WO2023211134A1 - 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2023211134A1
WO2023211134A1 PCT/KR2023/005650 KR2023005650W WO2023211134A1 WO 2023211134 A1 WO2023211134 A1 WO 2023211134A1 KR 2023005650 W KR2023005650 W KR 2023005650W WO 2023211134 A1 WO2023211134 A1 WO 2023211134A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
slot
channel
resource
base station
Prior art date
Application number
PCT/KR2023/005650
Other languages
English (en)
French (fr)
Inventor
김형태
강지원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2023211134A1 publication Critical patent/WO2023211134A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to a wireless communication system, and more specifically, to a method and device for transmitting and receiving channel state information (CSI) in a wireless communication system.
  • CSI channel state information
  • Mobile communication systems were developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded its scope to include not only voice but also data services.
  • the explosive increase in traffic is causing a shortage of resources and users are demanding higher-speed services, so a more advanced mobile communication system is required. there is.
  • next-generation mobile communication system The requirements for the next-generation mobile communication system are to support explosive data traffic, a dramatic increase in transmission rate per user, a greatly increased number of connected devices, very low end-to-end latency, and high energy efficiency.
  • dual connectivity massive MIMO (Massive Multiple Input Multiple Output), full duplex (In-band Full Duplex), NOMA (Non-Orthogonal Multiple Access), and ultra-wideband (Super)
  • massive MIMO Massive Multiple Input Multiple Output
  • full duplex In-band Full Duplex
  • NOMA Non-Orthogonal Multiple Access
  • Super ultra-wideband
  • the technical problem of the present disclosure is to provide a method and device for transmitting and receiving CSI.
  • an additional technical task of the present disclosure is to provide a method and apparatus for determining a CSI reference resource for calculating CSI.
  • an additional technical task of the present disclosure is to provide a method and apparatus for determining channel measurement resources and/or interference measurement resources for deriving channel and/or interference measurements to calculate CSI.
  • a method performed by a user equipment (UE) in a wireless communication system includes: receiving configuration information related to channel state information (CSI) from a base station; Deriving channel measurements and/or interference measurements based on one or more channel measurement resources (CMR) and/or one or more interference measurement resources (IMR) determined based on a CSI reference resource to determine the CSI calculating; And it may include transmitting the CSI to the base station.
  • the CSI reference resource may be determined to be a slot later than the slot in which the CSI is reported in the time domain.
  • a method performed by a base station in a wireless communication system includes: transmitting configuration information related to channel state information (CSI) to a user equipment (UE); And it may include receiving CSI from the UE.
  • the CSI derives channel measurement and/or interference measurement based on one or more channel measurement resources (CMR: channel measurement resource) and/or one or more interference measurement resources (IMR) determined based on the CSI reference resource. is calculated, and the CSI reference resource may be determined to be a slot later than the slot in which the CSI is reported in the time domain.
  • CMR channel measurement resources
  • IMR interference measurement resources
  • the channel aging effect of CSI can be minimized.
  • downlink transmission performance can be improved by inferring/predicting a channel for a time point close to the actual downlink transmission time point.
  • FIG. 1 illustrates the structure of a wireless communication system to which the present disclosure can be applied.
  • FIG. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
  • FIG. 3 illustrates a resource grid in a wireless communication system to which the present disclosure can be applied.
  • FIG. 4 illustrates a physical resource block in a wireless communication system to which the present disclosure can be applied.
  • FIG. 5 illustrates a slot structure in a wireless communication system to which the present disclosure can be applied.
  • Figure 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission and reception method using them.
  • Figure 7 illustrates the classification of artificial intelligence.
  • Figure 8 illustrates a feed-forward neural network
  • Figure 9 illustrates a Recurrent Neural Network.
  • Figure 10 illustrates a convolutional neural network
  • Figure 11 illustrates an auto encoder
  • Figure 12 illustrates a functional framework for AI operation.
  • Figure 13 is a diagram illustrating split AI inference.
  • Figure 14 illustrates the application of a functional framework in a wireless communication system.
  • Figure 15 illustrates the application of a functional framework in a wireless communication system.
  • 16 illustrates the application of a functional framework in a wireless communication system.
  • Figure 17 is a diagram illustrating a method for configuring a CSI reference resource according to an embodiment of the present disclosure.
  • Figure 18 is a diagram illustrating a method for configuring a CSI reference resource according to an embodiment of the present disclosure.
  • Figure 19 illustrates a signaling procedure between a network and a UE for a method of transmitting and receiving channel state information according to an embodiment of the present disclosure.
  • FIG. 20 is a diagram illustrating UE operations for a method for transmitting and receiving channel state information according to an embodiment of the present disclosure.
  • FIG. 21 is a diagram illustrating the operation of a base station in a method for transmitting and receiving channel state information according to an embodiment of the present disclosure.
  • FIG. 22 is a diagram illustrating a block configuration of a wireless communication device according to an embodiment of the present disclosure.
  • a component when a component is said to be “connected,” “coupled,” or “connected” to another component, this is not only a direct connection relationship, but also an indirect connection relationship where another component exists between them. It may also be included. Additionally, in this disclosure, the terms “comprise” or “having” specify the presence of a referenced feature, step, operation, element, and/or component, but may also specify the presence of one or more other features, steps, operations, elements, components, and/or components. It does not rule out the existence or addition of these groups.
  • first”, second, etc. are used only for the purpose of distinguishing one component from another component and are not used to limit the components, and unless specifically mentioned, the terms There is no limitation on the order or importance between them. Accordingly, within the scope of the present disclosure, a first component in one embodiment may be referred to as a second component in another embodiment, and similarly, the second component in one embodiment may be referred to as a first component in another embodiment. It may also be called.
  • This disclosure describes a wireless communication network or wireless communication system, and operations performed in the wireless communication network include controlling the network and transmitting or receiving signals at a device (e.g., a base station) in charge of the wireless communication network. It can be done in the process of receiving, or it can be done in the process of transmitting or receiving signals from a terminal connected to the wireless network to or between terminals.
  • a device e.g., a base station
  • transmitting or receiving a channel includes transmitting or receiving information or signals through the corresponding channel.
  • transmitting a control channel means transmitting control information or signals through the control channel.
  • transmitting a data channel means transmitting data information or signals through a data channel.
  • downlink refers to communication from the base station to the terminal
  • uplink refers to communication from the terminal to the base station
  • DL downlink
  • UL uplink
  • the transmitter may be part of the base station and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal and the receiver may be part of the base station.
  • the base station may be represented as a first communication device
  • the terminal may be represented as a second communication device.
  • a base station (BS) is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), and network (5G).
  • eNB evolved-NodeB
  • gNB Next Generation NodeB
  • BTS base transceiver system
  • AP access point
  • 5G network
  • the terminal may be fixed or mobile, and may include UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), and AMS (Advanced Mobile).
  • UE User Equipment
  • MS Mobile Station
  • UT user terminal
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • AMS Advanced Mobile
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • vehicle RSU (road side unit)
  • robot AI (Artificial Intelligence) module
  • UAV Unmanned Aerial Vehicle
  • AR Algmented Reality
  • VR Virtual Reality
  • CDMA can be implemented with wireless technologies such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), etc.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A (Advanced)/LTE-A pro is an evolved version of 3GPP LTE
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A/LTE-A pro is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
  • LTE refers to technology after 3GPP TS (Technical Specification) 36.xxx Release 8.
  • LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro
  • 3GPP NR refers to technology after TS 38.xxx Release 15.
  • LTE/NR may be referred to as a 3GPP system.
  • “xxx” refers to the standard document detail number.
  • LTE/NR can be collectively referred to as a 3GPP system.
  • terms, abbreviations, etc. used in the description of the present disclosure reference may be made to matters described in standard documents published prior to the present disclosure. For example, you can refer to the following document:
  • TS 36.211 Physical Channels and Modulation
  • TS 36.212 Multiplexing and Channel Coding
  • TS 36.213 Physical Layer Procedures
  • TS 36.300 General Description
  • TS 36.331 Radio Resource Control
  • TS 38.211 physical channels and modulation
  • TS 38.212 multiplexing and channel coding
  • TS 38.213 physical layer procedures for control
  • TS 38.214 physical layer procedures for data
  • TS 38.300 Overall description of NR and NG-RAN (New Generation-Radio Access Network)
  • TS 38.331 Radio Resource Control Protocol Specification
  • channel state information - reference signal resource indicator channel state information - reference signal resource indicator
  • Synchronization signal block (including primary synchronization signal (PSS: primary synchronization signal), secondary synchronization signal (SSS: secondary synchronization signal), and physical broadcast channel (PBCH: physical broadcast channel))
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • NR is an expression representing an example of 5G RAT.
  • the new RAT system including NR uses OFDM transmission method or similar transmission method.
  • the new RAT system may follow OFDM parameters that are different from those of LTE.
  • the new RAT system follows the numerology of existing LTE/LTE-A but can support a larger system bandwidth (for example, 100 MHz).
  • one cell may support multiple numerologies. In other words, terminals operating with different numerologies can coexist within one cell.
  • Numerology corresponds to one subcarrier spacing in the frequency domain.
  • different numerologies can be defined.
  • FIG. 1 illustrates the structure of a wireless communication system to which the present disclosure can be applied.
  • NG-RAN is a NG-Radio Access (NG-RA) user plane (i.e., a new access stratum (AS) sublayer/Packet Data Convergence Protocol (PDCP)/Radio Link Control (RLC)/MAC/ It consists of gNBs that provide PHY) and control plane (RRC) protocol termination for the UE.
  • the gNBs are interconnected through the Xn interface.
  • the gNB is also connected to NGC (New Generation Core) through the NG interface. More specifically, the gNB is connected to the Access and Mobility Management Function (AMF) through the N2 interface and to the User Plane Function (UPF) through the N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • FIG. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
  • numerology can be defined by subcarrier spacing and Cyclic Prefix (CP) overhead.
  • CP Cyclic Prefix
  • multiple subcarrier spacing can be derived by scaling the basic (reference) subcarrier spacing by an integer N (or ⁇ ).
  • N or ⁇
  • the numerology used can be selected independently of the frequency band.
  • various frame structures according to multiple numerologies can be supported.
  • OFDM numerology and frame structures that can be considered in the NR system.
  • Multiple OFDM numerologies supported in the NR system can be defined as Table 1 below.
  • NR supports multiple numerologies (or subcarrier spacing (SCS)) to support various 5G services. For example, if SCS is 15kHz, it supports wide area in traditional cellular bands, and if SCS is 30kHz/60kHz, it supports dense-urban, lower latency. and a wider carrier bandwidth, and when SCS is 60kHz or higher, it supports a bandwidth greater than 24.25GHz to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as two types of frequency ranges (FR1, FR2).
  • FR1 and FR2 can be configured as shown in Table 2 below. Additionally, FR2 may mean millimeter wave (mmW).
  • mmW millimeter wave
  • ⁇ f max 480 ⁇ 10 3 Hz
  • N f 4096.
  • slots are numbered in increasing order of n s ⁇ ⁇ 0,..., N slot subframe, ⁇ -1 ⁇ within a subframe, and within a radio frame. They are numbered in increasing order: n s,f ⁇ ⁇ 0,..., N slot frame, ⁇ -1 ⁇ .
  • One slot consists of consecutive OFDM symbols of N symb slots , and N symb slots are determined according to CP.
  • the start of slot n s ⁇ in a subframe is temporally aligned with the start of OFDM symbol n s ⁇ N symb slot in the same subframe. Not all terminals can transmit and receive at the same time, which means that not all OFDM symbols in a downlink slot or uplink slot can be used.
  • Table 3 shows the number of OFDM symbols per slot (N symb slot ), the number of slots per wireless frame (N slot frame, ⁇ ), and the number of slots per subframe (N slot subframe, ⁇ ) in the general CP.
  • Table 4 represents the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in the extended CP.
  • 1 subframe may include 4 slots.
  • a mini-slot may contain 2, 4, or 7 symbols, or may contain more or fewer symbols.
  • antenna port for example, antenna port, resource grid, resource element, resource block, carrier part, etc. can be considered.
  • resource grid resource element, resource block, carrier part, etc.
  • carrier part etc.
  • the antenna port is defined so that a channel carrying a symbol on the antenna port can be inferred from a channel carrying another symbol on the same antenna port. If the large-scale properties of the channel carrying the symbols on one antenna port can be inferred from the channel carrying the symbols on the other antenna port, the two antenna ports are quasi co-located or QC/QCL. It can be said that they are in a quasi co-location relationship.
  • the wide range characteristics include one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • FIG. 3 illustrates a resource grid in a wireless communication system to which the present disclosure can be applied.
  • the resource grid is composed of N RB ⁇ N sc RB subcarriers in the frequency domain, and one subframe is composed of 14 ⁇ 2 ⁇ OFDM symbols, but is limited to this. It doesn't work.
  • the transmitted signal is described by one or more resource grids consisting of N RB ⁇ N sc RB subcarriers and OFDM symbols of 2 ⁇ N symb ( ⁇ ) .
  • N RB ⁇ N RB max, ⁇ represents the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
  • one resource grid can be set for each ⁇ and antenna port p.
  • Each element of the resource grid for ⁇ and antenna port p is referred to as a resource element and is uniquely identified by an index pair (k,l').
  • l' 0,...,2 ⁇ N symb ( ⁇ ) -1 is the symbol in the subframe. refers to the location of When referring to a resource element in a slot, the index pair (k,l) is used.
  • l 0,...,N symb ⁇ -1.
  • the resource element (k,l') for ⁇ and antenna port p corresponds to the complex value a k,l' (p, ⁇ ) .
  • indices p and ⁇ may be dropped, resulting in the complex value a k,l' (p) or It can be a k,l' .
  • Point A serves as a common reference point of the resource block grid and is obtained as follows.
  • - offsetToPointA for primary cell (PCell: Primary Cell) downlink represents the frequency offset between point A and the lowest subcarrier of the lowest resource block overlapping with the SS/PBCH block used by the terminal for initial cell selection. It is expressed in resource block units assuming a 15kHz subcarrier spacing for FR1 and a 60kHz subcarrier spacing for FR2.
  • - absoluteFrequencyPointA represents the frequency-position of point A expressed as in ARFCN (absolute radio-frequency channel number).
  • Common resource blocks are numbered upward from 0 in the frequency domain for the subcarrier spacing setting ⁇ .
  • the center of subcarrier 0 of common resource block 0 for the subcarrier interval setting ⁇ coincides with 'point A'.
  • the relationship between the common resource block number n CRB ⁇ and the resource elements (k,l) for the subcarrier interval setting ⁇ is given as Equation 1 below.
  • Physical resource blocks are numbered from 0 to N BWP,i size, ⁇ -1 within the bandwidth part (BWP), where i is the number of the BWP.
  • BWP bandwidth part
  • Equation 2 The relationship between physical resource block n PRB and common resource block n CRB in BWP i is given by Equation 2 below.
  • N BWP,i start, ⁇ is the common resource block from which BWP starts relative to common resource block 0.
  • Figure 4 illustrates a physical resource block in a wireless communication system to which the present disclosure can be applied.
  • Figure 5 illustrates a slot structure in a wireless communication system to which the present disclosure can be applied.
  • a slot includes a plurality of symbols in the time domain. For example, in the case of normal CP, one slot includes 7 symbols, but in the case of extended CP, one slot includes 6 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • BWP Bandwidth Part
  • a carrier wave may include up to N (e.g., 5) BWPs. Data communication is performed through an activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol can be mapped.
  • RE resource element
  • the NR system can support up to 400 MHz per one component carrier (CC: Component Carrier). If a terminal operating in such a wideband CC (wideband CC) always operates with the radio frequency (RF) chip for the entire CC turned on, terminal battery consumption may increase.
  • CC Component Carrier
  • RF radio frequency
  • different numerology e.g., subcarrier spacing, etc.
  • the maximum bandwidth capability may be different for each terminal.
  • the base station can instruct the terminal to operate only in a part of the bandwidth rather than the entire bandwidth of the broadband CC, and the part of the bandwidth is defined as a bandwidth part (BWP) for convenience.
  • BWP may be composed of consecutive RBs on the frequency axis and may correspond to one numerology (e.g., subcarrier interval, CP length, slot/mini-slot section).
  • the base station can set multiple BWPs even within one CC set for the terminal. For example, in the PDCCH monitoring slot, a BWP that occupies a relatively small frequency area is set, and the PDSCH indicated by the PDCCH can be scheduled on a larger BWP. Alternatively, if UEs are concentrated in a specific BWP, some UEs can be set to other BWPs for load balancing. Alternatively, considering frequency domain inter-cell interference cancellation between neighboring cells, etc., a portion of the spectrum from the entire bandwidth can be excluded and both BWPs can be set within the same slot. That is, the base station can set at least one DL/UL BWP to a terminal associated with a broadband CC.
  • the base station may activate at least one DL/UL BWP(s) among the DL/UL BWP(s) set at a specific time (by L1 signaling or MAC CE (Control Element) or RRC signaling, etc.). Additionally, the base station may indicate switching to another configured DL/UL BWP (by L1 signaling or MAC CE or RRC signaling, etc.). Alternatively, based on a timer, when the timer value expires, it may be switched to a designated DL/UL BWP. At this time, the activated DL/UL BWP is defined as an active DL/UL BWP.
  • the terminal may not receive settings for the DL/UL BWP, so in these situations, the terminal This assumed DL/UL BWP is defined as the first active DL/UL BWP.
  • Figure 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission and reception method using them.
  • a terminal receives information from a base station through downlink, and the terminal transmits information to the base station through uplink.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist depending on the type/purpose of the information they transmit and receive.
  • the terminal When the terminal is turned on or enters a new cell, it performs an initial cell search task such as synchronizing with the base station (S601). To this end, the terminal receives a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) from the base station to synchronize with the base station and obtain information such as a cell identifier (ID: Identifier). You can. Afterwards, the terminal can receive broadcast information within the cell by receiving a physical broadcast channel (PBCH) from the base station. Meanwhile, the terminal can check the downlink channel status by receiving a downlink reference signal (DL RS) in the initial cell search stage.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • ID cell identifier
  • the terminal can receive broadcast information within the cell by receiving a physical broadcast channel (PBCH) from the base station. Meanwhile, the terminal can check the downlink channel status by receiving a downlink reference signal (DL RS) in the initial cell search stage.
  • PBCH physical broadcast channel
  • the terminal After completing the initial cell search, the terminal acquires more specific system information by receiving a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH: physical downlink control channel) according to the information carried in the PDCCH. You can do it (S602).
  • a physical downlink control channel (PDCCH)
  • a physical downlink shared channel (PDSCH: physical downlink control channel)
  • the terminal may perform a random access procedure (RACH) to the base station (steps S603 to S606).
  • RACH random access procedure
  • the terminal may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S603 and S605) and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S604 and S606).
  • PRACH physical random access channel
  • an additional conflict resolution procedure Contention Resolution Procedure
  • the terminal that has performed the above-described procedure then performs PDCCH/PDSCH reception (S607) and Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel (PUCCH) as a general uplink/downlink signal transmission procedure.
  • Physical Uplink Control Channel) transmission (S608) can be performed.
  • the terminal receives downlink control information (DCI) through PDCCH.
  • DCI includes control information such as resource allocation information for the terminal, and has different formats depending on the purpose of use.
  • the control information that the terminal transmits to the base station through the uplink or that the terminal receives from the base station includes downlink/uplink ACK/NACK (Acknowledgement/Non-Acknowledgement) signals, CQI (Channel Quality Indicator), and PMI (Precoding Matrix). Indicator), RI (Rank Indicator), etc.
  • the terminal can transmit control information such as the above-described CQI/PMI/RI through PUSCH and/or PUCCH.
  • Table 5 shows an example of the DCI format in the NR system.
  • DCI format uses 0_0 Scheduling of PUSCH within one cell 0_1 Scheduling of one or multiple PUSCHs in one cell, or instruction of cell group (CG: cell group) downlink feedback information to the UE.
  • CG cell group
  • 0_2 Scheduling of PUSCH within one cell 1_0 Scheduling of PDSCH within one DL cell 1_1 Scheduling of PDSCH within one cell 1_2 Scheduling of PDSCH within one cell
  • DCI format 0_0, 0_1, and 0_2 include resource information related to scheduling of PUSCH (e.g., UL/SUL (Supplementary UL), frequency resource allocation, time resource allocation, frequency hopping, etc.), transport block ( TB: Transport Block) related information (e.g. MCS (Modulation Coding and Scheme), NDI (New Data Indicator), RV (Redundancy Version), etc.), HARQ (Hybrid - Automatic Repeat and request) related information (e.g.
  • DCI Downlink Assignment Index
  • PDSCH-HARQ feedback timing etc.
  • multi-antenna related information e.g., DMRS sequence initialization information, antenna port, CSI request, etc.
  • power control information e.g., PUSCH power control, etc.
  • control information included in each DCI format may be predefined.
  • DCI format 0_0 is used for scheduling PUSCH in one cell.
  • the information contained in DCI format 0_0 is checked by CRC (cyclic redundancy check) by C-RNTI (Cell RNTI: Cell Radio Network Temporary Identifier) or CS-RNTI (Configured Scheduling RNTI) or MCS-C-RNTI (Modulation Coding Scheme Cell RNTI). ) is scrambled and transmitted.
  • CRC cyclic redundancy check
  • C-RNTI Cell RNTI: Cell Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling RNTI
  • MCS-C-RNTI Modulation Coding Scheme Cell RNTI
  • DCI format 0_1 is used to indicate scheduling of one or more PUSCHs in one cell or configured grant (CG: configure grant) downlink feedback information to the UE.
  • the information included in DCI format 0_1 is transmitted after CRC scrambling by C-RNTI or CS-RNTI or SP-CSI-RNTI (Semi-Persistent CSI RNTI) or MCS-C-RNTI.
  • DCI format 0_2 is used for scheduling PUSCH in one cell.
  • Information included in DCI format 0_2 is transmitted after CRC scrambling by C-RNTI or CS-RNTI or SP-CSI-RNTI or MCS-C-RNTI.
  • DCI format 1_0, 1_1, and 1_2 are resource information related to scheduling of PDSCH (e.g., frequency resource allocation, time resource allocation, virtual resource block (VRB)-physical resource block (PRB) mapping, etc.), transport block (TB) related information (e.g. MCS, NDI, RV, etc.), HARQ related information (e.g. process number, DAI, PDSCH-HARQ feedback timing, etc.), multi-antenna related information (e.g. antenna port , transmission configuration indicator (TCI), sounding reference signal (SRS) request, etc.), PUCCH-related information (e.g., PUCCH power control, PUCCH resource indicator, etc.), and the control information included in each DCI format is Can be predefined.
  • DCI format 1_0 is used for scheduling PDSCH in one DL cell.
  • Information included in DCI format 1_0 is transmitted after CRC scrambling by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • DCI format 1_1 is used for scheduling PDSCH in one cell.
  • Information included in DCI format 1_1 is transmitted after CRC scrambling by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • DCI format 1_2 is used for scheduling PDSCH in one cell.
  • Information included in DCI format 1_2 is transmitted after CRC scrambling by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • AI/ML artificial intelligence/machine learning
  • various networks are varied according to various environmental parameters (e.g., distribution/location of base stations, distribution/location/material of buildings/furniture, etc., location/movement direction/speed of terminals, climate information, etc.)
  • Base station decision parameter values e.g., transmission/reception power of each base station, transmission power of each terminal, precoder/beam of the base station/terminal, time/frequency resource allocation for each terminal, duplex method of each base station, etc.
  • 3GPP 3rd Generation
  • O-RAN the number of networks
  • studies on this are also actively underway.
  • Figure 7 illustrates the classification of artificial intelligence.
  • AI artificial intelligence
  • Machine Learning refers to a technology in which machines learn patterns for decision-making from data on their own without explicitly programming rules.
  • Deep Learning is an artificial neural network-based model that allows machines to perform feature extraction and judgment from unstructured data all at once.
  • the algorithm relies on a multi-layer network of interconnected nodes for feature extraction and transformation, inspired by the biological nervous system, or Neural Network.
  • Common deep learning network architectures include deep neural networks (DNNs), recurrent neural networks (RNNs), and convolutional neural networks (CNNs).
  • AI can be narrowly referred to as artificial intelligence based on deep learning, but is not limited to this in the present disclosure. That is, in this disclosure, AI (or AI/ML) may collectively refer to automation technologies applied to intelligent machines (e.g., UE, RAN, network nodes, etc.) that can perform tasks like humans.
  • intelligent machines e.g., UE, RAN, network nodes, etc.
  • AI (or AI/ML) can be classified according to various criteria as follows:
  • Offline learning follows a sequential process of database collection, learning, and prediction. In other words, collection and learning can be performed offline, and the completed program can be installed in the field and used for prediction work. Offline learning is where the system does not learn incrementally, the learning is performed using all available collected data and applied to the system without further learning. If learning about new data is necessary, learning can begin again using all new data.
  • It refers to a method of gradually improving performance by incrementally learning additional data using data generated in real time, taking advantage of the fact that data that can be used for recent learning is continuously generated through the Internet. Learning is performed in real time for each (bundle) of specific data collected online, allowing the system to quickly adapt to changing data.
  • centralized learning training data collected from multiple different nodes is reported to the centralized node, and all data resources/storage/learning (e.g., supervised learning (supervised learning, unsupervised learning, reinforcement learning, etc.) are performed in one centralized node.
  • supervised learning supervised learning, unsupervised learning, reinforcement learning, etc.
  • Federated learning is a collective model built on data that exists across distributed data owners. Instead of collecting data into a model, AI/ML models are imported into a data source, allowing local nodes/individual devices to collect data and train their own copies of the model, eliminating the need to report the source data to a central node. In federated learning, the parameters/weights of an AI/ML model can be sent back to the centralized node to support general model training. Federated learning has advantages in terms of increased computation speed and information security. In other words, the process of uploading personal data to the central server is unnecessary, preventing leakage and misuse of personal information.
  • Distributed learning refers to the concept where the machine learning process is scaled and distributed across a cluster of nodes. Training models are split and shared across multiple nodes operating simultaneously to speed up model training.
  • Supervised learning is a machine learning task that aims to learn a mapping function from input to output, given a labeled data set.
  • the input data is called training data and has known labels or results.
  • An example of supervised learning is as follows.
  • KNN k-Nearest Neighbor
  • SVM Support Vector Machines
  • Supervised learning can be further grouped into regression and classification problems, where classification is predicting a label and regression is predicting a quantity.
  • Unsupervised learning is a machine learning task that aims to learn features that describe hidden structures in unlabeled data. The input data is not labeled and there are no known results.
  • Some examples of unsupervised learning include K-Means Clustering, Principal Component Analysis (PCA), Nonlinear Independent Component Analysis (ICA), and Long-Short-Term Memory (LSTM). .
  • RL reinforcement learning
  • the agent aims to optimize long-term goals by interacting with the environment based on a trial-and-error process, and is goal-oriented learning based on interaction with the environment.
  • An example of the RL algorithm is as follows.
  • SARSA State-Action-Reward-State-Action
  • reinforcement learning can be grouped into model-based reinforcement learning and model-free reinforcement learning as follows.
  • Model-based reinforcement learning Refers to an RL algorithm that uses a prediction model. Using a model of the various dynamic states of the environment and which states lead to rewards, the probabilities of transitions between states are obtained.
  • Model-free reinforcement learning refers to a RL algorithm based on value or policy that achieves the maximum future reward. Multi-agent environments/states are computationally less complex and do not require an accurate representation of the environment.
  • RL algorithms can also be classified into value-based RL vs. policy-based RL, policy-based RL vs. non-policy RL, etc.
  • Figure 8 illustrates a feed-forward neural network
  • a feed-forward neural network (FFNN) consists of an input layer, a hidden layer, and an output layer.
  • FFNN In FFNN, information is transmitted only from the input layer to the output layer, and if there is a hidden layer, it passes through it.
  • Figure 9 illustrates a Recurrent Neural Network.
  • Recurrent neural network is a type of artificial neural network in which hidden nodes are connected to directed edges to form a directed cycle. This model is suitable for processing data that appears sequentially, such as voice and text.
  • A represents a neural network
  • x t represents an input value
  • h t represents an output value
  • h t may refer to a state value representing the current state based on time
  • h t-1 may represent a previous state value
  • LSTM Long Short-Term Memory
  • LSTM Long Short-Term Memory
  • Figure 10 illustrates a convolutional neural network
  • CNN Convolutional Neural Network
  • Kernel or filter refers to a unit/structure that applies weight to input of a specific range/unit.
  • the kernel (or filter) can be changed through learning.
  • - Stride refers to the movement range of moving the kernel within the input.
  • Feature map This refers to the result of applying the kernel to the input.
  • Several feature maps can be extracted to ensure robustness to distortion, change, etc.
  • - Padding refers to a value added to adjust the size of the feature map.
  • - Pooling Refers to an operation to reduce the size of the feature map by downsampling the feature map (e.g., max pooling, average pooling).
  • Figure 11 illustrates an auto encoder
  • Auto encoder receives feature vector x(x 1 , x 2 , x 3 , ...) and generates the same or similar vector x'(x' 1 , x' 2 , x' 3 , . ) ' refers to a neural network that outputs.
  • Auto encoder has the same characteristics as input node and output node. Since the auto encoder reconstructs the input, the output can be referred to as reconstruction. Additionally, auto encoder is a type of unsupervised learning.
  • the loss function of the auto encoder shown in Figure 11 is calculated based on the difference between the input and output. Based on this, the degree of loss of the input is determined and the auto encoder performs an optimization process to minimize the loss. do.
  • AI or AI/ML
  • Data collection Data collected from network nodes, management entities, or UEs, etc. as a basis for AI model training, data analysis, and inference.
  • Model A data driven algorithm applying AI technology that generates a set of outputs containing prediction information and/or decision parameters based on a set of inputs.
