WO2023212846A1 - 一种基于地热供能的深水油气作业系统 - Google Patents

一种基于地热供能的深水油气作业系统 Download PDF

Info

Publication number
WO2023212846A1
WO2023212846A1 PCT/CN2022/090882 CN2022090882W WO2023212846A1 WO 2023212846 A1 WO2023212846 A1 WO 2023212846A1 CN 2022090882 W CN2022090882 W CN 2022090882W WO 2023212846 A1 WO2023212846 A1 WO 2023212846A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
geothermal
oil
module
temperature
Prior art date
Application number
PCT/CN2022/090882
Other languages
English (en)
French (fr)
Inventor
尹宜勇
朱文佳
齐林山
张伯伦
李�浩
Original Assignee
中国农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业大学 filed Critical 中国农业大学
Priority to PCT/CN2022/090882 priority Critical patent/WO2023212846A1/zh
Publication of WO2023212846A1 publication Critical patent/WO2023212846A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells

Definitions

  • the invention relates to the technical field of deep-sea oil and gas well engineering, and in particular to a deep-water oil and gas operation system based on geothermal energy supply.
  • the energy supply of oil and gas operating systems has become the key to limiting deepwater oil and gas development.
  • deepwater oil and gas development can be freed from energy constraints, forming a more advanced and independent deepwater oil and gas operating system, reducing dependence on land control, effectively improving operating efficiency, and improving deepwater oil and gas drilling and production.
  • the technical level reduces the demand for energy supply and effectively reduces failure problems caused by limited energy supply.
  • existing energy supply technology still has problems such as long transmission lines, high failure rates, and large transmission losses, which are difficult to solve with conventional energy supply.
  • the purpose of the present invention is to propose a deepwater oil and gas operation system based on geothermal energy supply, which is characterized in that the system includes a geothermal well system, an energy distribution system, a laser drilling system, an oil production and transportation system and a multi-node wireless communication-ROV;
  • the geothermal well system, energy distribution system, laser drilling system, oil production and transportation system and multi-node wireless communication-ROV are all placed in the seabed formation; among them, the geothermal well system and oil production and transportation system are connected to the energy distribution system through cables and pipelines , the laser drilling system and the multi-node wireless communication-ROV are connected to the energy distribution system through cables;
  • the geothermal well system collects geothermal energy and partially converts it into electrical energy to supply thermal energy and electrical energy to the deepwater oil and gas operating system; the energy distribution system controls and distributes geothermal energy and electrical energy for application in the deepwater oil and gas operating system; the laser drilling system utilizes Electric energy converted from geothermal energy supplies laser drilling tools; oil production and transportation systems use geothermal energy to insulate oil production pipelines to ensure smooth oil passages; multi-node wireless communication-ROV controls underwater unmanned inspection robots to achieve energy The distribution system allocates the energy supply of the deepwater oil and gas operating system in real time.
  • the geothermal well system includes a geothermal energy application system and a geothermal-to-electric energy conversion system;
  • the geothermal energy application system includes a circulating fluid flow distribution control module, a geothermal storage module, a pumping module, a drainage module, a circulating fluid module, and a pipeline module. ;
  • the geothermal energy application system uses benign endothermic circulating fluid to absorb and collect geothermal heat; the circulating fluid flow distribution control module injects low-temperature circulating fluid from the circulating fluid tank into the pipeline module and enters the ground.
  • the low-temperature circulating fluid absorbs geothermal energy and is heated to become a high-temperature circulation.
  • the circulating fluid module stores the high-temperature circulating fluid in the geothermal storage module or puts it into use; the pump pressure module supplies pressure for the circulating fluid of the circulating fluid flow distribution control module, so that it is pressed into the pipeline module for circulation, and the waste water is discharged through the drainage module.
  • the geothermal-to-electric energy conversion system includes a PN junction power generation system based on the Seebeck effect and a steam-driven turbine power generation system with dual-phase heat exchange;
  • the PN junction power generation system includes a transmission circuit, a high temperature medium, a high temperature fluid inflow module, a low temperature fluid inflow module, a low temperature medium, an outflow module and a PN junction;
  • the high-temperature fluid inflow module is connected to the high-temperature medium
  • the low-temperature fluid inflow module is connected to the low-temperature medium
  • the high-temperature circulating liquid flows into the high-temperature fluid inflow module
  • the low-temperature circulating liquid flows into the low-temperature fluid inflow module, causing a temperature difference between the two ends of the PN junction, thereby generating electrical energy in the transmission circuit Circulation
  • waste fluid is discharged from the outflow module.
  • the steam-driven turbine power generation system includes high-temperature circulating liquid pipelines, heat exchange areas, turbine power stations, steam pipelines, outflow pipelines and low-boiling point fluid pipelines;
  • the high-temperature circulating liquid enters the system through the high-temperature circulating liquid pipe
  • the low-boiling point fluid enters the system through the low-boiling point fluid pipe.
  • the two perform heat exchange in the heat exchange area.
  • the low-boiling point fluid evaporates into a gaseous state and enters the steam pipe to drive the turbine in the turbine power station. Electricity is generated, and the high-temperature circulating fluid after heat exchange flows out of the system through the outflow pipe.
  • the energy distribution system includes a general control system, an electronic control system, a temperature control system, a multi-node wireless communication collaboration terminal, an electric control box, a submarine cable, a geothermal energy control valve and a geothermal transmission pipeline;
  • the multi-node wireless communication collaboration terminal will receive the information transmitted by the multi-node wireless communication-ROV underwater inspection robot and pass it to the master control system for analysis. After the master control system completes the analysis, it will pass the execution instructions to the electronic control system and temperature control system respectively.
  • control system the electronic control system controls the electric control box to regulate the power supply;
  • the temperature control system controls the geothermal energy control valve to adjust the valve size to adjust the geothermal energy supply;
  • the submarine cable is connected to the laser drilling system, and the geothermal transmission pipeline is connected to the oil production and transportation system.
  • the laser drilling system includes cables, central control cabin, superconducting energy storage device, laser drive control power supply, laser, laser alignment module, optical fiber, laser drill bit, high-pressure water pump, high-pressure water pipe, one-way locking device, drill pipe, Water nozzles, water pumps, filtering devices and underground information collection and transmission devices;
  • the underground information collection and transmission device transmits the collected underground information to the energy distribution system through multi-node wireless communication-ROV.
  • the energy distribution system begins to supply electric energy to the laser drilling system; the electric energy enters the central control cabin through the cable to activate the control system and the superconducting energy storage device. It continuously supplies energy to the laser drive control power supply.
  • the laser drive control power supply supplies power to the laser.
  • the laser beam generated by the laser is calibrated through the laser collimation module and then transported to the laser drill bit through the optical fiber.
  • the laser drill bit melts and crushes the rock at the end of the drill bit. ;
  • the drill pipe is fixed by a one-way locking device, and the high-pressure water pump injects the drilling fluid into the high-pressure water pipe.
  • the drilling fluid is first passed into the drill pipe through the high-pressure water pipe, and then sprayed through the water spray nozzle to impact the rock; the broken rock cuttings are circulated to the wellhead After discharge, the water pump pumps the circulating drilling fluid and filters it through the filtering device.
  • the oil production and transportation system includes casing, tubing, centralizer, perforation wellbore, tubing head, production tree, subsea pipeline, manifold, oil, gas and water preliminary separation and processing device, insulation pipeline, underwater hose, universal Joints, anchor chains, anchor piles, buoys, mooring ropes, floating hoses, oil storage vessels, pipeline heating pump modules, high-temperature circulating fluid, pipeline heating modules, factory and oil production and transportation information collection and transmission devices;
  • the centralizer is installed on the casing, and the perforation well structure in the horizontal section is used for the oil and gas in the oil and gas layer to penetrate into the casing and be output through the tubing; the tubing head is connected to the tubing through bolts, and the Christmas tree is connected to the tubing head through bolts , the manifold is fixed on the seabed mud line.
  • One end collects the oil and gas from the seabed oil and gas wells through the seabed pipeline, and the other end is connected to the buoy body and the factory through underwater hoses, and the middle section of the underwater hose is equipped with a universal Joint, one end of the buoy body is connected to the anchor pile through the anchor chain, and the other end is connected to the oil storage tanker through the mooring cable; the buoy body is connected to the oil storage tanker through the floating hose, and the oil storage tanker is equipped with a preliminary separation and processing device for oil, gas and water; information The collection and transmission device transmits the collected electric energy and geothermal energy information to the energy distribution system through multi-node wireless communication-ROV;
