6, for the first principal component c1, projection coefficients corresponding to M pulse wave source signal segments in the first measurement region and M pulse wave source signal segments in the second measurement region are used. projection coefficients respectively corresponding to the pulse wave source signal segments; projection coefficients corresponding to each of the M pulse wave source signal segments in the third measurement area; and projection coefficients corresponding to each of the M pulse wave source signal segments in the fourth measurement area. A projection coefficient is given.
For example, in FIG. 6, the projection coefficient (q1, 1-1) given to the separated signal indicating the first principal component c1 is the projection coefficient (q1, 1-1) given to the separated signal indicating the first principal component c1. This indicates that the projection coefficient corresponds to the pulse wave source signal segment. For example, in FIG. 6, the projection coefficient (q1, 4-M) given to the separated signal indicating the first principal component c1 is M on the time axis in the fourth measurement region of the first principal component c1. This indicates that the projection coefficient corresponds to the th pulse wave source signal segment. For example, in FIG. 6, the projection coefficient (qC, 1-1) given to the separated signal indicating the C-th principal component cC is 1 on the time axis in the first measurement region of the C-th principal component cC. This indicates that the projection coefficient corresponds to the th pulse wave source signal segment.
 信号分離部161は、生成した複数の分離信号、詳細には、生成した複数の主成分を示す複数の分離信号に関する分離信号情報Sep(t)を、復元部162に出力する。
 分離信号情報Sep(t)は、脈波元信号情報W(t)に基づいて生成された複数(M×N個)の脈波元信号セグメントから生成されたC個の分離信号を含む。
The signal separation unit 161 outputs to the restoration unit 162 the plurality of generated separated signals, specifically, separated signal information Sep(t) regarding the plurality of separated signals indicating the generated plurality of principal components.
The separated signal information Sep(t) includes C separated signals generated from a plurality (M×N) of pulse wave source signal segments generated based on the pulse wave source signal information W(t).
 復元部162は、信号分離部161から出力された分離信号情報Sep(t)に基づいて、計測領域ri(k)毎の脈波元信号wi(t)を復元する。
 上述のとおり、分離信号情報Sep(t)に含まれている各分離信号には、各計測領域ri(k)の各脈波元信号wi(t)に基づいて生成された複数の脈波元信号セグメントが含まれているので、復元部162は、分離信号情報Sep(t)に含まれている複数の分離信号から計測領域ri(k)毎の脈波元信号wi(t)を復元できる。
The restoration unit 162 restores the pulse wave source signal wi(t) for each measurement region ri(k) based on the separated signal information Sep(t) output from the signal separation unit 161.
As described above, each separated signal included in the separated signal information Sep(t) includes a plurality of pulse wave sources generated based on each pulse wave source signal wi(t) of each measurement region ri(k). Since the signal segment is included, the restoring unit 162 can restore the pulse wave source signal wi(t) for each measurement region ri(k) from the plurality of separated signals included in the separated signal information Sep(t). .
 復元部162は、計測領域ri(k)毎の脈波元信号wi(t)を復元すると、復元した計測領域ri(k)毎の脈波元信号wi(t)を示す復元後脈波元信号情報RW(t)を生成する。
 復元後脈波元信号情報RW(t)は、復元された計測領域ri(k)毎の脈波元信号wi(t)(以下「復元後脈波元信号」という。)を含む。
 復元部162は、生成した復元後脈波元信号情報RW(t)を、推定部163に出力する。
When restoring the pulse wave source signal wi(t) for each measurement area ri(k), the restoration unit 162 generates a restored pulse wave source indicating the restored pulse wave source signal wi(t) for each measurement area ri(k). Generate signal information RW(t).
The restored pulse wave source signal information RW(t) includes the pulse wave source signal wi(t) (hereinafter referred to as "restored pulse wave source signal") for each restored measurement region ri(k).
The restoration unit 162 outputs the generated restored pulse wave source signal information RW(t) to the estimation unit 163.
 推定部163は、復元部162から出力された復元後脈波元信号情報RW(t)に基づき、被験者の脈波を推定する。
 推定部163は、推定した脈波を示す脈波情報である脈波推定結果P(t)を出力部17に出力する。
 脈波情報は、例えば、推定部163が推定した被験者の脈波の時系列データであってもよいし、被験者の脈拍数であってもよいし、被験者の脈拍間隔であってもよい。ここでは、説明を簡便にするため、脈波情報は、被験者の脈拍数(1分間当たりのはく数)とする。
The estimation unit 163 estimates the subject's pulse wave based on the restored pulse wave source signal information RW(t) output from the restoration unit 162.
Estimating section 163 outputs pulse wave estimation result P(t), which is pulse wave information indicating the estimated pulse wave, to output section 17 .
The pulse wave information may be, for example, time series data of the subject's pulse wave estimated by the estimation unit 163, the subject's pulse rate, or the subject's pulse interval. Here, in order to simplify the explanation, the pulse wave information is assumed to be the subject's pulse rate (number of pulses per minute).
 推定部163による被験者の脈波の推定方法について、具体的に説明する。
 推定部163は、例えば、各計測領域ri(k)の復元後脈波元信号のS/N比を求める。推定部163は、各計測領域ri(k)の復元後脈波元信号に対して求めたS/N比に基づく重み付けをした上で、各計測領域ri(k)に対応する復元後脈波元信号を合算した合成脈波信号情報D(t)を算出する。すなわち、推定部163は、全ての計測領域ri(k)に対して1つの合成脈波信号情報D(t)を算出する。S/N比に基づく重み付けが行われているため、合成脈波信号情報D(t)は、ノイズ成分が除去された、脈波成分らしい信号になっていると想定される。
 そして、推定部163は、合成脈波信号情報D(t)に対し、フーリエ変換を行い、所定の周波数範囲内での、周波数パワースペクトルにおけるピーク周波数を脈拍数として算出する。所定の周波数範囲は、人の心拍数の範囲を考慮して設定される。
A method for estimating a subject's pulse wave by the estimation unit 163 will be specifically described.
The estimation unit 163 calculates, for example, the S/N ratio of the restored pulse wave source signal of each measurement region ri(k). The estimation unit 163 weights the restored pulse wave source signal of each measurement region ri(k) based on the S/N ratio obtained, and then calculates the restored pulse wave signal corresponding to each measurement region ri(k). Composite pulse wave signal information D(t) is calculated by summing the original signals. That is, the estimation unit 163 calculates one composite pulse wave signal information D(t) for all measurement regions ri(k). Since weighting is performed based on the S/N ratio, it is assumed that the composite pulse wave signal information D(t) is a signal that is likely to be a pulse wave component with noise components removed.
Then, the estimation unit 163 performs Fourier transform on the composite pulse wave signal information D(t), and calculates the peak frequency in the frequency power spectrum within a predetermined frequency range as the pulse rate. The predetermined frequency range is set in consideration of the range of human heart rates.
 出力部17は、脈波推定部16から出力された脈波推定結果P(t)を、例えば、状態推定装置に出力する。
 なお、出力部17の機能は脈波推定部16に備えられていてもよい。
The output unit 17 outputs the pulse wave estimation result P(t) output from the pulse wave estimation unit 16 to, for example, a state estimation device.
Note that the function of the output section 17 may be provided in the pulse wave estimating section 16.
 実施の形態1に係る脈波推定装置1の動作について説明する。
 図7は、実施の形態1に係る脈波推定装置1の動作について説明するためのフローチャートである。
 脈波推定装置1は、例えば、車両の電源がオンにされると、車両の電源がオフにされるまで、図7のフローチャートで示すような処理を繰り返す。
The operation of the pulse wave estimating device 1 according to the first embodiment will be explained.
FIG. 7 is a flowchart for explaining the operation of the pulse wave estimating device 1 according to the first embodiment.
For example, when the vehicle is powered on, the pulse wave estimating device 1 repeats the process shown in the flowchart of FIG. 7 until the vehicle is powered off.
 撮像画像取得部11は、撮像装置3から、被験者を撮像した撮像画像を取得する(ステップST1)。
 撮像画像取得部11は、取得した撮像画像を、肌領域検出部12に出力する。
The captured image acquisition unit 11 acquires a captured image of the subject from the imaging device 3 (step ST1).
The captured image acquisition unit 11 outputs the acquired captured image to the skin area detection unit 12.
 肌領域検出部12は、ステップST1にて撮像画像取得部11が取得した撮像画像に含まれるフレームIm(k)から、被験者の肌領域を検出する(ステップST2)。
 肌領域検出部12は、生成した肌領域情報S(k)を、計測領域設定部13に出力する。
The skin area detection unit 12 detects the subject's skin area from the frame Im(k) included in the captured image acquired by the captured image acquisition unit 11 in step ST1 (step ST2).
The skin area detection unit 12 outputs the generated skin area information S(k) to the measurement area setting unit 13.
 計測領域設定部13は、ステップST1にて撮像画像取得部11が取得した撮像画像のフレームIm(k)と、ステップST2にて肌領域検出部12が出力した肌領域情報S(k)とに基づき、フレームIm(k)上の、肌領域情報S(k)で示される肌領域に対応する画像領域に、第1期間における時系列の輝度変化を示す脈波元信号wi(t)を抽出するための複数の計測領域ri(k)を設定する(ステップST3)。
 計測領域設定部13は、生成した計測領域情報R(k)を、脈波元信号抽出部14に出力する。
The measurement area setting unit 13 uses the frame Im(k) of the captured image acquired by the captured image acquisition unit 11 in step ST1 and the skin area information S(k) outputted by the skin area detection unit 12 in step ST2. Based on the image area corresponding to the skin area indicated by the skin area information S(k) on the frame Im(k), a pulse wave source signal wi(t) indicating a time-series luminance change in the first period is extracted. A plurality of measurement regions ri(k) are set for the measurement (step ST3).
The measurement area setting unit 13 outputs the generated measurement area information R(k) to the pulse wave source signal extraction unit 14.
 脈波元信号抽出部14は、ステップST1にて撮像画像取得部11が取得した撮像画像のフレームIm(k)と、ステップST3にて計測領域設定部13から出力された計測領域情報R(k)とに基づき、フレームIm(k)上の、計測領域情報R(k)で示される複数の計測領域ri(k)の各々から、第1期間における輝度変化を示す脈波元信号wi(t)を抽出する(ステップST4)。
 脈波元信号抽出部14は、各計測領域ri(k)における脈波元信号wi(t)を示す脈波元信号情報W(t)を生成する。
 脈波元信号抽出部14は、生成した脈波元信号情報W(t)を、セグメント生成部15に出力する。
The pulse wave source signal extraction unit 14 extracts the frame Im(k) of the captured image acquired by the captured image acquisition unit 11 in step ST1 and the measurement area information R(k) output from the measurement area setting unit 13 in step ST3. ), a pulse wave source signal wi(t ) is extracted (step ST4).
The pulse wave source signal extraction unit 14 generates pulse wave source signal information W(t) indicating the pulse wave source signal wi(t) in each measurement region ri(k).
The pulse wave source signal extraction section 14 outputs the generated pulse wave source signal information W(t) to the segment generation section 15.
 セグメント生成部15は、ステップST4にて脈波元信号抽出部14から出力された脈波元信号情報W(t)に基づき、計測領域ri(k)毎に、セグメント生成用条件に従って、第1期間における脈波元信号wi(t)のうちから、第2期間分の脈波元信号wi(t)を部分的に抽出した信号である脈波元信号セグメントを複数生成する(ステップST5)。
 セグメント生成部15は、各計測領域ri(k)に対して複数の脈波元信号セグメントを生成すると、生成した脈波元信号セグメントから軌跡行列を生成し、これを記憶部にスタックする。
 セグメント生成部15は、軌跡行列をスタックすると、その旨を脈波推定部16に通知する。
Based on the pulse wave source signal information W(t) outputted from the pulse wave source signal extractor 14 in step ST4, the segment generation section 15 generates the first segment generation condition for each measurement region ri(k). A plurality of pulse wave source signal segments, which are signals obtained by partially extracting the pulse wave source signal wi(t) for the second period from the pulse wave source signal wi(t) in the period, are generated (step ST5).
After generating a plurality of pulse wave source signal segments for each measurement region ri(k), the segment generation section 15 generates a trajectory matrix from the generated pulse wave source signal segments and stacks this in the storage section.
When the segment generation unit 15 stacks the trajectory matrices, it notifies the pulse wave estimation unit 16 of this fact.
 脈波推定部16は、ステップST5にてセグメント生成部15から軌跡行列をスタックした旨が通知されると、計測領域ri(k)毎に生成された複数の脈波元信号セグメントに基づいて、被験者の脈波を推定する脈波推定処理を実施する(ステップST6)。
 脈波推定部16は、推定した脈波を示す脈波情報である脈波推定結果P(t)を出力部17に出力する。
 出力部17は、脈波推定部16から出力された脈波推定結果P(t)を、例えば、状態推定装置に出力する。
When the pulse wave estimating unit 16 is notified in step ST5 that the trajectory matrices have been stacked from the segment generating unit 15, the pulse wave estimating unit 16 calculates the following based on the plurality of pulse wave source signal segments generated for each measurement region ri(k). Pulse wave estimation processing for estimating the subject's pulse wave is performed (step ST6).
Pulse wave estimation section 16 outputs pulse wave estimation result P(t), which is pulse wave information indicating the estimated pulse wave, to output section 17 .
The output unit 17 outputs the pulse wave estimation result P(t) output from the pulse wave estimation unit 16 to, for example, a state estimation device.
 図8は、図7のステップST6における、脈波推定部16による脈波推定処理の詳細を説明するためのフローチャートである。 FIG. 8 is a flowchart for explaining details of the pulse wave estimation process by the pulse wave estimation unit 16 in step ST6 of FIG. 7.
 信号分離部161は、複数の脈波元信号セグメントに基づいて複数の主成分を示す分離信号を生成する(ステップST11)。
 信号分離部161は、生成した複数の分離信号、詳細には、生成した複数の主成分を示す分離信号に関する分離信号情報Sep(t)を、復元部162に出力する。
The signal separation unit 161 generates separated signals indicating a plurality of principal components based on the plurality of pulse wave source signal segments (step ST11).
The signal separation section 161 outputs the plurality of generated separated signals, specifically, separated signal information Sep(t) regarding the generated separated signals indicating the plurality of generated principal components, to the restoration section 162.
 復元部162は、ステップST11にて信号分離部161から出力された分離信号情報Sep(t)に基づいて、計測領域ri(k)毎の脈波元信号wi(t)を復元する(ステップST12)。
 復元部162は、復元後脈波元信号情報RW(t)を、推定部163に出力する。
The restoring unit 162 restores the pulse wave source signal wi(t) for each measurement region ri(k) based on the separated signal information Sep(t) output from the signal separating unit 161 in step ST11 (step ST12 ).
The restoring unit 162 outputs the restored pulse wave source signal information RW(t) to the estimating unit 163.
 推定部163は、ステップST12にて復元部162から出力された復元後脈波元信号情報RW(t)に基づき、被験者の脈波を推定する(ステップST13)。
 推定部163は、推定した脈波を示す脈波情報である脈波推定結果P(t)を出力部17に出力する。
 出力部17は、脈波推定部16から出力された脈波推定結果P(t)を、例えば、状態推定装置に出力する。
The estimation unit 163 estimates the subject's pulse wave based on the restored pulse wave original signal information RW(t) output from the restoration unit 162 in step ST12 (step ST13).
Estimating section 163 outputs pulse wave estimation result P(t), which is pulse wave information indicating the estimated pulse wave, to output section 17 .
The output unit 17 outputs the pulse wave estimation result P(t) output from the pulse wave estimation unit 16 to, for example, a state estimation device.
 このように、実施の形態1に係る脈波推定装置1は、被験者が撮像された撮像画像から検出した撮像画像上の肌領域に対応する領域に複数の計測領域ri(k)を設定し、計測領域ri(k)毎に、当該計測領域ri(k)における、1回の脈波推定を行う期間である第1期間の輝度変化に基づき脈波元信号wi(t)を抽出する。脈波推定装置1は、計測領域ri(k)毎に、当該計測領域ri(k)から抽出した脈波元信号wi(t)に基づき、セグメント生成用条件に従って、第1期間における脈波元信号wi(t)のうちから第2期間分の脈波元信号wi(t)を部分的に抽出した脈波元信号セグメントを複数生成して、複数の脈波元信号セグメントに基づいて被験者の脈波を推定する。
 脈波推定装置1は、第1期間の脈波元信号wi(t)に基づいて第1期間よりも短い第2期間分の脈波元信号wi(t)を部分的に抽出した脈波元信号セグメントを複数生成することで、脈波元信号wi(t)を、位相が揃った対がある状態とできる。そして、脈波推定装置1は、位相が揃った対がある状態とした脈波元信号wi(t)、言い換えれば、複数の脈波元信号セグメントに基づいて被験者の脈波を推定するので、複数の脈波元信号wi(t)に対するICA又はPCA等の公知の一般的な信号分離技術を用いた脈波成分の分離を失敗しないようにでき、その結果、被験者の脈波を推定できる。このように、脈波推定装置1は、複数の計測領域ri(k)から抽出された輝度信号に位相差が生じていても、当該輝度信号に基づく被験者の脈波の推定を行うことができる。
In this way, the pulse wave estimation device 1 according to the first embodiment sets a plurality of measurement regions ri(k) in regions corresponding to skin regions on the captured image detected from the captured image of the subject, For each measurement region ri(k), a pulse wave source signal wi(t) is extracted based on the luminance change in a first period, which is a period during which pulse wave estimation is performed once, in the measurement region ri(k). The pulse wave estimating device 1 calculates the pulse wave source in the first period for each measurement area ri(k) based on the pulse wave source signal wi(t) extracted from the measurement area ri(k) and according to the segment generation conditions. A plurality of pulse wave source signal segments are generated by partially extracting the pulse wave source signal wi(t) for the second period from the signal wi(t), and the test subject's pulse wave source signal segment is determined based on the plurality of pulse wave source signal segments. Estimate the pulse wave.
