WO2023211207A1 - Focused ultrasound treatment apparatus operating in conjunction with nanodrug carrier, ultrasound control method, and nanodrug carrier thereof - Google Patents

Focused ultrasound treatment apparatus operating in conjunction with nanodrug carrier, ultrasound control method, and nanodrug carrier thereof Download PDF

Info

Publication number
WO2023211207A1
WO2023211207A1 PCT/KR2023/005790 KR2023005790W WO2023211207A1 WO 2023211207 A1 WO2023211207 A1 WO 2023211207A1 KR 2023005790 W KR2023005790 W KR 2023005790W WO 2023211207 A1 WO2023211207 A1 WO 2023211207A1
Authority
WO
WIPO (PCT)
Prior art keywords
focused ultrasound
nano
nanodrug
carrier
ultrasound
Prior art date
Application number
PCT/KR2023/005790
Other languages
French (fr)
Korean (ko)
Inventor
유영복
김대승
손건호
정은아
문형원
구자운
Original Assignee
(주)아이엠지티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230054041A external-priority patent/KR20230153940A/en
Application filed by (주)아이엠지티 filed Critical (주)아이엠지티
Publication of WO2023211207A1 publication Critical patent/WO2023211207A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a nano-drug carrier that delivers a nano-drug to a lesion site, and a focused ultrasound treatment device that operates in conjunction with a nano-drug carrier that allows the nano-drug carrier to cavitate and release the nano-drug by irradiation of ultrasound; and its ultrasonic control method.
  • the present invention was derived from research conducted as part of the pan-ministerial medical device research and development project of the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, and the Ministry of Food and Drug Safety [Project identification number: 9991006682, KMDF_PR_20200901_0009, research project Name: Commercialization and development of market-leading pancreatic cancer fusion treatment ultrasound image-guided high-intensity focused ultrasound treatment device, Research management agency: Pan-Ministerial Life Cycle Medical Device Research and Development Project Group, Contribution rate: 100%, Host research institute: IM Co., Ltd. GT, research period: 2022.3.1 ⁇ 2022.12.31].
  • Surgical incisions, radiation therapy, and chemotherapy are used to treat cancer.
  • chemotherapy is one of the most used methods than other treatments.
  • Conventional chemotherapy causes toxic effects on lesion sites such as tumor cells and inhibits their growth.
  • chemotherapy distributes drugs randomly or widely, causing side effects in healthy tissues and biological systems.
  • Drug carriers have great potential as targeted therapies that can increase treatment efficacy by increasing the accumulation of nano-sized drugs at the lesion site.
  • liposomes are leading the market due to their unique properties and wide range of biomedical applications.
  • liposomes can stabilize drugs, increase tissue absorption, and improve bioavailability.
  • the shape of liposomes is a spherical endoplasmic reticulum with a lipid bilayer surrounding a separate aqueous core. Because liposomes have an aqueous core and a hydrophobic lipid bilayer, they can encapsulate a wide range of drugs.
  • Liposomes are basically composed of a combination of various biocompatible phospholipids. And the physiological and biological properties of liposomes are fully dependent on the type of lipid that makes up the liposome. Shell properties such as surface charge, rigidity and stiffness in relation to lipid composition critically influence pharmacokinetics, biodistribution and excretion. And the properties of the shell are controlled by changing the species and ratio of lipids.
  • existing liposomes are still limited in effective cancer treatment despite the progression of tumor delivery by the EPR effect, long circulation, and protection of drugs. The low therapeutic efficiency is due to the liposome's inability to release the drug in lesional tissues such as tumors.
  • Site-specific drug release requires release in response to internal or external stimuli such as pH, temperature, enzymes, radiation, and ultrasound.
  • internal or external stimuli such as pH, temperature, enzymes, radiation, and ultrasound.
  • the combination of nanomedicine and ultrasound is expected to overcome the limitations of nanoparticle drug delivery systems by controlling the release of drugs to desired areas in the human body.
  • NIR near infrared
  • ultrasound can be means of physical stimulation to release drugs.
  • NIR rays can easily release drugs into the affected area, but their application is limited because they can only penetrate a short distance from the irradiated area.
  • radiation can compensate for the shortcomings of near-infrared irradiation, continuous exposure can cause genotoxicity.
  • ultrasound can achieve physical drug release that overcomes the disadvantages of near-infrared irradiation, and is the optimal method for drug release because it is safe and can reach the amount of lesions located in the body non-invasively.
  • Ultrasounds can induce the cavitation effect, a phenomenon in which bubbles expand to several times their resonance size and then explode during a single compression, creating high gas pressures and temperatures. These energies can cause particle destruction and are suitable for drug release from nano-sized particles.
  • Ultrasound-induced release of liposomes can be induced using plane wave ultrasound and high-intensity focused ultrasound (HIFU). However, in order to release ultrasound-responsive drug-loaded liposomes within the desired tissue, the ultrasound release characteristics must be appropriately adjusted.
  • a focused ultrasound treatment device that operates in conjunction with a nano drug delivery vehicle, an ultrasonic control method thereof, and a nano drug delivery vehicle are proposed.
  • a focused ultrasound control method operating in conjunction with a nano drug delivery system includes the steps of acquiring an image of a lesion site; And aligning a focused ultrasound transducer with the acquired image to irradiate focused ultrasound to generate cavitation of the nano-drug carrier at the lesion site.
  • the pulse repetition frequency of the focused ultrasound may be 10 to 300 Hz
  • the frequency of the focused ultrasound may be 20 kHz to 5 MHz
  • the intensity may be 50 W/cm 2 or more.
  • the duty cycle of focused ultrasound may be 10% or less.
  • cavitation occurs due to irradiation of focused ultrasound as described above, and the nano drug therein is released.
  • a focused ultrasound treatment device operating in conjunction with a nano drug delivery system includes an imaging transducer that acquires an image of a lesion area; And a focused ultrasound transducer aligned with the imaging transducer, wherein the focused ultrasound transducer irradiates focused ultrasound to generate cavitation of the nano-drug carrier at the lesion site visualized by the imaging transducer to deliver the nano-drug. Let it release.
  • the pulse repetition frequency of the focused ultrasound may be 10 to 300 Hz
  • the frequency of the focused ultrasound may be 20 kHz to 5 MHz
  • the intensity may be 50 W/cm 2 or more.
  • the nanodrug release characteristics of the nanodrug delivery system can be effectively controlled.
  • DOX In vitro doxorubicin
  • FUS Focused Ultra-Sound
  • PRF pulse repetition frequency
  • exposure time the release of DOX was proportional to the total ultrasound energy in relation to intensity and exposure time.
  • the release of DOX was critically related to intensity and PRF.
  • intensity is more important than duty cycle, and PRF for cavitation is essential to generate strong acoustic wave pressure.
  • DOX is released from liposomes accumulated in lesion tissues such as tumor tissue, killing cancer cells and having an inhibitory effect on lesions such as tumors.
  • the focused ultrasound treatment device can facilitate drug delivery to a specific part of the body using ultrasound images. Because various drugs can be encapsulated in liposomes, they can be applied to a variety of indications. Additionally, the use of ultrasound-responsive liposomes for targeted drug delivery can be utilized in various fields.
  • FIGS. 1A and 1B are diagrams showing the in vitro nanodrug release characteristics of a nanodrug delivery vehicle and commercial liposome DOX (DOXIL) according to an embodiment of the present invention
  • FIGS. 2A to 2D are diagrams showing the in vitro doxorubicin (DOX) release pattern of the nanodrug delivery system according to various focused ultrasound parameters according to an embodiment of the present invention
  • Figure 3 is a diagram showing a focused ultrasound treatment device according to an embodiment of the present invention, and the treatment procedure and results thereof;
  • Figure 4 is a diagram comparing the in vivo doxorubicin release results of a nano-drug carrier according to an embodiment of the present invention and a commercial liposome (DOXIL) under focused ultrasound irradiation using a focused ultrasound treatment device according to an embodiment of the present invention.
  • DOXIL commercial liposome
  • the lipid composition of the nano drug delivery vehicle is DSPC/DSPE-PEG/cholesterol/DOPE/MSPC.
  • Nanodrug carriers are prepared by ethanol injection followed by extrusion. Briefly, 1.50 g DSPC, 2.66 g DSPE-PEG, 2.20 g cholesterol, 9.16 g DOPE, and 0.50 g MSPC were dissolved in 62.5 mL of ethanol. The organic phase was gently heated to 60°C to dissolve the lipid components. Next, lipid-containing ethanol was injected into 437.5 mL of 250 mM ammonium sulfate solution at 250 rpm.
  • Multilamellar vesicles were assembled and dispersed during ethanol injection with polycarbonate filter pore sizes ranging from 200 to 80 nm using a LIPEX® 800 mL Thermobarrel extruder (Evonik, Canada) and scaled down by successive extrusion cycles. The temperature of the vesicles was maintained at 50 °C during extrusion. The dispersion of extruded liposomes was exchanged in pH 6.5, 10% sucrose, and 10mM histidine buffer using a 12-14-kDa dialysis membrane. Ammonium sulfate was exchanged into buffer to create an ammonium gradient across the liposomal membrane.
  • DOX was encapsulated into the aqueous phase within liposomes using a remote loading method. DOX was added to the liposome dispersion at a ratio of 1:8 to liposomes and stirred for 2 h at 37°C. DOX-loaded liposomes were diluted with buffer to a DOX concentration of 2 mg/mL and stored at 2-8 °C.
  • FIGS. 1A and 1B are diagrams showing the in vitro nanodrug release characteristics of a nanodrug delivery vehicle and commercial liposome DOX (DOXIL) according to an embodiment of the present invention.
  • DOXIL commercial liposome DOX
  • plane wave ultrasound was irradiated with a pin-type ultrasound generator at a frequency of 24 kHz and a continuous ultrasound intensity of 92 kW/cm 2 for 1 minute.
  • a r and A o represent the sonicated liposome suspension and original absorbance intensity, respectively.
  • a focused ultrasound (FUS) device was used with a water bath equipped with a temperature controller and deaerator to analyze the effect of focused ultrasound on DOX release.
  • the center frequency of the FUS transducer was 1 MHz, and the beam resolution of the focal area was 6 dB, showing a circle with a diameter of 1 mm and a circle with a length of 1 cm.
  • nanodrug carriers were exposed to ultrasound with various FUS parameters of intensity, duty cycle, pulse repetition frequency (PRF), and exposure time/spot. Before focused ultrasound irradiation, the nanodrug carrier was embedded in a dialysis membrane and maintained at 37°C with water degassing for 1 h.
  • DOX release Quantification of DOX release was analyzed by measuring optical absorbance at 475 nm.
  • the DOX released after intensive ultrasonic irradiation was purified using a desalting column, and the amount was calculated using the method described above.
  • Commercial liposome DOX (DOXIL) was used as an ultrasound-insensitive liposome.
  • the two liposome solutions were exposed to low frequency continuous waves.
  • the nanodrug delivery system according to an embodiment of the present invention shows a DOX release rate of 58.8%.
  • DOXIL only accounted for 10.2%. Therefore, it can be seen that the nano drug delivery system according to an embodiment of the present invention releases more than 5 times more DOX than DOXIL.
  • the properties of liposomes are related to the composition and ratio of phospholipid types.
  • Phospholipid structure determines the thermodynamic and physicochemical properties of liposomes.
  • the double membrane rearrangement into an inverted cone shape was achieved under ultrasound stimulation.
  • DOPE consists of a hydrophilic head with a small hydrodynamic volume and a large hydrophobic tail, which defines a high packing parameter (PP > 1) and transforms the lamellae into an inverted hexagonal phase under sonic pressure, leading to destabilization.
  • DOXIL is mainly composed of HSPC and has a cylindrical structure with equal volumes of hydrophobic chains and hydrophilic heads. This structure aligns the linear bilayer of the liposome shell and increases the stability of the liposome. Therefore, the nanodrug carrier according to one embodiment of the present invention significantly increases DOX release under ultrasonic pressure compared to DOXIL.
  • the DOX release rate was similar to the release characteristics of continuous ultrasound.
  • the DOX release ratios of the nano drug delivery system and DOXIL according to an embodiment of the present invention are 48.1% and 23.3%, respectively.
  • Ultrasound-induced destabilization of liposomes was confirmed using cryo-TEM images. The morphology of liposomes changed after ultrasound irradiation.
  • Figure 1b it can be seen that the frequency and thickness of DOX rods in liposomes decreased after ultrasound exposure, and the wide size distribution range also shows ultrasound-induced destabilization of liposomes.
  • FIGS. 2A to 2D are diagrams illustrating the in vitro doxorubicin (DOX) release pattern of a nanodrug delivery system according to various focused ultrasound parameters according to an embodiment of the present invention.
  • DOX in vitro doxorubicin
  • DOX release into the tumor-like lesion site was evaluated under focused ultrasound irradiation using a subcutaneous MDA-MB-231 human breast cancer xenograft model (female, balb/c nude mice, 12-14 weeks old). Nanodrug delivery vehicle and DOXIL (20 mg/kg) were injected intravenously. Focused ultrasound at an intensity of 2.0 kW/cm 2 , 2.0% duty cycle, 250 Hz PRF, and 10 s/spot was irradiated after administration of each agent.
  • PRF has a significant impact on the release operation of the nano drug delivery system according to an embodiment of the present invention.
  • the drug release rate tended to increase up to 250 Hz of PRF, but decreased above 250 Hz of PRF.
  • PRF is an important factor related to cavitation generation. Since the frequency is related to the wave pressure of the medium, an increase in PRF causes a strong shock wave and enhances the release of DOX from the nanodrug delivery system according to one embodiment of the present invention.
  • exposure time also affects the release of DOX from the nano drug delivery system according to an embodiment of the present invention.
  • the emission rate increases with irradiation time.
  • ultrasound was irradiated at various duty cycles and intensities to investigate important factors causing the release of DOX from the nano-drug delivery system according to an embodiment of the present invention.
  • the nano drug delivery system according to one embodiment of the present invention was equally exposed to the total energy of ultrasound with a spatial peak time average (ISPTA) of 56 W/cm 2 (FIG. 2d). Duty cycle and intensity are related to heat and pressure, respectively. Drug release occurred at intensities above 2.8 kW/cm 2 .
  • ISPTA spatial peak time average
  • Figure 3 is a diagram showing a focused ultrasound treatment device according to an embodiment of the present invention, and the treatment procedure and results thereof.
  • the ultrasound-induced release of nanodrug carrier and DOX according to one embodiment of the present invention was compared using live fluorescence imaging analysis.
  • the lesion area such as a tumor
  • the lesion area is visualized three-dimensionally using ultrasound images.
  • the region of interest in the lesion US image for FUS exposure was determined by the number of exposure points.
  • the FUS was precisely exposed to the target area by mechanically aligning it between the FUS and the US imaging transducer.
  • the DOX fluorescence emission from the nanodrug carrier and DOXIL according to one embodiment of the present invention was quenched in the core of the two liposomes, the fluorescence intensity of DOX was significantly enhanced by the emission. Therefore, the nano drug delivery system and DOXIL according to an embodiment of the present invention were injected intravenously into MDA-MB-231 xenograft mice, and the lesion site was immediately irradiated with FUS.
  • the focused ultrasound treatment device that operates in conjunction with the nano drug delivery system includes an imaging transducer 310 that acquires an image of the lesion area and a focused ultrasound transducer 320 aligned with the imaging transducer 310, , the focused ultrasound transducer 320 emits focused ultrasound to generate cavitation of the nano-drug carrier at the lesion site visualized by the imaging transducer 310 to release the nano-drug.
  • Figure 4 is a diagram comparing the in vivo doxorubicin release results of a nano-drug carrier according to an embodiment of the present invention and a commercial liposome (DOXIL) under focused ultrasound irradiation using a focused ultrasound treatment device according to an embodiment of the present invention.
  • DOXIL commercial liposome
  • Figure 4 shows DOX release after FUS exposure in an in vivo experiment.
  • the nanodrug carrier according to one embodiment of the present invention was slightly released from the lesion area, such as a tumor, without FUS exposure. Therefore, after 1 hour of FUS irradiation, DOX was strongly released from the nano drug delivery system according to an embodiment of the present invention, and the fluorescence intensity increased in a time-dependent manner due to the release of DOX. Meanwhile, DOXIL was hardly observed at the tumor (lesion) site in both the FUS-exposed and non-exposed groups. The fluorescence intensity of DOXIL continued to quench for 6 hours. These results showed that DOXIL was fairly stable regardless of FUS exposure.
  • the nano drug delivery vehicle according to an embodiment of the present invention effectively released DOX under FUS irradiation, and the combination of FUS and the nano drug delivery vehicle according to an embodiment of the present invention improved the anticancer effect of DOX.
  • the description is focused on experiments on tumors and the results thereof, but the same can be applied not only to tumors but also to various lesions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