  • the high-temperature circulating fluid transmits geothermal energy to the oil pipe through the casing; the high-temperature circulating fluid enters the insulation pipeline to insulate the underwater hose; the pipeline heating pump module pressurizes the high-temperature circulating fluid and injects the high-temperature circulating fluid into the casing and insulation pipeline
  • the ground layer temperature control cycle and the water layer temperature control cycle are respectively formed to form a pipeline heating module.
  • the multi-node wireless communication-ROV is a multi-node wireless communication signal transmission system based on the traditional ROV system.
  • multi-node wireless communication signal transmitting terminals on the laser drilling system and oil production and transportation system, multi-node wireless communication -ROV underwater inspection robot serves as a transmission node, and the energy distribution system serves as a receiving terminal to realize multi-node wireless communication -ROV's wireless signal transmission facilitates real-time energy supply control of the energy distribution system.
  • This invention makes full use of geothermal energy, gets rid of the limitations of energy supply, applies advanced technology to deep sea, and at the same time scientifically layouts it, improves the efficiency and quality of deep water oil and gas operations, saves a lot of external energy, and improves the production efficiency of deep water oil and gas, and Green and pollution-free;
  • This invention uses geothermal heat to keep warm, resist the low-temperature environment on the seabed, and ensure the oil and gas production and transportation process;
  • the present invention can regulate the supply of electric energy and geothermal energy of each system by transmitting the collection operation information to the energy distribution center, realizing real-time information feedback control between the energy distribution center and the geothermal drilling system and oil production and transportation system, ensuring This ensures stable electric energy and sufficient geothermal energy for each system, effectively improving the intelligence of the system.
  • Figure 1 is a schematic diagram of a deepwater oil and gas operation system powered by geothermal energy
  • Figure 2 shows the seafloor layout of a geothermal-powered deepwater oil and gas operation system
  • Figure 3 is a schematic diagram of the energy supply of a geothermal-powered deepwater oil and gas operation system
  • Figure 4 is a schematic diagram of the geothermal energy application system
  • Figure 5 is a schematic diagram of a PN junction power generation system based on the Seebeck effect
  • Figure 6 is a schematic diagram of a steam-driven turbine power generation system based on duplex heat exchange
  • Figure 7 is a schematic diagram of the laser drilling system
  • Figure 8 is a schematic diagram of the oil production and transportation system
  • Figure 9 is a structural diagram of the energy distribution system.
  • the present invention proposes a deepwater oil and gas operation system based on geothermal energy supply.
  • the present invention will be further described below with reference to the accompanying drawings and specific embodiments.
  • the deepwater oil and gas operation system based on geothermal energy supply collects and utilizes geothermal energy through the geothermal well system 1 to supply heat and electric energy to the deepwater oil and gas operation system;
  • the geothermal well system 1 includes a geothermal energy application system and a geothermal-electric energy conversion system.
  • the benign endothermic circulating fluid is used to absorb and collect geothermal heat.
  • the low-temperature circulating fluid is sent to the bottom of the well through the circulating fluid system, and the geothermal energy is absorbed to become a high-temperature circulating fluid, which is then recycled to the wellhead to realize the collection of geothermal energy.
  • the underwater unmanned inspection robot is controlled through multi-node wireless communication-ROV5, Conduct real-time inspection and security inspection of submarine equipment, collect operation information based on multi-node wireless communication-ROV5, and use multi-node wireless communication-ROV5 as the information transmission node to transfer the working information of laser drilling system 3 and oil production and transportation system 4 to energy
  • the distribution system 2 realizes the real-time allocation of the energy supply of the operating system by the energy distribution system 2.
  • the electric energy produced by geothermal energy conversion can be used to realize the electric energy supplement of multi-node wireless communication-ROV5.
  • the multi-node wireless communication-ROV system can be a Zigbee-ROV system, or it can also be an RFID-ROV system, an underwater acoustic communication-ROV system, a laser communication-ROV system, a neutrino communication-ROV system, or a quantum entanglement communication- ROV system etc.
  • Figure 1 is a schematic diagram of a deepwater oil and gas operation system powered by geothermal energy.
  • the dotted lines shown in the figure are submarine cables, and the solid lines shown are submarine pipelines.
  • the deepwater oil and gas operating system shown in the figure includes a geothermal well system 1, an energy distribution system 2, a laser drilling system 3, an oil production and transportation system 4 and a multi-node wireless communication-ROV5. It constitutes a system completely powered by geothermal energy to realize deep water A system for drilling and producing oil and gas resources.
  • the geothermal well 100 is used to collect geothermal energy and partially convert it into electrical energy, thereby supplying thermal energy and electrical energy to the deepwater oil and gas operating system; the energy distribution system 2 controls and distributes geothermal and electrical energy for various purposes.
  • Deepwater oil and gas operation system application laser drilling system 3 will utilize the electric energy produced based on the geothermal well system 1 to supply energy to laser drilling tools and perform deepwater oil and gas well drilling operations; oil production and transportation system 4 will utilize the electric energy generated by the geothermal well system 1 , carry out oil and gas collection work from the production well 400, and use the geothermal energy produced by the geothermal well system 1 to insulate the oil production and transportation pipelines to prevent sand production, wax formation, solid impurities in the oil layer caused by low temperature, and low-temperature hydrates in natural gas production.
  • multi-node wireless communication-ROV5 to power and control the underwater unmanned inspection robot multi-node wireless communication-ROV500 to conduct real-time inspections and security inspections of submarine equipment, and at the same time
  • the operation information of the laser drilling system 3 and the oil production and transportation system 4 is transmitted to the energy distribution system 2 to realize the coordinated energy supply of the energy distribution system 2, the laser drilling system 3, and the oil production and transportation system 4. .
  • Figure 2 is a subsea layout diagram of a deepwater oil and gas operation system powered by geothermal energy.
  • the figure shows two connecting lines to the energy distribution system.
  • the dotted lines shown are submarine cables, and the solid lines shown are submarine pipelines.
  • the geothermal well system 1, energy distribution system 2, laser drilling system 3, oil production and transportation system 4, and multi-node wireless communication-ROV5 are all placed in the seabed formation.
  • the energy distribution system 2 is connected to the geothermal well system 1 through pipelines.
  • the cables are connected to the laser drilling system 3, the oil production and transportation system 4, and the multi-node wireless communication-ROV5, respectively, to realize thermal energy and electric energy with the geothermal well system 1, the laser drilling system 3, the oil production and transportation system 4, and the multi-node wireless communication-ROV5 China Unicom.
  • Figure 3 is a functional diagram of a geothermal-powered deepwater oil and gas operation system. Thermal energy and electric energy are transmitted from the geothermal well system 1 to the energy distribution system 2 to supply the entire deepwater oil and gas operation system, and the energy distribution system 2 dynamically distributes the laser drilling system 3, oil production and transportation system 4, and multi-node wireless communication-ROV5 Work.
  • FIG. 4 is a schematic diagram of the geothermal energy application system.
  • the geothermal energy application system shown in the figure mainly includes: circulating liquid flow distribution control module 111, geothermal storage module 112, pumping module 113, drainage module 114, circulating liquid module 115 and pipeline module 116; among which, the circulating liquid flow rate
  • the distribution control module 111 injects the low-temperature circulating liquid from the circulating liquid module 115 into the pipeline module 116 into the ground.
  • the low-temperature circulating liquid absorbs geothermal energy for heating, and then stores the heated high-temperature circulating liquid into the geothermal storage through the circulating liquid flow distribution control module 111.
  • the assembly module 112 may be put into use.
  • the pumping module 113 is used to supply pressure to the circulating fluid of the circulating fluid flow distribution control module 111 so that it is pressed into the pipeline module 116 for circulation, and the drainage module 114 discharges waste water.
  • Figure 5 is a schematic diagram of the PN junction power generation system of the Seebeck effect.
  • the PN junction power generation system based on the Seebeck effect shown in the figure mainly includes: transmission circuit 1211, high temperature medium 1212, high temperature fluid inflow module 1213, low temperature fluid inflow module 1214, low temperature medium 1215, outflow module 1216, PN junction 1217; among them,
