WO2023211141A1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
WO2023211141A1
WO2023211141A1 PCT/KR2023/005659 KR2023005659W WO2023211141A1 WO 2023211141 A1 WO2023211141 A1 WO 2023211141A1 KR 2023005659 W KR2023005659 W KR 2023005659W WO 2023211141 A1 WO2023211141 A1 WO 2023211141A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat exchanger
gas
liquid contact
flow path
Prior art date
Application number
PCT/KR2023/005659
Other languages
French (fr)
Korean (ko)
Inventor
이동근
황인수
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220051628A external-priority patent/KR20230151822A/en
Priority claimed from KR1020220051629A external-priority patent/KR20230151823A/en
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Publication of WO2023211141A1 publication Critical patent/WO2023211141A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/14Direct-contact trickle coolers, e.g. cooling towers comprising also a non-direct contact heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight

Definitions

  • the present invention relates to a natural cooling system that cools air by utilizing the latent heat of evaporation of water and heat exchange without a refrigeration cycle.
  • FIG. 1 shows a cooling system used in a space that requires adequate cooling with low energy, for example, a poultry farm.
  • the cooling system 1 includes a pump 20 connected to a water source WS and a gas-liquid contact part 10 connected to the pump.
  • the gas-liquid contact part 10 provides water using a material such as cellulose and passes air through the material, thereby reducing the temperature of the passing gas and increasing the humidity as the water evaporates.
  • This cooling system 1 can lower the temperature of the air by utilizing the latent heat of evaporation of water without a refrigerant, but the temperature range that can be lowered is limited, making it difficult to provide substantially cool air.
  • evaporative cooling technology is known to lower the temperature of the air by using the double cooling effect of water and does not use refrigerants other than water.
  • This evaporative cooler is configured to alternately and repeatedly form wet channels and dry channels and cool the air passing through the dry channels by evaporation in the wet channels.
  • Patent Document 1 KR 10-2020-0073720 A
  • the present invention is intended to solve problems in the prior art and aims to provide a cooling system that sufficiently cools the air by utilizing the latent heat of evaporation of water and heat exchange without a refrigeration cycle.
  • the present invention provides the following cooling system to solve the above objectives.
  • the present invention includes a housing; first and second flow paths formed within the housing; a first heat exchanger disposed on the first flow path; a watering device disposed above the first heat exchanger and providing water to the first heat exchanger; a second heat exchanger disposed on the second flow path; and a gas-liquid contact portion disposed on the second flow path to allow air passing through the second heat exchanger to pass through, wherein the first heat exchanger and the second heat exchanger are connected to each other so that the cooling fluid circulates, and the first heat exchanger and the second heat exchanger are connected to each other so that the cooling fluid circulates.
  • a cooling system is provided in which a pump for circulating cooling fluid is disposed between the second heat exchangers.
  • the gas-liquid contact unit may include a water supply unit located at the top and a contact body connected to the water supply unit and configured to contact air as the water supplied from the water supply unit moves downward.
  • the first heat exchanger may have a structure in which multiple layers formed of a first head and a second head arranged side by side and a plurality of tubes connecting the first head and the second head are stacked.
  • a water storage unit is disposed below the contact body, and the water storage unit is connected to the water injection device, so that water stored in the water storage unit can be provided to the first heat exchanger through the water injection device.
  • the water supply unit is connected to a water supply source, and a tank storing water that has passed through the first heat exchanger is disposed below the first heat exchanger, and the tank may include a drain unit.
  • the second heat exchanger is a fin-tube heat exchanger, and the gas-liquid contact portion may be disposed at a higher position than the first heat exchanger.
  • the present invention includes a housing; a plurality of flow paths formed within the housing; An evaporative cooler that includes a main body in which a plurality of dry channels and a plurality of wet channels are alternately arranged and a watering device that supplies water from the upper part of the main body to the wet channels, and cools the supplied air passing through the dry channels; and a gas-liquid contact portion disposed at the rear end of the dry channel of the evaporative cooler, wherein the flow path includes a first flow path passing through the wet channel and a second flow path sequentially passing through the dry channel and the gas-liquid contact portion.
  • a cooling system Provides a cooling system.
  • the gas-liquid contact unit may be connected to a water supply unit at the top, so that water supplied from the water supply unit contacts air as it moves downward.
  • it further includes a third flow path passing through the gas-liquid contact part, and the third flow path may be configured to pass through an upper part of the gas-liquid contact part than the second flow path.
  • the housing includes a separation wall that separates the second flow path and the third flow path and includes a through groove through which the gas-liquid contact part passes, and the gas-liquid contact part extends in a vertical direction, and the through groove passes through the gas-liquid contact part. It can be placed through the groove.
  • a first pump disposed between the water collection unit and the water injection device may be further included to supply water from the water collection unit provided below the gas-liquid contact unit to the water injection device.
  • the first flow path is formed to pass through a first inlet, a wet channel of the evaporative cooler, and a first outlet
  • the second flow path is formed through a second inlet, a dry channel of the evaporative cooler, and the gas-liquid. It may be formed to pass through the contact portion and the second outlet portion.
  • the present invention can provide a cooling system that sufficiently cools the air with a small energy source by utilizing the latent heat of evaporation of water and heat exchange.
  • FIG. 1 is a schematic diagram of a conventional natural cooling system.
  • Figure 2 is a schematic diagram of a natural cooling system according to a first embodiment of the present invention.
  • Figure 3 is a schematic diagram showing temperature changes in the natural cooling system of Figure 2.
  • Figure 4 is a schematic diagram of a natural cooling system according to a second embodiment of the present invention.
  • Figure 5 is a schematic diagram of a natural cooling system according to a third embodiment of the present invention.
  • Figure 6 is a schematic diagram of a natural cooling system according to a fourth embodiment of the present invention.
  • Natural cooling system 10 Gas-liquid contact part
  • Figure 2 shows a schematic diagram of a natural cooling system according to a first embodiment of the present invention.
  • the natural cooling system 1 includes a housing 50, a plurality of flow paths F1, F2, and F3 formed within the housing 50; It includes a main body 61 in which a plurality of dry channels and a plurality of wet channels are alternately arranged, and a watering device 62 that supplies water from the upper part of the main body 61 to the wet channel.
  • An evaporative cooler (60) that cools the air; and a gas-liquid contact portion 10 disposed at the rear end of the gun channel of the evaporative cooler 60.
  • Separation walls 51 and 52 are formed inside the housing 50 to separate air flows so that the flow paths F1, F2 and F3 do not mix, and the housing 50 has a plurality of inlets 21 and 24 and A plurality of outlets 22, 23, and 25 are formed.
  • a tank 63 is provided at the bottom of the wet channel of the evaporative cooler 60, and a water storage portion 13 is provided at the bottom of the gas-liquid contact portion 10.
  • the tank 63 and the water storage unit 130 are connected to a pump 70, and the pump 70 transfers water collected from the tank 63 and the water storage unit 13 to the gas-liquid contact unit 10. It is circulated to the water supply unit 11 and the water injection device 61.
  • a filter may be provided on the circulation path through which water circulates.
  • the flow paths (F1, F2, F3) sequentially pass through the first flow path (F1) passing through the wet channel of the evaporative cooler 60, the dry channel of the evaporative cooler 60, and the gas-liquid contact portion 10. It includes a second flow path (F2) and a third flow path (F3) configured to pass through an upper part of the contact body 12 of the gas-liquid contact portion 10 rather than the second flow path.
  • the gas-liquid contact part 10 includes a water supply part 11 located at the top, a contact body 12, and a water storage part 13 located at the bottom, and the contact body 12 allows water to flow along the surface. It may be a structure made of plastic and/or paper, for example, Celdek from Munters.
  • the gas-liquid contact unit 10 is configured to cool the passing air by vaporizing it when the water supplied to the water supply unit 11 flows down the contact main body 12.
  • the water supply unit 11 sprays or flows the supplied water to the contact body 12, and the air flow passes through the contact body 12, and the water flows through the surface of the contact body 12. Heat exchange between air and water takes place.
  • the water that flows down the contact body (12) due to its own weight is collected into the water storage unit (13), and the water collected in the water storage unit (13) is supplied back to the water supply unit (11) by the pump (70). do. Since evaporation occurs in the gas-liquid contact part 10, water supply is necessary, and water supply may be provided from the water storage part 13, but in this embodiment, the water supply source is provided in the tank 60 below the evaporative cooler 60. (WS) is connected to supply water to the natural cooling system (1).
  • a third flow path (F3) passes through the upper part
  • a second flow path (F2) passes through the lower part.
  • the third flow path (F3) passes through the gas-liquid contact part 10
  • the water in the gas-liquid contact part 10 evaporates, and the air passing through the third flow path (F3) is cooled by the latent heat of evaporation, and at the same time, the gas-liquid contact part 10
  • the water passing through that region in (10) is also cooled.
  • the second flow path (F2) causes evaporation again as it comes into contact with the water that has been primarily cooled by the third flow path (F3), and the air passing through the second flow path (F2) is cooled by the latent heat of evaporation.
  • the air passing through the second flow path (F2) may have a lower temperature.
  • the second flow path (F2) undergoes primary cooling while passing through the dry channel of the evaporative cooler (60) before passing through the gas-liquid contact portion (10). Since the configuration of the evaporative cooler 60 is known in Patent Document 1 of the background technology, description of the configuration itself will be omitted.
  • the evaporative cooler 60 has a main body 61 in which dry channels and wet channels are alternately formed. and a watering device 62 that sprays or supplies water from the upper part of the main body 61 to the wet channel.
  • the first flow path (F1) passes through the wet channel, and therefore, the water supplied to the wet channel through the water pouring device 62 is caused by the air passing through the first flow path (F1).
  • the temperature drops, and the air in the second flow path (F2) passing through the gun channel can be cooled. Since the dry channel and wet channel are separated in the evaporative cooler 60, the temperature of the air passing through the dry channel decreases without increasing humidity.
  • the first flow path (F1) receives outside air (OA) through the inlet 21, passes through the water injection device 62 of the evaporative cooler 60 and the wet channel of the main body 61, and flows through the outlet 22. It is exhausted (EA).
  • the air flow in the first flow path (F1) is formed by the fan 31 disposed at the outlet 22, but the position of the fan 31 is not limited to the outlet 22, and the first flow path F1 It may be formed anywhere on the image.
  • outside air (OA) enters through an inlet (24) different from the inlet (21), passes through the dry channel of the evaporative cooler (60), passes through the gas-liquid contact portion (10), and then enters the indoor air. Or, the air is supplied (SA) to the desired space.
  • the air flow in the second flow path (F2) is formed by the fan 33 disposed at the outlet 25 for supply air (SA), but the position of the fan 33 is not limited to the outlet 25 and the second It may be formed anywhere on the flow path (F2).
  • the fan 33 may be located between the dry channel of the evaporative cooler 60 and the gas-liquid contact portion 10.
  • the air flow of the third flow path (F3) is formed by the fan 32 disposed at the outlet 23, but the position of the fan 32 is the same as that of the first and second flow paths F1 and F2. (F3) It may be formed at any position on the image.
  • the first flow path (F1) and the third flow path (F3) are introduced into the housing 50 through the same inlet 21 and then branched by the separation wall 51.
  • the separation wall 51 includes a through groove 51a, and the gas-liquid contact portion 10 passes through the through groove 51a.
  • the gas-liquid contact portion 10 can be positioned across the third flow path F3 and the second flow path F2 by passing through the through groove 51a of the separation wall 51, and the third flow path ( Due to the air in F3), the temperature of the water flowing through the gas-liquid contact portion 10 can meet the air in the second flow path (F2) in a lowered state, so that the temperature of the air passing through the second flow path (F2) can be sufficiently lowered. there is.
  • FIG. 3 is a diagram illustrating the temperature at each point of the second flow path F2 in the embodiment of FIG. 2 on a psychrometric diagram.
  • the outdoor air (A) temperature on a summer day in Korea is approximately 35°C, humidity 40%, and wet bulb temperature 24°C, when only the gas-liquid contact part 10 passes, the temperature changes along the wet bulb temperature, so the temperature can be lowered. is limited.
  • the outside air (A) is primarily cooled by the evaporative cooler 60 without changing the amount of moisture contained in the air, so the temperature is lowered while the absolute humidity is maintained, and the temperature moves to point B. It will happen.
  • point B for example, the temperature is 27°C, humidity is 63.5%, and wet bulb temperature is about 21.8°C.
  • the air after passing through the evaporative cooler 60 passes through the gas-liquid contact part 10, and the temperature can be lowered once more while the wet bulb temperature is maintained.
  • the temperature is approximately 23.5°C, humidity 85%, and wet bulb temperature. It is about 21.7°C, and through the natural cooling system (1), air can be provided at a sufficiently low temperature, approximately 23°C. This level of temperature provides a practical cooling effect, allowing the barn to be run without significant power consumption even on hot summer days. In addition, it is possible to provide cold air to the home or various spaces.
  • tap water is maintained at about 25°C even on a normal summer day, but in this embodiment, the temperature of the tap water is lowered through the air in the third flow path (F3) and the gas-liquid contact portion 10 flows through the second flow path (F2). Because of the contact, in addition to the temperature drop due to evaporation of water, there is also a temperature drop due to heat exchange with tap water at a lower temperature, so it is possible to achieve a temperature lower than the above approximate temperature.