Disclosed are a nanodrug carrier which delivers a nanodrug to a lesion site, a focused ultrasound treatment apparatus which operates in conjunction with the nanodrug carrier and enables the nanodrug carrier to release a nanodrug by being cavitated by ultrasonic irradiation, and an ultrasound control method. A focused ultrasound control method operating in conjunction with a nanodrug carrier according to one embodiment of the present invention comprises the steps of: obtaining an image of a lesion site; and aligning a focused ultrasound transducer on the obtained image and irradiating focused ultrasound to cavitate the nanodrug carrier at the lesion site. Through an ultrasonic control method according to one embodiment, nanodrug release characteristics of the nanodrug carrier can be effectively controlled.

Description

나노약물 전달체와 연동하여 동작하는 집중 초음파 치료장치, 초음파 제어방법 및 그 나노약물 전달체Focused ultrasound treatment device, ultrasonic control method, and nano-drug carrier that operate in conjunction with a nano-drug carrier
본 발명은 나노약물을 병변 부위에 전달하는 나노약물 전달체, 그리고 이 나노약물 전달체가 초음파의 조사에 의해 캐비테이션이 되어 나노약물을 방출할 수 있도록 하는 나노약물 전달체와 연동하여 동작하는 집중 초음파 치료장치, 및 그 초음파 제어방법에 관한 것이다.The present invention relates to a nano-drug carrier that delivers a nano-drug to a lesion site, and a focused ultrasound treatment device that operates in conjunction with a nano-drug carrier that allows the nano-drug carrier to cavitate and release the nano-drug by irradiation of ultrasound; and its ultrasonic control method.
본 발명은 과학기술정보통신부, 산업통상자원부, 보건복지부, 식품의약품안전처의 범부처전주기의료기기연구개발사업의 일환으로 수행한 연구로부터 도출된 것이다[과제고유번호: 9991006682, KMDF_PR_20200901_0009, 연구과제명: 시장선도형 췌장암 융합치료 초음파 영상유도 고강도집속초음파 치료기기 상용화 개발, 연구관리전문기관: (재)범부처전주기의료기기연구개발사업단, 기여율: 100%, 주관연구기관: (주)아이엠지티, 연구기간: 2022.3.1~2022.12.31].The present invention was derived from research conducted as part of the pan-ministerial medical device research and development project of the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, and the Ministry of Food and Drug Safety [Project identification number: 9991006682, KMDF_PR_20200901_0009, research project Name: Commercialization and development of market-leading pancreatic cancer fusion treatment ultrasound image-guided high-intensity focused ultrasound treatment device, Research management agency: Pan-Ministerial Life Cycle Medical Device Research and Development Project Group, Contribution rate: 100%, Host research institute: IM Co., Ltd. GT, research period: 2022.3.1~2022.12.31].
암 치료를 위해서는 외과적 절개, 방사선 요법 및 화학 요법을 사용한다. 이중에서 화학 요법은 다른 요법보다 가장 많이 사용되는 방법 중 하나이다. 기존의 화학 요법은 종양 세포와 같은 병변 부위에 독성 효과를 유발하고 성장을 억제한다. 그러나 화학 요법은 무작위로 또는 광범위하게 약물을 퍼뜨려 건강한 조직에 부작용을 일으키고 생물학적 시스템에도 부작용을 일으킨다. 이러한 단점을 극복하기 위해 병변 부위에서만 약물을 방출하는 약물 전달체(carrier)가 필요하다. 약물 전달체는 병변 부위에 나노 크기 약물의 축적을 증가시켜 치료 효능을 높일 수 있는 표적 치료법으로서 큰 잠재력을 가지고 있다.Surgical incisions, radiation therapy, and chemotherapy are used to treat cancer. Among these, chemotherapy is one of the most used methods than other treatments. Conventional chemotherapy causes toxic effects on lesion sites such as tumor cells and inhibits their growth. However, chemotherapy distributes drugs randomly or widely, causing side effects in healthy tissues and biological systems. To overcome these shortcomings, a drug carrier that releases the drug only at the lesion site is needed. Drug carriers have great potential as targeted therapies that can increase treatment efficacy by increasing the accumulation of nano-sized drugs at the lesion site.
항암제용 약물 전달체에는 여러 유형이 있다. 나노 크기의 약물 전달체 중에서 리포좀은 고유한 특성과 광범위한 생의학 응용 분야로 인해 시장을 주도하고 있다. 다양한 나노 크기의 약물 운반체 중에서 리포좀은 약물을 안정화하고 조직 흡수를 증가시키며 생체 이용률을 향상시킬 수 있다. 리포좀의 모양은 별개의 수성 코어를 둘러싸는 지질 이중층을 가진 구형 소포체이다. 리포좀은 수성 코어와 소수성 지질 이중층을 가지고 있기 때문에 다양한 범위의 약물을 캡슐화할 수 있다.There are several types of drug carriers for anticancer drugs. Among nano-sized drug carriers, liposomes are leading the market due to their unique properties and wide range of biomedical applications. Among various nano-sized drug carriers, liposomes can stabilize drugs, increase tissue absorption, and improve bioavailability. The shape of liposomes is a spherical endoplasmic reticulum with a lipid bilayer surrounding a separate aqueous core. Because liposomes have an aqueous core and a hydrophobic lipid bilayer, they can encapsulate a wide range of drugs.
리포좀은 기본적으로 다양한 생체 적합성 인지질의 조합으로 구성된다. 그리고 리포좀의 생리생물학적 특성은 리포좀을 구성하는 지질의 종류에 따라 충분히 좌우된다. 지질 조성과 관련하여 표면 전하, 강성 및 강성과 같은 껍질 특성은 약동학, 생체 분포 및 배설에 결정적으로 영향을 미친다. 그리고 껍질의 특성은 지질의 종과 비율을 변화시켜 제어한다. 그러나 기존의 리포좀은 EPR 효과에 의한 종양 전달의 진행, 긴 순환 및 약물의 보호에도 불구하고 여전히 효과적인 암 치료에 제한적이었다. 낮은 치료 효율은 리포좀이 종양과 같은 병변 조직에서 약물을 방출하지 못하기 때문이다. 부위 특이적 약물 방출을 위해서는 pH, 온도, 효소, 방사선, 초음파 등의 내부 또는 외부 자극에 반응하는 방출이 필요하다. 이 중 나노의학과 초음파의 결합은 인체 내 원하는 부위에 약물이 방출되도록 제어할 수 있어 나노입자 약물전달시스템의 한계를 극복할 것으로 기대된다.Liposomes are basically composed of a combination of various biocompatible phospholipids. And the physiological and biological properties of liposomes are fully dependent on the type of lipid that makes up the liposome. Shell properties such as surface charge, rigidity and stiffness in relation to lipid composition critically influence pharmacokinetics, biodistribution and excretion. And the properties of the shell are controlled by changing the species and ratio of lipids. However, existing liposomes are still limited in effective cancer treatment despite the progression of tumor delivery by the EPR effect, long circulation, and protection of drugs. The low therapeutic efficiency is due to the liposome's inability to release the drug in lesional tissues such as tumors. Site-specific drug release requires release in response to internal or external stimuli such as pH, temperature, enzymes, radiation, and ultrasound. Among these, the combination of nanomedicine and ultrasound is expected to overcome the limitations of nanoparticle drug delivery systems by controlling the release of drugs to desired areas in the human body.
물리적 및 화학적 자극을 사용하여 리포좀에서 약물을 방출할 수 있다. pH, 효소 또는 열 의존성 방출 메커니즘을 갖는 화학적 반응성 리포좀이 개시되어 있다. 그러나 종양(병변)과 유사한 환경을 가진 정상 조직에서 약물 방출로 인해 부작용이 발생할 수 있다. 근적외선(NIR), 방사선 및 초음파는 약물을 방출하기 위한 물리적 자극의 수단이 될 수 있다. 근적외선은 환부에 약물을 쉽게 방출할 수 있지만 조사 부위에서 짧은 거리만 침투할 수 있기 때문에 적용이 제한적이다. 방사선이 근적외선 조사의 단점을 보완할 수 있지만 지속적인 노출은 유전독성을 유발할 수 있다. 반면 초음파는 근적외선 조사의 단점을 극복한 물리적 약물 방출을 달성할 수 있으며, 안전하고 체내에 위치한 종(병변)양에 비침습적으로 도달할 수 있어 약물 방출을 위한 최적의 방법이다.Physical and chemical stimuli can be used to release drugs from liposomes. Chemically responsive liposomes with pH-, enzyme- or heat-dependent release mechanisms are disclosed. However, side effects may occur due to drug release in normal tissues with an environment similar to a tumor (lesion). Near infrared (NIR), radiation, and ultrasound can be means of physical stimulation to release drugs. Near-infrared rays can easily release drugs into the affected area, but their application is limited because they can only penetrate a short distance from the irradiated area. Although radiation can compensate for the shortcomings of near-infrared irradiation, continuous exposure can cause genotoxicity. On the other hand, ultrasound can achieve physical drug release that overcomes the disadvantages of near-infrared irradiation, and is the optimal method for drug release because it is safe and can reach the amount of lesions located in the body non-invasively.
