WO2023211054A1 - 이동통신 시스템에서 idc 문제를 보고하는 방법 및 장치 - Google Patents

이동통신 시스템에서 idc 문제를 보고하는 방법 및 장치 Download PDF

Info

Publication number
WO2023211054A1
WO2023211054A1 PCT/KR2023/005361 KR2023005361W WO2023211054A1 WO 2023211054 A1 WO2023211054 A1 WO 2023211054A1 KR 2023005361 W KR2023005361 W KR 2023005361W WO 2023211054 A1 WO2023211054 A1 WO 2023211054A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
idc
cell group
autonomous denial
Prior art date
Application number
PCT/KR2023/005361
Other languages
English (en)
French (fr)
Inventor
김상범
에기월아닐
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2023211054A1 publication Critical patent/WO2023211054A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This disclosure relates to the operation of terminals and base stations in mobile communication systems. More specifically, the present disclosure relates to a method for reporting In-Device Coexistence (IDC) problems in a communication system and a device capable of doing so.
  • IDC In-Device Coexistence
  • 5G mobile communication technology defines a wide frequency band to enable fast transmission speeds and new services, and includes sub-6 GHz ('Sub 6GHz') bands such as 3.5 gigahertz (3.5 GHz) as well as millimeter wave (mm) bands such as 28 GHz and 39 GHz. It is also possible to implement it in the ultra-high frequency band ('Above 6GHz') called Wave.
  • 'Sub 6GHz' sub-6 GHz
  • mm millimeter wave
  • Wave ultra-high frequency band
  • 6G mobile communication technology which is called the system of Beyond 5G
  • Terra is working to achieve a transmission speed that is 50 times faster than 5G mobile communication technology and an ultra-low delay time that is reduced to one-tenth. Implementation in Terahertz bands (e.g., 95 GHz to 3 THz) is being considered.
  • ultra-wideband services enhanced Mobile BroadBand, eMBB
  • ultra-reliable low-latency communications URLLC
  • massive machine-type communications mMTC
  • numerology support multiple subcarrier interval operation, etc.
  • dynamic operation of slot format initial access technology to support multi-beam transmission and broadband
  • definition and operation of BWP Band-Width Part
  • New channel coding methods such as LDPC (Low Density Parity Check) codes for data transmission and Polar Code for highly reliable transmission of control information
  • L2 pre-processing L2 pre-processing
  • dedicated services specialized for specific services. Standardization of network slicing, etc., which provides networks, has been carried out.
  • V2X Vehicle-to-Everything
  • NR-U New Radio Unlicensed
  • UE Power Saving NR terminal low power consumption technology
  • NTN Non-Terrestrial Network
  • IAB provides a node for expanding the network service area by integrating intelligent factories (Industrial Internet of Things, IIoT) to support new services through linkage and convergence with other industries, and wireless backhaul links and access links.
  • Intelligent factories Intelligent Internet of Things, IIoT
  • Mobility Enhancement including Conditional Handover and DAPS (Dual Active Protocol Stack) handover
  • 2-step Random Access (2-step RACH for simplification of random access procedures)
  • Standardization in the field of wireless interface architecture/protocol for technologies such as NR is also in progress
  • 5G baseline for incorporating Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technology Standardization in the field of system architecture/services for architecture (e.g., Service based Architecture, Service based Interface) and Mobile Edge Computing (MEC), which provides services based on the location of the terminal, is also in progress.
  • NFV Network Functions Virtualization
  • SDN Software-Defined Networking
  • FD-MIMO full dimensional MIMO
  • array antennas to ensure coverage in the terahertz band of 6G mobile communication technology.
  • multi-antenna transmission technology such as Large Scale Antenna, metamaterial-based lens and antenna to improve coverage of terahertz band signals, high-dimensional spatial multiplexing technology using OAM (Orbital Angular Momentum), RIS ( In addition to Reconfigurable Intelligent Surface technology, Full Duplex technology, satellite, and AI (Artificial Intelligence) to improve the frequency efficiency of 6G mobile communication technology and system network are utilized from the design stage and end-to-end.
  • a terminal of a communication system to which the present disclosure can be applied has various communication modules. These modules can transmit and receive necessary data through individually connected antennas.
  • the frequency bands used by various communication systems are different, but if adjacent bands are used, interference between communication modules may occur.
  • This disclosure relates to a method for a terminal in a wireless communication system to solve the in-device coexistence problem.
  • the object is to provide a method and device for controlling the transmission power of each communication module in order to control interference that may occur between communication modules in a wireless communication system.
  • the present disclosure is intended to solve the above problems, and in a method performed by a terminal connected to a plurality of cell groups in a wireless communication system, from a base station, in-device coexistence ((Cell Group) for each of the plurality of cell groups) Receiving setting information related to Autonomous Denial to solve an In-Device Coexistence (IDC) problem; determining whether an IDC problem has occurred for each of the plurality of cell groups; And when it is determined that the IDC problem occurred in a specific cell group among the plurality of cell groups, the uplink in the specific cell group is based on Autonomous Denial-related setting information set for the specific cell group in which the IDC problem occurred. Characterized by including the step of stopping transmission.
  • IDC In-Device Coexistence
  • the present disclosure is intended to solve the above problems, in a method performed by a base station in a wireless communication system, in a method performed by a base station in a wireless communication system, automatic negation of the first cell group (Cell Group) Obtaining Autonomous Denial-related setting information to solve an In-Device Coexistence (IDC) problem, including Autonomous Denial-related setting information and Autonomous Denial-related setting information of a second cell group; Transmitting the Autonomous Denial-related setting information to a terminal; And when an IDC problem within the terminal occurs in relation to a specific cell group of the first cell group or the second cell group, upward mobility is provided based on Autonomous Denial-related setting information corresponding to the specific cell group in which the IDC problem occurred. and not receiving the link transmission.
  • IDC In-Device Coexistence
  • the present disclosure is intended to solve the above problems, comprising: a terminal connected to a plurality of cell groups in a wireless communication system; a transceiver for transmitting and receiving signals; and a control unit, wherein the control unit receives automatic denial-related setting information from a base station to solve an in-device coexistence (IDC) problem for each of the plurality of cell groups.
  • IDC in-device coexistence
  • the present disclosure is intended to solve the above problem, and is provided by a base station in a wireless communication system.
  • a transceiver unit for transmitting and receiving signals; and a control unit, wherein the control unit includes setting information related to Autonomous Denial of a first cell group and setting information related to Autonomous Denial of a second cell group.
  • IDC acquires Autonomous Denial-related configuration information to solve the problem, transmits the Autonomous Denial-related configuration information to the terminal, and relates to a specific cell group among the first cell group or the second cell group.
  • the method includes the step of not receiving uplink transmission based on Autonomous Denial-related setting information corresponding to the specific cell group in which the IDC problem occurred.
  • a terminal of a wireless communication system can more efficiently solve the in-device coexistence problem.
  • one or more BWPs or PRBs can be reported at one NR frequency.
  • the terminal may report the terminal's preferred DRX pattern information to the base station for secondary DRX.
  • the operation of recording measurement information affected by the IDC problem is stopped and an indicator indicating that there are excluded measurement results or Frequency/BWP/PRB information excluded from the log can be included in the log.
  • FIG. 1A is a diagram illustrating the structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • FIG. 1B is a flowchart of a process in which a terminal reports predetermined information reporting preferences to a base station in a mobile communication system according to an embodiment of the present disclosure.
  • FIG. 1C is a diagram for explaining In-Device Coexistence (IDC) according to an embodiment of the present disclosure.
  • FIG. 1D is a diagram illustrating a frequency band adjacent to the Industrial Scientific and Medical (ISM) band among the frequencies used for mobile communication in 3GPP according to an embodiment of the present disclosure.
  • ISM Industrial Scientific and Medical
  • FIG. 1E is a flowchart of a process for reporting predetermined IDC information to a base station in a mobile communication system according to an embodiment of the present disclosure.
  • Figure 1F is a flowchart of terminal operations according to an embodiment of the present disclosure.
  • 1G is a flowchart of base station operation according to an embodiment of the present disclosure.
  • Figure 1h is a block diagram showing the internal structure of a terminal according to an embodiment of the present disclosure.