  • Figure 12 illustrates a functional framework for AI operation.
  • the data collection function 10 collects input data and provides processed input to the model training function 20 and the model inference function 30. This function provides data.
  • Examples of input data may include measurements from UEs or other network entities, feedback from an actor, and output of an AI model.
  • Data Collection function (10) performs data preparation based on input data and provides input data processed through data preparation.
  • the Data Collection function (10) does not perform specific data preparation (e.g., data pre-processing and cleaning, formatting and transformation) for each AI algorithm. , data preparation common to AI algorithms can be performed.
  • the Model Training function (10) After performing the data preparation process, the Model Training function (10) provides training data (11) to the Model Training function (20) and inference data (12) to the Model Inference function (30). ) is provided.
  • Training Data (11) is data required as input for the AI Model Training function (20).
  • Inference Data (12) is data required as input for the AI Model Inference function (30).
  • the Data Collection function 10 may be performed by a single entity (eg, UE, RAN node, network node, etc.), but may also be performed by a plurality of entities.
  • Training Data (11) and Inference Data (12) may be provided from a plurality of entities to the Model Training function (20) and the Model Inference function (30), respectively.
  • the Model Training function (20) is a function that performs AI model training, validation, and testing that can generate model performance metrics as part of the AI model testing procedure. If necessary, the Model Training function (20) is also responsible for data preparation (e.g., data pre-processing and cleaning, forming and transformation) based on the Training Data (11) provided by the Data Collection function (10).
  • Model Deployment/Update (13) is used to initially deploy the trained, verified, and tested AI model to the Model Inference function (30) or provide an updated model to the Model Inference function (30). do.
  • Model Inference function (30) is a function that provides AI model inference output (16) (e.g., prediction or decision). If applicable, the Model Inference function (30) may provide Model Performance Feedback (14) to the Model Training function (20). In addition, the Model Inference function (30) is also responsible for data preparation (e.g., data pre-processing and cleaning, forming and transformation) based on the Inference Data (12) provided by the Data Collection function (10) when necessary.
  • AI model inference output (16) e.g., prediction or decision
  • the Model Inference function (30) may provide Model Performance Feedback (14) to the Model Training function (20).
  • the Model Inference function (30) is also responsible for data preparation (e.g., data pre-processing and cleaning, forming and transformation) based on the Inference Data (12) provided by the Data Collection function (10) when necessary.
  • Output (16) refers to the inference output of the AI model generated by the Model Inference function (30), and the details of the inference output may vary depending on the use case.
  • Model Performance Feedback (14) can be used to monitor the performance of the AI model, if available; this feedback can also be omitted.
  • the Actor function (40) is a function that receives the output (16) from the Model Inference function (30) and triggers or performs the corresponding task/action. Actor function 40 may trigger tasks/actions on other entities (e.g., one or more UEs, one or more RAN nodes, one or more network nodes, etc.) or on itself.
  • entities e.g., one or more UEs, one or more RAN nodes, one or more network nodes, etc.
  • Feedback (15) can be used to derive training data (11), inference data (12), or to monitor the performance of the AI model and its impact on the network.
  • Training data refers to a data set for learning a model.
  • Test data refers to the data set for final evaluation. This data is unrelated to learning.
  • the training data and validation data within the entire training set can be divided into about 8:2 or 7:3, and if the test is also included, 6:2:2 ( training: validation: test) can be used separately.
  • the cooperation level can be defined as follows, and modifications are possible by combining the following multiple levels or separating any one level.
  • Cat 1 This involves inter-node support to improve the AI/ML algorithms of each node. This applies if the UE receives support from a gNB (for training, adaptation, etc.) and vice versa. At this level, model exchange between network nodes is not required.
  • the functions previously illustrated in FIG. 12 may be implemented in a RAN node (e.g., base station, TRP, central unit (CU) of the base station, etc.), a network node, a network operator's operation administration maintenance (OAM), or a UE. there is.
  • a RAN node e.g., base station, TRP, central unit (CU) of the base station, etc.
  • CU central unit
  • OAM network operator's operation administration maintenance
  • the function illustrated in FIG. 12 may be implemented through cooperation of two or more entities among RAN, network node, network operator's OAM, or UE.
  • one entity may perform some of the functions of FIG. 12 and another entity may perform the remaining functions.
  • transmission/provision of data/information between each function is omitted. It can be.
  • the Model Training function (20) and the Model Inference function (30) are performed by the same entity, the delivery/provision of Model Deployment/Update (13) and Model Performance Feedback (14) can be omitted.
  • any one of the functions illustrated in FIG. 12 may be performed through collaboration between two or more entities among the RAN, a network node, a network operator's OAM, or a UE. This can be referred to as a split AI operation.
  • Figure 13 is a diagram illustrating split AI inference.
  • Figure 13 illustrates a case where, among split AI operations, the Model Inference function is performed in cooperation with an end device such as a UE and a network AI/ML endpoint.
  • Model Training function In addition to the Model Inference function, the Model Training function, Actor, and Data Collection function are each split into multiple parts depending on the current task and environment, and can be performed through cooperation between multiple entities.
  • computation-intensive and energy-intensive parts may be performed at the network endpoint, while personal information-sensitive parts and delay-sensitive parts may be performed on the end device.
  • the end device can execute a task/model from input data to a specific part/layer and then transmit intermediate data to a network endpoint.
  • the network endpoint executes the remaining parts/layers and provides inference outputs to one or more devices that perform the action/task.
  • Figure 14 illustrates the application of a functional framework in a wireless communication system.
  • the AI Model Training function is performed by a network node (e.g., core network node, network operator's OAM, etc.), and the AI Model Inference function is performed by a RAN node (e.g., base station, TRP, base station's CU, etc.) ) exemplifies the case where it is performed.
  • a network node e.g., core network node, network operator's OAM, etc.
  • a RAN node e.g., base station, TRP, base station's CU, etc.
  • Step 1 RAN Node 1 and RAN Node 2 transmit input data (i.e. Training data) for AI Model Training to the network node.
  • RAN Node 1 and RAN Node 2 transmit the data collected from the UE (e.g., UE measurements related to RSRP, RSRQ, SINR of the serving cell and neighboring cells, UE location, speed, etc.) to the network node. You can.
  • Step 2 The network node trains the AI Model using the received training data.
  • Step 3 The network node distributes/updates the AI Model to RAN Node 1 and/or RAN Node 2.
  • RAN Node 1 (and/or RAN Node 2) may continue to perform model training based on the received AI Model.
  • Step 4 RAN Node 1 receives input data (i.e. Inference data) for AI Model Inference from UE and RAN Node 2.
  • input data i.e. Inference data
  • Step 5 RAN Node 1 performs AI Model Inference using the received Inference data to generate output data (e.g., prediction or decision).
  • output data e.g., prediction or decision
  • Step 6 If applicable, RAN Node 1 may send model performance feedback to the network node.
  • Step 7 RAN node 1, RAN node 2, and UE (or 'RAN node 1 and UE', or 'RAN node 1 and RAN node 2') perform an action based on the output data. For example, in the case of load balancing operation, the UE may move from RAN node 1 to RAN node 2.
  • Step 8 RAN node 1 and RAN node 2 transmit feedback information to the network node.
  • Figure 15 illustrates the application of a functional framework in a wireless communication system.
  • Figure 15 illustrates a case where both the AI Model Training function and the AI Model Inference function are performed by a RAN node (e.g., base station, TRP, CU of the base station, etc.).
  • a RAN node e.g., base station, TRP, CU of the base station, etc.
  • Step 1 UE and RAN Node 2 transmit input data (i.e. Training data) for AI Model Training to RAN Node 1.
  • input data i.e. Training data
  • Step 2 RAN Node 1 trains the AI Model using the received training data.
  • Step 3 RAN Node 1 receives input data (i.e. Inference data) for AI Model Inference from UE and RAN Node 2.
  • input data i.e. Inference data
  • Step 4 RAN Node 1 performs AI Model Inference using the received Inference data to generate output data (e.g., prediction or decision).
  • output data e.g., prediction or decision
  • Step 5 RAN node 1, RAN node 2, and UE (or 'RAN node 1 and UE', or 'RAN node 1 and RAN node 2') perform an action based on the output data. For example, in the case of load balancing operation, the UE may move from RAN node 1 to RAN node 2.
  • Step 6 RAN node 2 transmits feedback information to RAN node 1.
  • 16 illustrates the application of a functional framework in a wireless communication system.
  • Figure 16 illustrates a case where the AI Model Training function is performed by a RAN node (e.g., base station, TRP, CU of the base station, etc.), and the AI Model Inference function is performed by the UE.
  • a RAN node e.g., base station, TRP, CU of the base station, etc.
  • the AI Model Inference function is performed by the UE.
  • Step 1 The UE transmits input data (i.e. Training data) for AI Model Training to the RAN node.
  • the RAN node may collect data (e.g., measurements of the UE related to RSRP, RSRQ, SINR of the serving cell and neighboring cells, location of the UE, speed, etc.) from various UEs and/or from other RAN nodes. there is.
  • Step 2 The RAN node trains the AI Model using the received training data.
  • Step 3 The RAN node distributes/updates the AI Model to the UE.
  • the UE may continue to perform model training based on the received AI Model.
  • Step 4 Receive input data (i.e., Inference data) for AI Model Inference from the UE and RAN node (and/or from other UEs).
  • input data i.e., Inference data
  • Step 5 The UE performs AI Model Inference using the received Inference data to generate output data (e.g., prediction or decision).
  • output data e.g., prediction or decision
  • Step 6 If applicable, the UE may send model performance feedback to the RAN node.
  • Step 7 UE and RAN nodes perform actions based on output data.
  • Step 8 The UE transmits feedback information to the RAN node.
  • CSI-RS channel state information-reference signal
  • L1 layer 1-RSRP (reference signal received) power
  • CSI computation is related to CSI acquisition
  • L1-RSRP computation is related to beam management (BM).
  • CSI channel state information refers to information that can indicate the quality of a wireless channel (or link) formed between a terminal and an antenna port.
  • a terminal e.g. user equipment, UE transmits configuration information related to CSI to a base station (e.g. general Node) through RRC (radio resource control) signaling.
  • B gNB
  • the configuration information related to the CSI includes CSI-IM (interference management) resource-related information, CSI measurement configuration-related information, CSI resource configuration-related information, and CSI-RS resource-related information. Alternatively, it may include at least one of CSI report configuration related information.
  • CSI-IM interference management
  • CSI-IM resource-related information may include CSI-IM resource information, CSI-IM resource set information, etc.
  • a CSI-IM resource set is identified by a CSI-IM resource set ID (identifier), and one resource set includes at least one CSI-IM resource.
  • Each CSI-IM resource is identified by a CSI-IM resource ID.
  • CSI resource configuration related information can be expressed as CSI-ResourceConfig IE.
  • CSI resource configuration-related information defines a group including at least one of NZP (non zero power) CSI-RS resource set, CSI-IM resource set, or CSI-SSB resource set. That is, the CSI resource configuration-related information includes a CSI-RS resource set list, and the CSI-RS resource set list is at least one of the NZP CSI-RS resource set list, CSI-IM resource set list, or CSI-SSB resource set list. It can contain one.
  • a CSI-RS resource set is identified by a CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource.
  • Each CSI-RS resource is identified by a CSI-RS resource ID.
  • Parameters indicating the purpose of CSI-RS may be set for each NZP CSI-RS resource set.
  • CSI report configuration-related information includes a reportConfigType parameter indicating time domain behavior and a reportQuantity parameter indicating the CSI-related quantity to report.
  • the time domain behavior may be periodic, aperiodic, or semi-persistent.
  • the terminal measures CSI based on configuration information related to the CSI.
  • the CSI measurement may include (1) a CSI-RS reception process of the terminal, and (2) a process of calculating CSI through the received CSI-RS, a detailed description of which will be described later.
  • RE (resource element) mapping of CSI-RS resource is set in time and frequency domains by higher layer parameter CSI-RS-ResourceMapping.
  • the terminal reports the measured CSI to the base station.
  • the terminal can omit the report.
  • the terminal may report to the base station.
  • the quantity is set to 'none', it is when an aperiodic TRS is triggered or when repetition is set.
  • the terminal's report can be omitted only when repetition is set to 'ON'.
  • the NR system supports more flexible and dynamic CSI measurement and reporting.
  • the CSI measurement may include a procedure of receiving CSI-RS and acquiring CSI by computating the received CSI-RS.
  • aperiodic/semi-persistent/periodic CM channel measurement
  • IM interference measurement
  • the 4 port NZP CSI-RS RE pattern is used.
  • NR's CSI-IM-based IMR has a similar design to LTE's CSI-IM and is set independently from ZP CSI-RS resources for PDSCH rate matching. And, in NZP CSI-RS based IMR, each port emulates an interference layer (preferred channel and) with precoded NZP CSI-RS. This is for intra-cell interference measurement for a multi-user case and mainly targets MU interference.
  • the base station transmits precoded NZP CSI-RS to the terminal on each port of the configured NZP CSI-RS-based IMR.
  • the terminal assumes a channel/interference layer for each port in the resource set and measures interference.
  • a number of resources are set in the set, and the base station or network indicates a subset of NZP CSI-RS resources for channel/interference measurement through DCI.
  • Each CSI resource setting ‘CSI-ResourceConfig’ contains configuration for S ⁇ 1 CSI resource set (given by higher layer parameter csi-RS-ResourceSetList).
  • CSI resource setting corresponds to CSI-RS-resourcesetlist.
  • S represents the number of configured CSI-RS resource sets.
  • the configuration for the S ⁇ 1 CSI resource set is each CSI resource set containing CSI-RS resources (consisting of NZP CSI-RS or CSI-IM) and the SS/PBCH block (SSB) used in L1-RSRP computation. ) includes resources.
  • Each CSI resource setting is located in a DL BWP (bandwidth part) identified by the higher layer parameter bwp-id. And, all CSI resource settings linked to the CSI reporting setting have the same DL BWP.
  • the time domain behavior of the CSI-RS resource is indicated by the higher layer parameter resourceType and can be set to aperiodic, periodic, or semi-persistent.
  • the number (S) of set CSI-RS resource sets is limited to ‘1’.
  • the set period (periodicity) and slot offset (slot offset) are given in the numerology of the associated DL BWP, as given by bwp-id.
  • the same time domain behavior is configured for the CSI-ResourceConfig.
  • the same time domain behavior is configured for the CSI-ResourceConfig.
  • CM channel measurement
  • IM interference measurement
  • the channel measurement resource (CMR) may be NZP CSI-RS for CSI acquisition
  • the interference measurement resource (IMR) may be CSI-IM and NZP CSI-RS for IM.
  • CSI-IM (or ZP CSI-RS for IM) is mainly used for inter-cell interference measurement.
  • NZP CSI-RS for IM is mainly used for intra-cell interference measurement from multi-users.
  • the UE may assume that the CSI-RS resource(s) for channel measurement and the CSI-IM / NZP CSI-RS resource(s) for interference measurement set for one CSI reporting are 'QCL-TypeD' for each resource. .
  • resource setting can mean a resource set list.
  • each trigger state set using the higher layer parameter CSI-AperiodicTriggerState, consists of one or more CSI-ReportConfigs, with each CSI-ReportConfig linked to a periodic, semi-persistent or aperiodic resource setting. It is related.
  • One reporting setting can be connected to up to three resource settings.
  • the resource setting (given by the higher layer parameter resourcesForChannelMeasurement) is for channel measurement for L1-RSRP computation.
  • the first resource setting (given by the higher layer parameter resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference
  • the setting is for interference measurement performed on CSI-IM or NZP CSI-RS.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM-based interference measurement
  • the third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS-based interference measurement.
  • each CSI-ReportConfig is linked to a periodic or semi-persistent resource setting.
  • the resource setting is for channel measurement for L1-RSRP computation.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by higher layer parameter csi-IM-ResourcesForInterference) is for the channel measurement performed on CSI-IM. Used for interference measurement.
  • each CSI-RS resource for channel measurement is associated with the CSI-IM resource by resource by the order of CSI-RS resources and CSI-IM resources within the corresponding resource set. .
  • the number of CSI-RS resources for channel measurement is the same as the number of CSI-IM resources.
  • the UE when interference measurement is performed in NZP CSI-RS, the UE does not expect to be set to one or more NZP CSI-RS resources in the associated resource set within the resource setting for channel measurement.
  • a terminal with the higher layer parameter nzp-CSI-RS-ResourcesForInterference set does not expect more than 18 NZP CSI-RS ports to be set within the NZP CSI-RS resource set.
  • the terminal assumes the following.
  • Each NZP CSI-RS port configured for interference measurement corresponds to the interference transmission layer.
  • the time and frequency resources available to the UE are controlled by the base station.
  • Channel state information includes channel quality indicator (CQI), precoding matrix indicator (PMI), CSI-RS resource indicator (CRI), SS/PBCH block resource indicator (SSBRI), layer It may include at least one of indicator (LI), rank indicator (RI), or L1-RSRP.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SS/PBCH block resource indicator
  • LI indicator
  • RI rank indicator
  • L1-RSRP L1-RSRP
  • the terminal For CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP, the terminal has N ⁇ 1 CSI-ReportConfig reporting setting, M ⁇ 1 CSI-ResourceConfig resource setting, and a list of one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH -provided by TriggerStateList) is set by higher layers.
  • aperiodicTriggerStateList each trigger state includes an associated CSI-ReportConfigs list indicating a channel and optionally resource set IDs for interference.
  • each trigger state contains one associated CSI-ReportConfig.
  • time domain behavior of CSI reporting supports periodic, semi-persistent, and aperiodic.
  • Periodic CSI reporting is performed on short PUCCH and long PUCCH.
  • the period and slot offset of Periodic CSI reporting can be set to RRC, see CSI-ReportConfig IE.
  • SP sin-periodic CSI reporting is performed on short PUCCH, long PUCCH, or PUSCH.
  • the period (periodicity) and slot offset (slot offset) are set to RRC, and CSI reporting is activated/deactivated with a separate MAC CE / DCI.
  • SP CSI on PUSCH the periodicity of SP CSI reporting is set to RRC, but the slot offset is not set to RRC, and SP CSI reporting is activated/deactivated by DCI (format 0_1).
  • DCI format 0_1
  • SP-CSI C-RNTI a separate RNTI
  • the first CSI reporting timing follows the PUSCH time domain allocation value indicated in DCI, and the subsequent CSI reporting timing follows the period set by RRC.
  • DCI format 0_1 includes a CSI request field and can activate/deactivate a specific configured SP-CSI trigger state.
  • SP CSI reporting has the same or similar activation/deactivation mechanism as the data transmission mechanism on SPS PUSCH.
  • Aperiodic CSI reporting is performed on PUSCH and is triggered by DCI.
  • information related to the trigger of aperiodic CSI reporting can be delivered/instructed/set through MAC-CE.
  • AP CSI-RS timing is set by RRC, and timing for AP CSI reporting is dynamically controlled by DCI.
  • NR does not apply the method of dividing CSI into multiple reporting instances (e.g., transmitting in the order of RI, WB PMI/CQI, and SB PMI/CQI), which was applied to PUCCH-based CSI reporting in LTE. Instead, NR restricts specific CSI reporting from being set in short/long PUCCH, and a CSI omission rule is defined. And, in relation to AP CSI reporting timing, PUSCH symbol/slot location is dynamically indicated by DCI. And, candidate slot offsets are set by RRC. For CSI reporting, slot offset (Y) is set per reporting setting. For UL-SCH, slot offset K2 is set separately.
  • Two CSI latency classes are defined in terms of CSI computation complexity.
  • low latency CSI it is WB CSI with up to 4 ports Type-I codebook or up to 4-ports non-PMI feedback CSI.
  • High latency CSI refers to CSI other than low latency CSI.
  • Z, Z’ is defined in the unit of OFDM symbols.
  • Z represents the minimum CSI processing time from receiving the Aperiodic CSI triggering DCI to performing CSI reporting.
  • Z’ represents the minimum CSI processing time from receiving CSI-RS for channel/interference to performing CSI reporting.
  • the terminal reports the number of CSIs that can be calculated simultaneously.
  • the CSI reference resource may refer to the frequency and time unit (i.e. resource) on which the PDSCH is assumed to be allocated / transmitted when the UE calculates / derives CSI. and can be defined as follows.
  • the CSI reference resource for a serving cell is defined as follows:
  • the CSI reference resource is defined as a downlink physical resource block (PRB) group corresponding to the band to which the derived CSI is related.
  • PRB physical resource block
  • the CSI reference resource for CSI reporting in uplink slot n' is a single downlink slot.
  • K offset is a parameter set by the upper layer as specified in Section 4.2 of TS 38.213.
  • ⁇ Koffset is a subcarrier spacing (SCS) setting for K offset with a value of 0 for FR 1.
  • ⁇ DL and ⁇ UL are the SCS settings for DL and UL, respectively.
  • N slot, offset CA and ⁇ offset are determined by ca-SlotOffset set by the upper layer for cells transmitting uplink and downlink as defined in TS 38.211 Section 4.5.
  • n CSI_ref indicates that the CSI reference resource is valid.
  • the minimum value is greater than or equal to 4 ⁇ 2 ⁇ DL to correspond to a downlink slot, or ii) If multiple CSI-RS/SSB resources are configured for channel measurement, n CSI_ref is the downlink value for which the CSI reference resource is valid. The minimum value is greater than or equal to 5 ⁇ 2 ⁇ DL to correspond to a slot.
  • n CSI-ref is set so that the CSI reference resource is within the same valid downlink slot as the CSI request. It is decided. Otherwise, n CSI_ref is set so that slot nn CSI_ref corresponds to a valid downlink slot. is the minimum value greater than or equal to, where Z' corresponds to the delay requirement as defined in section 5.4 of TS 38.214.
  • the UE When periodic or semi-periodic CSI-RS/CSI-IM or SSB is used for channel/interference measurement, the UE receives the last OFDM symbol up to the Z' symbol before the transmission time of the first OFDM symbol of the aperiodic CSI report. It is expected that channel/interference will not be measured in CSI-RS/CSI-IM/SSB.
  • the slot of the serving cell is considered a valid downlink slot.
  • CQI is defined as follows based on the above-mentioned CSI reference resource, and according to measurement restriction (MR) (i.e., depending on whether MR is set), the channel measurement resource (CMR) used for CQI calculation is as follows: : channel measurement resource) and/or interference measurement resource (IMR) may be limited.
  • MR measurement restriction
  • IMR interference measurement resource
  • CQI indices and interpretations for CQI reporting based on Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (16QAM), and 64QAM are given in Table 5.2.2.1-2 or Table 5.2.2.1-4 in Section 5.2.2.1 of TS 38.214.
  • CQI indices and interpretations for CQI reporting based on QPSK, 16QAM, 64QAM and 256QAM are given in Table 5.2.2.1-3 of TS 38.214 Section 5.2.2.1.
  • CQI indices and interpretations based on QPSK, 16QAM, 64QAM, 256QAM and 1024 QAM are given in Table 5.2.2.1-5 of TS 38.214 Section 5.2.2.1.
  • the UE determines the following for each CQI value reported in uplink slot n: Derive the highest CQI index that satisfies the conditions:
  • a single PDSCH transport block ( A transport block may be received with a transport block error probability not exceeding:
  • the upper layer parameter cqi-Table in CSI-ReportConfig is set to 'table 1' (corresponding to Table 5.2.2.1-2) or 'table 2' (corresponding to Table 5.2.2.1-3) or CSI-ReportConfig If my upper layer parameter cqi-Table is set to 'table4-r17' (corresponding to table 5.2.2.1-5), then 0.1, or
  • the UE will use the uplink only based on the NZP CSI-RS, no later than the CSI reference resource, associated with the CSI resource setting.
  • Channel measurements must be derived to calculate the CSI value reported in slot n.
  • the UE will use the highest NZP CSI-RS, no later than the CSI reference resource, associated with the CSI resource setting.
  • Channel measurements must be derived to calculate the CSI value reported in uplink slot n based only on recent opportunities.
  • the UE uses CSI-IM and/or CSI-IM for interference measurements, no later than the CSI reference resource, associated with the CSI resource setting.
  • interference measurements should be derived to calculate the CSI value reported in uplink slot n based only on NZP CSI-RS.
  • the UE shall use CSI-Restriction for interference measurements no later than the CSI reference resource, associated with the CSI resource setting. Interference measurements should be derived to calculate the CSI value reported in uplink slot n based only on the most recent occurrence of IM and/or NZP CSI-RS.
  • the embodiments/methods proposed in this disclosure are derived from inference data (input) (e.g., channel measurement from CMR and/or interference measurement from IMR) through an AI/ML model and output (e.g., CSI reference resource It can be applied to a UE (or, for convenience, referred to as an AI UE) that has a function/capability (e.g., see FIG. 12) that provides CSI calculation).
  • inference data e.g., channel measurement from CMR and/or interference measurement from IMR
  • AI/ML model e.g., CSI reference resource
  • Figure 17 is a diagram illustrating a method for configuring a CSI reference resource according to an embodiment of the present disclosure.
  • the UE reports CSI (1702) based on the existing CSI reference resource (1701), and the base station reports PDSCH (1705) to DCI (1704) using the received CSI. can be scheduled.
  • the UE since there is a difference between the time when the actual PDSCH (1705) is transmitted and the time of the CSI reference resource (1701), there may be a difference between the CSI (1702) reported by the UE and the transmission channel of the actual PDSCH (1705). there is.
  • Example 1 In order to improve the above-mentioned problem 1, we propose a method of setting the CSI reference resource at or after the CSI reporting time.
  • the UE reports CSI based on the proposed CSI reference resource 1703 (1702), and the base station can schedule the PDSCH (1705) with the DCI (1704) using the received CSI. there is.
  • the variable n CSI_ref for determining the CSI reference resource is set to slot nn CSI_ref (or slot) among values above a certain value (hereinafter M). ) may be determined as the minimum value to correspond to a valid downlink slot.
  • M may be a negative number
  • the proposed CSI reference resource 1703 as shown in FIG. 17, may be set after the CSI report 1702.
  • the serving cell's The slot may be considered a valid downlink slot.
  • the UE is provided with candidates (and/or ranges) of M values and for each candidate (and/or for M values belonging to the range) (if a range is used, the M values are set to available values).
  • the units can be defined in advance) and the channel prediction accuracy can be reported to the base station.
  • the base station may determine the M value and set it to the UE based on the channel prediction accuracy for each candidate received from the UE (and/or for the M value belonging to the range). Alternatively, the UE may determine the M value and transmit the M value and its channel prediction accuracy along with CSI to the base station.
  • the base station may instruct the UE about candidates (and/or ranges) of M values, and the UE may report candidate prediction accuracy for each candidate (and/or for M values belonging to the range) to the base station.
  • the base station may determine the M value based on the channel prediction accuracy for each candidate received from the UE (and/or for the M value belonging to the range) and set it to the UE.
  • the base station can set/instruct a threshold for channel prediction accuracy, and the UE can report the M value exceeding the threshold to the base station. For example, the UE may report only the maximum M value exceeding the threshold to the base station, or may report one or more M values exceeding the threshold to the base station. Additionally, when reporting one or more M values exceeding the threshold to the base station, the UE may also report the channel prediction accuracy for each M value to the base station. If more than one M value is reported to the base station, the base station can determine the M value based on the channel prediction accuracy for each M value and set it to the UE.
  • the UE may report measurement window information necessary to achieve channel prediction accuracy for a specific M to the base station. For example, the UE may report to the base station that w2 CMRs and/or IMRs are needed during w1 slots in which the UE performs channel measurements for CSI calculation. In this case, the base station can ensure this (i.e., set the CMR and/or IMR so that w2 CMRs and/or IMRs exist during w1 slots) so that the UE can achieve channel prediction accuracy for a specific M. there is.
  • the channel prediction means predicting the channel of the CSI reference resource based on the CMR used by the UE for measurement.
  • prediction accuracy for channel prediction refers to the accuracy predicted by the UE, not the accuracy between the actual channel and the predicted channel in the CSI reference resource. That is, even if the UE reports a prediction accuracy of 100%, the actual channel and the predicted channel may be different.
  • a specific CSI for example, the CSI for larger (or smaller) M
  • the UE may transmit the CSI calculated for the existing CSI reference resource (i.e., the CSI reference resource set before the CSI reporting time) and M CSI for one or multiple M values.
  • M For CSI only the difference value can be transmitted to the base station based on the CSI calculated for the existing reference resource.
  • the base station may indicate the M value and/or threshold for channel prediction accuracy through triggering DCI. For example, when a single M value is indicated, the CSI reference resource can be determined using the corresponding M value. Alternatively, when a threshold for channel prediction accuracy is indicated, the CSI reference resource can be determined using the M value exceeding the threshold. If there are multiple M values that exceed the threshold, the CSI reference resource can be determined using the M value with the maximum channel prediction accuracy.
  • AP aperiodic
  • the CSI reference resource proposed in Example 1 above was calculated based on slot n' as the CSI reporting time, but the proposed CSI reference resource is an existing CSI reference resource (i.e., set before the CSI reporting time). It can be determined based on CSI reference resource). For example, assuming that the existing CSI reference resource is slot R, the proposed CSI reference resources can be determined as the most recent valid downlink slot in slots R+R' or less (R' is a natural number).
  • DL transmission e.g., PDSCH
  • the DL Channel changes after slot n'+2 and that DL performance deteriorates when DL transmission is performed using the corresponding CSI (i.e., CSI reported in CSI reporting slot n').
  • CSI i.e., CSI reported in CSI reporting slot n'.
  • CMR/IMR is periodic/semi-persistent CSI-RS
  • the UE can report the measurement window to the base station according to the RS period.
  • Problem 2 When using the proposed CSI reference resource according to Example 1, problems may occur in existing measurement operations from CMR and/or IMR.
  • Figure 18 is a diagram illustrating a method for configuring a CSI reference resource according to an embodiment of the present disclosure.