초음파는 기포가 공명 크기의 몇 배로 팽창한 다음 단일 압축 중에 폭발하여 높은 가스 압력과 온도를 생성하는 현상인 캐비테이션 효과를 유발할 수 있다. 이러한 에너지는 입자 파괴를 유발할 수 있으며 나노 크기의 입자에서 약물을 방출하는 데 적합하다. 리포좀의 초음파 유도 방출은 평면파 초음파 및 고강도 집속 초음파(HIFU)를 사용하여 유도될 수 있다. 그러나, 초음파 반응성 약물 부하 리포좀이 원하는 조직내에서 방출하기 위해서는 초음파 방출 특성을 적절하게 맞추어야 한다.Ultrasounds can induce the cavitation effect, a phenomenon in which bubbles expand to several times their resonance size and then explode during a single compression, creating high gas pressures and temperatures. These energies can cause particle destruction and are suitable for drug release from nano-sized particles. Ultrasound-induced release of liposomes can be induced using plane wave ultrasound and high-intensity focused ultrasound (HIFU). However, in order to release ultrasound-responsive drug-loaded liposomes within the desired tissue, the ultrasound release characteristics must be appropriately adjusted.
일 실시 예에 따라, 나노약물 전달체와 연동하여 동작하는 집중 초음파 치료 장치, 그 초음파 제어방법 및 나노약물 전달체를 제안한다.According to one embodiment, a focused ultrasound treatment device that operates in conjunction with a nano drug delivery vehicle, an ultrasonic control method thereof, and a nano drug delivery vehicle are proposed.
본 발명의 일 실시 예에 따른 나노약물 전달체와 연동하여 동작하는 집중 초음파 제어방법은, 병변 부위의 이미지를 획득하는 단계; 및 상기 획득된 이미지에 집중 초음파 트랜스듀서를 정렬하여 상기 병변 부위에서 나노약물 전달체의 캐비테이션을 발생시키도록 집중 초음파를 조사하는 단계를 포함한다.A focused ultrasound control method operating in conjunction with a nano drug delivery system according to an embodiment of the present invention includes the steps of acquiring an image of a lesion site; And aligning a focused ultrasound transducer with the acquired image to irradiate focused ultrasound to generate cavitation of the nano-drug carrier at the lesion site.
그리고, 집중 초음파의 펄스 반복 주파수(pulse repetition frequency)는 10 내지 300Hz일 수 있고, 집중 초음파의 주파수는 20kHz 내지 5MHz이며, 강도(intensity)는 50W/cm2 이상일 수 있다.Additionally, the pulse repetition frequency of the focused ultrasound may be 10 to 300 Hz, the frequency of the focused ultrasound may be 20 kHz to 5 MHz, and the intensity may be 50 W/cm 2 or more.
또한, 집중 초음파의 듀티 사이클은 10% 이하일 수 있다.Additionally, the duty cycle of focused ultrasound may be 10% or less.
본 발명의 다른 실시 예에 따른 나노약물전달체는, 상기와 같은 집중 초음파의 조사에 의해 캐비테이션이 발생하여 그 내부의 나노약물이 방출된다.In the nano drug delivery system according to another embodiment of the present invention, cavitation occurs due to irradiation of focused ultrasound as described above, and the nano drug therein is released.
본 발명의 또 다른 실시 예에 따른 나노약물 전달체와 연동하여 동작하는 집중 초음파 치료장치는, 병변 부위의 이미지를 획득하는 이미징 트랜스듀서; 및 상기 이미징 트랜스듀서에 정렬된 집중 초음파 트랜스듀서를 포함하고, 상기 집중 초음파 트랜스듀서는 상기 이미징 트랜스듀서에 의해 시각화된 병변 부위에 나노약물 전달체의 캐비테이션을 발생시키도록 집중 초음파를 조사하여 나노약물을 방출하도록 한다.A focused ultrasound treatment device operating in conjunction with a nano drug delivery system according to another embodiment of the present invention includes an imaging transducer that acquires an image of a lesion area; And a focused ultrasound transducer aligned with the imaging transducer, wherein the focused ultrasound transducer irradiates focused ultrasound to generate cavitation of the nano-drug carrier at the lesion site visualized by the imaging transducer to deliver the nano-drug. Let it release.
그리고 집중 초음파의 펄스 반복 주파수(pulse repetition frequency)는 10 내지 300Hz일 수 있고, 집중 초음파의 주파수는 20kHz 내지 5MHz이며, 강도(intensity)는 50W/cm2 이상일 수 있다.And the pulse repetition frequency of the focused ultrasound may be 10 to 300 Hz, the frequency of the focused ultrasound may be 20 kHz to 5 MHz, and the intensity may be 50 W/cm 2 or more.
일 실시 예에 따른 초음파 제어방법을 통해, 나노약물 전달체의 나노약물 방출 특성을 효과적으로 제어할 수 있다. 초음파 반응의 특성을 결정하기 위해 다양한 FUS(Focused Ultra-Sound) 매개변수(강도, 듀티 사이클, 펄스 반복 주파수(PRF, pulse repetition frequency) 및 노출 시간)를 사용하여 시험관 내 DOX(Doxorubicin, 독소루비신) 방출을 분석한 결과, DOX의 방출은 강도 및 노출 시간과 관련하여 총 초음파 에너지에 비례하였음을 알 수 있었다. 특히 DOX의 방출은 강도 및 PRF와 결정적으로 관련이 있었다. 효과적인 DOX 방출을 위해서는 듀티 사이클보다 강도가 더 중요하며, 강한 음향파압을 발생시키기 위해서는 캐비테이션에 대한 PRF가 필수적이다. HIFU(High Intensity Focused Ultrasound, 고강도 집중 초음파) 조사 하에서 DOX의 방출 비율은 DOXIL과 같은 일반 상용 약물의 경우보다 2배 더 높았음을 알 수 있었다. 따라서, 본 발명의 일 실시 예에 따른 나노약물 전달체와 집중 초음파의 조합을 통해 실험쥐를 통한 동물실험에서 큰 치료 효능을 보였음을 알 수 있다. 종양 조직과 같은 병변 조직에 축적된 리포좀에서 DOX가 방출되어 암세포를 죽이고 종양과 같은 병변의 억제 효과가 있다.Through the ultrasonic control method according to one embodiment, the nanodrug release characteristics of the nanodrug delivery system can be effectively controlled. In vitro doxorubicin (DOX) release using various Focused Ultra-Sound (FUS) parameters (intensity, duty cycle, pulse repetition frequency (PRF), and exposure time) to characterize the ultrasound response. As a result of the analysis, it was found that the release of DOX was proportional to the total ultrasound energy in relation to intensity and exposure time. In particular, the release of DOX was critically related to intensity and PRF. For effective DOX emission, intensity is more important than duty cycle, and PRF for cavitation is essential to generate strong acoustic wave pressure. It was found that under HIFU (High Intensity Focused Ultrasound) irradiation, the release rate of DOX was two times higher than that of common commercial drugs such as DOXIL. Therefore, it can be seen that the combination of a nano-drug delivery system and focused ultrasound according to an embodiment of the present invention showed great therapeutic efficacy in animal experiments using mice. DOX is released from liposomes accumulated in lesion tissues such as tumor tissue, killing cancer cells and having an inhibitory effect on lesions such as tumors.
그리고 일 실시 예에 따른 집중 초음파 치료 장치는 초음파 영상으로 신체의 특정 부위로 약물 전달을 용이하게 할 수 있다. 다양한 약물을 리포좀으로 캡슐화할 수 있기 때문에 다양한 적응증에 적용할 수 있다. 또한, 표적 약물 전달을 위한 초음파 반응성 리포좀의 사용을 다양한 분야에 활용할 수 있다.And the focused ultrasound treatment device according to one embodiment can facilitate drug delivery to a specific part of the body using ultrasound images. Because various drugs can be encapsulated in liposomes, they can be applied to a variety of indications. Additionally, the use of ultrasound-responsive liposomes for targeted drug delivery can be utilized in various fields.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 나노약물 전달체와 상업용 리포좀 DOX(DOXIL)의 시험관 내 나노약물 방출 특성을 도시한 도면,1A and 1B are diagrams showing the in vitro nanodrug release characteristics of a nanodrug delivery vehicle and commercial liposome DOX (DOXIL) according to an embodiment of the present invention;
도 2a 내지 도 2d는 본 발명의 일 실시예에 따른 다양한 집중 초음파 매개변수에 따른 나노약물 전달체의 시험관 내 독소루비신(DOX) 방출 패턴을 도시한 도면,2A to 2D are diagrams showing the in vitro doxorubicin (DOX) release pattern of the nanodrug delivery system according to various focused ultrasound parameters according to an embodiment of the present invention;