The pulse wave estimating device 1 extracts a pulse wave source signal wi(t) for a second period shorter than the first period based on the pulse wave source signal wi(t) for the first period. By generating a plurality of signal segments, the pulse wave source signal wi(t) can be brought into a state in which there are pairs whose phases are aligned. Then, the pulse wave estimating device 1 estimates the subject's pulse wave based on the pulse wave source signal wi(t) in a state where there is a pair with the same phase, in other words, a plurality of pulse wave source signal segments. Separation of pulse wave components using a known general signal separation technique such as ICA or PCA for a plurality of pulse wave source signals wi(t) can be prevented from failing, and as a result, the pulse wave of the subject can be estimated. In this way, the pulse wave estimating device 1 can estimate the subject's pulse wave based on the luminance signals even if there is a phase difference in the luminance signals extracted from the plurality of measurement regions ri(k). .
 図9A,図9Bは、実施の形態1に係る脈波推定装置1のハードウェア構成の一例を示す図である。
 実施の形態1において、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17の機能は、処理回路101により実現される。すなわち、脈波推定装置1は、第1期間に取得された撮像画像における被験者の肌領域に対して設定された複数の計測領域ri(k)の輝度変化を示す脈波元信号wi(t)を部分的に抽出した複数の脈波元信号セグメントを生成し、独立成分分析又は主成分分析等の技術を用いて脈波元信号セグメントから脈波成分を分離し、分離した脈波成分から被験者の脈波を推定する制御を行うための処理回路101を備える。
 処理回路101は、図9Aに示すように専用のハードウェアであっても、図9Bに示すようにメモリに格納されるプログラムを実行するプロセッサ104であってもよい。
9A and 9B are diagrams showing an example of the hardware configuration of the pulse wave estimating device 1 according to the first embodiment.
In the first embodiment, the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output The functions of the unit 17 are realized by the processing circuit 101. That is, the pulse wave estimating device 1 generates a pulse wave source signal wi(t) indicating the brightness change of a plurality of measurement regions ri(k) set for the subject's skin region in the captured image acquired in the first period. A plurality of pulse wave source signal segments are generated by partially extracting the pulse wave signal, and pulse wave components are separated from the pulse wave source signal segments using techniques such as independent component analysis or principal component analysis. A processing circuit 101 is provided to perform control for estimating the pulse wave of the user.
The processing circuit 101 may be dedicated hardware as shown in FIG. 9A, or may be a processor 104 that executes a program stored in memory as shown in FIG. 9B.
 処理回路101が専用のハードウェアである場合、処理回路101は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。 When the processing circuit 101 is dedicated hardware, the processing circuit 101 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Circuit). Gate Array), or a combination of these.
 処理回路がプロセッサ104の場合、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17の機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、メモリ105に記憶される。プロセッサ104は、メモリ105に記憶されたプログラムを読み出して実行することにより、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17の機能を実行する。すなわち、脈波推定装置1は、プロセッサ104により実行されるときに、上述の図7のステップST1~ステップST6が結果的に実行されることになるプログラムを格納するためのメモリ105を備える。また、メモリ105に記憶されたプログラムは、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17の処理の手順又は方法をコンピュータに実行させるものであるともいえる。ここで、メモリ105とは、例えば、RAM、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等が該当する。 When the processing circuit is the processor 104, the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, and the pulse wave estimation unit 16. , the functions of the output unit 17 are realized by software, firmware, or a combination of software and firmware. Software or firmware is written as a program and stored in memory 105. The processor 104 reads out and executes the program stored in the memory 105, thereby controlling the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, and the segment The functions of the generation unit 15, pulse wave estimation unit 16, and output unit 17 are executed. That is, the pulse wave estimating device 1 includes a memory 105 for storing a program that, when executed by the processor 104, results in the execution of steps ST1 to ST6 in FIG. Further, the programs stored in the memory 105 include the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, and the pulse wave estimation unit 12. It can also be said that the computer is caused to execute the processing procedure or method of the unit 16 and the output unit 17. Here, the memory 105 includes, for example, RAM, ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (Electrically EEPROM). Nonvolatile or volatile such as rasable Programmable Read-Only Memory) This includes semiconductor memory, magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Discs), and the like.
 なお、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。例えば、撮像画像取得部11と出力部17については専用のハードウェアとしての処理回路101でその機能を実現し、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16についてはプロセッサ104がメモリ105に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。
 図示しない記憶部は、例えば、メモリ105で構成される。
 また、脈波推定装置1は、撮像装置3等の装置と、有線通信又は無線通信を行う入力インタフェース装置102及び出力インタフェース装置103を備える。
Note that the functions of the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output unit 17 A portion of the information may be realized using dedicated hardware, and a portion may be realized using software or firmware. For example, the functions of the captured image acquisition section 11 and the output section 17 are realized by a processing circuit 101 as dedicated hardware, and the functions of the captured image acquisition section 11 and the output section 17 are realized by a processing circuit 101 as dedicated hardware, and a skin region detection section 12, a measurement region setting section 13, and a pulse wave source signal extraction section 14. The functions of the segment generating section 15 and the pulse wave estimating section 16 can be realized by the processor 104 reading and executing programs stored in the memory 105.
A storage unit (not shown) is configured by, for example, the memory 105.
The pulse wave estimating device 1 also includes a device such as an imaging device 3, and an input interface device 102 and an output interface device 103 that perform wired or wireless communication.
 なお、以上の実施の形態1では、被験者は車両のドライバとしたが、これは一例に過ぎない。被験者は、車両のドライバ以外の乗員としてもよい。 Note that in Embodiment 1 above, the subject was a vehicle driver, but this is only an example. The subject may be a passenger other than the driver of the vehicle.
 また、以上の実施の形態1では、脈波推定装置1は車載装置とし、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17は、車載装置に備えられていた。
 これに限らず、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17のうち、一部が車両の車載装置に搭載され、その他が当該車載装置とネットワークを介して接続されるサーバに備えられて、車載装置とサーバとでシステムを構成してもよい。
 また、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17が全部サーバに備えられてもよい。
Further, in the first embodiment described above, the pulse wave estimation device 1 is an in-vehicle device, and includes a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, The segment generation section 15, the pulse wave estimation section 16, and the output section 17 were included in the on-vehicle device.
The invention is not limited to this, but the captured image acquisition section 11, the skin region detection section 12, the measurement region setting section 13, the pulse wave source signal extraction section 14, the segment generation section 15, the pulse wave estimation section 16, and the output section Of the 17, a part may be installed in an on-vehicle device of a vehicle, and the other part may be provided in a server connected to the on-vehicle device via a network, thereby configuring a system with the on-vehicle device and the server.
In addition, the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output unit 17 are all It may be provided in the server.
 また、以上の実施の形態1に係る脈波推定装置1は、車両に搭載される車載装置に限らず、例えば、家電機器に適用することもできる。また、被験者は、車両の乗員に限らず、様々な人とできる。
 具体例を挙げると、脈波推定装置1は、住居においてリビングに設置されているテレビに搭載されてもよい。この場合、被験者は、住居の住人等のユーザである。脈波推定装置1は、テレビに搭載されている撮像装置が撮像した撮像画像に基づき、ユーザの脈波を推定する。
Further, the pulse wave estimating device 1 according to the first embodiment described above is not limited to an in-vehicle device mounted on a vehicle, but can also be applied to, for example, home appliances. Moreover, the test subject is not limited to the occupant of the vehicle, but can be a variety of other people.
To give a specific example, the pulse wave estimating device 1 may be installed in a television set in the living room of a residence. In this case, the subject is a user, such as a resident of the residence. The pulse wave estimating device 1 estimates a user's pulse wave based on a captured image captured by an imaging device installed in a television.
 以上のように、実施の形態1に係る脈波推定装置1は、人(被験者)を撮像した撮像画像を取得する撮像画像取得部11と、撮像画像から人(被験者)の肌領域を検出する肌領域検出部12と、撮像画像上の肌領域に対応する領域に、第1期間における時系列の輝度変化を示す脈波元信号wi(t)を抽出するための複数の計測領域ri(k)を設定する計測領域設定部13と、計測領域ri(k)毎に、当該計測領域ri(k)における第1期間の輝度変化に基づき、脈波元信号wi(t)を抽出する脈波元信号抽出部14と、計測領域ri(k)毎に、計測領域ri(k)から抽出された脈波元信号wi(t)に基づき、セグメント生成用条件に従って、第1期間における脈波元信号wi(t)のうちから第2期間分の脈波元信号wi(t)を部分的に抽出した脈波元信号セグメントを複数生成するセグメント生成部15と、計測領域ri(k)毎に生成された複数の脈波元信号セグメントに基づいて人(被験者)の脈波を推定する脈波推定部16とを備えるように構成した。そのため、脈波推定装置1は、複数の計測領域ri(k)から抽出された輝度信号に位相差が生じていても、当該輝度信号に基づく人の脈波の推定を行うことができる。 As described above, the pulse wave estimation device 1 according to the first embodiment includes the captured image acquisition unit 11 that acquires a captured image of a person (subject), and the captured image acquisition unit 11 that detects the skin area of the person (subject) from the captured image. The skin area detection unit 12 and a plurality of measurement areas ri(k) for extracting a pulse wave source signal wi(t) indicating a time-series luminance change in the first period are provided in areas corresponding to skin areas on the captured image. ), and a pulse wave generator that extracts a pulse wave source signal wi(t) based on the luminance change in the first period in the measurement region ri(k) for each measurement region ri(k). The original signal extraction unit 14 generates a pulse wave source in the first period based on the pulse wave source signal wi(t) extracted from the measurement area ri(k) for each measurement area ri(k) according to the segment generation conditions. a segment generation unit 15 that generates a plurality of pulse wave source signal segments by partially extracting the pulse wave source signal wi(t) for the second period from the signal wi(t); The pulse wave estimation unit 16 estimates the pulse wave of a person (subject) based on the plurality of generated pulse wave source signal segments. Therefore, the pulse wave estimating device 1 can estimate a person's pulse wave based on the luminance signals even if there is a phase difference in the luminance signals extracted from the plurality of measurement regions ri(k).
実施の形態2.
 実施の形態1では、脈波元信号セグメントの生成に用いられる第2期間の長さは、一律としていた。
 実施の形態2では、脈波元信号セグメントの生成に用いられる第2期間の長さを調整する実施の形態について説明する。
 なお、以下の実施の形態2でも、実施の形態1同様、脈波推定装置は車両に搭載されており、被験者は車両のドライバであることを想定する。
Embodiment 2.
In the first embodiment, the length of the second period used to generate the pulse wave source signal segment is uniform.
In Embodiment 2, an embodiment will be described in which the length of the second period used to generate the pulse wave source signal segment is adjusted.
In addition, in the following Embodiment 2, similarly to Embodiment 1, it is assumed that the pulse wave estimating device is installed in a vehicle, and the subject is the driver of the vehicle.
 図10は、実施の形態2に係る脈波推定装置1aの構成例を示す図である。
 実施の形態2に係る脈波推定装置1aの構成について、実施の形態1にて図1を用いて説明した脈波推定装置1と同じ構成には、同じ符号を付して重複した説明を省略する。
 実施の形態2に係る脈波推定装置1aは、実施の形態1に係る脈波推定装置1とは、パラメータ設定部18を備えた点が異なる。
FIG. 10 is a diagram showing a configuration example of a pulse wave estimating device 1a according to the second embodiment.
Regarding the configuration of the pulse wave estimating device 1a according to Embodiment 2, the same components as the pulse wave estimating device 1 described in Embodiment 1 using FIG. do.
The pulse wave estimating device 1a according to the second embodiment differs from the pulse wave estimating device 1 according to the first embodiment in that it includes a parameter setting section 18.
 パラメータ設定部18は、脈波推定部16が推定した被験者の脈波に基づいて、第2期間の長さを示す情報を少なくとも含むセグメントパラメータを設定する。
 詳細には、パラメータ設定部18は、脈波推定部16が推定した被験者の脈波に基づいて、第2期間が被験者の脈波の1周期分の時間となるよう第2期間の長さを算出し、算出した第2期間の長さを示す情報を含むセグメントパラメータを設定する。
 なお、第2期間と被験者の脈波の1周期分の時間とが同じでなくてもよく、パラメータ設定部18は、第2期間が、被験者の脈波の1周期分の時間よりも長くなるよう、第2期間を算出していればよい。
 なお、パラメータ設定部18は、第2期間の長さを示す情報の他に、例えば、第2期間の部分的な重なりの大きさに関する情報をセグメントパラメータとして設定する。パラメータ設定部18は、処理負荷における観点から、脈波元信号セグメントの長さに応じて脈波元信号セグメント同士の重なりの大きさを可変に設定することができる。
 パラメータ設定部18は、設定したセグメントパラメータをセグメント生成部15に出力する。
The parameter setting section 18 sets a segment parameter that includes at least information indicating the length of the second period, based on the subject's pulse wave estimated by the pulse wave estimating section 16.
Specifically, the parameter setting unit 18 sets the length of the second period based on the pulse wave of the subject estimated by the pulse wave estimating unit 16 so that the second period corresponds to one period of the subject's pulse wave. A segment parameter including information indicating the calculated length of the second period is set.
Note that the second period does not have to be the same as the time for one cycle of the subject's pulse wave, and the parameter setting unit 18 sets the second period to be longer than the time for one cycle of the subject's pulse wave. Therefore, it is sufficient to calculate the second period.
In addition to the information indicating the length of the second period, the parameter setting unit 18 sets, for example, information regarding the size of partial overlap of the second period as a segment parameter. From the viewpoint of processing load, the parameter setting unit 18 can variably set the amount of overlap between pulse wave source signal segments depending on the length of the pulse wave source signal segments.
The parameter setting section 18 outputs the set segment parameters to the segment generation section 15.
 実施の形態2では、推定部163は、推定した脈波を示す脈波情報である脈波推定結果P(t)を、出力部17及びパラメータ設定部18に出力する。
 また、実施の形態2では、セグメント生成部15は、セグメントパラメータに基づいて、パラメータ設定部18が設定した第2期間を用いて、脈波元信号セグメントを生成する。
 具体的には、セグメント生成部15は、セグメントパラメータに基づいて、パラメータ設定部18が設定した第2期間の長さを、脈波元信号セグメントの生成に用いる第2期間の長さに設定した上で、計測領域ri(k)毎に、セグメント生成用条件に従って、第1期間における脈波元信号wi(t)のうちから第2期間分の脈波元信号wi(t)を部分的に抽出した脈波元信号セグメントを複数生成する。
In the second embodiment, the estimation unit 163 outputs the pulse wave estimation result P(t), which is pulse wave information indicating the estimated pulse wave, to the output unit 17 and the parameter setting unit 18.
Furthermore, in the second embodiment, the segment generation unit 15 generates the pulse wave source signal segment using the second period set by the parameter setting unit 18 based on the segment parameters.
Specifically, based on the segment parameters, the segment generation unit 15 sets the length of the second period set by the parameter setting unit 18 to the length of the second period used to generate the pulse wave source signal segment. Above, for each measurement region ri(k), the pulse wave source signal wi(t) for the second period is partially extracted from the pulse wave source signal wi(t) for the first period according to the segment generation conditions. Generate multiple extracted pulse wave source signal segments.
