WO2023212983A1 - 一种智能手机和可穿戴设备的音频定位系统、方法及终端 - Google Patents
一种智能手机和可穿戴设备的音频定位系统、方法及终端 Download PDFInfo
- Publication number
- WO2023212983A1 WO2023212983A1 PCT/CN2022/093481 CN2022093481W WO2023212983A1 WO 2023212983 A1 WO2023212983 A1 WO 2023212983A1 CN 2022093481 W CN2022093481 W CN 2022093481W WO 2023212983 A1 WO2023212983 A1 WO 2023212983A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- ranging
- audio
- user
- user terminal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 239000013598 vector Substances 0.000 claims description 55
- 238000005259 measurement Methods 0.000 claims description 31
- 238000006073 displacement reaction Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 14
- 238000004422 calculation algorithm Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 8
- 238000005314 correlation function Methods 0.000 claims description 7
- 238000013135 deep learning Methods 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000005562 fading Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 238000013461 design Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 2
- 230000003068 static effect Effects 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 description 44
- 230000000694 effects Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000008901 benefit Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000002265 prevention Effects 0.000 description 6
- 230000005236 sound signal Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 230000036544 posture Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/025—Services making use of location information using location based information parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/33—Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the invention belongs to the technical field of audio positioning, and in particular relates to an audio positioning system, method and terminal for smart phones and wearable devices.
- GNSS Global Navigation Satellite System
- weak GNSS signals cannot penetrate indoor spaces.
- Precisely locating people, objects and vehicles in indoor environments remains a challenging task.
- Various positioning technologies such as ultra-wideband, Wi-Fi RTT, Bluetooth AoA, audio ranging, and 5G technology have demonstrated the potential of indoor precise positioning.
- GNSS Global Navigation Satellite System
- UAV unmanned aerial vehicle
- Wi-Fi and Bluetooth are the most common RF signals for indoor positioning because these signals are available in smartphones.
- various technologies include:
- Wi-Fi Fine Timing Measurement which achieves high positioning accuracy by using round-trip time (RTT) ranging solutions.
- RTT round-trip time
- This technology is embedded in Google smartphones. It can achieve a ranging accuracy of about 1 meter and provide a positioning accuracy of 1 to 2 meters. However, due to the interactive nature of the RTT solution, it can only support a limited number of users simultaneously.
- Ultra-wideband (UWB) ranging technology was originally applied to the smartphone industry by Apple.
- UWB Ultra-wideband
- other companies such as Huawei and Samsung have also implemented UWB chips in their smartphones.
- current UWB-enabled smartphones can provide directionality and close-range detection capabilities, the development of comprehensive positioning capabilities for smartphones remains to be seen in the next few years.
- Bluetooth 5.1 provides the ability to measure the angle of arrival (AoA) of signals through an antenna array.
- AoA is estimated from signal phase and amplitude measurements collected at each antenna. It is a low-cost, low-power solution. Depending on the installation height of the signal transmitter, a positioning accuracy of 1 to 3 meters can be achieved. However, it is limited by the antenna array and requires complex error compensation in advance.
- (4)5G is another indoor positioning technology with great potential.
- 5G has three characteristics that are conducive to positioning: dense installation of base stations (30 to 50 meters in indoor space), wide bandwidth, and antenna array adaptation.
- 5G can provide ranging accuracy better than 1 meter and positioning accuracy of 2 to 3 meters.
- SLAM Simultaneous localization and mapping
- Wi-Fi technology can realize positioning, monitoring and tracking tasks in complex environments through a wireless local area network (WLAN) composed of wireless access points (including wireless routers). It is based on the location information of network nodes (wireless access points) and uses a combination of empirical testing and signal propagation models to position the connected mobile devices at a height of approximately 1 meter to 20 meters. between. If the positioning calculation is only based on the currently connected Wi-Fi access point, rather than referring to the signal strength composite map of surrounding Wi-Fi, Wi-Fi positioning is prone to errors (for example, incorrect floor positioning). In addition, Wi-Fi access points usually can only cover an area with a radius of about 90 meters, and are easily interfered by other signals, thus affecting their accuracy, and the energy consumption of the locator is also high.
- WLAN wireless local area network
- Wi-Fi access points usually can only cover an area with a radius of about 90 meters, and are easily interfered by other signals, thus affecting their accuracy, and the energy consumption of the locator is also high.
- Bluetooth technology Bluetooth communication is a short-range and low-power wireless transmission technology. After installing an appropriate Bluetooth LAN access point indoors, configure the network into a basic network connection mode based on multi-users and ensure Bluetooth LAN access. The entry point is always the master device of this micronet. In this way, the user's location information can be obtained by detecting signal strength.
- the greater advantages of Bluetooth indoor positioning technology are the small size of the device, short distance, and low power consumption.
- Infrared technology indoor positioning uses an optical sensor installed indoors to receive the modulated infrared rays emitted by each mobile device (infrared IR logo) for positioning. It has relatively high indoor positioning accuracy. However, since light cannot pass through obstacles, infrared rays can only propagate within line-of-sight and are easily interfered by other lights. In addition, the transmission distance of infrared rays is short, making the effect of indoor positioning very poor. When mobile devices are placed in pockets or blocked by walls, they cannot work properly. Receiving antennas need to be installed in every room and corridor, resulting in a higher overall cost.
- Ultra-wideband technology is quite different from the positioning method of traditional communication technology. It does not need to use the carrier in the traditional communication system, but sends and receives extremely narrow pulses with nanoseconds or less. To transmit data, it can be used for indoor positioning, such as location discovery of battlefield soldiers, robot motion tracking, etc. Compared with traditional narrowband systems, ultra-wideband systems have the advantages of strong penetration, low power consumption, good anti-multipath effect, high security, low system complexity, and improved positioning accuracy. They are usually used for indoor tracking of moving objects. Location tracking or navigation.
- RFID positioning technology uses radio frequency for non-contact two-way communication to exchange data to achieve the purpose of identifying and locating mobile devices. It can obtain information with centimeter-level positioning accuracy within a few milliseconds, and has a large transmission range and low cost. However, due to the following problems that cannot be solved, the scope of application of RFID positioning technology is limited. 1) RFID is not easy to integrate into mobile devices 2) The range of action is short (generally up to tens of meters) 3) User security and privacy protection 4) International standardization.
- Ultrasonic positioning mainly uses reflection ranging (after transmitting ultrasonic waves and receiving the echo generated by the object being measured, the distance between the two is calculated based on the time difference between the echo and the transmitted wave), and through triangulation positioning and other algorithms to determine the position of the object.
- Ultrasonic positioning has high overall positioning accuracy and simple system structure, but is easily affected by multipath effects and non-line-of-sight propagation, which reduces positioning accuracy. At the same time, it also requires a large amount of investment in underlying hardware facilities, and the overall cost is high.
- ZigBee is a short-distance, low-rate wireless network technology. It is between RFID and Bluetooth and can locate the location of the device through coordinated communication between sensors. At present, domestic Zigbee technology mainly uses the 2.5G frequency in the ISM band, which has weak diffraction ability and weak wall penetration ability.
- the present invention provides an audio positioning system, method, medium, equipment and terminal for smart phones and wearable devices.
- the present invention is implemented as follows: an audio positioning method for smart phones and wearable devices.
- the audio positioning method for smart phones and wearable devices includes:
- the base station network is used to transmit ranging signals, and a specific spatial signal with a frequency of 12kHz to 21kHz is designed; the user terminal is used to receive and decode the ranging signals, and the distance between the base station and the user terminal is estimated based on the first arriving signal, and the distance between the base station and the user terminal is estimated based on the user's location. Measure multiple distances to estimate user location.
- the audio positioning method for smartphones and wearable devices includes the following steps:
- Step 1 Design a Chirp signal with a frequency of 12kHz to 21kHz;
- Step 2 Accurate ranging based on audio
- Step 3 Positioning based on audio ranging and inertial sensors.
- A(t) is the amplitude of the sound wave
- T is the period of the Chirp signal
- f 0 and f e are the initial frequency and cutoff frequency respectively
- the received signal is expressed as:
- ⁇ i , ⁇ i and N i (t) are the channel fading coefficient, propagation delay and random noise of the i-th propagation path respectively
- h(t) is the channel impulse response in the indoor environment
- ⁇ i is the i-th propagation path.
- the delay of the component, ⁇ 0 is the delay of the first line of sight component.
- step 2 includes:
- the Chirp signal adopts a period of 50ms.
- E[*] is the mathematical expectation operator
- f is the signal frequency
- H is the Hermitian transpose.
- ⁇ is the time delay of the correlation function
- ⁇ t of the ranging signal s(t) is obtained by the following formula:
- ⁇ is the threshold factor
- ] represents the estimated threshold
- c is the speed of sound, which is 343m/s.
- step three the positioning based on audio ranging and inertial sensors in step three includes:
- the position of the user terminal is estimated by integrating the measurement values of the acoustic range and the inertial sensor.
- the data processing for estimating the user position includes a data-driven part and a model-driven part; wherein the data-driven part estimates the user velocity vector based on a deep learning method; the model
- the actuation section utilizes an extended Kalman filter to integrate velocity vector and odometry measurements to estimate user position, heading, and speed.
- Model driving part Integrate velocity vector and audio-based precise ranging, and use the extended Kalman filter to estimate the user's position, heading and speed.
- step three the positioning based on audio ranging and inertial sensors in step three also includes:
- the output rate of the learned velocity vector is 20Hz.