  • Figure 1i is a block diagram showing the structure of a base station according to an embodiment of the present disclosure.
  • each block of the processing flow diagram diagrams and combinations of the flow diagram diagrams can be performed by computer program instructions.
  • These computer program instructions can be mounted on a processor of a general-purpose computer, special-purpose computer, or other programmable data processing equipment, so that the instructions performed through the processor of the computer or other programmable data processing equipment are described in the flow chart block(s). It creates the means to perform functions.
  • These computer program instructions may also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular manner, so that the computer-usable or computer-readable memory It is also possible to produce manufactured items containing instruction means that perform the functions described in the flowchart block(s).
  • Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operational steps are performed on the computer or other programmable data processing equipment to create a process that is executed by the computer, thereby generating a process that is executed by the computer or other programmable data processing equipment. Instructions that perform processing equipment may also provide steps for executing the functions described in the flow diagram block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s).
  • the term ' ⁇ unit' used in this embodiment refers to software or hardware components such as FPGA or ASIC, and the ' ⁇ unit' performs certain roles.
  • ' ⁇ part' is not limited to software or hardware.
  • the ' ⁇ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card.
  • FIG. 1A is a diagram illustrating the structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • the wireless access network of the next-generation mobile communication system includes a next-generation base station (New Radio Node B, hereinafter referred to as gNB) (1a-10) and an access and mobility management function (Access and Mobility Management). It consists of Mobility Management Function (AMF) (1a-05, New Radio Core Network).
  • the user terminal (New Radio User Equipment, hereinafter referred to as NR UE or terminal) (1a-15) connects to the external network through gNB (1a-10) and AMF (1a-05).
  • gNB corresponds to eNB (Evolved Node B) of the existing LTE system.
  • gNB is connected to the NR UE through a wireless channel and can provide superior services than the existing Node B (1a-20).
  • gNB gNB
  • 1a-10 gNB
  • One gNB typically controls multiple cells.
  • it can have more than the existing maximum bandwidth, and beamforming technology can be additionally applied using Orthogonal Frequency Division Multiplexing (OFDM) as a wireless access technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • AMC Adaptive Modulation & Coding
  • AMF (1a-05) performs functions such as mobility support, bearer setup, and QoS setup.
  • AMF is a device that handles various control functions as well as mobility management functions for terminals and is connected to multiple base stations. Additionally, the next-generation mobile communication system can be linked to the existing LTE system, and AMF is connected to the MME (1a-25) through a network interface. The MME is connected to the existing base station, eNB (1a-30).
  • a terminal that supports LTE-NR Dual Connectivity (EN-DC) can transmit and receive data while maintaining connectivity to not only the gNB but also the eNB (1a-35).
  • EN-DC LTE-NR Dual Connectivity
  • FIG. 1B is a flowchart of a process in which a terminal reports predetermined information reporting preferences to a base station in a mobile communication system according to an embodiment of the present disclosure.
  • the terminal can report its preferences compared to the current settings to the base station. For example, it may be a preferred delay budget, a preference for reducing power consumption (UE power preference), a preference for reducing heat generation (overheating assistance), an In-Device Coexistence (IDC) problem report, and a preferred solution (IDC assistance).
  • UE power preference a preference for reducing power consumption
  • overheating assistance a preference for reducing heat generation
  • IDC In-Device Coexistence
  • IDC assistance a preferred solution
  • the base station that has received the above preferences can trigger a reset in response.
  • a base station that has been reported to prefer reduced power consumption, reduced delay, and reduced heat generation can be reset by reducing or increasing the Discontinuous Reception (DRX) period.
  • DRX Discontinuous Reception
  • the terminal can report its preferred delay budget and heat reduction preference to the base station. Additionally, the terminal can report preferred reset items in more detail to reduce heat generation or power consumption. At this time, the maximum number of Secondary Cells (SCell), aggregated bandwidth (BW), and maximum number of Multiple Input Multiple Output (MIMO) layers preferred by the terminal can be indicated.
  • SCell Secondary Cells
  • BW aggregated bandwidth
  • MIMO Multiple Input Multiple Output
  • step 1b-15 the terminal (1b-05) reports to the base station (1b-10) that it has the ability to report each of the above items ( 1b-15). (UE capabilities)
  • step 1b-20 the base station (1b-10) can report each preference to the base station (1b-10) at the time the terminal (1b-05) needs it, based on the capability information.
  • step 1b-25 the terminal (1b-05) reports its preferences to the base station (1b-10) at the necessary time using the UEAssistanceInformation message (1b-25).
  • UEAssistanceInformation (UEAssistanceInformation)
  • FIG. 1C is a diagram for explaining In-Device Coexistence (IDC) technology according to an embodiment of the present disclosure.
  • IDC In-Device Coexistence
  • In-Device Coexistence (IDC) technology is a technology that minimizes interference between multiple communication modules within a device.
  • NR New Radio
  • GSM Global Positioning System
  • Bluetooth Bluetooth
  • wireless LAN wireless local area network
  • other short-range communication modules (1c-10). These modules transmit and receive necessary data through individually connected antennas (1c-15, 1c-20, 1c-25).
  • each communication system The frequency bands used by each communication system are different, but if adjacent bands are used, interference between communication modules may occur. This is because, ideally, signals transmitted and received between bands cannot be separated. Furthermore, since each communication module and the antenna connected to it are contained within one terminal device, they are located very close together. Therefore, the intensity of interference between them can be large. Therefore, in order to alleviate this interference, it is necessary to control transmission power between communication modules.
  • the transmission signal of the NR communication module (1c-00) may cause interference to the short-range communication module.
  • the NR uplink signal may cause interference to other NR frequencies or frequencies of other mobile communication systems.
  • the amount of interference can be controlled by limiting the maximum uplink transmission power of the NR communication module.
  • the operation of the NR communication module can be temporarily stopped to eliminate the amount of interference power affecting the short-range communication module.
  • the short-range communication module (1c-10) may cause interference to the received signal of the NR communication module (1c-00).
  • FIG. 1D is a diagram illustrating a frequency band adjacent to the Industrial Scientific and Medical (ISM) band among the frequencies used for mobile communication in 3GPP according to an embodiment of the present disclosure.
  • ISM Industrial Scientific and Medical
  • the terminal uses the inter-communication between the NR frequency information (affectedCarrierFreqList field) affected by the In-Device Coexistence (IDC) problem and the uplink NR signal set to CA (Carrier Aggregation).
  • NR frequency information affectedCarrierFreqCombList field
  • IDC In-Device Coexistence
  • CA Carrier Aggregation
  • NR frequency information experiencing IDC problems due to modulation distortion and harmonics or a UEAssistanceInformation message containing information on heterogeneous communication modules such as Global Positioning System (GPS), Bluetooth (BT), and WLAN can be reported to the base station.
  • GPS Global Positioning System
  • BT Bluetooth
  • WLAN Wireless Local Area Network
  • the present invention proposes a method for a terminal to report improved IDC-related information and preferred solutions. especially,
  • BWP Bandwidth Part
  • PRB Physical Resource Block
  • TDM time division multiplexing
  • the autonomous denial function refers to a technology in which the terminal itself temporarily suspends uplink transmission that is expected to cause IDC problems for a predetermined period of time.
  • FIG. 1E is a flowchart of a process for reporting certain In-Device Coexistence (IDC) information to a base station in a mobile communication system according to an embodiment of the present disclosure.
  • IDC In-Device Coexistence
  • step 1e-15 the terminal (UE, 1e-05) reports to the base station (gNB, 1e-10) that it has the ability to report the predetermined In-Device Coexistence (IDC) information (1e -15). At this time, an indicator indicating the capability is reported to the base station. The ability to report IDC information can be specified in detail and reported to the base station. (UE capabilities (IndeviceCoexInd))
  • the terminal can report its preferred frequency division multiplexing (FDM) or time division multiplexing (TDM) based solution, CG (Cell Group) or Discontinuous Reception (DRX) Whether the terminal can report its preferred DRX setting information for each group, whether the frequency range affected or affected by the IDC problem can be reported in Bandiwidth Part (BWP) units, and the frequency range affected or affected by the IDC problem This may include whether it can be reported in Physical Resource Block (PRB) units and whether the autonomous denial function is supported.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • DRX Discontinuous Reception
  • Each terminal capability information is considered optional with signal or optional without signal.