  • this embodiment can provide cold air without running a refrigeration cycle when cooling to a low temperature is not required, thereby improving energy efficiency, and the temperature of the exhausted air does not increase, so there is no heat emission. There is also.
  • Figure 4 shows a schematic diagram of a second embodiment of the present invention.
  • the natural cooling system 1 includes a housing 50, a plurality of flow paths F1 and F2 formed within the housing 50; It includes a main body 61 in which a plurality of dry channels and a plurality of wet channels are alternately arranged, and a watering device 62 that supplies water from the upper part of the main body 61 to the wet channel.
  • An evaporative cooler (60) that cools the air; and a gas-liquid contact portion 10 disposed at the rear end of the gun channel of the evaporative cooler 60.
  • Separation walls 51 and 52 are formed inside the housing 50 to separate air flows so that the flow paths F1 and F2 do not mix, and the housing 50 has a plurality of inlets 21 and 24 and a plurality of inlets 21 and 24. Outlets 22 and 25 are formed.
  • the gas-liquid contact part 10 includes a water supply part 11 located at the top, a contact body 12, and a water storage part 13 located at the bottom, and the contact body 12 allows water to flow along the surface. It may be a structure made of plastic and/or paper.
  • the water supply part 11 of the gas-liquid contact part 10 is connected to the water source WS, and when water from the water source WS flows down along the contact main body 12 through the water supply part 11, the contact main body 12 The air passing through (12) evaporates and cools the passing air.
  • the water supply unit 11 sprays or flows the supplied water to the contact body 12, and the air flow passes through the contact body 12, and the water flows through the surface of the contact body 12. Heat exchange between air and water takes place. The water that flows down the contact body (12) due to its own weight is collected into the water storage unit (13).
  • a pump 70 is connected to the water storage unit 13, and the water collected in the water storage unit 13 is supplied to the water injection device 61 of the evaporative cooler 60 through the pump 70.
  • the evaporative cooler 60 is the same as the evaporative cooler 60 of the first embodiment and includes a water injection device 61 and a main body 62.
  • the main body 62 includes dry channels and wet channels arranged alternately, and as the water sprayed or supplied from the watering device 61 meets the air passing through the wet channels, the temperature is lowered, and the air and dry channels in the lowered wet channels are combined. As the air in the channel exchanges heat, the temperature of the air in the gun channel can be lowered without changing the absolute humidity.
  • a tank 63 is provided at the bottom of the wet channel of the evaporative cooler 60, and water collected in the tank 63 can be drained.
  • water is not circulated, and the water supplied to the gas-liquid contact part 10 exchanges heat with air and evaporates, and then is supplied to the water injection device 61 of the evaporative cooler 60 by the pump 70, After passing through the evaporative cooler 60, it is drained from the tank 63.
  • water is not circulated, so there is no concern about bacterial growth or foreign matter contamination, and new water is supplied to each component, that is, the evaporative cooler 60 and the gas-liquid contact part 10, providing an advantage in terms of hygiene. It can be used for cooling by utilizing the temperature of tap water.
  • the flow paths (F1, F2) include a first flow path (F1) passing through the wet channel of the evaporative cooler 60, and a second flow path sequentially passing through the dry channel of the evaporative cooler 60 and the gas-liquid contact portion 10.
  • F1 first flow path
  • F2 second flow path sequentially passing through the dry channel of the evaporative cooler 60 and the gas-liquid contact portion 10.
  • the first flow path (F1) passes through the wet channel, and therefore, the water supplied to the wet channel through the water pouring device 62 is caused by the air passing through the first flow path (F1).
  • the temperature drops. Accordingly, as the temperature of the wet channel decreases, the air in the second flow path F2 passing through the dry channel that exchanges heat with the wet channel may be cooled. Since the dry channel and wet channel are separated in the evaporative cooler 60, the temperature of the air passing through the dry channel decreases without increasing humidity.
  • the first flow path (F1) receives outside air (OA) through the inlet 21, passes through the water injection device 62 of the evaporative cooler 60 and the wet channel of the main body 61, and flows through the outlet 22. It is exhausted (EA).
  • the air flow in the first flow path (F1) is formed by the fan 31 disposed at the outlet 22, but the position of the fan 31 is not limited to the outlet 22, and the first flow path F1 It may be formed anywhere on the image.
  • outside air (OA) enters through an inlet (24) different from the inlet (21), passes through the dry channel of the evaporative cooler (60), passes through the gas-liquid contact portion (10), and then enters the indoor air. Or, the air is supplied (SA) to the desired space.
  • the air flow in the second flow path (F2) is formed by the fan 33 disposed at the air supply outlet 25, but the position of the fan 33 is not limited to the outlet 25 and the second flow path F2 ) may be formed at any position on the surface.
  • the second embodiment water whose temperature has been lowered due to the latent heat of evaporation from the gas-liquid contact portion 10 is supplied to the water injection device 61 of the evaporative cooler 60, and accordingly, not only the latent heat of evaporation is generated in the wet channel of the evaporative cooler 60.
  • the temperature of the wet channel can be lowered compared to the first embodiment, and thus the temperature of the air passing through the dry channel can be provided even lower than that of the first embodiment. Accordingly, the temperature difference between points A and B on the second flow path F2 may become larger.
  • the temperature of the air that has passed through the evaporative cooler 60 in the second flow path (F2) may drop again as it passes through the gas-liquid contact portion 10, and accordingly, the air supplied (SA) through the outlet 25 can be provided at a sufficiently low temperature.
  • water is not recycled, so water consumption may slightly increase, but by recycling the water lowered in the gas-liquid contact part 10 in the evaporative cooler 60, not only is water consumption less than when operating separately. , it can provide a low supply air temperature, and in terms of management, it is easy to manage because the risk of breeding bacteria, etc. is lowered by discharging water rather than storing it.
  • the temperature difference between point A and point B is larger than that of the first embodiment, and the temperature difference between point B and point C is smaller than that of the first embodiment. , overall, it can provide the same level of cooling.
  • the natural cooling system of the second embodiment can also provide cold air without running a refrigeration cycle when cooling to a low temperature is not required, thereby improving energy efficiency and reducing exhaust air.
  • Figure 5 shows a third embodiment of the present invention.
  • the natural cooling system 1 includes a housing 50, a plurality of flow paths F1 and F2 formed within the housing 50; First and second heat exchangers (80, 85) disposed in the plurality of flow paths (F1, F2) and a pump (70a) for circulating refrigerant to the first and second heat exchangers (80, 85); A water injection module (81) providing water to the first heat exchanger (80); It includes a gas-liquid contact portion 10 disposed at the rear end of the second heat exchanger 85.
  • Separation walls 51 and 52 are formed inside the housing 50 to separate air flows so that the flow paths F1 and F2 do not meet, and the housing 50 has a plurality of inlets 21 and 24 and a plurality of outlets. (22, 25) is formed.
  • the gas-liquid contact part 10 includes a water supply part 11 and a contact body 12 located at the top, and the contact body 12 may be a structure made of plastic and/or paper that allows water to flow along the surface. .
  • the water that has passed through the contact body 12 flows down into the tank 83 through the through hole 52a of the separation wall 52 and is collected.
  • the water supply part 11 of the gas-liquid contact part 10 is connected to the pump 70b, and the pump 70b supplies water from the tank 83 under the housing 50 to the gas-liquid contact part 10.
  • water flows down along the contact body 12 through the water supply unit 11, it is vaporized by the air passing through the contact body 12 and cools the passing air.
  • the first heat exchanger 80, the second heat exchanger 85, and a pump 70a for moving the cooling fluid circulating between the first heat exchanger 80 and the second heat exchanger 85 Includes.
  • a water injection device 81 is disposed at the top, and the cooling fluid passing through the first heat exchanger 80 is brought into contact with water sprayed/supplied from the water injection device 81 to change the temperature. may be lowered.
  • the first heat exchanger 80 cools by utilizing the latent heat of evaporation from the evaporation of water provided from the water pouring device 81, making it possible to cool the water to a temperature lower than the temperature of the water supplied from the water pouring device 81.
  • the water sprayed from the water injection device 81 to the first heat exchanger 80 evaporates and cools the cooling fluid of the first heat exchanger 80, but in the case of the remaining water, it is stored in a tank located below the first heat exchanger 80. Collected in (83).
  • the first heat exchanger 80 has a multi-layer structure in which a pair of heads (80a, 80c) disposed on both sides and a plurality of tubes (80b) connect the heads (80a, 80c) between the pair of heads (80a, 80c). It is formed by stacking, and fins are connected between the tubes 80b to increase the contact area.
  • the stacked heads (80a) are connected to each other, and the cooling fluid supplied to one head (80a) of the uppermost layer goes to the other head (80c) through the tube (80b), then goes down to the other head (80c) of the lower layer, and then through the tube again.
  • the cooling fluid passes through the multi-layer and changes direction to exchange heat with the air and water passing through the head (80a) of the lower layer through (80b). It is not limited to this, and other structures can be applied as long as they can sufficiently contact the air in the first flow path F1 and the water sprayed from the water injection device 81.
  • the water collected in the tank 83 can be supplied back to the water injection device 81 by the pump 70b, and a filter (not shown) is placed in the tank 83 connected to the pump 70b. It can remove foreign substances from circulating water.
  • the tank 83 is sprayed from the water injection device 81 and collects water that has not been evaporated in the first heat exchanger 80 and water that has not been evaporated as it passes through the gas-liquid contact part 10. Even in the case of the water that has not been evaporated, it is evaporated. Since the temperature is lowered by the latent heat of evaporation of the water, the temperature of the water in the tank 83 can be maintained lower than the temperature of the water supplied from the water source WS.
  • the tank 83 is connected to the water supply source (WS) and can continuously replenish the amount of water reduced by evaporation.
  • the second heat exchanger 85 is a heat exchanger that performs heat exchange between air and cooling fluid and may be, for example, a fin-tube heat exchanger.
  • the temperature of the cooling fluid that has passed through the first heat exchanger (80) is lowered by the water provided from the water injection device (81), and is supplied to the second heat exchanger (85) through the pump (70a).
  • the second heat exchanger (85) absorbs heat from the air while exchanging heat with low-temperature water and relatively high-temperature outside air, that is, the temperature of the air passing through the second flow path (F2) changes the amount of moisture contained in the air. It will be lowered without it.
  • the cooling fluid circulating through the first and second heat exchangers 80 and 85 may be water, but is not limited to water, and of course it is also possible to use other cooling fluids.
  • the circulation structure consisting of the first and second heat exchangers 80 and 85 and the pump 70a does not utilize the phase change of the cooling fluid, and the pump 70a is for circulation of the cooling fluid.
  • the first flow path (F1) receives outside air (OA) through the inlet 21, passes through the first heat exchanger 80, and is exhausted (EA) through the outlet 22.
  • the air flow in the first flow path (F1) is formed by the fan 31 disposed at the outlet 22, but the position of the fan 31 is not limited to the outlet 22, and the first flow path F1 It may be formed anywhere on the image.
  • outside air (OA) enters through an inlet (24) different from the inlet (21), passes through the second heat exchanger (85), passes through the gas-liquid contact portion (10), and then enters the room or Air is supplied (SA) to the desired space.
  • the air flow in the second flow path (F2) is formed by the fan 33 disposed at the outlet 25 for supply air (SA), but the position of the fan 33 is not limited to the outlet 25 and the second It may be formed anywhere on the flow path (F2).
  • the temperature of the air supplied from the outside along the second flow path F2 is primarily lowered without a change in absolute humidity, and the wet bulb temperature is maintained thereafter. The temperature drops once more. Therefore, even in the case of the natural cooling system 1 of the third embodiment, sufficiently low air, for example, about 23°C, can be provided as supply air (SA) with low energy consumption.
  • SA supply air
  • Figure 6 shows a schematic diagram of a natural cooling system 1 of a fourth embodiment of the present invention.
  • the first heat exchanger 80, the second heat exchanger 85, and the pump 70a are the same as those of the third embodiment, and the first and second flow paths F1 and F2 pass through Since the configuration and configuration of the inlets 21 and 24 and the outlets 22 and 25 of the housing 50 are the same, the description will focus on the different configurations.
  • the gas-liquid contact part 10 includes a water supply part 11 located at the top, a contact body 12, and a water storage part 13 located at the bottom, and the gas-liquid contact part 10 includes a water supply part ( When the water supplied to 11) flows down the contact body 12, it is vaporized by the air passing through the contact body 12 and cools the passing air.
  • the water supply unit 11 is connected to the water supply source WS, and the water storage unit 13 is connected to the pump 70b.
  • the pump 70b supplies water from the water storage unit 13 to the water injection device 81.
  • the water injection device 81 receives water from the water storage unit 13 and sprays it into the first heat exchanger 80. Since the water supplied to the water injection device 81 is water that has passed through the contact body 12 and may have a lower temperature than the water source WS, the fourth embodiment is the water supplied to the water injection device 81 in the first heat exchanger 80 under the same conditions.
  • the cooling fluid can be cooled to a lower temperature than in Example 3.
  • the configuration required for water circulation is unnecessary and management is easy.
  • there is no concern about contamination by bacteria or foreign substances that may be generated from stored water and the capacity of the pump 70b can be smaller than that of the third embodiment, so the energy input to the pump 70b can be saved.