  • Figure 18 illustrates a CSI report with periodic (P: semi-persistent) CMR set, CSI reference resource setting and PDSCH transmission accordingly.
  • problems may occur in existing measurement operations (from CMR or IMR 1802). More specifically, according to the existing measurement operation, when measurement restriction (MR) is ON/activated, the UE is restricted to perform measurement using the most recently set CMR in the CSI reference resource slot or earlier. , when MR is OFF/deactivated, the CSI UE can perform measurement using multiple CMRs in the reference resource slot or earlier. Therefore, according to the existing measurement operation, the UE must predict the channel of the CSI reference resource proposed in Embodiment 1 from the channel estimated using this CMR.
  • MR measurement restriction
  • the CSI reference resource 1804 proposed in Example 1 is set/determined after the CSI report (1803), so if the existing MR settings are followed, CMR 4,5 set at or after the CSI report (1803) is defined to be used for measurement. In this case, since the UE cannot use the CMR set at or after the CSI report (1803), a problem arises in which this measurement is no longer valid.
  • Example 2 In order to solve the above-mentioned problem 2, we propose a method of limiting the use of CMR (or IMR) before the CSI reporting time for measurement.
  • MR measurement restriction
  • the channel measurement for calculating CSI is the CMR (or IMR) before the CSI report (1803).
  • (1802) i.e., CMR (or IMR) 1, CMR (or IMR) 2, and CMR (or IMR) 3 in FIG. 18).
  • the UE's processing time to measure/calculate and report CSI from the CMR (e.g., CSI processing time z' defined in the NR standard,
  • Z' represents the minimum CSI processing time from receiving CSI-RS (i.e., CMR/IMR) for channel/interference to performing CSI reporting.) is insufficient.
  • CMR (or IMR) 3 is set at a time too close to the CSI report 1803, so the UE cannot use it considering the CSI processing time. Therefore, it is desirable to set/define a certain time offset in consideration of CSI processing time.
  • the MR may be defined based on the ⁇ CSI reporting time - offset ⁇ value.
  • it may be limited to use CMR (or IMR) before ⁇ CSI reporting time - offset ⁇ for measurement.
  • CMR (or IMR) 3 in FIG. 18 may not be used for measurement for CSI report 1803, and CMR (or IMR) 1 or 2 may be used for measurement.
  • CMR or IMR
  • both CMR (or IMR) 1 and 2 can be used for measurement
  • MR is ON, only CMR (or IMR) 2 can be used for measurement.
  • the MR may be defined based on the existing CSI reference resource (i.e., a CSI reference resource set before the CSI reporting time). That is, when MR is ON, it is limited to using the most recently set CMR in the existing CSI reference resource slot or earlier, and when MR is OFF, multiple CMRs can be used in the existing CSI reference resource slot or earlier time.
  • the existing CSI reference resource is used only for defining the MR, and the actual CSI reference resource can be used as the proposed CSI reference resource. Accordingly, in FIG. 18, the UE can use CMR (or IMR) 1 and 2 when MR OFF, and can perform measurement using CMR (or IMR) 2 when MR ON.
  • Problem 3 In order to accurately estimate the channel of the proposed CSI reference resource according to Example 1, extrapolation from multiple CMRs measured at different times is necessary. Therefore, the MR ON operation that uses only one existing CMR may be accurate or inaccurate depending on the AI/ML capabilities of the UE. Additionally, depending on the UE's AI/ML capabilities, how many CMRs are needed for prediction may vary.
  • MR ON may be defined in several levels.
  • the UE may report this MR level (and/or prediction accuracy according to each MR level) to the base station.
  • the base station may indicate the MR level to the UE or request prediction accuracy according to the MR level.
  • the base station can set the UE to report an MR level whose prediction accuracy exceeds the threshold.
  • MR level can be defined as follows.
  • CMR most recently set at a specific time (e.g., existing CSI reference resource (i.e., CSI reference resource set before the CSI reporting time) or CSI reporting time) or earlier. (or IMR) is limited to use.
  • - MR level 1 The two most recently established CMRs (or IMRs) at a specific time (e.g., an existing CSI reference resource (i.e., a CSI reference resource set before the CSI reporting time) or a CSI reporting time) or earlier. Limited to use.
  • MR level 2 The three most recently established CMRs (or IMRs) at or before a specific time (e.g., an existing CSI reference resource (i.e., a CSI reference resource established prior to the CSI reporting time) or a CSI reporting time). Limited to use.
  • a specific time e.g., an existing CSI reference resource (i.e., a CSI reference resource established prior to the CSI reporting time) or a CSI reporting time).
  • CMR (or IMR) 2 when MR level 0 is used based on the existing CSI reference resource 1801, CMR (or IMR) 2 can be used for measurement. Additionally, when using MR level 1, CMR (or IMR) 1 and 2 can be used for measurement.
  • the UE can calculate CSI for each of multiple MR levels and report the calculated CSI to the base station.
  • feedback overhead can be reduced by reporting the difference value of the remaining CSI based on the CSI measured using a specific MR level (e.g., MR level 0).
  • the UE reports to the base station that the time interval between the most recently received CMR and the proposed CSI reference resource on or before the proposed CSI reference resource is below a certain value (e.g., T1). It may be requested and/or the base station may be reported/requested that the time interval between P/SP CMRs be less than or equal to a certain value (e.g., T2). Here, if these time conditions are not met, the UE may not report the corresponding CSI or may report the recently reported CSI as is without calculation.
  • a method of reporting the difference value based on a specific CSI may be used, and/or some CSI (i.e., CSI Some of my information/instructions) may be assumed to be a common CSI and reported to the base station only once without duplication. For example, in the case of RI, it may not change significantly depending on the CSI reference resource, so the UE reports only one common value for RI to the base station, and calculates the remaining PMI/CQI, etc. according to the CSI reference resource and reports it to the base station. You can.
  • any one of the methods proposed in the above-described embodiments 1 to 3 may be applied, and a plurality of methods among the proposed methods may be combined/combined and finally applied.
  • the application of the methods proposed in the above-described embodiments 1 to 3 depends on whether the base station signals RRC/MAC-CE/DCI, etc. to the UE (e.g., DCI or AP CSI reporting that activates SP CSI reporting). It can be indicated through (DCI, etc.) that triggers.
  • Figure 19 illustrates a signaling procedure between a network and a UE for a method of transmitting and receiving channel state information according to an embodiment of the present disclosure.
  • FIG. 19 shows a network (e.g., TRP) for the methods proposed in the present invention (e.g., Examples 1 to 3, a combination of one or more proposed methods in Examples 1 to 3) 1, illustrates signaling between TRP 2) and UE.
  • TRP network
  • UE/network is only an example and can be replaced with various devices.
  • Figure 19 is merely for convenience of explanation and does not limit the scope of the present disclosure. Additionally, some step(s) illustrated in FIG. 19 may be omitted depending on the situation and/or settings.
  • a network may be one base station including multiple TRPs, or may be one cell including multiple TRPs.
  • an ideal/non-ideal backhaul may be set between TRP 1 and TRP 2 that constitute the network.
  • the following description is based on multiple TRPs, but can be equally extended and applied to transmission through multiple panels.
  • the operation of the UE receiving a signal from TRP1/TRP2 may also be interpreted/explained (or may be an operation) as the operation of the UE receiving a signal from the network (via/using TRP1/2).
  • the operation of the UE transmitting a signal to TRP1/TRP2 can be interpreted/explained (or can be an operation) as the operation of the UE transmitting a signal to the network (via/using TRP1/TRP2), and vice versa. /can be explained.
  • Base station may refer to a general term for objects that transmit and receive data with the UE.
  • the base station may be a concept that includes one or more Transmission Points (TPs), one or more Transmission and Reception Points (TRPs), etc.
  • the TP and/or TRP may include a base station panel, a transmission and reception unit, etc.
  • TRP refers to a panel, antenna array, cell (e.g., macro cell / small cell / pico cell, etc.), It can be applied in place of expressions such as TP (transmission point), base station (gNB, etc.).
  • TRPs may be classified according to information (e.g., index, ID) about the CORESET group (or CORESET pool).
  • CORESET groups or CORESET pools
  • Configuration of such a CORESET group can be performed through higher layer signaling (e.g. RRC signaling, etc.).
  • the UE receives configuration information from the network (S1901).
  • the configuration information may include information related to network configuration (e.g., TRP configuration) / information related to M-TRP-based transmission and reception (e.g., resource allocation, etc.).
  • the configuration information may be transmitted through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
  • the setting information may include setting information related to CSI described in the above-described proposed method (e.g., Examples 1 to 3, a combination of one or more proposed methods in Examples 1 to 3).
  • the configuration information related to the CSI is CSI-IM (interference management) resource related information, CSI measurement configuration related information, CSI resource configuration related information, or CSI report configuration related information. It may contain at least one piece of information.
  • the CSI-related configuration information includes configuration information related to CSI reporting (i.e., CSI report settings, CSI report configuration) (e.g., RRC IE 'CSI-ReportConfig') (hereinafter, first configuration information) and CSI resources. It may include configuration information (i.e., CSI resource setting, CSI resource configuration) (e.g., RRC IE 'CSI-ResourceConfig') (hereinafter, second configuration information).
  • a plurality of CSI-RS resources for CSI calculation/measurement may be configured to the UE based on configuration information related to CSI resources (i.e., CSI resource settings).
  • CSI resource settings i.e., CSI resource settings.
  • one or more channel measurement resources e.g., NZP CSI-RS
  • IMR interference measurement resource
  • CMR and IMR can be collectively referred to as CSI resources.
  • configuration information related to CSI resources may be connected/associated with configuration information related to a specific CSI report (i.e., CSI reporting settings), and depending on the reportQuantity within the CSI reporting settings, CSI reporting (e.g., CRI, PMI, RI, CQI, LI, etc.) for a plurality of CSI resources configured by connected/related CSI resource settings may be configured for the UE.
  • CSI reporting e.g., CRI, PMI, RI, CQI, LI, etc.
  • the UE receives CSI-RS from a plurality of CSI resources configured by configuration information (eg, CSI resource settings) from the network (S1902).
  • configuration information eg, CSI resource settings
  • the UE may receive downlink control information (DCI) from the network (S1903).
  • DCI downlink control information
  • the DCI may be a DCI that triggers aperiodic CSI reporting to the UE, or may be a DCI that activates semi-periodic CSI reporting.
  • DCI may be transmitted through a downlink control channel (e.g., PDCCH, etc.), and in addition to triggering/activation of CSI reporting, a downlink data channel (e.g., PDSCH)/uplink data channel (e.g., , PUSCH) can be scheduled.
  • a downlink control channel e.g., PDCCH, etc.
  • a downlink data channel e.g., PDSCH
  • uplink data channel e.g., PUSCH
  • the UE transmits (reports) CSI to the network (S1904).
  • CSI may include at least one of CQI, PMI, RI, CRI, and LI.
  • the UE may report CSI to the network based on configuration information related to CSI reporting (and according to trigger/activation by DCI).
  • CSI reporting types such as periodic CSI reporting, semi-persistent CSI reporting, and aperiodic CSI reporting can be set by setting information related to CSI reporting, and any information (e.g., CRI, CQI) in CSI can be set.
  • CRI, CQI information
  • PMI, RI, LI, etc. can be set to be reported, and in case of periodic CSI reporting, the period (periodicity) and slot offset (slot offset) can also be set.
  • CSI derives channel measurements and/or interference measurements based on one or more CSI resources (i.e., one or more CMR and/or one or more IMR) determined based on the CSI reference resource. It can be calculated/obtained by performing.
  • CSI resources i.e., one or more CMR and/or one or more IMR
  • the CSI reference resource may be determined to be a slot later than the slot in which the CSI is reported in the time domain.
  • the CSI reference resource may be determined based on slot nn CSI_ref , which is later than the uplink slot n' in which the CSI is reported, and n CSI_ref is a downlink slot for which the CSI reference resource is valid. It can be determined as the minimum value greater than or equal to the variable (M) to correspond to .
  • the value of the variable (M) may be provided by the configuration information (e.g., configuration information related to CSI reporting) or downlink control information (DCI) that triggers reporting of the CSI.
  • the UE predicts the channel prediction accuracy for each slot according to the candidates of the variable (M) (that is, the UE predicts the channel assuming a CSI reference resource determined by applying the variable (M). Calculate accuracy) can be transmitted/reported to the network.
  • the network may determine the variable (M) based on this and provide it to the UE.
  • the UE may determine the variable (M) and transmit/report the variable (M) and the channel prediction accuracy for the slot according to the variable (M) to the network.
  • the variable M and the channel prediction accuracy for the slot according to the variable M may be transmitted to the network together with the CSI (or included in the CSI).
  • a threshold is set (or the threshold is predetermined/defined) by the network, and the UE may transmit/report to the network a variable (M) for a slot whose channel prediction accuracy exceeds the threshold.
  • the variable (M) may be transmitted to the network along with (or included in) the CSI.
  • the UE determines the measurement window necessary to achieve channel prediction accuracy for a slot according to a specific variable (M) above a certain level.
  • Information can be transmitted to the network.
  • information about the measurement window may include the number of slots, CMR, and/or IMR.
  • the CSI may include N CSIs for each of N CSI reference resources according to N (N is a natural number) variables (M).
  • N is a natural number
  • M the CSI finally reported to the network is the first CSI for the first CSI reference resource determined by applying the first variable (M1) and the CSI for the second CSI reference resource determined by applying the second variable (M2). 2 Can include all CSIs.
  • CSI may include the N variables (M).
  • the CSI may include information about the time when the CSI is valid.
  • the one or more CMRs and/or the one before the uplink slot in which the CSI is reported or before the offset from the uplink slot in which the CSI is reported Channel measurements and/or interference measurements may be derived/performed based on the above IMR. That is, the one or more CMRs and/or the one or more IMRs used to calculate the CSI may be limited to before the uplink slot in which the CSI is reported or before an offset from the uplink slot in which the CSI is reported. there is.
  • the measurement limit (MR) may be defined in multiple levels.
  • the number of CMR and/or IMR used to calculate the CSI may be determined depending on the level of measurement limitation.
  • the above-described operation of calculating CSI i.e., operation of calculating CSI by predicting a channel
  • operation of calculating channel prediction accuracy may be performed by the UE (or an external device mounted on or connected to the UE).
  • the UE or an external device mounted on or connected to the UE.
  • the functions for the AI/ML operation of FIG. 12 is installed in the UE (or an external device mounted on or connected to the UE). It can be performed by Additionally, the UE (or an external device mounted on or connected to the UE) may determine the mapping pattern through the procedure of FIG. 16 (particularly, 5. Model inference) described above.
  • FIG. 20 is a diagram illustrating UE operations for a method for transmitting and receiving channel state information according to an embodiment of the present disclosure.
  • FIG. 20 illustrates the operation of the UE based on the previously proposed methods (e.g., Embodiments 1 to 3, a combination of one or more proposed methods in Embodiments 1 to 3).
  • the example in FIG. 20 is for convenience of explanation and does not limit the scope of the present disclosure. Some step(s) illustrated in FIG. 20 may be omitted depending on the situation and/or setting.
  • the UE in FIG. 20 is only an example and may be implemented as a device illustrated in FIG. 22 below.
  • the processor 102/202 of FIG. 22 can control to transmit and receive channels/signals/data/information, etc. using the transceiver 106/206, and transmits and receives channels/signals to be transmitted or received. It can also be controlled to store /data/information, etc. in the memory (104/204).
  • FIG. 20 may be processed by one or more processors 102 and 202 of FIG. 22, and the operation of FIG. 20 may be performed for driving at least one processor (e.g., 102 and 202) of FIG. 22. It may be stored in a memory (e.g., one or more memories 104 and 204 of FIG. 22) in the form of instructions/programs (e.g., instructions, executable code).
  • a memory e.g., one or more memories 104 and 204 of FIG. 22
  • instructions/programs e.g., instructions, executable code
  • the UE receives configuration information related to channel state information (CSI) from the base station (S2001).
  • CSI channel state information
  • the setting information related to the CSI may include information related to the CSI described in the above-described proposed method (e.g., Examples 1 to 3, a combination of one or more proposed methods in Examples 1 to 3). there is.
  • the configuration information related to the CSI is CSI-IM (interference management) resource related information, CSI measurement configuration related information, CSI resource configuration related information, or CSI report configuration related information. It may contain at least one piece of information.
  • the CSI-related configuration information includes configuration information related to CSI reporting (i.e., CSI report settings, CSI report configuration) (e.g., RRC IE 'CSI-ReportConfig') (hereinafter, first configuration information) and CSI resources. It may include configuration information (i.e., CSI resource setting, CSI resource configuration) (e.g., RRC IE 'CSI-ResourceConfig') (hereinafter, second configuration information).
  • a plurality of CSI-RS resources for CSI calculation/measurement may be configured to the UE based on configuration information related to CSI resources (i.e., CSI resource settings).
  • CSI resource settings i.e., CSI resource settings.
  • one or more channel measurement resources e.g., NZP CSI-RS
  • IMR interference measurement resource
  • CMR and IMR can be collectively referred to as CSI resources.
  • configuration information related to CSI resources may be connected/associated with configuration information related to a specific CSI report (i.e., CSI reporting settings), and depending on the reportQuantity within the CSI reporting settings, CSI reporting (e.g., CRI, PMI, RI, CQI, LI, etc.) for a plurality of CSI resources configured by connected/related CSI resource settings may be configured for the UE.
  • CSI reporting e.g., CRI, PMI, RI, CQI, LI, etc.
  • the UE may receive downlink control information (DCI) from the base station.
  • DCI may be a DCI that triggers aperiodic CSI reporting to the UE, or may be a DCI that activates semi-periodic CSI reporting.
  • DCI may be transmitted through a downlink control channel (e.g., PDCCH, etc.), and in addition to triggering/activation of CSI reporting, a downlink data channel (e.g., PDSCH)/uplink data channel (e.g., , PUSCH) can be scheduled.
  • a downlink data channel e.g., PDSCH
  • uplink data channel e.g., PUSCH
  • the UE calculates/acquires CSI by deriving/performing channel measurements and/or interference measurements based on one or more CSI resources (i.e., one or more CMR and/or one or more IMR) determined based on the CSI reference resource (S2002 ). Then, the UE transmits (reports) CSI to the network (S2003).
  • CSI may include at least one of CQI, PMI, RI, CRI, and LI.
  • the UE receives CSI-RS from a plurality of CSI resources configured by configuration information (e.g., CSI resource settings), and uses one or more CSI resources (i.e., one or more CMR and /or calculate CSI based on one or more IMR). And, the UE may report CSI to the base station based on configuration information related to CSI reporting (and according to trigger/activation by DCI).
  • configuration information e.g., CSI resource settings
  • the UE may report CSI to the base station based on configuration information related to CSI reporting (and according to trigger/activation by DCI).
  • CSI reporting types such as periodic CSI reporting, semi-persistent CSI reporting, and aperiodic CSI reporting can be set by setting information related to CSI reporting, and any information (e.g., CRI, CQI) in CSI can be set.
  • PMI, RI, LI, etc. can be set to be reported, and in case of periodic CSI reporting, the period (periodicity)
  • CSI derives channel measurements and/or interference measurements based on one or more CSI resources (i.e., one or more CMR and/or one or more IMR) determined based on the CSI reference resource. It can be calculated/obtained by performing.
  • CSI resources i.e., one or more CMR and/or one or more IMR
  • the CSI reference resource may be determined to be a slot later than the slot in which the CSI is reported in the time domain.
  • the CSI reference resource may be determined based on slot nn CSI_ref , which is later than the uplink slot n' in which the CSI is reported, and n CSI_ref is a downlink slot for which the CSI reference resource is valid. It can be determined as the minimum value greater than or equal to the variable (M) to correspond to .
  • the value of the variable (M) may be provided by the configuration information (e.g., configuration information related to CSI reporting) or downlink control information (DCI) that triggers reporting of the CSI.
  • the UE predicts the channel prediction accuracy for each slot according to the candidates of the variable (M) (that is, the UE predicts the channel assuming a CSI reference resource determined by applying the variable (M). Accuracy calculation) can be transmitted/reported to the base station. In this case, the base station may determine the variable (M) based on this and provide it to the UE.
  • the UE may determine the variable (M) and transmit/report the variable (M) and the channel prediction accuracy for the slot according to the variable (M) to the base station. For example, the variable M and the channel prediction accuracy for the slot according to the variable M may be transmitted to the base station together with the CSI (or included in the CSI).
  • a threshold is set (or the threshold is predetermined/defined) by the base station, and the UE may transmit/report a variable (M) for a slot whose channel prediction accuracy exceeds the threshold to the base station.
  • the variable (M) may be transmitted to the base station along with (or included in) the CSI.
  • the UE determines the measurement window necessary to achieve channel prediction accuracy for a slot according to a specific variable (M) above a certain level.
  • Information can be transmitted to the base station.
  • information about the measurement window may include the number of slots, CMR, and/or IMR.
  • the CSI may include N CSIs for each of N CSI reference resources according to N (N is a natural number) variables (M).
  • N is a natural number
  • M the CSI finally reported to the base station is the first CSI for the first CSI reference resource determined by applying the first variable (M1) and the CSI for the second CSI reference resource determined by applying the second variable (M2). 2 Can include all CSIs.
  • CSI may include the N variables (M).
  • the CSI may include information about the time when the CSI is valid.
  • the one or more CMRs and/or the one before the uplink slot in which the CSI is reported or before the offset from the uplink slot in which the CSI is reported Channel measurements and/or interference measurements may be derived/performed based on the above IMR. That is, the one or more CMRs and/or the one or more IMRs used to calculate the CSI may be limited to before the uplink slot in which the CSI is reported or before an offset from the uplink slot in which the CSI is reported. there is.
  • the measurement limit (MR) may be defined in multiple levels.
  • the number of CMR and/or IMR used to calculate the CSI may be determined depending on the level of measurement limitation.
  • the above-described operation of calculating CSI i.e., operation of calculating CSI by predicting a channel
  • operation of calculating channel prediction accuracy may be performed by the UE (or an external device mounted on or connected to the UE).
  • the UE or an external device mounted on or connected to the UE.
  • the functions for the AI/ML operation of FIG. 12 is installed in the UE (or an external device mounted on or connected to the UE). It can be performed by Additionally, the UE (or an external device mounted on or connected to the UE) may determine the mapping pattern through the procedure of FIG. 16 (particularly, 5. Model inference) described above.
  • FIG. 21 is a diagram illustrating the operation of a base station in a method for transmitting and receiving channel state information according to an embodiment of the present disclosure.
  • FIG. 21 illustrates the operation of a base station based on the previously proposed methods (e.g., Embodiments 1 to 3, a combination of one or more proposed methods in Embodiments 1 to 3).
  • the example in FIG. 21 is for convenience of explanation and does not limit the scope of the present disclosure. Some step(s) illustrated in FIG. 21 may be omitted depending on the situation and/or setting.
  • the base station in FIG. 21 is only an example and may be implemented as a device illustrated in FIG. 22 below.
  • the processor 102/202 of FIG. 22 can control to transmit and receive channels/signals/data/information, etc. using the transceiver 106/206, and transmits and receives channels/signals to be transmitted or received. It can also be controlled to store /data/information, etc. in the memory (104/204).
  • FIG. 21 may be processed by one or more processors 102 and 202 of FIG. 22, and the operation of FIG. 21 may be performed for driving at least one processor (e.g., 102 and 202) of FIG. 22. It may be stored in a memory (e.g., one or more memories 104 and 204 of FIG. 22) in the form of instructions/programs (e.g., instructions, executable code).
  • a memory e.g., one or more memories 104 and 204 of FIG. 22
  • instructions/programs e.g., instructions, executable code
  • the base station transmits configuration information related to channel state information (CSI) to the UE (S2101).
  • CSI channel state information
  • the setting information related to the CSI may include information related to the CSI described in the above-described proposed method (e.g., Examples 1 to 3, a combination of one or more proposed methods in Examples 1 to 3). there is.
  • the configuration information related to the CSI is CSI-IM (interference management) resource related information, CSI measurement configuration related information, CSI resource configuration related information, or CSI report configuration related information. It may contain at least one piece of information.
  • the CSI-related configuration information includes configuration information related to CSI reporting (i.e., CSI report settings, CSI report configuration) (e.g., RRC IE 'CSI-ReportConfig') (hereinafter, first configuration information) and CSI resources. It may include configuration information (i.e., CSI resource setting, CSI resource configuration) (e.g., RRC IE 'CSI-ResourceConfig') (hereinafter, second configuration information).
  • a plurality of CSI-RS resources for CSI calculation/measurement may be configured to the UE based on configuration information related to CSI resources (i.e., CSI resource settings).
  • CSI resource settings i.e., CSI resource settings.
  • one or more channel measurement resources e.g., NZP CSI-RS
  • IMR interference measurement resource
  • CMR and IMR can be collectively referred to as CSI resources.
  • configuration information related to CSI resources may be connected/associated with configuration information related to a specific CSI report (i.e., CSI reporting settings), and depending on the reportQuantity within the CSI reporting settings, CSI reporting (e.g., CRI, PMI, RI, CQI, LI, etc.) for a plurality of CSI resources configured by connected/related CSI resource settings may be configured for the UE.
  • CSI reporting e.g., CRI, PMI, RI, CQI, LI, etc.
  • the base station may transmit downlink control information (DCI) to the UE.
  • DCI may be a DCI that triggers aperiodic CSI reporting to the UE, or may be a DCI that activates semi-periodic CSI reporting.
  • DCI may be transmitted through a downlink control channel (e.g., PDCCH, etc.), and in addition to triggering/activation of CSI reporting, a downlink data channel (e.g., PDSCH)/uplink data channel (e.g., , PUSCH) can be scheduled.
  • a downlink data channel e.g., PDSCH
  • uplink data channel e.g., PUSCH
  • the base station receives CSI from the UE (S2102).
  • CSI may include at least one of CQI, PMI, RI, CRI, and LI.
  • the CSI is calculated/obtained by deriving/performing channel measurements and/or interference measurements based on one or more CSI resources (i.e., one or more CMR and/or one or more IMR) determined based on the CSI reference resource.
  • one or more CSI resources i.e., one or more CMR and/or one or more IMR
  • CSI-RS is transmitted to the UE on a plurality of CSI resources configured by configuration information (e.g., CSI resource setting), and one or more CSI resources (i.e., one or more CMR and /or one or more IMR) is calculated based on the CSI.
  • the base station can receive CSI from the UE based on configuration information related to CSI reporting (and according to trigger/activation by DCI).
  • CSI reporting types such as periodic CSI reporting, semi-persistent CSI reporting, and aperiodic CSI reporting can be set by setting information related to CSI reporting, and any information (e.g., CRI, CQI) in CSI can be set.
  • PMI, RI, LI, etc. can be set to be reported, and in case of periodic CSI reporting, the period (periodicity) and slot offset (slot offset) can also be set.
  • CSI derives channel measurements and/or interference measurements based on one or more CSI resources (i.e., one or more CMR and/or one or more IMR) determined based on the CSI reference resource. It can be calculated/obtained by performing.
  • CSI resources i.e., one or more CMR and/or one or more IMR
  • the CSI reference resource may be determined to be a slot later than the slot in which the CSI is reported in the time domain.
  • the CSI reference resource may be determined based on slot nn CSI_ref , which is later than the uplink slot n' in which the CSI is reported, and n CSI_ref is a downlink slot for which the CSI reference resource is valid. It can be determined as the minimum value greater than or equal to the variable (M) to correspond to .
  • the value of the variable (M) may be provided by the configuration information (e.g., configuration information related to CSI reporting) or downlink control information (DCI) that triggers reporting of the CSI.
  • the UE predicts the channel prediction accuracy for each slot according to the candidates of the variable (M) (i.e., the UE predicts the channel assuming a CSI reference resource determined by applying the variable (M). Accuracy calculation) can be transmitted/reported to the base station. In this case, the base station may determine the variable (M) based on this and provide it to the UE.
  • the base station may receive from the UE the variable (M) determined by the UE and the channel prediction accuracy for the slot according to the variable (M).
  • the variable M and the channel prediction accuracy for a slot according to the variable M may be received from the UE together with (or included in the CSI) CSI.
  • a variable (M) for a slot whose channel prediction accuracy exceeds the threshold (or predetermined/defined threshold) set by the base station may be received from the UE.
  • the variable M may be received from the UE along with (or included in) the CSI.
  • the base station before receiving CSI from the UE, the base station provides information about the measurement window necessary to achieve channel prediction accuracy for a slot according to a specific variable (M) above a certain level.
  • Information can be received from the UE.
  • information about the measurement window may include the number of slots, CMR, and/or IMR.
  • the CSI may include N CSIs for each of N CSI reference resources according to N (N is a natural number) variables (M).
  • N is a natural number
  • M the CSI finally reported to the base station is the first CSI for the first CSI reference resource determined by applying the first variable (M1) and the CSI for the second CSI reference resource determined by applying the second variable (M2). 2 Can include all CSIs.
  • CSI may include the N variables (M).
  • the CSI may include information about the time when the CSI is valid.
  • the one or more CMRs and/or the one before the uplink slot in which the CSI is reported or before the offset from the uplink slot in which the CSI is reported Channel measurements and/or interference measurements may be derived/performed based on the above IMR. That is, the one or more CMRs and/or the one or more IMRs used to calculate the CSI may be limited to before the uplink slot in which the CSI is reported or before an offset from the uplink slot in which the CSI is reported. there is.
  • the measurement limit (MR) may be defined in multiple levels.
  • the number of CMR and/or IMR used to calculate the CSI may be determined depending on the level of measurement limitation.
  • the above-described operation of calculating CSI i.e., operation of calculating CSI by predicting a channel
  • operation of calculating channel prediction accuracy may be performed by the UE (or an external device mounted on or connected to the UE).
  • the UE or an external device mounted on or connected to the UE.