도 3은 본 발명의 일 실시예에 따른 집중 초음파 치료장치와, 이에 의한 치료절차와 결과를 도시한 도면,Figure 3 is a diagram showing a focused ultrasound treatment device according to an embodiment of the present invention, and the treatment procedure and results thereof;
도 4는 본 발명의 일 실시예에 따른 집중 초음파 치료장치를 사용한 집중 초음파 조사 하에서, 본 발명의 일 실시예에 따른 나노약물 전달체 및 상업용 리포좀(DOXIL)의 생체 내 독소루비신 방출 결과를 비교 도시한 도면이다.Figure 4 is a diagram comparing the in vivo doxorubicin release results of a nano-drug carrier according to an embodiment of the present invention and a commercial liposome (DOXIL) under focused ultrasound irradiation using a focused ultrasound treatment device according to an embodiment of the present invention. am.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.The advantages and features of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. The present embodiments are merely provided to ensure that the disclosure of the present invention is complete and to provide common knowledge in the technical field to which the present invention pertains. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이며, 후술되는 용어들은 본 발명의 실시 예에서의 기능을 반영하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the embodiments of the present invention, if it is judged that a detailed description of a known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted, and the terms described below will be used in the embodiments of the present invention. These are terms defined to reflect the function of and may vary depending on the user's or operator's intention or customs. Therefore, the definition should be made based on the contents throughout this specification.
이하, 첨부 도면을 참조하여 본 발명의 실시 예를 상세하게 설명한다. 그러나 다음에 예시하는 본 발명의 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시 예에 한정되는 것은 아니다. 본 발명의 실시 예는 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공된다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiments of the present invention illustrated below may be modified into various other forms, and the scope of the present invention is not limited to the embodiments detailed below. Examples of the present invention are provided to more completely explain the present invention to those skilled in the art.
우선, 본 발명의 일 실시 예에 따른 나노약물 전달체의 지질 조성은 DSPC/DSPE-PEG/콜레스테롤/DOPE/MSPC 이다. 나노약물 전달체는 에탄올 주입 후 압출에 의해 제조된다. 간단히, DSPC 1.50g, DSPE-PEG 2.66g, 콜레스테롤 2.20g, DOPE 9.16g 및 MSPC 0.50g을 에탄올 62.5mL에 용해시켰다. 유기상을 60°C로 부드럽게 가열하여 지질 성분을 용해시켰다. 그 다음, 지질 함유 에탄올을 437.5 mL의 250 mM 황산암모늄 용액에 250 rpm으로 주입하였다. Multilamellar vesicles (MLVs)는 LIPEX® 800mL Thermobarrel extruder (Evonik, Canada)를 사용하여 200 ~ 80 nm 범위의 폴리 카보네이트 필터 기공 크기로 에탄올 주입 중에 조립 및 분산되었으며 연속 압출 사이클에 의해 축소되었다. 소포의 온도는 압출 동안 50 °C로 유지되었다. 압출된 리포좀의 분산액을 12-14-kDa 투석막을 사용하여 pH 6.5, 10% 수크로스 및 10mM 히스티딘 완충액으로 교환하였다. 황산암모늄을 완충액으로 교환하여 리포좀 막을 가로지르는 암모늄 구배를 생성하였다. DOX는 원격 로딩 방법을 사용하여 리포좀 내 수상으로 캡슐화되었다. DOX를 리포좀에 대해 1:8의 비율로 리포좀 분산액에 첨가하고 37°C에서 2시간 동안 교반했다. DOX-로딩된 리포좀은 DOX 농도가 2 mg/mL이 되도록 완충액으로 희석하고 2-8 °C에서 보관하였다.First, the lipid composition of the nano drug delivery vehicle according to an embodiment of the present invention is DSPC/DSPE-PEG/cholesterol/DOPE/MSPC. Nanodrug carriers are prepared by ethanol injection followed by extrusion. Briefly, 1.50 g DSPC, 2.66 g DSPE-PEG, 2.20 g cholesterol, 9.16 g DOPE, and 0.50 g MSPC were dissolved in 62.5 mL of ethanol. The organic phase was gently heated to 60°C to dissolve the lipid components. Next, lipid-containing ethanol was injected into 437.5 mL of 250 mM ammonium sulfate solution at 250 rpm. Multilamellar vesicles (MLVs) were assembled and dispersed during ethanol injection with polycarbonate filter pore sizes ranging from 200 to 80 nm using a LIPEX® 800 mL Thermobarrel extruder (Evonik, Canada) and scaled down by successive extrusion cycles. The temperature of the vesicles was maintained at 50 °C during extrusion. The dispersion of extruded liposomes was exchanged in pH 6.5, 10% sucrose, and 10mM histidine buffer using a 12-14-kDa dialysis membrane. Ammonium sulfate was exchanged into buffer to create an ammonium gradient across the liposomal membrane. DOX was encapsulated into the aqueous phase within liposomes using a remote loading method. DOX was added to the liposome dispersion at a ratio of 1:8 to liposomes and stirred for 2 h at 37°C. DOX-loaded liposomes were diluted with buffer to a DOX concentration of 2 mg/mL and stored at 2-8 °C.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 나노약물 전달체와 상업용 리포좀 DOX(DOXIL)의 시험관 내 나노약물 방출 특성을 도시한 도면이다.1A and 1B are diagrams showing the in vitro nanodrug release characteristics of a nanodrug delivery vehicle and commercial liposome DOX (DOXIL) according to an embodiment of the present invention.
나노약물 전달체의 DOX 방출 테스트를 수행하기 위해 평면파 초음파를 핀형 초음파 발생기로 24kHz의 주파수와 92kW/cm2의 연속 초음파 강도로 1분 동안 조사하였다. To perform the DOX release test of the nano-drug carrier, plane wave ultrasound was irradiated with a pin-type ultrasound generator at a frequency of 24 kHz and a continuous ultrasound intensity of 92 kW/cm 2 for 1 minute.
- Frequency: 24 kHz,
- intensity: 92W/cm2,
- Duty cycle: continuous wave(duty cycle 100%)
- Frequency: 24 kHz,
- intensity: 92W/cm 2 ,
- Duty cycle: continuous wave (duty cycle 100%)
다시 말하면, pin-sonicator로 초음파 조사된 리포좀 현탁액 2mL를 탈염 컬럼에 로딩한 다음 증류수(DW)(0.5mL)를 첨가했다. 추가 4 mL의 DW를 탈염 컬럼에 첨가하고 큐벳에 수집하여 475 nm에서 리포좀 DOX의 흡광도를 측정했다. 조사되지 않은 리포좀에 비해 감소된 흡광도는 방출된 DOX의 양을 나타낸다. 방출된 약물의 백분율은 다음 방정식을 사용하여 계산되었다.% 방출 = (1 - Ar/Ao) x 100In other words, 2 mL of the liposome suspension that was ultrasonically irradiated with a pin-sonicator was loaded onto the desalting column, and then distilled water (DW) (0.5 mL) was added. An additional 4 mL of DW was added to the desalting column and collected in a cuvette to measure the absorbance of liposomal DOX at 475 nm. The reduced absorbance compared to non-irradiated liposomes indicates the amount of DOX released. The percentage of drug released was calculated using the following equation: % release = (1 - A r /A o ) x 100
여기서 Ar 및 Ao는 각각 초음파 처리된 리포좀 현탁액과 원래의 흡광도 강도를 나타낸다.where A r and A o represent the sonicated liposome suspension and original absorbance intensity, respectively.
그리고, 집중 초음파가 DOX 방출에 미치는 영향을 분석하기 위해 집속 초음파(FUS) 장치를 온도 조절기 및 탈기기가 장착된 수조와 함께 사용했다. FUS 트랜스듀서의 중심 주파수는 1MHz이고 초점 영역의 빔 해상도는 6dB에서 직경 1mm의 원과 길이 1cm의 원형을 나타냈다. HIFU 트리거 DOX 방출을 조사하기 위해 나노약물 전달체를 강도, 듀티 사이클, PRF(펄스 반복 주파수) 및 노출 시간/스폿의 다양한 FUS 매개변수로 초음파에 노출했다. 집중 초음파 조사 전에 나노약물 전달체는 투석막에 포함되어 있었고 1시간 동안 물을 탈기하여 37°C에서 유지되었다. DOX 방출의 정량화는 475 nm에서 광학 흡광도를 측정하여 분석했다. 집중 초음파 조사 후 방출된 DOX를 탈염 컬럼을 사용하여 정제하고 그 양을 전술한 방법을 통해 계산하였다. 상업용 리포좀 DOX(DOXIL)는 초음파에 민감하지 않은 리포좀으로 사용되었다.Then, a focused ultrasound (FUS) device was used with a water bath equipped with a temperature controller and deaerator to analyze the effect of focused ultrasound on DOX release. The center frequency of the FUS transducer was 1 MHz, and the beam resolution of the focal area was 6 dB, showing a circle with a diameter of 1 mm and a circle with a length of 1 cm. To investigate HIFU-triggered DOX release, nanodrug carriers were exposed to ultrasound with various FUS parameters of intensity, duty cycle, pulse repetition frequency (PRF), and exposure time/spot. Before focused ultrasound irradiation, the nanodrug carrier was embedded in a dialysis membrane and maintained at 37°C with water degassing for 1 h. Quantification of DOX release was analyzed by measuring optical absorbance at 475 nm. The DOX released after intensive ultrasonic irradiation was purified using a desalting column, and the amount was calculated using the method described above. Commercial liposome DOX (DOXIL) was used as an ultrasound-insensitive liposome.