- the displacement vector is estimated by multiplying the velocity vector by the time interval of two consecutive periods t1 and t2 as follows:
- Distance and azimuth measurements are collected from an absolute coordinate system and a 2D approach is used for user position estimation.
- An extended Kalman filter is used to fuse the displacement vectors obtained from the PDR network.
- the displacement vector is located in the local coordinate system L(x,y,u) defined by the initial heading x and the vertical direction u, and the y-axis is defined by the action of the right-hand Cartesian coordinate system. Since the final coordinates output by EKF are in the navigation coordinate system G(e,n,u) defined by the northeast sky direction, there is a rotation angle ⁇ between the two coordinate systems G and L on the horizontal plane. Introducing the rotation angle ⁇ into the filter's state vector is as follows:
- [e k , n k ] are the horizontal coordinates in the east and north directions in epoch k respectively;
- ⁇ k includes the rotation angle between coordinate systems G and L and the accumulated drift error of the gyroscope.
- Si is the coordinate vector of the i-th transmitter in the G coordinate system
- V k is the error vector of Z k
- Z k obeys the normal distribution N (0, R k ), where R k is the covariance matrix of Z k , m is the number of transmitters available at the current user location, and c is the sound speed at temperature T.
- Another object of the present invention is to provide an audio positioning system for smart phones and wearable devices that applies the audio positioning method for smart phones and wearable devices.
- the audio positioning system for smart phones and wearable devices includes a transmission method.
- the base station network is a set of signal transmitters, consisting of speakers, clock synchronization modules, Bluetooth low energy modules and microcontroller units, used to broadcast specially designed signals over the air, and the base station clock in the network is connected to the 433MHz radio frequency radio synchronization;
- the spatial signal is a set of linear frequency modulation signals with a frequency of 12kHz to 21kHz;
- the user terminal is configured to receive and decode ranging signals, estimate the distance between the base station and the user terminal based on the first arriving signal, and estimate the user location based on multiple distances measured at the user location;
- the user terminal implements a comprehensive signal processing program.
- the user terminal is a smartphone used to locate people or a tag used to locate objects and vehicles. Special chips are developed for tag-based user terminals.
- the computer device includes a memory and a processor.
- the memory stores a computer program.
- the processor executes the following steps: step:
- the base station network is used to transmit ranging signals, and a specific spatial signal with a frequency of 12kHz to 21kHz is designed; the user terminal is used to receive and decode the ranging signals, and the distance between the base station and the user terminal is estimated based on the first arriving signal, and the distance between the base station and the user terminal is estimated based on the user's location. Measure multiple distances to estimate user location.
- Another object of the present invention is to provide a computer-readable storage medium that stores a computer program.
- the computer program When executed by a processor, it causes the processor to perform the following steps:
- the base station network is used to transmit ranging signals, and a specific spatial signal with a frequency of 12kHz to 21kHz is designed; the user terminal is used to receive and decode the ranging signals, and the distance between the base station and the user terminal is estimated based on the first arriving signal, and the distance between the base station and the user terminal is estimated based on the user's location. Measure multiple distances to estimate user location.
- Another object of the present invention is to provide an information data processing terminal, which is used to implement the audio positioning system of smart phones and wearable devices.
- the present invention provides an audio positioning system (APS) for smartphones and wearable devices based on audio. Unlike most radio frequency (RF)-based technologies, this solution is audio-based.
- the audio positioning method of the present invention has three advantages: high ranging accuracy, wide signal coverage, and the ability to support all smart phone platforms without changing the smart phone hardware.
- the invention provides an acoustic positioning system, which consists of three parts: a base station network for signal transmission, a spatial signal for defining ranging signals, and a user terminal for receiving ranging signals, calculating ranging measurements, and estimating user positions;
- the ranging signal uses the 12kHz ⁇ 21kHz frequency band, and the ranging accuracy is 16cm; by using the inertial sensor to learn the velocity vector, the data-driven PDR network is trained in the positioning algorithm, and further integrated with the audio ranging measurement by using the extended Kalman filter;
- APS provides positioning accuracy of ⁇ 38 cm in static conditions and ⁇ 58 cm in dynamic conditions.
- the invention provides an audio positioning system (APS) for smart phones and wearable devices, which is an accurate ranging technology based on audio.
- APS audio positioning system
- Experimental results prove that the APS of the present invention can provide a ranging accuracy of 16cm and a static positioning accuracy of 38cm within a signal effective range of 50 meters.
- the present invention proposes an audio-based positioning technology, filling the gap in domestic and foreign audio-based indoor positioning technology.
- the invention solves the problem of providing high-precision indoor positioning services without changing the mobile phone hardware.
- the present invention proposes a combined positioning technology based on audio ranging and PDR, which closely couples model-driven audio precise ranging and data-driven PDR, and establishes a new paradigm and new scheme of navigation and positioning theory driven by both data and model.
- a data-driven PDR network is trained in the localization algorithm and further integrated with audio ranging measurements by using an extended Kalman filter.
- Figure 1 is a flow chart of an audio positioning method for smartphones and wearable devices provided by an embodiment of the present invention
- Figure 2 is a schematic diagram of the three components of the APS provided by the embodiment of the present invention.
- Figure 3 is a schematic diagram of the hardware layout of a base station provided by an embodiment of the present invention.
- Figure 4 is a schematic diagram of the correlation function of the ranging signal provided by the embodiment of the present invention.
- Figure 5 is a schematic diagram of an integrated framework for estimating user location provided by an embodiment of the present invention.
- Figure 6 is a schematic diagram of the training process of the data-driven PDR network provided by the embodiment of the present invention.
- Figure 7 is a schematic diagram of the process of estimating the speed vector using the trained PDR network provided by the embodiment of the present invention.
- Figure 8 is a schematic diagram of an experimental device using a laser interferometer to evaluate the performance of distance measurement differences on a track provided by an embodiment of the present invention
- Figure 9 is a schematic diagram of the testing environment for APS positioning error provided by the embodiment of the present invention.
- the present invention provides an audio positioning system, method and terminal for smart phones and wearable devices.
- the present invention will be described in detail below with reference to the accompanying drawings.
- the audio positioning method for smartphones and wearable devices provided by the embodiment of the present invention includes the following steps:
- the audio positioning system for smartphones and wearable devices includes a base station network that transmits ranging signals, a specially designed spatial signal, and a network for receiving and decoding ranging signals and estimating the user's location.
- a base station network that transmits ranging signals, a specially designed spatial signal, and a network for receiving and decoding ranging signals and estimating the user's location.
- the base station network is a set of signal transmitters, consisting of speakers, clock synchronization modules, Bluetooth low energy modules and microcontroller units, used to broadcast specially designed signals over the air, and the base station clocks in the network are synchronized with 433MHz radio frequency radios ;
- the spatial signal is a set of linear frequency modulation signals with a frequency of 12kHz to 21kHz;
- the user terminal is configured to receive and decode ranging signals, estimate the distance between the base station and the user terminal based on the first arriving signal, and estimate the user location based on multiple distances measured at the user location;
- a comprehensive signal processing program is implemented in user terminals, which are smartphones used to locate people or tags used to locate objects and vehicles. Special chips are developed for tag-based user terminals.
- the high-level architecture of the audio positioning system is shown in Figure 2. It consists of three parts: a base station network that transmits ranging signals, a specially designed space signal, and a user terminal that receives and decodes ranging signals and estimates the user's location.
- a network of base stations is a group of signal transmitters that broadcast specially designed signals over the air.
- Base station clocks in the network are synchronized to 433MHz radio frequency radios.
- the entire network maintains a master clock, and all other clocks are synchronized with the master clock.
- the accuracy is less than 100,000 seconds, which is enough for APS because the speed of sound is about 343m/s. This means the synchronization error is less than 3.4cm.
- Figure 3 shows the hardware layout of the base station, which mainly consists of a speaker, clock synchronization module, Bluetooth low energy module and microcontroller unit.
- the spatial signal is a set of linear frequency modulation (LFM) signals.
- LFM signals also known as Chirp signals
- Chirp signals have better resistance to the Doppler effect, which is an important issue in audio positioning due to the lower propagation speed of sound waves.
- the present invention selects the Chirp signal with a frequency of 12kHz to 21kHz. Since all smartphones support this band, APS can be used directly on Android and Apple smartphones without any hardware changes to the smartphone. This feature makes this technology easily applicable to the mass market.
- the specially designed Chirp signal can be expressed as:
- the received signal can be expressed as:
- ⁇ i , ⁇ i and N i (t) are the channel fading coefficient, propagation delay and random noise of the i-th propagation path
- h(t) is the channel impulse response (CIR) in the indoor environment
- ⁇ i is the channel impulse response (CIR) in the indoor environment.
- i component delay is the delay of the first line of sight (LOS) component.
- the function of the user terminal is to receive and decode ranging signals, estimate the distance between the base station and the user terminal based on the first arriving signal, and estimate the user location based on multiple distances measured at the user location. Since the received signal may be interfered by environmental noise, reflected signals from walls, glass windows, etc., a comprehensive signal processing procedure is implemented in the user terminal to extract the first arrival signal of the distance signal.
- User terminals can be smartphones used to locate people, or tags used to locate objects and vehicles. Since the smartphone's built-in microphone can be used to receive the acoustic ranging signal, smartphones running Android or iOS operating systems do not require any hardware changes. Special chips have been developed for tag-based user terminals.
