WO2023213186A1 - 空调室外机及空调器的控制方法 - Google Patents

空调室外机及空调器的控制方法 Download PDF

Info

Publication number
WO2023213186A1
WO2023213186A1 PCT/CN2023/088950 CN2023088950W WO2023213186A1 WO 2023213186 A1 WO2023213186 A1 WO 2023213186A1 CN 2023088950 W CN2023088950 W CN 2023088950W WO 2023213186 A1 WO2023213186 A1 WO 2023213186A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fan
heat
air conditioner
exchange channel
Prior art date
Application number
PCT/CN2023/088950
Other languages
English (en)
French (fr)
Inventor
李旭
罗建文
毛守博
裵动锡
金兑宪
都雪梅
辛熙嫣
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2023213186A1 publication Critical patent/WO2023213186A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers

Definitions

  • the present invention relates to the technical field of air conditioning, and specifically provides an air conditioning outdoor unit and a control method of the air conditioner.
  • an air conditioning unit includes an indoor unit, an outdoor unit, and a circulation loop for connecting the indoor unit and the outdoor unit.
  • the outdoor unit of the air conditioning unit includes a heat exchanger.
  • the refrigerant passes through the circulation loop and the heat exchanger between the outdoor unit and the indoor unit. Heat is constantly exchanged to achieve a comfortable indoor temperature.
  • the configuration and use of air conditioning units cannot fully meet user requirements. For example, in the air-conditioning heating mode, the heat exchanger of the outdoor unit is at a low temperature.
  • the outdoor heat exchanger is prone to surface frosting at sustained low temperatures. Frosting on the surface of the outdoor unit's heat exchanger can easily affect the heat exchange efficiency. , and the existing air conditioner defrosts the outdoor unit heat exchanger through the defrost mode, but the indoor cannot be heated continuously in the defrost mode, and the user experience is greatly reduced at this time.
  • a new air conditioner outdoor unit is needed in this field to solve the problem that existing air conditioners cannot continuously heat in defrost mode and thus affect the indoor experience.
  • the present invention aims to solve the above technical problem, that is, to solve the problem that the existing air conditioner cannot continuously heat in the defrost mode and thus affects the indoor experience.
  • the present invention provides an air-conditioning outdoor unit, including a heat exchanger and an outdoor fan.
  • the outdoor fan includes a first fan and a second fan.
  • the heat exchanger includes a first heat exchanger, a second heat exchanger, and a second fan. heat exchanger and a third heat exchanger, the first heat exchanger is surrounded by a first heat exchange channel, the second heat exchanger is surrounded by a second heat exchange channel, the first heat exchange channel is connected with the The second heat exchange channel is connected and arranged, the first fan is arranged at the first end of the first heat exchange channel, and the second fan is arranged between the first heat exchange channel and the second heat exchange channel.
  • the third heat exchanger is located around the outside of the first heat exchanger.
  • the outdoor unit further includes a housing, the first heat exchanger, the second heat exchanger, the third heat exchanger, the first fan and the second fan.
  • the first heat exchanger and the second heat exchanger are stacked up and down, and the third heat exchanger is surrounding the outside of the first heat exchanger above, correspondingly
  • An air outlet is provided on the top surface of the housing, and the air outlet is provided corresponding to the first fan.
  • An air inlet is provided on the bottom surface and/or side of the housing.
  • the invention also provides a control method for an air conditioner.
  • the air conditioner includes an air conditioner outdoor unit.
  • the air conditioner outdoor unit includes a heat exchanger and an outdoor fan.
  • the outdoor fan includes a first fan and a second fan.
  • the heat exchanger includes a first heat exchanger, a second heat exchanger and a third heat exchanger.
  • the first heat exchanger surrounds a first heat exchange channel
  • the second heat exchanger surrounds a second heat exchanger.
  • Heat exchange channel, the first heat exchange channel is connected with the second heat exchange channel, the first fan is arranged at the first end of the first heat exchange channel, and the second fan is arranged at the At the intersection of the first heat exchange channel and the second heat exchange channel, the third heat exchanger is located around the outside of the first heat exchanger;
  • control methods include:
  • the third heat exchanger is controlled to be a condenser, and the first heat exchanger and the second heat exchanger are controlled to be evaporators;
  • the first fan is controlled to rotate in reverse
  • the second fan is controlled to rotate in reverse
  • the step of "controlling the first fan to reverse and controlling the second fan to reverse” further includes:
  • the reverse speed of the first fan is controlled to be V1
  • the reverse speed of the second fan is controlled to be V2
  • V1 ⁇ V2 is controlled.
  • control method further includes:
  • the first fan is controlled to rotate forward, and the second fan is controlled to rotate forward.
  • the step of "controlling the first fan to rotate forward and controlling the second fan to rotate forward” further includes:
  • the forward rotation speed of the first fan is controlled to be V3
  • the forward rotation speed of the second fan is controlled to be V4
  • V3 ⁇ V4 is controlled.
  • control method further includes:
  • the first fan is controlled to rotate reversely and the second fan is controlled to rotate forward.
  • control method further includes:
  • the first heat exchanger, the second heat exchanger, and the third heat exchanger are controlled to be condensers
  • the first fan is controlled to rotate forward, and the second fan is controlled to rotate forward.
  • control method further includes:
  • control one or more of the first heat exchanger, the second heat exchanger, and the third heat exchanger to be a condenser
  • the first wind is controlled to reverse, and the second fan is controlled to reverse.
  • the step of "controlling the first fan to reverse and controlling the second fan to reverse” further includes:
  • the reverse rotation speed of the first fan is controlled to be V5
  • the reverse rotation speed of the second fan is controlled to be V6, and V5 ⁇ V6 is controlled.
  • the air-conditioning outdoor unit in the technical solution of the present invention includes a heat exchanger and an outdoor fan.
  • the outdoor fan includes a first fan and a second fan