  • the functions for the AI/ML operation of FIG. 12 is installed in the UE (or an external device mounted on or connected to the UE). It can be performed by Additionally, the UE (or an external device mounted on or connected to the UE) may determine the mapping pattern through the procedure of FIG. 16 (particularly, 5. Model inference) described above.
  • FIG. 22 is a diagram illustrating a block configuration of a wireless communication device according to an embodiment of the present disclosure.
  • the first wireless device 100 and the second wireless device 200 can transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • various wireless access technologies eg, LTE, NR.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may additionally include one or more transceivers 106 and/or one or more antennas 108.
  • Processor 102 controls memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this disclosure.
  • the processor 102 may process information in the memory 104 to generate first information/signal and then transmit a wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive a wireless signal including the second information/signal through the transceiver 106 and then store information obtained from signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may perform some or all of the processes controlled by processor 102 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this disclosure. Software code containing them can be stored.
  • the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 106 may be coupled to processor 102 and may transmit and/or receive wireless signals via one or more antennas 108. Transceiver 106 may include a transmitter and/or receiver. The transceiver 106 can be used interchangeably with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this disclosure.
  • the processor 202 may process the information in the memory 204 to generate third information/signal and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive a wireless signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, memory 204 may perform some or all of the processes controlled by processor 202 or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure. Software code containing them can be stored.
  • the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 206 may be coupled to processor 202 and may transmit and/or receive wireless signals via one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. Transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure. can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure.
  • One or more processors 102, 202 may process signals (e.g., baseband signals) containing PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this disclosure. It can be generated and provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206 and may use the descriptions, functions, procedures, suggestions, methods, and/or methods disclosed in this disclosure.
  • PDU, SDU, message, control information, data or information can be obtained according to the operation flow charts.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this disclosure may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc.
  • Firmware or software configured to perform the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure may be included in one or more processors (102, 202) or stored in one or more memories (104, 204). It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this disclosure may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 and 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of the present disclosure to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flow charts, etc. disclosed in this disclosure from one or more other devices. there is.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may be connected to the one or more antennas (108, 208) according to the description and functions disclosed in the present disclosure. , may be set to transmit and receive user data, control information, wireless signals/channels, etc.
  • the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal.
  • One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals.
  • one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
  • the scope of the present disclosure is software or machine-executable instructions (e.g., operating system, application, firmware, program, etc.) that cause operations according to the methods of various embodiments to be executed on a device or computer, and such software or It includes non-transitory computer-readable medium in which instructions, etc. are stored and can be executed on a device or computer. Instructions that may be used to program a processing system to perform the features described in this disclosure may be stored on/in a storage medium or computer-readable storage medium and may be viewed using a computer program product including such storage medium. Features described in the disclosure may be implemented.
  • Storage media may include, but are not limited to, high-speed random access memory such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices, one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or It may include non-volatile memory, such as other non-volatile solid state storage devices.
  • Memory optionally includes one or more storage devices located remotely from the processor(s).
  • the memory, or alternatively the non-volatile memory device(s) within the memory includes a non-transitory computer-readable storage medium.
  • Features described in this disclosure may be stored on any one of a machine-readable medium to control the hardware of a processing system and to enable the processing system to interact with other mechanisms utilizing results according to embodiments of the present disclosure. May be integrated into software and/or firmware.
  • Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present disclosure may include Narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G.
  • NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names. no.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present disclosure may perform communication based on LTE-M technology.
  • LTE-M technology may be an example of LPWAN technology, and may be called various names such as enhanced Machine Type Communication (eMTC).
  • eMTC enhanced Machine Type Communication
  • LTE-M technologies include 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine. It can be implemented in at least one of various standards such as Type Communication, and/or 7) LTE M, and is not limited to the above-mentioned names.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present disclosure includes at least ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) considering low-power communication. It may include any one, and is not limited to the above-mentioned names.
  • ZigBee technology can create personal area networks (PAN) related to small/low-power digital communications based on various standards such as IEEE 802.15.4, and can be called by various names.
  • PAN personal area networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치가 개시된다. 본 개시의 일 실시예에 따른 방법은, 기지국으로부터 CSI와 관련된 설정 정보를 수신하는 단계; CSI 참조 자원에 기반하여 결정되는 하나 이상의 CMR 및/또는 하나 이상의 IMR에 기반하여 채널 측정 및/또는 간섭 측정을 도출하여 상기 CSI를 계산하는 단계; 및 상기 CSI를 상기 기지국에게 전송하는 단계를 포함할 수 있다.

Description

무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
본 개시는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 무선 통신 시스템에서 채널 상태 정보(CSI: channel state information)를 송수신하는 방법 및 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대해 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 개시의 기술적 과제는 CSI를 송수신하는 방법 및 장치를 제공하는 것이다.
또한, 본 개시의 추가적인 기술적 과제는 CSI를 계산하기 위한 CSI 참조 자원을 결정하는 방법 및 장치를 제공하는 것이다.
또한, 본 개시의 추가적인 기술적 과제는 CSI를 계산하기 위해 채널 및/또는 간섭 측정을 도출하기 위한 채널 측정 자원 및/또는 간섭 측정 자원을 결정하는 방법 및 장치를 제공하는 것이다.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 일 양상에 따른 무선 통신 시스템에서 사용자 장치(UE: user equipment)에 의해 수행되는 방법은: 기지국으로부터 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 수신하는 단계; CSI 참조 자원에 기반하여 결정되는 하나 이상의 채널 측정 자원(CMR: channel measurement resource) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)에 기반하여 채널 측정 및/또는 간섭 측정을 도출하여 상기 CSI를 계산하는 단계; 및 상기 CSI를 상기 기지국에게 전송하는 단계를 포함할 수 있다. 상기 CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정될 수 있다.
본 개시의 추가적인 양상에 따른 무선 통신 시스템에서 기지국에 의해 수행되는 방법은: 사용자 장치(UE: user equipment)에게 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 전송하는 단계; 및 상기 UE로부터 CSI를 수신하는 단계를 포함할 수 있다. 상기 CSI는 CSI 참조 자원에 기반하여 결정되는 하나 이상의 채널 측정 자원(CMR: channel measurement resource) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)에 기반하여 채널 측정 및/또는 간섭 측정이 도출되어 계산되고, 상기 CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정될 수 있다.
본 개시의 실시예에 따르면, CSI의 채널 에이징(channel aging) 효과를 최소화할 수 있다.
본 개시의 실시예에 따르면, 실제 하향링크 전송 시점과 가까운 시점에 대한 채널을 추론/예측함으로써 하향링크 전송 성능을 향상시킬 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 개시에 대한 실시예를 제공하고, 상세한 설명과 함께 본 개시의 기술적 특징을 설명한다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다.
도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다.
도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다.
도 7은 인공지능의 분류를 예시한다.
도 8은 순방향 신경망(Feed-Forward Neural Network)을 예시한다.
도 9는 순환 신경망(Recurrent Neural Network)을 예시한다.
도 10은 컨볼루션 신경망(Convolutional Neural Network)을 예시한다.
도 11은 오토 인코더(Auto encoder)를 예시한다.
도 12는 AI 동작을 위한 기능적 프레임워크(functional framework)를 예시한다.
도 13은 분할 AI 추론을 예시하는 도면이다.
도 14는 무선 통신 시스템에서 기능적 프레임워크(functional framework)의 적용을 예시한다.
도 15는 무선 통신 시스템에서 기능적 프레임워크(functional framework)의 적용을 예시한다.
도 16은 무선 통신 시스템에서 기능적 프레임워크(functional framework)의 적용을 예시한다.
도 17은 본 개시의 일 실시예에 따른 CSI 참조 자원을 설정하는 방법을 예시하는 도면이다.
도 18은 본 개시의 일 실시예에 따른 CSI 참조 자원을 설정하는 방법을 예시하는 도면이다.
도 19는 본 개시의 일 실시예에 따른 채널 상태 정보 송수신 방법에 대한 네트워크와 UE 간의 시그널링 절차를 예시한다.
도 20은 본 개시의 일 실시예에 따른 채널 상태 정보 송수신 방법에 대한 UE의 동작을 예시하는 도면이다.
도 21은 본 개시의 일 실시예에 따른 채널 상태 정보 송수신 방법에 대한 기지국의 동작을 예시하는 도면이다.
도 22는 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시하는 도면이다.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시형태를 설명하고자 하는 것이며, 본 개시가 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 개시의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 개시가 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 개시의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 개시에 있어서, 어떤 구성요소가 다른 구성요소와 "연결", "결합" 또는 "접속"되어 있다고 할 때, 이는 직접적인 연결관계 뿐만 아니라, 그 사이에 또 다른 구성요소가 존재하는 간접적인 연결관계도 포함할 수 있다. 또한 본 개시에서 용어 "포함한다" 또는 "가진다"는 언급된 특징, 단계, 동작, 요소 및/또는 구성요소의 존재를 특정하지만, 하나 이상의 다른 특징, 단계, 동작, 요소, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는다.
본 개시에 있어서, "제 1", "제 2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되고 구성요소들을 제한하기 위해서 사용되지 않으며, 특별히 언급되지 않는 한 구성요소들 간의 순서 또는 중요도 등을 한정하지 않는다. 따라서, 본 개시의 범위 내에서 일 실시예에서의 제 1 구성요소는 다른 실시예에서 제 2 구성요소라고 칭할 수도 있고, 마찬가지로 일 실시예에서의 제 2 구성요소를 다른 실시예에서 제 1 구성요소라고 칭할 수도 있다.
본 개시에서 사용된 용어는 특정 실시예에 대한 설명을 위한 것이며 청구범위를 제한하려는 것이 아니다. 실시예의 설명 및 첨부된 청구범위에서 사용되는 바와 같이, 단수 형태는 문맥상 명백하게 다르게 나타내지 않는 한 복수 형태도 포함하도록 의도한 것이다. 본 개시에 사용된 용어 "및/또는"은 관련된 열거 항목 중의 하나를 지칭할 수도 있고, 또는 그 중의 둘 이상의 임의의 및 모든 가능한 조합을 지칭하고 포함하는 것을 의미한다. 또한, 본 개시에서 단어들 사이의 "/"는 달리 설명되지 않는 한 "및/또는"과 동일한 의미를 가진다.
본 개시는 무선 통신 네트워크 또는 무선 통신 시스템을 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 동작은 해당 무선 통신 네트워크를 관할하는 장치(예를 들어 기지국)에서 네트워크를 제어하고 신호를 송신(transmit) 또는 수신(receive)하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 네트워크와의 또는 단말간의 신호를 송신 또는 수신하는 과정에서 이루어질 수 있다.
본 개시에서, 채널을 송신 또는 수신한다는 것은 해당 채널을 통해서 정보 또는 신호를 송신 또는 수신한다는 의미를 포함한다. 예를 들어, 제어 채널을 송신한다는 것은, 제어 채널을 통해서 제어 정보 또는 신호를 송신한다는 것을 의미한다. 유사하게, 데이터 채널을 송신한다는 것은, 데이터 채널을 통해서 데이터 정보 또는 신호를 송신한다는 것을 의미한다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제1 통신 장치로, 단말은 제2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI(Artificial Intelligence) 시스템/모듈, RSU(road side unit), 로봇(robot), 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), RSU(road side unit), 로봇(robot), AI(Artificial Intelligence) 모듈, 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예를 들어, LTE-A, NR)을 기반으로 설명하지만 본 개시의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS(Technical Specification) 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 개시의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 개시 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE의 경우, TS 36.211(물리 채널들 및 변조), TS 36.212(다중화 및 채널 코딩), TS 36.213(물리 계층 절차들), TS 36.300(전반적인 설명), TS 36.331(무선 자원 제어)을 참조할 수 있다.
3GPP NR의 경우, TS 38.211(물리 채널들 및 변조), TS 38.212(다중화 및 채널 코딩), TS 38.213(제어를 위한 물리 계층 절차들), TS 38.214(데이터를 위한 물리 계층 절차들), TS 38.300(NR 및 NG-RAN(New Generation-Radio Access Network) 전반적인 설명), TS 38.331(무선 자원 제어 프로토콜 규격)을 참조할 수 있다.
본 개시에서 사용될 수 있는 용어들의 약자는 다음과 같이 정의된다.
- BM: 빔 관리(beam management)
- CQI: 채널 품질 지시자(channel quality indicator)
- CRI: 채널 상태 정보 - 참조 신호 자원 지시자(channel state information - reference signal resource indicator)
- CSI: 채널 상태 정보(channel state information)
- CSI-IM: 채널 상태 정보 - 간섭 측정(channel state information - interference measurement)
- CSI-RS: 채널 상태 정보 - 참조 신호(channel state information - reference signal)
- DMRS: 복조 참조 신호(demodulation reference signal)
- FDM: 주파수 분할 다중화(frequency division multiplexing)
- FFT: 고속 푸리에 변환(fast Fourier transform)
- IFDMA: 인터리빙된 주파수 분할 다중 액세스(interleaved frequency division multiple access)
- IFFT: 역 고속 푸리에 변환(inverse fast Fourier transform)
- L1-RSRP: 제1 레이어 참조 신호 수신 파워(Layer 1 reference signal received power)
- L1-RSRQ: 제1 레이어 참조 신호 수신 품질(Layer 1 reference signal received quality)
- MAC: 매체 액세스 제어(medium access control)
- NZP: 논-제로 파워(non-zero power)
- OFDM: 직교 주파수 분할 다중화(orthogonal frequency division multiplexing)
- PDCCH: 물리 하향링크 제어 채널(physical downlink control channel)
- PDSCH: 물리 하향링크 공유 채널(physical downlink shared channel)
- PMI: 프리코딩 행렬 지시자(precoding matrix indicator)
- RE: 자원 요소(resource element)
- RI: 랭크 지시자(Rank indicator)
- RRC: 무선 자원 제어(radio resource control)
- RSSI: 수신 신호 강도 지시자(received signal strength indicator)
- Rx: 수신(Reception)
- QCL: 준-동일 위치(quasi co-location)
- SINR: 신호 대 간섭 및 잡음비(signal to interference and noise ratio)
- SSB (또는 SS/PBCH block): 동기 신호 블록(프라이머리 동기 신호(PSS: primary synchronization signal), 세컨더리 동기 신호(SSS: secondary synchronization signal) 및 물리 방송 채널(PBCH: physical broadcast channel)을 포함)
- TDM: 시간 분할 다중화(time division multiplexing)
- TRP: 전송 및 수신 포인트(transmission and reception point)
- TRS: 트래킹 참조 신호(tracking reference signal)
- Tx: 전송(transmission)
- UE: 사용자 장치(user equipment)
- ZP: 제로 파워(zero power)
시스템 일반
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(RAT: radio access technology)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC(Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 개시에서는 편의상 해당 기술을 NR이라고 부른다. NR은 5G RAT의 일례를 나타낸 표현이다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예를 들어, 100MHz)를 지원할 수 있다. 또는 하나의 셀이 복수 개의 numerology들을 지원할 수도 있다. 즉, 서로 다른 numerology로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다.
numerology는 주파수 영역에서 하나의 서브캐리어 간격(subcarrier spacing)에 대응한다. 참조 서브캐리어 간격(Reference subcarrier spacing)을 정수 N으로 스케일링(scaling)함으로써, 상이한 numerology가 정의될 수 있다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다.
도 1을 참조하면, NG-RAN은 NG-RA(NG-Radio Access) 사용자 평면(즉, 새로운 AS(access stratum) 서브계층/PDCP(Packet Data Convergence Protocol)/RLC(Radio Link Control)/MAC/PHY) 및 UE에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다. 상기 gNB는 Xn 인터페이스를 통해 상호 연결된다. 상기 gNB는 또한, NG 인터페이스를 통해 NGC(New Generation Core)로 연결된다. 보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다.
NR 시스템은 다수의 뉴머롤로지(numerology)들을 지원할 수 있다. 여기서, numerology는 서브캐리어 간격(subcarrier spacing)과 순환 전치(CP: Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이때, 다수의 서브캐리어 간격은 기본(참조) 서브캐리어 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 numerology는 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 numerology에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM numerology 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM numerology들은 아래 표 1과 같이 정의될 수 있다.
μ Δf=2μ·15 [kHz] CP
0 15 일반(Normal)
1 30 일반
2 60 일반, 확장(Extended)
3 120 일반
4 240 일반
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 서브캐리어 간격(SCS: subcarrier spacing))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 타입(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 2와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(mmW: millimeter wave)를 의미할 수 있다.
주파수 범위 지정(Frequency Range designation) 해당 주파수 범위(Corresponding frequency range) 서브캐리어 간격(Subcarrier Spacing)
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는 Tc=1/(Δfmax·Nf) 의 시간 단위의 배수로 표현된다. 여기에서, Δfmax=480·103 Hz 이고, Nf=4096 이다. 하향링크(downlink) 및 상향링크(uplink) 전송은 Tf=1/(ΔfmaxNf/100)·Tc=10ms 의 구간을 가지는 무선 프레임(radio frame)으로 구성(organized)된다. 여기에서, 무선 프레임은 각각 Tsf=(ΔfmaxNf/1000)·Tc=1ms 의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 또한, 단말로부터의 상향링크 프레임 번호 i에서의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다 TTA=(NTA+NTA,offset)Tc 이전에 시작해야 한다. 서브캐리어 간격 구성 μ 에 대하여, 슬롯(slot)들은 서브프레임 내에서 ns μ∈{0,..., Nslot subframe,μ-1} 의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서 ns,f μ∈{0,..., Nslot frame,μ-1} 의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은 Nsymb slot 의 연속하는 OFDM 심볼들로 구성되고, Nsymb slot 는, CP에 따라 결정된다. 서브프레임에서 슬롯 ns μ 의 시작은 동일 서브프레임에서 OFDM 심볼 ns μNsymb slot 의 시작과 시간적으로 정렬된다. 모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 3은 일반 CP에서 슬롯 별 OFDM 심볼의 개수(Nsymb slot), 무선 프레임 별 슬롯의 개수(Nslot frame,μ), 서브프레임 별 슬롯의 개수(Nslot subframe,μ)를 나타내며, 표 4는 확장 CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
μ Nsymb slot Nslot frame,μ Nslot subframe,μ
0 14 10 1
1 14 20 2
2 14 40 4
3 14 80 8
4 14 160 16
μ Nsymb slot Nslot frame,μ Nslot subframe,μ
2 12 40 4
도 2는, μ=2인 경우(SCS가 60kHz)의 일례로서, 표 3을 참고하면 1 서브프레임(subframe)은 4개의 슬롯(slot)들을 포함할 수 있다. 도 2에 도시된 1 subframe={1,2,4} slot은 일례로서, 1 subframe에 포함될 수 있는 slot(들)의 개수는 표 3 또는 표 4와 같이 정의된다. 또한, 미니 슬롯(mini-slot)은 2, 4 또는 7 심볼들을 포함하거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다. 이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다.
도 3을 참조하면, 자원 그리드가 주파수 영역 상으로 NRB μNsc RB 서브캐리어들로 구성되고, 하나의 서브프레임이 14·2μ OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다. NR 시스템에서, 전송되는 신호(transmitted signal)는 NRB μNsc RB 서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및 2μNsymb (μ) 의 OFDM 심볼들에 의해 설명된다. 여기서, NRB μ≤NRB max,μ 이다. 상기 NRB max,μ 는 최대 전송 대역폭을 나타내고, 이는, numerology들 뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다. 이 경우, μ 및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다. μ 및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍 (k,l')에 의해 고유적으로 식별된다. 여기에서, k=0,...,NRB μNsc RB-1 는 주파수 영역 상의 인덱스이고, l'=0,...,2μNsymb (μ)-1 는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍 (k,l) 이 이용된다. 여기서, l=0,...,Nsymb μ-1 이다. μ 및 안테나 포트 p에 대한 자원 요소 (k,l') 는 복소 값(complex value) ak,l' (p,μ) 에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 numerology가 특정되지 않은 경우에는, 인덱스들 p 및 μ 는 드롭(drop)될 수 있으며, 그 결과 복소 값은 ak,l' (p) 또는 ak,l' 이 될 수 있다. 또한, 자원 블록(resource block, RB)은 주파수 영역 상의 Nsc RB=12 연속적인 서브캐리어들로 정의된다.
포인트(point) A는 자원 블록 그리드의 공통 기준 포인트(common reference point)로서 역할을 하며 다음과 같이 획득된다.
- 프라이머리 셀(PCell: Primary Cell) 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 단말에 의해 사용된 SS/PBCH block과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타낸다. FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현된다.
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정 μ 에 대한 주파수 영역에서 0부터 위쪽으로 numbering된다. 서브캐리어 간격 설정 μ 에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호 nCRB μ 와 서브캐리어 간격 설정 μ 에 대한 자원 요소(k,l)와의 관계는 아래 수학식 1과 같이 주어진다.
Figure PCTKR2023005650-appb-img-000001
수학식 1에서, k는 k=0이 point A를 중심으로 하는 서브캐리어에 해당하도록 point A에 상대적으로 정의된다. 물리 자원 블록들은 대역폭 파트(BWP: bandwidth part) 내에서 0부터 NBWP,i size,μ-1 까지 번호가 매겨지고, i는 BWP의 번호이다. BWP i에서 물리 자원 블록 nPRB 와 공통 자원 블록 nCRB 간의 관계는 아래 수학식 2에 의해 주어진다.
Figure PCTKR2023005650-appb-img-000002
NBWP,i start,μ 는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록이다.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다. 그리고, 도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다.
도 4 및 도 5를 참조하면, 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다.
반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예를 들어, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (물리) 자원 블록으로 정의되며, 하나의 numerology(예를 들어, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(RE: Resource Element)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
NR 시스템은 하나의 컴포넌트 캐리어(CC: Component Carrier) 당 최대 400 MHz까지 지원될 수 있다. 이러한 광대역 CC(wideband CC)에서 동작하는 단말이 항상 CC 전체에 대한 무선 주파수(RF: radio frequency) 칩(chip)를 켜둔 채로 동작한다면 단말 배터리 소모가 커질 수 있다. 혹은 하나의 광대역 CC 내에 동작하는 여러 활용 케이스들(예를 들어, eMBB, URLLC, Mmtc, V2X 등)을 고려할 때 해당 CC 내에 주파수 대역 별로 서로 다른 numerology(예를 들어, 서브캐리어 간격 등)가 지원될 수 있다. 혹은 단말 별로 최대 대역폭에 대한 능력(capability)이 다를 수 있다. 이를 고려하여 기지국은 광대역 CC의 전체 bandwidth이 아닌 일부 bandwidth에서만 동작하도록 단말에게 지시할 수 있으며, 해당 일부 bandwidth를 편의상 대역폭 부분(BWP: bandwidth part)로 정의한다. BWP는 주파수 축 상에서 연속한 RB들로 구성될 수 있으며, 하나의 numerology(예를 들어, 서브캐리어 간격, CP 길이, 슬롯/미니-슬롯 구간)에 대응될 수 있다.
한편, 기지국은 단말에게 설정된 하나의 CC 내에서도 다수의 BWP를 설정할 수 있다. 예를 들어, PDCCH 모니터링 슬롯에서는 상대적으로 작은 주파수 영역을 차지하는 BWP를 설정하고, PDCCH에서 지시하는 PDSCH는 그보다 큰 BWP 상에 스케줄링될 수 있다. 혹은, 특정 BWP에 UE 들이 몰리는 경우 로드 밸런싱(load balancing)을 위해 일부 단말들을 다른 BWP로 설정할 수 있다. 혹은, 이웃 셀 간의 주파수 도메인 셀간 간섭 제거(frequency domain inter-cell interference cancellation) 등을 고려하여 전체 bandwidth 중 가운데 일부 스펙트럼(spectrum)을 배제하고 양쪽 BWP들을 동일 슬롯 내에서도 설정할 수 있다. 즉, 기지국은 광대역 CC와 연관된(association) 단말에게 적어도 하나의 DL/UL BWP를 설정할 수 있다. 기지국은 특정 시점에 설정된 DL/UL BWP(들) 중 적어도 하나의 DL/UL BWP를 (L1 시그널링 또는 MAC CE(Control Element) 또는 RRC 시그널링 등에 의해) 활성화시킬 수 있다. 또한, 기지국은 다른 설정된 DL/UL BWP로 스위칭을 (L1 시그널링 또는 MAC CE 또는 RRC 시그널링 등에 의해) 지시할 수 있다. 또는, 타이머 기반으로 타이머 값이 만료되면 정해진 DL/UL BWP로 스위칭될 수도 있다. 이때, 활성화된 DL/UL BWP를 활성(active) DL/UL BWP로 정의한다. 하지만, 단말이 최초 접속(initial access) 과정을 수행하는 중이거나, 혹은 RRC 연결이 셋업(set up)되기 전 등의 상황에서는 DL/UL BWP에 대한 설정을 수신하지 못할 수 있으므로, 이러한 상황에서 단말이 가정하는 DL/UL BWP는 최초 활성 DL/UL BWP라고 정의한다.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S601). 이를 위해, 단말은 기지국으로부터 주 동기 신호(PSS: Primary Synchronization Signal) 및 부 동기 채널(SSS: Secondary Synchronization Signal)을 수신하여 기지국과 동기를 맞추고, 셀 식별자(ID: Identifier) 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(PBCH: Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(PDCCH: Physical Downlink Control Channel) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(PDSCH: Physical Downlink Control Channel)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S602).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(RACH: Random Access Procedure)을 수행할 수 있다(단계 S603 내지 단계 S606). 이를 위해, 단말은 물리 임의 접속 채널(PRACH: Physical Random Access Channel)을 통해 특정 시퀀스를 프리앰블로 송신하고(S603 및 S605), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S604 및 S606). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S607) 및 물리 상향링크 공유 채널(PUSCH: Physical Uplink Shared Channel)/물리 상향링크 제어 채널(PUCCH: Physical Uplink Control Channel) 송신(S608)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(DCI: Downlink Control Information)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK(Acknowledgement/Non-Acknowledgement) 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
표 5는 NR 시스템에서의 DCI 포맷(format)의 일례를 나타낸다.
DCI 포맷 활용
0_0 하나의 셀 내 PUSCH의 스케줄링
0_1 하나의 셀 내 하나 또는 다중 PUSCH의 스케줄링, 또는 UE에게 셀 그룹(CG: cell group) 하향링크 피드백 정보의 지시
0_2 하나의 셀 내 PUSCH의 스케줄링
1_0 하나의 DL 셀 내 PDSCH의 스케줄링
1_1 하나의 셀 내 PDSCH의 스케줄링
1_2 하나의 셀 내 PDSCH의 스케줄링
표 5를 참조하면, DCI format 0_0, 0_1 및 0_2는 PUSCH의 스케줄링에 관련된 자원 정보(예를 들어, UL/SUL(Supplementary UL), 주파수 자원 할당, 시간 자원 할당, 주파수 호핑 등), 전송 블록(TB: Transport Block) 관련 정보(예를 들어, MCS(Modulation Coding and Scheme), NDI(New Data Indicator), RV(Redundancy Version) 등), HARQ(Hybrid - Automatic Repeat and request) 관련 정보(예를 들어, 프로세스 번호, DAI(Downlink Assignment Index), PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, DMRS 시퀀스 초기화 정보, 안테나 포트, CSI 요청 등), 전력 제어 정보(예를 들어, PUSCH 전력 제어 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.
DCI format 0_0은 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI 포맷 0_0에 포함된 정보는 C-RNTI(Cell RNTI: Cell Radio Network Temporary Identifier) 또는 CS-RNTI(Configured Scheduling RNTI) 또는 MCS-C-RNTI(Modulation Coding Scheme Cell RNTI)에 의해 CRC(cyclic redundancy check) 스크램블링되어 전송된다.
DCI format 0_1은 하나의 셀에서 하나 이상의 PUSCH의 스케줄링, 또는 설정된 그랜트(CG: configure grant) 하향링크 피드백 정보를 단말에게 지시하는 데 사용된다. DCI format 0_1에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI(Semi-Persistent CSI RNTI) 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 0_2는 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI format 0_2에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
다음으로, DCI format 1_0, 1_1 및 1_2는 PDSCH의 스케줄링에 관련된 자원 정보(예를 들어, 주파수 자원 할당, 시간 자원 할당, VRB(virtual resource block)-PRB(physical resource block) 매핑 등), 전송블록(TB) 관련 정보(예를 들어, MCS, NDI, RV 등), HARQ 관련 정보(예를 들어, 프로세스 번호, DAI, PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, 안테나 포트, TCI(transmission configuration indicator), SRS(sounding reference signal) 요청 등), PUCCH 관련 정보(예를 들어, PUCCH 전력 제어, PUCCH 자원 지시자 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.
DCI format 1_0은 하나의 DL 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 1_1은 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_1에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 1_2는 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_2에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
인공 지능(AI: Artificial Intelligence) 동작
인공지능/머신러닝(AI/ML: Artificial intelligence / machine learning)의 기술 발전으로 무선 통신 네트워크를 구성하는 노드(들) 및 단말(들)의 지능화/고도화가 이루어지고 있다. 특히 네트워크/기지국의 지능화로 인해 다양한 환경 파라미터(예를 들어, 기지국들의 분포/위치, 건물/가구 등의 분포/위치/재질, 단말들의 위치/이동방향/속도, 기후 정보 등)에 따라 다양한 네트워크/기지국 결정 파라미터 값들(예를 들어, 각 기지국의 송수신 전력, 각 단말의 송신 전력, 기지국/단말의 프리코더/빔, 각 단말에 대한 시간/주파수 자원 할당, 각 기지국의 듀플렉스(duplex) 방식 등)을 빠르게 최적화하여 도출/적용할 수 있게 될 전망이다. 이러한 추세에 맞추어, 많은 표준화 단체 (예를 들어, 3GPP, O-RAN)에서 도입을 고려하고 있으며, 이에 대한 스터디도 활발히 진행 중이다.