- the Chirp signal expressed in equation (1) can be generated by using a base station speaker and broadcast over the air. It is a pulse signal encoded with different characteristics.
- the Chirp signal period of APS is approximately 50ms, which is relatively short compared to audio signals used for human verbal communication.
- the base station periodically broadcasts Chirp pulses, which are received by user terminals.
- the user terminal can be a smartphone or a tag embedded with a chip that specifically processes the ranging signals sent from the base station.
- the built-in microphone of a smartphone can usually record the frequency band from 20Hz to 23kHz.
- the ranging signal of the present invention is designed in this frequency band.
- the human voice audio signal is generally below 15kHz.
- the ranging signal is adjusted to the frequency band of 12kHz to 21kHz. This is also suitable for the ranging signal mentioned above, so there is no need to change any hardware in the smartphone.
- the Chirp signal adopts a period of 50ms.
- GCC Generalized cross-correlation
- the delay can be converted into the geometric distance between the user terminal and the base station.
- the given ranging signal s(t) defined in formula (1) can be generated in the smartphone, and the corresponding signal x(t) received by the microphone, the signals S(f) and X( f) frequency domain description.
- the generalized cross spectrum G(f) can be derived as:
- E[*] is the mathematical expectation operator
- f is the signal frequency
- H is the Hermitian transpose.
- PHAT phase transform
- ⁇ is the threshold factor
- ] represents the estimated threshold
- the distance d between the user terminal and the corresponding base station sending the signal can be easily calculated:
- c is the speed of sound, which is about 343m/s.
- the position of the user terminal is estimated by integrating the measurements of the acoustic range and inertial sensors.
- the data processing framework for estimating the user position mainly consists of two parts, as shown in Figure 5. It consists of two parts: Estimating user speed based on deep learning methods The data-driven part of the vector; the model-driven part that utilizes an extended Kalman filter to integrate velocity vectors and odometry measurements to estimate user position, heading, and speed.
- the velocity vector v [v x , v y , v z ] T is estimated using measurements from the accelerometer and gyroscope sensors on the smartphone or tag, which is a data-driven approach based on deep learning methods.
- Model driven part Integrate velocity vector and audio-based precise ranging, using the extended Kalman filter (EKF) to estimate the user's position, heading and speed.
- EKF extended Kalman filter
- Inertial sensors play an important role in the positioning of smartphones and wearable devices due to their advantages in low power consumption and high data rates.
- measurements from low-cost inertial sensors such as accelerometers, gyroscopes, and magnetometers suffer from drift errors that cause the error to grow infinitely when acceleration is double-integrated to obtain displacement.
- a deep learning method is used to estimate pedestrian walking trajectories using measurements from inertial sensors as input. This is a data-driven approach to Pedestrian Dead Reckoning (PDR), which is completely different from the model-driven approach using step detection.
- PDR Pedestrian Dead Reckoning
- ResNet-18 network which is an 18-layer deep convolutional neural network that is commonly used for image recognition training networks.
- a version of the network trained on over 1 million images can be loaded from the ImageNet database.
- This framework is used to train the PDR network, as shown in Figure 6, using a motion capture system to collect a training data set that can track the displacement vector of a smartphone with an accuracy of a few millimeters.
- a motion capture system is utilized to collect a training dataset that can track velocity vectors with an accuracy of a few millimeters. All data collected during each epoch, including velocity vectors and IMU (Inertial Measurement Unit) measurements, are transformed to an initial local coordinate system defined by an arbitrary horizontal heading and vertical line for the initial epoch of data collection.
- the coordinate transformation is completed in the data preprocessing step, as shown in Figure 6, and the learned velocity vector can be output at a rate of up to 20Hz.
- the displacement vector can be estimated by multiplying the velocity vector by the time interval of two consecutive cycles.
- Figure 7 shows the process of estimating the velocity vector using the trained PDR network. Since the IMU sensor can output a data rate of 200Hz, the output rate of the learned velocity vector can be as high as 20Hz by applying a sliding window procedure to the IMU measurements with a step size of 10Hz.
- the displacement vector can be estimated by multiplying the velocity vector by the time interval of two consecutive periods t1 and t2 as follows:
- the learning speed vector is a relative vector.
- the walking trajectory obtained using the velocity vector learned by the PDR network can maintain its geometric shape but does not have any absolute horizontal direction. Therefore, it still needs to collect some measurements such as distance and azimuth from an absolute coordinate system, such as the northeast sky coordinate system commonly used in car navigation.
- GNSS technology For outdoor environments, GNSS technology is often used to position smartphones or wearable devices. This is a very mature technology. Therefore, APS is more suitable for indoor environments, and although it is also suitable for outdoor environments, it is not the most cost-effective solution for outdoor environments. Indoor positioning usually occurs in a horizontal floor plane, so the algorithm of the present invention adopts a 2D method for user position estimation.
- an extended Kalman filter (EKF) is used to fuse the displacement vectors obtained from the PDR network.
- this displacement vector is located in the local coordinate system L(x,y,u) defined by the initial heading x and the vertical direction u (upward), with the y-axis defined by the action of the right-hand Cartesian coordinate system. Since the final coordinates output by EKF are in the navigation coordinate system G(e,n,u) defined by the northeast sky direction, there is a rotation angle ⁇ between the two coordinate systems G and L on the horizontal plane. Therefore, introducing this rotation angle ⁇ into the filter's state vector is as follows:
- [e k , n k ] are the horizontal coordinates in the east and north directions in epoch k respectively.
- ⁇ k includes the rotation angle between coordinate systems G and L and the accumulated drift error of the gyroscope.
- W k is the process noise obeying the normal distribution N(0, Q k ), and Q k is the covariance matrix of the process noise.
- ⁇ x k and ⁇ y k are the displacement components in the local coordinate system L from period k-1 to period k obtained by the data-driven PDR network.
- a 433MHz RF radio is used to synchronize the clocks between all signal transmitters and achieve a synchronization error of less than 0.1ms, which is sufficient for the solution.
- An observable called the Time Difference of Arrival (TDoA), which is taken from the difference in delay from two different transmitters during the same period, is used to smooth out the smartphone clock error.
- TDoA Time Difference of Arrival
- Positioning-assisted epidemic prevention and control system in the fourth canteen of teachers and students of a city's university In order to reflect the advanced role of digital-analog fusion positioning technology in epidemic prevention and control, we cooperated with a university to pilot an audio positioning-assisted epidemic prevention and control system in the fourth canteen of teachers and students of the school.
- This system is a subsystem of the school's comprehensive health management system. It aims to avoid large-scale virus infections when the school resumes normal teaching. The school needs to be able to grasp the basic health information and personnel flow information of the entire school in real time, and efficiently trace the epidemic prevention measures. class of people.
- the audio system has very clear functional requirements in terms of personnel density monitoring and epidemic prevention and traceability.
- the behavior trajectories of the entire school can be recorded and queried.
- the activity trajectories of people are dynamically presented, and people's activity trajectories can be quickly found.
- the distance and duration of contact between two people are analyzed to build a close contact model, which can quickly query close contacts in different time ranges such as 14 days and 21 days.
- audio signal positioning technology is accurate, stable, reliable, compatible and durable when providing indoor positioning data.
- the positioning and navigation system of a large railway station in a city Through the pseudo-satellite signals provided by the audio base stations installed in the area of the railway station, the square outside the station and the underground parking lot, it can provide indoor and outdoor integrated seamless navigation to the public, and at the same time provide the management platform with Location services for production and security personnel.
- a dedicated navigation application APP integrated with an indoor engine to connect to GNSS satellite signals when a person is in an outdoor area; when a person enters the room, the APP automatically determines that they have entered the indoor environment, switches the positioning signal from GNSS satellite signal to audio signal, and continues to provide positioning Serve.
- Location information can be uploaded to the management cloud service platform through WiFi or 4G signals, providing managers with functions such as equipment and personnel distribution awareness, risk warning, dynamic patrol display, video surveillance linkage, and emergency command and management.
- a city's cargo airport personnel and equipment positioning system uses audio positioning technology, presents positioning results to users through digital-analog fusion positioning algorithms and high-precision maps, and provides indoor and outdoor integrated personnel and equipment positioning services. Realize the positioning of personnel, vehicles and asset equipment in major indoor areas such as airports and related loading and unloading areas, workshops, etc. It mainly includes: real-time positioning of personnel, vehicles and assets, electronic fence alarm, one-key alarm, trajectory playback and other functions, making Safety management work has been transformed from manual management and process management to intelligent management, which greatly improves the safety management effect and has great application value.
- China Mobile's 5G Exhibition Hall Technology Navigation Positioning System In order to educate the public about how 5G will change people's lifestyles and improve their quality of life, and to promote the latest application results of 5G technology in various industries, China Mobile held the "5G + Future" event in the company's side hall. Themed exhibition. Through the audio-digital-analog fusion positioning system, the equipment in the exhibition hall can obtain its location in real time and provide it to visitors; when the equipment senses that a visitor is nearby, it will automatically play the introduction video or voice, realizing "people looking for booths, The purpose of the linkage is to find people at the booth.
- a laser interferometer is used to accurately measure the true value ⁇ d of the ranging difference.
- the error in ⁇ d can then be calculated by comparing the smartphone measurement to the true value measured by the laser interferometer.
- Table 1 shows the error statistics of the ranging differences.