  • the terminal 1e-05 of the base station 1e-10 can be set to report predetermined information to the base station 1e-10.
  • the base station (1e-10) allows the terminal (1e-05) to report the predetermined information to itself through a predetermined IE idc-AssistanceConfig. This is set through a predetermined indicator.
  • the terminal (1e-05) When the IE is set, the terminal (1e-05) receives New Radio (NR) frequency information experiencing IDC problems, or when uplink carrier aggregation is set, IDC problems caused by Inter-Modulation Distortion/harmonics from the NR frequency. This means that it can be reported that it occurred on another NR frequency or another communication module.
  • NR New Radio
  • the IE includes a list of reportable frequencies among NR frequencies experiencing the IDC problem.
  • the list is stored in CandidateServingFreqListNR IE, and each frequency belonging to the list is indicated by ARFCN-ValueNR IE indicating one center frequency. Even if you experience IDC problems, frequencies that do not belong to the above list do not need to be reported. If the IE is not provided, the terminal reports frequency information experiencing IDC problems at the NR frequency it supports to the base station.
  • This disclosure additionally proposes the following setting information to be included in the idc-AssistanceConfig.
  • a configuration indicator that indicates whether the terminal can report preferred DRX configuration information for each CG (Cell Group) or DRX group,
  • the terminal can report information or perform a function corresponding to the indicator.
  • Setting information required to perform the autonomous denial function is the number of uplink subframes, number of uplink slots, number of uplink symbols, or uplink transmission time section information that the terminal can continuously autonomously deny. (e.g., in ms) and time interval information (autonomous denial validity) in which the autonomous denial operation can be applied.
  • an uplink subframe As a unit indicating the autonomous denial validity, an uplink subframe, an uplink slot, an uplink symbol, or an uplink transmission absolute time (e.g., in ms) may be used.
  • an uplink transmission absolute time e.g., in ms
  • the terminal may temporarily suspend certain uplink transmissions up to the set maximum time for continuous autonomous denial in order to eliminate or alleviate the IDC problem.
  • the base station may provide the autonomous denial setting information by cell group (or MAC entity), frequency, cell, BWP, PRB, or DRX group.
  • the base station can selectively allow the autonomous denial function to the terminal. For example, if a service sensitive to transmission delay is provided in a specific cell, the base station may not set the autonomous denial function for the cell.
  • the terminal (1e-05) can temporarily suspend uplink transmission of the cell, BWP, or PRB belonging to the above case according to the corresponding configuration information. Therefore, depending on each case, indicator information for indicating this may be provided together as follows.
  • Per cell group MCG and/or SCG index, applicable for all MR-DC types (even for EN-DC)
  • BWP/PRB For BWP, BWP id or locationAndBandwidth field; for PRB, startPRB and nroPRBs field (detailed method of indicating BWP or PRB will be described later)
  • Per DRX group default and/or secondary (per CG) index
  • step 1e-25 if the terminal (1e-05) experiences an IDC problem (identifying IDC problem), in step 1e-30, IDC-related information is stored in the idc-Assistance field, and the IE sends one RRC message It is contained in the UEAssistanceInformation message and delivered to the base station (1e-10) (1e-30).
  • Idc-Assistance Idc-Assistance
  • the affectedCarrierFreqList field which is used to indicate frequency information experiencing IDC problems.
  • the other is the affectedCarrierFreqCombList field, which is used to indicate other NR frequencies or other communication modules experiencing IDC problems caused by Inter-Modulation Distortion/harmonics of NR frequencies when uplink Carrier Aggregation is set.
  • the NR frequency is indicated as ARFCN-ValueNR.
  • the following information is proposed as new IDC-related information that the terminal can report to the base station.
  • IDC-related information that the terminal can report to the base station according to an embodiment of the present disclosure will be described in detail.
  • the terminal can report whether the IDC problem that occurred in the inter-modulation distortion/harmonics of the NR or Long Term Evolution (LTE) frequency set in MR-DC occurred in any NR or LTE frequency, GPS, BT, WLAN, or other communication modules. You can. More specifically, the type of system experiencing the IDC problem (victim system type, e.g. GPS, BT, WLAN, etc.), the direction of the IDC interference (interference direction), a list of NR frequencies affected by the IDC problem, and LTE frequency list information may be reported to the base station. At this time, the NR frequency and LTE frequency are indicated as ARFCN-ValueNR and ARFCN-ValueEUTRA, respectively.
  • the information is stored in the new MRDC-AssistanceInfo IE, and the new IE is stored in the UEAssistanceInformation message and reported from the terminal to the base station.
  • the terminal can report the frequency range experiencing the IDC problem to the base station in BWP or PRB units.
  • a UE can report one or more BWPs or PRBs experiencing IDC problems in one NR frequency. For example, new Affected BWP list or affected BWP combination list, Affected PRB list or affected PRB combination list information stored in the UEAssistanceInformation message may be introduced.
  • the Affected BWP list or Affected PRB list is used to report information on one or more BWPs or PRBs experiencing IDC problems.
  • the Affected BWP list or Affected PRB list may also include information on the direction of IDC interference.
  • the affected BWP combination list or affected PRB combination list is used to indicate which BWP or PRB the inter-modulation distortion/harmonics of the NR frequency in CA or MR-DC causes IDC problems.
  • a method of using a BWP ID as a method of indicating a BWP, a method of utilizing the locationAndBandwidth field, and a method of introducing predetermined bitmap information are proposed.
  • the base station can set multiple BWPs for each serving cell. To distinguish each BWP, the base station sets a BWP-id for each BWP. The terminal can use the preset BWP-id to indicate the BWP experiencing the IDC problem. However, since the BWP ID is valid only within one cell (i.e., an ID recycled for each cell), the BWP ID and the ID of the cell corresponding to the BWP (e.g., serving cell index, CGI or PCI information) or Cell frequency information (e.g., ARFCN-ValueNR) may also be reported.
  • the BWP ID and the ID of the cell corresponding to the BWP e.g., serving cell index, CGI or PCI information
  • Cell frequency information e.g., ARFCN-ValueNR
  • the location and bandwidth of the frequency domain of BWP are indicated, and the locationAndBandwidth field is used.
  • the terminal can use the field to indicate a BWP experiencing an IDC problem.
  • a bitmap consisting of bits corresponding to each BWP set in one carrier (or cell) is introduced. If one BWP is experiencing an IDC problem, the status can be indicated by setting a value of '0' or '1' in the bit corresponding to the BWP.
  • the bitmap may also be reported with the corresponding cell ID (e.g., serving cell index, CGI or PCI information) or cell frequency information (e.g., ARFCN-ValueNR).
  • a method of using a PRB ID as a method of indicating a PRB, a method of using the startPRB field and the nrofPRBs field, and a method of introducing predetermined bitmap information are proposed.
  • Option 1 How to utilize the set PRB ID to distinguish PRB within one carrier
  • the base station can set a PRB ID to indicate the location of one PRB (Physical Resource Block) within one carrier.
  • the terminal can use the preset BWP-id to indicate the BWP experiencing the IDC problem.
  • the BWP ID is valid only within one cell (i.e., an ID recycled for each cell)
  • the BWP ID and the ID of the cell corresponding to the BWP e.g., serving cell index, CGI or PCI information
  • Cell frequency information e.g., ARFCN-ValueNR
  • the startPRB and nrofPRBs fields can be used to indicate one or more consecutive PRBs that are affected by an IDC problem.
  • the startPRB field is index information indicating one PRB
  • the nrofPRBs field is a value indicating the number of PRBs.
  • the '0' index value of the startPRB field may indicate the first PRB of one BWP or the first PRB of one carrier.
  • a bitmap consisting of bits corresponding to each PRB belonging to one carrier (or cell) or BWP is introduced. If one PRB is experiencing an IDC problem, the status can be indicated by setting a value of '0' or '1' in the bit corresponding to the PRB.
  • the first bit corresponds to the first PRB belonging to the carrier or BWP.
  • the bitmap may also be reported with the corresponding cell ID (e.g., serving cell index, CGI or PCI information), cell frequency information (e.g., ARFCN-ValueNR), and BWP information.
  • the methods for indicating the above BWP and PRB may be applied alone or in combination.