 なお、パラメータ設定部18が設定した第2期間の長さの情報は、パラメータ設定部18がセグメントパラメータを設定した以降の、セグメント生成部15による脈波元信号セグメントの生成で用いられることになる。よって、脈波推定装置1aによる被験者の脈波推定の開始直後等、セグメント生成部15が脈波元信号セグメントを生成する際に、パラメータ設定部18からセグメントパラメータを得られていない場合もあり得る。この場合、セグメント生成部15は、例えば、管理者等によって予め設定され、セグメント生成部15が保持している、第2期間の初期値を用いて、脈波元信号セグメントを生成すればよい。
 以降、パラメータ設定部18がセグメントパラメータ設定のための情報、言い換えれば、脈波推定結果を得られていない場合は、パラメータ設定部18は、過去に設定済みのセグメントパラメータのうち、直近で設定したセグメントパラメータを継続して設定する、または、第2の期間を初期値にリセットする。
Note that the information on the length of the second period set by the parameter setting unit 18 will be used in the generation of pulse wave source signal segments by the segment generation unit 15 after the parameter setting unit 18 sets the segment parameters. . Therefore, when the segment generation unit 15 generates the pulse wave source signal segment, such as immediately after the pulse wave estimation device 1a starts estimating the subject's pulse wave, there may be cases where the segment parameters are not obtained from the parameter setting unit 18. . In this case, the segment generation unit 15 may generate the pulse wave source signal segment using, for example, the initial value of the second period that is set in advance by the administrator or the like and held by the segment generation unit 15.
Thereafter, if the parameter setting unit 18 has not obtained information for segment parameter setting, in other words, pulse wave estimation results, the parameter setting unit 18 uses the most recently set segment parameters among the previously set segment parameters. Continuously set the segment parameters or reset the second period to the initial value.
 実施の形態2に係る脈波推定装置1aの動作について説明する。
 図11は、実施の形態2に係る脈波推定装置1aの動作について説明するためのフローチャートである。
 脈波推定装置1aは、例えば、車両の電源がオンにされると、車両の電源がオフにされるまで、図11のフローチャートで示すような処理を繰り返す。
 図11において、ステップST21~ステップST24、及び、ステップST28~ステップST29の具体的な動作は、それぞれ、実施の形態1にて説明済みの、図7のステップST1~ステップST6の具体的な動作と同様であるため、重複した説明を省略する。
The operation of the pulse wave estimating device 1a according to the second embodiment will be explained.
FIG. 11 is a flowchart for explaining the operation of the pulse wave estimating device 1a according to the second embodiment.
For example, when the vehicle is powered on, the pulse wave estimating device 1a repeats the process shown in the flowchart of FIG. 11 until the vehicle is powered off.
In FIG. 11, the specific operations of steps ST21 to ST24 and steps ST28 to ST29 are respectively the same as the specific operations of steps ST1 to ST6 in FIG. 7, which have already been explained in the first embodiment. Since they are similar, redundant explanation will be omitted.
 セグメント生成部15は、ステップST24にて脈波元信号抽出部14から脈波元信号情報W(t)が出力されると、パラメータ設定部18によってセグメントパラメータが設定済みか、言い換えれば、パラメータ設定部18からセグメントパラメータが出力されたかを判定する(ステップST25)。 When the pulse wave source signal information W(t) is output from the pulse wave source signal extraction section 14 in step ST24, the segment generation section 15 determines whether the segment parameters have been set by the parameter setting section 18, or in other words, whether the segment parameters have been set by the parameter setting section 18, or in other words, the parameter setting It is determined whether segment parameters have been output from the unit 18 (step ST25).
 セグメント生成部15によってセグメントパラメータが設定済みであると判定した場合(ステップST25の“YES”の場合)、セグメント生成部15は、セグメントパラメータに基づいて、パラメータ設定部18が設定した第2期間の長さを、脈波元信号セグメントの生成に用いる第2期間の長さに設定する(ステップST26)。 If the segment generation unit 15 determines that the segment parameters have been set (“YES” in step ST25), the segment generation unit 15 sets the second period set by the parameter setting unit 18 based on the segment parameters. The length is set to the length of the second period used to generate the pulse wave source signal segment (step ST26).
 セグメント生成部15によってセグメントパラメータが設定済みではないと判定した場合(ステップST25の“NO”の場合)、セグメント生成部15は、第2期間に初期値を設定する(ステップST27)。 If the segment generation unit 15 determines that the segment parameters have not been set (“NO” in step ST25), the segment generation unit 15 sets the initial value in the second period (step ST27).
 ステップST29にて脈波推定部16が被験者の脈波を推定すると、パラメータ設定部18は、脈波推定部16が推定した被験者の脈波に基づいて、第2期間の長さを示す情報を含むセグメントパラメータを設定する(ステップST30)。 When the pulse wave estimating section 16 estimates the subject's pulse wave in step ST29, the parameter setting section 18 sets information indicating the length of the second period based on the subject's pulse wave estimated by the pulse wave estimating section 16. The segment parameters to be included are set (step ST30).
 このように、脈波推定装置1aは、脈波推定部16が推定した被験者の脈波に基づいて第2期間を算出し、当該第2期間の長さを示す情報を含むセグメントパラメータを設定すると、設定したセグメントパラメータに従って第2期間を設定する。そして、脈波推定装置1aは、セグメントパラメータに従って設定した第2期間を用いて、第1期間における脈波元信号wi(t)のうちから第2期間分の脈波元信号wi(t)を部分的に抽出した脈波元信号セグメントを複数生成する。
 脈波の推定にあたっては、繰り返しあらわれる被験者の脈波成分を捉える必要がある。しかし、被験者の脈波の周期は、被験者の状態、又は、被験者がどの人か等によって変わってくる。例えば、同じ被験者であっても当該被験者の状態に変化が発生した場合、又は、被験者の変更があった場合、脈波推定装置1aが推定しようとする被験者の脈波の1周期分の時間が変わる。例えば、被験者の脈拍数が60bpm(beat per minitues)であれば被験者の脈波の1周期分の時間は1秒となるし、被験者の脈拍数が100bpmであれば被験者の脈波の1周期分の時間は0.6秒となる。
 実施の形態2に係る脈波推定装置1aは、上述のとおり、被験者の脈波の推定のための脈波元信号セグメントの生成に用いられる第2期間の長さを、推定済みの被験者の脈波の周期を考慮した長さに調整可能とする。これにより、脈波推定装置1aは、被験者の脈波の周期を考慮せずに設定された第2期間を用いて生成された脈波元信号セグメントから被験者の脈波を推定する場合よりも、精度よく被験者の脈波を推定することができる。
In this way, the pulse wave estimating device 1a calculates the second period based on the subject's pulse wave estimated by the pulse wave estimation unit 16, and sets a segment parameter including information indicating the length of the second period. , and setting a second period according to the set segment parameters. Then, the pulse wave estimating device 1a extracts the pulse wave source signal wi(t) for the second period from among the pulse wave source signals wi(t) in the first period using the second period set according to the segment parameters. A plurality of partially extracted pulse wave source signal segments are generated.
When estimating pulse waves, it is necessary to capture the subject's pulse wave components that repeatedly appear. However, the period of the subject's pulse wave varies depending on the subject's condition or the subject. For example, if a change occurs in the condition of the subject even if it is the same subject, or if there is a change in the subject, the pulse wave estimating device 1a will take one cycle of the subject's pulse wave to estimate. change. For example, if the subject's pulse rate is 60 bpm (beats per minute), the time for one cycle of the subject's pulse wave is 1 second, and if the subject's pulse rate is 100 bpm, the time for one cycle of the subject's pulse wave is 1 second. The time is 0.6 seconds.
As described above, the pulse wave estimating device 1a according to the second embodiment determines the length of the second period used to generate the pulse wave source signal segment for estimating the pulse wave of the subject based on the already estimated pulse wave of the subject. The length can be adjusted in consideration of the wave period. As a result, the pulse wave estimating device 1a can estimate the pulse wave of the subject from the pulse wave source signal segment generated using the second period set without considering the cycle of the subject's pulse wave. The pulse wave of the subject can be estimated with high accuracy.
 なお、以上の実施の形態2では、脈波推定装置1aが被験者の脈波の推定を開始すると、第1期間を数回繰り返す程度のある程度の期間、被験者の脈波を推定し続け、パラメータ設定部18は、1つ前の第1期間にて推定部163が推定した被験者の脈波に基づいて第2期間を算出することを想定しているが、これは一例に過ぎない。例えば、脈波推定装置1aが被験者の脈波の推定を開始するよりも前に脈波推定装置1aが推定していた過去の被験者の脈波推定結果P(t)が記憶部に蓄積されているようにし、パラメータ設定部18は、記憶部に蓄積されている脈波推定結果P(t)に基づいて第2期間を算出可能としてもよい。
 また、例えば、被験者が、被験者の平均的な脈波に関する情報を記憶部に登録することを可能とし、パラメータ設定部18は、記憶部に登録された被験者の平均的な脈波に関する情報に基づいて第2期間を算出可能としてもよい。
 例えば、パラメータ設定部18は、記憶部を参照して得られる脈波推定結果P(t)又は被験者の平均的な脈波と、推定部163が推定した被験者の脈波とから、第2期間を算出してもよい。
In the second embodiment described above, once the pulse wave estimation device 1a starts estimating the pulse wave of the subject, it continues to estimate the pulse wave of the subject for a certain period of time, such as repeating the first period several times, and then sets the parameters. Although the unit 18 assumes that the second period is calculated based on the subject's pulse wave estimated by the estimation unit 163 in the previous first period, this is only an example. For example, before the pulse wave estimating device 1a starts estimating the subject's pulse wave, the past pulse wave estimation result P(t) of the subject estimated by the pulse wave estimating device 1a is accumulated in the storage unit. The parameter setting unit 18 may be configured to be able to calculate the second period based on the pulse wave estimation result P(t) stored in the storage unit.
Further, for example, the subject may be able to register information regarding the subject's average pulse wave in the storage unit, and the parameter setting unit 18 may be configured based on the information regarding the subject's average pulse wave registered in the storage unit. It may also be possible to calculate the second period.
For example, the parameter setting unit 18 calculates the second period based on the pulse wave estimation result P(t) obtained by referring to the storage unit or the subject's average pulse wave and the subject's pulse wave estimated by the estimation unit 163. may be calculated.
 実施の形態2に係る脈波推定装置1aのハードウェア構成は、実施の形態1において図9A及び図9Bを用いて説明した脈波推定装置1のハードウェア構成と同様であるため、図示を省略する。
 実施の形態2において、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、パラメータ設定部18の機能は、処理回路101により実現される。すなわち、脈波推定装置1aは、第1期間に取得された撮像画像における被験者の肌領域に対して設定された複数の計測領域ri(k)の輝度変化を示す脈波元信号wi(t)を部分的に抽出した複数の脈波元信号セグメントを生成し、独立成分分析又は主成分分析等の技術を用いて脈波元信号セグメントから脈波成分を分離し、分離した脈波成分から被験者の脈波を推定する制御を行うための処理回路101を備える。
The hardware configuration of the pulse wave estimating device 1a according to the second embodiment is the same as the hardware configuration of the pulse wave estimating device 1 described using FIGS. 9A and 9B in the first embodiment, so illustration thereof is omitted. do.
In the second embodiment, the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output The functions of the section 17 and the parameter setting section 18 are realized by the processing circuit 101. That is, the pulse wave estimating device 1a generates a pulse wave source signal wi(t) indicating the luminance change of a plurality of measurement regions ri(k) set for the subject's skin region in the captured image acquired in the first period. A plurality of pulse wave source signal segments are generated by partially extracting the pulse wave signal, and pulse wave components are separated from the pulse wave source signal segments using techniques such as independent component analysis or principal component analysis. A processing circuit 101 is provided to perform control for estimating the pulse wave of the user.
 処理回路101は、メモリ105に記憶されたプログラムを読み出して実行することにより、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、パラメータ設定部18の機能を実行する。すなわち、脈波推定装置1aは、処理回路101により実行されるときに、上述の図11のステップST21~ステップST30が結果的に実行されることになるプログラムを格納するためのメモリ105を備える。また、メモリ105に記憶されたプログラムは、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、パラメータ設定部18の処理の手順又は方法をコンピュータに実行させるものであるともいえる。
 図示しない記憶部は、例えば、メモリ105で構成される。
 また、脈波推定装置1aは、撮像装置3等の装置と、有線通信又は無線通信を行う入力インタフェース装置102及び出力インタフェース装置103を備える。
The processing circuit 101 reads out and executes a program stored in the memory 105, thereby controlling the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, The functions of the segment generation section 15, pulse wave estimation section 16, output section 17, and parameter setting section 18 are executed. That is, the pulse wave estimating device 1a includes a memory 105 for storing a program that, when executed by the processing circuit 101, results in the execution of steps ST21 to ST30 in FIG. 11 described above. Further, the programs stored in the memory 105 include the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, and the pulse wave estimation unit 12. It can also be said that the computer is caused to execute the processing procedure or method of the section 16, the output section 17, and the parameter setting section 18.
A storage unit (not shown) is configured by, for example, the memory 105.
The pulse wave estimating device 1a also includes a device such as the imaging device 3, and an input interface device 102 and an output interface device 103 that perform wired or wireless communication.
 なお、以上の実施の形態2では、被験者は車両のドライバとしたが、これは一例に過ぎない。被験者は、車両のドライバ以外の乗員としてもよい。 Note that in the second embodiment above, the test subject is a vehicle driver, but this is only an example. The subject may be a passenger other than the driver of the vehicle.
 また、以上の実施の形態2では、脈波推定装置1aは車載装置とし、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、パラメータ設定部18は、車載装置に備えられていた。
 これに限らず、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、パラメータ設定部18のうち、一部が車両の車載装置に搭載され、その他が当該車載装置とネットワークを介して接続されるサーバに備えられて、車載装置とサーバとでシステムを構成してもよい。
 また、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、パラメータ設定部18が全部サーバに備えられてもよい。
Further, in the second embodiment described above, the pulse wave estimation device 1a is an in-vehicle device, and includes a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, The segment generation section 15, the pulse wave estimation section 16, the output section 17, and the parameter setting section 18 were included in the on-vehicle device.
The invention is not limited to this, but the captured image acquisition section 11, the skin region detection section 12, the measurement region setting section 13, the pulse wave source signal extraction section 14, the segment generation section 15, the pulse wave estimation section 16, and the output section 17 and the parameter setting unit 18, part of which is installed in the on-vehicle device of the vehicle, and the other part is provided in a server connected to the in-vehicle device via a network, so that the in-vehicle device and the server constitute a system. It's okay.
Further, a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, a segment generation section 15, a pulse wave estimation section 16, an output section 17, The entire parameter setting unit 18 may be provided in the server.
 また、以上の実施の形態2に係る脈波推定装置1aは、車両に搭載される車載装置に限らず、例えば、家電機器に適用することもできる。また、被験者は、車両の乗員に限らず、様々な人とできる。 Further, the pulse wave estimating device 1a according to the second embodiment described above is not limited to an in-vehicle device mounted on a vehicle, but can also be applied to, for example, home appliances. Moreover, the test subject is not limited to the occupant of the vehicle, but can be a variety of other people.
 以上のように、実施の形態2によれば、脈波推定装置1aは、実施の形態1に係る脈波推定装置1の構成に加え、脈波推定部16が推定した人(被験者)の脈波に基づいて第2期間を算出し、当該第2期間の長さを示す情報を含むセグメントパラメータを設定するパラメータ設定部18を備え、セグメント生成部15は、セグメントパラメータに従って第2期間を設定するように構成した。そのため、脈波推定装置1aは、人の脈波の周期を考慮せずに設定された第2期間を用いて生成された脈波元信号セグメントから人の脈波を推定する場合よりも精度よく人の脈波を推定することができる。 As described above, according to the second embodiment, the pulse wave estimating device 1a has the configuration of the pulse wave estimating device 1 according to the first embodiment, and also includes the pulse wave estimating device 1a that has the pulse wave estimating device 1a according to the first embodiment. The segment generation unit 15 includes a parameter setting unit 18 that calculates a second period based on the wave and sets a segment parameter including information indicating the length of the second period, and a segment generation unit 15 that sets the second period according to the segment parameter. It was configured as follows. Therefore, the pulse wave estimating device 1a is more accurate than when estimating a person's pulse wave from the pulse wave source signal segment generated using the second period set without considering the period of the person's pulse wave. A person's pulse wave can be estimated.
 詳細には、脈波推定装置1aにおいて、パラメータ設定部18は、第2期間が、脈波推定部16が推定した人(被験者)の脈波の1周期分の時間となるよう、第2期間を算出し、当該第2期間の長さを示す情報を含むセグメントパラメータを設定する。そして、セグメント生成部15は、セグメントパラメータに従って第2期間を設定する。そのため、脈波推定装置1aは、人の脈波の周期を考慮せずに設定された第2期間を用いて生成された脈波元信号セグメントから人の脈波を推定する場合よりも精度よく人の脈波を推定することができる。 Specifically, in the pulse wave estimating device 1a, the parameter setting unit 18 sets the second period so that the second period corresponds to one cycle of the pulse wave of the person (subject) estimated by the pulse wave estimating unit 16. is calculated, and a segment parameter including information indicating the length of the second period is set. Then, the segment generation unit 15 sets the second period according to the segment parameters. Therefore, the pulse wave estimating device 1a is more accurate than when estimating a person's pulse wave from the pulse wave source signal segment generated using the second period set without considering the period of the person's pulse wave. A person's pulse wave can be estimated.