- the reference point is measured using a Leica TS 60 total station.
- the distance measurement accuracy is 0.6mm+1ppm and the angle error is 0.5 arc seconds, as shown in Figure 9(a).
- Static and dynamic (walking speed) tests were performed as shown in Figure 9(b) and Figure 9(c).
- embodiments of the present invention may be implemented by hardware, software, or a combination of software and hardware.
- the hardware part can be implemented using dedicated logic; the software part can be stored in memory and executed by an appropriate instruction execution system, such as a microprocessor or specially designed hardware.
- an appropriate instruction execution system such as a microprocessor or specially designed hardware.
- processor control code for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory.
- Such code is provided on a programmable memory (firmware) or on a data carrier such as an optical or electronic signal carrier.
- the device and its modules of the present invention may be implemented by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc., It can also be implemented by software executed by various types of processors, or by a combination of the above-mentioned hardware circuits and software, such as firmware.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明属于音频定位技术领域,公开了一种智能手机和可穿戴设备的音频定位系统、方法及终端,利用基站网络传输测距信号,并设计频率为12kHz~21kHz的特定空间信号;利用用户终端接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置。本发明提供了一种用于智能手机和可穿戴设备的音频定位系统(APS),是一种基于音频的精准测距技术。本发明测距精度高,信号覆盖范围广,能够在不改变智能手机硬件的情况下支持所有智能手机平台。实验结果证明,本发明的APS可以在50米的信号有效范围内提供16cm的测距精度和38cm的静态定位精度。
Description
本发明属于音频定位技术领域,尤其涉及一种智能手机和可穿戴设备的音频定位系统、方法及终端。
目前,全球导航卫星系统(GNSS)一直是一种重要的室外定位技术。然而,微弱的GNSS信号无法穿透到室内空间。在室内环境中精准定位人员、物体和车辆仍然是一项具有挑战性的任务。近年来,由于室内导航、位置服务和人工智能等应用对室内人员、物体、机器人和车辆定位的大量需求,开发精准室内定位技术的兴趣日益浓厚。超宽带、Wi-Fi RTT、蓝牙AoA、音频测距、5G技术等多种定位技术已经展示了室内精准定位的潜力。
全球导航卫星系统(GNSS)技术已经实现了汽车导航、自动驾驶、包裹跟踪、土地测量、滑坡监测、无人机(UAV)导航定位等大量应用。然而,这些应用中的大多数目前都用于能接收GNSS信号的室外环境。全国人类活动模式调查(NHAPS)报告称,人们有86.9%的时间花在封闭的建筑物中。大约80%的数据通信、70%的电话、80%的移动支付和80%的位置相关信息发生在室内。在机场、火车站、展览馆和大型工厂等封闭的室内环境中,对人员、机器人、设备、拖车、购物车和许多其他物体进行定位以提供智能管理功能的兴趣和需求越来越大。此外,未来的应用,如智慧城市、数字孪生和即将到来的元宇宙应用,需要获取与室内人员、物体和车辆的位置相关的实时地理空间数据,并将这些实时信息投射到虚拟空间以实现系统智能。室内精准定位技术现在在提供地理空间大数据以支持人工智能(AI)应用方面发挥着至关重要的作用。
然而,由于GNSS信号不可用、室内拓扑复杂、信号传播环境具有挑战性,以及人们手持智能手机的任意多变姿势,如发短信、摇摆、打电话并把它放在口袋里,在室内环境中精准定位人员、物体和车辆仍然是一项具有挑战性的任务。Wi-Fi和蓝牙是最常见的室内定位射频信号,是因为这些信号在智能手机中可用。近年来,各种技术包括:
(1)Wi-Fi Fine Timing Measurement(FTM),通过使用往返时间(RTT)测距解决方案实现高定位精度。该技术嵌入在Google智能手机中,它可以达到1米左右的测距精度,并提供1~2米的定位精度。但是,由于RTT解决方案的交互特性,它只能同时支持有限数量的用户。
(2)超宽带(UWB)测距技术最初由Apple应用于智能手机行业。目前,其他公司,如小米和三星也已在其智能手机中实现了UWB芯片。虽然目前支持UWB的智能手机可以提供方向性和近距离检测功能,但是智能手机全面定位能力的发展还有待未来几年。
(3)蓝牙5.1提供了通过天线阵列测量信号到达角(AoA)的能力。AoA是根据在每个天线处 收集的信号相位和幅度测量值估算的。它是一种低成本、低功耗的解决方案。根据信号发射器的安装高度,可以达到1~3m的定位精度。但是,它受到天线阵列的限制,需要预先进行复杂的误差补偿。
(4)5G是另一种具有很大潜力的室内定位技术。5G有利于定位的三个特点:基站密集安装(室内空间30~50米)、带宽宽、天线阵列适配。5G可以提供优于1米的测距精度和2~3米的定位精度。
(5)同步定位和建图(SLAM)已在机器人、自动驾驶和无人机上得到了很好的应用。它是一种昂贵的解决方案,需要大量计算,因此尚未在智能手机平台中采用。
通过上述分析,现有技术存在的问题及缺陷为:
(1)由于RTT解决方案的交互特性,只能同时支持有限数量的用户。蓝牙5.1受到天线阵列的限制,需要预先进行复杂的误差补偿。现有的同步定位和建图方法成本高,且需要大量计算,因此尚未在智能手机平台中采用。
(2)室内定位技术分析如下:
(2.1)Wi-Fi技术通过无线接入点(包括无线路由器)组成的无线局域网络(WLAN),可以实现复杂环境中的定位、监测和追踪任务。它以网络节点(无线接入点)的位置信息为基础和前提,采用经验测试和信号传播模型相结合的方式,对已接入的移动设备进行位置定位,更高度大约在1米至20米之间。如果定位测算仅基于当前连接的Wi-Fi接入点,而不是参照周边Wi-Fi的信号强度合成图,则Wi-Fi定位就很容易存在误差(例如:定位楼层错误)。另外,Wi-Fi接入点通常都只能覆盖半径90米左右的区域,而且很容易受到其他信号的干扰,从而影响其精度,定位器的能耗也较高。
(2.2)蓝牙技术蓝牙通讯是一种短距离低功耗的无线传输技术,在室内安装适当的蓝牙局域网接入点后,将网络配置成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微网络的主设备。这样通过检测信号强度就可以获得用户的位置信息。蓝牙室内定位技术更大的优点是设备体积小、短距离、低功耗。
(2.3)红外线技术室内定位是通过安装在室内的光学传感器,接收各移动设备(红外线IR标识)发射调制的红外射线进行定位,具有相对较高的室内定位精度。但是,由于光线不能穿过障碍物,使得红外射线仅能视距传播,容易受其他灯光干扰,并且红外线的传输距离较短,使其室内定位的效果很差。当移动设备放置在口袋里或者被墙壁遮挡时,就不能正常工作,需要在每个房间、走廊安装接收天线,导致总体造价较高。
(2.4)超宽带技术超宽带技术与传统通信技术的定位方法有较大差异,它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据,可用于室内定位,例如:战场士兵的位置发现、机器人运动跟踪等。超宽带系统与传统的窄带系统相比,具有穿透力强、功耗低、抗多径效果好、安全性高、系统复杂度低、能够提高定位精度等优点,通常用于室内移动物体的定位跟踪或导航。
(2.5)RFID技术RFID定位技术利用射频方式进行非接触式双向通信交换数据,实现移动设备识别和定位的目的。它可以在几毫秒内得到厘米级定位精度的信息,且传输范围大、成本较低;不过, 由于以下问题未能解决,以RFID定位技术的适用范围受到局限。1)RFID不便于整合到移动设备之中2)作用距离短(一般最长为几十米)3)用户的安全隐私保护4)国际标准化。
(2.6)超声波技术超声波定位主要采用反射式测距(发射超声波并接收由被测物产生的回波后,根据回波与发射波的时间差计算出两者之间的距离),并通过三角定位等算法确定物体的位置。超声波定位整体定位精度较高、系统结构简单,但容易受多径效应和非视距传播的影响,降低定位精度;同时,它还需要大量的底层硬件设施投资,总体成本较高。
(2.7)ZigBee技术ZigBee是一种短距离、低速率的无线网络技术。它介于RFID和蓝牙之间,可以通过传感器之间的相互协调通信进行设备的位置定位。目前国内Zigbee技术主要采用ISM频段中的2.5G频率,其衍射能力弱,穿墙能力弱。
发明内容
针对现有技术存在的问题,本发明提供了一种智能手机和可穿戴设备的音频定位系统、方法、介质、设备及终端。
本发明是这样实现的,一种智能手机和可穿戴设备的音频定位方法,所述智能手机和可穿戴设备的音频定位方法包括:
利用基站网络传输测距信号,并设计频率为12kHz~21kHz的特定空间信号;利用用户终端接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置。
进一步,所述智能手机和可穿戴设备的音频定位方法包括以下步骤:
步骤一,设计频率为12kHz~21kHz的Chirp信号;