  • the high-temperature circulating liquid flows into the high-temperature fluid inflow module 1213 through the circulating liquid flow distribution control module 111, and the low-temperature seawater flows into the low-temperature fluid inflow module 1214.
  • the high-temperature fluid inflow module is connected to the high-temperature medium 1212, and the low-temperature fluid inflow module 1214 is connected to the low-temperature medium 1215, so that the PN junction 1217 A temperature difference is generated between the two ends, thereby generating electric energy to circulate in the transmission circuit 1211, and the waste fluid is discharged from the power generation system from the outflow module 1216.
  • FIG. 6 is a schematic diagram of a steam-driven turbine power generation system with dual-phase heat exchange.
  • the steam-driven turbine power generation system based on duplex heat exchange shown in the figure mainly includes: high-temperature circulating liquid pipeline 1221, heat exchange area 1222, turbine power station 1223, steam pipeline 1224, outflow pipeline 1225, and low boiling point fluid pipeline 1226; where , the high-temperature circulating liquid from the circulating liquid flow distribution control module 111 enters the power generation system through the high-temperature circulating liquid pipe 1221, and the low-boiling point fluid enters the system through the low-boiling point fluid pipe 1226.
  • the two perform heat exchange in the heat exchange area 1222, and the low-boiling point fluid evaporates. It enters the steam pipe 1224 in a gaseous state and drives the turbine in the turbine power station 1223 to generate electricity. After the heat exchange is completed, the high-temperature circulating liquid flows out of the system through the outflow pipe 1225.
  • Figure 7 is a schematic diagram of the laser drilling system.
  • Geothermal energy is converted into electrical energy through the geothermal well system. After completing quantitative storage, it meets the start-up requirements of the energy distribution system 2.
  • the energy distribution system 2 starts to supply electric energy to the drilling system 3.
  • Electric energy enters the geothermal drilling system 3 and enters the central control cabin 302 through the cable 301 to activate the control system.
  • the superconducting energy storage device 303 uses the ultra-low temperature environment of the seabed to efficiently and losslessly store electric energy to continuously supply energy to the laser drive control power supply 304.
  • the laser drive control power supply 304 supplies power to the laser 305.
  • the laser beam generated by the laser 305 is calibrated by the laser collimation module 306, and is transported to the laser drill bit 308 through the optical fiber 307.
  • the laser drill bit 308 emits the laser beam to melt and crush the rock at the end of the drill bit.
  • the drill pipe is fixed through the one-way locking device 311, the high-pressure water pump 309 injects drilling fluid into the high-pressure water pipe 310, and the high-pressure water pipe 310 passes into the drill pipe 312.
  • the high-pressure drilling fluid is sprayed through the water nozzle 313, impacting the rock, assisting rock crushing, and forming a bottom-wellhead circulation to circulate the broken rock cuttings to the wellhead for discharge, thereby improving drilling efficiency.
  • the water pump 314 pumps the circulating drilling fluid, filters it through the filtering device 315, and reuses it.
  • FIG 8 is a schematic diagram of the oil production and transportation system.
  • the energy distribution system 2 performs energy distribution and provides thermal energy and electric energy to the oil production and transportation system 4 . After the geothermal energy is collected and stored, it reaches the supply capacity and reaches the functional working standard of the energy distribution system 2. Collect information through the oil production and transportation information collection and transmission system 423, confirm the start of the operation, and transmit the signal to the energy distribution system 2 through the multi-node wireless communication-ROV5. The energy distribution system 2 starts to supply geothermal energy to the oil production and transportation system 4. Among them, in the underground part, as the depth increases, the supply of geothermal energy becomes insufficient.
  • the oil production and transportation information collection and transmission system 423 transmits the information to the multi-node wireless communication-ROV5 and transmits it to the energy distribution system 2 to control the energy distribution.
  • System 2 controls geothermal energy, increases geothermal energy output, improves geothermal energy supply to oil production and transportation system 4, and ensures thermal insulation temperature.
  • the centralizer 403 is installed on the casing 401 to centralize the casing 401.
  • the perforation wellbore 404 structure in the horizontal section is used for oil and gas in the oil and gas layer to penetrate into the casing and be output through the oil pipe 402.
  • the oil pipe head 405 is connected to the oil pipe 402 through bolts, and mainly plays the role of suspending and sealing the oil pipe.
  • the Christmas tree 406 is connected to the oil pipe head 405 through bolts, and is used to control the flow rate and switch of the oil and gas flow to control the production of the oil and gas well.
  • the manifold 408 is fixed on the submarine mud line, and collects the oil and gas from multiple submarine oil and gas wells through the submarine pipeline 407.
  • One end of the underwater hose 411 is connected to the manifold 408, and the other end is connected to the pontoon body 415.
  • the middle pipe section is connected by a universal joint 412 to achieve free rotation of the pipeline.
  • the buoy body 415 is connected to the anchor piles 414 through a plurality of anchor chains 413 to limit the movement range of the buoy body 415.
  • the buoy body 415 is connected to the oil storage tanker 418 through mooring cables 416, thereby limiting the movement of the oil storage tanker 418.
  • the buoy body 415 floats by The hose 417 stores the crude oil on the oil storage tanker 418, and the oil, gas, and water preliminary separation and processing device 409 on the tanker 418 separates, purifies, measures, and exports the oil, gas, and water.
  • the underwater hose 411 can also be used to lead to the factory 422 on the shore for further processing.
  • the high-temperature circulating fluid 420 is transmitted through the pipeline and enters the casing 401.
  • the pipeline heating pump module 419 is used to pressurize the high-temperature circulating fluid 420.
  • the high-temperature circulating fluid 420 is injected into the casing 401, and the casing 401 is used to form the formation temperature. Control cycle.
  • the oil pipe 402 is wrapped by the casing 401, and the high-temperature circulating fluid 420 is used to transmit the geothermal energy to the oil pipe 402, forming a thermal insulation and heating environment supplied by geothermal energy around the oil pipe 402.
  • the high-temperature circulating fluid 420 enters the insulation pipeline 410 to insulate the underwater hose 411.
  • the pipeline heating pump module 419 is used to pressurize the high-temperature circulating fluid 420, and the high-temperature circulating fluid 420 is injected into the insulation pipeline 410 to form a water layer temperature. Control cycle.
  • the formation temperature control cycle and the water formation temperature control cycle constitute the pipeline heating module 421, which controls and protects oil and gas collection and transmission lines to prevent sand production, wax formation, solid impurities in oil formations caused by low temperatures, and low-temperature hydrates in natural gas production. , and perform viscosity and condensation reduction on crude oil to ensure smooth oil passage.
  • FIG. 9 is a schematic diagram of the energy distribution system.
  • the dotted lines shown in the figure are submarine cables and the solid lines shown are submarine pipelines.
  • the energy distribution system 2 transmits information through multi-node wireless communication-ROV5 to realize the switch of energy supply, supplies energy to each system, and adjusts the energy based on the real-time transmission information, and timely adjusts the laser drilling system 3 and the oil production and transportation system 4 Required electrical energy and geothermal energy.
  • the laser drilling system 3 the electric energy produced based on geothermal energy conversion is utilized to power the laser drilling tools.
  • the multi-node wireless communication collaboration terminal 204 is mainly used to receive information transmitted by the inspection robot multi-node wireless communication-ROV500, connect to the main control system 201, and transmit it to the main control system 201 for analysis and processing; after the main control system 201 completes the analysis, it will execute the instructions Passed to the electric control system 202 and the temperature control system 203 respectively; the electric control system 202 controls the electric control box 205 to regulate the power supply; the temperature control system 203 controls the geothermal energy control valve 207, adjusts the valve size, and adjusts the geothermal energy supply; submarine cable 206 connects the energy distribution system 2 and the laser drilling system 3; the geothermal transmission pipeline 208 connects the energy distribution system 2 and the oil production and transportation system 4.
  • This system provides deep water energy based on geothermal energy, realizes drilling and production operations of deep water oil and gas wells, and changes the traditional deep water drilling energy supply.
  • the invention relies on geothermal energy for production and saves resources. It uses geothermal power to generate electricity and uses laser drilling technology to improve the efficiency and depth of underwater drilling. It uses geothermal heat to keep warm and resist the low-temperature environment on the seabed, ensuring the oil and gas production and transportation process and improving transportation efficiency. , which has effectively improved the efficiency of deep-sea oil and gas drilling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Sustainable Development (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