実施の形態3.
 実施の形態1では、脈波推定装置は、生成した複数の脈波元信号セグメントをそのまま、被験者の脈波の推定に用いるようにしていた。
 実施の形態3では、複数の脈波元信号セグメントに重み付けを行った上で、被験者の脈波の推定を行う実施の形態について説明する。
 なお、以下の実施の形態3でも、実施の形態1同様、脈波推定装置は車両に搭載されており、被験者は車両のドライバであることを想定する。
Embodiment 3.
In the first embodiment, the pulse wave estimating device uses the plurality of generated pulse wave source signal segments as they are for estimating the pulse wave of the subject.
In Embodiment 3, an embodiment will be described in which a plurality of pulse wave source signal segments are weighted and a pulse wave of a subject is estimated.
In addition, in the following Embodiment 3, similarly to Embodiment 1, it is assumed that the pulse wave estimating device is installed in a vehicle, and the subject is a driver of the vehicle.
 図12は、実施の形態3に係る脈波推定装置1bの構成例を示す図である。
 実施の形態3に係る脈波推定装置1bの構成について、実施の形態1にて図1を用いて説明した脈波推定装置1と同じ構成には、同じ符号を付して重複した説明を省略する。
 実施の形態3に係る脈波推定装置1bは、実施の形態1に係る脈波推定装置1とは、重み係数算出部19を備えた点が異なる。
FIG. 12 is a diagram showing a configuration example of a pulse wave estimating device 1b according to the third embodiment.
Regarding the configuration of the pulse wave estimating device 1b according to Embodiment 3, the same components as the pulse wave estimating device 1 described in Embodiment 1 using FIG. do.
The pulse wave estimating device 1b according to the third embodiment differs from the pulse wave estimating device 1 according to the first embodiment in that it includes a weighting coefficient calculating section 19.
 重み係数算出部19は、セグメント生成部15が各計測領域ri(k)に対して生成した複数の脈波元信号セグメントそれぞれに対する重み係数(以下「セグメント重み」という。)を算出する。
 詳細には、重み係数算出部19は、脈波元信号セグメントの抽出元となった脈波元信号wi(t)における信号の変動の大きさに基づいて、複数の脈波元信号セグメントそれぞれに対するセグメント重みを算出する。
 なお、実施の形態3では、セグメント生成部15は、生成した、各計測領域ri(k)の複数の脈波元信号セグメントの情報と、脈波元信号抽出部14が生成した脈波元信号情報W(t)を、重み係数算出部19に出力する。
The weighting coefficient calculation unit 19 calculates a weighting coefficient (hereinafter referred to as “segment weight”) for each of the plurality of pulse wave source signal segments generated by the segment generation unit 15 for each measurement region ri(k).
In detail, the weighting coefficient calculation unit 19 calculates the weighting factor for each of the plurality of pulse wave source signal segments based on the magnitude of signal fluctuation in the pulse wave source signal wi(t) from which the pulse wave source signal segment is extracted. Calculate segment weights.
In the third embodiment, the segment generation unit 15 generates information on a plurality of generated pulse wave source signal segments of each measurement region ri(k) and the pulse wave source signal generated by the pulse wave source signal extraction unit 14. The information W(t) is output to the weighting coefficient calculating section 19.
 例えば、重み係数算出部19は、脈波元信号セグメントの抽出元となった第1期間の時系列の脈波元信号wi(t)について、予め設定された閾値(以下「変動判定用閾値」という。)以上の変動があったか否かを判定する。脈波元信号wi(t)について、変動判定用閾値以上の変動があったと判定した場合、重み係数算出部19は、第1期間の時系列の脈波元信号wi(t)のうち、当該変動があった部分の脈波元信号wi(t)を抽出元とする脈波元信号セグメントに対して、セグメント重み「0」を算出する。脈波元信号wi(t)のうち、変動判定用閾値以上の変動があった部分の信号は、ノイズが多く含まれている信号であるといえる。重み係数算出部19は、上記変動があった部分以外の部分の脈波元信号wi(t)を抽出元とする脈波元信号セグメントに対しては、セグメント重み「1」を設定する。 For example, the weighting coefficient calculation unit 19 calculates a preset threshold value (hereinafter referred to as "variation determination threshold value") for the time-series pulse wave source signal wi(t) of the first period from which the pulse wave source signal segment is extracted. ) or not. When it is determined that the pulse wave source signal wi(t) has fluctuated by more than the fluctuation determination threshold, the weighting coefficient calculation unit 19 calculates the relevant pulse wave source signal wi(t) from the time series pulse wave source signal wi(t) of the first period. A segment weight of "0" is calculated for the pulse wave source signal segment whose extraction source is the pulse wave source signal wi(t) of the portion where the fluctuation occurred. It can be said that a signal in a portion of the pulse wave source signal wi(t) that fluctuates by more than the fluctuation determination threshold is a signal that contains a lot of noise. The weighting coefficient calculation unit 19 sets a segment weight of "1" to the pulse wave source signal segment whose extraction source is the pulse wave source signal wi(t) in a portion other than the portion where the fluctuation occurs.
 一方、重み係数算出部19は、脈波元信号セグメントの抽出元となった第1期間の時系列の脈波元信号wi(t)について、変動判定用閾値以上の変動がなかったと判定した場合、当該変動がない第1期間の時系列の脈波元信号wi(t)を抽出元とする全ての脈波元信号セグメントに対して、セグメント重み「1」を算出する。 On the other hand, when the weighting coefficient calculation unit 19 determines that there is no fluctuation greater than the fluctuation determination threshold in the time-series pulse wave source signal wi(t) of the first period from which the pulse wave source signal segment is extracted. , a segment weight of "1" is calculated for all the pulse wave source signal segments whose extraction source is the time-series pulse wave source signal wi(t) of the first period in which there is no variation.
 重み係数算出部19は、セグメント生成部15が各計測領域ri(k)に対して生成した複数の脈波元信号セグメントそれぞれについて算出したセグメント重みに関する情報(以下「セグメント重み情報」という。)を、脈波推定部16に出力する。
 セグメント重み情報は、計測領域ri(k)を特定可能な情報と、脈波元信号セグメントを特定可能な情報と、当該脈波元信号セグメントのセグメント重みとが対応付けられた情報である。
The weighting coefficient calculation unit 19 receives information regarding segment weights (hereinafter referred to as “segment weight information”) calculated for each of the plurality of pulse wave source signal segments generated by the segment generation unit 15 for each measurement region ri(k). , is output to the pulse wave estimation section 16.
The segment weight information is information in which information that allows the measurement region ri(k) to be specified, information that allows the identification of the pulse wave source signal segment, and the segment weight of the pulse wave source signal segment are associated with each other.
 重み係数算出部19が算出するセグメント重みは、脈波推定部16が、被験者の脈波を推定する際に、セグメント生成部15によって生成された脈波元信号セグメントを使用すべきか否かを判定する指標となる。
 脈波推定部16は、セグメント重み「0」が付与されている脈波元信号セグメントは被験者の脈波の推定に用いないようにする。詳細には、脈波推定部16の信号分離部161は、セグメント重み「0」が付与されている脈波元信号セグメントについては破棄し、残った複数の脈波元信号セグメントに基づいて、PCA又はICA等、一般的な信号分離技術を用いて、複数の主成分を分析し、分析した複数の主成分を示す分離信号を生成する。
 このように、実施の形態3では、脈波推定部16は、脈波元信号セグメントとセグメント重みとに基づいて被験者の脈波を推定する。
The segment weight calculated by the weighting coefficient calculation unit 19 is used by the pulse wave estimation unit 16 to determine whether or not to use the pulse wave source signal segment generated by the segment generation unit 15 when estimating the subject's pulse wave. This will serve as an indicator.
The pulse wave estimating unit 16 does not use the pulse wave source signal segment to which segment weight "0" is assigned for estimating the pulse wave of the subject. Specifically, the signal separation unit 161 of the pulse wave estimation unit 16 discards the pulse wave source signal segment to which segment weight “0” has been assigned, and performs PCA based on the remaining plurality of pulse wave source signal segments. Alternatively, a common signal separation technique such as ICA is used to analyze the plurality of principal components and generate a separated signal indicative of the analyzed plurality of principal components.
In this way, in the third embodiment, the pulse wave estimation unit 16 estimates the subject's pulse wave based on the pulse wave source signal segment and the segment weight.
 ここで、図13は、実施の形態3において、脈波推定装置1bが被験者の脈波の推定に用いる脈波元信号セグメントについて説明するための図である。
 図13は、複数の計測領域ri(k)のうちのある計測領域ri(k)から抽出された、第1期間の時系列の脈波元信号wi(t)で示される輝度値を時間軸で示す図としている。
 図13において、第1期間の時系列の脈波元信号wi(t)のうち、点線で囲った部分の脈波元信号wi(t)は、信号の変動が大きい。
 重み係数算出部19は、ある計測領域ri(k)に対してセグメント生成部15が生成した複数の脈波元信号セグメントのうち、点線で囲った部分の脈波元信号wi(t)を抽出元とする脈波元信号セグメントに対するセグメント重みを「0」と算出する。
 重み係数算出部19は、ある計測領域ri(k)に対してセグメント生成部15が生成した複数の脈波元信号セグメントのうち、点線で囲った部分以外の脈波元信号wi(t)を抽出元とする脈波元信号セグメントに対するセグメント重みは「1」と算出する。
 その結果、脈波推定部16は、セグメント重みが「0」の、点線で囲った部分の脈波元信号wi(t)を抽出元とする脈波元信号セグメントは被験者の脈波の推定に用いない。
Here, FIG. 13 is a diagram for explaining pulse wave source signal segments used by the pulse wave estimating device 1b to estimate the pulse wave of the subject in the third embodiment.
FIG. 13 shows the luminance values indicated by the time-series pulse wave source signal wi(t) of the first period extracted from a certain measurement region ri(k) among the plurality of measurement regions ri(k) on the time axis. The figure is shown in .
In FIG. 13, among the time-series pulse wave source signals wi(t) of the first period, the pulse wave source signals wi(t) in the portion surrounded by the dotted line have large signal fluctuations.
The weighting factor calculation unit 19 extracts the pulse wave source signal wi(t) of the portion surrounded by the dotted line from among the plurality of pulse wave source signal segments generated by the segment generation unit 15 for a certain measurement region ri(k). The segment weight for the original pulse wave source signal segment is calculated as "0".
The weighting coefficient calculation unit 19 calculates the pulse wave source signal wi(t) other than the portion surrounded by the dotted line among the plurality of pulse wave source signal segments generated by the segment generation unit 15 for a certain measurement region ri(k). The segment weight for the pulse wave source signal segment to be extracted is calculated as "1".
As a result, the pulse wave estimation unit 16 uses the pulse wave source signal segment whose extraction source is the pulse wave source signal wi(t) of the part surrounded by the dotted line and whose segment weight is "0" to estimate the subject's pulse wave. Not used.
 実施の形態3に係る脈波推定装置1bの動作について説明する。
 図14は、実施の形態3に係る脈波推定装置1bの動作について説明するためのフローチャートである。
 脈波推定装置1bは、例えば、車両の電源がオンにされると、車両の電源がオフにされるまで、図14のフローチャートで示すような処理を繰り返す。
 図14において、ステップST31~ステップST35の具体的な動作は、それぞれ、実施の形態1にて説明済みの、図7のステップST1~ステップST5の具体的な動作と同様であるため、重複した説明を省略する。
The operation of the pulse wave estimating device 1b according to the third embodiment will be explained.
FIG. 14 is a flowchart for explaining the operation of the pulse wave estimating device 1b according to the third embodiment.
For example, when the vehicle is powered on, the pulse wave estimating device 1b repeats the process shown in the flowchart of FIG. 14 until the vehicle is powered off.
In FIG. 14, the specific operations of steps ST31 to ST35 are the same as the specific operations of steps ST1 to ST5 in FIG. 7, which have already been explained in Embodiment 1. omitted.
 重み係数算出部19は、ステップST35にてセグメント生成部15が生成した複数の脈波元信号セグメントそれぞれに対するセグメント重みを算出する(ステップST36)。
 詳細には、重み係数算出部19は、脈波元信号セグメントの抽出元となった脈波元信号wi(t)における信号の変動の大きさに基づいて、複数の脈波元信号セグメントそれぞれに対するセグメント重みを算出する。
 重み係数算出部19は、セグメント重み情報を、脈波推定部16に出力する。
The weighting coefficient calculating unit 19 calculates segment weights for each of the plurality of pulse wave source signal segments generated by the segment generating unit 15 in step ST35 (step ST36).
In detail, the weighting coefficient calculation unit 19 calculates the weighting factor for each of the plurality of pulse wave source signal segments based on the magnitude of signal fluctuation in the pulse wave source signal wi(t) from which the pulse wave source signal segment is extracted. Calculate segment weights.
The weighting coefficient calculating section 19 outputs the segment weighting information to the pulse wave estimating section 16.
 脈波推定部16は、ステップST35にてセグメント生成部15から軌跡行列をスタックした旨が通知されると、計測領域ri(k)毎に生成された複数の脈波元信号セグメントに基づいて、被験者の脈波を推定する脈波推定処理を実施する。その際、脈波推定部16は、重み係数算出部19から出力されたセグメント重み情報に基づき、セグメント重み「0」が付与されている脈波元信号セグメントは、被験者の脈波の推定に用いないようにする(ステップST37)。なお、脈波推定部16は、軌跡行列をスタックした旨の通知を、例えば、重み係数算出部19を介して受け取ればよい。
 詳細には、信号分離部161は、分離信号を生成する際(図8のステップST11参照)、セグメント重みが「0」の脈波元信号セグメントについては破棄し、残った複数の脈波元信号セグメントに基づいて、PCA又はICA等、一般的な信号分離技術を用いて、複数の主成分を分析し、分析した複数の主成分を示す分離信号を生成する。
When the pulse wave estimating unit 16 is notified in step ST35 that the trajectory matrices have been stacked from the segment generating unit 15, the pulse wave estimating unit 16 calculates the following based on the plurality of pulse wave source signal segments generated for each measurement region ri(k). Perform pulse wave estimation processing to estimate the subject's pulse wave. At this time, the pulse wave estimation unit 16 determines, based on the segment weight information output from the weighting coefficient calculation unit 19, that the pulse wave source signal segments to which segment weight “0” is assigned are used for estimating the subject's pulse wave. (step ST37). Note that the pulse wave estimating unit 16 may receive a notification that the trajectory matrices have been stacked, for example, via the weighting coefficient calculating unit 19.
Specifically, when generating the separated signal (see step ST11 in FIG. 8), the signal separation unit 161 discards pulse wave source signal segments with a segment weight of "0" and removes the remaining pulse wave source signal segments. Based on the segments, multiple principal components are analyzed using common signal separation techniques, such as PCA or ICA, to generate separated signals indicative of the analyzed multiple principal components.
 このように、脈波推定装置1bは、複数の脈波元信号セグメントそれぞれに対するセグメント重みを算出し、脈波元信号セグメントとセグメント重みとに基づいて被験者の脈波を推定する。詳細には、脈波推定装置1bは、脈波元信号セグメントの抽出元となった脈波元信号wi(t)における信号の変動の大きさに基づいて、複数の脈波元信号セグメントそれぞれに対するセグメント重みを算出する。
 これにより、脈波推定装置1bは、複数の計測領域ri(k)から抽出される脈波元信号wi(t)がノイズ成分を多く含む信号である場合に、これを除いて被験者の脈波を推定することができる。そのため、脈波推定装置1bは、複数の計測領域ri(k)から抽出される脈波元信号wi(t)がノイズ成分を多く含む信号であるか否かを考慮しない場合よりも精度よく被験者の脈波を推定することができる。
In this way, the pulse wave estimating device 1b calculates segment weights for each of a plurality of pulse wave source signal segments, and estimates the subject's pulse wave based on the pulse wave source signal segments and the segment weights. Specifically, the pulse wave estimating device 1b determines whether or not each of the plurality of pulse wave source signal segments is determined based on the magnitude of signal fluctuation in the pulse wave source signal wi(t) from which the pulse wave source signal segment is extracted. Calculate segment weights.