步骤二,基于音频的精准测距;
步骤三,基于音频测距和惯性传感器的定位。
进一步,所述步骤一中设计的Chirp信号表示为:
其中,A(t)是声波的幅度,T是Chirp信号的周期,f
0分别f
e是初始频率和截止频率;分析室内衰落信道,接收信号表示为:
其中,α
i、τ
i和N
i(t)分别是第i个传播路径的信道衰落系数、传播延迟和随机噪声,h(t)是室内环境中的信道脉冲响应,τ
i是第i个分量的时延,τ
0是第一视线分量的时延。
进一步,所述步骤二中的基于音频的精准测距包括:
Chirp信号采用50ms的周期。
给定测距信号s(t)在智能手机中生成,以及麦克风接收到的相应信号x(t),通过傅里叶变换得到信 号S(f)和X(f)的频域描述。广义交叉谱G(f)推导为:
G(f)=E[S(f)X(f)
H
其中,E[*]是数学期望算子,f是信号频率,H是厄米转置。
采用相位变换加权方案获得所有频率分量的单位增益,保留实际延迟信息;
通过进行傅里叶逆变换,获得以下相关函数R(τ):
其中,τ是相关函数的时延,测距信号s(t)的时延Δt由下式获得:
其中,β是阈值因子,β·max[|R(τ)|]表示估计阈值。
得到时间延迟Δt后,计算用户终端与发送信号的相应基站之间的距离d:
d=Δt·c
其中,c是声速,为343m/s。在获得至少三个基站的距离后,通过应用最小二乘三边测量算法或综合滤波算法估计用户终端的位置。
进一步,所述步骤三中的基于音频测距和惯性传感器的定位包括:
通过整合声学范围和惯性传感器的测量值估计用户终端的位置,估计用户位置的数据处理包括数据驱动部分和模型驱动部分;其中,所述数据驱动部分基于深度学习方法估计用户速度矢量;所述模型驱动部分利用扩展卡尔曼滤波器来整合速度矢量和测距测量来估计用户位置、航向和速度。
(1)数据驱动部分:利用智能手机或标签上的加速度计和陀螺仪传感器的测量值估计速度矢量v=[v
x,v
y,v
z]
T,是基于深度学习方法的数据驱动方法。
(2)模型驱动部分:集成速度矢量与基于音频的精准测距,使用扩展卡尔曼滤波器估计用户的位置、航向和速度。
进一步,所述步骤三中的基于音频测距和惯性传感器的定位还包括:
通过对步长为10Hz的IMU测量应用滑动窗口程序,学习速度矢量的输出速率为20Hz。位移向量通过将速度向量乘以两个连续周期t
1和t
2的时间间隔估计,如下所示:
从绝对坐标系中收集距离和方位角测量值,采用2D方法进行用户位置估计。
采用扩展卡尔曼滤波器融合从PDR网络获得的位移矢量。位移向量位于由初始航向x和垂直方向u定义的局部坐标系L(x,y,u)中,y轴由右手笛卡尔坐标系的作用定义。由于EKF输出的最终坐标在由东北天方向定义的导航坐标系G(e,n,u)中,两个坐标系G和L在水平面上存在一个旋转角θ。在滤波器的状态向量中引入该旋转角度θ如下:
X
k=[e
k n
k θ
k]
T
其中,[e
k,n
k]分别为历元k内在东、北方向的水平坐标;θ
k包括坐标系G和L之间的旋转角度以 及陀螺仪的累积漂移误差。系统状态转移方程描述如下:
其中,
是使用状态转移方程预测的协调器;W
k是服从正态分布N(0、Q
k)的过程噪声,Q
k是过程噪声的协方差矩阵;Δx
k和Δy
k是数据驱动PDR网络获得的从周期k-1到周期k的局部坐标系L中的位移分量。
使用433MHz的射频无线电来同步所有信号发射器之间的时钟,并实现小于0.1ms的同步误差;如果从多个信号发射器接收测距信号,则使用多个TDoA观测数据,观测方程Z
k表示为:
其中,
是用预测状态向量
计算的预测观察值的向量,S
i是G坐标系中第i个发射机的坐标向量,V
k是Z
k的误差向量,Z
k服从正态分布N(0,R
k),其中R
k是Z
k的协方差矩阵,m是当前用户位置可用的发射器数量,c是温度T下的声速。
EKF更新为:
本发明的另一目的在于提供一种应用所述的智能手机和可穿戴设备的音频定位方法的智能手机和可穿戴设备的音频定位系统,所述智能手机和可穿戴设备的音频定位系统包括传输测距信号的基站网络、特定设计的空间信号、用于接收和解码测距信号以及估计用户位置的用户终端。
其中,所述基站网络是一组信号发射器,由扬声器、时钟同步模块、蓝牙低功耗模块和微控制器 单元组成,用于通过空中广播特别设计的信号,且网络中基站时钟与433MHz射频无线电同步;
所述空间信号是一组线性调频信号,频率为12kHz~21kHz;
所述用户终端,用于接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置;
所述用户终端实施综合信号处理程序,用户终端是用于定位人员的智能手机或用于定位物体和车辆的标签,针对基于标签的用户终端开发专用芯片。
本发明的另一目的在于提供一种计算机设备,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
利用基站网络传输测距信号,并设计频率为12kHz~21kHz的特定空间信号;利用用户终端接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置。
本发明的另一目的在于提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:
利用基站网络传输测距信号,并设计频率为12kHz~21kHz的特定空间信号;利用用户终端接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置。
本发明的另一目的在于提供一种信息数据处理终端,所述信息数据处理终端用于实现所述的智能手机和可穿戴设备的音频定位系统。
结合上述的技术方案和解决的技术问题,请从以下几方面分析本发明所要保护的技术方案所具备的优点及积极效果为:
第一、针对上述现有技术存在的技术问题以及解决该问题的难度,紧密结合本发明的所要保护的技术方案以及研发过程中结果和数据等,详细、深刻地分析本发明技术方案如何解决的技术问题,解决问题之后带来的一些具备创造性的技术效果。具体描述如下:
本发明提供了一种基于音频的智能手机和可穿戴设备的音频定位系统(APS)。与大多数基于射频(RF)的技术不同,该解决方案基于音频。本发明的音频定位方法有三个优点:测距精度高,信号覆盖范围广,能够在不改变智能手机硬件的情况下支持所有智能手机平台。
本发明提供了一种声学定位系统,由三部分组成:用于信号传输的基站网络、定义测距信号的空间信号以及用于接收测距信号、计算测距测量和估计用户位置的用户终端;测距信号采用12kHz~21kHz频段,测距精度为16cm;通过使用惯性传感器学习速度矢量,在定位算法中训练数据驱动的PDR网络,并通过使用扩展卡尔曼滤波器进一步与音频测距测量集成;APS在静态情况下提供±38厘米的定位精度,在动态情况下提供±58厘米的定位精度。
第二,把技术方案看做一个整体或者从产品的角度,本发明所要保护的技术方案具备的技术效果和优点,具体描述如下:
本发明提供了一种用于智能手机和可穿戴设备的音频定位系统(APS),是一种基于音频的精准测距技术。实验结果证明,本发明的APS可以在50米的信号有效范围内提供16cm的测距精度和38cm的静态定位精度。
第三,作为本发明的权利要求的创造性辅助证据,还体现在以下几个重要方面:
(1)本发明的技术方案填补了国内外业内技术空白:
本发明提出了一种基于音频的定位技术,填补了国内外基于音频定位的室内定位技术空白。
(2)本发明的技术方案是否解决了人们一直渴望解决、但始终未能获得成功的技术难题:
本发明解决了在不改变手机硬件的前提下,提供高精度的室内定位服务。
(3)本发明的技术方案是否克服了技术偏见:
本发明提出了一种基于音频测距和PDR的组合定位技术,紧密耦合了模型驱动的音频精准测距和数据驱动的PDR,建立数据与模型双驱动的导航定位理论新范式及新方案。
通过使用惯性传感器学习速度矢量,在定位算法中训练数据驱动的PDR网络,并通过使用扩展卡尔曼滤波器进一步与音频测距测量集成。
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的智能手机和可穿戴设备的音频定位方法流程图;
图2是本发明实施例提供的APS的三个组成部分示意图;
图3是本发明实施例提供的基站的硬件布局示意图;
图4是本发明实施例提供的测距信号的相关函数示意图;
图5是本发明实施例提供的估计用户位置的集成框架示意图;
图6是本发明实施例提供的数据驱动的PDR网络的训练过程示意图;
图7是本发明实施例提供的使用经过训练的PDR网络估计速度矢量的过程示意图;
图8是本发明实施例提供的使用激光干涉仪评估轨道上测距差异性能的实验装置示意图;
图9是本发明实施例提供的APS定位误差的测试环境示意图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
针对现有技术存在的问题,本发明提供了一种智能手机和可穿戴设备的音频定位系统、方法及终端,下面结合附图对本发明作详细的描述。
一、解释说明实施例。为了使本领域技术人员充分了解本发明如何具体实现,该部分是对权利要求技术方案进行展开说明的解释说明实施例。
如图1所示,本发明实施例提供的智能手机和可穿戴设备的音频定位方法包括以下步骤:
S101,设计频率为12kHz~21kHz的Chirp信号;
S102,基于音频的精准测距;
S103,基于音频测距和惯性传感器的定位。
如图2所示,本发明实施例提供的智能手机和可穿戴设备的音频定位系统包括传输测距信号的基站网络、特定设计的空间信号、用于接收和解码测距信号以及估计用户位置的用户终端。
其中,基站网络是一组信号发射器,由扬声器、时钟同步模块、蓝牙低功耗模块和微控制器单元组成,用于通过空中广播特别设计的信号,且网络中基站时钟与433MHz射频无线电同步;
空间信号是一组线性调频信号,频率为12kHz~21kHz;
用户终端,用于接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置;
用户终端实施综合信号处理程序,用户终端是用于定位人员的智能手机或用于定位物体和车辆的标签,针对基于标签的用户终端开发专用芯片。
下面结合具体实施例对本发明的技术方案作进一步的说明。
1、系统概述
音频定位系统的高级架构如图2所示。它由三个部分组成:传输测距信号的基站网络、特定设计的空间信号、用于接收和解码测距信号以及估计用户位置的用户终端。
基站网络是一组信号发射器,通过空中广播特别设计的信号。网络中基站时钟与433MHz射频无线电同步。全网维护一个主时钟,其他所有时钟都与主时钟同步,精度不到10万秒,对于APS来说已经足够了,因为声速约为343m/s。这意味着同步误差小于3.4cm。图3显示了基站的硬件布局,主要由扬声器、时钟同步模块、蓝牙低功耗模块和微控制器单元组成。