  • the heat exchanger includes a first heat exchanger, a third heat exchanger, and a second fan.
  • the second heat exchanger and the third heat exchanger the first heat exchanger is surrounded by a first heat exchange channel
  • the second heat exchanger is surrounded by a second heat exchange channel
  • the first heat exchange channel and the second heat exchange channel The first fan is arranged at the first end of the first heat exchange channel
  • the second fan is arranged at the intersection of the first heat exchange channel and the second heat exchange channel
  • the third heat exchanger is arranged around the first heat exchange channel. outside of the device.
  • the third heat exchanger is controlled to be the condenser
  • the The first heat exchanger and the second heat exchanger are configured as evaporators, and the first fan is controlled to reverse and the second fan is controlled to reverse.
  • the present invention sets up a specific structural solution that can realize the continuous heating mode.
  • the continuous heating mode solution is as follows: controlling the third heat exchanger to release heat to the outside from the condenser, Control the first and second heat exchangers to be evaporators, control the first fan to reverse, and the second fan to reverse.
  • the hot air generated by the third heat exchanger and the outdoor heat exchanger is blown from outside to inside, first with the third heat exchanger.
  • One heat exchanger exchanges heat
  • the second fan blows the warm air after exchanging heat with the first heat exchanger to the second heat exchange channel, and the warm air blown into the second heat exchange channel interacts with the second heat exchanger.
  • the heat exchanger carries out heat exchange.
  • the reversal of the first fan can prevent the warm air from dissipating directly from the top, fully ensuring that the first heat exchanger absorbs enough heat to avoid frosting.
  • the second fan The reversal prevents the warm air from escaping from the first heat exchanger side, fully ensuring that the second heat exchanger absorbs enough heat to avoid frosting, and the overall heat loss is controlled at an excellent level, starting from the third heat exchanger. Most of the heat emitted by the heat exchanger is absorbed by the first heat exchanger and the second heat exchanger, and the efficiency is greatly improved.
  • Figure 1 is a side view of the positional relationship between the outdoor fan and the heat exchanger of the air conditioner outdoor unit of the present invention
  • Figure 2 is a top view of the positional relationship between the outdoor fan and the heat exchanger of the air conditioner outdoor unit of the present invention
  • Figure 3 is a schematic diagram of the air heat exchange direction under the action of an outdoor fan in the continuous heating and forced cooling modes of the air conditioner outdoor unit of the present invention
  • Figure 4 is a schematic diagram of the air heat exchange direction of the air conditioner outdoor unit of the present invention under the action of the outdoor fan in conventional heating and cooling modes;
  • Figure 5 is a schematic diagram of the foreign matter discharge direction of the air conditioner outdoor unit of the present invention in the foreign matter cleaning mode
  • Figure 6 is a system diagram of the air conditioner outdoor unit of the present invention operating in continuous heating mode
  • Figure 7 is a system diagram of the air conditioner outdoor unit of the present invention operating in conventional heating mode
  • Figure 8 is a system diagram of the air conditioner outdoor unit of the present invention operating in conventional cooling mode
  • Figure 9 is a schematic diagram of the control method of the air conditioner outdoor unit in the continuous heating mode of the present invention.
  • Fig. 10 is a schematic diagram of the control method of the air-conditioning outdoor unit of the present invention in other modes.
  • controlling the forward and reverse rotation of the outdoor fan can prevent the outdoor heat exchanger from frosting without affecting the indoor heating effect.
  • the terms “upper”, “lower”, “front”, “back”, “inner”, “outer” and other terms indicating the direction or positional relationship are based on the figures.
  • the directions or positional relationships shown are only for convenience of description and do not indicate or imply that the device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation of the present invention.
  • the terms “first”, “second” and “third” are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection. It is a detachable connection or an integral connection; it can be a mechanical connection or It can be an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection. It is a detachable connection or an integral connection; it can be a mechanical connection or It can be an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be an internal connection between two components.
  • the outdoor unit of the air conditioner of the present invention includes a heat exchanger 2 and an outdoor fan 1, as shown in Figure 1
  • the outdoor fan 1 includes a first fan 11 and a second fan 12.
  • the heat exchanger 2 includes a first heat exchanger 21, a second heat exchanger 22 and a third heat exchanger 23.
  • the first heat exchanger 21 surrounds A first heat exchange channel 211 is provided, and a second heat exchange channel 221 is provided around the second heat exchanger 22.
  • the first heat exchange channel 211 is connected with the second heat exchange channel 221, and the first fan 11 is provided in the first heat exchanger.
  • the first end 2111 of the heat channel 211 and the second fan 12 are arranged at the intersection of the first heat exchange channel 211 and the second heat exchange channel 221, that is, the second end 2112 of the first heat exchange channel 211 and the second heat exchange channel At the intersection of the first end 2211 of the second heat exchange channel 221, the second end 2212 of the second heat exchange channel 221 is the end away from the first heat exchanger 21, and the third heat exchanger 23 is located around the outside of the first heat exchanger 21.
  • the outdoor unit further includes a casing (not shown in the figure), and the first heat exchanger 21, the second heat exchanger 22, the third heat exchanger 23, the first fan 11 and the second fan 12 are arranged inside the casing.
  • the first heat exchanger 21 and the second heat exchanger 22 are stacked up and down, and the third heat exchanger 23 is located around the outside of the upper first heat exchanger 21.
  • an air outlet is provided on the top surface of the shell (Fig. (not shown in the figure), the air outlet is provided correspondingly to the first fan 11, and the bottom surface and/or side of the housing is provided with an air inlet (not shown in the figure).