  • the amount of water used may be increased compared to the third embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention provides a cooling system that sufficiently cools air without a freeze cycle by using latent heat from the vaporization of water and heat exchange. Provided in one embodiment is a cooling system comprising: a housing; first and second flow paths formed in the housing; a first heat exchanger disposed on the first flow path; a main water supplier disposed above the first heat exchanger to supply water thereto; a second heat exchanger disposed on the second flow path; and a gas-liquid contact part disposed on the second flow path so as to pass there-through the air that has passed through the second heat exchanger, wherein the first heat exchanger and the second heat exchanger are connected to each other such that a cooling fluid can circulate there-between, and a pump for circulating the cooling fluid is disposed between the first heat exchanger and the second heat exchanger.

Description

냉방 시스템cooling system
본 발명은 냉동 사이클 없이 물의 증발 잠열과 열교환을 활용하여 공기를 냉방시키는 자연 냉방 시스템에 대한 것이다. The present invention relates to a natural cooling system that cools air by utilizing the latent heat of evaporation of water and heat exchange without a refrigeration cycle.
도 1 에는 적은 에너지로 적당한 냉방이 필요한 공간, 예를 들면 양계장에서 사용되는 냉방 시스템이 개시되어 있다. 도 1 에서 보이듯이, 냉방 시스템(1)은 물 공급원(WS)에 연결된 펌프(20) 및 상기 펌프에 연결된 기액 접촉부(10)를 포함한다. 기액 접촉부(10)는 셀룰로오스 같은 소재로 물을 제공하고, 해당 소재 사이로 공기를 통과시킴으로써, 물이 증발하면서 통과하는 기체의 온도는 내려가고 습도가 상승하는 구조가 개시되어 있다. 이러한 냉방 시스템(1)은 냉매 없이 물의 증발 잠열을 활용하여 공기의 온도를 낮출 수 있으나, 낮출 수 있는 온도 범위가 제한적이어서 실질적으로 시원한 공기를 제공하기에는 어려움이 있다. Figure 1 shows a cooling system used in a space that requires adequate cooling with low energy, for example, a poultry farm. As shown in Figure 1, the cooling system 1 includes a pump 20 connected to a water source WS and a gas-liquid contact part 10 connected to the pump. The gas-liquid contact part 10 provides water using a material such as cellulose and passes air through the material, thereby reducing the temperature of the passing gas and increasing the humidity as the water evaporates. This cooling system 1 can lower the temperature of the air by utilizing the latent heat of evaporation of water without a refrigerant, but the temperature range that can be lowered is limited, making it difficult to provide substantially cool air.
한편, 증발식 냉각 기술은 물의 중발 냉각 효과를 이용하여 공기의 온도를 낮추는 것으로 물 이외의 냉매를 사용하지 않는 기술이 알려져 있다. Meanwhile, evaporative cooling technology is known to lower the temperature of the air by using the double cooling effect of water and does not use refrigerants other than water.
이와 같은 증발냉각기는 습채널과 건채널을 교대로 반복적으로 형성하고 습채널에서의 증발에 의해 건채널을 통과하는 공기를 냉각시키도록 구성된다.This evaporative cooler is configured to alternately and repeatedly form wet channels and dry channels and cool the air passing through the dry channels by evaporation in the wet channels.
(특허문헌 1) KR 10-2020-0073720 A (Patent Document 1) KR 10-2020-0073720 A
본 발명은 종래기술의 문제를 해결하기 위한 것으로 냉동 사이클 없이 물의 증발 잠열과 열교환을 활용하여 공기를 충분히 시원하게 냉방시키는 냉방 시스템을 제공하는 것을 목적으로 한다. The present invention is intended to solve problems in the prior art and aims to provide a cooling system that sufficiently cools the air by utilizing the latent heat of evaporation of water and heat exchange without a refrigeration cycle.
본 발명은 위와 같은 목적을 해결하기 위하여 다음과 같은 냉방 시스템을 제공한다. The present invention provides the following cooling system to solve the above objectives.
본 발명은 일실시예에서, 하우징; 상기 하우징 내에 형성되는 제 1 및 제 2 유로; 상기 제 1 유로 상에 배치되는 제 1 열교환기; 상기 제 1 열교환기의 상부에 배치되며 상기 제 1 열교환기로 물을 제공하는 주수 장치; 상기 제 2 유로 상에 배치되는 제 2 열교환기; 및 상기 제 2 유로 상에서 상기 제 2 열교환기를 통과한 공기가 통과하도록 배치되는 기액 접촉부;를 포함하며, 상기 제 1 열교환기와 상기 제 2 열교환기는 냉각 유체가 순환하도록 서로 연결되며, 상기 제 1 열교환기와 상기 제 2 열교환기 사이에는 냉각 유체를 순환시키는 펌프가 배치되는 냉방 시스템을 제공한다. In one embodiment, the present invention includes a housing; first and second flow paths formed within the housing; a first heat exchanger disposed on the first flow path; a watering device disposed above the first heat exchanger and providing water to the first heat exchanger; a second heat exchanger disposed on the second flow path; and a gas-liquid contact portion disposed on the second flow path to allow air passing through the second heat exchanger to pass through, wherein the first heat exchanger and the second heat exchanger are connected to each other so that the cooling fluid circulates, and the first heat exchanger and the second heat exchanger are connected to each other so that the cooling fluid circulates. A cooling system is provided in which a pump for circulating cooling fluid is disposed between the second heat exchangers.
일실시예에서, 상기 기액 접촉부는 상부에 위치하는 물 공급부 및 상기 물 공급부와 연결되며 상기 물공급부에서 공급된 물이 아래로 내려오면서 공기와 접촉하도록 구성되는 접촉본체를 포함할 수 있다. In one embodiment, the gas-liquid contact unit may include a water supply unit located at the top and a contact body connected to the water supply unit and configured to contact air as the water supplied from the water supply unit moves downward.
일실시예에서, 상기 기액 접촉부와 상기 제 1 열교환기를 통과한 물을 수집하는 탱크; 및 상기 탱크에 저장된 물을 상기 주수 장치와 상기 기액 접촉부로 제공하는 펌프;를 더 포함할 수 있으며, 상기 제 1 및 제 2 유로는 상기 하우징 내부에 배치되는 분리벽에 의해서 형성되며, 상기 제 2 유로를 구획하는 분리벽에서 상기 기액 접촉부의 하부에는 관통홀이 형성되며, 상기 관통홀 하부에는 상기 탱크가 배치되며, 상기 관통홀에 상기 기액 접촉부의 단부가 위치될 수 있다. In one embodiment, a tank for collecting water that has passed through the gas-liquid contact portion and the first heat exchanger; and a pump that provides water stored in the tank to the water injection device and the gas-liquid contact portion, wherein the first and second flow paths are formed by a separation wall disposed inside the housing, and the second A through hole is formed in the lower part of the gas-liquid contact part in the dividing wall dividing the flow path, the tank is disposed in the lower part of the through hole, and an end of the gas-liquid contact part may be located in the through hole.
일실시예에서, 상기 제 1 열교환기는 나란히 배치되는 제 1 헤드와 제 2 헤드 및 상기 제 1 헤드와 제 2 헤드를 연결하는 복수의 튜브로 형성되는 층이 복수 층 적층된 구조를 가질 수 있다. In one embodiment, the first heat exchanger may have a structure in which multiple layers formed of a first head and a second head arranged side by side and a plurality of tubes connecting the first head and the second head are stacked.
일실시에에서, 상기 접촉본체 하부에는 물 저장부가 배치되며, 상기 물 저장부는 상기 주수 장치와 연결되어, 상기 물 저장부에 저장된 물이 상기 주수 장치를 통하여 상기 제 1 열교환기로 제공될 수 있다. In one embodiment, a water storage unit is disposed below the contact body, and the water storage unit is connected to the water injection device, so that water stored in the water storage unit can be provided to the first heat exchanger through the water injection device.
일실시예에서, 상기 물 공급부는 물 공급원과 연결되며, 상기 제 1 열교환기 하부에는 상기 제 1 열교환기를 통과한 물이 저장되는 탱크가 배치되며, 상기 탱크는 배수부를 포함할 수 있다. In one embodiment, the water supply unit is connected to a water supply source, and a tank storing water that has passed through the first heat exchanger is disposed below the first heat exchanger, and the tank may include a drain unit.
일실시예에서, 상기 제 2 열교환기는 핀-튜브 열교환기이며, 상기 기액 접촉부는 상기 제 1 열교환기보다 높은 위치에 배치될 수 있다. In one embodiment, the second heat exchanger is a fin-tube heat exchanger, and the gas-liquid contact portion may be disposed at a higher position than the first heat exchanger.
본 발명은 일실시예에서, 하우징; 상기 하우징 내에서 형성되는 복수의 유로; 복수의 건채널과 복수의 습채널이 교대로 반복 배치되는 본체 및 상기 본체 상부에서 상기 습채널로 물을 공급하는 주수 장치를 포함하여 건채널을 통과하는 공급되는 공기를 냉각하는 증발냉각기; 및 상기 증발냉각기의 건채널 후단에 배치되는 기액 접촉부;를 포함하며, 상기 유로는 상기 습채널을 통과하는 제 1 유로, 상기 건채널과 상기 기액 접촉부를 순차적으로 통과하는 제 2 유로를 포함하는 자연 냉방 시스템을 제공한다. In one embodiment, the present invention includes a housing; a plurality of flow paths formed within the housing; An evaporative cooler that includes a main body in which a plurality of dry channels and a plurality of wet channels are alternately arranged and a watering device that supplies water from the upper part of the main body to the wet channels, and cools the supplied air passing through the dry channels; and a gas-liquid contact portion disposed at the rear end of the dry channel of the evaporative cooler, wherein the flow path includes a first flow path passing through the wet channel and a second flow path sequentially passing through the dry channel and the gas-liquid contact portion. Provides a cooling system.
일실시예에서, 상기 기액 접촉부는 상부에서 물공급부와 연결되어, 상기 물공급부에서 공급된 물이 아래로 내려오면서 공기와 접촉하도록 구성될 수 있다. In one embodiment, the gas-liquid contact unit may be connected to a water supply unit at the top, so that water supplied from the water supply unit contacts air as it moves downward.
일실시예에서, 상기 기액 접촉부를 통과하는 제 3 유로를 더 포함하며, 상기 제 3 유로는 상기 제 2 유로보다 상기 기액 접촉부의 상부를 통과하게 구성될 수 있다. In one embodiment, it further includes a third flow path passing through the gas-liquid contact part, and the third flow path may be configured to pass through an upper part of the gas-liquid contact part than the second flow path.
일실시예에서, 상기 하우징은 상기 제 2 유로와 상기 제 3 유로를 구분하되, 상기 기액 접촉부가 통과하는 관통홈을 포함하는 분리벽을 포함하며, 상기 기액 접촉부는 상하 방향으로 연장하며, 상기 관통홈을 통과하여 배치될 수 있다. In one embodiment, the housing includes a separation wall that separates the second flow path and the third flow path and includes a through groove through which the gas-liquid contact part passes, and the gas-liquid contact part extends in a vertical direction, and the through groove passes through the gas-liquid contact part. It can be placed through the groove.
일실시예에서, 상기 기액 접촉부의 하부에 구비된 물 수집부의 물이 상기 주수 장치로 공급되도록 상기 물 수집부와 상기 주수 장치 사이에 배치되는 제 1 펌프를 더 포함할 수 있다. In one embodiment, a first pump disposed between the water collection unit and the water injection device may be further included to supply water from the water collection unit provided below the gas-liquid contact unit to the water injection device.
일실시예에서, 상기 제 1 유로는 제 1 유입부, 상기 증발냉각기의 습채널 및 제 1 유출부를 통과하게 형성되며, 상기 제 2 유로는 제 2 유입부, 상기 증발냉각기의 건채널, 상기 기액 접촉부, 및 제 2 유출부를 통과하게 형성될 수 있다. In one embodiment, the first flow path is formed to pass through a first inlet, a wet channel of the evaporative cooler, and a first outlet, and the second flow path is formed through a second inlet, a dry channel of the evaporative cooler, and the gas-liquid. It may be formed to pass through the contact portion and the second outlet portion.
본 발명은 물의 증발 잠열과 열교환을 활용하여 적은 에너지원으로 공기를 충분히 시원하게 냉방시키는 냉방 시스템을 제공할 수 있다. The present invention can provide a cooling system that sufficiently cools the air with a small energy source by utilizing the latent heat of evaporation of water and heat exchange.
도 1 은 종래의 자연 냉방 시스템의 개략도이다. 1 is a schematic diagram of a conventional natural cooling system.
도 2 는 본 발명의 제 1 실시예에 따른 자연 냉방 시스템의 개략도이다. Figure 2 is a schematic diagram of a natural cooling system according to a first embodiment of the present invention.
도 3 은 도 2 의 자연 냉방 시스템에서의 온도 변화를 보이는 개략도이다. Figure 3 is a schematic diagram showing temperature changes in the natural cooling system of Figure 2.
도 4 는 본 발명의 제 2 실시예에 따른 자연 냉방 시스템의 개략도이다. Figure 4 is a schematic diagram of a natural cooling system according to a second embodiment of the present invention.
도 5 는 본 발명의 제 3 실시예에 따른 자연 냉방 시스템의 개략도이다. Figure 5 is a schematic diagram of a natural cooling system according to a third embodiment of the present invention.
도 6 은 본 발명의 제 4 실시예에 따른 자연 냉방 시스템의 개략도이다. Figure 6 is a schematic diagram of a natural cooling system according to a fourth embodiment of the present invention.