空间信号是一组线性调频(LFM)信号。LFM信号,也称为Chirp信号,具有更好的抗多普勒效应的能力,由于声波的传播速度较低,是音频定位的一个重要问题。为了减少环境噪声的影响,在传输测距信号时不产生任何可听的声音,本发明选择了频率为12kHz~21kHz的Chirp信号。由于所有智能手机都支持该频段,因此APS可以直接用于安卓和苹果系统的智能手机,而无需对智能手机进行任何硬件更改。这一特性使得这项技术可以很容易地应用到大众市场。
特别设计的Chirp信号可表示为:
其中A(t)是声波的幅度,T是Chirp信号的周期,f
0分别f
e是初始频率和截止频率。考虑到室内衰落信道,接收信号可表示为:
其中,α
i、τ
i和N
i(t)是第i个传播路径的信道衰落系数、传播延迟和随机噪声,h(t)是室内环境中的信道脉冲响应(CIR),τ
i是第i个分量的时延,而τ
0是第一视线(LOS)分量的时延。
用户终端的功能是接收和解码测距信号,以最先到达信号来估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置。由于接收到的信号可能会受到环境噪声、墙壁反射信号、玻璃窗等的干扰,因此在用户终端中实施了综合信号处理程序,以提取距离信号的初至信号。用户终端可以是用于定位人员的智能手机,也可以是用于定位物体和车辆的标签。由于智能手机的内置麦克风可用于接收声学测距信号,因此,Android或iOS操作系统的智能手机无需更改任何硬件。针对基于标签的用户终端,已开发了专用芯片。
2、基于音频的精准测距
公式(1)所表达的Chirp信号可以通过使用一个基站的扬声器生成并在空中广播。它是一种具有不同特征编码的脉冲信号。APS的Chirp信号周期大约是50ms,与用于人类口头交流的音频信号相比相对较短。基站定期广播Chirp脉冲,由用户终端接收。用户终端可以是智能手机,也可以是嵌入芯片的标签,专门处理从基站发送的测距信号。
智能手机内置的麦克风通常可以记录20Hz~23kHz的频段。为了利用智能手机中现有的麦克风,本发明的测距信号设计在这个频段内。人声音频信号一般在15kHz以下,为了减少其干扰,将测距信号调整到12kHz~21kHz的频段,也适用于上面提到的测距信号,因此无需更改智能手机中的任何硬件。Chirp信号采用50ms的周期。
广义互相关(GCC)是一种典型的估算时延的方法,时延可以转换为用户终端和基站之间的几何距离。公式(1)中定义的给定测距信号s(t)可以在智能手机中生成,以及麦克风接收到的相应信号x(t),通过傅里叶变换可以得到信号S(f)和X(f)的频域描述。广义交叉谱G(f)可以推导出为:
G(f)=E[S(f)X(f)
H
其中,E[*]是数学期望算子,f是信号频率,H是厄米转置。为了实现更稳健的解决方案,采用相位变换(PHAT)加权方案来获得所有频率分量的单位增益,即保留实际延迟信息。
通过进行以下傅里叶逆变换(IFT),可以获得以下相关函数R(τ):
其中τ是相关函数的时延,测距信号s(t)的时延Δt可由下式获得:
其中,β是阈值因子,β·max[|R(τ)|]表示估计阈值。
得到时间延迟Δt后,可以很容易地计算出用户终端与发送信号的相应基站之间的距离d:
d=Δt·c
其中,c是声速,约为343m/s。在获得至少三个基站的距离后,可以通过应用最小二乘三边测量 算法或综合滤波算法来估计用户终端的位置,以防集成其他传感器的测量结果,如智能手机内置的惯性传感器。
3、基于音频测距和惯性传感器的定位
通过整合声学范围和惯性传感器的测量值来估计用户终端的位置,估计用户位置的数据处理框架主要由两部分组成,如图5所示,它由两部分组成:基于深度学习方法来估计用户速度矢量的数据驱动部分;利用扩展卡尔曼滤波器来整合速度矢量和测距测量来估计用户位置、航向和速度的模型驱动部分。
数据驱动部分。利用智能手机或标签上的加速度计和陀螺仪传感器的测量值来估计速度矢量v=[v
x,v
y,v
z]
T,这是一种基于深度学习方法的数据驱动方法。
模型驱动部分。集成速度矢量与基于音频的精准测距,使用扩展卡尔曼滤波器(EKF),来估计用户的位置、航向和速度。
惯性传感器以其低功耗和高数据速率方面的优势在智能手机和可穿戴设备的定位中发挥着重要作用。然而,加速度计、陀螺仪和磁力计等低成本惯性传感器的测量存在漂移误差,当对加速度进行双积分以获得位移时,会导致误差无限增长。采用深度学习方法,利用惯性传感器的测量作为输入,来估计行人行走轨迹。这是行人航位推算(PDR)的数据驱动方法,与使用步进检测的模型驱动方法完全不同。
该解决方案中使用了ResNet-18网络,是一个18层深度的卷积神经网络,常用于图像识别的训练网络。可以从ImageNet数据库中加载超过100万张图像训练的网络版本。采用该框架来训练PDR网络,如图6所示,利用运动捕捉系统收集训练数据集,该数据集可以跟踪智能手机的位移矢量,精度为几毫米。利用运动捕捉系统来收集训练数据集,该数据集可以以几毫米的精度跟踪速度矢量。在每个时期收集的所有数据,包括速度矢量和IMU(惯性测量单元)测量值,都被转换到初始局部坐标系,该坐标系由数据收集初始时期的任意水平航向和垂直线定义。坐标变换在数据预处理步骤中完成,如图6所示,学习到的速度矢量可以以高达20Hz的速率输出。位移向量可以通过将速度向量乘以两个连续周期的时间间隔来估计。
图7显示了使用经过训练的PDR网络估计速度矢量的过程。由于IMU传感器可以输出200Hz的数据速率,因此通过对步长为10Hz的IMU测量应用滑动窗口程序,学习速度矢量的输出速率可以高达20Hz。位移向量可以通过将速度向量乘以两个连续周期t
1和t
2的时间间隔来估计,如下所示:
学习速度向量是一个相对向量。利用PDR网络学习到的速度向量获得的行走轨迹可以保持其几何形状,但没有任何绝对的水平方向。因此,它仍然需要从绝对坐标系中收集一些距离和方位角等测量值,例如汽车导航中常用的东北天坐标系。
对于户外环境,GNSS技术通常用于定位智能手机或可穿戴设备。这是一项非常成熟的技术。因 此,APS更适合室内环境,虽然它也适用于室外环境,但它并不是室外环境中最具成本效益的解决方案。室内定位通常发生在水平地板平面中,因此,本发明的算法采用2D方法进行用户位置估计。
如图4所示,采用扩展卡尔曼滤波器(EKF)来融合从PDR网络获得的位移矢量。如上所述,该位移向量位于由初始航向x和垂直方向u(向上)定义的局部坐标系L(x,y,u)中,y轴由右手笛卡尔坐标系的作用定义。由于EKF输出的最终坐标在由东北天方向定义的导航坐标系G(e,n,u)中,这两个坐标系G和L在水平面上存在一个旋转角θ。因此,在滤波器的状态向量中引入该旋转角度θ如下:
X
k=[e
k n
k θ
k]
T
其中,[e
k,n
k]分别为历元k内在东、北方向的水平坐标。实际上,θ
k包括坐标系G和L之间的旋转角度以及陀螺仪的累积漂移误差。系统状态转移方程描述如下:
其中,
是使用状态转移方程预测的协调器。W
k是服从正态分布N(0、Q
k)的过程噪声,Q
k是过程噪声的协方差矩阵。Δx
k和Δy
k是数据驱动PDR网络获得的从周期k-1到周期k的局部坐标系L中的位移分量。
在APS系统中,使用433MHz的射频无线电来同步所有信号发射器之间的时钟,并实现小于0.1ms的同步误差,这对解决方案来说已经足够了。然而,将智能手机的时钟与信号发射器的时钟同步是不可能的。利用一个称为到达时间差(TDoA)的可观察量,它取自同一时期两个不同发射器的时延差,以消除智能手机的时钟误差。如果可以从多个信号发射器接收测距信号,则可以使用多个TDoA观测数据。观测方程Z
k可以表示为:
其中,
是用预测状态向量
计算的预测观察值的向量,S
i是G坐标系中第i个发射机的坐标向 量,V
k是Z
k的误差向量,Z
k服从正态分布N(0,R
k),其中R
k是Z
k的协方差矩阵,m是当前用户位置可用的发射器数量,c是温度T下的声速。EKF可以更新为:
二、应用实施例。为了证明本发明的技术方案的创造性和技术价值,该部分是对权利要求技术方案进行具体产品上或相关技术上的应用的应用实施例。
应用例1
某国际展览中心1号展厅游客室内导览系统:某国际展览中心坐落于某小镇,其中1号展厅全厅大小为47.7*106.2*19米,总占地面积超过5000m
2。该场景面向实际会展中游客的寻位需求,以音频为核心,在应用上采取数模融合的定位方案。场馆内覆盖了音频高精度定位源,完成了实际应用场景对本发明技术方案的验证与指标测试。如图9所示。
应用例2
某市大学师生四食堂定位辅助疫情防控系统:为体现数模融合定位技术在防疫监控层面的先进作用,与某大学合作,在该校师生四食堂试行音频定位辅助疫情防控系统。该系统为该校大健康管理系统的子系统,旨在在学校恢复正常教学的情况下,为避免大规模病毒感染,学校需能实时掌握全校人员基础健康信息和人员流动信息,高效追溯防疫各类人群。音频系统在人员密度监测和防疫溯源两个方面,都有十分明确的功能需求。
1)人员密度监测
基于通过实时定位信号,采集校内人员活动信息,通过数据分析和呈现(热力图)校内各区域的人员聚集情况,包括但不限于办公楼、宿舍楼、教学楼、食堂、图书馆、体育馆等生活配套设施,可以实时显示人员数量和密度。
2)防疫溯源
通过实时定位服务,实现全校人员行为轨迹的记录和查询。结合校园地图和定位数据,动态呈现人员的活动轨迹,可以快速查找人员的活动轨迹。同时基于定位数据,分析两两人员接触的距离与接触时长构建密切接触者模型,可以快速查询14天、21天等不同时间范围的密切接触者。本项目将音频信号定位方法引入,补齐室内定位技术这块短板,为学校建立完整的校园内位置服务网络,保障师生安全提供技术保证。
通过试点推行,验证了音频信号定位技术在提供室内定位数据时具有准确、稳定、可靠、兼容及耐用的特点。
应用例3
某市大型火车站定位导航系统:通过在火车站内区域、站外广场及地下停车场内安装的音频基站提供的伪卫星信号,实现面向大众提供室内外一体化无缝导航,同时向管理平台提供生产、安保人员的位置服务。
用户使用集成室内引擎的专用导航应用APP,当人员位于室外区域时对接GNSS卫星信号;当人员进入室内以后,APP自动判断进入室内环境,将定位信号从GNSS卫星信号切换至音频信号,持续提供定位服务。位置信息可通过WiFi或4G信号上传至管理云服务平台,为管理方提供设备人员分布感知、风险预警、动态巡逻展示、视频监控联动、应急指挥管理等功能。
应用例4
某市货运机场人员设备定位系统:采用音频定位技术,通过数模融合定位算法及高精度地图将定位结果呈现给用户,提供室内外一体化的人员设备定位服务。实现机场及其相关装卸货区域、车间等主要室内区域的人员、车辆和资产设备的定位,主要包括:人员、车辆、资产的实时定位、电子围栏报警、一键报警、轨迹回放等功能,使得安全管理工作由人工管理和流程管理转变为智慧管理,极大地提升安全管理效果,具有重大的应用价值。
应用例5