  • the air inlet is provided correspondingly to the opening of the heat exchanger 2, As shown in Figure 2, the direction of the arrow in the figure is the direction of the wind entering from the air inlet.
  • the advantage of the above arrangement is that it is preferable to set the outdoor unit of the air conditioner to push out air, connect the first heat exchange channel 211 with the second heat exchange channel 221 , and set the first fan 11 in the first heat exchange channel 211
  • the second fan 12 is disposed at the intersection of the second end 2112 of the first heat exchange channel 211 and the first end 2211 of the second heat exchange channel 221, and the third heat exchanger 23 is surrounded by the first end 2111 of the second heat exchange channel 211.
  • the present invention also provides an air conditioner having the air conditioning outdoor unit in any of the above embodiments.
  • the present invention also provides a control method for an air conditioner.
  • the air conditioner includes an air conditioner outdoor unit.
  • the air conditioner outdoor unit includes a heat exchanger 2 and an outdoor fan 1.
  • the outdoor fan 1 includes a first fan 11 and a
  • the second fan 12 and the heat exchanger 2 include a first heat exchanger 21, a second heat exchanger 22 and a third heat exchanger 23.
  • the first heat exchanger 21 surrounds a first heat exchange channel 211.
  • the heat exchanger 22 is surrounded by a second heat exchange channel 221.
  • the first heat exchange channel 211 is connected with the second heat exchange channel 221.
  • the first fan 11 is arranged at the first end of the first heat exchange channel 211.
  • the control method takes the top-exhaust air conditioner outdoor unit as an example.
  • the first control method is that the air conditioner is in continuous heating mode, as shown in Figure 3 and Figure 9.
  • the control method includes:
  • Step S1 Obtain the operating mode of the air conditioner
  • Step S21 When the air conditioner is in the continuous heating mode, control the third heat exchanger 23 to be a condenser, and control the first heat exchanger 21 and the second heat exchanger 22 to be evaporators;
  • Step S31 Control the first fan 11 to rotate reversely, and control the second fan 12 to rotate reversely.
  • step S31 Control the first fan 11 to reverse and control the second fan 12 to reverse” further includes:
  • Step S311 Control the reverse rotation speed of the first fan 11 to be V1, control the reverse rotation speed of the second fan 12 to be V2, and control V1 ⁇ V2.
  • the working principle of the air conditioner in the continuous heating mode is as follows.
  • the compressor 4 is controlled to start, and the first four-way valve, the second four-way valve 62, and the third four-way valve are controlled.
  • the valve 63 is connected as shown in the figure.
  • the high-pressure gas in the compressor 4 passes through the oil separator 5 first, and then part of it passes through the third four-way valve 63 and then passes through the gas pipeline 10 Entering the room, the high-pressure gas changes to liquid after releasing heat in the room and flows through A through the liquid pipe 101 and the subcooler 9.
  • the other part of the high-pressure gas coming out of the compressor 4 flows through the second four-way valve 62 and flows through the third heat exchanger. After the compressor 23 and the third expansion valve 73, it flows through A. At this time, the high-pressure gas released by the two parts of the compressor 4 merges at point A after heat exchange. After exchanging heat with the outside through the first expansion valve 71 and the first heat exchanger 21, the second expansion valve 72 and the second heat exchanger 22, it flows through the first four-way valve 61 through the gas-liquid separator 8 and finally returns. to compressor 4.
  • the above control can cause the temperature of the refrigerant flowing from the compressor 4 through the room to increase after it merges with the refrigerant flowing from the compressor 4 through the third heat exchanger 23, thereby reducing the temperature of the first heat exchanger 21 and the second heat exchanger.
  • frost on the surfaces of the heat exchanger 22 and the third heat exchanger 23, because the third heat exchanger 23 is equivalent to a condenser.
  • the heat exchange between the third heat exchanger 23 and the outside is heat release.
  • the hot air first exchanges heat with the first heat exchanger 21, and then is reversed by the second fan 12 to blow the heat-exchanged wind downward until it exchanges heat with the second heat exchanger 22.
  • the first fan 11 is reversed, and the second fan 12 is reversed.
  • the reverse setting of the fan 12 allows the heat-exchanged air to be discharged from the side of the second heat exchanger 22, thereby increasing the heat exchange effect.
  • the low-speed reversal of the first fan 11 reduces the heat exchange between the outdoor cold air and the first heat exchanger 21. , thereby ensuring the heat exchange effect of the first heat exchanger 21, and the second fan 12 reverses at high speed to bring the discharged air after the heat exchange between the third heat exchanger 23 and the first heat exchanger 21 to the second heat exchanger.
  • 22 surface exchanges heat with the second heat exchanger 22 and is discharged from the air inlet on the side of the second heat exchanger 22. This arrangement can increase the temperature of the air around the heat exchanger 2 and prevent the heat exchanger 2 from exchanging heat. The surrounding temperature is too low and frost forms on its surface.
  • the second control method is when the air conditioner is in conventional heating mode, as shown in Figure 4 and Figure 10.
  • the control method includes:
  • Step S22 When the air conditioner is in the normal heating mode, control the first heat exchanger 21, the second heat exchanger 22 and the third heat exchanger 23 to be evaporators;
  • Step S32 Control the first fan 11 to rotate forward, and control the second fan 12 to rotate forward.
  • step S32 Control the first fan 11 to rotate forward, control the second fan 12 to rotate forward” further includes:
  • the forward rotation speed of the first fan is controlled to be V3
  • the forward rotation speed of the second fan is controlled to be V4
  • V3 ⁇ V4 is controlled.
  • the working principle of the air conditioner in the normal heating mode is as follows.
  • the compressor 4 is controlled to start, and the first four-way valve 61, the second four-way valve 62 and the third four-way valve are controlled.
  • the valve 63 is connected as shown in the figure.
  • the high-pressure gas in the compressor 4 is high-pressure gas.