  • the terminal can report its preferred DRX pattern information to the base station to eliminate or alleviate the IDC problem.
  • the DRX pattern information consists of drx-cycleLength, drx-Offset, and drx-ActiveTime fields.
  • the field drx-cycleLength indicates the DRX cycle length value preferred by the terminal.
  • the field drx-Offset indicates the DRX start offset value preferred by the terminal.
  • the field drx-ActiveTime indicates the terminal's preferred active time value.
  • the drx-cycleLength and drx-ActiveTime values are set in absolute time (e.g., in ms units), and the field drx-Offset is set in subframe, slot, or symbol units. do.
  • DRX can be set for each MAC entity.
  • DC Direct Connectivity
  • a MAC entity exists in the MN and SN, so a terminal in the DC state can receive two DRX settings from each MAC entity.
  • the disclosed invention proposes providing a plurality of DRX pattern information preferred by the terminal.
  • the terminal can report different preferred DRX pattern information by cell group, DRX group, or FR (Frequency Range).
  • new indicators may be reported to the base station together to distinguish each pattern information.
  • Per cell group MCG and/or SCG index, applicable for all MR-DC types (even for EN-DC)
  • Per DRX group default and/or secondary (per CG) index
  • NR has been improved to allow secondary DRX to be set in one MAC entity. That is, the base station can set two types of DRX configuration information sets, default DRX and secondary DRX, to the terminal.
  • secondary DRX setting information can only include Drx-onDurationTimer and drx-InactivityTimer.
  • the remaining setting information, such as DRX cycle follows the default DRX setting information. This was to exclude complexity that may arise due to changes in the DRX cycle, etc.
  • the present disclosure is characterized in that the terminal can report its preferred DRX pattern information to the base station for secondary DRX. Since the drx-ActiveTime value in the DRX assistance info may affect Drx-onDurationTimer and drx-InactivityTimer in the Secondary DRX, the terminal may report only the drx-ActiveTime field as preferred pattern information for the secondary DRX. . However, if the terminal does not report preferred pattern information for the default DRX to the base station, all DRX assistance info may be included in the preferred pattern information for the secondary DRX.
  • the information is stored in the new drx-AssistanceInfo IE, and the new IE is stored in the UEAssistanceInformation message and reported from the terminal to the base station. Meanwhile, for the purpose of UE power saving, the UE can report its preferred DRX configuration information to the base station through the UEAssistanceInformation message (see below).
  • the following IE may be recycled as terminal preference pattern information to solve IDC problems.
  • the terminal can report its preferred TDM pattern information to the base station to eliminate or alleviate the IDC problem.
  • the TDM pattern information has a bit string format, and each bit may correspond to one subframe, slot, symbol, or predetermined unit time.
  • the pattern represents N subframes, slots, symbol length, or a predetermined unit time, starts from a predetermined point in time, and may be continuously repeated.
  • the predetermined formula may be as follows.
  • X may be a subframe or a slot depending on the applied formula
  • the offset1 and offset2 values may be set by the base station or predefined.
  • the above two formulas may be considered alone or together.
  • the terminal can report a plurality of the TDM pattern information to the base station.
  • it can be provided by cell group (or MAC entity), frequency, cell, BWP, PRB, or DRX group.
  • cell group or MAC entity
  • frequency cell
  • BWP BWP
  • PRB PRB
  • DRX group DRX group
  • Per cell group MCG and/or SCG index, applicable for all MR-DC types (even for EN-DC)
  • BWP/PRB For BWP, BWP id or locationAndBandwidth field; for PRB, startPRB and nroPRBs fields (detailed method of indicating BWP or PRB was described previously)
  • Per DRX group default and/or secondary (per CG) index
  • the terminal can report indicator information indicating that there is a problem with hardware sharing to the base station.
  • the terminal may also report the type of system that has problems with hardware sharing (e.g., NR, LTE, GPS, BT, WLAN%) or NR or LTE frequency information that causes problems with hardware sharing. there is.
  • step 1e-35 the base station 1e-10, which has received the information, analyzes the IDC problem experienced by the terminal 1e-05 and decides to reset to eliminate or alleviate it (1e-35) . (building new configuration based on the received Idc-Assistance field)
  • step 1e-40 the base station (1-e01) transmits reset information to the terminal (1e-05) using the RRCReconfiguration message (1e-40). (RRCReocnfiguration)
  • Logged MDT is a technology in which a terminal periodically records information necessary for network optimization and reports it to the base station. Previously, when an IDC problem occurred, the terminal stopped Logged MDT operation and included an indicator indicating that the log affected by the IDC problem was contaminated due to the IDC problem.
  • measurement information that experienced the IDC problem is excluded from the log, and an indicator indicating that there is a measurement result excluded due to the IDC problem may be included.
  • frequency information excluded from the log due to IDC problems may be included in the log.
  • the terminal reports its capability information to the base station, and the capability information includes an indicator indicating that the Logged MDT operation can be performed when an IDC problem occurs.
  • the base station can use the LoggedMeasurementConfiguration message to configure the terminal to perform a Logged MDT operation even when an IDC problem occurs.
  • the terminal When the terminal switches to RRC_IDLE or RRC_INACTIVE state, it performs Logged MDT operation according to the configuration information. At this time, if it recognizes that the IDC problem has occurred only for a specific frequency, BWP, or PRB, the terminal stops recording measurement information affected by the IDC problem. Instead, an indicator indicating that there are measurement results excluded due to an IDC problem or frequency/BWP/PRB information excluded from the log due to an IDC problem is included in the log.
  • the recorded information can be reported to the base station through the UE Information procedure (UEInformationRequest and UEInformationResponse messages) after the terminal switches to connected mode.
  • UEInformationRequest and UEInformationResponse messages UEInformationRequest and UEInformationResponse messages
  • Figure 1F is a flowchart of terminal operations according to an embodiment of the present disclosure.
  • step 1f-05 the terminal reports to the base station that it has the ability to report the predetermined IDC (In-Device Coexistence) information. (Reporting UE capabilities)
  • IDC In-Device Coexistence
  • the terminal receives an RRCReconfiguration message from the base station.
  • the message contains OtherConfig IE including idc-AssistanceConfig IE.
  • the IE idc-AssistanceConfig is used to configure that the terminal can report the predetermined information to itself. (Receiving OtherConfig IE)
  • step 1f-15 the terminal determines whether it is experiencing an IDC problem. (Evaluating If UE experiences IDC problem)
  • step 1f-20 the terminal transmits a UEAssistanceInformation message including the proposed information. (Transmitting UEAssistanceInformation including the IDC-Assistance IE)
  • 1G is a flowchart of base station operation according to an embodiment of the present disclosure.
  • the base station receives terminal capability information from the terminal. (Receiving UE capabilities)
  • step 1g-10 the base station transmits IE otherConfig including the idc-AssistanceConfig field to the terminal. (Transmitting IE OtherConfig)
  • the base station receives a UEAssistanceInformation message from the terminal.
  • the message may include an IDC-Assistance field. (Receiving UEAssistanceinformation)
  • step 1g-20 the base station configures setting parameters based on the received information. (Building configuration while identifying IDC problem experienced by UE)
  • step 1g-25 the base station stores the configuration information in an RRCReconfiguration message and transmits it to the terminal. (Transmitting RRCReconfiguration)
  • Figure 1h is a block diagram showing the internal structure of a terminal according to an embodiment of the present disclosure.
  • the terminal includes an RF (Radio Frequency) processing unit (1h-10), a baseband processing unit (1h-20), a storage unit (1h-30), and a control unit (1h-40).
  • RF Radio Frequency
  • the RF processing unit (1h-10) performs functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit 1h-10 up-converts the baseband signal provided from the baseband processing unit 1h-20 into an RF band signal and transmits it through an antenna, and the RF band signal received through the antenna Downconvert to a baseband signal.
  • the RF processing unit (1h-10) may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), etc. You can. In the drawing, only one antenna is shown, but the terminal may be equipped with multiple antennas.
  • the RF processing unit 1h-10 may include multiple RF chains. Furthermore, the RF processing unit 1h-10 can perform beamforming. For the beamforming, the RF processing unit 1h-10 can adjust the phase and size of each signal transmitted and received through a plurality of antennas or antenna elements. Additionally, the RF processing unit can perform MIMO and can receive multiple layers when performing a MIMO operation.