* 부호의 설명 ** Explanation of symbols *
1: 자연 냉방 시스템 10: 기액 접촉부1: Natural cooling system 10: Gas-liquid contact part
11: 물 공급부 12: 접촉본체11: water supply part 12: contact body
13: 물 저장부 21, 24: 유입부13: water storage part 21, 24: inlet part
22, 23, 25: 유출부 31, 32, 33: 팬22, 23, 25: outlet 31, 32, 33: fan
50: 하우징 51, 52: 분리벽50: housing 51, 52: separating wall
60: 증발냉각기 61: 본체60: Evaporative cooler 61: Main body
62: 주수 장치 70, 70a, 70b: 펌프62: watering device 70, 70a, 70b: pump
80: 제 1 열교환기 81: 주수 장치80: first heat exchanger 81: water injection device
85: 제 2 열교환기 WS: 물 공급원85: second heat exchanger WS: water source
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다. 또한, 본 명세서에서, '상', '상부', '상면', '하', '하부', '하면', '측면' 등의 용어는 도면을 기준으로 한 것이며, 실제로는 소자나 구성요소가 배치되는 방향에 따라 달라질 수 있을 것이다.Hereinafter, with reference to the attached drawings, preferred embodiments will be described in detail so that those skilled in the art can easily practice the present invention. However, when describing preferred embodiments of the present invention in detail, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. In addition, the same symbols are used throughout the drawings for parts that perform similar functions and actions. In addition, in this specification, terms such as 'upper', 'top', 'upper surface', 'lower', 'lower', 'lower surface', 'side', etc. are based on the drawings and are actually elements or components. It may vary depending on the direction in which it is placed.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, throughout the specification, when a part is said to be 'connected' to another part, this does not only mean 'directly connected', but also 'indirectly connected' with another element in between. Includes. In addition, 'including' a certain component means that other components may be further included rather than excluding other components, unless specifically stated to the contrary.
도 2 에는 본 발명의 제 1 실시예에 따른 자연 냉방 시스템의 개략도가 도시되어 있다. Figure 2 shows a schematic diagram of a natural cooling system according to a first embodiment of the present invention.
도 2 에서 보이듯이, 본 발명의 일실시예에 따른 자연 냉방 시스템(1)은 하우징(50), 상기 하우징(50) 내에서 형성되는 복수의 유로(F1, F2, F3); 복수의 건채널과 복수의 습채널이 교대로 반복 배치되는 본체(61) 및 상기 본체(61) 상부에서 상기 습채널로 물을 공급하는 주수 장치(62)를 포함하여 건채널을 통과하는 공급되는 공기를 냉각하는 증발냉각기(60); 및 상기 증발냉각기(60)의 건채널 후단에 배치되는 기액 접촉부(10);를 포함한다.As shown in Figure 2, the natural cooling system 1 according to an embodiment of the present invention includes a housing 50, a plurality of flow paths F1, F2, and F3 formed within the housing 50; It includes a main body 61 in which a plurality of dry channels and a plurality of wet channels are alternately arranged, and a watering device 62 that supplies water from the upper part of the main body 61 to the wet channel. An evaporative cooler (60) that cools the air; and a gas-liquid contact portion 10 disposed at the rear end of the gun channel of the evaporative cooler 60.
하우징(50) 내부에는 분리벽(51, 52)이 형성되어, 각 유로(F1, F2, F3)가 혼합되지 않게 공기 흐름을 분리시키며, 하우징(50)에는 복수의 유입구(21, 24)와 복수의 유출구(22, 23, 25)가 형성된다. Separation walls 51 and 52 are formed inside the housing 50 to separate air flows so that the flow paths F1, F2 and F3 do not mix, and the housing 50 has a plurality of inlets 21 and 24 and A plurality of outlets 22, 23, and 25 are formed.
상기 증발냉각기(60)의 습채널의 하부에는 탱크(63)가 구비되며, 기액 접촉부(10)의 하부에는 물 저장부(13)가 구비된다. 상기 탱크(63)와 물 저장부(130)는 펌프(70)와 연결되며, 상기 펌프(70)는 상기 탱크(63) 및 물 저장부(13)에서 수집된 물을 기액 접촉부(10)의 물 공급부(11) 및 상기 주수 장치(61)로 순환시킨다. 물이 순환되는 순환 경로 상에는 필터가 구비될 수 있다.A tank 63 is provided at the bottom of the wet channel of the evaporative cooler 60, and a water storage portion 13 is provided at the bottom of the gas-liquid contact portion 10. The tank 63 and the water storage unit 130 are connected to a pump 70, and the pump 70 transfers water collected from the tank 63 and the water storage unit 13 to the gas-liquid contact unit 10. It is circulated to the water supply unit 11 and the water injection device 61. A filter may be provided on the circulation path through which water circulates.
상기 유로는(F1, F2, F3) 상기 증발냉각기(60)의 습채널을 통과하는 제 1 유로(F1), 상기 증발냉각기(60)의 건채널과 상기 기액 접촉부(10)를 순차적으로 통과하는 제 2 유로(F2) 및 상기 제 2 유로보다 상기 기액 접촉부(10)의 접촉본체(12)의 상부를 통과하게 구성되는 제 3 유로(F3)를 포함한다. The flow paths (F1, F2, F3) sequentially pass through the first flow path (F1) passing through the wet channel of the evaporative cooler 60, the dry channel of the evaporative cooler 60, and the gas-liquid contact portion 10. It includes a second flow path (F2) and a third flow path (F3) configured to pass through an upper part of the contact body 12 of the gas-liquid contact portion 10 rather than the second flow path.
기액 접촉부(10)는 상부에 위치하는 물 공급부(11), 접촉본체(12) 및 하부에 위치하는 물 저장부(13)를 포함하며, 상기 접촉본체(12)는 물이 표면을 따라 흐르게 하는 플라스틱 및/또는 종이 재질의 구조물일 수 있으며, 예를 들면 문터스사의 셀덱(Celdek)일 수 있다. 기액 접촉부(10)는 물 공급부(11)로 공급된 물이 접촉본체(12)를 따라서 흘러내릴때 상기 접촉본체(12)를 통과하는 공기에 의해서 기화하면서 통과하는 공기를 냉각하는 구성이다. The gas-liquid contact part 10 includes a water supply part 11 located at the top, a contact body 12, and a water storage part 13 located at the bottom, and the contact body 12 allows water to flow along the surface. It may be a structure made of plastic and/or paper, for example, Celdek from Munters. The gas-liquid contact unit 10 is configured to cool the passing air by vaporizing it when the water supplied to the water supply unit 11 flows down the contact main body 12.
물 공급부(11)는 공급된 물을 접촉본체(12)로 물을 분사 혹은 흘려주며, 접촉본체(12)에서는 공기 흐름이 통과하며, 접촉본체(12)의 표면으로는 물이 타고 흐르면서 통과하는 공기와 물의 열교환이 이루어진다. 물의 자중에 의해서 접촉본체(12)를 타고 흘러내린 물은 물 저장부(13)로 수집되며, 물 저장부(13)에 수집된 물은 펌프(70)에 의해서 다시 물 공급부(11)로 공급된다. 기액 접촉부(10)에서는 증발이 발생하기 때문에, 물 공급이 필요하며, 물 공급은 물 저장부(13)에서 이루어질 수도 있지만, 이 실시예에서는 증발냉각기(60) 하부의 탱크(60)에 물공급원(WS)가 연결되어 자연 냉방 시스템(1)으로의 물이 공급된다. The water supply unit 11 sprays or flows the supplied water to the contact body 12, and the air flow passes through the contact body 12, and the water flows through the surface of the contact body 12. Heat exchange between air and water takes place. The water that flows down the contact body (12) due to its own weight is collected into the water storage unit (13), and the water collected in the water storage unit (13) is supplied back to the water supply unit (11) by the pump (70). do. Since evaporation occurs in the gas-liquid contact part 10, water supply is necessary, and water supply may be provided from the water storage part 13, but in this embodiment, the water supply source is provided in the tank 60 below the evaporative cooler 60. (WS) is connected to supply water to the natural cooling system (1).
이 실시예에서, 상기 기액 접촉부(10)로는 2개의 공기 흐름이 통과하는데, 상부에서는 제 3 유로(F3)가 통과하며, 하부에서는 제 2 유로(F2)가 통과한다. 제 3 유로(F3)가 기액 접촉부(10)를 통과하면서 상기 기액 접촉부(10)의 물이 증발하며, 증발 잠열에 의해서 제 3 유로(F3)를 통과하는 공기가 냉각되며, 그와 동시에 기액 접촉부(10)의 해당 영역을 통과하는 물 역시 냉각된다. In this embodiment, two air flows pass through the gas-liquid contact portion 10: a third flow path (F3) passes through the upper part, and a second flow path (F2) passes through the lower part. As the third flow path (F3) passes through the gas-liquid contact part 10, the water in the gas-liquid contact part 10 evaporates, and the air passing through the third flow path (F3) is cooled by the latent heat of evaporation, and at the same time, the gas-liquid contact part 10 The water passing through that region in (10) is also cooled.
제 2 유로(F2)는 제 3 유로(F3)에 의해서 1차 냉각된 물과 접촉하면서 다시 증발을 발생시키며, 증발 잠열에 의해서 제 2 유로(F2)를 통과하는 공기가 냉각된다. 이때, 제 2 유로(F2)는 제 3 유로(F3)보다 낮은 온도의 물이 공급되기 때문에 제 2 유로(F2)를 통과하는 공기는 더 낮은 온도가 될 수 있다. The second flow path (F2) causes evaporation again as it comes into contact with the water that has been primarily cooled by the third flow path (F3), and the air passing through the second flow path (F2) is cooled by the latent heat of evaporation. At this time, because water of a lower temperature is supplied to the second flow path (F2) than to the third flow path (F3), the air passing through the second flow path (F2) may have a lower temperature.
한편, 제 2 유로(F2)는 상기 기액 접촉부(10)를 통과하기 전에 증발냉각기(60)의 건채널을 통과하면서 1차 냉각된다. 증발냉각기(60)의 구성의 경우에 배경기술의 특허문헌 1 에 알려져 있기 때문에, 구성 자체에 대한 설명은 생략하도록 하며, 증발냉각기(60)는 건채널과 습채널이 교차 형성되는 본체(61)와 상기 본체(61) 상부에서 상기 습채널로 물을 분사 혹은 공급하는 주수 장치(62)를 포함한다. Meanwhile, the second flow path (F2) undergoes primary cooling while passing through the dry channel of the evaporative cooler (60) before passing through the gas-liquid contact portion (10). Since the configuration of the evaporative cooler 60 is known in Patent Document 1 of the background technology, description of the configuration itself will be omitted. The evaporative cooler 60 has a main body 61 in which dry channels and wet channels are alternately formed. and a watering device 62 that sprays or supplies water from the upper part of the main body 61 to the wet channel.
증발냉각기(60)에서 상기 습채널로는 제 1 유로(F1)가 통과하며, 따라서, 상기 주수 장치(62)를 통하여 습채널로 공급된 물은 제 1 유로(F1)를 통과하는 공기에 의해서 증발이 이루어지면서 온도가 떨어지게 되며, 건채널을 통과하는 제 2 유로(F2)의 공기가 냉각될 수 있다. 증발냉각기(60)에서는 건채널과 습채널이 분리되어 있기 때문에, 건채널을 통과하는 공기는 습도의 증가 없이 온도만 하락하게 된다.In the evaporative cooler 60, the first flow path (F1) passes through the wet channel, and therefore, the water supplied to the wet channel through the water pouring device 62 is caused by the air passing through the first flow path (F1). As evaporation occurs, the temperature drops, and the air in the second flow path (F2) passing through the gun channel can be cooled. Since the dry channel and wet channel are separated in the evaporative cooler 60, the temperature of the air passing through the dry channel decreases without increasing humidity.
제 1 유로(F1)는 유입구(21)를 통하여 외기(OA)가 들어오며, 증발냉각기(60)의 주수 장치(62) 및 본체(61)의 습채널을 통과하고, 유출구(22)를 통하여 배기(EA)된다. 제 1 유로(F1)의 공기 흐름은 상기 유출구(22)에 배치되는 팬(31)에 의해서 형성되지만, 팬(31)의 위치는 유출구(22)로 제한되는 것은 아니며, 제 1 유로(F1) 상의 어느 위치에 형성되더라도 무방하다. The first flow path (F1) receives outside air (OA) through the inlet 21, passes through the water injection device 62 of the evaporative cooler 60 and the wet channel of the main body 61, and flows through the outlet 22. It is exhausted (EA). The air flow in the first flow path (F1) is formed by the fan 31 disposed at the outlet 22, but the position of the fan 31 is not limited to the outlet 22, and the first flow path F1 It may be formed anywhere on the image.