  • the high-pressure gas in the compressor 4 first passes through the oil separator 5 and then passes through the third four-way valve 63 and then enters the room through the gas pipeline 10.
  • the high-pressure gas turns into liquid and passes through the liquid tube Channel 101 and subcooler 9 flow through A, and then pass through the first heat exchanger 21, the second heat exchanger 22 and the third heat exchanger 23 to exchange heat with the outside, and then pass through the first four-way valve 61 and the second
  • the four-way valve 62 flows together through the gas-liquid separator 8 and finally returns to the compressor 4 .
  • the speed of the second fan 12 is less than or equal to the speed of the first fan 11, which is beneficial to the discharge of wind from the top side air outlet, because the wind discharged from the first fan 11 includes the wind delivered by the second fan 12 to the first heat exchange channel 211, It also includes the wind entering the first heat exchange channel 211 from the side air inlet of the first heat exchanger 21.
  • the speed V3 of the first fan 11 ⁇ the speed V4 of the second fan 12.
  • the third control method is when the air conditioner is in conventional cooling mode, as shown in Figure 4 and Figure 10.
  • the control method includes:
  • Step S23 When the air conditioner is in the normal cooling mode, control the first heat exchanger 21, the second heat exchanger 22, and the third heat exchanger 23 to be condensers;
  • Step S33 Control the first fan 11 to rotate forward, and control the second fan 12 to rotate forward.
  • the working principle of the air conditioner in the normal refrigeration mode is as follows.
  • the compressor 4 is controlled to start, and the first four-way valve 61, the second four-way valve 62 and the third four-way valve are controlled. 63 is connected as shown in the figure.
  • the high-pressure gas in the compressor 4 first passes through the oil separator 5 and then passes through the first four-way valve 61 and the second four-way valve 62, and then passes through the After the first heat exchanger 21 and the first expansion valve 71, the second heat exchanger 22 and the second expansion valve 72, the third heat exchanger 23 and the third expansion valve 73 enter the liquid pipe 101, they enter the room through the liquid pipe 101.
  • the heat is absorbed and turned into gas.
  • the gas passes through the gas pipeline 10 and the third four-way valve 63 and then flows through the gas-liquid separator 8 and finally returns to the compressor 4 .
  • the fourth control method is when the air conditioner is in forced cooling mode, as shown in Figure 3 and Figure 10.
  • the control method includes:
  • Step S24 When the air conditioner is in the forced cooling mode, control one or more of the first heat exchanger 21, the second heat exchanger 22, and the third heat exchanger 23 to be a condenser;
  • Step S34 Control the first fan 11 to rotate reversely, and control the second fan 12 to rotate reversely.
  • step S34 Control the first fan 11 to reverse, control the second fan 12 "Inversion” further includes:
  • Step S341 Control the reverse rotation speed of the first fan 11 to V5, control the reverse rotation speed of the second fan 12 to V6, and control V5 ⁇ V6.
  • the working principle is the same as the working principle of the conventional cooling mode in the figure. If Only one or more of the heat exchangers 2 are controlled to be condensers. For example, if only the third heat exchanger 23 is controlled to be a condenser, then the first expansion valve 71 and the second expansion valve 72 are closed, and the gas in the compressor 4 is only It flows into the third heat exchanger 23 through the second four-way valve 62 and enters the room for heat exchange. The principle of the gas coming out of the room and returning to the compressor 4 is the same as in the conventional refrigeration mode.
  • the speed of the second fan 12 is greater than or equal to the speed of the first fan 11, which is beneficial to the discharge of wind from the second heat exchanger 22 side, because the wind discharged from the second fan 12 includes the first fan 11 and is transported to the second heat exchange channel 221 The wind also includes the wind entering the second heat exchange channel 221 from the side air inlet of the second heat exchanger 22.
  • the speed V6 of the second fan 12 ⁇ the speed V5 of the first fan 15,
  • the speed of the first fan 11 and/or the second fan 12 is too low or the outdoor ambient temperature drops below zero, the first fan 11 and/or the second fan 12 will also stop rotating.
  • the fifth control method is when the air conditioner is in foreign object cleaning mode, as shown in Figure 5 and Figure 10.
  • the control methods include:
  • Step S23 When the air conditioner is in the foreign matter cleaning mode of the heat exchanger 2, the first fan 11 is controlled to rotate reversely and the second fan 12 is controlled to rotate forward.
  • the air conditioner regularly cleans the foreign matter in the outdoor unit heat exchanger 2.
  • the air conditioner automatically detects the time when the outdoor unit of the air conditioner needs to turn on the foreign matter cleaning mode, it forces the outdoor heat exchanger 2 to clean the foreign matter and controls the first fan 11 to reverse , the second fan 12 rotates forward, thereby generating larger forced convection, thereby generating a turbulent effect, which can better blow dirt from all angles. After running for a certain period of time, the foreign matter cleaning mode will automatically stop.
  • the first heat exchanger 21 and the second heat exchanger 22 are controlled to be evaporators, the third heat exchanger 23 is controlled to be a condenser, and the third heat exchanger 23 exchanges heat with the outdoors.
  • the hot air passing through the third heat exchanger 23 first exchanges heat with the first heat exchanger 21 and then is reversed by the second fan 12 to blow the hot air to the second heat exchange channel 221 for exchange with the second heat exchanger 22.
  • the reverse setting of the second fan 12 allows the hot air generated by the third heat exchanger 23 to exchange heat with the second heat exchanger 22 and then be discharged from the side of the second heat exchanger 22 through the first fan 11 at low speed. Inversion can reduce chamber The external cold air exchanges heat with the first heat exchanger 21, thereby ensuring the heat exchange effect between the first heat exchanger 21 and the second heat exchanger 22.
  • the present invention can also use heat exchangers with other structures, such as a notch-shaped or two non-connected butt-shaped U-shaped heat exchangers, as long as the The heat exchanger has a certain opening and the air in the heat exchanger can exchange heat with the outdoor air through the opening.