  • the baseband processing unit 1h-20 performs a conversion function between baseband signals and bit strings according to the physical layer standard of the system. For example, when transmitting data, the baseband processing unit 1h-20 generates complex symbols by encoding and modulating the transmission bit stream. Additionally, when receiving data, the baseband processing unit 1h-20 restores the received bit stream by demodulating and decoding the baseband signal provided from the RF processing unit 1h-10. For example, in the case of following the OFDM (orthogonal frequency division multiplexing) method, when transmitting data, the baseband processing unit (1h-20) generates complex symbols by encoding and modulating the transmission bit stream, and transmits the complex symbols to subcarriers.
  • OFDM orthogonal frequency division multiplexing
  • OFDM symbols are configured through IFFT (inverse fast Fourier transform) operation and CP (cyclic prefix) insertion.
  • the baseband processing unit (1h-20) divides the baseband signal provided from the RF processing unit (1h-10) into OFDM symbol units and divides the baseband signal into OFDM symbol units through fast Fourier transform (FFT) operation. After restoring the mapped signals, the received bit string is restored through demodulation and decoding.
  • FFT fast Fourier transform
  • the baseband processing unit 1h-20 and the RF processing unit 1h-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 1h-20 and the RF processing unit 1h-10 may be referred to as a transmitting unit, a receiving unit, a transceiving unit, or a communication unit. Furthermore, at least one of the baseband processing unit 1h-20 and the RF processing unit 1h-10 may include multiple communication modules to support multiple different wireless access technologies. Additionally, at least one of the baseband processing unit 1h-20 and the RF processing unit 1h-10 may include different communication modules to process signals in different frequency bands. For example, the different wireless access technologies may include wireless LAN (eg, IEEE 802.11), cellular network (eg, LTE), etc. Additionally, the different frequency bands may include a super high frequency (SHF) (e.g., 2.NRHz, NRhz) band and a millimeter wave (e.g., 60GHz) band.
  • SHF super high frequency
  • the storage unit 1h-30 stores data such as basic programs, application programs, and setting information for operation of the terminal.
  • the storage unit 1h-30 may store information related to a second access node that performs wireless communication using a second wireless access technology.
  • the storage unit 1h-30 provides stored data according to the request of the control unit 1h-40.
  • the control unit 1h-40 controls overall operations of the terminal. For example, the control unit 1h-40 transmits and receives signals through the baseband processing unit 1h-20 and the RF processing unit 1h-10. Additionally, the control unit 1h-40 writes and reads data into the storage unit 1h-40.
  • the control unit 1h-40 may include at least one processor.
  • the control unit 1h-40 may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs.
  • CP communication processor
  • AP application processor
  • Figure 1i is a block diagram showing the structure of a base station according to an embodiment of the present disclosure.
  • the base station includes an RF processing unit (1i-10), a baseband processing unit (1i-20), a backhaul communication unit (1i-30), a storage unit (1i-40), and a control unit (1i-50). It is composed including.
  • the RF processing unit 1i-10 performs functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit 1i-10 up-converts the baseband signal provided from the baseband processing unit 1i-20 into an RF band signal and transmits it through an antenna, and the RF band signal received through the antenna Downconvert to a baseband signal.
  • the RF processing unit 1i-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, etc. In the drawing, only one antenna is shown, but the first access node may be equipped with multiple antennas. Additionally, the RF processing unit 1i-10 may include multiple RF chains.
  • the RF processing unit 1i-10 can perform beamforming.
  • the RF processing unit 1i-10 can adjust the phase and size of each signal transmitted and received through a plurality of antennas or antenna elements.
  • the RF processing unit can perform downlink MIMO operation by transmitting one or more layers.
  • the baseband processing unit 1i-20 performs a conversion function between baseband signals and bit strings according to the physical layer standard of the first wireless access technology. For example, when transmitting data, the baseband processing unit 1i-20 generates complex symbols by encoding and modulating the transmission bit stream. Additionally, when receiving data, the baseband processing unit 1i-20 restores the received bit stream by demodulating and decoding the baseband signal provided from the RF processing unit 1i-10. For example, in the case of OFDM, when transmitting data, the baseband processing unit 1i-20 generates complex symbols by encoding and modulating the transmission bit stream, maps the complex symbols to subcarriers, and performs IFFT. OFDM symbols are constructed through operations and CP insertion.
  • the baseband processing unit 1i-20 divides the baseband signal provided from the RF processing unit 1i-10 into OFDM symbols and restores signals mapped to subcarriers through FFT operation. After that, the received bit string is restored through demodulation and decoding.
  • the baseband processing unit 1i-20 and the RF processing unit 1i-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 1i-20 and the RF processing unit 1i-10 may be referred to as a transmitting unit, a receiving unit, a transceiving unit, a communication unit, or a wireless communication unit.
  • the backhaul communication unit 1i-30 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 1i-30 converts a bit string transmitted from the main base station to another node, for example, an auxiliary base station, a core network, etc., into a physical signal, and converts the physical signal received from the other node into a bit string. Convert to heat.
  • the storage unit 1i-40 stores data such as basic programs, application programs, and setting information for operation of the main base station.
  • the storage unit 1i-40 can store information about bearers assigned to the connected terminal, measurement results reported from the connected terminal, etc. Additionally, the storage unit 1i-40 can store information that serves as a criterion for determining whether to provide or suspend multiple connections to the terminal. And, the storage unit 1i-40 provides stored data according to the request of the control unit 1i-50.
  • the control unit 1i-50 controls overall operations of the main base station. For example, the control unit 1i-50 transmits and receives signals through the baseband processing unit 1i-20 and the RF processing unit 1i-10 or through the backhaul communication unit 1i-30. Additionally, the control unit 1i-50 writes and reads data into the storage unit 1i-40.
  • the control unit 1i-50 may include at least one processor.
  • a computer-readable storage medium that stores one or more programs (software modules) may be provided.
  • One or more programs stored in a computer-readable storage medium are configured to be executable by one or more processors in an electronic device (configured for execution).
  • One or more programs include instructions that cause the electronic device to execute methods according to embodiments described in the claims or specification of the present disclosure.
  • These programs include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM.
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • magnetic disc storage device Compact Disc-ROM (CD-ROM: Compact Disc-ROM), Digital Versatile Discs (DVDs), or other types of It can be stored in an optical storage device or magnetic cassette. Alternatively, it may be stored in a memory consisting of a combination of some or all of these. Additionally, multiple configuration memories may be included.
  • the program can be accessed through a communication network such as the Internet, Intranet, LAN (Local Area Network), WLAN (Wide LAN), or SAN (Storage Area Network), or a combination of these. It may be stored in an attachable storage device that can be accessed. This storage device can be connected to a device performing an embodiment of the present disclosure through an external port. Additionally, a separate storage device on a communication network may be connected to the device performing an embodiment of the present disclosure.
  • a communication network such as the Internet, Intranet, LAN (Local Area Network), WLAN (Wide LAN), or SAN (Storage Area Network), or a combination of these. It may be stored in an attachable storage device that can be accessed. This storage device can be connected to a device performing an embodiment of the present disclosure through an external port. Additionally, a separate storage device on a communication network may be connected to the device performing an embodiment of the present disclosure.
  • drawings explaining the method of the present invention may omit some components and include only some components within the scope that does not impair the essence of the present invention.
  • the method of the present invention may be implemented by combining some or all of the content included in each embodiment within the range that does not impair the essence of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 보다 높은 데이터 전송률을 지원하기 위한 5G 또는 6G 통신 시스템에 관련된 것이다. 본 개시의 일 실시 예에 따르면, MR-DC 시나리오에서 3GPP 및 non-3GPP 시스템간 IDC 문제를 보고하는 방법, 기존 대비 IDC 문제를 BWP 혹은 PRB 단위로 상세하게 보고하는 방법, 단말이 선호하는 TDM 기반 해결 방법을 보고하는 방법, NR을 위한 autonomous denial 기능을 도입하는 방법 및 IDC 문제를 고려한 SON/MDT 개선 방법 을 제안하는 것을 특징으로 한다. 본 개시의 다양한 실시 예들에 따르면, IDC관련 정보 및 선호 솔루션을 보고하는 방법 및 이를 수행할 수 있는 장치가 제공된다. 이에 따르면 개선된 IDC 관련 정보 및 선호 솔루션을 보고하는 방법이 개선 된다는 효과를 얻을 수 있다.