一种基于地热供能的深水油气作业系统,包括地热井系统(1)、能量分配系统(2)、激光钻井系统(3)、采输油系统(4)和多节点无线通讯-ROV(5);地热井系统和采输油系统均通过电缆和管路与能量分配系统连接,激光钻井系统和多节点无线通讯-ROV均通过电缆与能量分配系统连接;地热井系统采集地热能并部分转换为电能;能量分配系统进行地热能和电能的分配;激光钻井系统利用地热能转换的电能对激光钻井工具供能;采输油系统利用地热能对采油管线进行保温;多节点无线通讯-ROV控制水下无人巡检机器人。该作业系统实现了能量分配系统与地热井系统、采输油系统的实时信息反馈控制,有效提升了系统的智能化。

Description

一种基于地热供能的深水油气作业系统 技术领域
本发明涉及深海油气井工程技术领域,尤其涉及一种基于地热供能的深水油气作业系统。
背景技术
受限于深海环境,深水作业相比于陆地作业,油气作业系统的能源供应成为了限制深水油气开发的关键。通过改变深水油气作业系统的能源供应方式,可以使深水油气开发摆脱能源限制,形成更加先进、更加独立的深水油气作业系统,减少对陆地控制的依赖,有效提升作业效率,提高了深水油气钻采技术水平,减少了能源供应的需求,有效降低因能源供应局限而产生的故障问题。然而,现有的能源供应技术仍存在着传输线路长、故障率高、传输损失大的问题,常规的能量供应难以解决。因此,迫切需要一种能够改变深水油气钻采方式,形成独立能源供应,满足深水油气钻、采、输送等能源需求,提高深水油气作业效率的先进作业系统,以克服现有技术中的种种缺陷。
发明内容
本发明的目的是提出一种基于地热供能的深水油气作业系统,其特征在于,所述系统包括地热井系统、能量分配系统、激光钻井系统、采输油系统和多节点无线通讯-ROV;
地热井系统、能量分配系统、激光钻井系统、采输油系统和多节点无线通讯-ROV均安置于海底地层;其中,地热井系统和采输油系统均通过电缆和管路与能量分配系统连接,激光钻井系统和多节点无线通讯-ROV均通过电缆与能量分配系统连接;
所述地热井系统采集地热能并部分转换为电能,对深水油气作业系统进行热能和电能供给;能量分配系统进行地热能和电能的控制和分配,以供深水油气作业系统应用;激光钻井系统利用地热能转换的电能对激光钻井工具进行供能;采输油系统利用地热能对采油管线进行保温,以保证油路畅通;多节点无线通讯-ROV控制水下无人巡检机器人,以实现能量分配系统对深水油气作业系统的能量供给实时调配。
所述地热井系统包括地热能应用系统和地热-电能转换系统;所述地热能应用系统包括循环液流量分配控制模块、地热储集模块、泵压模块、排水模块、循环液模块和管路模块;
地热能应用系统利用良性吸热循环液进行地热热量吸取采集;循环液流量分配控制模块将低温循环液从循环液罐中注入管路模块进入地底,低温循环液汲取地热能量进行加热后成为高温循环液,循环液模块将高温循环液存入地热储集模块或投入使用;泵压模块为循环液流量分配控制模块的循环液供压,使其压入管路模块进行循环,废水经排水模块排出。
所述地热-电能转换系统包括基于塞贝克效应的PN结发电系统和双工质热交换的蒸汽驱动涡轮发电系统;
所述PN结发电系统包括传输电路、高温介质、高温流体流入模块、低温流体流入模块、低温介质、流出模块和PN结;
高温流体流入模块连接高温介质,低温流体流入模块连接低温介质,高温循环液流入高温流体流入模块,低温循环液流入低温流体流入模块,使得PN结两端产生温度差,从而产生电能在传输电路中流通,废弃流体从流出模块排出。
所述蒸汽驱动涡轮发电系统包括高温循环液管道、热交换区、涡轮发电站、蒸汽管道、流出管道和低沸点流体管道;
高温循环液由高温循环液管道进入系统,低沸点流体由低沸点流体管道进入系统,二者在热交换区进行热交换,低沸点流体蒸发为气态进入蒸汽管道,并驱动涡轮发电站中的涡轮进行发电,而热交换后的高温循环液由流出管道流出系统。
所述能量分配系统包括总控系统、电控系统、温控系统、多节点无线通讯协同终端、电控箱、海底电缆、地热能控制阀和地热传输管路;
多节点无线通讯协同终端将接收到的多节点无线通讯-ROV水下巡检机器人传输的信息,传递给总控系统进行分析,总控系统分析完毕后将执行指令分别传递给电控系统与温控系统;电控系统控制电控箱来调控供电量;温控系统控制地热能控制阀来调节阀门大小以调整地热能供给量;海底电缆连接激光钻井系统,地热传输管路连接采输油系统。
所述激光钻井系统包括电缆、中央控制舱、超导储能装置、激光驱动控制电源、激光器、激光准直模块、光纤、激光钻头、高压水泵、高压水管、单向锁死装置、钻杆、喷水嘴、抽水泵、过滤装置和井下信息采集传递装置;
井下信息采集传递装置将采集的井下信息通过多节点无线通讯-ROV传递到能量分配系统,能量分配系统开始给激光钻井系统供给电能;电能通过电缆进入中央控制舱激活控制系 统,超导储能装置为激光驱动控制电源持续供能,激光驱动控制电源对激光器进行供电,激光器生成的激光束通过激光准直模块进行校直,再通过光纤输送到激光钻头,激光钻头对钻头端部岩石进行熔融破碎;钻杆通过单向锁死装置进行固定,高压水泵将钻井液注入高压水管,钻井液先通过高压水管通进钻杆,再通过喷水嘴喷射以对岩石进行冲击;破碎岩石屑循环至井口排出,抽水泵对循环上来的钻井液进行抽汲,并通过过滤装置进行滤清。
所述采输油系统包括套管、油管、扶正器、射孔井眼、油管头、采油树、海底管线、管汇、油气水初步分离与加工装置、保温管线、水下软管、万向接头、锚链、锚桩、浮筒体、系泊缆绳、漂浮软管、储油轮、管道保暖泵压模块、高温循环液、管道保暖模块、工厂和采输油信息采集传递装置;
其中,扶正器安装在套管上,水平段的射孔井眼结构用于油气层中的油气渗入套管内并通过油管输出;油管头通过螺栓连接于油管,采油树通过螺栓连接于油管头上,管汇固定于海底泥线上,一端通过海底管线将海底油气井的油气进行汇总,另一端通过水下软管分别与浮筒体和工厂连接,且水下软管的中间管段设有万向接头,浮筒体的一端通过锚链与锚桩固接,另一端通过系泊缆绳与储油轮相连;浮筒体通过漂浮软管与储油轮连接,储油轮上设置油气水初步分离与加工装置;信息采集传递装置将采集的电能与地热能信息通过多节点无线通讯-ROV传递到能量分配系统;