As a result, when the pulse wave source signal wi(t) extracted from the plurality of measurement regions ri(k) is a signal containing many noise components, the pulse wave estimating device 1b can remove the subject's pulse wave can be estimated. Therefore, the pulse wave estimating device 1b can improve the accuracy of the test for the subject compared to the case where it does not take into consideration whether or not the pulse wave source signal wi(t) extracted from the plurality of measurement regions ri(k) is a signal containing many noise components. It is possible to estimate the pulse wave of
 実施の形態3に係る脈波推定装置1bのハードウェア構成は、実施の形態1において図9A及び図9Bを用いて説明した脈波推定装置1のハードウェア構成と同様であるため、図示を省略する。
 実施の形態3において、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、重み係数算出部19の機能は、処理回路101により実現される。すなわち、脈波推定装置1bは、第1期間に取得された撮像画像における被験者の肌領域に対して設定された複数の計測領域ri(k)の輝度変化を示す脈波元信号wi(t)を部分的に抽出した複数の脈波元信号セグメントを生成し、独立成分分析又は主成分分析等の技術を用いて脈波元信号セグメントから脈波成分を分離し、分離した脈波成分から被験者の脈波を推定する制御を行うための処理回路101を備える。
The hardware configuration of pulse wave estimating device 1b according to Embodiment 3 is the same as the hardware configuration of pulse wave estimating device 1 described using FIGS. 9A and 9B in Embodiment 1, so illustration is omitted. do.
In the third embodiment, the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, the pulse wave estimation unit 16, and the output The functions of the section 17 and the weighting coefficient calculation section 19 are realized by the processing circuit 101. That is, the pulse wave estimating device 1b generates a pulse wave source signal wi(t) indicating the luminance change of a plurality of measurement regions ri(k) set for the subject's skin region in the captured image acquired in the first period. A plurality of pulse wave source signal segments are generated by partially extracting the pulse wave signal, and pulse wave components are separated from the pulse wave source signal segments using techniques such as independent component analysis or principal component analysis. A processing circuit 101 is provided to perform control for estimating the pulse wave of the user.
 処理回路101は、メモリ105に記憶されたプログラムを読み出して実行することにより、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、重み係数算出部19の機能を実行する。すなわち、脈波推定装置1bは、処理回路101により実行されるときに、上述の図14のステップST31~ステップST37が結果的に実行されることになるプログラムを格納するためのメモリ105を備える。また、メモリ105に記憶されたプログラムは、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、重み係数算出部19の処理の手順又は方法をコンピュータに実行させるものであるともいえる。
 図示しない記憶部は、例えば、メモリ105で構成される。
 また、脈波推定装置1bは、撮像装置3等の装置と、有線通信又は無線通信を行う入力インタフェース装置102及び出力インタフェース装置103を備える。
The processing circuit 101 reads out and executes a program stored in the memory 105, thereby controlling the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, The functions of the segment generation section 15, pulse wave estimation section 16, output section 17, and weighting coefficient calculation section 19 are executed. That is, the pulse wave estimating device 1b includes a memory 105 for storing a program that, when executed by the processing circuit 101, results in the execution of steps ST31 to ST37 in FIG. 14 described above. Further, the programs stored in the memory 105 include the captured image acquisition unit 11, the skin area detection unit 12, the measurement area setting unit 13, the pulse wave source signal extraction unit 14, the segment generation unit 15, and the pulse wave estimation unit 12. It can also be said that the computer is caused to execute the processing procedure or method of the unit 16, the output unit 17, and the weighting coefficient calculation unit 19.
A storage unit (not shown) is configured by, for example, the memory 105.
The pulse wave estimating device 1b also includes a device such as the imaging device 3, and an input interface device 102 and an output interface device 103 that perform wired or wireless communication.
 なお、以上の実施の形態3では、被験者は車両のドライバとしたが、これは一例に過ぎない。被験者は、車両のドライバ以外の乗員としてもよい。 Note that in the third embodiment above, the subject was a vehicle driver, but this is only an example. The subject may be a passenger other than the driver of the vehicle.
 また、以上の実施の形態3では、脈波推定装置1bは車載装置とし、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、重み係数算出部19は、車載装置に備えられていた。
 これに限らず、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、重み係数算出部19のうち、一部が車両の車載装置に搭載され、その他が当該車載装置とネットワークを介して接続されるサーバに備えられて、車載装置とサーバとでシステムを構成してもよい。
 また、撮像画像取得部11と、肌領域検出部12と、計測領域設定部13と、脈波元信号抽出部14と、セグメント生成部15と、脈波推定部16と、出力部17と、重み係数算出部19が全部サーバに備えられてもよい。
Further, in the third embodiment described above, the pulse wave estimation device 1b is an in-vehicle device, and includes a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, The segment generation section 15, the pulse wave estimation section 16, the output section 17, and the weighting coefficient calculation section 19 were included in the vehicle-mounted device.
The invention is not limited to this, but the captured image acquisition section 11, the skin region detection section 12, the measurement region setting section 13, the pulse wave source signal extraction section 14, the segment generation section 15, the pulse wave estimation section 16, and the output section 17 and the weighting coefficient calculation unit 19, a part of which is installed in an on-vehicle device of a vehicle, and the other part is provided in a server connected to the in-vehicle device via a network, and the in-vehicle device and the server constitute a system. You may.
Further, a captured image acquisition section 11, a skin region detection section 12, a measurement region setting section 13, a pulse wave source signal extraction section 14, a segment generation section 15, a pulse wave estimation section 16, an output section 17, All of the weighting coefficient calculation units 19 may be included in the server.
 また、以上の実施の形態3に係る脈波推定装置1bは、車両に搭載される車載装置に限らず、例えば、家電機器に適用することもできる。また、被験者は、車両の乗員に限らず、様々な人とできる。 Further, the pulse wave estimating device 1b according to the third embodiment described above is not limited to an in-vehicle device mounted on a vehicle, but can also be applied to, for example, home appliances. Moreover, the test subject is not limited to the occupant of the vehicle, but can be a variety of other people.
 以上のように、実施の形態3によれば、脈波推定装置1bは、実施の形態1に係る脈波推定装置1の構成に加え、複数の脈波元信号セグメントそれぞれに対する重み係数(セグメント重み)を算出する重み係数算出部19を備え、脈波推定部16は、脈波元信号セグメントと重み係数(セグメント重み)とに基づいて人(被験者)の脈波を推定するように構成した。そのため、脈波推定装置1bは、複数の計測領域ri(k)から抽出される脈波元信号wi(t)がノイズ成分を多く含む信号であるか否かを考慮しない場合よりも精度よく人の脈波を推定することができる。 As described above, according to the third embodiment, the pulse wave estimating device 1b has a weighting coefficient (segment weight) for each of a plurality of pulse wave source signal segments in addition to the configuration of the pulse wave estimating device 1 according to the first embodiment ), and the pulse wave estimation section 16 was configured to estimate the pulse wave of a person (subject) based on the pulse wave source signal segment and the weighting coefficient (segment weight). Therefore, the pulse wave estimating device 1b can be used more accurately than when it does not take into consideration whether or not the pulse wave source signal wi(t) extracted from the plurality of measurement regions ri(k) is a signal containing many noise components. It is possible to estimate the pulse wave of
 詳細には、脈波推定装置1bにおいて、重み係数算出部19は、脈波元信号セグメントの抽出元となった脈波元信号wi(t)における信号の変動の大きさに基づいて、複数の脈波元信号セグメントそれぞれに対する重み係数(セグメント重み)を算出する。そのため、脈波推定装置1bは、複数の計測領域ri(k)から抽出される脈波元信号wi(t)がノイズ成分を多く含む信号であるか否かを考慮しない場合よりも精度よく人の脈波を推定することができる。 Specifically, in the pulse wave estimating device 1b, the weighting coefficient calculation unit 19 calculates a plurality of A weighting coefficient (segment weight) for each pulse wave source signal segment is calculated. Therefore, the pulse wave estimating device 1b can be used more accurately than when it does not take into consideration whether or not the pulse wave source signal wi(t) extracted from the plurality of measurement regions ri(k) is a signal containing many noise components. It is possible to estimate the pulse wave of
 以上の実施の形態1~3において、脈波推定装置1,1a,1bは、公知の一般的な信号分離技術を用いて推定した複数の主成分を示す複数の分離信号に対して重み係数(以下「成分重み」という。)を設定し、複数の分離信号と設定した分離信号毎の成分重みとに基づいて計測領域ri(k)毎の脈波元信号wi(t)を復元する機能を有してもよい。 In the first to third embodiments described above, the pulse wave estimating devices 1, 1a, and 1b apply weighting coefficients ( (hereinafter referred to as "component weight"), and restores the pulse wave source signal wi(t) for each measurement region ri(k) based on a plurality of separated signals and the set component weight for each separated signal. May have.
 図15は、実施の形態1~3において、脈波推定装置1,1a,1bが、公知の一般的な信号分離技術を用いて推定した複数の主成分を示す複数の分離信号に対して成分重みを設定し、複数の分離信号と設定した分離信号毎の成分重みとに基づいて計測領域ri(k)毎の脈波元信号wi(t)を復元する機能を有するようにした場合の、脈波推定部16aの構成例を示す図である。
 脈波推定装置1,1a,1bは、上記機能を有する場合、以上の実施の形態1~3において図1、図10、又は、図12を用いて説明した脈波推定装置1,1a,1bの構成例において、脈波推定部16に代えて、図15に示すような脈波推定部16aを備えるようにする。
FIG. 15 shows how the pulse wave estimating devices 1, 1a, and 1b, in Embodiments 1 to 3, calculate components for a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique. In the case of having a function of setting weights and restoring the pulse wave source signal wi(t) for each measurement region ri(k) based on a plurality of separated signals and the set component weight for each separated signal, It is a figure showing an example of composition of pulse wave estimating part 16a.
When the pulse wave estimating devices 1, 1a, 1b have the above functions, the pulse wave estimating devices 1, 1a, 1b explained using FIG. 1, FIG. 10, or FIG. 12 in the above embodiments 1 to 3. In the configuration example shown in FIG. 1, a pulse wave estimating section 16a as shown in FIG. 15 is provided instead of the pulse wave estimating section 16.
 脈波推定部16aの復元部162は、信号分離部161から出力された分離信号毎の成分重みを設定する成分重み設定部1621を備える。
 復元部162は、信号分離部161から出力された複数の分離信号と、成分重み設定部1621が設定した分離信号毎の成分重みとに基づいて計測領域ri(k)毎の脈波元信号wi(t)を復元する。
 推定部163は、復元部162が複数の分離信号と分離信号毎の成分重みとに基づいて復元した生成した脈波元信号wi(t)に基づいて、被験者の脈波を推定する。
The restoration section 162 of the pulse wave estimation section 16a includes a component weight setting section 1621 that sets component weights for each separated signal output from the signal separation section 161.
The restoration unit 162 generates the pulse wave source signal wi for each measurement region ri(k) based on the plurality of separated signals output from the signal separation unit 161 and the component weight for each separated signal set by the component weight setting unit 1621. (t) is restored.
The estimating unit 163 estimates the subject's pulse wave based on the generated pulse wave original signal wi(t) that is restored by the restoring unit 162 based on the plurality of separated signals and the component weights for each separated signal.
 成分重み設定部1621が成分重みを設定する方法例について、いくつか説明する。 Some examples of how the component weight setting unit 1621 sets component weights will be described.
 成分重み設定部1621は、例えば、複数の分離信号間の周波数特性の類似性に基づいて分離信号毎の成分重みを設定する。
 詳細には、成分重み設定部1621は、まず、各分離信号に対し高速フーリエ変換等を行い、各分離信号の周波数パワースペクトルにおけるピーク周波数を算出する。
 次に、成分重み設定部1621は、複数の主成分を示す複数の分離信号について、隣り合う分離信号のペアを作り、隣り合う分離信号のピーク周波数の差分(以下「ピーク差分」という。)を算出する。なお、「隣り合う主成分」とは、含む情報量が多い順に分離信号を並べた場合に前後の順番となる分離信号のことを意味する。そして、成分重み設定部1621は、算出したピーク差分が予め設定された閾値(以下「ピーク差分判定用閾値」という。)よりも大きいか否かを判定する。成分重み設定部1621は、ピーク差分がピーク差分判定用閾値よりも大きい場合、当該ピーク差分が算出される対象となった分離信号の成分重みを「0」とし、当該ピーク差分がピーク差分判定用閾値以下であれば成分重みを「1」とする。
The component weight setting unit 1621 sets a component weight for each separated signal, for example, based on the similarity of frequency characteristics between a plurality of separated signals.
Specifically, the component weight setting unit 1621 first performs fast Fourier transform or the like on each separated signal, and calculates the peak frequency in the frequency power spectrum of each separated signal.
Next, the component weight setting unit 1621 creates a pair of adjacent separated signals for the plurality of separated signals indicating the plurality of principal components, and calculates the difference in peak frequencies of the adjacent separated signals (hereinafter referred to as "peak difference"). calculate. Note that "adjacent principal components" refer to separated signals that are arranged in order of increasing amount of information when the separated signals are arranged in descending order of the amount of information they contain. Then, the component weight setting unit 1621 determines whether the calculated peak difference is larger than a preset threshold (hereinafter referred to as "peak difference determination threshold"). When the peak difference is larger than the threshold for peak difference determination, the component weight setting unit 1621 sets the component weight of the separated signal for which the peak difference is calculated to "0", and sets the component weight of the separated signal for which the peak difference is calculated to be "0", If it is below the threshold, the component weight is set to "1".
 成分重みが「0」である場合、分離信号間の周波数特性の類似性は低いといえ、成分重みが「1」である場合、分離信号間の周波数特性の類似性は高いといえる。脈波成分は、一定の周期で繰り返しあらわれる特性を有していることから、周波数特性の類似性が高いということは、当該周波数特性を持つ分離信号は、脈波成分を多く含む、言い換えれば、脈波成分らしい、分離信号であると想定される。成分重み設定部1621は、脈波成分らしい分離信号に大きい成分重みを付与することで、推定部163が、脈波成分らしい分離信号に基づいて被験者の脈波を推定できるようにする。 When the component weight is "0", it can be said that the similarity in frequency characteristics between the separated signals is low, and when the component weight is "1", it can be said that the similarity in the frequency characteristics between the separated signals is high. Since the pulse wave component has the characteristic of appearing repeatedly at a certain period, the high similarity of the frequency characteristics means that the separated signal with the frequency characteristics contains a large amount of the pulse wave component.In other words, It is assumed that this is a separated signal that appears to be a pulse wave component. The component weight setting unit 1621 assigns a large component weight to the separated signal that appears to be a pulse wave component, thereby allowing the estimation unit 163 to estimate the subject's pulse wave based on the separated signal that appears to be a pulse wave component.
 具体例を挙げると、例えば、信号分離部161から出力された複数の分離信号が、実施の形態1において図5及び図6を用いて説明したような、第1主成分c1、・・・、第C主成分cCを示すC個の分離信号であったとする。ここで、第1主成分c1を示す分離信号を第1分離信号、第2主成分c2を示す分離信号を第2分離信号、第3主成分c3を示す分離信号を第3分離信号、第4主成分c4を示す分離信号を第4分離信号、第5主成分c5を示す分離信号を第5分離信号、・・・、第(C-1)主成分c(C-1)を示す分離信号を第(C-1)分離信号、第C主成分cCを示す信号を第C分離信号とする。
 この場合、成分重み設定部1621は、第1分離信号と第2分離信号のペアを作り、第1分離信号のピーク周波数と第2分離信号のピーク周波数とのピーク差分を算出し、算出したピーク差分がピーク差分判定用閾値よりも大きいか否かを判定する。成分重み設定部1621は、ピーク差分がピーク差分判定用閾値よりも大きい場合、第1分離信号及び第2分離信号の成分重みをともに「0」とし、ピーク差分がピーク差分判定用閾値以下である場合、第1分離信号及び第2分離信号の成分重みをともに「1」とする。
 また、成分重み設定部1621は、第3分離信号と第4分離信号のペアを作り、第3分離信号のピーク周波数と第4分離信号のピーク周波数とのピーク差分を算出し、算出したピーク差分がピーク差分判定用閾値よりも大きいか否かを判定する。成分重み設定部1621は、ピーク差分がピーク差分判定用閾値よりも大きい場合、第3分離信号及び第4分離信号の成分重みをともに「0」とし、ピーク差分がピーク差分判定用閾値以下である場合、第3分離信号及び第4分離信号の成分重みをともに「1」とする。
 成分重み設定部1621は、第5分離信号及び第6分離信号のペア、第7分離信号及び第8分離信号のペア、・・・・第(C-1)分離信号及び第C分離信号のペアに対しても、上述したような処理を行い、全ての分離信号に対して、成分重みを設定する。
To give a specific example, for example, the plurality of separated signals output from the signal separation unit 161 are the first principal components c1, . Assume that there are C separated signals indicating the C-th principal component cC. Here, the separated signal indicating the first principal component c1 is the first separated signal, the separated signal indicating the second principal component c2 is the second separated signal, the separated signal indicating the third principal component c3 is the third separated signal, and the separated signal indicating the third principal component c3 is the third separated signal. A separated signal indicating the principal component c4 is a fourth separated signal, a separated signal indicating the fifth principal component c5 is a fifth separated signal, ..., a separated signal indicating the (C-1)th principal component c (C-1) Let be the (C-1)th separated signal, and let the signal indicating the C-th principal component cC be the C-th separated signal.