Description

이동통신 시스템에서 IDC 문제를 보고하는 방법 및 장치
본 개시는 이동통신 시스템에서의 단말 및 기지국의 동작에 관한 것이다. 보다 구체적으로, 본 개시는 통신 시스템에서 IDC(In-Device Coexistence) 문제를 보고하는 방법 및 이를 수행할 수 있는 장치에 관한 것이다.
5G 이동통신 기술은 빠른 전송 속도와 새로운 서비스가 가능하도록 넓은 주파수 대역을 정의하고 있으며, 3.5 기가헤르츠(3.5GHz) 등 6GHz 이하 주파수('Sub 6GHz') 대역은 물론 28GHz와 39GHz 등 밀리미터파(㎜Wave)로 불리는 초고주파 대역('Above 6GHz')에서도 구현이 가능하다. 또한, 5G 통신 이후(Beyond 5G)의 시스템이라 불리어지는 6G 이동통신 기술의 경우, 5G 이동통신 기술 대비 50배 빨라진 전송 속도와 10분의 1로 줄어든 초저(Ultra Low) 지연시간을 달성하기 위해 테라헤르츠(Terahertz) 대역(예를 들어, 95GHz에서 3 테라헤르츠(3THz) 대역과 같은)에서의 구현이 고려되고 있다.
5G 이동통신 기술의 초기에는, 초광대역 서비스(enhanced Mobile BroadBand, eMBB), 고신뢰/초저지연 통신(Ultra-Reliable Low-Latency Communications, URLLC), 대규모 기계식 통신 (massive Machine-Type Communications, mMTC)에 대한 서비스 지원과 성능 요구사항 만족을 목표로, 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위한 빔포밍(Beamforming) 및 거대 배열 다중 입출력(Massive MIMO), 초고주파수 자원의 효율적 활용을 위한 다양한 뉴머롤로지 지원(복수 개의 서브캐리어 간격 운용 등)와 슬롯 포맷에 대한 동적 운영, 다중 빔 전송 및 광대역을 지원하기 위한 초기 접속 기술, BWP(Band-Width Part)의 정의 및 운영, 대용량 데이터 전송을 위한 LDPC(Low Density Parity Check) 부호와 제어 정보의 신뢰성 높은 전송을 위한 폴라 코드(Polar Code)와 같은 새로운 채널 코딩 방법, L2 선-처리(L2 pre-processing), 특정 서비스에 특화된 전용 네트워크를 제공하는 네트워크 슬라이싱(Network Slicing) 등에 대한 표준화가 진행되었다.
현재, 5G 이동통신 기술이 지원하고자 했던 서비스들을 고려하여 초기의 5G 이동통신 기술 개선(improvement) 및 성능 향상(enhancement)을 위한 논의가 진행 중에 있으며, 차량이 전송하는 자신의 위치 및 상태 정보에 기반하여 자율주행 차량의 주행 판단을 돕고 사용자의 편의를 증대하기 위한 V2X(Vehicle-to-Everything), 비면허 대역에서 각종 규제 상 요구사항들에 부합하는 시스템 동작을 목적으로 하는 NR-U(New Radio Unlicensed), NR 단말 저전력 소모 기술(UE Power Saving), 지상 망과의 통신이 불가능한 지역에서 커버리지 확보를 위한 단말-위성 직접 통신인 비 지상 네트워크(Non-Terrestrial Network, NTN), 위치 측위(Positioning) 등의 기술에 대한 물리계층 표준화가 진행 중이다.
뿐만 아니라, 타 산업과의 연계 및 융합을 통한 새로운 서비스 지원을 위한 지능형 공장 (Industrial Internet of Things, IIoT), 무선 백홀 링크와 액세스 링크를 통합 지원하여 네트워크 서비스 지역 확장을 위한 노드를 제공하는 IAB(Integrated Access and Backhaul), 조건부 핸드오버(Conditional Handover) 및 DAPS(Dual Active Protocol Stack) 핸드오버를 포함하는 이동성 향상 기술(Mobility Enhancement), 랜덤액세스 절차를 간소화하는 2 단계 랜덤액세스(2-step RACH for NR) 등의 기술에 대한 무선 인터페이스 아키텍쳐/프로토콜 분야의 표준화 역시 진행 중에 있으며, 네트워크 기능 가상화(Network Functions Virtualization, NFV) 및 소프트웨어 정의 네트워킹(Software-Defined Networking, SDN) 기술의 접목을 위한 5G 베이스라인 아키텍쳐(예를 들어, Service based Architecture, Service based Interface), 단말의 위치에 기반하여 서비스를 제공받는 모바일 엣지 컴퓨팅(Mobile Edge Computing, MEC) 등에 대한 시스템 아키텍쳐/서비스 분야의 표준화도 진행 중이다.
이와 같은 5G 이동통신 시스템이 상용화되면, 폭발적인 증가 추세에 있는 커넥티드 기기들이 통신 네트워크에 연결될 것이며, 이에 따라 5G 이동통신 시스템의 기능 및 성능 강화와 커넥티드 기기들의 통합 운용이 필요할 것으로 예상된다. 이를 위해, 증강현실(Augmented Reality, AR), 가상현실(Virtual Reality, VR), 혼합 현실(Mixed Reality, MR) 등을 효율적으로 지원하기 위한 확장 현실(eXtended Reality, XR), 인공지능(Artificial Intelligence, AI) 및 머신러닝(Machine Learning, ML)을 활용한 5G 성능 개선 및 복잡도 감소, AI 서비스 지원, 메타버스 서비스 지원, 드론 통신 등에 대한 새로운 연구가 진행될 예정이다.
또한, 이러한 5G 이동통신 시스템의 발전은 6G 이동통신 기술의 테라헤르츠 대역에서의 커버리지 보장을 위한 신규 파형(Waveform), 전차원 다중입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(Array Antenna), 대규모 안테나(Large Scale Antenna)와 같은 다중 안테나 전송 기술, 테라헤르츠 대역 신호의 커버리지를 개선하기 위해 메타물질(Metamaterial) 기반 렌즈 및 안테나, OAM(Orbital Angular Momentum)을 이용한 고차원 공간 다중화 기술, RIS(Reconfigurable Intelligent Surface) 기술 뿐만 아니라, 6G 이동통신 기술의 주파수 효율 향상 및 시스템 네트워크 개선을 위한 전이중화(Full Duplex) 기술, 위성(Satellite), AI(Artificial Intelligence)를 설계 단계에서부터 활용하고 종단간(End-to-End) AI 지원 기능을 내재화하여 시스템 최적화를 실현하는 AI 기반 통신 기술, 단말 연산 능력의 한계를 넘어서는 복잡도의 서비스를 초고성능 통신과 컴퓨팅 자원을 활용하여 실현하는 차세대 분산 컴퓨팅 기술 등의 개발에 기반이 될 수 있을 것이다.
본 개시가 적용될 수 있는 통신 시스템의 단말은 여러 가지의 통신 모듈을 가지고 있다. 이러한 모듈들은 각기 연결된 안테나 등을 통해 필요한 데이터를 송수신할 수 있다. 여러 통신 시스템이 사용하는 주파수 대역은 다르지만, 서로 인접한 대역을 사용한다면 통신 모듈 간 간섭을 일으킬 수 있다.
따라서 여러 가지의 통신 모듈을 가지는 단말이 인접한 대역을 사용하여 발생하는 간섭을 완화하기 위해, 통신 모듈간 송신 전력을 제어할 필요가 있다.
본 개시는 무선 통신 시스템의 단말이 기기 내 공존(In-Device Coexistence) 문제를 해결하기 위한 방법에 관한 것이다.