이하 설명하는 AI 관련 설명 및 동작들은 후술한 본 개시에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 개시에서 제안하는 방법들의 기술적 특징을 명확하게 하는데 보충될 수 있다.
도 7은 인공지능의 분류를 예시한다.
도 7을 참조하면, 인공지능(AI: Artificial Intelligence)은 사람이 해야 할 일을 기계가 대신할 수 있는 모든 자동화에 해당한다.
머신러닝(ML: Machine Learning)은 명시적으로 규칙을 프로그래밍하지 않고, 데이터로부터 의사결정을 위한 패턴을 기계가 스스로 학습하는 기술을 의미한다.
딥러닝(Deep Learning)은 인공 신경망 기반의 모델로서, 비정형 데이터로부터 특징 추출 및 판단까지 기계가 한 번에 수행할 수 있다. 알고리즘은 생물학적 신경계, 즉 신경망(Neural Network)에서 영감을 받은 특징 추출 및 변환을 위해 상호 연결된 노드로 구성된 다층 네트워크에 의존한다. 일반적인 딥 러닝 네트워크 아키텍처에는 심층 신경망(DNN: Deep Neural Network), 순환 신경망(RNN: Recurrent Neural Network) 및 컨볼루션 신경망(CNN: Convolutional Neural Network) 등이 포함된다.
AI(또는 AI/ML로 지칭)은 좁은 의미로 딥러닝(Deep learning) 기반의 인공지능으로 일컬을 수 있지만, 본 개시에서 이에 한정되는 것은 아니다. 즉, 본 개시에서 AI(또는 AI/ML로 지칭)는 인간처럼 작업을 수행할 수 있는 지능형 기계(예를 들어, UE, RAN, 네트워크 노드 등)에 적용되는 자동화 기술을 통칭할 수 있다.
AI(또는 AI/ML)는 다양한 기준에 따라 다음과 같이 분류할 수 있다.
1. 오프라인/온라인 학습
a) 오프라인 학습(Offline Learning)
오프라인 학습은 데이터 베이스의 수집, 학습, 예측이라는 순차적인 절차를 따르게 된다. 즉, 수집과 학습을 오프라인으로 수행하고, 완성된 프로그램을 현장에 설치하여 예측 작업에 활용할 수 있다. 오프라인 학습은 시스템이 점진적으로 학습하지 않으며, 가용한 모든 수집된 데이터를 사용하여 학습이 수행되고, 더 이상의 학습 없이 시스템에 적용된다. 만약, 새로운 데이터에 대한 학습이 필요하게 되면, 새로운 전체의 데이터를 이용하여 다시 학습이 시작될 수 있다.
b) 온라인 학습(Online Learning)
최근 학습에 활용할 수 있는 데이터가 인터넷을 통해 지속적으로 발생하는 점을 활용하여, 실시간으로 발생한 데이터를 가지고 점증적으로 추가 학습하여 성능을 조금씩 개선하는 방식을 지칭한다. 온라인 상에서 수집되는 특정 데이터의 (묶음) 단위로 실시간으로 학습이 수행되며, 이에 따라 변화하는 데이터에 시스템이 빠르게 적응할 수 있다.
AI 시스템 구축을 위해 온라인 학습만이 이용되어 실시간으로 발생한 데이터만으로 학습이 수행될 수도 있으며, 또는 소정의 데이터 세트를 이용하여 오프라인 학습이 수행된 후, 추가적으로 발생하는 실시간 데이터를 이용하여 추가적인 학습이 수행될 수도 있다(온라인+오프라인 학습).
2. AI/ML Framework 개념에 따른 분류
a) 중앙집중식 학습(Centralized Learning)
Centralized learning에서는 서로 다른 복수의 노드들에서 수집된(collected) 훈련 데이터(training data)를 중앙 노드(centralized node)에 보고를 하면, 모든 데이터 자원/저장(storage)/학습(예를 들어, 지도 학습(supervised learning), 비지도 학습(unsupervised learning), 강화 학습(reinforcement learning) 등)이 하나의 centralized node에서 수행된다.
b) 연합 학습(Federated Learning)
Federated learning은 공동(collective) 모델이 각기 분산되어 있는 데이터 소유자(data owner)들에 걸쳐서 존재하는 데이터를 기반으로 구성된다. 데이터를 모델로 수집하는 대신, AI/ML 모델을 데이터 소스로 가져와 로컬 노드/개별 장치가 데이터를 수집하고 자체 모델 사본을 훈련할 수 있도록 하므로, 소스 데이터를 중앙 노드에 보고할 필요가 없다. Federated learning에서 AI/ML 모델의 매개변수/가중치는 일반 모델 교육을 지원하기 위해 centralized node로 다시 보낼 수 있다. Federated learning은 연산 속도의 증가와, 정보 보안 측면에서의 장점을 가진다. 즉, 개인 데이트를 중앙 서버에 업로드하는 과정이 불필요하여, 개인정보 유출 및 악용을 방지할 수 있다.
c) 분산된 학습(Distributed Learning)
Distributed learning은 기계 학습 프로세스가 노드 클러스터 전체에 확장 및 배포된 개념을 의미한다. 훈련 모델은 모델 훈련의 속도를 높이기 위해 분할되어 동시에 작동하는 여러 노드에서 공유된다.
3. 학습 방법에 따른 분류
a) 지도 학습(Supervised Learning)
지도 학습은 레이블이 지정된 데이터 세트가 주어지면 입력에서 출력으로의 매핑 기능을 학습하는 것을 목표로 하는 기계 학습 작업이다. 입력 데이터는 훈련 데이터라고 하며 알려진 레이블 또는 결과가 있다. 지도 학습의 예시는 다음과 같다.
- 회귀(Regression): 선형 회귀(Linear Regression), 로지스틱 회귀(Logistic Regression)
- 인스턴스-기반 알고리즘(Instance-based Algorithms): k-최근접 이웃(KNN: k-Nearest Neighbor)
- 의사결정 나무 알고리즘(Decision Tree Algorithms): 분류 및 회귀 분석 트리(CART: Classification and Regression Tree)
- 서포트 벡터 머신(SVM: Support Vector Machines)
- 베이지안 알고리즘(Bayesian Algorithms): 나이브 베이즈(Naive Bayes)
- 앙상블 알고리즘(Ensemble Algorithms): 익스트림 그래디언트 부스팅(Extreme Gradient Boosting), 배깅(Bagging): 랜덤 포레스트(Random Forest)
지도 학습은 회귀 및 분류 문제로 더 그룹화할 수 있으며, 분류는 레이블을 예측하는 것이고 회귀는 수량을 예측하는 것이다.
b) 비지도 학습(Unsupervised Learning)
Unsupervised learning은 레이블이 지정되지 않은 데이터에서 숨겨진 구조를 설명하는 기능을 학습하는 것을 목표로 하는 기계 학습 작업이다. 입력 데이터에 레이블이 지정되지 않았으며 알려진 결과가 없다. 비지도 학습의 몇 가지 예는 K-평균 클러스터링, 주성분 분석(PCA: Principal Component Analysis), 비선형 독립 성분 분석(ICA: Independent Component Analysis) 및 장단기 메모리(LSTM: Long-Short-Term Memory) 등이 있다.
c) 강화 학습(RL: Reinforcement Learning)
강화 학습(RL)에서 에이전트는 시행착오 과정을 기반으로 환경과 상호 작용하여 장기 목표를 최적화하는 것을 목표로 하며, 환경과의 상호작용을 기반으로 한 목표 지향적 학습이다. RL 알고리즘의 예시는 다음과 같다.
- Q 러닝(Q-learning)
- 다중 암드 밴딧 러닝(Multi-armed bandit learning)
- 딥 Q 네트워크(Deep Q Network)
- 스테이트-액션-리워드-스테이트-액션(SARSA: State-Action-Reward-State-Action)
- 시간차 학습(Temporal Difference Learning)
- 액터-크리틱 강화 학습(Actor-critic reinforcement learning)
- 딥 결정론적 정책 그래디언트(DDPG: Deep deterministic policy gradient)
- 몬테카를로 트리 서치(Monte-Carlo tree search)
추가적으로, 강화 학습은 다음과 같이 모델 기반 강화 학습과 모델 자유 강화 학습으로 그룹화할 수 있다.
- 모델-기반(Model-based) 강화 학습: 예측 모델을 사용하는 RL 알고리즘을 지칭한다. 환경의 다양한 동적 상태 및 이러한 상태가 보상으로 이어지는 모델을 사용하여 상태 간 전환 확률을 얻는다.
- 모델-자유(Model-free) 강화 학습: 최대의 미래 보상을 달성하는 가치 또는 정책에 기반한 RL 알고리즘을 지칭한다. 다중 에이전트 환경/상태에서는 계산적으로 덜 복잡하고 환경을 정확하게 표현할 필요가 없다.
또한, RL 알고리즘은 또한 가치 기반 RL 대 정책 기반 RL, 정책 기반 RL 대 정책 외 RL 등으로 분류될 수 있다.
이하, 딥 러닝(deep learning)의 대표 모델에 대하여 예시한다.
도 8은 순방향 신경망(Feed-Forward Neural Network)을 예시한다.
순방향 신경망(FFNN: Feed-Forward Neural Network)은 입력층(input layer), 은닉층(hidden layer), 출력층(output layer)으로 구성된다.
FFNN에서는 정보는 입력층으로부터 출력층 방향으로만 전달되며, 은닉층이 있는 경우 이를 경유한다. 
도 9는 순환 신경망(Recurrent Neural Network)을 예시한다.
순환 신경망(RNN)은 히든 노드가 방향을 가진 엣지로 연결되어 순환구조를 이루는(directed cycle) 인공 신경망(neural network)의 한 종류이다. 음성, 문자 등 순차적으로 등장하는 데이터 처리에 적합한 모델이다.
도 9에서 A는 뉴럴 네트워크, xt는 입력 값, ht는 출력 값을 나타낸다. 여기서, ht는 시간을 기준으로 현재를 나타내는 상태 값을 의미할 수 있으며, ht-1는 이전 상태 값을 나타낼 수 있다.
RNN의 하나의 종류로 LSTM(Long Short-Term Memory)이 있으며, 이는 RNN의 히든 스테이트(state)에 셀-스테이트(cell-state)를 추가한 구조이다. LSTM은 RNN 셀(cell)(은닉층의 메모리 셀)에 입력 게이트, 망각 게이트, 출력 게이트가 추가되어, 불필요한 기억을 지울 수 있다. LSTM은 RNN에 비하여 셀 상태(cell state)가 추가된다.
도 10은 컨볼루션 신경망(Convolutional Neural Network)을 예시한다.
컨볼루션 신경망(CNN)은 영상 처리나 이미지 처리 분야에서 일반적으로 사용하는 컨볼루션(convolution) 연산을 적용하여, 모델 복잡도를 낮추고, 좋은 특징을 추출하는 두 가지 목적을 위해 사용된다.
- 커널(kernel) 또는 필터(filter): 특정 범위/단위의 input에 가중치를 적용하는 단위/구조를 의미한다. kernel(또는 filter)는 학습에 의해 변경될 수 있다.
- 스트라이드(stride): input 안에서 kernel을 움직이는 이동 범위를 의미한다.
- 특성 맵(feature map): input에 kernel을 적용한 결과를 의미한다. 왜곡, 변경 등에 강인하도록 유도하기 위해 여러 feature map들이 추출될 수 있다.
- 패딩(padding): feature map의 크기를 조절하기 위해 덧붙이는 값을 의미한다.
- 풀링(pooling): feature map을 다운샘플링하여 feature map 의 크기를 줄이기 위한 연산(예를 들어, 최대 풀링(max pooling), 평균 풀링(average pooling))을 의미한다.
도 11은 오토 인코더(Auto encoder)를 예시한다.
Auto encoder는 특징 벡터(Feature vector) x(x1, x2, x3, ...)를 입력 받아, 동일한 또는 유사한 vector x'(x'1, x'2, x'3, ...)'를 출력하는 neural network를 의미한다.
Auto encoder는 입력 노드와 출력 노드가 같은 특징을 가진다. Auto encoder는 입력을 재구성하기 때문에 출력을 재구성(reconstruction)이라고 지칭할 수 있다. 또한, Auto encoder는 Unsupervised learning의 일종이다.
도 11에서 예시하는 Auto encoder의 손실 함수(loss function)은 입력과 출력의 차이를 기반으로 계산되며, 이를 기반으로 input의 손실 정도를 파악하여 Auto encoder에서는 손실을 최소화할 수 있도록 최적화하는 과정이 수행된다.
이하, 보다 구체적인 AI(또는 AI/ML)의 설명을 위해 용어들을 다음과 같이 정의할 수 있다.
- 데이터 수집(Data collection): AI 모델 훈련(model training), 데이터 분석 및 추론(inference)을 위한 기반으로서, 네트워크 노드, 관리 개체(management entity) 또는 UE 등에서 수집된 데이터
- AI 모델(Model): 입력들의 집합을 기반으로, 예측 정보 및/또는 결정 파라미터들을 포함하는 출력들의 집합을 생성하는 AI 기술을 적용한 데이터 기반 알고리즘(data driven algorithm)
- AI/ML 훈련(Training): 데이터를 가장 잘 표시하고 추론을 위해 훈련된 AI/ML 모델을 획득하는 기능들과 패턴들을 학습(learning)함으로써 AI 모델을 훈련하는 온라인(online) 또는 오프라인(offline) 프로세스
- AI/ML 추론(Inference): 훈련된 AI 모델을 이용하여 수집된 데이터와 AI 모델에 기반하여 예측하거나 결정을 유도하는 프로세스
도 12는 AI 동작을 위한 기능적 프레임워크(functional framework)를 예시한다.
도 12를 참조하면, 데이터 수집(Data Collection) 기능(function)(10)은 입력 데이터를 수집하고 모델 훈련(Model Training) function(20) 및 모델 추론(Model Inference) function(30)에게 가공된 입력 데이터를 제공하는 기능이다.
입력 데이터의 예로서, UE들 또는 다른 네트워크 개체(network entity)로부터의 측정들, 액터(Actor)의 피드백, AI 모델의 출력이 포함될 수 있다.
Data Collection function(10)은 입력 데이터를 기반으로 데이터 준비(data preparation)를 수행하고, data preparation를 통해 가공된 입력 데이터를 제공한다. 여기서, Data Collection function(10)는 AI 알고리즘 별로 특정한 data preparation(예를 들어, 데이터 사전-처리(pre-processing) 및 정리(cleaning), 형식 지정(forming) 및 변환(transformation))을 수행하지 않으며, AI 알고리즘에 공통된 data preparation를 수행할 수 있다.
데이터 준비 과정을 수행된 후, Model Training function(10)은 Model Training function(20)에게 훈련 데이터(Training Data)(11)를 제공하며, Model Inference function(30)에게 추론 데이터(Inference Data)(12)를 제공한다. 여기서, Training Data)(11)는 AI Model Training function(20)을 위한 입력으로 필요한 데이터이다. Inference Data(12)는 AI Model Inference function(30)을 위한 입력으로 필요한 데이터이다.
Data Collection function(10)은 단일의 개체(예를 들어, UE, RAN 노드, 네트워크 노드 등)에 의해 수행될 수도 있지만 복수의 개체들에 의해 수행될 수도 있다. 이 경우, 복수의 개체들로부터 Training Data)(11)와 Inference Data(12)가 각각 Model Training function(20)과 Model Inference function(30)에게 제공될 수 있다.
Model Training function(20)은 AI 모델 테스트 절차의 일부로 모델 성능 메트릭(metric)을 생성할 수 있는 AI 모델 훈련, 검증(validation) 및 테스트(test)를 수행하는 기능이다. Model Training function(20)은 필요한 경우 Data Collection function(10)에서 제공하는 Training Data(11)를 기반으로 데이터 준비(예를 들어, data pre-processing 및 cleaning, forming 및 transformation)도 담당한다.
여기서, 모델 배포/업데이트(Model Deployment/Update)(13)는 훈련되고 검증되고 테스트된 AI 모델을 Model Inference function(30)에 초기 배포하거나 업데이트된 모델을 Model Inference function(30)에 제공하기 위해 사용된다.
Model Inference function(30)은 AI 모델 추론 출력(Output)(16)(예를 들어, 예측 또는 결정)을 제공하는 기능이다. Model Inference function(30)은 적용가능한 경우, Model Training function(20)에 모델 성능 피드백(Model Performance Feedback)(14)을 제공할 수 있다. 또한, Model Inference function(30)은 필요한 경우 Data Collection function(10)이 제공하는 Inference Data(12)를 기반으로 데이터 준비(예를 들어, data pre-processing 및 cleaning, forming 및 transformation)도 담당한다.
여기서, 출력(Output)(16)은 Model Inference function(30)에 의해 생성된 AI 모델의 추론 출력을 의미하며, 추론 출력의 세부 정보는 사용 사례에 따라 다를 수 있다.
Model Performance Feedback(14)은 사용 가능한 경우 AI 모델의 성능을 모니터링하는 데 사용할 수 있으며, 이 피드백은 생략될 수도 있다.
액터(Actor) function(40)은 Model Inference function(30)으로부터 출력(16)을 수신하고, 해당하는 작업/동작을 트리거 또는 수행하는 기능이다. Actor function(40)은 다른 개체(entity)(예를 들어, 하나 이상의 UE, 하나 이상의 RAN 노드, 하나 이상의 네트워크 노드 등) 또는 자신에 대한 작업/동작을 트리거할 수 있다.
피드백(15)은 Training data(11), Inference data(12)를 도출하기 위해 또는 AI Model의 성능, 네트워크에 미치는 영향 등을 모니터링하기 위해 이용될 수 있다.
한편, AI/ML에서 사용되는 데이터 세트(Data set)에서 훈련(Training)/ 검증(validation) / 테스트(test)에 대한 정의는 다음과 같이 구분될 수 있다.
- 훈련 데이터(Training data): 모델을 학습하기 위한 Data set을 의미한다.
- 검증 데이터(Validation data): 학습이 이미 완료된 모델을 검증하기 위한 Data set을 의미한다. 즉, 보통 training data set의 과대적합(over-fitting)을 방지하기 위해서 사용되는 data set을 의미한다.
또한, 학습하는 과정에서 학습된 여러 가지 모델 중 최고(best)를 선택하기 위한 Data set을 의미한다. 따라서, 따라서, 학습의 일종으로 볼 수도 있다.
- 테스트 데이터(Test data): 최종 평가를 위한 Data set을 의미한다. 이 데이터는 학습과는 무관한 데이터이다.
상기 data set의 경우, 일반적으로 training set을 나눈다면, 전체 training set 내에서 training data과 validation data를 8:2 또는 7:3 정도로 나누어 사용될 수 있으며, test까지 포함을 한다면, 6:2:2 (training: validation: test)를 나누어 사용될 수 있다.
기지국과 단말사이의 AI/ML function의 능력의(capable) 여부에 따라 협력레벨을 다음과 같이 정의할 수 있으며, 하기 복수의 레벨의 결합 혹은 어느 하나의 레벨의 분리로 인한 변형도 가능하다.
Cat 0a) 협력이 없는 프레임워크(No collaboration framework): AI/ML 알고리즘은 순수 구현 기반이며 무선 인터페이스 변경이 필요하지 않는다.
Cat 0b) 이 레벨은 효율적인 구현 기반 AI/ML 알고리즘에 맞추어 수정된 무선 인터페이스를 수반하지만 협력은 없는 프레임워크에 해당한다.
Cat 1) 각 노드의 AI/ML 알고리즘을 개선하기 위한 노드 간 지원이 수반된다. 이는 UE가 gNB(훈련, 적응 등을 위해)로부터 지원을 받는 경우에 적용되며, 그 반대의 경우도 마찬가지이다. 이 레벨에서는 네트워크 노드 간의 모델 교환이 필요하지 않는다.
Cat 2) UE와 gNB 간의 공동 ML 작업이 수행될 수 있다. 이 레벨은 AI/ML 모델 명령 또는 네트워크 노드 간의 교환이 필요하다.
앞서 도 12에서 예시된 기능들은 RAN 노드(예를 들어, 기지국, TRP, 기지국의 중앙 장치(CU: central unit) 등), 네트워크 노드, 네트워크 사업자의 OAM(operation administration maintenance) 또는 UE에서 구현될 수도 있다.
또는, RAN, 네트워크 노드, 네트워크 사업자의 OAM 또는 UE 중 2개 이상의 개체가 협력하여 도 12에서 예시된 기능이 구현될 수도 있다. 예를 들어, 어느 하나의 개체가 도 12의 기능 중 일부를 수행하고, 다른 개체가 나머지의 기능을 수행할 수 있다. 이처럼, 도 12에서 예시하는 기능들 중 일부의 기능들이 단일의 개체(예를 들어, UE, RAN 노드, 네트워크 노드 등)에 의해 수행됨에 따라, 각 기능들 간의 데이터/정보의 전달/제공이 생략될 수 있다. 예를 들어, Model Training function(20)과 Model Inference function(30)이 동일한 개체에 의해 수행된다면, Model Deployment/Update(13)와 Model Performance Feedback(14)의 전달/제공은 생략될 수 있다.
또는, 도 12에 예시된 기능 중 어느 하나의 기능을 RAN, 네트워크 노드, 네트워크 사업자의 OAM 또는 UE 중 2개 이상의 개체가 협력(collaboration)하여 수행할 수도 있다. 이를 분할 AI 동작(split AI operation)으로 지칭할 수 있다.
도 13은 분할 AI 추론을 예시하는 도면이다.
도 13에서는 split AI operation 중에서 특히 Model Inference function이 UE와 같은 종단 기기(end device)와 네트워크 AI/ML 종단 기기(network AI/ML endpoint)에서 협력하여 수행되는 경우를 예시한다.
Model Inference function 이외에도 Model Training function, Actor, Data Collection function 각각도 현재의 작업 및 환경에 따라 다수의 부분들로 분할(split)되고, 다수의 개체들이 협력함으로써 수행될 수 있다.
예를 들어, 계산 집약적(computation-intensive)이고 에너지 집약적(energy-intensive)인 부분을 network endpoint에서 수행되는 반면 개인 정보에 민감한 부분과 지연에 민감한 부분은 end device에서 수행될 수 있다. 이 경우, end device는 입력 데이터로부터 특정 부분/계층까지 작업/모델을 실행한 다음, 중간 데이터(intermediated data)를 네트워크 끝점으로 전송할 수 있다. network endpoint는 나머지 부분/계층을 실행하고 추론 출력(Inference outputs)결과를, 동작/작업을 수행하는 하나 이상의 장치들에게 제공한다.
도 14는 무선 통신 시스템에서 기능적 프레임워크(functional framework)의 적용을 예시한다.
도 14에서는 AI Model Training function이 네트워크 노드(예를 들어, 코어 네트워크 노드, 네트워크 사업자의 OAM 등)에 의해 수행되고, AI Model Inference function이 RAN 노드(예를 들어, 기지국, TRP, 기지국의 CU 등)에 의해 수행되는 경우를 예시한다.
단계 1: RAN 노드 1과 RAN 노드 2는 AI Model Training을 위한 입력 데이터(즉, Training data)를 네트워크 노드에게 전송한다. 여기서, RAN 노드 1과 RAN 노드 2는 UE로부터 수집한 데이터(예를 들어, 서빙 셀과 이웃 셀의 RSRP, RSRQ, SINR과 관련된 UE의 측정, UE의 위치, 속도 등)를 함께 네트워크 노드에게 전송할 수 있다.
단계 2: 네트워크 노드는 수신한 Training data를 이용하여 AI Model을 훈련한다.
단계 3: 네트워크 노드는 AI Model을 RAN 노드 1 및/또는 RAN 노드 2에게 배포/업데이트한다. RAN 노드 1(및/또는 RAN 노드 2)은 수신한 AI Model에 기반하여 모델 훈련을 계속 수행할 수도 있다.
설명의 편의를 위해 RAN 노드 1에게만 AI Model이 배포/업데이트되었다고 가정한다.
단계 4: RAN 노드 1은 UE와 RAN 노드 2로부터 AI Model Inference를 위한 입력 데이터(즉, Inference data)를 수신한다.
단계 5: RAN 노드 1은 수신한 Inference data를 이용하여 AI Model Inference를 수행하여 출력 데이터(예를 들어, 예측 또는 결정)을 생성한다.
단계 6: 적용가능한 경우, RAN 노드 1은 네트워크 노드에게 모델 성능 피드백을 전송할 수 있다.
단계 7: RAN 노드 1, RAN 노드 2 및 UE(또는 'RAN 노드 1과 UE', 또는 'RAN 노드 1과 RAN 노드 2')는 출력 데이터에 기반한 동작(action)을 수행한다. 예를 들어, 로드 밸런싱(load balancing) 동작인 경우, UE가 RAN 노드 1에서 RAN 노드 2로 이동할 수도 있다.
단계 8: RAN 노드 1과 RAN 노드 2는 네트워크 노드에게 피드백 정보를 전송한다.
도 15는 무선 통신 시스템에서 기능적 프레임워크(functional framework)의 적용을 예시한다.
도 15에서는 AI Model Training function과 AI Model Inference function이 모두 RAN 노드(예를 들어, 기지국, TRP, 기지국의 CU 등)에 의해 수행되는 경우를 예시한다.
단계 1: UE와 RAN 노드 2는 AI Model Training을 위한 입력 데이터(즉, Training data)를 RAN 노드 1에게 전송한다.
단계 2: RAN 노드 1은 수신한 Training data를 이용하여 AI Model을 훈련한다.
단계 3: RAN 노드 1은 UE와 RAN 노드 2로부터 AI Model Inference를 위한 입력 데이터(즉, Inference data)를 수신한다.
단계 4: RAN 노드 1은 수신한 Inference data를 이용하여 AI Model Inference를 수행하여 출력 데이터(예를 들어, 예측 또는 결정)을 생성한다.
단계 5: RAN 노드 1, RAN 노드 2 및 UE(또는 'RAN 노드 1과 UE', 또는 'RAN 노드 1과 RAN 노드 2')는 출력 데이터에 기반한 동작(action)을 수행한다. 예를 들어, 로드 밸런싱(load balancing) 동작인 경우, UE가 RAN 노드 1에서 RAN 노드 2로 이동할 수도 있다.
단계 6: RAN 노드 2는 RAN 노드 1에게 피드백 정보를 전송한다.
도 16은 무선 통신 시스템에서 기능적 프레임워크(functional framework)의 적용을 예시한다.
도 16에서는 AI Model Training function이 RAN 노드(예를 들어, 기지국, TRP, 기지국의 CU 등)에 의해 수행되고, AI Model Inference function이 UE에 의해 수행되는 경우를 예시한다.
단계 1: UE는 AI Model Training을 위한 입력 데이터(즉, Training data)를 RAN 노드에게 전송한다. 여기서, RAN 노드는 다양한 UE들로부터 및/또는 다른 RAN 노드로부터 데이터(예를 들어, 서빙 셀과 이웃 셀의 RSRP, RSRQ, SINR과 관련된 UE의 측정, UE의 위치, 속도 등)를 수집할 수 있다.
단계 2: RAN 노드는 수신한 Training data를 이용하여 AI Model을 훈련한다.
단계 3: RAN 노드는 AI Model을 UE에게 배포/업데이트한다. UE는 수신한 AI Model에 기반하여 모델 훈련을 계속 수행할 수도 있다.
단계 4: UE와 RAN 노드로부터(및/또는 다른 UE로부터) AI Model Inference를 위한 입력 데이터(즉, Inference data)를 수신한다.
단계 5: UE는 수신한 Inference data를 이용하여 AI Model Inference를 수행하여 출력 데이터(예를 들어, 예측 또는 결정)를 생성한다.
단계 6: 적용가능한 경우, UE는 RAN 노드에게 모델 성능 피드백을 전송할 수 있다.
단계 7: UE와 RAN 노드는 출력 데이터에 기반한 동작(action)을 수행한다.
단계 8: UE는 RAN 노드에게 피드백 정보를 전송한다.
채널 상태 정보(CSI: channel state information) 관련 동작
NR(New Radio) 시스템에서, CSI-RS(channel state information-reference signal)은 시간 및/또는 주파수 트래킹(time/frequency tracking), CSI 계산(computation), L1(layer 1)-RSRP(reference signal received power) 계산(computation) 및 이동성(mobility)를 위해 사용된다. 여기서, CSI computation은 CSI 획득(acquisition)과 관련되며, L1-RSRP computation은 빔 관리(beam management, BM)와 관련된다.
CSI(channel state information)은 단말과 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다.
- 상기와 같은 CSI-RS의 용도 중 하나를 수행하기 위해, 단말(예: user equipment, UE)은 CSI와 관련된 설정(configuration) 정보를 RRC(radio resource control) signaling을 통해 기지국(예: general Node B, gNB)으로부터 수신한다.
상기 CSI와 관련된 configuration 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, CSI-RS 자원(resource) 관련 정보 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다.
i) CSI-IM 자원 관련 정보는 CSI-IM 자원 정보(resource information), CSI-IM 자원 세트 정보(resource set information) 등을 포함할 수 있다. CSI-IM resource set은 CSI-IM resource set ID(identifier)에 의해 식별되며, 하나의 resource set은 적어도 하나의 CSI-IM resource를 포함한다. 각각의 CSI-IM resource는 CSI-IM resource ID에 의해 식별된다.
ii) CSI resource configuration 관련 정보는 CSI-ResourceConfig IE로 표현될 수 있다. CSI resource configuration 관련 정보는 NZP(non zero power) CSI-RS resource set, CSI-IM resource set 또는 CSI-SSB resource set 중 적어도 하나를 포함하는 그룹을 정의한다. 즉, 상기 CSI resource configuration 관련 정보는 CSI-RS resource set list를 포함하며, 상기 CSI-RS resource set list는 NZP CSI-RS resource set list, CSI-IM resource set list 또는 CSI-SSB resource set list 중 적어도 하나를 포함할 수 있다. CSI-RS resource set은 CSI-RS resource set ID에 의해 식별되고, 하나의 resource set은 적어도 하나의 CSI-RS resource를 포함한다. 각각의 CSI-RS resource는 CSI-RS resource ID에 의해 식별된다.