In this case, the component weight setting unit 1621 creates a pair of the first separated signal and the second separated signal, calculates the peak difference between the peak frequency of the first separated signal and the peak frequency of the second separated signal, and calculates the peak frequency of the calculated peak frequency. It is determined whether the difference is larger than a peak difference determination threshold. The component weight setting unit 1621 sets the component weights of both the first separated signal and the second separated signal to "0" when the peak difference is larger than the peak difference judgment threshold, and when the peak difference is less than or equal to the peak difference judgment threshold. In this case, the component weights of the first separated signal and the second separated signal are both set to "1".
Further, the component weight setting unit 1621 creates a pair of the third separated signal and the fourth separated signal, calculates the peak difference between the peak frequency of the third separated signal and the peak frequency of the fourth separated signal, and calculates the peak difference between the peak frequency of the third separated signal and the peak frequency of the fourth separated signal. It is determined whether or not is larger than a peak difference determination threshold. The component weight setting unit 1621 sets the component weights of both the third separated signal and the fourth separated signal to "0" when the peak difference is larger than the peak difference judgment threshold, and when the peak difference is less than or equal to the peak difference judgment threshold. In this case, the component weights of the third separated signal and the fourth separated signal are both set to "1".
The component weight setting unit 1621 sets a pair of a fifth separated signal and a sixth separated signal, a pair of a seventh separated signal and an eighth separated signal, a pair of a (C-1)th separated signal and a C-th separated signal, etc. , the above-described processing is also performed, and component weights are set for all separated signals.
 復元部162は、信号分離部161から出力された複数の分離信号のうち、成分重み設定部1621が成分重み「0」を設定した分離信号については破棄し、成分重み設定部1621が成分重み「1」を設定した分離信号のみに基づいて、計測領域ri(k)毎の脈波元信号wi(t)を復元する。
 そして、推定部163は、復元部162が、成分重み「1」の分離信号のみに基づいて復元した脈波元信号wi(t)に基づいて、被験者の脈波を推定する。推定部163は、脈波成分らしい分離信号に基づいて被験者の脈波を推定できるので、被験者の脈波の推定精度を向上させることができる。
Among the plurality of separated signals output from the signal separation section 161, the restoration section 162 discards the separated signals for which the component weight setting section 1621 has set the component weight "0", and the component weight setting section 1621 has set the component weight "0". The pulse wave source signal wi(t) for each measurement region ri(k) is restored based only on the separated signal set to ``1''.
Then, the estimating unit 163 estimates the subject's pulse wave based on the pulse wave original signal wi(t) that the restoring unit 162 restored based only on the separated signal with the component weight “1”. Since the estimation unit 163 can estimate the subject's pulse wave based on the separated signal that is likely to be a pulse wave component, it is possible to improve the estimation accuracy of the subject's pulse wave.
 なお、上述の具体例では、成分重み設定部1621は、隣り合う分離信号のペアを作り、隣り合う分離信号のピーク周波数のピーク差分を算出したが、これは一例に過ぎない。例えば、成分重み設定部1621は、全ペアで差分を算出し、重み付け平均値を成分重みとしてもよい。
 例えば、成分重み設定部1621は、C個の分離信号のうち、ある分離信号(基準分離信号とする)について、その他の(C-1)個の分離信号とのピーク周波数の差分をそれぞれ算出し、算出した(C-1)個の差分に応じた当該差分の重み付け平均値を、基準分離信号の差分値とする。そして、成分重み設定部1621は、基準分離信号の差分値が閾値よりも大きければ基準分離信号に対する成分重みは「0」、閾値以下であれば基準分離信号に対する成分重みは「1」とする。成分重み設定部1621は、以上のような処理を全ての分離信号を基準分離信号にして行う。成分重み設定部1621は、重み付け平均値の大きさに応じた値を成分重みとしてもよい。
Note that in the above-described specific example, the component weight setting unit 1621 creates a pair of adjacent separated signals and calculates the peak difference between the peak frequencies of the adjacent separated signals, but this is only an example. For example, the component weight setting unit 1621 may calculate the differences between all pairs and use the weighted average value as the component weight.
For example, the component weight setting unit 1621 calculates the difference in peak frequency of a certain separated signal (to be referred to as a reference separated signal) among the C separated signals and the other (C-1) separated signals. , the weighted average value of the calculated (C-1) differences is set as the difference value of the reference separated signal. Then, the component weight setting unit 1621 sets the component weight for the reference separated signal to "0" if the difference value of the reference separated signal is larger than the threshold value, and sets the component weight to the reference separated signal to "1" if it is less than or equal to the threshold value. The component weight setting unit 1621 performs the above processing using all separated signals as reference separated signals. The component weight setting unit 1621 may set a value corresponding to the magnitude of the weighted average value as the component weight.
 成分重み設定部1621は、例えば、複数の分離信号が生成される際に当該分離信号に付与される射影係数に基づき複数の分離信号間の射影係数の相関係数を算出し、相関係数に基づいて分離信号毎の成分重みを設定してもよい。 The component weight setting unit 1621 calculates, for example, a correlation coefficient of projection coefficients between a plurality of separated signals based on a projection coefficient given to the separated signals when the plurality of separated signals are generated, and calculates the correlation coefficient of the projection coefficients between the plurality of separated signals. The component weight for each separated signal may be set based on the above.
 詳細には、成分重み設定部1621は、まず、各分離信号に対し、計測領域ri(k)毎に、当該計測領域ri(k)に対応する複数の脈波元信号セグメントに付与されている射影係数を時系列的に表現した情報(以下「射影係数時系列情報」という。)を生成する。成分重み設定部1621は、分離信号毎に、計測領域ri(k)の数(N個)の分だけ、射影係数時系列情報を生成することになる。すなわち、分離信号がC個とすると、成分重み設定部1621は、C×N個の射影係数時系列情報を生成することになる。
 次に、成分重み設定部1621は、分離信号毎に、生成した射影係数時系列情報の相関関係を判定し、相関係数を算出する。具体的には、成分重み設定部1621は、ある分離信号において、生成されたN個の射影係数時系列情報について、全通りのペアを作り、射影係数時系列情報のペア毎に、相関係数をそれぞれ算出する。なお、相関係数は、射影係数時系列情報の位相の一致度合いを示す。成分重み設定部1621は、ペア毎に算出した相関係数の平均値を、その分離信号の成分重みとする。
Specifically, the component weight setting unit 1621 first assigns, for each measurement region ri(k), to a plurality of pulse wave source signal segments corresponding to the measurement region ri(k) for each separated signal. Information expressing projection coefficients in time series (hereinafter referred to as "projection coefficient time series information") is generated. The component weight setting unit 1621 generates projection coefficient time series information for each separated signal for the number of measurement regions ri(k) (N pieces). That is, assuming that there are C separated signals, the component weight setting unit 1621 generates C×N projection coefficient time series information.
Next, the component weight setting unit 1621 determines the correlation of the generated projection coefficient time series information for each separated signal, and calculates the correlation coefficient. Specifically, the component weight setting unit 1621 creates all pairs of N pieces of projection coefficient time series information generated in a certain separated signal, and sets the correlation coefficient for each pair of projection coefficient time series information. Calculate each. Note that the correlation coefficient indicates the degree of phase matching of the projection coefficient time series information. The component weight setting unit 1621 sets the average value of the correlation coefficients calculated for each pair as the component weight of the separated signal.
 ここでは、脈波推定装置1,1a,1bは、位相が揃っている信号成分は脈波成分らしい、という前提を置き、計測領域ri(k)間で射影係数の時系列変化が類似していれば、言い換えれば、計測領域ri(k)間で射影係数時系列情報の位相が揃っていれば、各計測領域ri(k)の各脈波元信号セグメントに対してそのような射影係数が付与された分離信号が、脈波成分を多く含んだ脈波成分らしい分離信号であると想定する。成分重み設定部1621は、脈波成分らしい分離信号に大きい重み係数を付与することで、推定部163が、脈波成分らしい分離信号に基づいて被験者の脈波を推定できるようにする。 Here, the pulse wave estimating devices 1, 1a, and 1b assume that signal components that are in phase are likely pulse wave components, and that the time-series changes in projection coefficients are similar between measurement regions ri(k). In other words, if the phases of the projection coefficient time series information are aligned between measurement regions ri(k), such projection coefficients for each pulse wave source signal segment of each measurement region ri(k) are It is assumed that the applied separated signal is a separated signal that contains many pulse wave components and is likely to be a pulse wave component. The component weight setting unit 1621 assigns a large weighting coefficient to the separated signal that appears to be a pulse wave component, thereby allowing the estimation unit 163 to estimate the subject's pulse wave based on the separated signal that appears to be a pulse wave component.
 具体例を挙げると、例えば、信号分離部161から出力された複数の分離信号が、実施の形態1において図5及び図6を用いて説明したような、第1主成分c1、・・・、第C主成分cCを示すC個の分離信号であったとする。ここで、第1主成分c1を示す分離信号を第1分離信号、第2主成分c2を示す分離信号を第2分離信号、第3主成分c3を示す分離信号を第3分離信号、第4主成分c4を示す分離信号を第4分離信号、第5主成分c5を示す分離信号を第5分離信号、・・・、第(C-1)主成分c(C-1)を示す分離信号を第(C-1)分離信号、第C主成分cCを示す分離信号を第C分離信号とする。
 この場合、成分重み設定部1621は、まず、各分離信号に対し、計測領域ri(k)(第1計測領域、第2計測領域、第3計測領域、及び、第4計測領域)毎に射影係数時系列情報を生成する。
To give a specific example, for example, the plurality of separated signals output from the signal separation unit 161 are the first principal components c1, . Assume that there are C separated signals indicating the C-th principal component cC. Here, the separated signal indicating the first principal component c1 is the first separated signal, the separated signal indicating the second principal component c2 is the second separated signal, the separated signal indicating the third principal component c3 is the third separated signal, and the separated signal indicating the third principal component c3 is the third separated signal. A separated signal indicating the principal component c4 is a fourth separated signal, a separated signal indicating the fifth principal component c5 is a fifth separated signal, ..., a separated signal indicating the (C-1)th principal component c (C-1) Let be the (C-1)th separated signal, and let the separated signal showing the C-th principal component cC be the C-th separated signal.
In this case, the component weight setting unit 1621 first projects each measurement region ri(k) (first measurement region, second measurement region, third measurement region, and fourth measurement region) for each separated signal. Generate coefficient time series information.
 ここで、図16は、成分重み設定部1621が生成する射影係数時系列情報の一例のイメージを示す図である。
 図16は、一例として、成分重み設定部1621が第1分離信号について生成した射影係数時系列情報としている。成分重み設定部1621は、第1分離信号について、第1計測領域、第2計測領域、第3計測領域、及び、第4計測領域それぞれの射影係数時系列情報を生成する。
 なお、図16では、一例として、第1分離信号について生成された射影係数時系列情報を示しているが、成分重み設定部1621は、第2分離信号~第C分離信号についても、計測領域ri(k)毎の射影係数時系列情報を生成する。
Here, FIG. 16 is a diagram illustrating an example of projection coefficient time series information generated by the component weight setting unit 1621.
FIG. 16 shows, as an example, projection coefficient time series information generated by the component weight setting unit 1621 for the first separated signal. The component weight setting unit 1621 generates projection coefficient time series information for each of the first measurement area, the second measurement area, the third measurement area, and the fourth measurement area for the first separated signal.
Although FIG. 16 shows projection coefficient time series information generated for the first separated signal as an example, the component weight setting unit 1621 also sets the measurement area ri for the second to C-th separated signals. (k) of projection coefficient time series information is generated.
 次に、成分重み設定部1621は、例えば、まず第1分離信号において、第1計測領域の射影係数時系列情報(図16にて1601で示す)、第2計測領域の射影係数時系列情報(図16にて1602で示す)、第3計測領域の射影係数時系列情報(図16にて1603で示す)、及び、第4計測領域の射影係数時系列情報(図16にて1604で示す)について、全通りのペアを作る。
 ここでは、成分重み設定部1621は、第1計測領域の射影係数時系列情報と第2計測領域の射影係数時系列情報のペア(第1ペアとする)、第1計測領域の射影係数時系列情報と第3計測領域の射影係数時系列情報のペア(第2ペアとする)、第1計測領域の射影係数時系列情報と第4計測領域の射影係数時系列情報のペア(第3ペアとする)、第2計測領域の射影係数時系列情報と第3計測領域の射影係数時系列情報のペア(第4ペアとする)、第2計測領域の射影係数時系列情報と第4計測領域の射影係数時系列情報のペア(第5ペアとする)、及び、第3計測領域の射影係数時系列情報と第4計測領域の射影係数時系列情報のペア(第6ペアとする)を作る。
 そして、成分重み設定部1621は、第1ペアの相関係数、第2ペアの相関係数、第3ペアの相関係数、第4ペアの相関係数、第5ペアの相関係数、及び、第6ペアの相関係数を、算出する。成分重み設定部1621は、算出した、第1ペアの相関係数、第2ペアの相関係数、第3ペアの相関係数、第4ペアの相関係数、第5ペアの相関係数、及び、第5ペアの相関係数の平均値を、第1主成分c1を示す第1分離信号の成分重みとする。
Next, for example, the component weight setting unit 1621 first sets the projection coefficient time series information of the first measurement region (indicated by 1601 in FIG. 16), the projection coefficient time series information of the second measurement region ( 1602 in FIG. 16), projection coefficient time series information of the third measurement region (indicated by 1603 in FIG. 16), and projection coefficient time series information of the fourth measurement region (indicated by 1604 in FIG. 16). Create all pairs for .
Here, the component weight setting unit 1621 includes a pair (referred to as a first pair) of projection coefficient time series information of the first measurement region and projection coefficient time series information of the second measurement region, a projection coefficient time series of the first measurement region A pair of information and projection coefficient time series information of the third measurement area (referred to as the second pair), a pair of projection coefficient time series information of the first measurement area and projection coefficient time series information of the fourth measurement area (referred to as the third pair) ), a pair of projection coefficient time series information of the second measurement area and projection coefficient time series information of the third measurement area (referred to as the fourth pair), a pair of projection coefficient time series information of the second measurement area and projection coefficient time series information of the fourth measurement area A pair of projection coefficient time series information (referred to as a fifth pair) and a pair of projection coefficient time series information of the third measurement area and projection coefficient time series information of the fourth measurement area (referred to as a sixth pair) are created.
The component weight setting unit 1621 then sets the first pair of correlation coefficients, the second pair of correlation coefficients, the third pair of correlation coefficients, the fourth pair of correlation coefficients, the fifth pair of correlation coefficients, and , the correlation coefficient of the sixth pair is calculated. The component weight setting unit 1621 calculates the calculated correlation coefficient of the first pair, correlation coefficient of the second pair, correlation coefficient of the third pair, correlation coefficient of the fourth pair, correlation coefficient of the fifth pair, The average value of the correlation coefficients of the fifth pair is set as the component weight of the first separated signal indicating the first principal component c1.
 成分重み設定部1621は、第2分離信号~第C分離信号についても、同様に、第1計測領域の射影係数時系列情報、第2計測領域の射影係数時系列情報、第3計測領域の射影係数時系列情報、第4計測領域の射影係数時系列情報の全通りのペアを作り、作ったペア毎に相関関係を判定して相関係数を算出する。そして、成分重み設定部1621は、算出したペア毎の相関係数の平均値を、成分重みとする。 The component weight setting unit 1621 similarly sets the projection coefficient time series information of the first measurement region, the projection coefficient time series information of the second measurement region, and the projection coefficient time series information of the third measurement region for the second to C-th separation signals. All pairs of the coefficient time series information and the projection coefficient time series information of the fourth measurement area are created, and the correlation is determined for each created pair to calculate the correlation coefficient. Then, the component weight setting unit 1621 sets the calculated average value of the correlation coefficients for each pair as the component weight.
 復元部162は、信号分離部161から出力された複数の分離信号について、成分重み設定部1621が設定した成分重みに応じた重み付けを行って、計測領域ri(k)毎の脈波元信号wi(t)を復元する。
 例えば、復元部162は、(第1分離信号の成分重み×[p1-1,p1-2,・・・,p1-M]+第2分離信号の成分重み×[p1-1,p1-2,・・・,p1-M]+第3分離信号の成分重み×[p1-1,p1-2,・・・,p1-M]+・・・+第C分離信号の成分重み×[p1-1,p1-2,・・・,p1-M])を、復元された第1計測領域の脈波元信号(t)とする。
The restoration unit 162 weights the plurality of separated signals output from the signal separation unit 161 according to the component weights set by the component weight setting unit 1621, and generates the pulse wave source signal wi for each measurement region ri(k). (t) is restored.