보다 구체적으로, 무선 통신 시스템에서 통신 모듈간 발생할 수 있는 간섭을 제어하기 위해 각 통신 모듈의 송신 전력을 제어하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 개시는 상기와 같은 문제점을 해결하기 위한 것으로, 무선 통신 시스템에서 복수 개의 셀 그룹에 연결된 단말이 수행하는 방법에 있어서, 기지국으로부터, 상기 복수 개의 셀 그룹 (Cell Group) 각각에 대한 기기 내 공존(In-Device Coexistence, IDC) 문제를 해결하기 위한 자동 부정(Autonomous Denial) 관련 설정 정보를 수신하는 단계; 상기 복수 개의 셀 그룹 각각에 대해, IDC 문제가 발생하였는지 여부를 판단하는 단계; 및 상기 복수 개의 셀 그룹 중, 특정 셀 그룹에서 상기 IDC 문제가 발생하였다고 판단 한 경우, 상기 IDC 문제가 발생한 특정 셀 그룹에 대해 설정된 Autonomous Denial 관련 설정 정보에 기반하여, 상기 특정 셀 그룹에서의 상향 링크 전송을 중단하는 단계를 포함하는 것을 특징으로 한다.
본 개시는 상기와 같은 문제점을 해결하기 위한 것으로, 무선 통신 시스템에서 기지국이 수행하는 방법에 있어서, 무선 통신 시스템에서의 기지국이 수행하는 방법에 있어서, 제1 셀 그룹 (Cell Group)의 자동 부정 (Autonomous Denial) 관련 설정 정보 및 제2 셀 그룹의 Autonomous Denial 관련 설정 정보를 포함하는 기기 내 공존(In-Device Coexistence, IDC) 문제를 해결하기 위한 Autonomous Denial 관련 설정 정보를 획득하는 단계; 단말로, 상기 Autonomous Denial 관련 설정 정보를 전송하는 단계; 및 상기 제1 셀 그룹 또는 상기 제2 셀 그룹 중 어느 한 특정 셀 그룹과 관련하여 단말 내IDC 문제가 발생한 경우, 상기 IDC 문제가 발생한 특정 셀 그룹에 상응하는 Autonomous Denial 관련 설정 정보에 기반하여, 상향 링크 전송을 수신하지 않는 단계를 포함하는 것을 특징으로 한다.
본 개시는 상기와 같은 문제점을 해결하기 위한 것으로, 무선 통신 시스템에서의 복수 개의 셀 그룹에 연결된 단말에 있어서, 신호를 송수신하는 송수신부; 및 제어부를 포함하며, 상기 제어부는, 기지국으로부터, 상기 복수 개의 셀 그룹 (Cell Group) 각각에 대한 기기 내 공존(In-Device Coexistence, IDC) 문제를 해결하기 위한 자동 부정(Autonomous Denial) 관련 설정 정보를 수신하고, 상기 복수 개의 셀 그룹 각각에 대해, IDC 문제가 발생하였는지 여부를 판단하며, 상기 복수 개의 셀 그룹 중, 특정 셀 그룹에서 상기 IDC 문제가 발생하였다고 판단 한 경우, 상기 IDC 문제가 발생한 특정 셀 그룹에 대해 설정된 Autonomous Denial 관련 설정 정보에 기반하여, 상기 특정 셀 그룹에서의 상향 링크 전송을 중단하는 것을 특징으로 한다.본 개시는 상기와 같은 문제점을 해결하기 위한 것으로, 무선 통신 시스템에서의 기지국에 있어서, 무선 통신 시스템에서의 기지국에 있어서, 신호를 송수신하는 송수신부; 및 제어부를 포함하며, 상기 제어부는, 제1 셀 그룹 (Cell Group)의 자동 부정 (Autonomous Denial) 관련 설정 정보 및 제2 셀 그룹의 Autonomous Denial 관련 설정 정보를 포함하는 기기 내 공존(In-Device Coexistence, IDC) 문제를 해결하기 위한 Autonomous Denial 관련 설정 정보를 획득하고, 단말로, 상기 Autonomous Denial 관련 설정 정보를 전송하며, 상기 제1 셀 그룹 또는 상기 제2 셀 그룹 중 어느 한 특정 셀 그룹과 관련하여 단말 내IDC 문제가 발생한 경우, 상기 IDC 문제가 발생한 특정 셀 그룹에 상응하는 Autonomous Denial 관련 설정 정보에 기반하여, 상향 링크 전송을 수신하지 않는 단계를 포함하는 것을 특징으로 한다.
본 개시에 따르면, 무선 통신 시스템의 단말이 기기 내 공존(In-Device Coexistence) 문제를 보다 더 효율적으로 해결 할 수 있다.
보다 구체적으로, 기존에는 IDC문제를 겪고 있는 주파수 정보를 주파수 단위(carrier) 보고 할 수 있던 반면, 본 개시의 일 실시 예에 따르면 하나의 NR 주파수에서 하나 이상의 BWP 혹은 PRB을 보고 할 수 있다.
본 개시의 또 다른 실시 예에 따르면, 단말은 secondary DRX에 대해서도 단말이 선호하는 DRX 패턴 정보를 기지국에 보고할 수 있다.
본 개시의 또 다른 실시 예에 따르면, IDC 문제가 특정 주파수/BWP/PRB에 대해서만 발생한 경우, IDC 문제에 영향을 받은 측정 정보를 기록하는 동작을 중지하고 제외된 측정 결과가 있음을 지시하는 지시자 또는 log에서 배제된 주파수/BWP/PRB 정보를 log에 포함시킬 수 있다.
본 개시의 다앙한 실시 예에에 따르면, IDC 관련 정보 및 단말의 선호 솔루션을 보고하는 방법을 개선하여, 효율적으로 IDC 문제를 해결 할 수 있는 효과가 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1a는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 1b는 본 개시의 일 실시 예에 따른 이동통신 시스템에서 단말이 선호하는 사항을 보고하는 소정의 정보를 기지국에 보고하는 과정의 흐름도이다.
도 1c는 본 개시의 일 실시 예에 따른 In-Device Coexistence(IDC)를 설명하기 위한 도면이다.
도 1d는 본 개시의 일 실시 예에 따른 3GPP 에서 이동통신을 위해 사용하는 주파수 가운데, Industrial Scientific and Medical(ISM) 대역에 인접한 주파수 대역을 도식화한 도면이다.
도 1e는 본 개시의 일 실시 예에 따른 이동통신 시스템에서 소정의 IDC 정보를 기지국에 보고하는 과정의 흐름도이다.
도 1f는 본 개시의 일 실시 예에 따른 단말 동작의 순서도이다.
도 1g는 본 개시의 일 실시 예에 따른 기지국 동작의 순서도이다.
도 1h는 본 개시의 일 실시 예에 따른 단말의 내부 구조를 도시하는 블록도이다.
도 1i는 본 개시의 일 실시 예에 따른 기지국의 구조를 도시하는 블록도이다.
본 명세서에서 실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 이하 첨부된 도면을 참조하여 본 발명의 실시 예를 설명하기로 한다.
도 1a는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 1a를 참조하면, 도시한 바와 같이 차세대 이동통신 시스템 (New Radio, NR)의 무선 액세스 네트워크는 차세대 기지국 (New Radio Node B, 이하 gNB)(1a-10) 과 액세스 및 이동성 관리 기능(Access and Mobility Management Function, AMF) (1a-05, New Radio Core Network)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말)(1a-15)은 gNB (1a-10) 및 AMF (1a-05)를 통해 외부 네트워크에 접속한다.
도 1a에서 gNB는 기존 LTE 시스템의 eNB (Evolved Node B)에 대응된다. gNB는 NR UE와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다 (1a-20). 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 gNB (1a-10)가 담당한다.
하나의 gNB는 통상 다수의 셀들을 제어한다. 기존 LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 칭한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다.
AMF (1a-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행한다. AMF는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, AMF이 MME (1a-25)와 네트워크 인터페이스를 통해 연결된다. MME는 기존 기지국인 eNB (1a-30)과 연결된다. LTE-NR Dual Connectivity (EN-DC)을 지원하는 단말은 gNB뿐 아니라, eNB에도 연결을 유지하면서, 데이터를 송수신할 수 있다 (1a-35).
도 1b는 본 개시의 일 실시 예에 따른 이동통신 시스템에서 단말이 선호하는 사항을 보고하는 소정의 정보를 기지국에 보고하는 과정의 흐름도이다.