제 2 유로(F2)는 상기 유입구(21)와는 다른 유입구(24)를 통하여 외기(OA)가 들어오며, 증발냉각기(60)의 건채널을 통과하고, 기액 접촉부(10)를 통과한 후 실내 혹은 원하는 공간으로 급기(SA)된다. 제 2 유로(F2)의 공기 흐름은 급기(SA)용 유출구(25)에 배치되는 팬(33)에 의해서 형성되지만, 팬(33)의 위치는 상기 유출구(25)로 제한되는 것은 아니며 제 2 유로(F2)상의 어느 위치에 형성되더라도 무방하다. 예를 들어 팬(33)은 증발냉각기(60)의 건채널과 상기 기액 접촉부(10) 사이에 위치될 수도 있다. In the second flow path (F2), outside air (OA) enters through an inlet (24) different from the inlet (21), passes through the dry channel of the evaporative cooler (60), passes through the gas-liquid contact portion (10), and then enters the indoor air. Or, the air is supplied (SA) to the desired space. The air flow in the second flow path (F2) is formed by the fan 33 disposed at the outlet 25 for supply air (SA), but the position of the fan 33 is not limited to the outlet 25 and the second It may be formed anywhere on the flow path (F2). For example, the fan 33 may be located between the dry channel of the evaporative cooler 60 and the gas-liquid contact portion 10.
제 3 유로(F3)는 제 1 유로(F1)와 동일한 유입구(21)를 통하여 외기(OA)가 들어오며, 상기 기액 접촉부(10)를 통과한 후 유출구(23)를 통하여 배기(EA)된다. 제 3 유로(F3)의 공기 흐름은 상기 유출구(23)에 배치되는 팬(32)에 의해서 형성되지만 팬(32)의 위치는 제 1 및 제 2 유로(F1, F2)와 동일하게 제 3 유로(F3) 상의 어느 위치에 형성되더라도 무방하다. Outside air (OA) enters the third flow path (F3) through the same inlet (21) as the first flow path (F1), passes through the gas-liquid contact portion (10), and is then exhausted (EA) through the outlet (23). . The air flow of the third flow path (F3) is formed by the fan 32 disposed at the outlet 23, but the position of the fan 32 is the same as that of the first and second flow paths F1 and F2. (F3) It may be formed at any position on the image.
제 1 실시예에서 제 1 유로(F1)와 제 3 유로(F3)는 동일한 유입구(21)를 통하여 하우징(50) 내부로 유입된 후, 분리벽(51)에 의해서 분기된다. 분리벽(51)은 관통홈(51a)을 포함하며, 상기 기액 접촉부(10)가 상기 관통홈(51a)을 통과한다. 상기 기액 접촉부(10)는 상기 분리벽(51)의 관통홈(51a)를 통과하여 배치됨으로써 상기 제 3 유로(F3)와 상기 제 2 유로(F2)에 걸쳐서 위치할 수 있으며, 제 3 유로(F3)의 공기로 인하여 상기 기액 접촉부(10)를 흐르는 물의 온도가 낮아진 상태로 상기 제 2 유로(F2)의 공기와 만날 수 있어서, 제 2 유로(F2)를 통과하는 공기의 온도를 충분히 낮출 수 있다. In the first embodiment, the first flow path (F1) and the third flow path (F3) are introduced into the housing 50 through the same inlet 21 and then branched by the separation wall 51. The separation wall 51 includes a through groove 51a, and the gas-liquid contact portion 10 passes through the through groove 51a. The gas-liquid contact portion 10 can be positioned across the third flow path F3 and the second flow path F2 by passing through the through groove 51a of the separation wall 51, and the third flow path ( Due to the air in F3), the temperature of the water flowing through the gas-liquid contact portion 10 can meet the air in the second flow path (F2) in a lowered state, so that the temperature of the air passing through the second flow path (F2) can be sufficiently lowered. there is.
도 3 에는 도 2 의 실시예의 제 2 유로(F2)의 각 지점에서의 온도를 습공기선도에 도시한 도면이다. FIG. 3 is a diagram illustrating the temperature at each point of the second flow path F2 in the embodiment of FIG. 2 on a psychrometric diagram.
대한민국에서 여름 날의 외기(A)온도를 대략 35℃, 습도 40%, 습구온도 24℃ 정도로 봤을 때, 기액 접촉부(10)만 통과하는 경우에 습구 온도를 따라서 온도가 변화하기 때문에 낮아질 수 있는 온도는 제한적이다. Considering that the outdoor air (A) temperature on a summer day in Korea is approximately 35℃, humidity 40%, and wet bulb temperature 24℃, when only the gas-liquid contact part 10 passes, the temperature changes along the wet bulb temperature, so the temperature can be lowered. is limited.
하지만, 이 실시예에서, 1차적으로 외기(A)는 증발냉각기(60)에 의해서 공기에 포함된 수분량에 변화없이 냉각되므로, 절대 습도가 유지된 상태에서 온도가 낮아지게 되어, B 지점으로 이동되게 된다. B 지점의 경우에 예를 들어 온도 27℃, 습도 63.5%, 습구온도 21.8℃ 정도가 된다. 증발냉각기(60)를 통과한 후의 공기는 기액 접촉부(10)를 통과하게 되며, 습구 온도가 유지된 상태에서 온도가 한번 더 낮아질 수 있으며, C 지점에서는 대략 온도 23.5℃, 습도 85%, 습구온도 21.7℃ 정도가 되며, 자연 냉방 시스템(1)을 통하여 충분히 낮은 온도, 대략 23℃까지 낮춰진 공기를 제공할 수 있으며, 이정도 수준의 온도는 실질적인 냉방 효과를 제공하여 더운 여름날에도 큰 전력 소모 없이 축사 뿐만 아니라 가정 혹은 각종 공간에 냉기를 제공하는 것이 가능하다. However, in this embodiment, the outside air (A) is primarily cooled by the evaporative cooler 60 without changing the amount of moisture contained in the air, so the temperature is lowered while the absolute humidity is maintained, and the temperature moves to point B. It will happen. In the case of point B, for example, the temperature is 27℃, humidity is 63.5%, and wet bulb temperature is about 21.8℃. The air after passing through the evaporative cooler 60 passes through the gas-liquid contact part 10, and the temperature can be lowered once more while the wet bulb temperature is maintained. At point C, the temperature is approximately 23.5°C, humidity 85%, and wet bulb temperature. It is about 21.7℃, and through the natural cooling system (1), air can be provided at a sufficiently low temperature, approximately 23℃. This level of temperature provides a practical cooling effect, allowing the barn to be run without significant power consumption even on hot summer days. In addition, it is possible to provide cold air to the home or various spaces.
특히, 통상 여름날에도 수돗물의 경우에 25℃ 정도를 유지하는데, 이 실시예에서는 제 3 유로(F3)의 공기를 통하여 수돗물의 온도가 낮아진 상태에서 기액 접촉부(10)에서 상기 제 2 유로(F2)와 접촉하기 때문에, 물의 증발로 인한 온도 하락 외에 온도가 낮아진 수돗물과의 열교환으로 인한 온도 하락까지 있어서, 상기 개략적 온도 보다 더 낮은 온도까지 달성 가능하다. In particular, tap water is maintained at about 25°C even on a normal summer day, but in this embodiment, the temperature of the tap water is lowered through the air in the third flow path (F3) and the gas-liquid contact portion 10 flows through the second flow path (F2). Because of the contact, in addition to the temperature drop due to evaporation of water, there is also a temperature drop due to heat exchange with tap water at a lower temperature, so it is possible to achieve a temperature lower than the above approximate temperature.
따라서, 이 실시예는 낮은 온도까지 냉방이 필요하지 않은 경우에는 냉동 싸이클을 돌리지 않고도 냉기를 제공할 수 있어서, 에너지 효율을 향상시킬 수 있으며, 배기되는 공기도 온도가 높아지지 않아서 열배출이 없다는 장점도 있다. Therefore, this embodiment can provide cold air without running a refrigeration cycle when cooling to a low temperature is not required, thereby improving energy efficiency, and the temperature of the exhausted air does not increase, so there is no heat emission. There is also.
도 4 에는 본 발명의 제 2 실시예의 개략도가 도시되어 있다. Figure 4 shows a schematic diagram of a second embodiment of the present invention.
도 4 에서 보이듯이, 본 발명의 제 2 실시예에 따른 자연 냉방 시스템(1)은 하우징(50), 상기 하우징(50) 내에서 형성되는 복수의 유로(F1, F2); 복수의 건채널과 복수의 습채널이 교대로 반복 배치되는 본체(61) 및 상기 본체(61) 상부에서 상기 습채널로 물을 공급하는 주수 장치(62)를 포함하여 건채널을 통과하는 공급되는 공기를 냉각하는 증발냉각기(60); 및 상기 증발냉각기(60)의 건채널 후단에 배치되는 기액 접촉부(10);를 포함한다.As shown in Figure 4, the natural cooling system 1 according to the second embodiment of the present invention includes a housing 50, a plurality of flow paths F1 and F2 formed within the housing 50; It includes a main body 61 in which a plurality of dry channels and a plurality of wet channels are alternately arranged, and a watering device 62 that supplies water from the upper part of the main body 61 to the wet channel. An evaporative cooler (60) that cools the air; and a gas-liquid contact portion 10 disposed at the rear end of the gun channel of the evaporative cooler 60.
하우징(50) 내부에는 분리벽(51, 52)이 형성되어, 각 유로(F1, F2)가 혼합되지 않게 공기 흐름을 분리시키며, 하우징(50)에는 복수의 유입구(21, 24)와 복수의 유출구(22, 25)가 형성된다. Separation walls 51 and 52 are formed inside the housing 50 to separate air flows so that the flow paths F1 and F2 do not mix, and the housing 50 has a plurality of inlets 21 and 24 and a plurality of inlets 21 and 24. Outlets 22 and 25 are formed.
기액 접촉부(10)는 상부에 위치하는 물 공급부(11), 접촉본체(12) 및 하부에 위치하는 물 저장부(13)를 포함하며, 상기 접촉본체(12)는 물이 표면을 따라 흐르게 하는 플라스틱 및/또는 종이 재질의 구조물일 수 있다. 기액 접촉부(10)의 물 공급부(11)는 물 공급원(WS)과 연결되어 있으며, 물 공급원(WS)의 물이 물 공급부(11)를 거쳐 접촉본체(12)를 따라서 흘러내릴 때 상기 접촉본체(12)를 통과하는 공기에 의해서 기화하면서 통과하는 공기를 냉각한다. The gas-liquid contact part 10 includes a water supply part 11 located at the top, a contact body 12, and a water storage part 13 located at the bottom, and the contact body 12 allows water to flow along the surface. It may be a structure made of plastic and/or paper. The water supply part 11 of the gas-liquid contact part 10 is connected to the water source WS, and when water from the water source WS flows down along the contact main body 12 through the water supply part 11, the contact main body 12 The air passing through (12) evaporates and cools the passing air.
물 공급부(11)는 공급된 물을 접촉본체(12)로 물을 분사 혹은 흘려주며, 접촉본체(12)에서는 공기 흐름이 통과하며, 접촉본체(12)의 표면으로는 물이 타고 흐르면서 통과하는 공기와 물의 열교환이 이루어진다. 물의 자중에 의해서 접촉본체(12)를 타고 흘러내린 물은 물 저장부(13)로 수집된다.The water supply unit 11 sprays or flows the supplied water to the contact body 12, and the air flow passes through the contact body 12, and the water flows through the surface of the contact body 12. Heat exchange between air and water takes place. The water that flows down the contact body (12) due to its own weight is collected into the water storage unit (13).
물 저장부(13)에는 펌프(70)가 연결되며, 물 저장부(13)에서 수집된 물은 펌프(70)를 통하여 증발냉각기(60)의 주수 장치(61)로 공급된다. A pump 70 is connected to the water storage unit 13, and the water collected in the water storage unit 13 is supplied to the water injection device 61 of the evaporative cooler 60 through the pump 70.
증발냉각기(60)는 제 1 실시예의 증발냉각기(60)와 동일하며, 주수 장치(61)및 본체(62)를 포함한다. 본체(62)는 번갈아 배치되는 건채널과 습채널을 포함하며, 주수 장치(61)에서 분사 혹은 공급되는 물이 습채널을 통과하는 공기와 만나면서 온도가 낮아지고, 이렇게 낮아진 습채널의 공기와 건채널의 공기가 열교환하면서 건채널의 공기는 절대 습도에 변화 없이 온도가 낮아질 수 있다. The evaporative cooler 60 is the same as the evaporative cooler 60 of the first embodiment and includes a water injection device 61 and a main body 62. The main body 62 includes dry channels and wet channels arranged alternately, and as the water sprayed or supplied from the watering device 61 meets the air passing through the wet channels, the temperature is lowered, and the air and dry channels in the lowered wet channels are combined. As the air in the channel exchanges heat, the temperature of the air in the gun channel can be lowered without changing the absolute humidity.
상기 증발냉각기(60)의 습채널의 하부에는 탱크(63)가 구비되며, 상기 탱크(63)로 수집된 물은 배수될 수 있다. 제 2 실시예에서는 물은 순환되지 않으며, 상기 기액 접촉부(10)로 공급된 물은 공기와 열교환 및 증발한 후 펌프(70)에 의해서 증발냉각기(60)의 주수 장치(61)로 공급되고, 증발냉각기(60)를 통과한 후에는 탱크(63)에서 배수된다. A tank 63 is provided at the bottom of the wet channel of the evaporative cooler 60, and water collected in the tank 63 can be drained. In the second embodiment, water is not circulated, and the water supplied to the gas-liquid contact part 10 exchanges heat with air and evaporates, and then is supplied to the water injection device 61 of the evaporative cooler 60 by the pump 70, After passing through the evaporative cooler 60, it is drained from the tank 63.