高温循环液通过套管将地热能量传输至油管;高温循环液进入保温管线对水下软管进行保温;管道保暖泵压模块对高温循环液进行增压,将高温循环液注入套管和保温管线中分别形成地层温控循环和水层温控循环以构成管道保暖模块。
所述多节点无线通讯-ROV是在传统的ROV系统基础上增加多节点无线通讯信号传输系统,通过在激光钻井系统和采输油系统上布置多节点无线通讯信号的发射终端,多节点无线通讯-ROV水下巡检机器人作为传递节点,能量分配系统作为接收终端,实现多节点无线通讯-ROV的无线信号传输,便于能量分配系统实时能量供给调控。
本发明的有益效果在于:
1、本发明充分利用地热能,摆脱了能源供应局限,将先进技术用于深海,同时科学布局,提高了深水油气作业效率和质量,节省了大量外部能源,提升了深水油气的生产效益,且绿色无污染;
2、本发明使用地热保暖,抵御海底低温环境,保障了油气的采输工艺;
3、本发明能够通过将采集作业信息传递给能源分配中心,对各个系统的电能、地热能供 应量进行调控,实现了能源分配中心与地热钻井系统、采输油系统的实时信息反馈控制,保证了各个系统的电能稳定、地热能充足,有效地提升了系统的智能化。
附图说明
图1为地热供能的深水油气作业系统示意图;
图2为地热供能的深水油气作业系统海底布局图;
图3为地热供能的深水油气作业系统供能示意图;
图4为地热能应用系统示意图;
图5为基于塞贝克效应的PN结发电系统示意图;
图6为基于双工质热交换的蒸汽驱动涡轮发电系统示意图;
图7为激光钻井系统示意图;
图8为采输油系统示意图;
图9为能量分配系统结构图。
具体实施方式
本发明提出一种基于地热供能的深水油气作业系统,下面结合附图和具体实施例对本发明做进一步说明。
基于地热供能的深水油气作业系统,通过地热井系统1对地热能进行采集利用,以此对深水油气作业系统进行热能及电能供给;地热井系统1包括地热能应用系统和地热-电能转换系统,通过地热能应用系统,利用良性吸热循环液进行地热热量吸取采集,通过循环液系统将低温循环液送入井底,吸取地热能成为高温循环液,再循环至井口,实现地热能的采集、输送、储存、利用;通过地热-电能转换系统,利用地热能进行深水发电,对地热供能的深水油气作业系统进行电能供给;通过多节点无线通讯-ROV5控制水下无人巡检机器人,对海底设备进行实时巡查、安检,基于多节点无线通讯-ROV5进行作业信息采集,以多节点无线通讯-ROV5作为信息传输节点,将激光钻井系统3、采输油系统4的工作信息传递给能量分配系统2,实现能量分配系统2对作业系统的能量供给实时调配,同时,可利用地热能转换生产的电能,实现多节点无线通讯-ROV5的电能补充。其中,多节点无线通讯-ROV系统可以为Zigbee-ROV系统,还可以为RFID-ROV系统、水声通讯-ROV系统、激光通讯-ROV系统、中微子术通讯-ROV系统、量子纠缠通讯-ROV系统等。
图1为地热供能的深水油气作业系统示意图,图中所示虚线为海底电缆,所示实线为海底管路。图中所示深水油气作业系统包括地热井系统1、能量分配系统2、激光钻井系统3、采输油系统4和多节点无线通讯-ROV5,构成了一套完全由地热供能,实现对深水油气资源钻采的系统。通过地热井系统1,利用地热井100对地热能进行采集并部分转换为电能,以此对深水油气作业系统进行热能及电能供给;能量分配系统2进行地热、电能的控制以及分配,以供各深水油气作业系统应用;激光钻井系统3将基于地热井系统1生产的电能进行利用,对激光钻井工具进行供能,进行深水油气井钻井作业;采输油系统4,利用地热井系统1所得电能,从生产井400进行油气采集工作,并利用地热井系统1生产的地热能量对采输油管线进行保温,预防低温造成的油层出砂、结腊、固体杂质以及天然气生产中的低温水合物等现象,并对原油进行降黏降凝等,保证油路畅通;通过多节点无线通讯-ROV5供电并控制水下无人巡检机器人多节点无线通讯-ROV500,对海底设备进行实时巡查、安检,同时作为多节点无线通讯信号传输节点,将激光钻井系统3、采输油系统4的作业信息传递给能量分配系统2,实现能量分配系统2与激光钻井系统3、采输油系统4的协同供能。
图2为地热供能的深水油气作业系统海底布局图,图中所示与能量分配系统2处连接线路,所示虚线为海底电缆示意,所示实线为海底管路。其中,地热井系统1、能量分配系统2、激光钻井系统3、采输油系统4、多节点无线通讯-ROV5均安置于海底地层,能量分配系统2通过管路与地热井系统1相连,通过电缆分别与激光钻井系统3、采输油系统4、多节点无线通讯-ROV5进行连接,实现热能以及电能与地热井系统1、激光钻井系统3、采输油系统4、多节点无线通讯-ROV5的联通。
图3为地热供能的深水油气作业系统功能图。热能及电能由地热井系统1传向能量分配系统2对整个深水油气作业系统进行供给,并由能量分配系统2对激光钻井系统3、采输油系统4、多节点无线通讯-ROV5进行动态分配工作。
图4为地热能应用系统示意图。图中所示地热能应用系统,主要包括:循环液流量分配控制模块111、地热储集模块112、泵压模块113、排水模块114、循环液模块115和管路模块116;其中,循环液流量分配控制模块111将低温循环液从循环液模块115中注入管路模块116进入地底,低温循环液汲取地热能量进行加热,后通过循环液流量分配控制模块111将加热后高温循环液存入地热储集模块112或投入使用。泵压模块113用于给循环液流量分配控制模块111的循环液供压,使其压入管路模块116进行循环,排水模块114进行废水排出。