移动公司5G展厅游客导览定位系统:移动为向大众科普5G将如何改变人们的生活方式、提升生活质量,也为推广各行业5G技术的最新应用成果,在公司侧厅举办了“5G+未来”主题展览。通过音频数模融合定位系统,展厅内的设备均可实时获取自身所在的位置,并提供给游客;当设备感应到游客出现在附近时,便自动播放介绍视频或语音,实现“人找展位,展位寻人”的联动目的。
三、实施例相关效果的证据。本发明实施例在研发或者使用过程中取得了一些积极效果,和现有技术相比的确具备很大的优势,下面内容结合试验过程的数据、图表等进行描述。
为了评估APS系统的TDoA测量精度,如图8所示,在实验室中沿37米的轨道进行了实验。信号发射器T
1安装在轨道的一端,另一个信号发射器T
2安装在非常靠近测试智能手机的麦克风处。有了这个设置,只需同步两个发射器的时钟,通过取T
1和T
2的时间延迟Δt
i的差值,可以消除智能手机和发射器之间的时钟误差Δt
c,如下所示:
TDoA=(Δt
1+Δt
c)-(Δt
2+Δt
c)=Δt
1-Δt
2
Δd=c·TDoA
此外,使用激光干涉仪精确测量测距差的真实值Δd。然后,通过将智能手机测量值与激光干涉仪测量的真实值进行比较,可以计算出Δd的误差。沿轨道进行四轮实验,对于每一轮实验,沿轨道每隔两米进行测量。表1显示了测距差异的误差统计。
表1测距差异的误差统计
在评估了测距差异性能后,在某国际展览中心1号展厅内进行了定位解决方案的性能评估,如图9所示。静态和动态测试均使用四个不同型号的智能手机:华为P9、华为P40、小米10和荣耀8。静态测试是在徕卡TS60全站仪获得的地面真实坐标点进行的,测距精度为0.6mm+1ppm,角度误差为0.5弧秒。沿预定轨迹以步行速度进行动态测试,动态轨迹的地面实况也由同一个全站仪实时测量,表2为静态测试的误差统计,表3为动态测试的误差统计。如表2和表3所示,静态情况下可以达到平均38cm的定位精度,动态情况下可以达到平均58cm的定位精度。
如图9所示,参考点采用徕卡TS 60全站仪进行测量,测距精度为0.6mm+1ppm,角度误差为0.5弧秒,如图9(a)所示。如图9(b)和图9(c)所示进行静态和动态(步行速度)测试。
表2 APS的静态定位误差
表3动态测试的错误统计
应当注意,本发明的实施方式可以通过硬件、软件或者软件和硬件的结合来实现。硬件部分可以利用专用逻辑来实现;软件部分可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域的普通技术人员可以理解上述的设备和方法可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本发明的设备及其模块可以由诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用由各种类型的处理器执行的软件实现,也可以由上述硬件电路和软件的结合例如固件来实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。
Claims (10)
- 一种智能手机和可穿戴设备的音频定位方法,其特征在于,所述智能手机和可穿戴设备的音频定位方法包括:利用基站网络传输测距信号,用户终端接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置。
- 如权利要求1所述智能手机和可穿戴设备的音频定位方法,其特征在于,所述智能手机和可穿戴设备的音频定位方法包括以下步骤:步骤一,设计频率为12kHz~21kHz的Chirp信号;步骤二,基于音频的精准测距;步骤三,基于音频测距和惯性传感器的定位。
- 如权利要求2所述智能手机和可穿戴设备的音频定位方法,其特征在于,所述步骤二中的基于音频的精准测距包括:Chirp信号采用50ms的Chirp周期;给定测距信号s(t)在智能手机中生成,以及麦克风接收到的相应信号x(t),通过傅里叶变换得到信号S(f)和X(f)的频域描述;广义交叉谱G(f)推导为:G(f)=E[S(f)X(f) H其中,E[*]是数学期望算子,f是信号频率,H是厄米转置;采用相位变换加权方案获得所有频率分量的单位增益,保留实际延迟信息;通过进行傅里叶逆变换,获得以下相关函数R(τ):其中,τ是相关函数的时延,测距信号s(t)的时延Δt由下式获得:其中,β是阈值因子,β·max[|R(τ)|]表示估计阈值;得到时间延迟Δt后,计算用户终端与发送信号的相应基站之间的距离d:d=Δt·c其中,c是声速,为343m/s;在获得至少三个基站的距离后,通过应用最小二乘三边测量算法或综合滤波算法估计用户终端的位置。
- 如权利要求2所述智能手机和可穿戴设备的音频定位方法,其特征在于,所述步骤三中的基于音频测距和惯性传感器的定位包括:通过整合声学范围和惯性传感器的测量值估计用户终端的位置,估计用户位置的数据处理包括数据驱动部分和模型驱动部分;其中,所述数据驱动部分基于深度学习方法估计用户速度矢量;所述模型驱动部分利用扩展卡尔曼滤波器来整合速度矢量和测距测量来估计用户位置、航向和速度;(1)数据驱动部分:利用智能手机或标签上的加速度计和陀螺仪传感器的测量值估计速度矢量v=[v x,v y,v z] T,是基于深度学习方法的数据驱动方法;(2)模型驱动部分:集成速度矢量与基于音频的精准测距,使用扩展卡尔曼滤波器估计用户的位置、航向和速度。
- 如权利要求2所述智能手机和可穿戴设备的音频定位方法,其特征在于,所述步骤三中的基于音频测距和惯性传感器的定位还包括:通过对步长为10Hz的IMU测量应用滑动窗口程序,学习速度矢量的输出速率为20Hz;位移向量通过将速度向量乘以两个连续周期t 1和t 2的时间间隔估计,如下所示:从绝对坐标系中收集距离和方位角测量值,采用2D方法进行用户位置估计;采用扩展卡尔曼滤波器融合从PDR网络获得的位移矢量;位移向量位于由初始航向x和垂直方向u定义的局部坐标系L(x,y,u)中,y轴由右手笛卡尔坐标系的作用定义;由于EKF输出的最终坐标在由东北天方向定义的导航坐标系G(e,n,u)中,两个坐标系G和L在水平面上存在一个旋转角θ;在滤波器的状态向量中引入该旋转角度θ如下:X k=[e k n k θ k] T其中,[e k,n k]分别为历元k内在东、北方向的水平坐标;θ k包括坐标系G和L之间的旋转角度以及陀螺仪的累积漂移误差;系统状态转移方程描述如下:其中, 是使用状态转移方程预测的协调器;W k是服从正态分布N(0、Q k)的过程噪声,Q k是过程噪声的协方差矩阵;Δx k和Δy k是数据驱动PDR网络获得的从周期k-1到周期k的局部坐标系L中的位移分量;使用433MHz的射频无线电来同步所有信号发射器之间的时钟,并实现小于0.1ms的同步误差; 如果从多个信号发射器接收测距信号,则使用多个TDoA观测数据,观测方程Z k表示为:其中, 是用预测状态向量 计算的预测观察值的向量,S i是G坐标系中第i个发射机的坐标向量,V k是Z k的误差向量,Z k服从正态分布N(0,R k),其中R k是Z k的协方差矩阵,m是当前用户位置可用的发射器数量,c是温度T下的声速;EKF更新为:
- 一种应用如权利要求1~6任意一项所述智能手机和可穿戴设备的音频定位方法的智能手机和可穿戴设备的音频定位系统,其特征在于,所述智能手机和可穿戴设备的音频定位系统包括传输测距信号的基站网络、特定设计的空间信号、用于接收和解码测距信号以及估计用户位置的用户终端;其中,所述基站网络是一组信号发射器,由扬声器、时钟同步模块、蓝牙低功耗模块和微控制器单元组成,用于通过空中广播特别设计的信号,且网络中基站时钟与433MHz射频无线电同步;所述空间信号是一组线性调频信号,频率为12kHz~21kHz;所述用户终端,用于接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置;所述用户终端实施综合信号处理程序,用户终端是用于定位人员的智能手机或用于定位物体和车辆的标签,针对基于标签的用户终端开发专用芯片。
- 一种计算机设备,其特征在于,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:利用基站网络传输测距信号,并设计频率为12kHz~21kHz的特定空间信号;利用用户终端接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置。
- 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:利用基站网络传输测距信号,并设计频率为12kHz~21kHz的特定空间信号;利用用户终端接收和解码测距信号,以最先到达信号估计基站和用户终端之间的距离,并根据在用户位置测量的多个距离估计用户位置。
- 一种信息数据处理终端,其特征在于,所述信息数据处理终端用于实现如权利要求7所述智能手机和可穿戴设备的音频定位系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/969,653 US11686809B1 (en) | 2022-05-05 | 2022-10-19 | Acoustic positioning system and method for smartphone and wearable device, and terminal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210482590.0 | 2022-05-05 | ||
CN202210482590.0A CN114828211B (zh) | 2022-05-05 | 2022-05-05 | 一种智能手机和可穿戴设备的音频定位系统、方法及终端 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/969,653 Continuation US11686809B1 (en) | 2022-05-05 | 2022-10-19 | Acoustic positioning system and method for smartphone and wearable device, and terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023212983A1 true WO2023212983A1 (zh) | 2023-11-09 |
Family
ID=82511975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/093481 WO2023212983A1 (zh) | 2022-05-05 | 2022-05-18 | 一种智能手机和可穿戴设备的音频定位系统、方法及终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114828211B (zh) |