제 2 실시예에서는 물이 순환되지 않아서 세균 번식이나, 이물 오염으로 인한 염려가 없으며, 각 구성, 즉, 증발냉각기(60)와 기액 접촉부(10)에 새로운 물을 공급하여 위생면에서 이점을 제공할 수 있으며, 수돗물의 물 온도를 활용하여 냉방에 이용할 수 있다. In the second embodiment, water is not circulated, so there is no concern about bacterial growth or foreign matter contamination, and new water is supplied to each component, that is, the evaporative cooler 60 and the gas-liquid contact part 10, providing an advantage in terms of hygiene. It can be used for cooling by utilizing the temperature of tap water.
상기 유로는(F1, F2) 상기 증발냉각기(60)의 습채널을 통과하는 제 1 유로(F1) 및 상기 증발냉각기(60)의 건채널과 상기 기액 접촉부(10)를 순차적으로 통과하는 제 2 유로(F2)를 포함한다. The flow paths (F1, F2) include a first flow path (F1) passing through the wet channel of the evaporative cooler 60, and a second flow path sequentially passing through the dry channel of the evaporative cooler 60 and the gas-liquid contact portion 10. Includes Euro (F2).
증발냉각기(60)에서 상기 습채널로는 제 1 유로(F1)가 통과하며, 따라서, 상기 주수 장치(62)를 통하여 습채널로 공급된 물은 제 1 유로(F1)를 통과하는 공기에 의해서 증발이 이루어지면서 온도가 떨어지게 된다. 따라서, 습채널의 온도가 낮아짐에 따라 습채널과 열교환하는 건채널을 통과하는 제 2 유로(F2)의 공기가 냉각될 수 있다. 증발냉각기(60)에서는 건채널과 습채널이 분리되어 있기 때문에, 건채널을 통과하는 공기는 습도의 증가 없이 온도만 하락하게 된다.In the evaporative cooler 60, the first flow path (F1) passes through the wet channel, and therefore, the water supplied to the wet channel through the water pouring device 62 is caused by the air passing through the first flow path (F1). As evaporation occurs, the temperature drops. Accordingly, as the temperature of the wet channel decreases, the air in the second flow path F2 passing through the dry channel that exchanges heat with the wet channel may be cooled. Since the dry channel and wet channel are separated in the evaporative cooler 60, the temperature of the air passing through the dry channel decreases without increasing humidity.
제 1 유로(F1)는 유입구(21)를 통하여 외기(OA)가 들어오며, 증발냉각기(60)의 주수 장치(62) 및 본체(61)의 습채널을 통과하고, 유출구(22)를 통하여 배기(EA)된다. 제 1 유로(F1)의 공기 흐름은 상기 유출구(22)에 배치되는 팬(31)에 의해서 형성되지만, 팬(31)의 위치는 유출구(22)로 제한되는 것은 아니며, 제 1 유로(F1) 상의 어느 위치에 형성되더라도 무방하다. The first flow path (F1) receives outside air (OA) through the inlet 21, passes through the water injection device 62 of the evaporative cooler 60 and the wet channel of the main body 61, and flows through the outlet 22. It is exhausted (EA). The air flow in the first flow path (F1) is formed by the fan 31 disposed at the outlet 22, but the position of the fan 31 is not limited to the outlet 22, and the first flow path F1 It may be formed anywhere on the image.
제 2 유로(F2)는 상기 유입구(21)와는 다른 유입구(24)를 통하여 외기(OA)가 들어오며, 증발냉각기(60)의 건채널을 통과하고, 기액 접촉부(10)를 통과한 후 실내 혹은 원하는 공간으로 급기(SA)된다. 제 2 유로(F2)의 공기 흐름은 급기용 유출구(25)에 배치되는 팬(33)에 의해서 형성되지만, 팬(33)의 위치는 상기 유출구(25)로 제한되는 것은 아니며 제 2 유로(F2)상의 어느 위치에 형성되더라도 무방하다. In the second flow path (F2), outside air (OA) enters through an inlet (24) different from the inlet (21), passes through the dry channel of the evaporative cooler (60), passes through the gas-liquid contact portion (10), and then enters the indoor air. Or, the air is supplied (SA) to the desired space. The air flow in the second flow path (F2) is formed by the fan 33 disposed at the air supply outlet 25, but the position of the fan 33 is not limited to the outlet 25 and the second flow path F2 ) may be formed at any position on the surface.
제 2 실시예에서는 기액 접촉부(10)에서 증발 잠열로 인하여 온도가 낮아진 물을 증발냉각기(60)의 주수 장치(61)로 공급하여, 그에 따라서, 증발냉각기(60)의 습채널에서 증발 잠열 뿐만 아니라 물-공기 열교환으로 인하여 습채널의 온도가 제 1 실시예에 비하여 더 낮아질 수 있으며, 따라서 건채널을 통과하는 공기의 온도를 제 1 실시예보다 더욱 낮게 제공할 수 있다. 따라서, 제 2 유로(F2) 상에서 A 지점과 B지점에서의 온도 차가 더 커질 수 있다. In the second embodiment, water whose temperature has been lowered due to the latent heat of evaporation from the gas-liquid contact portion 10 is supplied to the water injection device 61 of the evaporative cooler 60, and accordingly, not only the latent heat of evaporation is generated in the wet channel of the evaporative cooler 60. In addition, due to water-air heat exchange, the temperature of the wet channel can be lowered compared to the first embodiment, and thus the temperature of the air passing through the dry channel can be provided even lower than that of the first embodiment. Accordingly, the temperature difference between points A and B on the second flow path F2 may become larger.
또한, 제 2 유로(F2)에서 증발냉각기(60)를 통과한 공기는 기액 접촉부(10)을 통과하면서 다시 한 번 온도가 떨어질 수 있으며, 그에 따라서 유출구(25)를 통하여 급기(SA)되는 공기는 충분히 낮아진 온도로 제공될 수 있다. In addition, the temperature of the air that has passed through the evaporative cooler 60 in the second flow path (F2) may drop again as it passes through the gas-liquid contact portion 10, and accordingly, the air supplied (SA) through the outlet 25 can be provided at a sufficiently low temperature.
제 2 실시예의 경우에 물이 재활용되지는 않아서 물 소모량이 다소 증대될 수 있지만, 기액 접촉부(10)에서 낮아진 물을 증발냉각기(60)에서 재활용함으로써, 각각 운용하는 경우보다는 물 소모량이 적을 뿐만 아니라, 낮은 급기 온도를 제공할 수 있으며, 관리면에서도 물이 저장되지 않고 배출됨으로써 세균등의 번식의 위험이 낮아져 관리가 용이하다. In the case of the second embodiment, water is not recycled, so water consumption may slightly increase, but by recycling the water lowered in the gas-liquid contact part 10 in the evaporative cooler 60, not only is water consumption less than when operating separately. , it can provide a low supply air temperature, and in terms of management, it is easy to manage because the risk of breeding bacteria, etc. is lowered by discharging water rather than storing it.
제 2 실시예의 경우에는 제 1 실시예와 비교했을 때, A 지점에서 B 지점 사이의 온도 차이는 상기 제 1 실시예보다 크고, B 지점에서 C 지점 사이의 온도 차이는 상기 제 1 실시예보다 작으나, 전체적으로 봤을 때는 동일 수준의 냉방을 제공할 수 있다. In the case of the second embodiment, compared to the first embodiment, the temperature difference between point A and point B is larger than that of the first embodiment, and the temperature difference between point B and point C is smaller than that of the first embodiment. , overall, it can provide the same level of cooling.
따라서, 제 1 실시예와 마찬가지로 제 2 실시예의 자연 냉방 시스템 역시 낮은 온도까지 냉방이 필요하지 않은 경우에는 냉동 싸이클을 돌리지 않고도 냉기를 제공할 수 있어서, 에너지 효율을 향상시킬 수 있으며, 배기되는 공기도 온도가 높아지지 않아서 열배출이 없다는 장점도 있다. Therefore, like the first embodiment, the natural cooling system of the second embodiment can also provide cold air without running a refrigeration cycle when cooling to a low temperature is not required, thereby improving energy efficiency and reducing exhaust air. There is also the advantage that there is no heat emission as the temperature does not rise.
도 5 에는 본 발명의 제 3 실시예가 도시되어 있다. Figure 5 shows a third embodiment of the present invention.
도 5 에서 보이듯이, 본 발명의 일실시예에 따른 자연 냉방 시스템(1)은 하우징(50), 상기 하우징(50) 내에서 형성되는 복수의 유로(F1, F2); 상기 복수의 유로(F1, F2)에 배치되는 제 1 및 제 2 열교환기(80, 85) 및 상기 제 1 및 제 2 열교환기(80, 85)로 냉매를 순환시키는 펌프(70a); 상기 제 1 열교환기(80)로 물을 제공하는 주수 모듈(81); 상기 제 2 열교환기(85) 후단에 배치되는 기액 접촉부(10);를 포함한다.As shown in Figure 5, the natural cooling system 1 according to an embodiment of the present invention includes a housing 50, a plurality of flow paths F1 and F2 formed within the housing 50; First and second heat exchangers (80, 85) disposed in the plurality of flow paths (F1, F2) and a pump (70a) for circulating refrigerant to the first and second heat exchangers (80, 85); A water injection module (81) providing water to the first heat exchanger (80); It includes a gas-liquid contact portion 10 disposed at the rear end of the second heat exchanger 85.
하우징(50) 내부에는 분리벽(51, 52)이 형성되어, 각 유로(F1, F2)가 만나지않게 공기 흐름을 분리시키며, 하우징(50)에는 복수의 유입구(21, 24)와 복수의 유출구(22, 25)가 형성된다. Separation walls 51 and 52 are formed inside the housing 50 to separate air flows so that the flow paths F1 and F2 do not meet, and the housing 50 has a plurality of inlets 21 and 24 and a plurality of outlets. (22, 25) is formed.
기액 접촉부(10)는 상부에 위치하는 물 공급부(11) 및 접촉본체(12)를 포함하며, 상기 접촉본체(12)는 물이 표면을 따라 흐르게 하는 플라스틱 및/또는 종이 재질의 구조물일 수 있다. 접촉본체(12)를 통과한 물은 분리벽(52)의 관통공(52a)을 통하여 탱크(83)으로 흘러 내려 수집된다. The gas-liquid contact part 10 includes a water supply part 11 and a contact body 12 located at the top, and the contact body 12 may be a structure made of plastic and/or paper that allows water to flow along the surface. . The water that has passed through the contact body 12 flows down into the tank 83 through the through hole 52a of the separation wall 52 and is collected.
기액 접촉부(10)의 물 공급부(11)는 펌프(70b)와 연결되며, 펌프(70b)는 하우징(50) 하부의 탱크(83)의 물을 기액 접촉부(10)로 공급한다. 물이 물 공급부(11)를 거쳐 접촉본체(12)를 따라서 흘러내릴때 상기 접촉본체(12)를 통과하는 공기에 의해서 기화하면서 통과하는 공기를 냉각한다. The water supply part 11 of the gas-liquid contact part 10 is connected to the pump 70b, and the pump 70b supplies water from the tank 83 under the housing 50 to the gas-liquid contact part 10. When water flows down along the contact body 12 through the water supply unit 11, it is vaporized by the air passing through the contact body 12 and cools the passing air.
제 3 실시예에서는 제 1 열교환기(80), 제 2 열교환기(85) 및 제 1 열교환기(80)와 제 2 열교환기(85)를 순환하는 냉각 유체를 이동시키기 위한 펌프(70a)를 포함한다. 제 1 열교환기(80)의 경우에 상부에 주수 장치(81)가 배치되어, 상기 제 1 열교환기(80)를 통과하는 냉각 유체를 주수 장치(81)에서 분사/공급된 물과 접촉하면서 온도가 낮아질 수 있다.In the third embodiment, the first heat exchanger 80, the second heat exchanger 85, and a pump 70a for moving the cooling fluid circulating between the first heat exchanger 80 and the second heat exchanger 85 Includes. In the case of the first heat exchanger 80, a water injection device 81 is disposed at the top, and the cooling fluid passing through the first heat exchanger 80 is brought into contact with water sprayed/supplied from the water injection device 81 to change the temperature. may be lowered.
제 1 열교환기(80)는 주수 장치(81)에서 제공된 물의 증발에 의한 증발 잠열을 활용하여 냉각시키는 것으로, 주수 장치(81)에서 공급되는 물의 온도보다 낮은 온도로 냉각시키는 것이 가능하다. 주수 장치(81)에서 제 1 열교환기(80)로 뿌려진 물은 증발되면서 제 1 열교환기(80)의 냉각 유체를 냉각시키나, 남은 물의 경우에 제 1 열교환기(80)의 하부에 위치하는 탱크(83)에 수집된다. The first heat exchanger 80 cools by utilizing the latent heat of evaporation from the evaporation of water provided from the water pouring device 81, making it possible to cool the water to a temperature lower than the temperature of the water supplied from the water pouring device 81. The water sprayed from the water injection device 81 to the first heat exchanger 80 evaporates and cools the cooling fluid of the first heat exchanger 80, but in the case of the remaining water, it is stored in a tank located below the first heat exchanger 80. Collected in (83).