본 발명의 일 실시 예에 따른 나노약물 전달체와 DOXIL의 음감도를 비교하기 위해 두 리포좀 용액을 낮은 주파수의 연속파에 노출시켰다. 24kHz에서 92W/cm2 강도의 초음파 조사에서 도 1a을 참조하면, 본 발명의 일 실시 예에 따른 나노약물 전달체는 58.8%의 DOX 방출 비율을 보임을 알 수 있다. 반면 DOXIL은 10.2%에 그쳤다. 따라서 본 발명의 일 실시 예에 따른 나노약물 전달체는 DOXIL보다 5배 이상 많은 DOX를 방출함을 알 수 있다. 리포좀의 특성은 인지질 종류의 조성과 비율과 관련이 있다. 인지질 구조는 리포좀의 열역학 및 물리화학적 특성을 결정한다. 본 발명의 일 실시 예에 따른 나노약물 전달체의 경우 초음파 자극 하에서 역원뿔 모양의 이중막 재배열이 이루어졌다. DOPE는 작은 유체역학적 부피의 친수성 헤드와 큰 소수성 테일로 구성되어 높은 패킹 매개변수(PP>1)를 정의하고 음파 압력 하에서 라멜라를 역육방상으로 변환하여 불안정화를 유도한다. 반면에 DOXIL은 주로 HSPC로 구성되어 동일한 부피의 소수성 사슬과 친수성 머리를 가진 원통형 구조를 가진다. 이 구조는 리포좀 껍질의 선형 이중층을 정렬하고 리포좀의 안정성을 증가시킨다. 따라서 본 발명의 일 실시 예에 따른 나노약물 전달체는 DOXIL에 비해 초음파 압력 하에서 DOX 방출을 크게 증가시킨다. To compare the sound sensitivity of the nano-drug carrier according to an embodiment of the present invention and DOXIL, the two liposome solutions were exposed to low frequency continuous waves. Referring to FIG. 1A under ultrasonic irradiation with an intensity of 92W/cm 2 at 24kHz, it can be seen that the nanodrug delivery system according to an embodiment of the present invention shows a DOX release rate of 58.8%. On the other hand, DOXIL only accounted for 10.2%. Therefore, it can be seen that the nano drug delivery system according to an embodiment of the present invention releases more than 5 times more DOX than DOXIL. The properties of liposomes are related to the composition and ratio of phospholipid types. Phospholipid structure determines the thermodynamic and physicochemical properties of liposomes. In the case of the nano drug delivery vehicle according to an embodiment of the present invention, the double membrane rearrangement into an inverted cone shape was achieved under ultrasound stimulation. DOPE consists of a hydrophilic head with a small hydrodynamic volume and a large hydrophobic tail, which defines a high packing parameter (PP > 1) and transforms the lamellae into an inverted hexagonal phase under sonic pressure, leading to destabilization. On the other hand, DOXIL is mainly composed of HSPC and has a cylindrical structure with equal volumes of hydrophobic chains and hydrophilic heads. This structure aligns the linear bilayer of the liposome shell and increases the stability of the liposome. Therefore, the nanodrug carrier according to one embodiment of the present invention significantly increases DOX release under ultrasonic pressure compared to DOXIL.
맥파에 의해 조사된 고강도 집속 초음파(HIFU) 실험에서 DOX 방출 비율은 연속 초음파의 방출 특성과 유사하였다. 도 1a을 참조하면, 본 발명의 일 실시 예에 따른 나노약물 전달체와 DOXIL의 DOX 방출 비율은 각각 48.1%와 23.3% 이다. 리포좀의 초음파 유도 불안정화는 cryo-TEM 이미지를 사용하여 확인되었다. 리포좀의 형태는 초음파 조사 후 변경되었다. 도 1b를 참조하면, 초음파 노출 후 리포좀에서 DOX 막대의 빈도와 두께가 감소하였고, 넓은 크기 분포 범위는 또한 리포좀의 초음파 유도 불안정화를 보여줌을 알 수 있다.In high-intensity focused ultrasound (HIFU) experiments irradiated by pulse waves, the DOX release rate was similar to the release characteristics of continuous ultrasound. Referring to Figure 1a, the DOX release ratios of the nano drug delivery system and DOXIL according to an embodiment of the present invention are 48.1% and 23.3%, respectively. Ultrasound-induced destabilization of liposomes was confirmed using cryo-TEM images. The morphology of liposomes changed after ultrasound irradiation. Referring to Figure 1b, it can be seen that the frequency and thickness of DOX rods in liposomes decreased after ultrasound exposure, and the wide size distribution range also shows ultrasound-induced destabilization of liposomes.
도 2a 내지 도 2d는 본 발명의 일 실시예에 따른 다양한 집중 초음파 매개변수에 따른 나노약물 전달체의 시험관 내 독소루비신(DOX) 방출 패턴을 도시한 도면이다.FIGS. 2A to 2D are diagrams illustrating the in vitro doxorubicin (DOX) release pattern of a nanodrug delivery system according to various focused ultrasound parameters according to an embodiment of the present invention.
피하 MDA-MB-231 인간 유방암 이종이식 모델(암컷, balb/c 누드 마우스, 12~14주령)을 사용하여 집중 초음파 조사 하에서 종양과 같은 병변 부위로의 DOX 방출을 평가하였다. 나노약물 전달체와 DOXIL(20 mg/kg)을 정맥주사하였다. 2.0 kW/cm2 강도, 2.0% 듀티 사이클, 250 Hz PRF 및 10s/spot의 집중 초음파를 각 제제 투여 후 조사하였다. DOX release into the tumor-like lesion site was evaluated under focused ultrasound irradiation using a subcutaneous MDA-MB-231 human breast cancer xenograft model (female, balb/c nude mice, 12-14 weeks old). Nanodrug delivery vehicle and DOXIL (20 mg/kg) were injected intravenously. Focused ultrasound at an intensity of 2.0 kW/cm 2 , 2.0% duty cycle, 250 Hz PRF, and 10 s/spot was irradiated after administration of each agent.
- Frequency: 0.5 ~3 MHz (바람직하게는 1MHz),
- intensity: 70.8 ~ 5644.6 W/cm2 (2-160W)
- Duty cycle: 1-80%,
- pulse repetition frequency: 1- 350 Hz
- Frequency: 0.5 ~3 MHz (preferably 1MHz),
- intensity: 70.8 ~ 5644.6 W/cm 2 (2-160W)
- Duty cycle: 1-80%,
- pulse repetition frequency: 1- 350 Hz
종양과 같은 병변에서 DOX의 방출을 정량화하기 위해 생체 내 형광 이미징 시스템을 사용하여 마우스의 형광 이미지를 시각화하였다. 형광 세기는 주로 λEx/λEm = 470/560 nm에서 검출되었다. 마우스 본체에서 자가 형광 생체 분자를 제거하기 위해 스펙트럼 비혼합을 수행하고 DOX의 형광 강도만 관찰하였다.도 2a 내지 도 2d를 참조하면, 생체 내 사용을 위한 최적의 초음파 조건을 탐색하기 위해 다양한 초음파 조건(강도, PRF, 조사 시간 및 듀티 사이클)에서 약물 방출 실험을 수행한 결과를 알 수 있다. DOX 방출은 초음파 강도의 함수로 증가하는 경향이 있다. 내부 리포좀에서 DOX를 효과적으로 방출하려면 특정 강도 임계값이 필요하다. 본 발명의 일 실시 예에 따른 나노약물 전달체의 경우 최소 2.8kW/cm2가 필요하다(도 2a). 특히 PRF는 본 발명의 일 실시 예에 따른 나노약물 전달체의 방출 동작에 큰 영향을 미친다. 도 2b를 참조하면, 약물 방출 속도는 PRF가 250Hz까지 증가하는 경향이 있었지만 PRF의 250Hz 이상에서는 감소함을 알 수 있다. PRF는 캐비테이션 생성과 관련된 중요한 요소이다. 주파수는 매질의 파압과 관련이 있기 때문에 PRF의 증가는 강한 충격파를 유발하고 본 발명의 일 실시 예에 따른 나노약물 전달체에서 DOX의 방출을 강화한다. To quantify the release of DOX from tumor-like lesions, fluorescence images of mice were visualized using an in vivo fluorescence imaging system. The fluorescence intensity was mainly detected at λEx/λEm = 470/560 nm. To remove autofluorescent biomolecules from the mouse body, spectral unmixing was performed and only the fluorescence intensity of DOX was observed. Referring to Figures 2A to 2D, various ultrasound conditions were used to explore the optimal ultrasound conditions for in vivo use. The results of the drug release experiment can be seen in (intensity, PRF, irradiation time and duty cycle). DOX release tends to increase as a function of ultrasound intensity. Effective release of DOX from internal liposomes requires a specific intensity threshold. In the case of a nano drug delivery system according to an embodiment of the present invention, a minimum of 2.8 kW/cm 2 is required (FIG. 2a). In particular, PRF has a significant impact on the release operation of the nano drug delivery system according to an embodiment of the present invention. Referring to Figure 2b, it can be seen that the drug release rate tended to increase up to 250 Hz of PRF, but decreased above 250 Hz of PRF. PRF is an important factor related to cavitation generation. Since the frequency is related to the wave pressure of the medium, an increase in PRF causes a strong shock wave and enhances the release of DOX from the nanodrug delivery system according to one embodiment of the present invention.