图5为塞贝克效应的PN结发电系统示意图。图中所示基于塞贝克效应的PN结发电系统主要包括:传输电路1211、高温介质1212、高温流体流入模块1213、低温流体流入模块 1214、低温介质1215、流出模块1216、PN结1217;其中,高温循环液经过循环液流量分配控制模块111流入高温流体流入模块1213,低温海水流入低温流体流入模块1214,高温流体流入模块连接高温介质1212,低温流体流入模块1214连接低温介质1215,使得PN结1217两端产生温度差,从而产生电能在传输电路1211中流通,废弃流体从流出模块1216排出发电系统。
图6为双工质热交换的蒸汽驱动涡轮发电系统示意图。图中所示基于双工质热交换的蒸汽驱动涡轮发电系统主要包括:高温循环液管道1221、热交换区1222、涡轮发电站1223、蒸汽管道1224、流出管道1225、低沸点流体管道1226;其中,来自循环液流量分配控制模块111的高温循环液通过高温循环液管道1221进入发电系统,低沸点流体由低沸点流体管道1226进入系统,二者在热交换区1222进行热交换,低沸点流体蒸发以气态进入蒸汽管道1224,并驱动涡轮发电站1223中的涡轮进行发电,热交换完成后的高温循环液由流出管道1225流出系统。
图7为激光钻井系统示意图。地热能通过地热井系统转换为电能,在完成定量存储后,达到能量分配系统2的启动要求。通过井下信息采集传输系统316采集信息,确定开始作业,将信号通过多节点无线通讯-ROV5传递到能量分配系统2,能量分配系统2开始给钻井系统3供给电能。电能进入地热钻井系统3,通过电缆301进入中央控制舱302激活控制系统,超导储能装置303利用海底超低温环境进行电能高效无损储存,为激光驱动控制电源304持续供能。激光驱动控制电源304对激光器305进行供电,激光器305生成激光束通过激光准直模块306进行校直,通过光纤307输送到激光钻头308,通过激光钻头308发射对钻头端部岩石进行熔融破碎。经过单向锁死装置311对钻杆进行固定,高压水泵309将钻井液注入高压水管310,高压水管310通进钻杆312。高压钻井液通过喷水嘴313喷射,对岩石进行冲击,辅助岩石破碎,同时形成井底-井口循环,将破碎岩石屑循环至井口排出,提高钻井效率。抽水泵314对循环上来的钻井液进行抽汲,通过过滤装置315进行滤清,重复使用。
图8为采输油系统示意图。由能量分配系统2进行能量分配,提供热能及电能给采输油系统4。地热能通过采集存储,达到可供给量以后,达到能量分配系统2的功能工作标准。通过采输油信息采集传输系统423采集信息,确定开始作业,将信号通过多节点无线通讯-ROV5传递到能量分配系统2,能量分配系统2开始给采输油系统4供给地热能。其中,在井下部分,随着深度的增加,地热能供给量出现不足,采输油信息采集传输系统423将信息传递于多节点无线通讯-ROV5,输送到能量分配系统2,即可控制能量分配系统2进行地热能调控,加大地热能输出,提高采输油系统4的地热能供给,保证保温温度。
通过能量分配系统2供给给采输油系统4电能使其开始工作。扶正器403安装于套管401上,扶正居中套管401。水平段的射孔井眼404结构用于油气层中的油气渗入套管内并通过油管402输出。油管头405通过螺栓连接于油管402,主要起悬挂和密封油管的作用。采油树406通过螺栓连接于油管头405之上,用于控制油气流的流量与开关,使油气井生产可控。管汇408固定于海底泥线之上,通过海底管线407将多口海底油气井的油气汇总。水下软管411一端与管汇408连接,一端与浮筒体415连接,中间管段的连接采用万向接头412,实现管路旋转自由。浮筒体415通过多条锚链413与锚桩414连接,限制浮筒体415的移动范围,浮筒体415通过系泊缆绳416与储油轮418相连,进而限制储油轮418的移动,浮筒体415通过漂浮软管417将原油存储到储油轮418上,储油轮418上的油气水初步分离与加工装置409将油气水进行分离、净化、计量和外输。考虑到在近岸水下进行油气采集的工作,也可通过水下软管411通往岸上的工厂422进行进一步处理。
同时,高温循环液420通过管路传输进入套管401,利用管道保暖泵压模块419对高温循环液420进行增压,将高温循环液420注入到套管401中,利用套管401形成地层温控循环。通过套管401包裹油管402,利用高温循环液420,将地热能量传输至油管402上,在油管402环周形成以地热能供给的保温升温环境。高温循环液420进入保温管线410,对水下软管411进行保温,利用管道保暖泵压模块419对高温循环液420进行增压,将高温循环液420注入到保温管线410中,形成水层温控循环。地层温控循环与水层温控循环构成管道保暖模块421,对油气采集及输送线路进行控温保护,预防低温造成的油层出砂、结腊、固体杂质以及天然气生产中的低温水合物等现象,并对原油进行降黏降凝等,保证油路畅通。
图9为能量分配系统示意图,图中所示虚线为海底电缆,所示实线为海底管路。能量分配系统2通过多节点无线通讯-ROV5传递信息以实现能量供给的开关,对各个系统进行能量供给,并依据实时的传递信息,进行能量调节,及时调节激光钻井系统3、采输油系统4所需的电能、地热能。通过激光钻井系统3,将基于地热能转换生产的电能进行利用,对激光钻井工具进行供能。多节点无线通讯协同终端204主要用于接收巡检机器人多节点无线通讯-ROV500传输的信息,连接总控系统201,传递给总控系统201进行分析处理;总控系统201分析完毕,将执行指令分别传递给电控系统202与温控系统203;电控系统202控制电控箱205,调控供电量;温控系统203控制地热能控制阀207,调节阀门大小,调整地热能供给量;海底电缆206连通能量分配系统2与激光钻井系统3;地热传输管路208连通能量分配系统2与采输油系统4。
该系统基于地热能进行深水供能,实现了深水油气井的钻采作业,改变了传统深水钻井 能源供应。本发明依靠地热能进行生产,节省资源,利用地热发电并使用激光钻井技术,提高了海下钻井效率和深度,使用地热保暖,抵御海底低温环境,保障了油气的采输工艺,提升了输送效率,切实提升了深海油气钻采效益。
此实施例仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (8)