제 1 열교환기(80)는 양쪽에 배치되는 헤드(80a, 80c) 쌍과 상기 헤드(80a, 80c) 쌍 사이에 복수의 튜브(80b)가 헤드(80a, 80c))를 연결하는 구조가 다층으로 적층되어 형성되며, 튜브(80b) 사이에는 핀들이 연결되어 접촉 면적을 증대시킨다.The first heat exchanger 80 has a multi-layer structure in which a pair of heads (80a, 80c) disposed on both sides and a plurality of tubes (80b) connect the heads (80a, 80c) between the pair of heads (80a, 80c). It is formed by stacking, and fins are connected between the tubes 80b to increase the contact area.
적층된 헤드(80a)는 서로 연결되며, 최상층의 일측 헤드(80a)로 공급되는 냉각 유체는 튜브(80b)를 타고 타측 헤드(80c)로 갔다가 아래 층의 타측 헤드(80c)로 내려가고 다시 튜브(80b)를 타고 아래 층의 일측 헤드(80a)로 가능 방식으로 제 1 열교환기(80) 내에서 냉각 유체는 다층을 통과하면서 방향이 전환되면서 통과하는 공기 및 물과 열교환할 수 있는 구조이나, 이에 제한되는 것은 아니며, 제 1 유로(F1)의 공기와 주수 장치(81)에서 분사되는 물과 충분히 접촉될 수 있다면 다른 구조도 적용가능하다. The stacked heads (80a) are connected to each other, and the cooling fluid supplied to one head (80a) of the uppermost layer goes to the other head (80c) through the tube (80b), then goes down to the other head (80c) of the lower layer, and then through the tube again. In the first heat exchanger (80), the cooling fluid passes through the multi-layer and changes direction to exchange heat with the air and water passing through the head (80a) of the lower layer through (80b). It is not limited to this, and other structures can be applied as long as they can sufficiently contact the air in the first flow path F1 and the water sprayed from the water injection device 81.
상기 탱크(83)에 수집된 물은 펌프(70b)에 의해서 다시 주수 장치(81)로 공급될 수 있으며, 상기 탱크(83)에서 펌프(70b)와 연결되는 부분에는 필터(미도시)가 배치되어 순환하는 물의 이물을 제거할 수 있다. 탱크(83)는 주수 장치(81)에서 분사되어 제 1 열교환기(80)에서 증발되지 않은 물과 상기 기액 접촉부(10)를 통과하면서 증발되지 않은 물이 모이게 되는데, 증발되지 않은 물의 경우에도 증발하는 물의 증발 잠열에 의해서 온도가 낮아지게 되므로, 탱크(83)의 물의 온도는 물 공급원(WS)에서 공급된 물의 온도 보다 높지 않고 낮게 유지될 수 있다. The water collected in the tank 83 can be supplied back to the water injection device 81 by the pump 70b, and a filter (not shown) is placed in the tank 83 connected to the pump 70b. It can remove foreign substances from circulating water. The tank 83 is sprayed from the water injection device 81 and collects water that has not been evaporated in the first heat exchanger 80 and water that has not been evaporated as it passes through the gas-liquid contact part 10. Even in the case of the water that has not been evaporated, it is evaporated. Since the temperature is lowered by the latent heat of evaporation of the water, the temperature of the water in the tank 83 can be maintained lower than the temperature of the water supplied from the water source WS.
한편, 탱크(83)는 물 공급원(WS)과 연결되며, 증발에 의해서 줄어드는 물의 양을 지속적으로 보충할 수 있다. Meanwhile, the tank 83 is connected to the water supply source (WS) and can continuously replenish the amount of water reduced by evaporation.
제 2 열교환기(85)는 공기와 냉각 유체의 열교환을 수행하는 열교환기로 예를 들면 핀-튜브 열교환기일 수 있다.The second heat exchanger 85 is a heat exchanger that performs heat exchange between air and cooling fluid and may be, for example, a fin-tube heat exchanger.
제 1 열교환기(80)를 통과한 냉각 유체는 주수 장치(81)에서 제공된 물에 의해서 온도가 낮아지게 되며, 펌프(70a)를 통하여 제 2 열교환기(85)로 공급된다. 제 2 열교환기(85)에서는 낮은 온도의 물과 상대적으로 높은 온도의 외기와 열교환하면서 공기의 열을 흡수, 즉 제 2 유로(F2)를 통과하는 공기의 온도를 공기가 포함하고 있는 수분량의 변화 없이 낮추게 된다. The temperature of the cooling fluid that has passed through the first heat exchanger (80) is lowered by the water provided from the water injection device (81), and is supplied to the second heat exchanger (85) through the pump (70a). The second heat exchanger (85) absorbs heat from the air while exchanging heat with low-temperature water and relatively high-temperature outside air, that is, the temperature of the air passing through the second flow path (F2) changes the amount of moisture contained in the air. It will be lowered without it.
제 1 및 제 2 열교환기(80, 85)를 순환하는 냉각 유체는 물일 수 있으나, 물로 제한되는 것은 아니며, 다른 냉각 유체를 사용하는 것도 가능함은 물론이다. 제 1 및 제 2 열교환기(80, 85) 및 펌프(70a)로 이루어지는 순환 구조에서 냉각 유체의 상변화를 이용하는 것은 아니며, 펌프(70a)는 냉각 유체의 순환을 위한 것이다. The cooling fluid circulating through the first and second heat exchangers 80 and 85 may be water, but is not limited to water, and of course it is also possible to use other cooling fluids. The circulation structure consisting of the first and second heat exchangers 80 and 85 and the pump 70a does not utilize the phase change of the cooling fluid, and the pump 70a is for circulation of the cooling fluid.
제 1 유로(F1)는 유입구(21)를 통하여 외기(OA)가 들어오며, 제 1 열교환기(80)을 통과하고, 유출구(22)를 통하여 배기(EA)된다. 제 1 유로(F1)의 공기 흐름은 상기 유출구(22)에 배치되는 팬(31)에 의해서 형성되지만, 팬(31)의 위치는 유출구(22)로 제한되는 것은 아니며, 제 1 유로(F1) 상의 어느 위치에 형성되더라도 무방하다. The first flow path (F1) receives outside air (OA) through the inlet 21, passes through the first heat exchanger 80, and is exhausted (EA) through the outlet 22. The air flow in the first flow path (F1) is formed by the fan 31 disposed at the outlet 22, but the position of the fan 31 is not limited to the outlet 22, and the first flow path F1 It may be formed anywhere on the image.
제 2 유로(F2)는 상기 유입구(21)와는 다른 유입구(24)를 통하여 외기(OA)가 들어오며, 제 2 열교환기(85)를 통과하고, 기액 접촉부(10)를 통과한 후 실내 혹은 원하는 공간으로 급기(SA)된다. 제 2 유로(F2)의 공기 흐름은 급기(SA)용 유출구(25)에 배치되는 팬(33)에 의해서 형성되지만, 팬(33)의 위치는 상기 유출구(25)로 제한되는 것은 아니며 제 2 유로(F2)상의 어느 위치에 형성되더라도 무방하다. In the second flow path (F2), outside air (OA) enters through an inlet (24) different from the inlet (21), passes through the second heat exchanger (85), passes through the gas-liquid contact portion (10), and then enters the room or Air is supplied (SA) to the desired space. The air flow in the second flow path (F2) is formed by the fan 33 disposed at the outlet 25 for supply air (SA), but the position of the fan 33 is not limited to the outlet 25 and the second It may be formed anywhere on the flow path (F2).
제 3 실시예에서도 제 1 및 제 2 실시예와 유사하게 제 2 유로(F2)를 따라서 외부로부터 공급된 공기는 절대 습도에 변화없이 1차적으로 온도가 하강되고, 그 후에 습구 온도가 유지된 상태에서 온도가 한번 더 하강된다. 따라서, 제 3 실시예의 자연 냉방 시스템(1)의 경우에도 낮은 에너지 소모로 충분히 낮은, 예를 들면 23℃ 정도의 공기를 급기(SA)로 제공할 수 있다. In the third embodiment, similar to the first and second embodiments, the temperature of the air supplied from the outside along the second flow path F2 is primarily lowered without a change in absolute humidity, and the wet bulb temperature is maintained thereafter. The temperature drops once more. Therefore, even in the case of the natural cooling system 1 of the third embodiment, sufficiently low air, for example, about 23°C, can be provided as supply air (SA) with low energy consumption.
따라서, 낮은 온도가 필요하지는 않지만 대량의 공기가 필요한 경우에 제 3 실시예의 자연 냉방 시스템(1)을 적용하는 것이 가능하다. Therefore, it is possible to apply the natural cooling system 1 of the third embodiment in cases where a low temperature is not required but a large amount of air is required.
도 6 에는 본 발명의 제 4 실시예의 자연 냉방 시스템(1)의 개략도가 도시되어 있다. Figure 6 shows a schematic diagram of a natural cooling system 1 of a fourth embodiment of the present invention.
제 4 실시예의 경우에 제 3 실시예와 제 1 열교환기(80), 제 2 열교환기(85), 및 펌프(70a)는 동일하며, 제 1 및 제 2 유로(F1, F2)가 통과하는 구성 및 하우징(50)의 유입구(21, 24) 및 유출구(22, 25)의 구성은 동일하므로, 차이가 있는 구성을 중심으로 설명하도록 한다. In the case of the fourth embodiment, the first heat exchanger 80, the second heat exchanger 85, and the pump 70a are the same as those of the third embodiment, and the first and second flow paths F1 and F2 pass through Since the configuration and configuration of the inlets 21 and 24 and the outlets 22 and 25 of the housing 50 are the same, the description will focus on the different configurations.
제 4 실시예에서 기액 접촉부(10)는 상부에 위치하는 물 공급부(11), 접촉본체(12) 및 하부에 위치하는 물 저장부(13)를 포함하며, 기액 접촉부(10)는 물 공급부(11)로 공급된 물이 접촉본체(12)를 따라서 흘러내릴 때 상기 접촉본체(12)를 통과하는 공기에 의해서 기화하면서 통과하는 공기를 냉각하는 구성이다. In the fourth embodiment, the gas-liquid contact part 10 includes a water supply part 11 located at the top, a contact body 12, and a water storage part 13 located at the bottom, and the gas-liquid contact part 10 includes a water supply part ( When the water supplied to 11) flows down the contact body 12, it is vaporized by the air passing through the contact body 12 and cools the passing air.
물 공급부(11)는 물 공급원(WS)과 연결되며, 물 저장부(13)는 펌프(70b)와 연결된다. 펌프(70b)는 물 저장부(13)의 물을 주수 장치(81)로 공급한다. The water supply unit 11 is connected to the water supply source WS, and the water storage unit 13 is connected to the pump 70b. The pump 70b supplies water from the water storage unit 13 to the water injection device 81.
주수 장치(81)는 상기 물 저장부(13)의 물을 공급받아서 상기 제 1 열교환기(80)로 분사한다. 주수 장치(81)로 공급되는 물은 상기 접촉본체(12)를 통과한 물로 물 공급원(WS)보다 온도가 더 낮을 수 있으므로, 제 4 실시예는 동일한 조건에서 제 1 열교환기(80)에서 제 3 실시예보다 더 낮은 온도로 냉각 유체를 냉각할 수 있다.The water injection device 81 receives water from the water storage unit 13 and sprays it into the first heat exchanger 80. Since the water supplied to the water injection device 81 is water that has passed through the contact body 12 and may have a lower temperature than the water source WS, the fourth embodiment is the water supplied to the water injection device 81 in the first heat exchanger 80 under the same conditions. The cooling fluid can be cooled to a lower temperature than in Example 3.
주수 장치(83)에서 제 1 열교환기(80)로 분사된 물 중 제 1 열교환기(80)에서 증발되지 않은 물은 탱크(83)에 수집되며, 이렇게 수집된 물은 배수된다. Among the water sprayed from the water injection device 83 to the first heat exchanger 80, water that has not evaporated in the first heat exchanger 80 is collected in the tank 83, and the collected water is drained.
제 4 실시예의 경우에 물을 순환시키지 않으므로 물의 순환을 위하여 필요한 구성이 불필요하며 관리가 용이하다. 특히, 저장된 물에서 발생될 수 있는 세균, 이물질에 의한 오염의 염려가 없으며, 펌프(70b)의 용량도 제 3 실시예보다 작을 수 있어서 펌프(70b)에 들어가는 에너지가 절약될 수 있다. 다만, 제 3 실시예보다는 물의 사용량은 증가될 수 있다. In the case of the fourth embodiment, since water is not circulated, the configuration required for water circulation is unnecessary and management is easy. In particular, there is no concern about contamination by bacteria or foreign substances that may be generated from stored water, and the capacity of the pump 70b can be smaller than that of the third embodiment, so the energy input to the pump 70b can be saved. However, the amount of water used may be increased compared to the third embodiment.
이상에서는 본 발명의 실시예를 중심으로 설명하였으나, 본 발명은 이에 제한되는 것은 아니며 다양하게 변형되어 실시될 수 있음은 물론이다. The above description has focused on embodiments of the present invention, but the present invention is not limited thereto and can of course be implemented in various modifications.