NZP CSI-RS resource set 별로 CSI-RS의 용도를 나타내는 parameter들(예: BM 관련 'repetition' parameter, tracking 관련 'trs-Info' parameter)이 설정될 수 있다.
iii) CSI 보고 설정(report configuration) 관련 정보는 시간 영역 행동(time domain behavior)을 나타내는 보고 설정 타입(reportConfigType) parameter 및 보고하기 위한 CSI 관련 quantity를 나타내는 보고량(reportQuantity) parameter를 포함한다. 상기 시간 영역 동작(time domain behavior)은 periodic, aperiodic 또는 semi-persistent일 수 있다.
- 단말은 상기 CSI와 관련된 configuration 정보에 기초하여 CSI를 측정(measurement)한다.
상기 CSI 측정은 (1) 단말의 CSI-RS 수신 과정과, (2) 수신된 CSI-RS를 통해 CSI를 계산(computation)하는 과정을 포함할 수 있으며, 이에 대하여 구체적인 설명은 후술한다.
CSI-RS는 higher layer parameter CSI-RS-ResourceMapping에 의해 시간(time) 및 주파수(frequency) 영역에서 CSI-RS resource의 RE(resource element) 매핑이 설정된다.
- 단말은 상기 측정된 CSI를 기지국으로 보고(report)한다.
여기서, CSI-ReportConfig의 quantity가 'none(또는 No report)'로 설정된 경우, 상기 단말은 상기 report를 생략할 수 있다. 다만, 상기 quantity가 'none(또는 No report)'로 설정된 경우에도 상기 단말은 기지국으로 report를 할 수도 있다. 상기 quantity가 'none'으로 설정된 경우는 aperiodic TRS를 trigger하는 경우 또는 repetition이 설정된 경우이다. 여기서, repetition이 'ON'으로 설정된 경우에만 상기 단말의 report를 생략할 수 있다.
1) CSI 측정
NR 시스템은 보다 유연하고 동적인 CSI measurement 및 reporting을 지원한다. 여기서, 상기 CSI measurement는 CSI-RS를 수신하고, 수신된 CSI-RS를 computation하여 CSI를 acquisition하는 절차를 포함할 수 있다.
CSI measurement 및 reporting의 time domain behavior로서, aperiodic/semi-persistent/periodic CM(channel measurement) 및 IM(interference measurement)이 지원된다. CSI-IM의 설정을 위해 4 port NZP CSI-RS RE pattern을 이용한다.
NR의 CSI-IM 기반 IMR은 LTE의 CSI-IM과 유사한 디자인을 가지며, PDSCH rate matching을 위한 ZP CSI-RS resource들과는 독립적으로 설정된다. 그리고, NZP CSI-RS 기반 IMR에서 각각의 port는 (바람직한 channel 및) precoded NZP CSI-RS를 가진 interference layer를 emulate한다. 이는, multi-user case에 대해 intra-cell interference measurement에 대한 것으로, MU interference를 주로 target 한다.
기지국은 설정된 NZP CSI-RS 기반 IMR의 각 port 상에서 precoded NZP CSI-RS를 단말로 전송한다.
단말은 resource set에서 각각의 port에 대해 channel/interference layer를 가정하고 interference를 측정한다.
채널에 대해, 어떤 PMI 및 RI feedback도 없는 경우, 다수의 resource들은 set에서 설정되며, 기지국 또는 네트워크는 channel/interference measurement에 대해 NZP CSI-RS resource들의 subset을 DCI를 통해 지시한다.
resource setting 및 resource setting configuration에 대해 보다 구체적으로 살펴본다.
2) 자원 세팅 (resource setting)
각각의 CSI resource setting ‘CSI-ResourceConfig’는 (higher layer parameter csi-RS-ResourceSetList에 의해 주어진) S≥1 CSI resource set에 대한 configuration을 포함한다. CSI resource setting은 CSI-RS- resourcesetlist에 대응한다. 여기서, S는 설정된 CSI-RS resource set의 수를 나타낸다. 여기서, S≥1 CSI resource set에 대한 configuration은 (NZP CSI-RS 또는 CSI-IM으로 구성된) CSI-RS resource들을 포함하는 각각의 CSI resource set과 L1-RSRP computation에 사용되는 SS/PBCH block (SSB) resource를 포함한다.
각 CSI resource setting은 higher layer parameter bwp-id로 식별되는 DL BWP(bandwidth part)에 위치된다. 그리고, CSI reporting setting에 링크된 모든 CSI resource setting들은 동일한 DL BWP를 갖는다.
CSI-ResourceConfig IE에 포함되는 CSI resource setting 내에서 CSI-RS resource의 time domain behavior는 higher layer parameter resourceType에 의해 지시되며, aperiodic, periodic 또는 semi-persistent로 설정될 수 있다. Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 CSI-RS resource set의 수(S)는 ‘1’로 제한된다. Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 주기(periodicity) 및 슬롯 오프셋(slot offset)은 bwp-id에 의해 주어지는 것과 같이, 연관된 DL BWP의 numerology에서 주어진다.
UE가 동일한 NZP CSI-RS resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.
UE가 동일한 CSI-IM resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.
다음은 channel measurement (CM) 및 interference measurement(IM)을 위한 하나 또는 그 이상의 CSI resource setting들은 higher layer signaling을 통해 설정된다.
- interference measurement에 대한 CSI-IM resource.
- interference measurement에 대한 NZP CSI-RS 자원.
- channel measurement에 대한 NZP CSI-RS 자원.
즉, CMR(channel measurement resource)는 CSI acquisition을 위한 NZP CSI-RS일 수 있으며, IMR(Interference measurement resource)는 CSI-IM과 IM을 위한 NZP CSI-RS일 수 있다.
여기서, CSI-IM(또는 IM을 위한 ZP CSI-RS)는 주로 inter-cell interference measurement에 대해 사용된다.
그리고, IM을 위한 NZP CSI-RS는 주로 multi-user로부터 intra-cell interference measurement를 위해 사용된다.
UE는 채널 측정을 위한 CSI-RS resource(들) 및 하나의 CSI reporting을 위해 설정된 interference measurement를 위한 CSI-IM / NZP CSI-RS resource(들)이 자원 별로 'QCL-TypeD'라고 가정할 수 있다.
3) 자원 세팅 설정 (resource setting configuration)
살핀 것처럼, resource setting은 resource set list를 의미할 수 있다.
aperiodic CSI에 대해, higher layer parameter CSI-AperiodicTriggerState를 사용하여 설정되는 각 트리거 상태(trigger state)는 각각의 CSI-ReportConfig가 periodic, semi-persistent 또는 aperiodic resource setting에 링크되는 하나 또는 다수의 CSI-ReportConfig와 연관된다.
하나의 reporting setting은 최대 3개까지의 resource setting과 연결될 수 있다.
- 하나의 resource setting이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) resource setting 은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.
- 두 개의 resource setting들이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference 또는 nzp-CSI-RS -ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 또는 NZP CSI-RS 상에서 수행되는 interference measurement를 위한 것이다.
- 세 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 기반 interference measurement를 위한 것이고, (nzp-CSI-RS-ResourcesForInterference에 의해 주어지는) 세 번째 resource setting 은 NZP CSI-RS 기반 interference measurement를 위한 것이다.
Semi-persistent 또는 periodic CSI에 대해, 각 CSI-ReportConfig는 periodic 또는 semi-persistent resource setting에 링크된다.
- (resourcesForChannelMeasurement에 의해 주어지는) 하나의 resource setting 이 설정되면, 상기 resource setting은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.
- 두 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이며, (higher layer parameter csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 상에서 수행되는 interference measurement를 위해 사용된다.
4) CSI 계산 (computation)
간섭 측정이 CSI-IM 상에서 수행되면, 채널 측정을 위한 각각의 CSI-RS resource는 대응하는 resource set 내에서 CSI-RS resource들 및 CSI-IM resource들의 순서에 의해 CSI-IM resource와 자원 별로 연관된다. 채널 측정을 위한 CSI-RS resource의 수는 CSI-IM resource의 수와 동일하다.
그리고, interference measurement가 NZP CSI-RS에서 수행되는 경우, UE는 채널 측정을 위한 resource setting 내에서 연관된 resource set에서 하나 이상의 NZP CSI-RS resource로 설정될 것으로 기대하지 않는다.
Higher layer parameter nzp-CSI-RS-ResourcesForInterference가 설정된 단말은 NZP CSI-RS resource set 내에 18 개 이상의 NZP CSI-RS port가 설정될 것으로 기대하지 않는다.
CSI 측정을 위해, 단말은 아래 사항을 가정한다.
- 간섭 측정을 위해 설정된 각각의 NZP CSI-RS port는 간섭 전송 계층에 해당한다.
- 간섭 측정을 위한 NZP CSI-RS port의 모든 간섭 전송 레이어는 EPRE(energy per resource element) 비율을 고려한다.
- 채널 측정을 위한 NZP CSI-RS resource의 RE(s) 상에서 다른 간섭 신호, 간섭 측정을 위한 NZP CSI-RS resource 또는 간섭 측정을 위한 CSI-IM resource.
5) CSI 보고
CSI 보고를 위해, UE가 사용할 수 있는 time 및 frequency 자원은 기지국에 의해 제어된다.
CSI(channel state information)은 채널 품질 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자 (precoding matrix indicator, PMI), CSI-RS resource indicator (CRI), SS/PBCH block resource indicator (SSBRI), layer indicator (LI), rank indicator (RI) 또는 L1-RSRP 중 적어도 하나를 포함할 수 있다.
CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP에 대해, 단말은 N≥1 CSI-ReportConfig reporting setting, M≥1 CSI-ResourceConfig resource setting 및 하나 또는 두 개의 trigger state들의 리스트(aperiodicTriggerStateList 및 semiPersistentOnPUSCH-TriggerStateList에 의해 제공되는)로 higher layer에 의해 설정된다. 상기 aperiodicTriggerStateList에서 각 trigger state는 channel 및 선택적으로 interference 대한 resource set ID들을 지시하는 연관된 CSI-ReportConfigs 리스트를 포함한다. semiPersistentOnPUSCH-TriggerStateList에서 각 trigger state는 하나의 연관된 CSI-ReportConfig가 포함된다.
그리고, CSI reporting의 time domain behavior는 periodic, semi-persistent, aperiodic을 지원한다.
i) periodic CSI reporting은 short PUCCH, long PUCCH 상에서 수행된다. Periodic CSI reporting의 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정될 수 있으며, CSI-ReportConfig IE를 참고한다.
ii) SP(semi-periodic) CSI reporting은 short PUCCH, long PUCCH, 또는 PUSCH 상에서 수행된다.
Short/long PUCCH 상에서 SP CSI인 경우, 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정되며, 별도의 MAC CE / DCI로 CSI 보고가 activation/deactivation 된다.
PUSCH 상에서 SP CSI인 경우, SP CSI reporting의 periodicity는 RRC로 설정되지만, slot offset은 RRC로 설정되지 않으며, DCI(format 0_1)에 의해 SP CSI reporting은 활성화/비활성화(activation/deactivation)된다. PUSCH 상에서 SP CSI reporting에 대해, 분리된 RNTI(SP-CSI C-RNTI)가 사용된다.
최초 CSI 보고 타이밍은 DCI에서 지시되는 PUSCH time domain allocation 값을 따르며, 후속되는 CSI 보고 타이밍은 RRC로 설정된 주기에 따른다.
DCI format 0_1은 CSI request field를 포함하고, 특정 configured SP-CSI trigger state를 activation/deactivation할 수 있다. SP CSI reporting은, SPS PUSCH 상에서 data 전송을 가진 mechanism과 동일 또는 유사한 활성화/비활성화를 가진다.
iii) aperiodic CSI reporting은 PUSCH 상에서 수행되며, DCI에 의해 trigger된다. 이 경우, aperiodic CSI reporting의 trigger와 관련된 정보는 MAC-CE를 통해 전달/지시/설정될 수 있다.
AP CSI-RS를 가지는 AP CSI의 경우, AP CSI-RS timing은 RRC에 의해 설정되고, AP CSI reporting에 대한 timing은 DCI에 의해 동적으로 제어된다.
NR은 LTE에서 PUCCH 기반 CSI 보고에 적용되었던 다수의 reporting instance들에서 CSI를 나누어 보고하는 방식 (예를 들어, RI, WB PMI/CQI, SB PMI/CQI 순서로 전송)이 적용되지 않는다. 대신, NR은 short/long PUCCH에서 특정 CSI 보고를 설정하지 못하도록 제한하고, CSI omission rule이 정의된다. 그리고, AP CSI reporting timing과 관련하여, PUSCH symbol/slot location은 DCI에 의해 동적으로 지시된다. 그리고, candidate slot offset들은 RRC에 의해 설정된다. CSI reporting에 대해, slot offset(Y)는 reporting setting 별로 설정된다. UL-SCH에 대해, slot offset K2는 별개로 설정된다.
2개의 CSI latency class(low latency class, high latency class)는 CSI computation complexity의 관점에서 정의된다. Low latency CSI의 경우, 최대 4 ports Type-I codebook 또는 최대 4-ports non-PMI feedback CSI를 포함하는 WB CSI이다. High latency CSI는 low latency CSI를 제외한 다른 CSI를 말한다. Normal 단말에 대해, (Z, Z’)는 OFDM symbol들의 unit에서 정의된다. 여기서, Z는 Aperiodic CSI triggering DCI를 수신한 후 CSI 보고를 수행하기 까지의 최소 CSI processing time을 나타낸다. 또한, Z’는 channel/interference에 대한 CSI-RS를 수신한 후 CSI 보고를 수행하기까지의 최소 CSI processing time을 나타낸다.
추가적으로, 단말은 동시에 calculation할 수 있는 CSI의 개수를 report한다.
CSI 송수신 방법
상술한 CSI 관련 동작을 수행하기 위하여, CSI 참조 자원(CSI reference resource)은 UE가 CSI를 계산/도출할 때, PDSCH가 할당/전송된다고 가정하는 주파수 및 시간 단위(즉, 자원)을 의미할 수 있으며, 다음과 같이 정의될 수 있다.
서빙 셀(serving cell)에 대한 CSI 참조 자원(CSI reference resource)은 다음과 같이 정의된다:
- 주파수 도메인에서, CSI reference resource는 도출되는(derived) CSI가 관련된 대역에 해당하는 하향링크 물리 자원 블록(PRB: physical resource block) 그룹으로 정의된다.
- 시간 도메인에서, 상향링크 슬롯 n'에서 CSI 보고를 위한 CSI reference resource는 단일 하향링크 슬롯
Figure PCTKR2023005650-appb-img-000003
에 의해 정의된다. 여기서, Koffset은 TS 38.213의 4.2절에서 명시된 바와 같이 상위 계층에 의해 설정되는 파라미터이다. 그리고, μKoffset은 FR 1에 대한 0의 값으로 Koffset에 대한 서브캐리어 간격(SCS: subcarrier spacing) 설정이다.
여기서,
Figure PCTKR2023005650-appb-img-000004
이고, μDL 및 μUL은 각각 DL 및 UL에 대한 SCS 설정이다. Nslot,offset CA 및 μoffset은 TS 38.211 4.5절에서 정의된 바와 같이 상향링크와 하향링크를 전송하는 셀들에 대한 상위 계층에 의해 설정된 ca-SlotOffset에 의해 결정된다.
여기서, 주기적 그리고 반지속적(semi-persistent) CSI reporting의 경우, i) 만약 단일의 CSI-RS/SSB 자원이 채널 측정(channel measurement)를 위해 설정되면, nCSI_ref는 CSI reference resource가 유효한(valid) 하향링크 슬롯에 해당하도록 4·2μDL 보다 크거나 같은 최소값이고, 또는 ii) 만약 다중의 CSI-RS/SSB 자원들이 채널 측정을 위해 설정되면, nCSI_ref는 CSI reference resource가 유효한(valid) 하향링크 슬롯에 해당하도록 5·2μDL 보다 크거나 같은 최소값이다.
또한, 여기서, 비주기적 CSI 보고의 경우, 만약 UE가 CSI 요청과 동일한 슬롯 내 CSI를 보고하도록 DCI에 의해 지시되면, nCSI-ref는 CSI reference resource가 해당 CSI 요청과 동일한 유효한 하향링크 슬롯 내 있도록 결정된다. 그렇지 않으면, nCSI_ref는 슬롯 n-nCSI_ref이 유효한 하향링크 슬롯에 해당하도록
Figure PCTKR2023005650-appb-img-000005
보다 크거나 같은 최소값이고, 여기서 Z'은 TS 38.214의 5.4절에서 정의된 바와 같이 지연 요구사항(delay requirement)에 해당한다.
주기적 또는 반지속적 CSI-RS/CSI-IM 또는 SSB가 채널/간섭(interference) 측정을 위해 사용될 때, UE는 비주기적 CSI 보고의 첫번째 OFDM 심볼의 전송 시간 이전에 Z' 심볼까지 마지막 OFDM 심볼이 수신된 CSI-RS/CSI-IM/SSB에서 채널/간섭을 측정하지 않을 것으로 예상한다.
상술한 설명에서, i) 상위 계층에 의해 설정된 적어도 하나의 하향링크 또는 유연한(flexible) 심볼을 포함하는 슬롯이고 ii) UE에 대해 설정된 측정 갭(configured measurement gap) 내 속하지 않은 슬롯이면, 서빙 셀의 해당 슬롯은 유효한 하향링크 슬롯으로 간주된다.
또한, CQI는 상술한 CSI reference resource를 기준으로 아래와 같이 정의되며, 측정 제한(MR: measurement restriction)에 따라(즉, MR 설정 여부에 따라) 다음과 같이 CQI 계산을 위해 이용되는 채널 측정 자원(CMR: channel measurement resource) 및/또는 간섭 측정 자원(IMR: interference measurement resource)가 제한될 수 있다.
QPSK(Quadrature Phase Shift Keying), 16QAM(Quadrature Amplitude Modulation) 및 64QAM 기반의 CQI 보고를 위한 CQI 인덱스 및 해석은 TS 38.214 5.2.2.1절의 표 5.2.2.1-2 또는 표 5.2.2.1-4에서 주어진다. QPSK, 16QAM, 64QAM 및 256QAM 기반의 CQI 보고를 위한 CQI 인덱스 및 해석은 TS 38.214 5.2.2.1절의 표 5.2.2.1-3에서 주어진다. QPSK, 16QAM, 64QAM, 256QAM 및 1024 QAM 기반의 CQI 인덱스 및 해석은 TS 38.214 5.2.2.1절의 표 5.2.2.1-5에서 주어진다.
별도로 명시되지 않는 한, 시간에서 제한되지 않은 관찰 간격(unrestricted observation interval)과 주파수에서 제한되지 않은 관찰 간격(unrestricted observation interval)을 기반으로, UE는 상향링크 슬롯 n에서 보고되는 각 CQI 값에 대해 다음 조건을 충족하는 가장 높은 CQI 인덱스를 도출한다:
CSI reference resource라고 하는 하향링크 PRB 그룹을 점유하면서 CQI 인덱스에 해당하는 변조 방식(modulation scheme), 목표 코드 레이트(target code rate) 및 전송 블록 크기(transport block size)의 조합으로 단일의 PDSCH 전송 블록(transport block)이 다음을 초과하지 않는 전송 블록 에러 확률(transport block error probability)로 수신될 수 있다:
- CSI-ReportConfig 내 상위 계층 파라미터 cqi-Table이 'table 1'(표 5.2.2.1-2에 해당하는) 또는 'table 2'(표 5.2.2.1-3에 해당하는)을 설정하거나 또는 CSI-ReportConfig 내 상위 계층 파라미터 cqi-Table이 'table4-r17'(표 5.2.2.1-5에 해당하는)을 설정하면, 0.1, 또는
- CSI-ReportConfig 내 상위 계층 파라미터 cqi-Table이 'table 3'(표 5.2.2.1-4에 해당하는)을 설정하면, 0.00001
상위 계층 파라미터 timeRestrictionForChannelMeasurements가 "notConfigured"로 설정되면(즉, 채널 측정을 위한 시간 제한이 설정되지 않으면), UE는 CSI 자원 셋팅과 연관된, CSI reference resource보다 늦지 않은, NZP CSI-RS에만 기반하여 상향링크 슬롯 n에서 보고되는 CSI 값을 계산하기 위한 채널 측정을 도출해야 한다.
CSI-ReportConfig 내 상위 계층 파라미터 timeRestrictionForChannelMeasurements가 "Configured"로 설정되면(즉, 채널 측정을 위한 시간 제한이 설정되면), UE는 CSI 자원 셋팅과 연관된, CSI reference resource보다 늦지 않은, NZP CSI-RS의 가장 최근의 기회(occasion)에만 기반하여 상향링크 슬롯 n에서 보고되는 CSI 값을 계산하기 위한 채널 측정을 도출해야 한다.
상위 계층 파라미터 timeRestrictionForInterferenceMeasurements가 "notConfigured"로 설정되면(즉, 간섭 측정을 위한 시간 제한이 설정되지 않으면), UE는 CSI 자원 셋팅과 연관된, CSI reference resource보다 늦지 않은, 간섭 측정을 위한 CSI-IM 및/또는 NZP CSI-RS에만 기반하여 상향링크 슬롯 n에서 보고되는 CSI 값을 계산하기 위한 간섭 측정을 도출해야 한다.
CSI-ReportConfig 내 상위 계층 파라미터 timeRestrictionForInterferenceMeasurements가 "Configured"로 설정되면(즉, 간섭 측정을 위한 시간 제한이 설정되면), UE는 CSI 자원 셋팅과 연관된, CSI reference resource 보다 늦지 않은, 간섭 측정을 위한 CSI-IM 및/또는 NZP CSI-RS의 가장 최근의 기회(occasion)에만 기반하여 상향링크 슬롯 n에서 보고되는 CSI 값을 계산하기 위한 간섭 측정을 도출해야 한다.
이하, 본 개시에서 제안하는 실시예/방법들은 AI/ML 모델을 통해 추론 데이터(입력)(예를 들어, CMR로부터 채널 측정 및/또는 IMR로부터 간섭 측정)로부터 출력(예를 들어, CSI reference resource에서 CSI 계산)을 제공하는 기능/능력(예를 들어, 도 12 참조)을 가지는 UE(또는, 편의상 AI UE로 지칭)에 대해 적용될 수 있다.
문제 1: CSI reference resource는 CSI 보고 시점 또는 그 이전 시점으로 설정됨에 따라 CSI가 계산되는 시점과 실제 UE가 PDSCH를 수신하는 시점 간에 차이가 나므로, 채널 에이징(channel aging)에 취약하다.
도 17은 본 개시의 일 실시예에 따른 CSI 참조 자원을 설정하는 방법을 예시하는 도면이다.
도 17을 참조하면, 기존의 동작에 따르면, UE는 기존의 CSI reference resource(1701)를 기준으로 CSI를 보고하고(1702), 기지국은 수신한 CSI를 이용하여 DCI(1704)로 PDSCH(1705)를 스케줄링할 수 있다. 이 경우, 실제 PDSCH(1705)가 전송된 시점과 CSI reference resource(1701)의 시점이 차이가 있으므로, 이에 따라 UE가 보고한 CSI(1702)가 실제 PDSCH(1705)의 전송 채널에 차이가 발생할 수 있다.
실시예 1: 상술한 문제 1을 개선하기 위해 CSI reference resource를 CSI 보고 시점 또는 보고 시점 이후로 설정하는 방법을 제안한다.
다시, 도 17을 참조하면, UE는 제안된 CSI reference resource(1703)를 기준으로 CSI를 보고하고(1702), 기지국은 수신한 CSI를 이용하여 DCI(1704)로 PDSCH(1705)를 스케줄링할 수 있다.
CSI reference resource를 CSI 보고 시점 또는 보고 시점 이후로 설정하기 위해, 예를 들어, CSI reference resource를 결정하기 위한 변수 nCSI_ref가 특정 값(이하, M) 이상의 값들 중에서 슬롯 n-nCSI_ref (또는 슬롯
Figure PCTKR2023005650-appb-img-000006
)이 유효한(valid) 하향링크 슬롯에 해당하도록 최소 값으로 결정될 수 있다.
여기서, 기존의 표준과 다르게 M은 음수일 수 있으며 M 값이 음수인 경우, 도 17과 같이 제안된 CSI reference resource(1703)는 CSI 보고(1702) 시점 이후로 설정될 수 있다.
상술한 바와 같이, i) 상위 계층에 의해 설정된 적어도 하나의 하향링크 또는 유연한(flexible) 심볼을 포함하는 슬롯이고 ii) UE에 대해 설정된 측정 갭(configured measurement gap) 내 속하지 않은 슬롯이면, 서빙 셀의 해당 슬롯은 유효한 하향링크 슬롯으로 간주될 수 있다.
AI UE의 채널 예측(channel prediction) 능력이 높을수록 더 작은 M 값을 지원할 수 있고(즉, 더 작은 음수 값), 더 작은 M 값을 적용함에 따라 CSI 보고 시점보다 더 먼 미래로 CSI reference resource가 설정될 수 있다.
UE는 M 값의 후보(candidate)(및/또는 범위(range))와 각 candidate에 대한(및/또는 range에 속하는 M 값에 대한)(만약, range가 이용되는 경우, M 값을 이용 가능한 값들의 단위는 미리 정의될 수 있다) channel prediction 정확도를 기지국에게 보고할 수 있다. 기지국은 UE로부터 수신한 각 candidate에 대한(및/또는 range에 속하는 M 값에 대한) channel prediction 정확도를 기반으로 M 값을 결정하여 UE에게 설정할 수 있다. 또는 UE가 M 값을 결정하고, M 값과 이에 대한 channel prediction 정확도를 CSI와 함께 기지국에게 전송할 수 있다.
또한, 기지국이 M 값의 candidate (및/또는 range)을 UE에게 지시하고, UE가 각 candidate에 대한(및/또는 range에 속하는 M 값에 대한) candidate prediction 정확도를 기지국에게 보고할 수 있다. 이 경우, 기지국은 UE로부터 수신한 각 candidate에 대한(및/또는 range에 속하는 M 값에 대한) channel prediction 정확도를 기반으로 M 값을 결정하여 UE에게 설정할 수 있다.
또한, 기지국이 channel prediction 정확도에 대한 임계치(threshold)를 설정/지시할 수 있으며, UE는 해당 threshold를 넘는 M 값을 기지국에게 보고할 수 있다. 예를 들어, UE는 threshold를 넘는 최대의 M 값만 기지국에게 보고할 수도 있으며, threshold를 넘는 하나 이상의 M 값을 기지국에게 보고할 수도 있다. 또한, threshold를 넘는 하나 이상의 M 값을 기지국에게 보고할 때, UE는 각 M 값에 대한 channel prediction 정확도도 함께 기지국에게 보고할 수도 있다. 만약, 하나 이상의 M 값이 기지국에게 보고되는 경우, 기지국은 각 M 값에 대한 channel prediction 정확도를 기반으로 M 값을 결정하여 UE에게 설정할 수 있다.
또한, (상술한 동작들에 추가하여) UE는 특정 M에 대해 channel prediction 정확도에 달성하기 위해 필요한 측정 윈도우(measurement window) 정보를 기지국으로 보고할 수 있다. 예를 들어, UE가 CSI 계산을 위해 채널 측정을 하는 w1개의 slot 동안 w2개의 CMR 및/또는 IMR이 필요하다고 기지국에게 보고할 수 있다. 이 경우, 기지국은 이를 보장하여(즉, w1개의 slot 동안 w2개의 CMR 및/또는 IMR이 존재하도록, CMR 및/또는 IMR을 설정) UE가 특정 M에 대해 channel prediction 정확도에 달성할 수 있도록 할 수 있다.
상술한 설명에서, 상기 channel prediction은 UE가 측정(measurement)에 사용한 CMR을 기준으로 CSI reference resource의 채널을 예측하는 것을 의미한다. 또한, channel prediction에 대한 prediction 정확도는 CSI reference resource에서의 실제 채널과 prediction된 채널 간의 정확도가 아닌 UE가 예측한 정확도를 의미한다. 즉, UE가 prediction 정확도를 100%로 보고하더라도 실제 채널과 prediction된 채널은 다를 수도 있다.
또한, UE는 복수의 M 값에 대한 복수의 CSI reference resource 각각을 대상으로 CSI를 계산할 수 있다. 예를 들어, UE는 M=-2 기반으로 설정/결정된 CSI reference resource를 대상으로 CSI를 계산하고, M=-5 기반으로 설정/결정된 CSI reference resource를 대상으로 CSI를 계산할 수 있으며, UE는 두 CSI를 모두 기지국에게 전송할 수 있다. 이 경우, 두 CSI 중 특정 CSI(예를 들어, 더 큰(또는 작은) M에 대한 CSI)를 기준으로 나머지 CSI에 대해서는 차이 값을 전송하여, CSI 피드백 오버헤드를 줄일 수 있다. 또는, UE는 기존 CSI reference resource(즉, CSI 보고 시점 이전으로 설정되는 CSI reference resource)를 대상으로 계산한 CSI와 한 개 또는 복수개의 M 값에 대한 M개의 CSI를 함께 전송할 수 있으며, 이 경우 M개의 CSI에 대해서 기존 reference resource를 대상으로 계산한 CSI를 기준으로 차이 값 만을 기지국에게 전송할 수 있다.