한편, 도 2c를 참조하면 조사 시간(exposure time)은 본 발명의 일 실시 예에 따른 나노약물 전달체의 DOX 방출에도 영향을 미친다. 즉 조사 시간에 따라 방출 속도가 증가함을 알 수 있다. 또한 본 발명의 일 실시 예에 따른 나노약물 전달체에서 DOX가 방출되는 중요한 요인을 조사하기 위해 다양한 듀티 사이클과 강도로 초음파를 조사하였다. 본 발명의 일 실시 예에 따른 나노약물 전달체는 56W/cm2의 공간 피크 시간 평균(ISPTA)으로 초음파의 총 에너지에 동일하게 노출하였다(도 2d). 듀티 사이클과 강도는 각각 열과 압력과 관련이 있다. 약물 방출은 2.8 kW/cm2 이상의 강도에서 발생하였다. 저강도 에너지를 자주 가하면 약물 방출에 약간의 영향을 주지만 일시적으로 고강도 에너지를 가하면 같은 양의 에너지를 조사하더라도 더 많은 양의 약물 방출을 유도한다. 생체 내 적용의 경우 조직 손상을 방지하기 위해 저강도 초음파를 사용하는 것이 필수적이다. 동물 실험을 위한 초음파 조건은 강도 2.8 kW/cm2, PRF 250 Hz, 노출 시간 10초, 듀티 사이클 2%로 설정하였다.Meanwhile, referring to Figure 2c, exposure time also affects the release of DOX from the nano drug delivery system according to an embodiment of the present invention. In other words, it can be seen that the emission rate increases with irradiation time. In addition, ultrasound was irradiated at various duty cycles and intensities to investigate important factors causing the release of DOX from the nano-drug delivery system according to an embodiment of the present invention. The nano drug delivery system according to one embodiment of the present invention was equally exposed to the total energy of ultrasound with a spatial peak time average (ISPTA) of 56 W/cm 2 (FIG. 2d). Duty cycle and intensity are related to heat and pressure, respectively. Drug release occurred at intensities above 2.8 kW/cm 2 . Frequent application of low-intensity energy has a slight effect on drug release, but temporary application of high-intensity energy leads to the release of a larger amount of drug even when the same amount of energy is irradiated. For in vivo applications, it is essential to use low-intensity ultrasound to prevent tissue damage. Ultrasound conditions for animal experiments were set at intensity 2.8 kW/cm 2 , PRF 250 Hz, exposure time 10 seconds, and duty cycle 2%.
도 3은 본 발명의 일 실시예에 따른 집중 초음파 치료장치와, 이에 의한 치료절차와 결과를 도시한 도면이다.Figure 3 is a diagram showing a focused ultrasound treatment device according to an embodiment of the present invention, and the treatment procedure and results thereof.
본 발명의 일 실시예에 따른 나노약물 전달체 및 DOX 초음파 유발 방출은 라이브 형광 이미징 분석을 사용하여 비교되었다. FUS를 종양와 같은 병변 부위에 정확하게 노출시키기 위해 초음파 영상으로 병변 부위를 3차원적으로 시각화한다. 그리고 FUS 노출을 위한 병변 US 이미지의 관심 영역은 노출 지점의 수로 결정되었다. 그리고 FUS와 US 이미징 트랜스듀서 사이에 기계적으로 정렬하여 FUS를 표적 부위에 정확하게 노출시켰다. 본 발명의 일 실시예에 따른 나노약물 전달체와 DOXIL의 DOX 형광 방출은 두 리포좀의 코어에서 소멸되는 반면, DOX의 형광 강도는 방출에 의해 상당히 향상되었다. 따라서 MDA-MB-231 이종이식 마우스에 본 발명의 일 실시예에 따른 나노약물 전달체와 DOXIL을 정맥주사하고 병변 부위에 즉시 FUS를 조사하였다.The ultrasound-induced release of nanodrug carrier and DOX according to one embodiment of the present invention was compared using live fluorescence imaging analysis. In order to accurately expose FUS to the lesion area, such as a tumor, the lesion area is visualized three-dimensionally using ultrasound images. And the region of interest in the lesion US image for FUS exposure was determined by the number of exposure points. Then, the FUS was precisely exposed to the target area by mechanically aligning it between the FUS and the US imaging transducer. While the DOX fluorescence emission from the nanodrug carrier and DOXIL according to one embodiment of the present invention was quenched in the core of the two liposomes, the fluorescence intensity of DOX was significantly enhanced by the emission. Therefore, the nano drug delivery system and DOXIL according to an embodiment of the present invention were injected intravenously into MDA-MB-231 xenograft mice, and the lesion site was immediately irradiated with FUS.
다시 말하면, 나노약물 전달체와 연동하여 동작하는 집중 초음파 치료장치는, 병변 부위의 이미지를 획득하는 이미징 트랜스듀서(310)과 이미징 트랜스듀서(310)에 정렬된 집중 초음파 트랜스듀서(320)를 포함하고, 집중 초음파 트랜스듀서(320)는 이미징 트랜스듀서(310)에 의해 시각화된 병변 부위에 나노약물 전달체의 캐비테이션을 발생시키도록 집중 초음파를 조사하여 나노약물을 방출하도록 한다.In other words, the focused ultrasound treatment device that operates in conjunction with the nano drug delivery system includes an imaging transducer 310 that acquires an image of the lesion area and a focused ultrasound transducer 320 aligned with the imaging transducer 310, , the focused ultrasound transducer 320 emits focused ultrasound to generate cavitation of the nano-drug carrier at the lesion site visualized by the imaging transducer 310 to release the nano-drug.
도 4는 본 발명의 일 실시예에 따른 집중 초음파 치료장치를 사용한 집중 초음파 조사 하에서, 본 발명의 일 실시예에 따른 나노약물 전달체 및 상업용 리포좀(DOXIL)의 생체 내 독소루비신 방출 결과를 비교 도시한 도면이다.Figure 4 is a diagram comparing the in vivo doxorubicin release results of a nano-drug carrier according to an embodiment of the present invention and a commercial liposome (DOXIL) under focused ultrasound irradiation using a focused ultrasound treatment device according to an embodiment of the present invention. am.
다시 말하면, 도 4는 생체 내 실험에서 FUS 노출 후 DOX 방출을 보여준다. 본 발명의 일 실시예에 따른 나노약물 전달체는 FUS 노출 없이 종양과 같은 병변 영역에서 약간 방출되었다. 따라서 1시간의 FUS 조사 후 본 발명의 일 실시예에 따른 나노약물 전달체로부터 DOX가 강력하게 방출되었고, DOX의 방출에 의해 형광 강도가 시간 의존적으로 증가하였다. 한편, DOXIL은 FUS 노출군과 비노출군 모두 종양(병변) 부위에서 거의 관찰되지 않았다. DOXIL의 형광 강도는 6시간 동안 지속적으로 소멸되었다. 이 결과에 따르면 DOXIL은 FUS 노출에 관계없이 상당히 안정적이었다. 반면 본 발명의 일 실시예에 따른 나노약물 전달체는 FUS 조사 하에서 DOX를 효과적으로 방출하였으며 FUS와 본 발명의 일 실시예에 따른 나노약물 전달체의 조합은 DOX의 항암 효과를 향상시킨 것을 알 수 있다.Again, Figure 4 shows DOX release after FUS exposure in an in vivo experiment. The nanodrug carrier according to one embodiment of the present invention was slightly released from the lesion area, such as a tumor, without FUS exposure. Therefore, after 1 hour of FUS irradiation, DOX was strongly released from the nano drug delivery system according to an embodiment of the present invention, and the fluorescence intensity increased in a time-dependent manner due to the release of DOX. Meanwhile, DOXIL was hardly observed at the tumor (lesion) site in both the FUS-exposed and non-exposed groups. The fluorescence intensity of DOXIL continued to quench for 6 hours. These results showed that DOXIL was fairly stable regardless of FUS exposure. On the other hand, it can be seen that the nano drug delivery vehicle according to an embodiment of the present invention effectively released DOX under FUS irradiation, and the combination of FUS and the nano drug delivery vehicle according to an embodiment of the present invention improved the anticancer effect of DOX.
한편, 본 발명의 일 실시 예에서는 종양에 대한 실험 및 그 결과 위주로 설명하였으나, 종양뿐만 아니라 다양한 병변에서도 동일하게 적용될 수 있다.Meanwhile, in one embodiment of the present invention, the description is focused on experiments on tumors and the results thereof, but the same can be applied not only to tumors but also to various lesions.
이제까지 본 발명에 대하여 그 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from its essential characteristics. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