  1. 一种基于地热供能的深水油气作业系统,其特征在于,所述系统包括地热井系统(1)、能量分配系统(2)、激光钻井系统(3)、采输油系统(4)和多节点无线通讯-ROV(5);
    地热井系统(1)、能量分配系统(2)、激光钻井系统(3)、采输油系统(4)和多节点无线通讯-ROV(5)均安置于海底地层;其中,地热井系统(1)和采输油系统(4)均通过电缆和管路与能量分配系统(2)连接,激光钻井系统(3)和多节点无线通讯-ROV(5)均通过电缆与能量分配系统(2)连接;
    所述地热井系统(1)采集地热能并部分转换为电能,对深水油气作业系统进行热能和电能供给;所述能量分配系统(2)进行地热能和电能的控制和分配,以供深水油气作业系统应用;所述激光钻井系统(3)利用地热能转换的电能对激光钻井工具进行供能;所述采输油系统(4)利用地热能对采油管线进行保温,以保证油路畅通;所述多节点无线通讯-ROV(5)控制水下无人巡检机器人,以实现能量分配系统(2)对深水油气作业系统的能量供给实时调配。
  2. 根据权利要求1所述基于地热供能的深水油气作业系统,其特征在于,所述地热井系统(1)包括地热能应用系统和地热-电能转换系统;所述地热能应用系统包括循环液流量分配控制模块(111)、地热储集模块(112)、泵压模块(113)、排水模块(114)、循环液模块(115)和管路模块(116);
    地热能应用系统利用良性吸热循环液进行地热热量吸取采集;循环液流量分配控制模块(111)将低温循环液从循环液罐中注入管路模块(116)进入地底,低温循环液汲取地热能量进行加热后成为高温循环液,循环液模块(115)将高温循环液存入地热储集模块(112)或投入使用;泵压模块(113)为循环液流量分配控制模块(111)的循环液供压,使其压入管路模块(116)进行循环,废水经排水模块(114)排出。
  3. 根据权利要求2所述基于地热供能的深水油气作业系统,其特征在于,所述地热-电能转换系统包括基于塞贝克效应的PN结发电系统和双工质热交换的蒸汽驱动涡轮发电系统;
    所述PN结发电系统包括传输电路(1211)、高温介质(1212)、高温流体流入模块(1213)、低温流体流入模块(1214)、低温介质(1215)、流出模块(1216)和PN结(1217);
    高温流体流入模块(1213)连接高温介质(1212),低温流体流入模块(1214)连接低温介质(1215),高温循环液流入高温流体流入模块(1213),低温循环液流入低温流体流入 模块(1214),使得PN结(1217)两端产生温度差,从而产生电能在传输电路(1211)中流通,废弃流体从流出模块(1216)排出。
  4. 根据权利要求3所述基于地热供能的深水油气作业系统,其特征在于,所述蒸汽驱动涡轮发电系统包括高温循环液管道(1221)、热交换区(1222)、涡轮发电站(1223)、蒸汽管道(1224)、流出管道(1225)和低沸点流体管道(1226);
    高温循环液由高温循环液管道(1221)进入系统,低沸点流体由低沸点流体管道(1226)进入系统,二者在热交换区(1222)进行热交换,低沸点流体蒸发为气态进入蒸汽管道(1224),并驱动涡轮发电站(1223)中的涡轮进行发电,而热交换后的高温循环液由流出管道(1225)流出系统。
  5. 根据权利要求1所述基于地热供能的深水油气作业系统,其特征在于,所述能量分配系统(2)包括总控系统(201)、电控系统(202)、温控系统(203)、多节点无线通讯协同终端(204)、电控箱(205)、海底电缆(206)、地热能控制阀(207)和地热传输管路(208);
    多节点无线通讯协同终端(204)将接收到的多节点无线通讯-ROV水下巡检机器人传输的信息,传递给总控系统(201)进行分析,总控系统(201)分析完毕后将执行指令分别传递给电控系统(202)与温控系统(203);电控系统(202)控制电控箱(205)来调控供电量;温控系统(203)控制地热能控制阀(207)来调节阀门大小以调整地热能供给量;海底电缆(206)连接激光钻井系统(3),地热传输管路(208)连接采输油系统(4)。
  6. 根据权利要求1所述基于地热供能的深水油气作业系统,其特征在于,所述激光钻井系统(3)包括电缆(301)、中央控制舱(302)、超导储能装置(303)、激光驱动控制电源(304)、激光器(305)、激光准直模块(306)、光纤(307)、激光钻头(308)、高压水泵(309)、高压水管(310)、单向锁死装置(311)、钻杆(312)、喷水嘴(313)、抽水泵(314)、过滤装置(315)和井下信息采集传递装置(316);
    井下信息采集传递装置(316)将采集的井下信息通过多节点无线通讯-ROV(5)传递到能量分配系统(2),能量分配系统(2)开始给激光钻井系统(3)供给电能;电能通过电缆(301)进入中央控制舱(302)激活控制系统,超导储能装置(303)为激光驱动控制电源(304)持续供能,激光驱动控制电源(304)对激光器(305)进行供电,激光器(305)生成的激光束通过激光准直模块(306)进行校直,再通过光纤(307)输送到激光钻头(308),激光钻 头(308)对钻头端部岩石进行熔融破碎;钻杆(312)通过单向锁死装置(311)进行固定,高压水泵(309)将钻井液注入高压水管(310),钻井液先通过高压水管(310)通进钻杆(312),再通过喷水嘴(313)喷射以对岩石进行冲击;破碎岩石屑循环至井口排出,抽水泵(314)对循环上来的钻井液进行抽汲,并通过过滤装置(315)进行滤清。
  7. 根据权利要求1所述基于地热供能的深水油气作业系统,其特征在于,所述采输油系统(4)包括套管(401)、油管(402)、扶正器(403)、射孔井眼(404)、油管头(405)、采油树(406)、海底管线(407)、管汇(408)、油气水初步分离与加工装置(409)、保温管线(410)、水下软管(411)、万向接头(412)、锚链(413)、锚桩(414)、浮筒体(415)、系泊缆绳(416)、漂浮软管(417)、储油轮(418)、管道保暖泵压模块(419)、高温循环液(420)、管道保暖模块(421)、工厂(422)和采输油信息采集传递装置(423);
    其中,扶正器(403)安装在套管(401)上,水平段的射孔井眼(404)结构用于油气层中的油气渗入套管内并通过油管(402)输出;油管头(405)通过螺栓连接于油管(402),采油树(406)通过螺栓连接于油管头(405)上,管汇(408)固定于海底泥线上,一端通过海底管线(407)将海底油气井的油气进行汇总,另一端通过水下软管(411)分别与浮筒体(415)和工厂(422)连接,且水下软管(411)的中间管段设有万向接头(412),浮筒体(415)的一端通过锚链(413)与锚桩(414)固接,另一端通过系泊缆绳(416)与储油轮(418)相连;浮筒体(415)通过漂浮软管(417)与储油轮(418)连接,储油轮(418)上设置油气水初步分离与加工装置(409);信息采集传递装置(423)将采集的电能与地热能信息通过多节点无线通讯-ROV(5)传递到能量分配系统(2);
    高温循环液(420)通过套管(401)将地热能量传输至油管(402);高温循环液(420)进入保温管线(410)对水下软管(411)进行保温;管道保暖泵压模块(419)对高温循环液(420)进行增压,将高温循环液(420)注入套管(401)和保温管线(410)中分别形成地层温控循环和水层温控循环以构成管道保暖模块(421)。
  8. 根据权利要求1所述基于地热供能的深水油气作业系统,其特征在于,所述多节点无线通讯-ROV(5)是在传统的ROV系统基础上增加多节点无线通讯信号传输系统,通过在激光钻井系统(3)和采输油系统(4)上布置多节点无线通讯信号的发射终端,多节点无线通讯-ROV水下巡检机器人作为传递节点,能量分配系统(2)作为接收终端,实现多节点无线通讯-ROV(5)的无线信号传输,便于能量分配系统(2)实时能量供给调控。
PCT/CN2022/090882 2022-05-05 2022-05-05 一种基于地热供能的深水油气作业系统 WO2023212846A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090882 WO2023212846A1 (zh) 2022-05-05 2022-05-05 一种基于地热供能的深水油气作业系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090882 WO2023212846A1 (zh) 2022-05-05 2022-05-05 一种基于地热供能的深水油气作业系统