Abstract

本发明涉及空调技术领域,具体提供一种空调室外机。为解决现有的空调器在除霜模式下不能连续制热而影响室内体验的问题。本发明的空调室外机包括:换热器和室外风扇,室外风扇包括第一风扇和第二风扇,换热器包括第一、第二、第三换热器,第一换热器围设出第一换热通道,第二换热器围设出第二换热通道,第一换热通道与第二换热通道连通设置,第一风扇设置在第一换热通道的第一端,第二风扇设置在第一换热通道与第二换热通道的交接处,第三换热器围设在第一换热器的外侧。当空调器处于连续制热模式时,控制第三换热器为冷凝器,第一、第二换热器为蒸发器,控制第一风扇反转,第二风扇反转,上述设置既能防止室外换热器结霜又不影响室内制热。

Description

空调室外机及空调器的控制方法
相关申请的交叉引用
本申请要求2022年05月05日提交的、发明名称为“空调室外机及空调器的控制方法”的中国专利申请CN202210481888.X的优先权,上述中国专利申请的全部内容通过引用并入本申请中。
技术领域
本发明涉及空调技术领域,具体提供一种空调室外机及空调器的控制方法。
背景技术
随着人们生活水平的不断提高,人们对室内环境舒适度的需求也越来越高,因此,空调机组在日常生活中的作用也就必不可少。通常地,空调机组包括室内机、室外机以及用于连接室内机与室外机的循环回路,空调机组的室外机包括换热器,冷媒通过循环回路及换热器在室外机与室内机之间不断换热以达到室内的舒适温度。然而在一些情况下,由于室外环境的影响,空调机组的配置与使用方式并不能完全满足用户的要求。例如在空调制热模式下,室外机的换热器处于低温状态,室外换热器很容易在持续低温下出现表面结霜的情况,室外机的换热器表面结霜很容易影响换热效率,而现有空调通过除霜模式对室外机换热器进行除霜,但在除霜模式下室内不能够连续制热,此时用户的体验感大大降低。
相应地,本领域需要一种新的空调室外机来解决现有的空调器在除霜模式下不能连续制热而影响室内体验的问题。
发明内容
本发明旨在解决上述技术问题,即,解决现有的空调器在除霜模式下不能连续制热而影响室内体验的问题。
在第一方面,本发明提供一种空调室外机,包括换热器和室外风扇,所述室外风扇包括第一风扇和第二风扇,所述换热器包括第一换热器、第二换热器和第三换热器,所述第一换热器围设出第一换热通道,所述第二换热器围设出第二换热通道,所述第一换热通道与所述第二换热通道连通设置,所述第一风扇设置在所述第一换热通道的第一端,所述第二风扇设置在所述第一换热通道与所述第二换热通道的交接处,所述第三换热器围设在所述第一换热器的外侧。
在上述空调室外机的优选技术方案中,所述室外机还包括外壳,所述第一换热器、第二换热器、第三换热器、所述第一风扇和所述第二风扇设置在所述外壳内部,所述第一换热器与所述第二换热器上下叠加设置,所述第三换热器围设在上方的所述第一换热器的外侧,相应地所述外壳的顶面设置有出风口,所述出风口与所述第一风扇对应设置,所述外壳的底面和/或侧面设置有进风口。
本发明还提供了一种空调器的控制方法,所述空调器包括空调室外机,所述空调室外机包括换热器和室外风扇,所述室外风扇包括第一风扇和第二风扇,所述换热器包括第一换热器、第二换热器和第三换热器,所述第一换热器围设出第一换热通道,所述第二换热器围设出第二换热通道,所述第一换热通道与所述第二换热通道连通设置,所述第一风扇设置在所述第一换热通道的第一端,所述第二风扇设置在所述第一换热通道与所述第二换热通道的交接处,所述第三换热器围设在所述第一换热器的外侧;
所述控制方法包括:
获取所述空调器的运行模式;
当所述空调器处于连续制热模式时,控制所述第三换热器为冷凝器,控制所述第一换热器与所述第二换热器为蒸发器;
控制所述第一风扇反转,控制所述第二风扇反转。
在上述空调器的控制方法的优选技术方案中,“控制所述第一风扇反转,控制所述第二风扇反转”的步骤进一步包括:
控制所述第一风扇反转的速度为V1,控制所述第二风扇反转的速度为V2,控制V1<V2。
在上述空调器的控制方法的优选技术方案中,所述控制方法还包括:
当所述空调器处于常规制热模式时,控制所述第一换热器、所述第二换热器和所述第三换热器为蒸发器;
控制所述第一风扇正转,控制所述第二风扇正转。
在上述空调器的控制方法的优选技术方案中,“控制所述第一风扇正转,控制所述第二风扇正转”的步骤进一步包括:
控制所述第一风扇正转的速度为V3,控制所述第二风扇正转的速度为V4,控制V3≥V4。
在上述空调器的控制方法的优选技术方案中,所述控制方法还包括:
当所述空调器处于换热器异物清理模式时,控制所述第一风扇反转,控制所述第二风扇正转。
在上述空调器的控制方法的优选技术方案中,所述控制方法还包括:
当所述空调器处于常规制冷模式时,控制所述第一换热器、所述第二换热器、所述第三换热器为冷凝器;
控制所述第一风扇正转,控制所述第二风扇正转。
在上述空调器的控制方法的优选技术方案中,所述控制方法还包括:
当所述空调器处于强制制冷模式时,控制所述第一换热器、所述第二换热器、所述第三换热器中的一个或多个为冷凝器;
控制所述第一风反转,控制所述第二风扇反转。
在上述空调器的控制方法的优选技术方案中,“控制所述第一风扇反转,控制所述第二风扇反转”的步骤进一步包括:
控制所述第一风扇反转的速度为V5,控制所述第二风扇反转的速度为V6,控制V5≤V6。
本领域技术人员能够理解的是,在本发明的技术方案中的空调室外机包括换热器和室外风扇,室外风扇包括第一风扇和第二风扇,换热器包括第一换热器、第二换热器和第三换热器,第一换热器围设出第一换热通道,第二换热器围设出第二换热通道,第一换热通道与第二换热通道连通设置,第一风扇设置在第一换热通道的第一端,第二风扇设置在第一换热通道与第二换热通道的交接处,第三换热器围设在第一换热器的外侧。当空调器处于连续制热模式时,控制第三换热器为冷凝器,控 制第一换热器、第二换热器为蒸发器,控制第一风扇反转,第二风扇反转。
在采用上述技术方案的情况下,本发明设置了一种能够实现连续制热模式的具体结构方案,具体地,连续制热模式方案如下:控制第三换热器为冷凝器向室外放热,控制第一、第二换热器为蒸发器,控制第一风扇反转、第二风扇反转,此时,第三换热器与室外换热产生的热空气由外向内吹,先与第一换热器换热,通过第二风扇将与第一换热器换热后的温热空气向第二换热通道吹出,吹入到第二换热通道内的温热空气与第二换热器进行换热,由于温热空气会向上走,第一风扇的反转则能够避免温热空气直接从顶部散出,充分保证第一换热器吸收足够热量而避免结霜,第二风扇的反转则避免温热空气从第一换热器侧散出,充分保证第二换热器吸收足够热量而避免结霜,整体对于热量的散失控制在了一个极佳的水平,从第三换热器散出的热量绝大部分都被第一换热器和第二换热器吸收,效率大大提升。