Claims (9)

  1. 병변 부위의 이미지를 획득하는 단계; 및Acquiring an image of the lesion area; and
    상기 획득된 이미지에 집중 초음파 트랜스듀서를 정렬하여 상기 병변 부위에서 나노약물 전달체의 캐비테이션을 발생시키도록 집중 초음파를 조사하는 단계를 포함하는 것을 특징으로 하는 나노약물 전달체와 연동하여 동작하는 집중 초음파 제어방법.A focused ultrasound control method operating in conjunction with a nano-drug carrier, comprising aligning a focused ultrasound transducer with the acquired image and irradiating focused ultrasound to generate cavitation of the nano-drug carrier at the lesion site. .
  2. 제1항에 있어서,According to paragraph 1,
    상기 집중 초음파의 펄스 반복 주파수(pulse repetition frequency)는 10 내지 300Hz인 것을 특징으로 하는 나노약물 전달체와 연동하여 동작하는 집중 초음파 제어방법.A focused ultrasound control method operating in conjunction with a nano drug delivery system, wherein the pulse repetition frequency of the focused ultrasound is 10 to 300 Hz.
  3. 제1항에 있어서,According to paragraph 1,
    상기 집중 초음파의 주파수는 20kHz 내지 5MHz이며, 강도(intensity)는 50W/cm2 이상인 것을 특징으로 하는 나노약물 전달체와 연동하여 동작하는 집중 초음파 제어방법.A focused ultrasound control method operating in conjunction with a nano drug delivery system, wherein the frequency of the focused ultrasound is 20 kHz to 5 MHz and the intensity is 50 W/cm 2 or more.
  4. 제1항에 있어서,According to paragraph 1,
    상기 집중 초음파의 듀티 사이클은 10% 이하인 것을 특징으로 하는 나노약물 전달체와 연동하여 동작하는 집중 초음파 제어방법.A focused ultrasound control method operating in conjunction with a nano drug delivery system, wherein the duty cycle of the focused ultrasound is 10% or less.
  5. 제1항 내지 제4항 중 어느 한 항에 따른 집중 초음파의 조사에 의해 캐비테이션이 발생하여 그 내부의 나노약물이 방출되는 것을 특징으로 하는 나노약물전달체.A nano-drug delivery system characterized in that cavitation is generated by irradiation of focused ultrasound according to any one of claims 1 to 4, thereby releasing the nano-drug therein.
  6. 병변 부위의 이미지를 획득하는 이미징 트랜스듀서; 및An imaging transducer that acquires images of the lesion area; and
    상기 이미징 트랜스듀서에 정렬된 집중 초음파 트랜스듀서를 포함하고,Comprising a focused ultrasound transducer aligned with the imaging transducer,
    상기 집중 초음파 트랜스듀서는 상기 이미징 트랜스듀서에 의해 시각화된 병변 부위에 나노약물 전달체의 캐비테이션을 발생시키도록 집중 초음파를 조사하여 나노약물을 방출하도록 하는 것을 특징으로 하는 나노약물 전달체와 연동하여 동작하는 집중 초음파 치료장치.The focused ultrasound transducer irradiates focused ultrasound to generate cavitation of the nano-drug carrier at the lesion site visualized by the imaging transducer to release the nano-drug, and operates in conjunction with the nano-drug carrier. Ultrasound treatment device.
  7. 제6항에 있어서,According to clause 6,
    상기 집중 초음파의 펄스 반복 주파수(pulse repetition frequency)는 10 내지 300Hz인 것을 특징으로 하는 나노약물 전달체와 연동하여 동작하는 집중 초음파 치료장치.A focused ultrasound treatment device that operates in conjunction with a nano drug delivery system, wherein the pulse repetition frequency of the focused ultrasound is 10 to 300 Hz.
  8. 제6항에 있어서,According to clause 6,
    상기 집중 초음파의 주파수는 20kHz 내지 5MHz이며, 강도(intensity)는 50W/cm2 이상인 것을 특징으로 하는 나노약물 전달체와 연동하여 동작하는 집중 초음파 치료장치.A focused ultrasound treatment device that operates in conjunction with a nano drug delivery system, wherein the frequency of the focused ultrasound is 20 kHz to 5 MHz and the intensity is 50 W/cm 2 or more.
  9. 제6항에 있어서,According to clause 6,
    상기 집중 초음파의 듀티 사이클은 10% 이하인 것을 특징으로 하는 나노약물 전달체와 연동하여 동작하는 집중 초음파 치료장치.A focused ultrasound treatment device that operates in conjunction with a nano drug delivery system, wherein the duty cycle of the focused ultrasound is 10% or less.
PCT/KR2023/005790 2022-04-28 2023-04-27 Focused ultrasound treatment apparatus operating in conjunction with nanodrug carrier, ultrasound control method, and nanodrug carrier thereof WO2023211207A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220052637 2022-04-28
KR10-2022-0052637 2022-04-28
KR10-2023-0054041 2023-04-25
KR1020230054041A KR20230153940A (en) 2022-04-28 2023-04-25 Focused ultrasound treatment apparatus operating in conjunction with nanodrug carrier, control method of ultrasound and nanodrug carrier thereof