Publications (1)

Publication Number Publication Date
WO2023212846A1 true WO2023212846A1 (zh) 2023-11-09

Family

ID=88646064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090882 WO2023212846A1 (zh) 2022-05-05 2022-05-05 一种基于地热供能的深水油气作业系统

Country Status (1)

Country Link
WO (1) WO2023212846A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100031652A1 (en) * 2008-07-28 2010-02-11 Shnell James H Deep sea geothermal energy system
CN202747613U (zh) * 2012-06-29 2013-02-20 林晓光 石油输油管道地热能加热装置
CN104659893A (zh) * 2015-01-22 2015-05-27 西南石油大学 基于地热能-振动能的井下设备供电系统及其供电方法
JP2016098806A (ja) * 2014-11-26 2016-05-30 協同テック株式会社 循環型地熱発電システム及びその施工方法
CN112412369A (zh) * 2020-11-18 2021-02-26 中国石油大学(华东) 钻井平台热量供应系统
CN212744226U (zh) * 2020-07-25 2021-03-19 王行运 一种油气田中的剩余油气及地热综合回收系统
CN114198016A (zh) * 2021-12-31 2022-03-18 北京派创石油技术服务有限公司 地热闭环工质循环开采方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100031652A1 (en) * 2008-07-28 2010-02-11 Shnell James H Deep sea geothermal energy system
CN202747613U (zh) * 2012-06-29 2013-02-20 林晓光 石油输油管道地热能加热装置
JP2016098806A (ja) * 2014-11-26 2016-05-30 協同テック株式会社 循環型地熱発電システム及びその施工方法
CN104659893A (zh) * 2015-01-22 2015-05-27 西南石油大学 基于地热能-振动能的井下设备供电系统及其供电方法
CN212744226U (zh) * 2020-07-25 2021-03-19 王行运 一种油气田中的剩余油气及地热综合回收系统
CN112412369A (zh) * 2020-11-18 2021-02-26 中国石油大学(华东) 钻井平台热量供应系统
CN114198016A (zh) * 2021-12-31 2022-03-18 北京派创石油技术服务有限公司 地热闭环工质循环开采方法

Similar Documents

Publication Publication Date Title
US7224080B2 (en) Subsea power supply
JP6605210B2 (ja) 海底熱水井掘削装置
JP4280790B1 (ja) メタンハイドレートの採取装置
CN111271035B (zh) 天然气水合物开采井结构
CN209637734U (zh) 一种海底天然气水合物管式加热分解装置
CN109763771B (zh) 一种基于连续油管电驱动的双梯度钻井系统
CN102322264B (zh) 天然气水合物开采完井收集运输平台系统
CN109944548B (zh) 海底钻机钻井系统及方法
CN107130944A (zh) 一种利用流体循环方式动用地热能开采天然气水合物藏的方法
CN105422055A (zh) 一种协同开发天然气、水溶气和天然气水合物的系统及方法
CN114278257A (zh) 海上油田开采与超临界二氧化碳封存的同步装置与方法
CN109252833B (zh) 一种天然气水合物开采方法
WO2023212846A1 (zh) 一种基于地热供能的深水油气作业系统
CN101725334A (zh) 一种利用风能供电的天然气水合物微波原位开发系统
GB2549558A (en) System and method for converting heat in a wellstream fluid to work
CN109779574B (zh) 一种基于风电补偿的天然气水合物开采系统及方法
WO2023050998A1 (zh) 一种天然气水合物开采与海上风电联动开发装置
US20220025739A1 (en) Long-Distance Transmission of Power Underwater
US20220065064A1 (en) Autonomous subsea tieback enabling platform
CN216477277U (zh) 浅水海域海上稠油热采浮托井口平台
CN212203425U (zh) 一种海洋天然气管道增温装置
WO2002063135A1 (en) A method and a sea-based installation for hydrocarbon processing
CN106761384B (zh) 钻井系统
CN215444034U (zh) 用于天然气水合物开采的井网结构
CN204220571U (zh) 一种水合物治理橇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940542

Country of ref document: EP

Kind code of ref document: A1