Claims (18)

  1. 하우징;housing;
    상기 하우징 내에 형성되는 제 1 및 제 2 유로; first and second flow paths formed within the housing;
    상기 제 1 유로 상에 배치되는 제 1 열교환기;a first heat exchanger disposed on the first flow path;
    상기 제 1 열교환기의 상부에 배치되며 상기 제 1 열교환기로 물을 제공하는 주수 장치; a watering device disposed above the first heat exchanger and providing water to the first heat exchanger;
    상기 제 2 유로 상에 배치되는 제 2 열교환기; 및 a second heat exchanger disposed on the second flow path; and
    상기 제 2 유로 상에서 상기 제 2 열교환기를 통과한 공기가 통과하도록 배치되는 기액 접촉부;를 포함하며, It includes a gas-liquid contact portion disposed on the second flow path through which air passing through the second heat exchanger passes,
    상기 제 1 열교환기와 상기 제 2 열교환기는 냉각 유체가 순환하도록 서로 연결되며, 상기 제 1 열교환기와 상기 제 2 열교환기 사이에는 냉각 유체를 순환시키는 펌프가 배치되는 냉방 시스템.The first heat exchanger and the second heat exchanger are connected to each other so that cooling fluid circulates, and a pump for circulating cooling fluid is disposed between the first heat exchanger and the second heat exchanger.
  2. 제 1 항에 있어서, According to claim 1,
    상기 기액 접촉부는 상부에 위치하는 물 공급부 및 상기 물 공급부와 연결되며 상기 물공급부에서 공급된 물이 아래로 내려오면서 공기와 접촉하도록 구성되는 접촉본체를 포함하는 냉방 시스템. The air-liquid contact part includes a water supply part located at the top and a contact body connected to the water supply part and configured to contact air as the water supplied from the water supply part moves downward.
  3. 제 1 항에 있어서, According to claim 1,
    상기 기액 접촉부와 상기 제 1 열교환기를 통과한 물을 수집하는 탱크; 및a tank that collects water that has passed through the gas-liquid contact portion and the first heat exchanger; and
    상기 탱크에 저장된 물을 상기 주수 장치와 상기 기액 접촉부로 제공하는 펌프;를 더 포함하는 냉방 시스템. A pump that supplies water stored in the tank to the water injection device and the gas-liquid contact portion.
  4. 제 3 항에 있어서, According to claim 3,
    상기 제 1 및 제 2 유로는 상기 하우징 내부에 배치되는 분리벽에 의해서 형성되며, The first and second flow paths are formed by a separation wall disposed inside the housing,
    상기 제 2 유로를 구획하는 분리벽에서 상기 기액 접촉부의 하부에는 관통홀이 형성되며, 상기 관통홀 하부에는 상기 탱크가 배치되며, 상기 관통홀에 상기 기액 접촉부의 단부가 위치되는 냉방 시스템.A cooling system in which a through hole is formed in a lower part of the gas-liquid contact part in the dividing wall dividing the second flow path, the tank is disposed in the lower part of the through hole, and an end of the gas-liquid contact part is located in the through hole.
  5. 제 1 항에 있어서, According to claim 1,
    상기 제 1 열교환기는 나란히 배치되는 제 1 헤드와 제 2 헤드 및 상기 제 1 헤드와 제 2 헤드를 연결하는 복수의 튜브로 형성되는 층이 복수 층 적층된 구조를 가지는 냉방 시스템.The first heat exchanger is a cooling system having a structure in which a plurality of layers are stacked, including a first head and a second head arranged side by side and a plurality of tubes connecting the first head and the second head.
  6. 제 2 항에 있어서, According to claim 2,
    상기 접촉본체 하부에는 물 저장부가 배치되며, A water storage portion is disposed at the bottom of the contact body,
    상기 물 저장부는 상기 주수 장치와 연결되어, 상기 물 저장부에 저장된 물이 상기 주수 장치를 통하여 상기 제 1 열교환기로 제공되는 냉방 시스템. The water storage unit is connected to the water injection device, and the water stored in the water storage unit is provided to the first heat exchanger through the water injection device.
  7. 제 6 항에 있어서, According to claim 6,
    상기 물 공급부는 물 공급원과 연결되며, The water supply unit is connected to a water supply source,
    상기 제 1 열교환기 하부에는 상기 제 1 열교환기를 통과한 물이 저장되는 탱크가 배치되며, 상기 탱크는 배수부를 포함하는 냉방 시스템.A cooling system in which a tank storing water that has passed through the first heat exchanger is disposed below the first heat exchanger, and the tank includes a drain portion.
  8. 제 6 항에 있어서, According to claim 6,
    상기 제 2 열교환기는 핀-튜브 열교환기이며, The second heat exchanger is a fin-tube heat exchanger,
    상기 기액 접촉부는 상기 제 1 열교환기보다 높은 위치에 배치되는 냉방 시스템.A cooling system in which the gas-liquid contact portion is disposed at a higher position than the first heat exchanger.
  9. 하우징;housing;
    상기 하우징 내에서 형성되는 복수의 유로;a plurality of flow paths formed within the housing;
    복수의 건채널과 복수의 습채널이 교대로 반복 배치되는 본체 및 상기 본체 상부에서 상기 습채널로 물을 공급하는 주수 장치를 포함하여 건채널을 통과하는 공급되는 공기를 냉각하는 증발냉각기; 및An evaporative cooler that includes a main body in which a plurality of dry channels and a plurality of wet channels are alternately arranged and a watering device that supplies water from the upper part of the main body to the wet channels, and cools the supplied air passing through the dry channels; and
    상기 증발냉각기의 건채널 후단에 배치되는 기액 접촉부;를 포함하며, It includes a gas-liquid contact portion disposed at the rear end of the gun channel of the evaporative cooler,
    상기 유로는 상기 습채널을 통과하는 제 1 유로, 상기 건채널과 상기 기액 접촉부를 순차적으로 통과하는 제 2 유로를 포함하는 냉방 시스템. The flow path is a cooling system including a first flow path passing through the wet channel and a second flow path sequentially passing through the dry channel and the gas-liquid contact portion.
  10. 제 9 항에 있어서, According to clause 9,
    상기 기액 접촉부는 상부에서 물공급부와 연결되어, 상기 물공급부에서 공급된 물이 아래로 내려오면서 공기와 접촉하도록 구성되는 냉방 시스템.The air-liquid contact part is connected to a water supply part at the top, and the water supplied from the water supply part comes down and comes into contact with air.
  11. 제 10 항에 있어서, According to claim 10,
    상기 기액 접촉부를 통과하는 제 3 유로를 더 포함하며, It further includes a third flow path passing through the gas-liquid contact portion,
    상기 제 3 유로는 상기 제 2 유로보다 상기 기액 접촉부의 상부를 통과하게 구성되는 냉방 시스템. The third flow path is a cooling system configured to pass through an upper part of the gas-liquid contact part than the second flow path.
  12. 제 11 항에 있어서, According to claim 11,
    상기 제 1 내지 제 3 유로로 외기가 유입되게 구성되는 냉방 시스템. A cooling system configured to allow external air to flow into the first to third passages.
  13. 제 12 항에 있어서, According to claim 12,
    상기 하우징은 상기 제 2 유로와 상기 제 3 유로를 구분하되, 상기 기액 접촉부가 통과하는 관통홈을 포함하는 분리벽을 포함하며,The housing includes a separation wall that separates the second flow path and the third flow path and includes a through groove through which the gas-liquid contact part passes,
    상기 기액 접촉부는 상하 방향으로 연장하며, 상기 관통홈을 통과하여 배치되는 냉방 시스템.A cooling system wherein the gas-liquid contact portion extends in a vertical direction and is disposed through the through groove.
  14. 제 11 항에 있어서, According to claim 11,
    상기 습채널의 하부에 구비되는 탱크; 및 A tank provided below the wet channel; and
    상기 탱크와 상기 주수 장치 및 상기 기액 접촉부 사이에서 상기 탱크의 물을 상기 주수 장치 및 기액 접촉부로 공급하는 펌프를 더 포함하는 냉방 시스템.A cooling system further comprising a pump between the tank, the water injection device, and the gas-liquid contact portion to supply water from the tank to the water injection device and the gas-liquid contact portion.
  15. 제 10 항에 있어서, According to claim 10,
    상기 기액 접촉부의 하부에 구비된 물 수집부의 물이 상기 주수 장치로 공급되도록 상기 물 수집부와 상기 주수 장치 사이에 배치되는 제 1 펌프를 더 포함하는 냉방 시스템. The cooling system further includes a first pump disposed between the water collection unit and the water injection device to supply water from the water collection unit provided below the gas-liquid contact portion to the water injection device.
  16. 제 15 항에 있어서,According to claim 15,
    상기 습채널의 하부에 구비되는 탱크; 및 A tank provided below the wet channel; and
    상기 탱크와 상기 기액 접촉부 사이에서 상기 탱크의 물을 상기 주수 장치 및 기액 접촉부로 공급하는 제 2 펌프를 더 포함하는 냉방 시스템.A cooling system further comprising a second pump between the tank and the gas-liquid contact portion to supply water from the tank to the water injection device and the gas-liquid contact portion.
  17. 제 16 항에 있어서, According to claim 16,
    상기 제 1 및 제 2 유로에는 외기가 유입되게 구성되는 냉방 시스템.A cooling system configured to allow outside air to flow into the first and second flow paths.
  18. 제 17 항에 있어서,According to claim 17,
    상기 제 1 유로는 제 1 유입부, 상기 증발냉각기의 습채널 및 제 1 유출부를 통과하게 형성되며, The first flow path is formed to pass through a first inlet, a wet channel of the evaporative cooler, and a first outlet,
    상기 제 2 유로는 제 2 유입부, 상기 증발냉각기의 건채널, 상기 기액 접촉부, 및 제 2 유출부를 통과하게 형성되는 냉방 시스템. The second flow path is formed to pass through a second inlet, a dry channel of the evaporative cooler, the gas-liquid contact part, and a second outlet.
PCT/KR2023/005659 2022-04-26 2023-04-26 Cooling system WO2023211141A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220051628A KR20230151822A (en) 2022-04-26 2022-04-26 Natural Cooling System
KR1020220051629A KR20230151823A (en) 2022-04-26 2022-04-26 Cooling System
KR10-2022-0051629 2022-04-26
KR10-2022-0051628 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023211141A1 true WO2023211141A1 (en) 2023-11-02

Family

ID=88519174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005659 WO2023211141A1 (en) 2022-04-26 2023-04-26 Cooling system

Country Status (1)

Country Link
WO (1) WO2023211141A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478767A (en) * 1980-02-22 1984-10-23 Toshiba Corporation Air cooling device
US4827733A (en) * 1987-10-20 1989-05-09 Dinh Company Inc. Indirect evaporative cooling system
US8490422B2 (en) * 2009-04-26 2013-07-23 Alaa Abdulkareem AL WATBAN Evaporative air cooler with multi stages cooling and or heating with or without cooling coil
JP2018526611A (en) * 2015-09-10 2018-09-13 マンターズ コーポレイションMunters Corporation Method and apparatus for minimizing water using an evaporative cooling device
KR20210128525A (en) * 2020-04-16 2021-10-27 한국생산기술연구원 Indirect evaporative cooling device combined with evaporator and complex cooling method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478767A (en) * 1980-02-22 1984-10-23 Toshiba Corporation Air cooling device
US4827733A (en) * 1987-10-20 1989-05-09 Dinh Company Inc. Indirect evaporative cooling system
US8490422B2 (en) * 2009-04-26 2013-07-23 Alaa Abdulkareem AL WATBAN Evaporative air cooler with multi stages cooling and or heating with or without cooling coil
JP2018526611A (en) * 2015-09-10 2018-09-13 マンターズ コーポレイションMunters Corporation Method and apparatus for minimizing water using an evaporative cooling device
KR20210128525A (en) * 2020-04-16 2021-10-27 한국생산기술연구원 Indirect evaporative cooling device combined with evaporator and complex cooling method using the same

Similar Documents

Publication Publication Date Title
WO2012169713A1 (en) Air conditioner with a cooling module
US6434963B1 (en) Air cooling/heating apparatus
CN110191619B (en) Modularized air supply air-conditioning system suitable for indirect evaporation natural cooling of data center
US20120167610A1 (en) Indirect air-side economizer for removing heat from enclosed spaces with high internal heat generation
WO2011019137A2 (en) Water purifier with ice maker
WO2021172882A1 (en) Air-conditioning device
WO2012148111A2 (en) Apparatus and method for evaporation cooling a cooling fluid
WO2013125774A1 (en) Cold storage heat exchanger
CN111447787A (en) Evaporative natural cooling air conditioning system based on data center machine room
WO2020139004A1 (en) Cooling tower for reducing white smoke
CN110414028B (en) Coupling design of data center buildings using indirect evaporative cooling units
WO2018135850A1 (en) Waste heat recovery type hybrid heat pump system
WO2012002698A2 (en) Heat exchanger
WO2022085879A1 (en) Heat exchanger for exhaust heat recovery in integrated ghp
WO2017043806A1 (en) Evaporative cooler and operating method for evaporative cooler
WO2023211141A1 (en) Cooling system
WO2012165684A1 (en) Solar hot water supply system also used for cooling
WO2022265140A1 (en) Localized data center cooling system provided with free cooling chiller
CN211406657U (en) Heat pipe type backboard heat dissipation device
WO2010058978A2 (en) Regenerative evaporative cooler, cooling system and core module thereof
WO2010050663A1 (en) Hybrid heat pump style air condition system
NO174174B (en) Cooling and freezing facilities
WO2010134719A2 (en) Vehicle air-conditioning apparatus comprising a thermoelectric module
CN210986801U (en) Data center machine room system
WO2021167337A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796784

Country of ref document: EP

Kind code of ref document: A1