附图说明
下面结合附图来描述本发明的优选实施方式,附图中:
图1是本发明的空调室外机室外风扇与换热器的位置关系的侧视图;
图2是本发明的空调室外机室外风扇与换热器的位置关系的俯视图;
图3是本发明的空调室外机在连续制热、强制制冷模式下的在室外风扇作用下的空气换热方向的示意图;
图4是本发明的空调室外机在常规制热、制冷模式下的在室外风扇作用下的空气换热方向的示意图;
图5是本发明的空调室外机在异物清理模式下的异物排出方向的示意图;
图6是本发明的空调室外机在连续制热模式下运行的系统图;
图7是本发明的空调室外机在常规制热模式下运行的系统图;
图8是本发明的空调室外机在常规制冷模式下运行的系统图;
图9是本发明的空调室外机在连续制热模式下的控制方法示意图;
图10是本发明的空调室外机在其他模式下的控制方法的示意图。
附图标记列表:
1、室外风扇;11、第一风扇;12、第二风扇;2、换热器;21、第
一换热器;211、第一换热通道;2111、第一换热通道的第一端;2112、第一换热通道的第二端;22、第二换热器;221、第二换热通道;2211第二换热通道的第一端;2212、第二换热通道的第二端;23、第三换热器;3、隔板;4、压缩机;5、油分离器;61、第一四通阀;62、第二四通阀;63、第三四通阀;71、第一膨胀阀;72、第二膨胀阀;73、第三膨胀阀;8、气液分离器;9、过冷却器;10、气体管道;101、液体管道。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。例如,尽管说明书中是以将第一换热器与第二换热器上下叠加设置进行描述的,但是,本发明显然可以采用其他设置方式,比如将第一换热器与第二换热器前后设置,只要该设置方式具有在控制室外风扇的正转、反转可以达到既能防止室外换热器结霜又不影响室内制热效果即可。另外,尽管本说明书中是以顶出风的空调室外机进行描述的,但是本发明还可以采用其他出风方式的空调室外机,例如,侧出风的空调室外机,只要该设置方式具有在控制控制室外风扇的正转、反转可以达到既能防止室外换热器结霜又不影响室内制热效果即可。
需要说明的是,在本发明的描述中,术语“上”、“下”、“前”、“后”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也 可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
如图1-8所示,为解决现有的空调器在除霜模式下不能连续制热而影响室内体验的问题,本发明的空调室外机包括换热器2和室外风扇1,如图1所示,室外风扇1包括第一风扇11和第二风扇12,换热器2包括第一换热器21、第二换热器22和第三换热器23,第一换热器21围设出第一换热通道211,第二换热器22围设出第二换热通道221,第一换热通道211与第二换热通道221连通设置,第一风扇11设置在第一换热通道211的第一端2111,第二风扇12设置在第一换热通道211与第二换热通道221的交接处,即第一换热通道211的第二端2112和第二换热通道221的第一端2211的交接处,第二换热通道221的第二端2212为远离第一换热器21的一端,第三换热器23围设在第一换热器21的外侧。优选地,室外机还包括外壳(图中未示出),第一换热器21、第二换热器22、第三换热器23、第一风扇11和第二风扇12设置在外壳内部,第一换热器21与第二换热器22上下叠加设置,第三换热器23围设在上方的第一换热器21的外侧,相应地外壳的顶面设置有出风口(图中未示出),出风口与第一风扇11对应设置,外壳的底面和/或侧面设置有进风口(图中未示出),优选地,进风口与换热器2的开口对应设置,如图2所示,图中箭头方向为从进风口进入的风的方向。
上述设置方式的优点在于:优选地将空调室外机设置为顶出风,将第一换热通道211与第二换热通道221连通设置,并将第一风扇11设置在第一换热通道211的第一端2111,第二风扇12设置在第一换热通道211的第二端2112和第二换热通道221的第一端2211的交接处,将第三换热器23围设在第一换热器21的外侧,当空调器处于连续制热模式时,通过上述设置并控制第一风扇11、第二风扇12反转,第三换热器23放出的热量与第一换热器21交换,并通过第二风扇12将换热后的空气吹入到第二换热通道221内与第二换热器22进行换热,此时进入第二换热通道221内的空气温度高于室外温度,上述设置可以避免第二换热器22换热后周围的空气温度太低而在其表面结霜,这种设置既能实现室内连续 制热,同时换热器2表面也不会结霜。
此外,本发明还提供了一种空调器,该空调器具有上述任一实施方式中的空调室外机。
此外,本发明还提供了一种空调器的控制方法,如图1所示,空调器包括空调室外机,空调室外机包括换热器2和室外风扇1,室外风扇1包括第一风扇11和第二风扇12,换热器2包括第一换热器21、第二换热器22和第三换热器23,第一换热器21围设出第一换热通道211,第二换热器22围设出第二换热通道221,第一换热通道211与第二换热通道221连通设置,第一风扇11设置在第一换热通道211的第一端,第二风扇12设置在第一换热通道211与第二换热通道221的交接处,第三换热器23围设在第一换热器21的外侧,如图3、图4、图5所示,以下控制方法以顶出风式空调室外机为例,
第一种控制方法为空调处于连续制热模式下,如图3、图9所示,控制方法包括:
步骤S1:获取空调器的运行模式;
步骤S21:当空调器处于连续制热模式时,控制第三换热器23为冷凝器,控制第一换热器21与第二换热器22为蒸发器;
步骤S31:控制第一风扇11反转,控制第二风扇12反转。
优选地,如图10所示,步骤S31“控制第一风扇11反转,控制第二风扇12反转”进一步包括:
步骤S311:控制第一风扇11反转的速度为V1,控制第二风扇12反转的速度为V2,控制V1<V2。
如图6所示,空调连续制热模式下的工作原理如下,当空调处于连续制热模式时,控制压缩机4启动,控制第一四通阀、第二四通阀62、第三四通阀63如图中所示位置连接,此时压缩机4内的为高压气体,压缩机4内的高压气体先经过油分离器5,之后一部分通过第三四通阀63之后经过通过气体管道10进入室内,在室内进行放热后高压气体变为液体通过液体管道101和过冷却器9流经A,另一部分从压缩机4出来的高压气体通过第二四通阀62流经第三换热器23和第三膨胀阀73后流经A,此时这两部分压缩机4放出的高压气体经换热后在A点进行汇合,一 同经过第一膨胀阀71和第一换热器21、第二膨胀阀72和第二换热器22与室外进行换热后再通过第一四通阀61流经气液分离器8最终回到压缩机4。