WO (1) | WO2023212983A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115604817B (zh) * | 2022-10-08 | 2023-05-02 | 浙江德清知路导航科技有限公司 | 一种基于射频增强的广域音频室内定位方法、系统及终端 |
CN115954015B (zh) * | 2022-12-12 | 2023-07-25 | 浙江德清知路导航科技有限公司 | 多路径和非视距室内环境下的chirp信号检测方法 |
CN116310238B (zh) * | 2023-03-16 | 2024-03-22 | 华中师范大学 | 多用户虚拟化身交互行为安全保护方法及系统 |
CN116819433B (zh) * | 2023-08-29 | 2023-11-14 | 湘江实验室 | 一种基于估计距离的uwb抗非视距定位方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160097788A1 (en) * | 2014-10-07 | 2016-04-07 | Snappafras Corp. | Pedestrian direction of motion determination system and method |
CN111174781A (zh) * | 2019-12-31 | 2020-05-19 | 同济大学 | 一种基于可穿戴设备联合目标检测的惯导定位方法 |
US20210156986A1 (en) * | 2019-11-22 | 2021-05-27 | Magic Leap, Inc. | System and method for tracking a wearable device |
CN112924935A (zh) * | 2021-02-25 | 2021-06-08 | 浙江大学 | 基于单声波基站的移动智能终端室内定位方法及装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180037353A (ko) * | 2016-10-04 | 2018-04-12 | 권형석 | 위치정보를 이용한 위급상황 알림 시스템 및 그 방법. |
CN107631732B (zh) * | 2017-11-02 | 2019-12-13 | 武汉大学 | 基于蓝牙、Wi-Fi和声波的混合室内定位方法及系统 |
DE102019000067A1 (de) * | 2019-01-09 | 2020-07-09 | Thomas Lipp | Audio-Videokonferenzsystem der Telemedizin |
CN109975758A (zh) * | 2019-02-20 | 2019-07-05 | 苏州普息导航技术有限公司 | Wi-Fi蓝牙一体化基站定位系统 |
CN110568408A (zh) * | 2019-08-31 | 2019-12-13 | 苏州普息导航技术有限公司 | 基于单一信号源的音频定位系统及方法 |
CN112378407A (zh) * | 2020-11-25 | 2021-02-19 | 中国人民解放军战略支援部队信息工程大学 | 基于智能手机传感器与声波定位相结合的室内定位方法 |
-
2022
- 2022-05-05 CN CN202210482590.0A patent/CN114828211B/zh active Active
- 2022-05-18 WO PCT/CN2022/093481 patent/WO2023212983A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160097788A1 (en) * | 2014-10-07 | 2016-04-07 | Snappafras Corp. | Pedestrian direction of motion determination system and method |
US20210156986A1 (en) * | 2019-11-22 | 2021-05-27 | Magic Leap, Inc. | System and method for tracking a wearable device |
CN111174781A (zh) * | 2019-12-31 | 2020-05-19 | 同济大学 | 一种基于可穿戴设备联合目标检测的惯导定位方法 |
CN112924935A (zh) * | 2021-02-25 | 2021-06-08 | 浙江大学 | 基于单声波基站的移动智能终端室内定位方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114828211A (zh) | 2022-07-29 |
CN114828211B (zh) | 2023-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Asaad et al. | A comprehensive review of indoor/outdoor localization solutions in IoT era: Research challenges and future perspectives | |
Farahsari et al. | A survey on indoor positioning systems for IoT-based applications | |
Li et al. | Toward location-enabled IoT (LE-IoT): IoT positioning techniques, error sources, and error mitigation | |
WO2023212983A1 (zh) | 一种智能手机和可穿戴设备的音频定位系统、方法及终端 | |
KR101049603B1 (ko) | Rfid를 이용한 이동체 실시간 위치 결정 시스템 및 그 방법과, 그를 위한 무선중계장치 설치 방법 | |
Muthukrishnan et al. | Towards smart surroundings: Enabling techniques and technologies for localization | |
Woo et al. | Application of WiFi-based indoor positioning system for labor tracking at construction sites: A case study in Guangzhou MTR | |
Ladd et al. | On the feasibility of using wireless ethernet for indoor localization | |
CN105988102B (zh) | 相对方位角计算方法和装置、以及相对定位方法 | |
Zhu et al. | Survey of indoor positioning technologies and systems | |
Puértolas Montañés et al. | Smart indoor positioning/location and navigation: A lightweight approach | |
CN104181500A (zh) | 一种基于惯性信息和机会无线信号特征的实时定位方法 | |
Xu et al. | Bluetooth, floor-plan, and microelectromechanical systems-assisted wide-area audio indoor localization system: Apply to smartphones | |
Liu et al. | Research and development of indoor positioning | |
CN115604817B (zh) | 一种基于射频增强的广域音频室内定位方法、系统及终端 | |
CN112308998A (zh) | 一种基于蓝牙的室内定位智能巡检系统及方法 | |
Li et al. | Research on Extended Kalman Filter and Particle Filter Combinational Algorithm in UWB and Foot‐Mounted IMU Fusion Positioning | |
Rose et al. | 3D trilateration localization using RSSI in indoor environment | |
Li et al. | Location-Enabled IoT (LE-IoT): A survey of positioning techniques, error sources, and mitigation | |
CN115112121A (zh) | 基于数据与模型结合的多源融合定位方法、系统及终端 | |
Sasikala et al. | Received signal strength based indoor positioning with RFID | |
Ulusar et al. | Cognitive RF-based localization for mission-critical applications in smart cities: An overview | |
Jose et al. | Taylor series method in TDOA approach for indoor positioning system. | |
Raja et al. | High accuracy indoor localization for robot-based fine-grain inspection of smart buildings | |
Wang et al. | [Retracted] Indoor and Outdoor Seamless Positioning Technology Based on Artificial Intelligence and Intelligent Switching Algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22940677 Country of ref document: EP Kind code of ref document: A1 |