Publications (1)

Publication Number Publication Date
WO2023211207A1 true WO2023211207A1 (en) 2023-11-02

Family

ID=88519279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005790 WO2023211207A1 (en) 2022-04-28 2023-04-27 Focused ultrasound treatment apparatus operating in conjunction with nanodrug carrier, ultrasound control method, and nanodrug carrier thereof

Country Status (1)

Country Link
WO (1) WO2023211207A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256172A (en) * 2003-06-13 2011-12-22 Cerevast Therapeutics Inc Non-invasive intravascular thrombolyisis using modified ultrasound technique
KR20120002943A (en) * 2010-07-01 2012-01-09 포항공과대학교 산학협력단 Method for treatment and diagnosis of cancer using microvesicles derived from bacteria
JP5340728B2 (en) * 2005-06-07 2013-11-13 コーニンクレッカ フィリップス エヌ ヴェ Method and apparatus for ultrasonic drug delivery and thermal treatment with phase variable fluid
KR20190138369A (en) * 2018-06-05 2019-12-13 한국과학기술연구원 High-low intensity focused ultrasound treatment apparatus
KR20210110578A (en) * 2018-11-30 2021-09-08 얼테라, 인크 Systems and Methods for Improving Efficacy of Ultrasound Therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256172A (en) * 2003-06-13 2011-12-22 Cerevast Therapeutics Inc Non-invasive intravascular thrombolyisis using modified ultrasound technique
JP5340728B2 (en) * 2005-06-07 2013-11-13 コーニンクレッカ フィリップス エヌ ヴェ Method and apparatus for ultrasonic drug delivery and thermal treatment with phase variable fluid
KR20120002943A (en) * 2010-07-01 2012-01-09 포항공과대학교 산학협력단 Method for treatment and diagnosis of cancer using microvesicles derived from bacteria
KR20190138369A (en) * 2018-06-05 2019-12-13 한국과학기술연구원 High-low intensity focused ultrasound treatment apparatus
KR20210110578A (en) * 2018-11-30 2021-09-08 얼테라, 인크 Systems and Methods for Improving Efficacy of Ultrasound Therapy

Similar Documents

Publication Publication Date Title
Canavese et al. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer
Sun et al. Physical triggering strategies for drug delivery
Frenkel et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure
Fan et al. Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood–brain barrier opening and brain-tumor drug delivery
US8814860B2 (en) Irreversible electroporation using nanoparticles
US8916205B2 (en) Polymeric nanoparticles for photosensitizers
G Moussa et al. Review on triggered liposomal drug delivery with a focus on ultrasound
WO2012143739A1 (en) Sonodynamic therapy
US20130096595A1 (en) Methods and systems for inducing hyperthermia
JP2007508860A (en) Photodynamic therapy to reduce adipocytes locally
CN111671923B (en) Peptide functionalized metal-loaded porphyrin phase change nanoparticle and preparation method and application thereof
US11344498B2 (en) Compositions and methods for on-demand high-efficiency triggerable anesthesia
EP3993771A1 (en) Sonodynamic therapy
RU2388492C2 (en) Fluocarbon emulsion activator for highly intensive focused ultrasound therapy and its application
US11793983B2 (en) Sonodynamic therapy using microbubbles and pulsed wave ultrasound methods and systems
WO2023211207A1 (en) Focused ultrasound treatment apparatus operating in conjunction with nanodrug carrier, ultrasound control method, and nanodrug carrier thereof
Miller et al. The potential for enhancement of mouse melanoma metastasis by diagnostic and high-amplitude ultrasound
KR20230153940A (en) Focused ultrasound treatment apparatus operating in conjunction with nanodrug carrier, control method of ultrasound and nanodrug carrier thereof
RU2359701C2 (en) Strengthening agent for therapy with high-intensive focused ultrasound and its application
KR20220114493A (en) Composition for penetration of blood-brain barrier comprising sonosensitive liposomes as an effective ingredients
WO2006030534A1 (en) Integrated system for noninvasive focused energy treatment using energy activated drugs
AlSawaftah et al. Effect of high-frequency ultrasound on targeted liposomes
WO2021181132A1 (en) Method of activation of a sonosensitizing agent
JPH0454132A (en) Physiological action-enhancing agent for treatment of ulcer by wave irradiation and production thereof
JP2001506880A (en) Method and device for administering substances by ultrasound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796849

Country of ref document: EP

Kind code of ref document: A1