上述控制可以使从压缩机4流经室内的冷媒在与从压缩机4流经第三换热器23后的冷媒汇合后温度升高,从而降低了第一换热器21、第二换热器22和第三换热器23表面结霜的可能,因为第三换热器23相当于冷凝器,此时第三换热器23与室外换热为放热,经过第三换热器23的热风先与第一换热器21进行换热,再通过第二风扇12反转将换热后的风向下吹直至与第二换热器22换热,第一风扇11反转、第二风扇12反转的设置可以使换热后的空气从第二换热器22侧边排出,增加了换热效果,通过第一风扇11低速反转减少室外冷风与第一换热器21换热,从而保证了第一换热器21的换热效果,通过第二风扇12高速反转将第三换热器23与第一换热器21换热后排出的风带到第二换热器22表面与第二换热器22换热并从第二换热器22侧边的进风口被排出,这种设置方式可以提高换热器2周围的空气的温度,防止换热器2换热后周围温度过低而在其表面结霜。
第二种控制方法为空调器处于常规制热模式下,如图4、图10所示,控制方法包括:
步骤S22:当空调器处于常规制热模式时,控制第一换热器21、第二换热器22和第三换热器23为蒸发器;
步骤S32:控制第一风扇11正转,控制第二风扇12正转。
优选地,如图10所示,步骤S32“控制第一风扇11正转,控制第二风扇12正转”进一步包括:
控制第一风扇正转的速度为V3,控制第二风扇正转的速度为V4,控制V3≥V4。
如图7所示,空调常规制热模式下的工作原理如下,当空调处于常规制热模式时,控制压缩机4启动,控制第一四通阀61、第二四通阀62和第三四通阀63如图中所示连接,此时压缩机4内的为高压气体,压缩机4内的高压气体先经过油分离器5后通过第三四通阀63之后经过通过气体管道10进入室内,在室内进行放热后高压气体变为液体通过液体管 道101和过冷却器9流经A,再经过第一换热器21、第二换热器22和第三换热器23与室外进行换热后再通过第一四通阀61和第二四通阀62一同流经气液分离器8最终回到压缩机4。
第二风扇12的速度小于或等于第一风扇11的速度有利于风从顶侧出风口排除,因为从第一风扇11排出的风包括第二风扇12输送到第一换热通道211的风,还包括第一换热器21侧边进风口进入到第一换热通道211的风,为了更好地将风排出,第一风扇11的速度V3≥第二风扇12的速度V4。需要注意的是,虽然名称为常规制热模式,但由于两个风扇的联动,其整体的送风方式与现有技术还是存在了较大的不同,通过这种送风方式能使得其在本发明的结构基础上风路流通更顺畅,换热效果更佳,下面所提及的其它模式同理。
第三种控制方法为空调处于常规制冷模式下,如图4、图10所示,控制方法包括:
步骤S23:当空调器处于常规制冷模式时,控制第一换热器21、第二换热器22、第三换热器23为冷凝器;
步骤S33:控制第一风扇11正转,控制第二风扇12正转。
如图8所示,空调常规制冷模式下的工作原理如下,当空调处于常规制冷模式时,控制压缩机4启动,控制第一四通阀61、第二四通阀62和第三四通阀63如图中所示连接,此时压缩机4内的为高压气体,压缩机4内的高压气体先经过油分离器5后通过第一四通阀61、第二四通阀62之后经过第一换热器21和第一膨胀阀71、第二换热器22和第二膨胀阀72、第三换热器23和第三膨胀阀73后进入液体管道101,经液体管道101后进入室内吸热变为气体,气体通过气体管道10、第三四通阀63后流经气液分离器8最后回到压缩机4。
第四种控制方法为空调处于强制制冷模式下,如图3、图10所示,控制方法包括:
步骤S24:当空调器处于强制制冷模式时,控制第一换热器21、第二换热器22、第三换热器23中的一个或多个为冷凝器;
步骤S34:控制第一风扇11反转,控制第二风扇12反转。
如图10所示,步骤S34“控制第一风扇11反转,控制第二风扇12 反转”进一步包括:
步骤S341:控制第一风扇11反转的速度为V5,控制第二风扇12反转的速度为V6,控制V5≤V6。
当空调处于强制制冷模式时,若第一换热器21、第二换热器22和第三换热器23均作为冷凝器,则工作原理与图中的常规制冷模式的工作原理相同,如果只控制其中一个或多个换热器2为冷凝器,例如,只控制第三换热器23为冷凝器,则关闭第一膨胀阀71和第二膨胀阀72,压缩机4内的气体只通过第二四通阀62流入第三换热器23并进入室内换热,从室内出来的气体回到压缩机4的原理与常规制冷模式相同。
第二风扇12的速度大于或等于第一风扇11的速度有利于风从第二换热器22侧排出,因为从第二风扇12排出的风包括第一风扇11输送到第二换热通道221的风,还包括第二换热器22侧边进风口进入到第二换热通道221的风,为了更好地将风排出,第二风扇12的速度V6≥第一风扇15的速度V5,但是当第一风扇11和/或第二风扇12的速度太低或室外环境温度降至零下时,第一风扇11和/或第二风扇12也会停止转动。
第五种控制方法为空调处于异物清理模式下,如图5、图10所示,控制方法包括:
步骤S23:当空调器处于换热器2异物清理模式时,控制第一风扇11反转,控制第二风扇12正转。
空调器定期进行室外机换热器2的异物清理,当空调器自动检测到空调器室外机需要开启异物清理模式的时间时,强制室外换热器2进行异物清理,控制第一风扇11反转,第二风扇12正转,从而产生较大的强制对流,进而产生紊流效应,更好地吹拂各个角度的脏物,运行一定时间后,自动停止异物清洁模式。
综上所述,在连续制热模式下,控制第一换热器21、第二换热器22为蒸发器,第三换热器23为冷凝器,第三换热器23与室外换热为放热,经过第三换热器23的热风先与第一换热器21进行换热再通过第二风扇12反转将热风吹至第二换热通道221与第二换热器22换热,第二风扇12反转的设置可以使第三换热器23产生的热空气与第二换热器22换热后从第二换热器22的侧边排出,通过第一风扇11低速反转可以减少室 外冷风与第一换热器21换热,从而保证了第一换热器21与第二换热器22的换热效果。
需要说明的是,上述实施方式仅仅用来阐述本发明的原理,并非旨在与限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员能够对上述结构进行调整,以便本发明能够应用于更加具体的应用场景。
尽管说明书是以图2中的U形换热器进行描述的,但是本发明还可以采用其他结构的换热器,比如缺口形或两个U形换热器不相连的对接的形式,只要该换热器具有一定的开口并可以通过开口使换热器内的空气与室外空气进行换热即可。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (1)