For example, the restoring unit 162 performs (component weight of first separated signal x [p1-1, p1-2, ..., p1-M] + component weight of second separated signal x [p1-1, p1-2 , ..., p1-M] + component weight of the third separated signal x [p1-1, p1-2, ..., p1-M] + ... + component weight of the C-th separated signal x [p1 -1, p1-2, . . . , p1-M]) is the restored pulse wave source signal (t) of the first measurement region.
 そして、推定部163は、復元部162が、成分重みに応じた重み付けを行って復元した脈波元信号wi(t)に基づいて、被験者の脈波を推定する。推定部163は、脈波成分らしい分離信号に基づいて被験者の脈波を推定できるので、被験者の脈波の推定精度を向上させることができる。 Then, the estimation unit 163 estimates the subject's pulse wave based on the pulse wave original signal wi(t) restored by the restoration unit 162 by weighting according to the component weights. Since the estimation unit 163 can estimate the subject's pulse wave based on the separated signal that is likely to be a pulse wave component, it is possible to improve the estimation accuracy of the subject's pulse wave.
 なお、上述の具体例では、成分重み設定部1621は、分離信号毎に、射影係数時系列情報の全通りのペアを作るものとしたが、これは一例に過ぎない。成分重み設定部1621は、例えば、複数の射影係数時系列情報のうち、2つの射影係数時系列情報でペアを作ってもよい。上述の具体例でいうと、成分重み設定部1621は、例えば、第1計測領域の射影係数時系列情報と第2計測領域の射影係数時系列情報のペア(第7ペアとする)、第3計測領域の射影係数時系列情報と第4計測領域の射影係数時系列情報のペア(第8ペアとする)の、2組のペアを作ってもよい。この場合、成分重み設定部1621は、第7ペアの相関係数と第8ペアの相関係数を算出し、算出した、第6ペアの相関係数と第7ペアの相関係数の平均値を、第1主成分c1を示す第1分離信号の成分重みとする。 Note that in the above-described specific example, the component weight setting unit 1621 creates all pairs of projection coefficient time series information for each separated signal, but this is only an example. For example, the component weight setting unit 1621 may create a pair using two pieces of projection coefficient time series information among a plurality of pieces of projection coefficient time series information. In the above-mentioned specific example, the component weight setting unit 1621, for example, sets a pair of projection coefficient time series information of the first measurement region and projection coefficient time series information of the second measurement region (referred to as the seventh pair), a third Two pairs may be created: the projection coefficient time series information of the measurement area and the projection coefficient time series information of the fourth measurement area (referred to as the eighth pair). In this case, the component weight setting unit 1621 calculates the correlation coefficient of the seventh pair and the correlation coefficient of the eighth pair, and calculates the average value of the correlation coefficient of the sixth pair and the correlation coefficient of the seventh pair. Let be the component weight of the first separated signal indicating the first principal component c1.
 また、上述の具体例では、成分重み設定部1621は、算出した相関係数の平均値を分離信号の成分重みとしたが、これは一例に過ぎない。成分重み設定部1621は、例えば、算出した相関係数の分散値を分離信号の成分重みとしてもよい。 Furthermore, in the above-described specific example, the component weight setting unit 1621 uses the average value of the calculated correlation coefficients as the component weight of the separated signal, but this is only an example. For example, the component weight setting unit 1621 may set the calculated variance value of the correlation coefficient as the component weight of the separated signal.
 以上の実施の形態1~3において、脈波推定装置1,1a,1bが、公知の一般的な信号分離技術を用いて推定した複数の主成分を示す複数の分離信号に対して成分重みを設定し、複数の分離信号と設定した分離信号毎の成分重みとに基づいて計測領域ri(k)毎の脈波元信号wi(t)を復元する機能を有するようにした場合の、脈波推定部16aの動作について、図17を用いて説明する。
 実施の形態1~3において、脈波推定装置1,1a,1bが、公知の一般的な信号分離技術を用いて推定した複数の主成分を示す複数の分離信号に対して成分重みを設定し、複数の分離信号と設定した分離信号毎の成分重みとに基づいて計測領域ri(k)毎の脈波元信号wi(t)を復元する機能を有するようにした場合、実施の形態1~3で説明した、図7のステップST6、図11のステップST29、及び、図15のステップST37の脈波推定処理の詳細は、図17のフローチャートで示すような処理となる。
In the first to third embodiments described above, the pulse wave estimation devices 1, 1a, and 1b apply component weights to a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique. The pulse wave in the case where the function is configured to restore the pulse wave source signal wi(t) for each measurement region ri(k) based on a plurality of separated signals and the component weight for each separated signal set. The operation of the estimator 16a will be explained using FIG. 17.
In Embodiments 1 to 3, the pulse wave estimation devices 1, 1a, and 1b set component weights for a plurality of separated signals indicating a plurality of principal components estimated using a known general signal separation technique. , the first embodiment to The details of the pulse wave estimation processing in step ST6 in FIG. 7, step ST29 in FIG. 11, and step ST37 in FIG.
 なお、図17のステップST11、ステップST13の具体的な動作は、それぞれ、説明済みの図8のステップST11、ステップST13の具体的な動作と同様であるため、重複した説明を省略する。 Note that the specific operations of step ST11 and step ST13 in FIG. 17 are the same as the specific operations of step ST11 and step ST13 in FIG. 8, which have already been explained, so a redundant explanation will be omitted.
 脈波推定部16aの成分重み設定部1621は、ステップST11にて信号分離部161から出力された分離信号毎の成分重みを設定する(ステップST12-1)。 The component weight setting section 1621 of the pulse wave estimation section 16a sets the component weight for each separated signal output from the signal separation section 161 in step ST11 (step ST12-1).
 復元部162は、ステップST1にて信号分離部161から出力された複数の分離信号と、ステップST12-1にて成分重み設定部1621が設定した分離信号毎の成分重みとに基づいて計測領域ri(k)毎の脈波元信号wi(t)を復元する(ステップST12-2)。 The restoring unit 162 restores the measurement region ri based on the plurality of separated signals output from the signal separating unit 161 in step ST1 and the component weight for each separated signal set by the component weight setting unit 1621 in step ST12-1. (k) pulse wave source signal wi(t) is restored (step ST12-2).
 なお、ステップST13において、推定部163は、復元部162が複数の分離信号と分離信号毎の成分重みとに基づいて復元した生成した脈波元信号wi(t)に基づいて、被験者の脈波を推定することになる。 In addition, in step ST13, the estimating unit 163 calculates the pulse wave of the subject based on the generated pulse wave source signal wi(t) restored by the restoring unit 162 based on the plurality of separated signals and the component weight for each separated signal. will be estimated.
 実施の形態1に係る脈波推定装置1、実施の形態2に係る脈波推定装置1a、又は、実施の形態3に係る脈波推定装置1bにおいて、復元部162aが、分離信号毎の重み係数(成分重み)を設定する成分重み設定部1621を備え、復元部162aは、複数の分離信号と分離信号毎の重み係数(成分重み)とに基づいて計測領域ri(k)毎の脈波元信号wi(t)を復元することで、脈波推定装置1,1a,1bは、脈波成分らしい分離信号に基づいて被験者の脈波を推定できるので、被験者の脈波の推定精度を向上させることができる。 In the pulse wave estimating device 1 according to the first embodiment, the pulse wave estimating device 1a according to the second embodiment, or the pulse wave estimating device 1b according to the third embodiment, the restoring unit 162a calculates the weighting coefficient for each separated signal. The restoring unit 162a includes a component weight setting unit 1621 that sets a component weight (component weight), and a restoring unit 162a performs a pulse wave element for each measurement region ri(k) based on a plurality of separated signals and a weighting coefficient (component weight) for each separated signal. By restoring the signal wi(t), the pulse wave estimating devices 1, 1a, and 1b can estimate the subject's pulse wave based on the separated signal that seems to be a pulse wave component, thereby improving the accuracy of estimating the subject's pulse wave. be able to.
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Note that it is possible to freely combine each embodiment, to modify any component of each embodiment, or to omit any component in each embodiment.
 以下、本開示の諸態様を付記としてまとめて記載する。 Hereinafter, various aspects of the present disclosure will be collectively described as supplementary notes.
  (付記1)
 人を撮像した撮像画像を取得する撮像画像取得部と、
 前記撮像画像から前記人の肌領域を検出する肌領域検出部と、
 前記撮像画像上の前記肌領域に対応する領域に、第1期間における時系列の輝度変化を示す脈波元信号を抽出するための複数の計測領域を設定する計測領域設定部と、
 前記計測領域毎に、当該計測領域における前記第1期間の前記輝度変化に基づき、前記脈波元信号を抽出する脈波元信号抽出部と、
 前記計測領域毎に、当該計測領域から抽出された前記脈波元信号に基づき、セグメント生成用条件に従って、前記第1期間における前記脈波元信号のうちから第2期間分の前記脈波元信号を部分的に抽出した信号である脈波元信号セグメントを複数生成するセグメント生成部と、
 前記計測領域毎に生成された複数の前記脈波元信号セグメントに基づいて前記人の脈波を推定する脈波推定部
 とを備えた脈波推定装置。
  (付記2)
 前記セグメント生成用条件は、
 前記第2期間は前記第1期間よりも短い期間であること、
 ある計測領域における複数の前記脈波元信号セグメントについて、ある脈波元信号セグメントは他の脈波元信号セグメントと時間軸上で互いに完全に一致しない信号であること、
 ある計測領域における複数の前記脈波元信号セグメントについて、ある脈波元信号セグメントは他の脈波元信号セグメントと時間軸上で部分的に重なる信号であること、
 各計測領域において、ある脈波元信号セグメントが他の脈波元信号セグメントと時間軸上で部分的に重なる長さは同じであること、
 及び、各計測領域における複数の前記脈波元信号セグメントの時間軸上の長さは互いに同じであること
 を含むことを特徴とする付記1記載の脈波推定装置。
  (付記3)
 前記脈波推定部が推定した前記人の前記脈波に基づいて前記第2期間を算出し、当該第2期間の長さを示す情報を少なくとも含むセグメントパラメータを設定するパラメータ設定部を備え、
 前記セグメント生成部は、前記セグメントパラメータに従って前記第2期間を設定する
 ことを特徴とする付記1または付記2記載の脈波推定装置。
  (付記4)
 前記パラメータ設定部は、前記第2期間が、前記脈波推定部が推定した前記人の前記脈波の1周期分の時間となるよう、前記第2期間を算出する
 ことを特徴とする付記3記載の脈波推定装置。
  (付記5)
 複数の前記脈波元信号セグメントそれぞれに対する重み係数を算出する重み係数算出部を備え、
 前記脈波推定部は、前記脈波元信号セグメントと前記重み係数とに基づいて前記人の前記脈波を推定する
 ことを特徴とする付記1から付記4のうちのいずれか1つ記載の脈波推定装置。
  (付記6)
 前記重み係数算出部は、前記脈波元信号セグメントの抽出元となった前記脈波元信号における信号の変動の大きさに基づいて、複数の前記脈波元信号セグメントそれぞれに対する前記重み係数を算出する
 ことを特徴とする付記5記載の脈波推定装置。
  (付記7)
 前記脈波推定部は、
 複数の前記脈波元信号セグメントに基づいて複数の信号成分を示す分離信号を生成する信号分離部と、
 複数の前記分離信号に基づいて前記計測領域毎の前記脈波元信号を復元する復元部と、
 復元された前記計測領域毎の前記脈波元信号に基づき、前記人の前記脈波を推定する推定部とを備える
 ことを特徴とする付記1から付記6のうちのいずれか1つ記載の脈波推定装置。
  (付記8)
 前記復元部は、
 前記分離信号毎の重み係数を設定する成分重み設定部を備え、
 複数の前記分離信号と前記分離信号毎の前記重み係数とに基づいて前記計測領域毎の前記脈波元信号を復元する
 ことを特徴とする付記7記載の脈波推定装置。
  (付記9)
 前記成分重み設定部は、
 複数の前記分離信号間の周波数特性の類似性に基づいて前記分離信号毎の前記重み係数を設定する
 ことを特徴とする付記8記載の脈波推定装置。
  (付記10)
 前記成分重み設定部は、
 複数の前記分離信号が生成される際に当該分離信号に付与される射影係数に基づき複数の前記分離信号間の前記射影係数の相関係数を算出し、前記相関係数に基づいて前記分離信号毎の前記重み係数を設定する
 ことを特徴とする付記8記載の脈波推定装置。
  (付記11)
 撮像画像取得部が、人を撮像した撮像画像を取得するステップと、
 肌領域検出部が、前記撮像画像から前記人の肌領域を検出するステップと、
 計測領域設定部が、前記撮像画像上の前記肌領域に対応する領域に、第1期間における時系列の輝度変化を示す脈波元信号を抽出するための複数の計測領域を設定するステップと、
 脈波元信号抽出部が、前記計測領域毎に、当該計測領域における前記第1期間の前記輝度変化に基づき、前記脈波元信号を抽出するステップと、
 セグメント生成部が、前記計測領域毎に、当該計測領域から抽出された前記脈波元信号に基づき、セグメント生成用条件に従って、前記第1期間における前記脈波元信号のうちから第2期間分の前記脈波元信号を部分的に抽出した信号である脈波元信号セグメントを複数生成するステップと、
 脈波推定部が、前記計測領域毎に生成された複数の前記脈波元信号セグメントに基づいて前記人の脈波を推定するステップ
 とを備えた脈波推定方法。
(Additional note 1)
a captured image acquisition unit that acquires a captured image of a person;
a skin area detection unit that detects the skin area of the person from the captured image;
a measurement area setting unit that sets a plurality of measurement areas for extracting a pulse wave source signal indicating a time-series luminance change in a first period in an area corresponding to the skin area on the captured image;
a pulse wave source signal extracting unit that extracts the pulse wave source signal for each measurement area based on the luminance change in the first period in the measurement area;
For each measurement area, based on the pulse wave source signal extracted from the measurement area and according to the segment generation conditions, the pulse wave source signal for the second period is selected from among the pulse wave source signals in the first period. a segment generation unit that generates a plurality of pulse wave source signal segments that are partially extracted signals;
A pulse wave estimation device comprising: a pulse wave estimation unit that estimates a pulse wave of the person based on a plurality of the pulse wave source signal segments generated for each of the measurement regions.
(Additional note 2)
The conditions for generating the segment are:
the second period is a shorter period than the first period;
Regarding the plurality of pulse wave source signal segments in a certain measurement region, a certain pulse wave source signal segment is a signal that does not completely match with other pulse wave source signal segments on the time axis;
Regarding the plurality of pulse wave source signal segments in a certain measurement region, a certain pulse wave source signal segment is a signal that partially overlaps with another pulse wave source signal segment on the time axis;
In each measurement region, the length at which a certain pulse wave source signal segment partially overlaps with another pulse wave source signal segment on the time axis is the same;
The pulse wave estimating device according to supplementary note 1, further comprising: the plurality of pulse wave source signal segments in each measurement region have the same length on the time axis.
(Additional note 3)
a parameter setting unit that calculates the second period based on the pulse wave of the person estimated by the pulse wave estimation unit and sets a segment parameter that includes at least information indicating the length of the second period;
The pulse wave estimating device according to Supplementary note 1 or 2, wherein the segment generation unit sets the second period according to the segment parameter.
(Additional note 4)
Supplementary note 3, wherein the parameter setting unit calculates the second period so that the second period corresponds to one period of the pulse wave of the person estimated by the pulse wave estimating unit. The pulse wave estimation device described.
(Appendix 5)
comprising a weighting coefficient calculation unit that calculates a weighting coefficient for each of the plurality of pulse wave source signal segments,
The pulse wave according to any one of appendices 1 to 4, wherein the pulse wave estimation unit estimates the pulse wave of the person based on the pulse wave source signal segment and the weighting coefficient. Wave estimation device.
(Appendix 6)
The weighting coefficient calculation unit calculates the weighting coefficient for each of the plurality of pulse wave source signal segments based on the magnitude of signal fluctuation in the pulse wave source signal from which the pulse wave source signal segment is extracted. The pulse wave estimating device according to appendix 5, characterized in that:
(Appendix 7)
The pulse wave estimator includes:
a signal separation unit that generates a separation signal indicating a plurality of signal components based on the plurality of pulse wave source signal segments;
a restoring unit that restores the pulse wave source signal for each of the measurement regions based on the plurality of separated signals;
The pulse wave according to any one of appendices 1 to 6, further comprising: an estimation unit that estimates the pulse wave of the person based on the restored pulse wave source signal for each of the measurement regions. Wave estimation device.
(Appendix 8)
The restoration unit is
comprising a component weight setting unit that sets a weighting coefficient for each of the separated signals,
The pulse wave estimating device according to appendix 7, wherein the pulse wave source signal for each measurement area is restored based on the plurality of separated signals and the weighting coefficient for each separated signal.