비주기적(AP: aperiodic) CSI 보고인 경우, 기지국은 트리거링(triggering) DCI를 통해 M 값 및/또는 channel prediction 정확도에 대한 threshold 등을 지시할 수 있다. 예를 들어, 단일의 M 값이 지시된 경우, 해당 M 값을 이용하여 CSI reference resource가 결정될 수 있다. 또는, channel prediction 정확도에 대한 threshold가 지시된 경우, threshold를 넘는 M 값을 이용하여 CSI reference resource가 결정될 수 있다. 만약, threshold를 넘은 M 값이 다수 개인 경우는 channel prediction 정확도가 최대인 M 값을 이용하여 CSI reference resource가 결정될 수 있다.
한편, 상술한 실시예 1에서 제안한 CSI reference resource는 CSI 보고 시간(CSI reporting time)으로 slot n'을 기준으로 계산하였으나, 제안한 CSI reference resource는 기존 CSI reference resource(즉, CSI 보고 시점 이전으로 설정되는 CSI reference resource)를 기준으로 결정될 수 있다. 예를 들어, 기존 CSI reference resource가 slot R이라고 가정할 때, 제안한 CSI reference resources는 slot R+R' 이하의(R'은 자연수) slot에서 가장 최근 유효한 하향링크 슬롯으로 결정할 수 있다.
또한, UE는 CSI와 함께 CSI가 얼마만큼의 시간 동안 유효한지를 추가로 기지국에게 보고할 수 있다. 즉, UE는 CSI를 적용 가능한 시간 정보를 기지국에게 보고할 수 있다. 예를 들어, UE는 CSI reporting slot n' 부터 K개(예를 들어, K=2, K는 자연수)의 slot 동안 해당 CSI가 유효하다고 기지국에게 보고할 수 있다. 즉, 이를 통해 UE는 slot n', slot n'+1, slot n'+2 동안에 CSI가 DL channel의 상태를 정확하게 반영하므로 기지국이 해당 CSI를 이용해 DL 전송(예를 들어, PDSCH)을 수행할 수 있다고 알릴 수 있으며, slot n'+2 이후에는 DL Channel이 변해 해당 CSI(즉, CSI reporting slot n'에서 보고한 CSI)를 이용하여 DL 전송을 할 경우 DL 성능(performance)가 열화 됨을 알릴 수 있다. 예를 들어, CMR/IMR이 주기적/반지속적 CSI-RS인 경우, UE는 RS 주기에 맞추어 기지국에게 measurement window를 보고할 수 있다.
문제 2: 실시예 1에 따른 제안된 CSI reference resource를 이용하는 경우, CMR 및/또는 IMR로부터 기존의 측정 동작에 문제가 발생될 수 있다.
도 18은 본 개시의 일 실시예에 따른 CSI 참조 자원을 설정하는 방법을 예시하는 도면이다.
도 18에서는 주기적(P: periodic)/반지속적(SP: semi-persistent) CMR이 설정된 CSI 보고와 그에 따른 CSI reference resource 설정 및 PDSCH 전송을 예시한다.
이 경우, 실시예 1에서 제안된 CSI reference resource(1804)를 이용하는 경우 (CMR 또는 IMR(1802)로부터의) 기존의 측정(measurement) 동작에 문제가 발생할 수 있다. 보다 구체적으로, 기존 measurement 동작에 따르면, 측정 제한(MR: measurement restriction) 온(ON)/활성화인 경우 UE는 CSI reference resource slot 또는 그 이전 시간에서 가장 최근 설정된 CMR을 이용하여 measurement를 수행하도록 제한되고, MR 오프(OFF)/비활성화인 경우 CSI UE는 reference resource slot 또는 그 이전 시간에서 복수의 CMR을 이용하여 measurement를 수행할 수 있다. 따라서, 기존의 측정 동작에 따르면, 이러한 CMR을 이용하여 추정한 채널로부터 UE는 실시예 1에서 제안된 CSI reference resource의 채널을 예측해야 한다.
하지만, 실시예 1에서 제안된 CSI reference resource(1804)는 CSI 보고(1803) 시점 이후에 설정/결정되므로, 기존 MR 설정을 따른다면, CSI 보고(1803) 시점 또는 그 이후에 설정된 CMR 4,5를 측정에 이용하도록 정의된다. 이 경우, UE는 CSI 보고(1803) 시점 또는 그 이후에 설정된 CMR을 이용할 수 없기 때문에 이러한 measurement는 더 이상 유효하지 않다는 문제가 발생된다.
실시예 2: 상술한 문제 2를 해결하기 위해 CSI 보고(reporting) 시점 이전의 CMR(또는 IMR)을 measurement에 이용하도록 제한하는 방법을 제안한다.
보다 구체적으로, MR(measurement restriction) ON 인 경우 CSI reporting 이전 시간에서 가장 최근 설정된 CMR(또는 IMR)을 이용하도록 제한되고, MR OFF인 경우 CSI reporting 이전 시간에서 복수의 CMR(또는 IMR)을 이용할 수 있다. 도 18을 참조하면, 실시예 1의 제안된 CSI reference resource(1804)에 기반하여 CSI 보고(1803)를 수행할 때, CSI 계산하기 위한 채널 측정은 CSI 보고(1803) 이전의 CMR(또는 IMR)(1802)(즉, 도 18에서 CMR(또는 IMR) 1, CMR(또는 IMR) 2, CMR(또는 IMR) 3)에 기반하여 도출될 수 있다.
여기서, CSI reporting과 CMR이 너무 가까운 시간에 설정되어 있으면 해당 CMR로부터 CSI를 측정/계산하고 보고하기까지 UE의 처리 시간(processing time) (예를 들어, NR 표준에 정의된 CSI processing time z', 여기서 Z'는 채널/간섭(channel/interference)에 대한 CSI-RS(즉, CMR/IMR)를 수신한 후 CSI 보고를 수행하기까지의 최소 CSI processing time을 나타낸다.)이 부족하게 된다. 예를 들어, 도 18에서 CMR(또는 IMR) 3은 CSI 보고(1803)과 너무 가까운 시간에 설정되어 있으므로, CSI processing time을 고려하면 UE가 이를 이용할 수 없다. 따라서 CSI processing time을 고려하여 일정 시간 오프셋(offset)을 설정/정의하는 것이 바람직하다.
즉, 실시예 2에서 CSI reporting 시점을 기준으로 MR을 정의하는 대신, {CSI reporting 시점 - offset} 값을 기준으로 MR이 정의될 수 있다. 다시 말해, {CSI 보고(reporting) 시점 - offset} 이전의 CMR(또는 IMR)을 measurement에 이용하도록 제한될 수 있다. 이에 따라, 도 18의 CMR(또는 IMR) 3은 CSI 보고(1803)를 위한 measurement에 사용되지 않을 수 있으며, CMR(또는 IMR) 1 또는 2가 measurement에 사용될 수 있다. 예를 들어, MR이 OFF인 경우 CMR(또는 IMR) 1 및 2가 모두 measurement에 이용될 수 있으며, MR이 ON인 경우 CMR(또는 IMR) 2만이 measurement에 이용될 수 있다.
또는, 상술한 문제 2를 해결하기 위해 기존 CSI reference resource(즉, CSI 보고 시점 이전으로 설정되는 CSI reference resource)를 기준으로 MR이 정의될 수 있다. 즉, MR이 ON인 경우 기존 CSI reference resource slot 또는 그 이전 시간에서 가장 최근 설정된 CMR을 이용하도록 제한되고, MR OFF인 경우 기존 CSI reference resource slot 또는 그 이전 시간에서 복수의 CMR을 이용할 수 있다. 여기서, 물론, 기존 CSI reference resource는 MR을 정의하기 위한 용도로만 사용하며, 실제 CSI reference resource는 제안된 CSI reference resource로 이용될 수 있다. 이에 따라 도 18에서 UE는 MR OFF인 경우 CMR(또는 IMR) 1,2를 사용할 수 있으며 MR ON인 경우 CMR(또는 IMR) 2를 이용하여 measurement를 수행할 수 있다.
문제 3: 실시예 1에 따른 제안된 CSI reference resource의 채널 추정을 정확하게 하기 위해서는 서로 다른 시간에 측정된 다수의 CMR로부터 외삽(extrapolation)하는 작업이 필요하다. 따라서, 기존의 하나의 CMR만을 이용하게 되는 MR ON 동작은 UE의 AI/ML 능력에 따라 정확하거나 부정확할 수 있다. 또한, UE의 AI/ML 능력에 따라 prediction을 위해 얼마만큼의 시간 동안 몇 개의 CMR이 필요한지도 달라질 수 있다.
실시예 3: 상술한 문제 3을 해결하기 위해, MR ON을 여러 가지 레벨(level)로 정의될 수 있다.
여기서, UE가 이러한 MR level (및/또는 각 MR level에 따른 prediction 정확도)을 기지국에게 보고할 수 있다.
또는 기지국이 MR level을 UE에게 지시해주거나 MR level에 따른 prediction 정확도를 요청할 수 있다. 또는, 기지국은 prediction 정확도가 threshold가 넘는 MR level을 UE가 보고하도록 설정할 수 있다.
예를 들어 MR level은 다음과 같이 정의될 수 있다.
- MR level 0 (=기존 MR ON): 특정 시간(예를 들어, 기존 CSI reference resource(즉, CSI 보고 시점 이전으로 설정되는 CSI reference resource) 또는 CSI 보고 시점) 또는 그 이전 시간에서 가장 최근 설정된 CMR(또는 IMR)을 이용하도록 제한된다.
- MR level 1: 특정 시간(예를 들어, 기존 CSI reference resource(즉, CSI 보고 시점 이전으로 설정되는 CSI reference resource) 또는 CSI 보고 시점) 또는 그 이전 시간에서 가장 최근 설정된 두 개의 CMR(또는 IMR)을 이용하도록 제한된다.
MR level 2: 특정 시간(예를 들어, 기존 CSI reference resource(즉, CSI 보고 시점 이전으로 설정되는 CSI reference resource) 또는 CSI 보고 시점) 또는 그 이전 시간에서 가장 최근 설정된 세 개의 CMR(또는 IMR)을 이용하도록 제한된다.
예를 들어, 도 18에서 기존 CSI reference resource(1801)를 기준으로 MR level 0을 이용하는 경우, CMR(또는 IMR) 2가 measurement에 사용될 수 있다. 또한, MR level 1을 이용하는 경우, CMR(또는 IMR) 1, 2가 measurement에 사용될 수 있다.
UE는 다수의 MR level 각각에 대해 CSI를 계산하고 이렇게 계산된 다수의 CSI를 기지국으로 보고할 수 있다. 이 경우, 특정 MR level (예를 들어, MR level 0)을 이용하여 측정된 CSI를 기준으로 나머지 CSI의 차이 값을 보고하여 피드백 오버헤드를 줄일 수 있다.
UE는 prediction 정확도를 확보하기 위해 제안된 CSI reference resource 또는 그 이전 시간에 가장 최근 수신한 CMR과 제안된 CSI reference resource 사이의 시간 간격이 일정 값(예를 들어, T1) 이하가 되도록 기지국에게 보고/요구할 수 있으며 그리고/또는 P/SP CMR 간의 시간 간격이 일정 값(예를 들어, T2) 이하가 되도록 기지국에게 보고/요구할 수 있다. 여기서, 이러한 시간 조건이 맞지 않으면 UE는 해당 CSI를 보고하지 않거나, 계산없이 최근 보고했던 CSI를 그대로 보고할 수 있다.
상술한 실시예 1 내지 3에서, UE가 다수의 CSI를 보고하는 경우, 상술한 바와 같이, 특정 CSI를 기준으로 차이 값을 보고하는 방식이 이용될 수 있으며, 그리고/또는 일부 CSI(즉, CSI 내 일부의 정보/지시)는 공통 CSI로 가정하고 중복 없이 한 번만 기지국에게 보고할 수도 있다. 예를 들어, RI의 경우 CSI reference resource에 따라 크게 변하지 않을 수 있으므로, UE는 RI에 대해 하나의 공통 값만 기지국에게 보고하고, 나머지 PMI/CQI 등에 대해서는 CSI reference resource에 따라 각각 계산하여 기지국에게 보고할 수 있다.
또한, 상술한 실시예 1 내지 3에서, 설명의 편의를 위해 CMR을 위주로 설명하였으나, IMR에 대해서도 동일 방식의 적용이 가능하다.
또한, 상술한 실시예 1 내지 3에서 제안되는 방법들 중 어느 하나의 방법이 적용될 수도 있으며, 제안되는 방법들 중 복수의 방법들이 조합/결합되어 최종 적용될 수 있다.
또한, 상술한 실시예 1 내지 3에서 제안되는 방법들의 적용 여부는 기지국이 UE에게 RRC/MAC-CE/DCI 등의 시그널링(예를 들어, SP CSI 보고를 활성화(activation)하는 DCI 또는 AP CSI 보고를 트리거(trigger)하는 DCI 등)을 통해 지시할 수 있다.
도 19는 본 개시의 일 실시예에 따른 채널 상태 정보 송수신 방법에 대한 네트워크와 UE 간의 시그널링 절차를 예시한다.
도 19는 본 발명에서 제안하는 방법들(예를 들어, 실시예 1 내지 실시예 3, 실시예 1 내지 실시예 3에서 하나 이상의 제안 방법의 조합)에 대한 네트워크(network)(예를 들어, TRP 1, TRP 2)와 UE 간의 시그널링을 예시한다. 여기서 UE/네트워크는 일례일 뿐, 다양한 장치로 대체 적용될 수 있다. 도 19는 단지 설명의 편의를 위한 것일 뿐, 본 개시의 범위를 제한하는 것이 아니다. 또한, 도 19에 예시된 일부 단계(들)은 상황 및/또는 설정 등에 따라 생략될 수도 있다.
도 19에서 설명하는 시그널링 방식은 다수의 TRP들 및 다수의 UE들 간의 시그널링에도 확장되어 적용될 수 있다. 이하 설명에서 네트워크는 복수의 TRP를 포함하는 하나의 기지국일 수 있으며, 복수의 TRP를 포함하는 하나의 셀(Cell)일 수 있다. 일례로, 네트워크를 구성하는 TRP 1과 TRP 2 간에는 이상적인(ideal)/비이상적인(non-ideal) 백홀(backhaul)이 설정될 수도 있다. 또한, 이하 설명은 다수의 TRP들을 기준으로 설명되나, 이는 다수의 패널(panel)들을 통한 전송에도 동일하게 확장하여 적용될 수 있다. 더하여, 본 개시에서 UE가 TRP1/TRP2로부터 신호를 수신하는 동작은 UE가 네트워크로부터 (TRP1/2를 통해/이용해) 신호를 수신하는 동작으로도 해석/설명될 수 있으며(혹은 동작일 수 있으며), 단말이 TRP1/TRP2로 신호를 전송하는 동작은 UE가 네트워크에게 (TRP1/TRP2를 통해/이용해) 신호를 전송하는 동작으로 해석/설명될 수 있고(혹은 동작일 수 있고), 역으로도 해석/설명될 수 있다.
기지국은 UE와 데이터의 송수신을 수행하는 객체(object)를 총칭하는 의미일 수 있다. 예를 들어, 상기 기지국은 하나 이상의 TP(Transmission Point)들, 하나 이상의 TRP(Transmission and Reception Point)들 등을 포함하는 개념일 수 있다. 또한, TP 및/또는 TRP는 기지국의 패널, 송수신 유닛(transmission and reception unit) 등을 포함하는 것일 수 있다. 또한, “TRP”는 패널(panel), 안테나 어레이(antenna array), 셀(cell)(예를 들어, 매크로 셀(macro cell) / 스몰 셀(small cell) / 피코 셀(pico cell) 등), TP(transmission point), 기지국(base station, gNB 등) 등의 표현으로 대체되어 적용될 수 있다. 상술한 바와 같이, TRP는 CORESET 그룹(또는 CORESET 풀)에 대한 정보(예를 들어, 인덱스, ID)에 따라 구분될 수 있다. 일례로, 하나의 UE가 다수의 TRP(또는 셀)들과 송수신을 수행하도록 설정된 경우, 이는 하나의 UE에 대해 다수의 CORESET 그룹(또는 CORESET 풀)들이 설정된 것을 의미할 수 있다. 이와 같은 CORESET 그룹(또는 CORESET 풀)에 대한 설정은 상위 계층 시그널링(예: RRC 시그널링 등)을 통해 수행될 수 있다.
UE는 네트워크로부터 설정 정보(configuration information)를 수신한다(S1901).
상기 설정 정보는 네트워크의 구성(예를 들어, TRP 구성)과 관련된 정보 / M-TRP 기반의 송수신과 관련된 정보(예를 들어, 자원 할당 등) 등을 포함할 수 있다. 이 때, 상기 설정 정보는 상위 계층 시그널링(예를 들어, RRC 시그널링, MAC-CE 등)을 통해 전달될 수 있다.
상기 설정 정보는 상술한 제안 방법(예를 들어, 실시예 1 내지 실시예 3, 실시예 1 내지 실시예 3에서 하나 이상의 제안 방법의 조합)에서 설명된 CSI와 관련된 설정 정보를 포함할 수 있다.
상기 CSI와 관련된 설정 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다.
여기서, CSI 관련 설정 정보는 CSI 보고와 관련된 설정 정보(즉, CSI 보고 셋팅, CSI report configuration)(예를 들어, RRC IE 'CSI-ReportConfig')(이하, 제1 설정 정보)와 CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅, CSI resource configuration)(예를 들어, RRC IE 'CSI-ResourceConfig')(이하, 제2 설정 정보)를 포함할 수 있다.
여기서, UE에게 CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅)에 의해 CSI 계산/측정을 위한 복수의 CSI-RS 자원들이 설정될 수 있다. 또한, CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅)에 의해 하나 이상의 채널 측정 자원(CMR: channel measurement resource)(예를 들어, NZP CSI-RS) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)(예를 들어, CSI-IM 및/또는 NZP CSI-RS)이 설정될 수 있다. CMR과 IMR을 CSI 자원으로 통칭할 수 있다.
또한, CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅)은 특정 CSI 보고와 관련된 설정 정보(즉, CSI 보고 셋팅)과 연결/연관될 수 있으며, CSI 보고 셋팅 내 보고양(reportQuantity)에 따라, 연결/연관된 CSI 자원 셋팅에 의해 설정된 복수의 CSI 자원들에 대한 CSI 보고(예를 들어, CRI, PMI, RI, CQI, LI 등)가 UE가 대해 설정될 수 있다.
UE는 네트워크로부터 설정 정보(예를 들어, CSI 자원 셋팅)에 의해 설정된 복수의 CSI 자원들에서 CSI-RS를 수신한다(S1902).
UE는 네트워크로부터 하향링크 제어 정보(DCI)를 수신할 수 있다(S1903).
여기서, DCI는 UE에게 비주기적 CSI 보고를 트리거하는 DCI일 수 있으며, 또는 반지속적 CSI 보고를 활성화(activation)하는 DCI일 수 있다.
또한, DCI는 하향링크 제어 채널(예를 들어, PDCCH 등)을 통해 전송될 수 있으며, CSI 보고의 트리거링/활성화 이외에도 하향링크 데이터 채널(예를 들어, PDSCH)/ 상향링크 데이터 채널(예를 들어, PUSCH)을 스케줄링할 수 있다.
UE는 CSI를 네트워크에게 전송(보고)한다(S1904).
여기서, CSI는 CQI, PMI, RI, CRI, LI 중 적어도 어느 하나를 포함할 수 있다.
상술한 바와 같이, UE는 CSI 보고와 관련된 설정 정보에 기반하여(및 DCI에 의한 트리거/활성화에 따라) CSI를 네트워크에게 보고할 수 있다. 예를 들어, CSI 보고와 관련된 설정 정보에 의해 주기적인 CSI 보고, 반-지속적 CSI 보고, 비주기적 CSI 보고와 같은 CSI 보고 타입이 설정될 수 있으며, CSI에 어떠한 정보(예를 들어, CRI, CQI, PMI, RI, LI 등)가 보고되어야 하는 설정될 수 있으며, 또한 주기적인 CSI 보고인 경우, 주기(periodicity)와 슬롯 오프셋(slot offset) 등도 설정될 수 있다.
상술한 실시예 1 내지 3에 따라, CSI는 CSI 참조 자원에 기반하여 결정되는 하나 이상의 CSI 자원(즉, 하나 이상의 CMR 및/또는 하나 이상의 IMR)에 기반하여 채널 측정 및/또는 간섭 측정을 도출/수행함으로써 계산/획득될 수 있다.
여기서, 상술한 실시예 1에 따라, CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정될 수 있다. 이를 위해, 예를 들어, 상기 CSI 참조 자원은 상기 CSI가 보고되는 상향링크 슬롯 n'보다 늦은 슬롯 n-nCSI_ref에 기반하여 결정될 수 있으며, 상기 nCSI_ref는 상기 CSI 참조 자원이 유효한(valid) 하향링크 슬롯에 해당하도록 변수(M)보다 크거나 같은 최소값으로 결정될 수 있다.
여기서, 상기 설정 정보(예를 들어, CSI 보고와 관련된 설정 정보) 또는 상기 CSI의 보고를 트리거하는 하향링크 제어 정보(DCI: downlink control information)에 의해 상기 변수(M)의 값이 제공될 수 있다. 여기서, UE는 상기 변수(M)의 후보들과 상기 변수(M)의 후보들에 따른 각각의 슬롯에 대한 채널 예측 정확도(즉, UE는 변수(M)을 적용하여 결정된 CSI reference resource를 가정하여 채널 예측 정확도를 계산)를 네트워크에게 전송/보고할 수 있다. 이 경우, 네트워크는 이에 기반하여 변수(M)을 결정하고 UE에게 제공할 수도 있다.
또한, UE가 상기 변수(M)를 결정하고, 상기 변수(M)과 상기 변수(M)에 따른 슬롯에 대한 채널 예측 정확도를 네트워크에게 전송/보고할 수 있다. 예를 들어, 상기 변수(M)과 상기 변수(M)에 따른 슬롯에 대한 채널 예측 정확도는 CSI와 함께(또는 CSI에 포함시켜) 네트워크에게 전송될 수 있다.
또한, 네트워크에 의해 threshold가 설정되고(또는 threshold가 미리 결정/정의되고), UE는 채널 예측 정확도가 threshold를 초과하는 슬롯에 대한 변수(M)를 네트워크에게 전송/보고할 수 있다. 예를 들어, 상기 변수(M)는 CSI와 함께(또는 CSI에 포함시켜) 네트워크에게 전송될 수 있다.
또한, 도 19에서는 도시되지 않았지만, UE는 CSI를 네트워크에게 보고하기 이전에, 특정 변수(M)에 따른 슬롯에 대한 채널 예측 정확도를 특정 레벨 이상으로 달성하기 위해 필요한 측정 윈도우(measurement window)에 대한 정보를 네트워크에게 전송할 수 있다. 여기서, 측정 윈도우(measurement window)에 대한 정보는 슬롯의 개수, CMR 및/또는 IMR의 개수를 포함할 수 있다.
또한, 상기 CSI는 N개의(N은 자연수) 변수(M)에 따른 N개의 CSI 참조 자원의 각각에 대한 N개의 CSI를 포함할 수 있다. 예를 들어, 네트워크에게 최종 보고되는 CSI는 제1 변수(M1)를 적용하여 결정된 제1 CSI 참조 자원에 대한 제1 CSI와 제2 변수(M2)를 적용하여 결정된 제2 CSI 참조 자원에 대한 제2 CSI를 모두 포함할 수 있다. 이 경우에도, CSI는 상기 N개의 변수(M)들을 포함할 수도 있다.
또한, 상기 CSI는 해당 CSI가 유효한 시간에 대한 정보를 포함할 수 있다.
또한, 상술한 실시예 2에 따라, 상기 CSI를 계산하기 위해 상기 CSI가 보고되는 상향링크 슬롯 이전 또는 상기 CSI가 보고되는 상향링크 슬롯으로부터 오프셋(offset) 이전의 상기 하나 이상의 CMR 및/또는 상기 하나 이상의 IMR에 기반하여 채널 측정 및/또는 간섭 측정이 도출/수행될 수 있다. 즉, 상기 CSI를 계산하기 위해 이용되는 상기 하나 이상의 CMR 및/또는 상기 하나 이상의 IMR은 상기 CSI가 보고되는 상향링크 슬롯 이전 또는 상기 CSI가 보고되는 상향링크 슬롯으로부터 오프셋(offset) 이전으로 한정될 수 있다.
또한, 상술한 실시예 3에 따라, 측정 제한(MR)은 복수의 레벨로 정의될 수 있다. 이 경우, 측정 제한의 레벨에 따라 상기 CSI를 계산하기 위해 이용되는 CMR 및/또는 IMR의 개수가 결정될 수 있다.
한편, 상술한 CSI를 계산하는 동작(즉, 채널을 예측하여 CSI를 계산하는 동작)(또는 채널 예측 정확도를 계산하는 동작)은 상기 UE(또는 UE에 탑재 또는 연결된 외부 기기)에 의해 수행될 수 있으며, 상기 CSI(또는 채널 예측 정확도)를 계산하기 위해 상술한 도 12의 AI/ML 동작을 위한 기능들 중 적어도 하나(특히, 모델 추론)는 상기 UE(또는 UE에 탑재 또는 연결된 외부 기기)에 의해 수행될 수 있다. 또한, 상기 UE(또는 UE에 탑재 또는 연결된 외부 기기)는 상술한 도 16의 절차(특히, 5. 모델 추론)를 통해 상기 매핑 패턴을 결정할 수도 있다.
도 20은 본 개시의 일 실시예에 따른 채널 상태 정보 송수신 방법에 대한 UE의 동작을 예시하는 도면이다.
도 20을 참조하면, 도 20에서는 앞서 제안 방법들(예를 들어, 실시예 1 내지 실시예 3, 실시예 1 내지 실시예 3에서 하나 이상의 제안 방법의 조합)에 기반한 UE의 동작을 예시한다. 도 20의 예시는 설명의 편의를 위한 것이며, 본 개시의 범위를 제한하는 것은 아니다. 도 20에서 예시된 일부 단계(들)은 상황 및/또는 설정에 따라 생략될 수 있다. 또한, 도 20에서 UE는 하나의 예시일 뿐, 아래 도 22에서 예시된 장치로 구현될 수 있다. 예를 들어, 도 22의 프로세서(processor)(102/202)는 트랜시버(106/206)을 이용하여 채널/신호/데이터/정보 등을 송수신하도록 제어할 수 있으며, 전송될 또는 수신한 채널/신호/데이터/정보 등을 메모리(104/204)에 저장하도록 제어할 수도 있다.
또한, 도 20의 동작은 도 22의 하나 이상의 프로세서(102, 202)에 의해 처리될 수 있으며, 도 20의 동작은 도 22의 적어도 하나의 프로세서(예를 들어, 102, 202)를 구동하기 위한 명령어/프로그램(예를 들어, 명령(instruction), 실행 코드(executable code))형태로 메모리(예를 들어, 도 22의 하나 이상의 메모리(104, 204))에 저장될 수도 있다.
UE는 기지국으로부터 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 수신한다(S2001).
상기 CSI와 관련된 설정 정보는 상술한 제안 방법(예를 들어, 실시예 1 내지 실시예 3, 실시예 1 내지 실시예 3에서 하나 이상의 제안 방법의 조합)에서 설명된 CSI와 관련된 정보를 포함할 수 있다.
상기 CSI와 관련된 설정 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다.
여기서, CSI 관련 설정 정보는 CSI 보고와 관련된 설정 정보(즉, CSI 보고 셋팅, CSI report configuration)(예를 들어, RRC IE 'CSI-ReportConfig')(이하, 제1 설정 정보)와 CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅, CSI resource configuration)(예를 들어, RRC IE 'CSI-ResourceConfig')(이하, 제2 설정 정보)를 포함할 수 있다.
여기서, UE에게 CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅)에 의해 CSI 계산/측정을 위한 복수의 CSI-RS 자원들이 설정될 수 있다. 또한, CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅)에 의해 하나 이상의 채널 측정 자원(CMR: channel measurement resource)(예를 들어, NZP CSI-RS) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)(예를 들어, CSI-IM 및/또는 NZP CSI-RS)이 설정될 수 있다. CMR과 IMR을 CSI 자원으로 통칭할 수 있다.
또한, CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅)은 특정 CSI 보고와 관련된 설정 정보(즉, CSI 보고 셋팅)과 연결/연관될 수 있으며, CSI 보고 셋팅 내 보고양(reportQuantity)에 따라, 연결/연관된 CSI 자원 셋팅에 의해 설정된 복수의 CSI 자원들에 대한 CSI 보고(예를 들어, CRI, PMI, RI, CQI, LI 등)가 UE가 대해 설정될 수 있다.
도 20에서는 도시되지 않았지만, UE는 기지국으로부터 하향링크 제어 정보(DCI)를 수신할 수 있다. 여기서, DCI는 UE에게 비주기적 CSI 보고를 트리거하는 DCI일 수 있으며, 또는 반지속적 CSI 보고를 활성화(activation)하는 DCI일 수 있다. 또한, DCI는 하향링크 제어 채널(예를 들어, PDCCH 등)을 통해 전송될 수 있으며, CSI 보고의 트리거링/활성화 이외에도 하향링크 데이터 채널(예를 들어, PDSCH)/ 상향링크 데이터 채널(예를 들어, PUSCH)을 스케줄링할 수 있다.
UE는 CSI 참조 자원에 기반하여 결정되는 하나 이상의 CSI 자원(즉, 하나 이상의 CMR 및/또는 하나 이상의 IMR)에 기반하여 채널 측정 및/또는 간섭 측정을 도출/수행함으로써 CSI를 계산/획득한다(S2002). 그리고, UE는 CSI를 네트워크에게 전송(보고)한다(S2003). 여기서, CSI는 CQI, PMI, RI, CRI, LI 중 적어도 어느 하나를 포함할 수 있다.