PCT/CN2023/088950 2022-05-05 2023-04-18 空调室外机及空调器的控制方法 WO2023213186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210481888.XA CN114992799A (zh) 2022-05-05 2022-05-05 空调室外机及空调器的控制方法
CN202210481888.X 2022-05-05

Publications (1)

Publication Number Publication Date
WO2023213186A1 true WO2023213186A1 (zh) 2023-11-09

Family

ID=83024707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088950 WO2023213186A1 (zh) 2022-05-05 2023-04-18 空调室外机及空调器的控制方法

Country Status (2)

Country Link
CN (1) CN114992799A (zh)
WO (1) WO2023213186A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992799A (zh) * 2022-05-05 2022-09-02 青岛海尔空调电子有限公司 空调室外机及空调器的控制方法
CN117053296A (zh) * 2022-05-05 2023-11-14 青岛海尔空调电子有限公司 空调室外机、空调器及空调器的控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644607A (zh) * 2013-05-29 2014-03-19 广东美的集团芜湖制冷设备有限公司 室外换热器及空调器
KR101423257B1 (ko) * 2013-07-02 2014-07-28 김홍운 다중 제상기능을 갖는 공기조화기
KR20140145025A (ko) * 2013-06-12 2014-12-22 한국교통대학교산학협력단 분할제상이 가능한 실외기 열교환기, 실외기 열교환기 관열 분할 제상 히트펌프 시스템 및 그 히트펌프 시스템의 작동방법
CN104235965A (zh) * 2013-06-24 2014-12-24 广东美的集团芜湖制冷设备有限公司 室外机冷凝器及空调器
CN104879852A (zh) * 2015-05-20 2015-09-02 广东志高暖通设备股份有限公司 三管制热回收多联机空调及其室外机
CN206514426U (zh) * 2017-02-23 2017-09-22 珠海格力电器股份有限公司 空调室外机和空调系统
CN209165598U (zh) * 2018-11-19 2019-07-26 宁波奥克斯电气股份有限公司 一种空调室外机及中央空调
CN114992799A (zh) * 2022-05-05 2022-09-02 青岛海尔空调电子有限公司 空调室外机及空调器的控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794498B2 (ja) * 2007-04-17 2011-10-19 三菱電機株式会社 冷凍空調装置
JP2013029242A (ja) * 2011-07-28 2013-02-07 Fujitsu General Ltd 空気調和装置
CN102901156B (zh) * 2012-11-16 2014-12-31 中国船舶重工集团公司第七0四研究所 热管型空调器防、除霜系统及其防、除霜方法
JP6359183B2 (ja) * 2015-05-14 2018-07-18 三菱電機株式会社 空気調和機の室外機
CN105066325B (zh) * 2015-07-15 2018-05-22 广东美的暖通设备有限公司 一种多联式空调机组控制系统及方法
JP6545277B2 (ja) * 2015-10-28 2019-07-17 三菱電機株式会社 空気調和機の室外機
CN110836469B (zh) * 2018-08-17 2021-07-23 郑州海尔空调器有限公司 空调器除霜控制方法
CN111197818A (zh) * 2018-11-19 2020-05-26 宁波奥克斯电气股份有限公司 一种空调室外机及中央空调
JP2021096034A (ja) * 2019-12-17 2021-06-24 日立ジョンソンコントロールズ空調株式会社 空気調和機および制御方法
CN111664549B (zh) * 2020-06-10 2023-09-12 青岛海信日立空调系统有限公司 空调器
CN213810898U (zh) * 2020-10-10 2021-07-27 广东美的暖通设备有限公司 一种空调室外机
CN113251629A (zh) * 2021-04-20 2021-08-13 青岛海尔空调器有限总公司 空调器的控制方法
CN113566311A (zh) * 2021-07-27 2021-10-29 珠海格力电器股份有限公司 换热器及空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644607A (zh) * 2013-05-29 2014-03-19 广东美的集团芜湖制冷设备有限公司 室外换热器及空调器
KR20140145025A (ko) * 2013-06-12 2014-12-22 한국교통대학교산학협력단 분할제상이 가능한 실외기 열교환기, 실외기 열교환기 관열 분할 제상 히트펌프 시스템 및 그 히트펌프 시스템의 작동방법
CN104235965A (zh) * 2013-06-24 2014-12-24 广东美的集团芜湖制冷设备有限公司 室外机冷凝器及空调器
KR101423257B1 (ko) * 2013-07-02 2014-07-28 김홍운 다중 제상기능을 갖는 공기조화기
CN104879852A (zh) * 2015-05-20 2015-09-02 广东志高暖通设备股份有限公司 三管制热回收多联机空调及其室外机
CN206514426U (zh) * 2017-02-23 2017-09-22 珠海格力电器股份有限公司 空调室外机和空调系统
CN209165598U (zh) * 2018-11-19 2019-07-26 宁波奥克斯电气股份有限公司 一种空调室外机及中央空调
CN114992799A (zh) * 2022-05-05 2022-09-02 青岛海尔空调电子有限公司 空调室外机及空调器的控制方法

Also Published As

Publication number Publication date
CN114992799A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023213186A1 (zh) 空调室外机及空调器的控制方法
US8408019B2 (en) Air conditioning device utilizing temperature differentiation of exhausted gas to even temperature of external heat exchanger
JP5958503B2 (ja) 室温調整システム
CN101258789B (zh) 用于通讯设备的空调系统及其控制方法
JP6028817B2 (ja) 空気調和装置
JP2012141113A (ja) 空気調和温水機器システム
CN213395597U (zh) 一种空调器
WO2016120936A1 (ja) 空気調和装置
WO2022068950A1 (zh) 房间温度调节装置
CN101464030A (zh) 分体式空调器压缩机的降温结构
KR100608682B1 (ko) 에어콘의 실내기
CN203893480U (zh) 一种风冷热泵机组
CN211526555U (zh) 具有套管换热器的空调机组
WO2023213187A1 (zh) 空调室外机、空调器及空调器的控制方法
CN213019934U (zh) 空调室内机
CN206037304U (zh) 水冷柜
WO2020168825A1 (zh) 微型空调器
CN207555847U (zh) 空调系统
CN112303761A (zh) 一种调节集中供暖温度的氟泵空调系统及控制方法
CN201100792Y (zh) 多功能型翅片管式冷凝器
CN205747571U (zh) 一种二氧化碳直膨空调装置
CN112833480A (zh) 空气调节系统
CN109681991A (zh) 高效制冷的冷风扇
CN205383820U (zh) 一种二氧化碳风水联合空调装置
CN211372658U (zh) 空气调节系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799173

Country of ref document: EP

Kind code of ref document: A1