(Appendix 9)
The component weight setting section includes:
The pulse wave estimating device according to appendix 8, wherein the weighting coefficient for each of the separated signals is set based on similarity of frequency characteristics between the plurality of separated signals.
(Appendix 10)
The component weight setting section includes:
A correlation coefficient of the projection coefficients between the plurality of separated signals is calculated based on a projection coefficient given to the separated signals when the plurality of separated signals are generated, and the correlation coefficient of the projection coefficients is calculated between the plurality of separated signals. The pulse wave estimating device according to appendix 8, wherein the weighting coefficient is set for each pulse wave estimation device.
(Appendix 11)
a step in which the captured image acquisition unit acquires a captured image of a person;
a skin area detection unit detecting the skin area of the person from the captured image;
a step in which the measurement area setting unit sets a plurality of measurement areas for extracting a pulse wave source signal indicating a time-series luminance change in a first period in an area corresponding to the skin area on the captured image;
a step in which the pulse wave source signal extracting unit extracts the pulse wave source signal for each measurement area based on the brightness change in the first period in the measurement area;
A segment generation unit generates a pulse wave source signal for a second period from among the pulse wave source signals in the first period based on the pulse wave source signal extracted from the measurement area and according to segment generation conditions for each measurement area. generating a plurality of pulse wave source signal segments that are signals obtained by partially extracting the pulse wave source signal;
A pulse wave estimating method, comprising: a pulse wave estimating unit estimating a pulse wave of the person based on a plurality of the pulse wave source signal segments generated for each of the measurement regions.
 本開示に係る脈波推定装置は、複数の計測領域から抽出された輝度信号に位相差が生じていても、当該輝度信号に基づく人の脈波の推定を行うことができる。 The pulse wave estimating device according to the present disclosure can estimate a person's pulse wave based on the luminance signals even if there is a phase difference in the luminance signals extracted from a plurality of measurement regions.
 1,1a,1b 脈波推定装置、11 撮像画像取得部、12 肌領域検出部、13 計測領域設定部、14 脈波元信号抽出部、15 セグメント生成部、16,16a 脈波推定部、161 信号分離部、162,162a 復元部、1621 成分重み設定部、163 推定部、17 出力部、18 パラメータ設定部、19 重み係数算出部、3 撮像装置、101 処理回路、102 入力インタフェース装置、103 出力インタフェース装置、104 プロセッサ、105 メモリ。 1, 1a, 1b pulse wave estimation device, 11 captured image acquisition unit, 12 skin area detection unit, 13 measurement area setting unit, 14 pulse wave source signal extraction unit, 15 segment generation unit, 16, 16a pulse wave estimation unit, 161 Signal separation unit, 162, 162a Restoration unit, 1621 Component weight setting unit, 163 Estimation unit, 17 Output unit, 18 Parameter setting unit, 19 Weighting coefficient calculation unit, 3 Imaging device, 101 Processing circuit, 102 Input interface device, 103 Output Interface device, 104 processor, 105 memory.

Claims (11)

  1.  人を撮像した撮像画像を取得する撮像画像取得部と、
     前記撮像画像から前記人の肌領域を検出する肌領域検出部と、
     前記撮像画像上の前記肌領域に対応する領域に、第1期間における時系列の輝度変化を示す脈波元信号を抽出するための複数の計測領域を設定する計測領域設定部と、
     前記計測領域毎に、当該計測領域における前記第1期間の前記輝度変化に基づき、前記脈波元信号を抽出する脈波元信号抽出部と、
     前記計測領域毎に、当該計測領域から抽出された前記脈波元信号に基づき、セグメント生成用条件に従って、前記第1期間における前記脈波元信号のうちから第2期間分の前記脈波元信号を部分的に抽出した信号である脈波元信号セグメントを複数生成するセグメント生成部と、
     前記計測領域毎に生成された複数の前記脈波元信号セグメントに基づいて前記人の脈波を推定する脈波推定部
     とを備えた脈波推定装置。
    a captured image acquisition unit that acquires a captured image of a person;
    a skin area detection unit that detects the skin area of the person from the captured image;
    a measurement area setting unit that sets a plurality of measurement areas for extracting a pulse wave source signal indicating a time-series luminance change in a first period in an area corresponding to the skin area on the captured image;
    a pulse wave source signal extracting unit that extracts the pulse wave source signal for each measurement area based on the luminance change in the first period in the measurement area;
    For each measurement area, based on the pulse wave source signal extracted from the measurement area and according to the segment generation conditions, the pulse wave source signal for the second period is selected from among the pulse wave source signals in the first period. a segment generation unit that generates a plurality of pulse wave source signal segments that are partially extracted signals;
    A pulse wave estimation device comprising: a pulse wave estimation unit that estimates a pulse wave of the person based on a plurality of the pulse wave source signal segments generated for each of the measurement regions.
  2.  前記セグメント生成用条件は、
     前記第2期間は前記第1期間よりも短い期間であること、
     ある計測領域における複数の前記脈波元信号セグメントについて、ある脈波元信号セグメントは他の脈波元信号セグメントと時間軸上で互いに完全に一致しない信号であること、
     ある計測領域における複数の前記脈波元信号セグメントについて、ある脈波元信号セグメントは他の脈波元信号セグメントと時間軸上で部分的に重なる信号であること、
     各計測領域において、ある脈波元信号セグメントが他の脈波元信号セグメントと時間軸上で部分的に重なる長さは同じであること、
     及び、各計測領域における複数の前記脈波元信号セグメントの時間軸上の長さは互いに同じであること
     を含むことを特徴とする請求項1記載の脈波推定装置。
    The conditions for generating the segment are:
    the second period is a shorter period than the first period;
    Regarding the plurality of pulse wave source signal segments in a certain measurement region, a certain pulse wave source signal segment is a signal that does not completely match with other pulse wave source signal segments on the time axis;
    Regarding the plurality of pulse wave source signal segments in a certain measurement region, a certain pulse wave source signal segment is a signal that partially overlaps with another pulse wave source signal segment on the time axis;
    In each measurement region, the length at which a certain pulse wave source signal segment partially overlaps with another pulse wave source signal segment on the time axis is the same;
    The pulse wave estimating device according to claim 1, further comprising: the plurality of pulse wave source signal segments in each measurement region have the same length on the time axis.
  3.  前記脈波推定部が推定した前記人の前記脈波に基づいて前記第2期間を算出し、当該第2期間の長さを示す情報を少なくとも含むセグメントパラメータを設定するパラメータ設定部を備え、
     前記セグメント生成部は、前記セグメントパラメータに従って前記第2期間を設定する
     ことを特徴とする請求項1記載の脈波推定装置。
    a parameter setting unit that calculates the second period based on the pulse wave of the person estimated by the pulse wave estimation unit and sets a segment parameter that includes at least information indicating the length of the second period;
    The pulse wave estimating device according to claim 1, wherein the segment generation unit sets the second period according to the segment parameter.
  4.  前記パラメータ設定部は、前記第2期間が、前記脈波推定部が推定した前記人の前記脈波の1周期分の時間となるよう、前記第2期間を算出する
     ことを特徴とする請求項3記載の脈波推定装置。
    The parameter setting unit calculates the second period so that the second period corresponds to one period of the pulse wave of the person estimated by the pulse wave estimating unit. 3. The pulse wave estimation device according to 3.
  5.  複数の前記脈波元信号セグメントそれぞれに対する重み係数を算出する重み係数算出部を備え、
     前記脈波推定部は、前記脈波元信号セグメントと前記重み係数とに基づいて前記人の前記脈波を推定する
     ことを特徴とする請求項1記載の脈波推定装置。
    comprising a weighting coefficient calculation unit that calculates a weighting coefficient for each of the plurality of pulse wave source signal segments,
    The pulse wave estimating device according to claim 1, wherein the pulse wave estimation unit estimates the pulse wave of the person based on the pulse wave source signal segment and the weighting coefficient.
  6.  前記重み係数算出部は、前記脈波元信号セグメントの抽出元となった前記脈波元信号における信号の変動の大きさに基づいて、複数の前記脈波元信号セグメントそれぞれに対する前記重み係数を算出する
     ことを特徴とする請求項5記載の脈波推定装置。
    The weighting coefficient calculation unit calculates the weighting coefficient for each of the plurality of pulse wave source signal segments based on the magnitude of signal fluctuation in the pulse wave source signal from which the pulse wave source signal segment is extracted. The pulse wave estimating device according to claim 5, characterized in that:
  7.  前記脈波推定部は、
     複数の前記脈波元信号セグメントに基づいて複数の信号成分を示す分離信号を生成する信号分離部と、
     複数の前記分離信号に基づいて前記計測領域毎の前記脈波元信号を復元する復元部と、
     復元された前記計測領域毎の前記脈波元信号に基づき、前記人の前記脈波を推定する推定部とを備える
     ことを特徴とする請求項1記載の脈波推定装置。
    The pulse wave estimator includes:
    a signal separation unit that generates a separation signal indicating a plurality of signal components based on the plurality of pulse wave source signal segments;
    a restoring unit that restores the pulse wave source signal for each of the measurement regions based on the plurality of separated signals;
    The pulse wave estimating device according to claim 1, further comprising: an estimation unit that estimates the pulse wave of the person based on the restored pulse wave source signal for each of the measurement regions.
  8.  前記復元部は、
     前記分離信号毎の重み係数を設定する成分重み設定部を備え、
     複数の前記分離信号と前記分離信号毎の前記重み係数とに基づいて前記計測領域毎の前記脈波元信号を復元する
     ことを特徴とする請求項7記載の脈波推定装置。
    The restoration unit is
    comprising a component weight setting unit that sets a weighting coefficient for each of the separated signals,
    The pulse wave estimating device according to claim 7, wherein the pulse wave source signal for each measurement area is restored based on the plurality of separated signals and the weighting coefficient for each separated signal.
  9.  前記成分重み設定部は、
     複数の前記分離信号間の周波数特性の類似性に基づいて前記分離信号毎の前記重み係数を設定する
     ことを特徴とする請求項8記載の脈波推定装置。
    The component weight setting section includes:
    The pulse wave estimating device according to claim 8, wherein the weighting coefficient for each of the separated signals is set based on similarity of frequency characteristics between the plurality of separated signals.
  10.  前記成分重み設定部は、
     複数の前記分離信号が生成される際に当該分離信号に付与される射影係数に基づき複数の前記分離信号間の前記射影係数の相関係数を算出し、前記相関係数に基づいて前記分離信号毎の前記重み係数を設定する
     ことを特徴とする請求項8記載の脈波推定装置。
    The component weight setting section includes:
    A correlation coefficient of the projection coefficients between the plurality of separated signals is calculated based on a projection coefficient given to the separated signals when the plurality of separated signals are generated, and the correlation coefficient of the projection coefficients is calculated between the plurality of separated signals. The pulse wave estimating device according to claim 8, wherein the weighting coefficient is set for each pulse wave estimation device.
  11.  撮像画像取得部が、人を撮像した撮像画像を取得するステップと、
     肌領域検出部が、前記撮像画像から前記人の肌領域を検出するステップと、
     計測領域設定部が、前記撮像画像上の前記肌領域に対応する領域に、第1期間における時系列の輝度変化を示す脈波元信号を抽出するための複数の計測領域を設定するステップと、
     脈波元信号抽出部が、前記計測領域毎に、当該計測領域における前記第1期間の前記輝度変化に基づき、前記脈波元信号を抽出するステップと、
     セグメント生成部が、前記計測領域毎に、当該計測領域から抽出された前記脈波元信号に基づき、セグメント生成用条件に従って、前記第1期間における前記脈波元信号のうちから第2期間分の前記脈波元信号を部分的に抽出した信号である脈波元信号セグメントを複数生成するステップと、
     脈波推定部が、前記計測領域毎に生成された複数の前記脈波元信号セグメントに基づいて前記人の脈波を推定するステップ
     とを備えた脈波推定方法。
    a step in which the captured image acquisition unit acquires a captured image of a person;
    a skin area detection unit detecting the skin area of the person from the captured image;
    a step in which the measurement area setting unit sets a plurality of measurement areas for extracting a pulse wave source signal indicating a time-series luminance change in a first period in an area corresponding to the skin area on the captured image;
    a step in which the pulse wave source signal extracting unit extracts the pulse wave source signal for each measurement area based on the brightness change in the first period in the measurement area;
    A segment generation unit generates a pulse wave source signal for a second period from among the pulse wave source signals in the first period based on the pulse wave source signal extracted from the measurement area and according to segment generation conditions for each measurement area. generating a plurality of pulse wave source signal segments that are signals obtained by partially extracting the pulse wave source signal;
    A pulse wave estimating method, comprising: a pulse wave estimating unit estimating a pulse wave of the person based on a plurality of the pulse wave source signal segments generated for each of the measurement regions.
PCT/JP2022/019552 2022-05-06 2022-05-06 Pulse wave estimation device and pulse wave estimation method WO2023214457A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/019552 WO2023214457A1 (en) 2022-05-06 2022-05-06 Pulse wave estimation device and pulse wave estimation method
JP2024519158A JPWO2023214457A1 (en) 2022-05-06 2022-05-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019552 WO2023214457A1 (en) 2022-05-06 2022-05-06 Pulse wave estimation device and pulse wave estimation method

Publications (1)

Publication Number Publication Date
WO2023214457A1 true WO2023214457A1 (en) 2023-11-09

Family

ID=88646399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019552 WO2023214457A1 (en) 2022-05-06 2022-05-06 Pulse wave estimation device and pulse wave estimation method

Country Status (2)

Country Link
JP (1) JPWO2023214457A1 (en)
WO (1) WO2023214457A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050811A (en) * 2016-09-27 2018-04-05 京セラ株式会社 Electronic device, control method, and program
WO2019116996A1 (en) * 2017-12-15 2019-06-20 シャープ株式会社 Blood pressure measuring device, and method for measuring blood pressure
JP2019170967A (en) * 2018-03-29 2019-10-10 パナソニックIpマネジメント株式会社 Biological signal detection device and biological signal detection method
WO2020054122A1 (en) * 2018-09-10 2020-03-19 三菱電機株式会社 Information processing device, program, and information processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050811A (en) * 2016-09-27 2018-04-05 京セラ株式会社 Electronic device, control method, and program
WO2019116996A1 (en) * 2017-12-15 2019-06-20 シャープ株式会社 Blood pressure measuring device, and method for measuring blood pressure
JP2019170967A (en) * 2018-03-29 2019-10-10 パナソニックIpマネジメント株式会社 Biological signal detection device and biological signal detection method
WO2020054122A1 (en) * 2018-09-10 2020-03-19 三菱電機株式会社 Information processing device, program, and information processing method

Also Published As

Publication number Publication date
JPWO2023214457A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
CN111083922B (en) Dental image analysis method for correction diagnosis and apparatus using the same
US20170007137A1 (en) Method of estimating blood pressure based on image
JP2013248386A (en) Processing of video for vascular pattern detection and cardiac function analysis
WO2016006027A1 (en) Pulse wave detection method, pulse wave detection program, and pulse wave detection device
JP4951498B2 (en) Face image recognition device, face image recognition method, face image recognition program, and recording medium recording the program
JP6727469B1 (en) Information processing apparatus, program, and information processing method
JP6957929B2 (en) Pulse wave detector, pulse wave detection method, and program
Bosch-Jorge et al. Fall detection based on the gravity vector using a wide-angle camera
JP6927322B2 (en) Pulse wave detector, pulse wave detection method, and program
KR101788803B1 (en) Generation method of personal identification information using electrocardiogram and personal identification method using the information
WO2019202671A1 (en) Pulse rate estimation apparatus, pulse rate estimation method, and computer-readable storage medium
WO2017058927A1 (en) Gait pathology detection and monitoring system, and method
JP6248780B2 (en) Pulse wave detection device, pulse wave detection method, and pulse wave detection program
WO2023214457A1 (en) Pulse wave estimation device and pulse wave estimation method
JP6020015B2 (en) Pulse wave detection device, pulse wave detection program, and pulse wave detection method
CN111513701A (en) Heart rate detection method and device, computer equipment and readable storage medium
JP4086422B2 (en) Subject recognition device
JP2014186547A (en) Moving object tracking system, method and program
JP4850768B2 (en) Apparatus and program for reconstructing 3D human face surface data
JP2022518751A (en) Estimator, method and program
JP6003367B2 (en) Image recognition apparatus, image recognition method, and image recognition program
Huang et al. Image deblurring for less intrusive iris capture
KR102468648B1 (en) Method for calculating heart rate using rPPG signal of serial image and system thereof
WO2020153113A1 (en) Action recognition device and action recognition method
CN117835911A (en) Information processing device, information processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024519158

Country of ref document: JP

Kind code of ref document: A