즉, UE는 설정 정보(예를 들어, CSI 자원 셋팅)에 의해 설정된 복수의 CSI 자원들에서 CSI-RS를 수신하고, CSI 참조 자원에 기반하여 결정되는 하나 이상의 CSI 자원(즉, 하나 이상의 CMR 및/또는 하나 이상의 IMR)에 기반하여 CSI를 계산한다. 그리고, UE는 CSI 보고와 관련된 설정 정보에 기반하여(및 DCI에 의한 트리거/활성화에 따라) CSI를 기지국에게 보고할 수 있다. 예를 들어, CSI 보고와 관련된 설정 정보에 의해 주기적인 CSI 보고, 반-지속적 CSI 보고, 비주기적 CSI 보고와 같은 CSI 보고 타입이 설정될 수 있으며, CSI에 어떠한 정보(예를 들어, CRI, CQI, PMI, RI, LI 등)가 보고되어야 하는 설정될 수 있으며, 또한 주기적인 CSI 보고인 경우, 주기(periodicity)와 슬롯 오프셋(slot offset) 등도 설정될 수 있다.
상술한 실시예 1 내지 3에 따라, CSI는 CSI 참조 자원에 기반하여 결정되는 하나 이상의 CSI 자원(즉, 하나 이상의 CMR 및/또는 하나 이상의 IMR)에 기반하여 채널 측정 및/또는 간섭 측정을 도출/수행함으로써 계산/획득될 수 있다.
여기서, 상술한 실시예 1에 따라, CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정될 수 있다. 이를 위해, 예를 들어, 상기 CSI 참조 자원은 상기 CSI가 보고되는 상향링크 슬롯 n'보다 늦은 슬롯 n-nCSI_ref에 기반하여 결정될 수 있으며, 상기 nCSI_ref는 상기 CSI 참조 자원이 유효한(valid) 하향링크 슬롯에 해당하도록 변수(M)보다 크거나 같은 최소값으로 결정될 수 있다.
여기서, 상기 설정 정보(예를 들어, CSI 보고와 관련된 설정 정보) 또는 상기 CSI의 보고를 트리거하는 하향링크 제어 정보(DCI: downlink control information)에 의해 상기 변수(M)의 값이 제공될 수 있다. 여기서, UE는 상기 변수(M)의 후보들과 상기 변수(M)의 후보들에 따른 각각의 슬롯에 대한 채널 예측 정확도(즉, UE는 변수(M)을 적용하여 결정된 CSI reference resource를 가정하여 채널 예측 정확도를 계산)를 기지국에게 전송/보고할 수 있다. 이 경우, 기지국은 이에 기반하여 변수(M)을 결정하고 UE에게 제공할 수도 있다.
또한, UE가 상기 변수(M)를 결정하고, 상기 변수(M)와 상기 변수(M)에 따른 슬롯에 대한 채널 예측 정확도를 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 변수(M)과 상기 변수(M)에 따른 슬롯에 대한 채널 예측 정확도는 CSI와 함께(또는 CSI에 포함시켜) 기지국에게 전송될 수 있다.
또한, 기지국에 의해 threshold가 설정되고(또는 threshold가 미리 결정/정의되고), UE는 채널 예측 정확도가 threshold를 초과하는 슬롯에 대한 변수(M)를 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 변수(M)는 CSI와 함께(또는 CSI에 포함시켜) 기지국에게 전송될 수 있다.
또한, 도 20에서는 도시되지 않았지만, UE는 CSI를 네트워크에게 보고하기 이전에, 특정 변수(M)에 따른 슬롯에 대한 채널 예측 정확도를 특정 레벨 이상으로 달성하기 위해 필요한 측정 윈도우(measurement window)에 대한 정보를 기지국에게 전송할 수 있다. 여기서, 측정 윈도우(measurement window)에 대한 정보는 슬롯의 개수, CMR 및/또는 IMR의 개수를 포함할 수 있다.
또한, 상기 CSI는 N개의(N은 자연수) 변수(M)에 따른 N개의 CSI 참조 자원의 각각에 대한 N개의 CSI를 포함할 수 있다. 예를 들어, 기지국에게 최종 보고되는 CSI는 제1 변수(M1)를 적용하여 결정된 제1 CSI 참조 자원에 대한 제1 CSI와 제2 변수(M2)를 적용하여 결정된 제2 CSI 참조 자원에 대한 제2 CSI를 모두 포함할 수 있다. 이 경우에도, CSI는 상기 N개의 변수(M)들을 포함할 수도 있다.
또한, 상기 CSI는 해당 CSI가 유효한 시간에 대한 정보를 포함할 수 있다.
또한, 상술한 실시예 2에 따라, 상기 CSI를 계산하기 위해 상기 CSI가 보고되는 상향링크 슬롯 이전 또는 상기 CSI가 보고되는 상향링크 슬롯으로부터 오프셋(offset) 이전의 상기 하나 이상의 CMR 및/또는 상기 하나 이상의 IMR에 기반하여 채널 측정 및/또는 간섭 측정이 도출/수행될 수 있다. 즉, 상기 CSI를 계산하기 위해 이용되는 상기 하나 이상의 CMR 및/또는 상기 하나 이상의 IMR은 상기 CSI가 보고되는 상향링크 슬롯 이전 또는 상기 CSI가 보고되는 상향링크 슬롯으로부터 오프셋(offset) 이전으로 한정될 수 있다.
또한, 상술한 실시예 3에 따라, 측정 제한(MR)은 복수의 레벨로 정의될 수 있다. 이 경우, 측정 제한의 레벨에 따라 상기 CSI를 계산하기 위해 이용되는 CMR 및/또는 IMR의 개수가 결정될 수 있다.
한편, 상술한 CSI를 계산하는 동작(즉, 채널을 예측하여 CSI를 계산하는 동작)(또는 채널 예측 정확도를 계산하는 동작)은 상기 UE(또는 UE에 탑재 또는 연결된 외부 기기)에 의해 수행될 수 있으며, 상기 CSI(또는 채널 예측 정확도)를 계산하기 위해 상술한 도 12의 AI/ML 동작을 위한 기능들 중 적어도 하나(특히, 모델 추론)는 상기 UE(또는 UE에 탑재 또는 연결된 외부 기기)에 의해 수행될 수 있다. 또한, 상기 UE(또는 UE에 탑재 또는 연결된 외부 기기)는 상술한 도 16의 절차(특히, 5. 모델 추론)를 통해 상기 매핑 패턴을 결정할 수도 있다.
도 21은 본 개시의 일 실시예에 따른 채널 상태 정보 송수신 방법에 대한 기지국의 동작을 예시하는 도면이다.
도 21을 참조하면, 도 21에서는 앞서 제안 방법들(예를 들어, 실시예 1 내지 실시예 3, 실시예 1 내지 실시예 3에서 하나 이상의 제안 방법의 조합)에 기반한 기지국의 동작을 예시한다. 도 21의 예시는 설명의 편의를 위한 것이며, 본 개시의 범위를 제한하는 것은 아니다. 도 21에서 예시된 일부 단계(들)은 상황 및/또는 설정에 따라 생략될 수 있다. 또한, 도 21에서 기지국은 하나의 예시일 뿐, 아래 도 22에서 예시된 장치로 구현될 수 있다. 예를 들어, 도 22의 프로세서(processor)(102/202)는 트랜시버(106/206)을 이용하여 채널/신호/데이터/정보 등을 송수신하도록 제어할 수 있으며, 전송될 또는 수신한 채널/신호/데이터/정보 등을 메모리(104/204)에 저장하도록 제어할 수도 있다.
또한, 도 21의 동작은 도 22의 하나 이상의 프로세서(102, 202)에 의해 처리될 수 있으며, 도 21의 동작은 도 22의 적어도 하나의 프로세서(예를 들어, 102, 202)를 구동하기 위한 명령어/프로그램(예를 들어, 명령(instruction), 실행 코드(executable code))형태로 메모리(예를 들어, 도 22의 하나 이상의 메모리(104, 204))에 저장될 수도 있다.
기지국은 UE에게 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 전송한다(S2101).
상기 CSI와 관련된 설정 정보는 상술한 제안 방법(예를 들어, 실시예 1 내지 실시예 3, 실시예 1 내지 실시예 3에서 하나 이상의 제안 방법의 조합)에서 설명된 CSI와 관련된 정보를 포함할 수 있다.
상기 CSI와 관련된 설정 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다.
여기서, CSI 관련 설정 정보는 CSI 보고와 관련된 설정 정보(즉, CSI 보고 셋팅, CSI report configuration)(예를 들어, RRC IE 'CSI-ReportConfig')(이하, 제1 설정 정보)와 CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅, CSI resource configuration)(예를 들어, RRC IE 'CSI-ResourceConfig')(이하, 제2 설정 정보)를 포함할 수 있다.
여기서, UE에게 CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅)에 의해 CSI 계산/측정을 위한 복수의 CSI-RS 자원들이 설정될 수 있다. 또한, CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅)에 의해 하나 이상의 채널 측정 자원(CMR: channel measurement resource)(예를 들어, NZP CSI-RS) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)(예를 들어, CSI-IM 및/또는 NZP CSI-RS)이 설정될 수 있다. CMR과 IMR을 CSI 자원으로 통칭할 수 있다.
또한, CSI 자원과 관련된 설정 정보(즉, CSI 자원 셋팅)은 특정 CSI 보고와 관련된 설정 정보(즉, CSI 보고 셋팅)과 연결/연관될 수 있으며, CSI 보고 셋팅 내 보고양(reportQuantity)에 따라, 연결/연관된 CSI 자원 셋팅에 의해 설정된 복수의 CSI 자원들에 대한 CSI 보고(예를 들어, CRI, PMI, RI, CQI, LI 등)가 UE가 대해 설정될 수 있다.
도 21에서는 도시되지 않았지만, 기지국은 UE에게 하향링크 제어 정보(DCI)를 전송할 수 있다. 여기서, DCI는 UE에게 비주기적 CSI 보고를 트리거하는 DCI일 수 있으며, 또는 반지속적 CSI 보고를 활성화(activation)하는 DCI일 수 있다. 또한, DCI는 하향링크 제어 채널(예를 들어, PDCCH 등)을 통해 전송될 수 있으며, CSI 보고의 트리거링/활성화 이외에도 하향링크 데이터 채널(예를 들어, PDSCH)/ 상향링크 데이터 채널(예를 들어, PUSCH)을 스케줄링할 수 있다.
기지국은 UE로부터 CSI를 수신한다(S2102). 여기서, CSI는 CQI, PMI, RI, CRI, LI 중 적어도 어느 하나를 포함할 수 있다.
여기서, 상기 CSI는 CSI 참조 자원에 기반하여 결정되는 하나 이상의 CSI 자원(즉, 하나 이상의 CMR 및/또는 하나 이상의 IMR)에 기반하여 채널 측정 및/또는 간섭 측정을 도출/수행함으로써 계산/획득된다.
즉, 설정 정보(예를 들어, CSI 자원 셋팅)에 의해 설정된 복수의 CSI 자원들에서 CSI-RS가 UE에게 전송되고, CSI 참조 자원에 기반하여 결정되는 하나 이상의 CSI 자원(즉, 하나 이상의 CMR 및/또는 하나 이상의 IMR)에 기반하여 CSI가 계산된다. 그리고, 기지국은 CSI 보고와 관련된 설정 정보에 기반하여(및 DCI에 의한 트리거/활성화에 따라) CSI를 UE로부터 수신할 수 있다. 예를 들어, CSI 보고와 관련된 설정 정보에 의해 주기적인 CSI 보고, 반-지속적 CSI 보고, 비주기적 CSI 보고와 같은 CSI 보고 타입이 설정될 수 있으며, CSI에 어떠한 정보(예를 들어, CRI, CQI, PMI, RI, LI 등)가 보고되어야 하는 설정될 수 있으며, 또한 주기적인 CSI 보고인 경우, 주기(periodicity)와 슬롯 오프셋(slot offset) 등도 설정될 수 있다.
상술한 실시예 1 내지 3에 따라, CSI는 CSI 참조 자원에 기반하여 결정되는 하나 이상의 CSI 자원(즉, 하나 이상의 CMR 및/또는 하나 이상의 IMR)에 기반하여 채널 측정 및/또는 간섭 측정을 도출/수행함으로써 계산/획득될 수 있다.
여기서, 상술한 실시예 1에 따라, CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정될 수 있다. 이를 위해, 예를 들어, 상기 CSI 참조 자원은 상기 CSI가 보고되는 상향링크 슬롯 n'보다 늦은 슬롯 n-nCSI_ref에 기반하여 결정될 수 있으며, 상기 nCSI_ref는 상기 CSI 참조 자원이 유효한(valid) 하향링크 슬롯에 해당하도록 변수(M)보다 크거나 같은 최소값으로 결정될 수 있다.
여기서, 상기 설정 정보(예를 들어, CSI 보고와 관련된 설정 정보) 또는 상기 CSI의 보고를 트리거하는 하향링크 제어 정보(DCI: downlink control information)에 의해 상기 변수(M)의 값이 제공될 수 있다. 여기서, UE는 상기 변수(M)의 후보들과 상기 변수(M)의 후보들에 따른 각각의 슬롯에 대한 채널 예측 정확도(즉, UE는 변수(M)을 적용하여 결정된 CSI reference resource를 가정하여 채널 예측 정확도를 계산)를 기지국에게 전송/보고할 수 있다. 이 경우, 기지국은 이에 기반하여 변수(M)을 결정하고 UE에게 제공할 수도 있다.
또한, 기지국은 UE에 의해 결정된 상기 변수(M)와 상기 변수(M)에 따른 슬롯에 대한 채널 예측 정확도를 UE로부터 수신할 수 있다. 예를 들어, 상기 변수(M)과 상기 변수(M)에 따른 슬롯에 대한 채널 예측 정확도는 CSI와 함께(또는 CSI에 포함시켜) UE로부터 수신될 수 있다.
또한, 채널 예측 정확도가 기지국에 의해 설정된 threshold(또는 미리 결정/정의된 threshold)를 초과하는 슬롯에 대한 변수(M)를 UE로부터 수신할 수 있다. 예를 들어, 상기 변수(M)는 CSI와 함께(또는 CSI에 포함시켜) UE로부터 수신될 수 있다.
또한, 도 21에서는 도시되지 않았지만, 기지국은 UE로부터 CSI를 수신하기 이전에, 특정 변수(M)에 따른 슬롯에 대한 채널 예측 정확도를 특정 레벨 이상으로 달성하기 위해 필요한 측정 윈도우(measurement window)에 대한 정보를 UE로부터 수신할 수 있다. 여기서, 측정 윈도우(measurement window)에 대한 정보는 슬롯의 개수, CMR 및/또는 IMR의 개수를 포함할 수 있다.
또한, 상기 CSI는 N개의(N은 자연수) 변수(M)에 따른 N개의 CSI 참조 자원의 각각에 대한 N개의 CSI를 포함할 수 있다. 예를 들어, 기지국에게 최종 보고되는 CSI는 제1 변수(M1)를 적용하여 결정된 제1 CSI 참조 자원에 대한 제1 CSI와 제2 변수(M2)를 적용하여 결정된 제2 CSI 참조 자원에 대한 제2 CSI를 모두 포함할 수 있다. 이 경우에도, CSI는 상기 N개의 변수(M)들을 포함할 수도 있다.
또한, 상기 CSI는 해당 CSI가 유효한 시간에 대한 정보를 포함할 수 있다.
또한, 상술한 실시예 2에 따라, 상기 CSI를 계산하기 위해 상기 CSI가 보고되는 상향링크 슬롯 이전 또는 상기 CSI가 보고되는 상향링크 슬롯으로부터 오프셋(offset) 이전의 상기 하나 이상의 CMR 및/또는 상기 하나 이상의 IMR에 기반하여 채널 측정 및/또는 간섭 측정이 도출/수행될 수 있다. 즉, 상기 CSI를 계산하기 위해 이용되는 상기 하나 이상의 CMR 및/또는 상기 하나 이상의 IMR은 상기 CSI가 보고되는 상향링크 슬롯 이전 또는 상기 CSI가 보고되는 상향링크 슬롯으로부터 오프셋(offset) 이전으로 한정될 수 있다.
또한, 상술한 실시예 3에 따라, 측정 제한(MR)은 복수의 레벨로 정의될 수 있다. 이 경우, 측정 제한의 레벨에 따라 상기 CSI를 계산하기 위해 이용되는 CMR 및/또는 IMR의 개수가 결정될 수 있다.
한편, 상술한 CSI를 계산하는 동작(즉, 채널을 예측하여 CSI를 계산하는 동작)(또는 채널 예측 정확도를 계산하는 동작)은 상기 UE(또는 UE에 탑재 또는 연결된 외부 기기)에 의해 수행될 수 있으며, 상기 CSI(또는 채널 예측 정확도)를 계산하기 위해 상술한 도 12의 AI/ML 동작을 위한 기능들 중 적어도 하나(특히, 모델 추론)는 상기 UE(또는 UE에 탑재 또는 연결된 외부 기기)에 의해 수행될 수 있다. 또한, 상기 UE(또는 UE에 탑재 또는 연결된 외부 기기)는 상술한 도 16의 절차(특히, 5. 모델 추론)를 통해 상기 매핑 패턴을 결정할 수도 있다.
본 개시가 적용될 수 있는 장치 일반
도 22는 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시하는 도면이다.
도 22를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예를 들어, LTE, NR)을 통해 무선 신호를 송수신할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예를 들어, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예를 들어, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예를 들어, 베이스밴드 신호)를 수신할 수 있고, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 개시의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 개시에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예를 들어, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
이상에서 설명된 실시예들은 본 개시의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시예를 구성하는 것도 가능하다. 본 개시의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 개시는 본 개시의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다.
본 개시의 범위는 다양한 실시예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다. 본 개시에서 설명하는 특징을 수행하는 프로세싱 시스템을 프로그래밍하기 위해 사용될 수 있는 명령은 저장 매체 또는 컴퓨터 판독가능 저장 매체 상에/내에 저장될 수 있고, 이러한 저장 매체를 포함하는 컴퓨터 프로그램 제품을 이용하여 본 개시에서 설명하는 특징이 구현될 수 있다. 저장 매체는 DRAM, SRAM, DDR RAM 또는 다른 랜덤 액세스 솔리드 스테이트 메모리 디바이스와 같은 고속 랜덤 액세스 메모리를 포함할 수 있지만, 이에 제한되지 않으며, 하나 이상의 자기 디스크 저장 디바이스, 광 디스크 저장 장치, 플래시 메모리 디바이스 또는 다른 비-휘발성 솔리드 스테이트 저장 디바이스와 같은 비-휘발성 메모리를 포함할 수 있다. 메모리는 선택적으로 프로세서(들)로부터 원격에 위치한 하나 이상의 저장 디바이스를 포함한다. 메모리 또는 대안적으로 메모리 내의 비-휘발성 메모리 디바이스(들)는 비-일시적 컴퓨터 판독가능 저장 매체를 포함한다. 본 개시에서 설명하는 특징은, 머신 판독가능 매체 중 임의의 하나에 저장되어 프로세싱 시스템의 하드웨어를 제어할 수 있고, 프로세싱 시스템이 본 개시의 실시예에 따른 결과를 활용하는 다른 메커니즘과 상호작용하도록 하는 소프트웨어 및/또는 펌웨어에 통합될 수 있다. 이러한 소프트웨어 또는 펌웨어는 애플리케이션 코드, 디바이스 드라이버, 운영 체제 및 실행 환경/컨테이너를 포함할 수 있지만 이에 제한되지 않는다.
여기서, 본 개시의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 개시의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 개시의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
본 개시에서 제안하는 방법은 3GPP LTE/LTE-A, 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A, 5G 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (16)

  1. 무선 통신 시스템에서 사용자 장치(UE: user equipment)에 의해 수행되는 방법에 있어서, 상기 방법은:
    기지국으로부터 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 수신하는 단계;
    CSI 참조 자원에 기반하여 결정되는 하나 이상의 채널 측정 자원(CMR: channel measurement resource) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)에 기반하여 채널 측정 및/또는 간섭 측정을 도출하여 상기 CSI를 계산하는 단계; 및
    상기 CSI를 상기 기지국에게 전송하는 단계를 포함하고,
    상기 CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정되는, 방법.
  2. 제1항에 있어서,
    상기 CSI 참조 자원은 상기 CSI가 보고되는 상향링크 슬롯 n'보다 늦은 하향링크 슬롯 n-nCSI_ref에 기반하여 결정되고,
    상기 nCSI_ref는 상기 CSI 참조 자원이 유효한(valid) 하향링크 슬롯에 해당하도록 변수(M)보다 크거나 같은 최소값으로 결정되는, 방법.
  3. 제2항에 있어서,
    상기 설정 정보 또는 상기 CSI의 보고를 트리거하는 하향링크 제어 정보(DCI: downlink control information)에 의해 상기 변수(M)의 값이 제공되는, 방법.
  4. 제3항에 있어서,
    상기 변수(M)의 후보들과 상기 변수(M)의 후보들에 따른 각각의 슬롯에 대한 채널 예측 정확도를 상기 기지국에게 전송하는 단계를 더 포함하는, 방법.
  5. 제2항에 있어서,
    상기 UE에 의해 결정된 상기 변수(M)와 상기 변수(M)에 따른 슬롯에 대한 채널 예측 정확도가 상기 CSI와 함께 전송되는, 방법.
  6. 제2항에 있어서,
    미리 결정된 또는 기지국에 의해 설정된 임계치(threshold)를 초과하는 채널 예측 정확도를 가지는 슬롯에 대한 변수(M)가 상기 CSI와 함께 전송되는, 방법.
  7. 제2항에 있어서,
    특정 변수(M)에 따른 슬롯에 대한 채널 예측 정확도를 특정 레벨 이상으로 달성하기 위해 필요한 측정 윈도우(measurement window)에 대한 정보를 상기 기지국에게 전송하는 단계를 더 포함하고,
    상기 측정 윈도우에 대한 정보는 슬롯의 개수, CMR 및/또는 IMR의 개수를 포함하는, 방법.
  8. 제2항에 있어서,
    상기 CSI는 N개의(N은 자연수) 변수(M)에 따른 N개의 CSI 참조 자원의 각각에 대한 N개의 CSI를 포함하는, 방법.
  9. 제1항에 있어서,
    상기 CSI가 유효한 시간에 대한 정보가 상기 CSI와 함께 전송되는, 방법.
  10. 제1항에 있어서,
    상기 CSI를 계산하기 위해 상기 CSI가 보고되는 상향링크 슬롯 이전 또는 상기 CSI가 보고되는 상향링크 슬롯으로부터 오프셋(offset) 이전의 상기 하나 이상의 CMR 및/또는 상기 하나 이상의 IMR에 기반하여 채널 측정 및/또는 간섭 측정이 도출되는, 방법.
  11. 제1항에 있어서,
    측정 제한(measurement restriction) 레벨에 따라 상기 CSI를 계산하기 위해 이용되는 CMR 및/또는 IMR의 개수가 결정되는, 방법.
  12. 무선 통신 시스템에서 동작하는 사용자 장치(UE: user equipment)에 있어서, 상기 UE는:
    무선 신호를 송수신하기 위한 하나 이상의 송수신부(transceiver); 및
    상기 하나 이상의 송수신부를 제어하는 하나 이상의 프로세서를 포함하고,
    상기 하나 이상의 프로세서는:
    기지국으로부터 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 수신하고;
    CSI 참조 자원에 기반하여 결정되는 하나 이상의 채널 측정 자원(CMR: channel measurement resource) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)에 기반하여 채널 측정 및/또는 간섭 측정을 도출하여 CSI를 계산하고; 및
    상기 CSI를 상기 기지국에게 전송하도록 설정되고,
    상기 CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정되는, UE.
  13. 하나 이상의 명령을 저장하는 하나 이상의 비-일시적(non-transitory) 컴퓨터 판독가능 매체로서,
    상기 하나 이상의 명령은 하나 이상의 프로세서에 의해서 실행되어, 사용자 장치(UE: user equipment)가:
    기지국으로부터 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 수신하고;
    CSI 참조 자원에 기반하여 결정되는 하나 이상의 채널 측정 자원(CMR: channel measurement resource) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)에 기반하여 채널 측정 및/또는 간섭 측정을 도출하여 CSI를 계산하고; 및
    상기 CSI를 상기 기지국에게 전송하도록 제어하고,
    상기 CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정되는, 컴퓨터 판독가능 매체.
  14. 무선 통신 시스템에서 사용자 장치(UE: user equipment)를 제어하도록 설정되는 프로세싱 장치에 있어서, 상기 프로세싱 장치는:
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서에 동작 가능하게 연결되고, 상기 하나 이상의 프로세서에 의해 실행됨에 기반하여, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 컴퓨터 메모리를 포함하며,
    상기 동작들은:
    기지국으로부터 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 수신하는 단계;
    CSI 참조 자원에 기반하여 결정되는 하나 이상의 채널 측정 자원(CMR: channel measurement resource) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)에 기반하여 채널 측정 및/또는 간섭 측정을 도출하여 CSI를 계산하는 단계; 및
    상기 CSI를 상기 기지국에게 전송하는 단계를 포함하고,
    상기 CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정되는, 프로세싱 장치.
  15. 무선 통신 시스템에서 기지국에 의해 수행되는 방법에 있어서, 상기 방법은:
    사용자 장치(UE: user equipment)에게 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 전송하는 단계; 및
    상기 UE로부터 CSI를 수신하는 단계를 포함하고,
    상기 CSI는 CSI 참조 자원에 기반하여 결정되는 하나 이상의 채널 측정 자원(CMR: channel measurement resource) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)에 기반하여 채널 측정 및/또는 간섭 측정이 도출되어 계산되고,
    상기 CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정되는, 방법.
  16. 무선 통신 시스템에서 동작하는 기지국에 있어서, 상기 기지국은:
    무선 신호를 송수신하기 위한 하나 이상의 송수신부(transceiver); 및
    상기 하나 이상의 송수신부를 제어하는 하나 이상의 프로세서를 포함하고,
    상기 하나 이상의 프로세서는:
    사용자 장치(UE: user equipment)에게 채널 상태 정보(CSI: channel state information)와 관련된 설정 정보를 전송하고; 및
    상기 UE로부터 CSI를 수신하도록 설정되고,
    상기 CSI는 CSI 참조 자원에 기반하여 결정되는 하나 이상의 채널 측정 자원(CMR: channel measurement resource) 및/또는 하나 이상의 간섭 측정 자원(IMR: interference measurement resource)에 기반하여 채널 측정 및/또는 간섭 측정이 도출되어 계산되고,
    상기 CSI 참조 자원은 시간 도메인에서 상기 CSI가 보고되는 슬롯 보다 늦은 슬롯으로 결정되는, 기지국.
PCT/KR2023/005650 2022-04-27 2023-04-26 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치 WO2023211134A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0052403 2022-04-27
KR20220052403 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023211134A1 true WO2023211134A1 (ko) 2023-11-02

Family

ID=88519129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005650 WO2023211134A1 (ko) 2022-04-27 2023-04-26 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2023211134A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170034727A1 (en) * 2014-03-21 2017-02-02 Zte Corporation Method and Apparatus for Channel State Information Measurement
US20210050976A1 (en) * 2019-08-13 2021-02-18 Samsung Electronics Co., Ltd. Method and apparatus for reporting channel state information in wireless communication systems
US20210218453A1 (en) * 2018-09-30 2021-07-15 Vivo Mobile Communication Co.,Ltd. Method for determining occupancy time of channel state information csi processing unit, and terminal device
WO2021159433A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Correlation of multiple channel state information reports for multi-layer communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170034727A1 (en) * 2014-03-21 2017-02-02 Zte Corporation Method and Apparatus for Channel State Information Measurement
US20210218453A1 (en) * 2018-09-30 2021-07-15 Vivo Mobile Communication Co.,Ltd. Method for determining occupancy time of channel state information csi processing unit, and terminal device
US20210050976A1 (en) * 2019-08-13 2021-02-18 Samsung Electronics Co., Ltd. Method and apparatus for reporting channel state information in wireless communication systems
WO2021159433A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Correlation of multiple channel state information reports for multi-layer communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM (MODERATOR): "New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface", 3GPP DRAFT; RP-213599, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20211206 - 20211217, 11 December 2021 (2021-12-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052097681 *

Similar Documents

Publication Publication Date Title
WO2021162517A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2020166818A1 (ko) 무선 통신 시스템에서, 사용자 장치에 의하여, srs를 송신하는 방법 및 장치
WO2019235906A1 (ko) 무선 통신 시스템에서 참조 신호 패턴을 적응적으로 설정하는 방법 및 이를 위한 장치
WO2021162522A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2020027615A1 (en) Method and communication device for performing measurement
WO2016021880A1 (ko) 무선 통신 시스템에서 comp 동작을 위한 시그널링 방법 및 이를 위한 장치
WO2020091496A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2022025519A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2021261877A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2022031117A1 (ko) 무선 통신 시스템에서 상향링크 신호 송수신 방법 및 장치
WO2022169181A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2021235572A1 (ko) 온-디바이스 학습 기반 기계 학습 네트워크를 이용한 무선 통신 방법
WO2023287086A1 (ko) 무선 통신 시스템에서 빔 정보를 송수신하는 방법 및 이를 위한 장치
WO2023211134A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2022197081A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2024071817A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2023191431A1 (ko) 무선 통신 시스템에서 개선된 코드북-기반 채널 상태 정보 송신 또는 수신 방법 및 장치
WO2023243958A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2023211145A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023211135A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2022071763A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2023163474A1 (ko) 무선 통신 시스템에서 양자화 기반 채널 상태 정보 송신 또는 수신 방법 및 장치
WO2023287095A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
WO2022265141A1 (ko) 무선 통신 시스템에서 빔 관리를 수행하는 방법 및 이를 위한 장치
WO2023080658A1 (ko) 무선 통신 시스템에서 물리 채널 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796777

Country of ref document: EP

Kind code of ref document: A1