New Radio(NR) 이동통신 시스템에서 단말은 현재 설정 대비 자신이 선호하는 사항을 기지국에 보고할 수 있다. 예를 들어, 선호하는 Delay budget, 소모 전력 감소 선호 (UE power preference), 발열 감소 선호 (overheating assistance), In-Device Coexistence(IDC) 문제 보고 및 선호하는 솔루션 (IDC assistance) 일 수 있다.
상기 선호 사항들을 보고받은 기지국은 이에 대응하여 재설정을 트리거할 수 있다. 예를 들어, 소모 전력 감소, delay 감소, 발열 감소를 선호한다고 보고받은 기지국은 Discontinuous Reception(DRX) 주기를 줄이거나 늘려 재설정할 수 있다.
단말은 선호하는 delay budget과 발열 감소 선호를 기지국에 보고할 수 있다. 또한 단말은 발열 혹은 소모 전력 감소를 위해 선호하는 재설정 항목을 더 자세하게 보고할 수 있다. 이 때, 단말이 선호하는 최대 Secondary Cell(SCell)의 수, aggregated Bandwidth(BW) (주파수 대역폭), 최대 Multiple Input Multiple Output(MIMO) layer 수를 지시할 수 있다.
상기 선호 사항을 보고하기 위한 절차를 살펴보면, 우선 1b-15단계에서, 상기 단말(1b-05)은 상기 각 사항들에 이를 보고할 수 있는 능력을 있음을 기지국 (1b-10)에 보고한다 (1b-15). (UE capabilities)
1b-20단계에서, 상기 기지국(1b-10)은 상기 능력 정보를 기반으로, 상기 각 선호 사항별로 상기 단말(1b-05)이 필요한 시점에 이를 기지국(1b-10)에 보고할 수 있음을 설정한다 (1b-20). (RRC reconfiguration)
1b-25단계에서, 상기 단말(1b-05)은 UEAssistanceInformation 메시지를 이용하여, 필요한 시점에 자신이 선호하는 사항을 기지국(1b-10)에 보고한다 (1b-25). (UEAssistanceInformation)
도 1c는 본 개시의 일 실시 예에 따른 In-Device Coexistence(IDC) 기술을 설명하기 위한 도면이다.
In-Device Coexistence(IDC) 기술은 기기 내 여러 통신 모듈들이 서로 간에 간섭을 미치는 경우에 이를 최소화 시키는 기술이다.
최근 단말들은 다양한 기능들을 가지고 있으며, 이를 지원하기 위해 여러 가지의 통신 모듈을 가지고 있다. New Radio(NR) 통신 모듈 (1c-00) 이 외에, Global Positioning System(GPS) 모듈(1c-05), 블루투스(Bluetooth), 무선랜 등 근거리 통신 모듈 (1c-10) 등이 있을 수 있다. 이러한 모듈들은 각기 연결된 안테나 (1c-15, 1c-20, 1c-25) 등을 통해 필요한 데이터를 송수신한다.
각 통신 시스템이 사용하는 주파수 대역은 다르지만, 서로 인접한 대역을 사용한다면, 통신 모듈 간 간섭을 일으킬 수 있다. 이는 이상적으로 대역간 송수신되는 신호를 분리시킬 수 없기 때문이다. 더군다나, 각 통신 모듈과 이와 연결된 안테나는 하나의 단말 기기 내에 포함되므로, 매우 근거리에 위치한다. 그러므로, 서로 간에 미치는 간섭 세기는 상대로 크게 작용될 수 있다. 따라서 이러한 간섭을 완화하기 위해, 통신 모듈간 송신 전력을 제어할 필요가 있다.
예를 들어, NR 상향링크에서 블루투스 또는 무선랜 등 근거리 통신 모듈 (1c-10)이 데이터 수신을 시도할 때, NR 통신 모듈 (1c-00)의 송신 신호가 근거리 통신 모듈에 간섭을 일으킬 수 있다. 또한, NR 상향링크 신호가 다른 NR 주파수 혹은 다른 이동통신시스템의 주파수에 간섭을 일으킬 수도 있다. 이를 완화하기 위해, NR 통신 모듈의 상향링크 최대 송신 전력을 제한하여, 간섭량을 제어할 수 있다. 또는 아예 NR 통신 모듈의 동작을 일시 정지시켜, 근거리 통신 모듈에 미치는 간섭 전력량을 제거할 수 있다. 반대로, NR 하향링크에서 근거리 통신 모듈 (1c-10)이 NR 통신 모듈 (1c-00)의 수신 신호에 간섭을 일으킬 수 있다.
도 1d는 본 개시의 일 실시 예에 따른 3GPP 에서 이동통신을 위해 사용하는 주파수 가운데, Industrial Scientific and Medical(ISM) 대역에 인접한 주파수 대역을 도식화한 도면이다.
이동 통신 셀이 Band 40 (1d-05)을 사용할 때, 무선랜이 채널1번을 사용하는 경우 간섭 현상이 심하게 되고, 이동 통신 셀이 Band 7 (1d-10)을 사용할 때, 무선랜 채널이 채널13번 혹은 14번을 사용하는 경우에 간섭 현상이 심하게 됨을 알 수 있다. 따라서 이러한 간섭이 발생하는 경우에 이를 적절히 회피하는 방안이 필요하다.
기존 New Radio(NR)에서는 기지국 설정에 따라, 단말은 In-Device Coexistence(IDC) 문제에 의해 영향을 받고 있는 NR 주파수 정보 (affectedCarrierFreqList 필드)와 CA (Carrier Aggregation)으로 설정된 상향링크 NR 신호의 inter-modulation distortion 및 harmonics에 의한 IDC 문제를 겪고 있는 NR 주파수 정보 (affectedCarrierFreqCombList 필드) 혹은 Global Positioning System(GPS), Bluetooth(BT), WLAN 등 이종의 통신모듈 정보를 수납한 UEAssistanceInformation 메시지를 상기 기지국에 보고할 수 있다.
본 발명에서는 단말이 개선된 IDC 관련 정보 및 선호 솔루션을 보고하는 방법을 제안한다. 특히,
- MR-DC 시나리오에서 3GPP 및 non-3GPP 시스템간 IDC 문제를 보고하는 방법,
- 기존 대비 IDC 문제를 Bandwidth Part(BWP) 또는 Physical Resource Block(PRB) 단위로 상세하게 보고하는 방법,
- 단말이 선호하는 시 분할 다중화(Time Division Multiplexing, TDM) 기반 해결 방법을 보고하는 방법,
- NR을 위한 autonomous denial 기능을 도입하는 방법, 및
- IDC 문제를 고려한 Self Organization Networks(SON)/Minimization of Drive Test(MDT) 개선 방법
을 제안하는 것을 특징으로 한다.
또한, 이를 위한 신규 단말 능력 정보 및 설정 정보가 소개된다.
상기 autonomous denial 기능이란, IDC 문제를 야기시킬 것으로 예상되는 상향링크 전송을 소정의 시간 동안 단말 스스로 일시 중지하는 기술을 의미한다.
도 1e는 본 개시의 일 실시 예에 따른 이동통신 시스템에서 소정의 In-Device Coexistence(IDC) 정보를 기지국에 보고하는 과정의 흐름도이다.
1e-15단계에서, 단말 (UE, 1e-05)은 기지국 (gNB, 1e-10)에게 자신이 상기 소정의 In-Device Coexistence(IDC) 정보를 보고할 수 있는 능력이 있음을 보고한다 (1e-15). 이 때, 상기 능력을 지시하는 지시자를 상기 기지국에게 보고한다. IDC 정보를 보고할 수 있는 능력은 상세하게 지시되어 상기 기지국에 보고될 수 있다. (UE capabilities (IndeviceCoexInd))
예를 들어, 단말이 선호하는 주파수 분할 다중화(Frequency Division Multiplexing, FDM) 혹은 시 분할 다중화(Time Division Multiplexing, TDM) 기반 해결 방법을 보고할 수 있는지 여부, CG (Cell Group) 혹은 Discontinuous Reception(DRX) group 별로 단말이 선호하는 DRX 설정 정보를 보고할 수 있는지 여부, IDC 문제에 영향을 받은 혹은 미치는 주파수 범위를 Bandiwidth Part(BWP) 단위로 보고할 수 있는지 여부, IDC 문제에 영향을 받은 혹은 미치는 주파수 범위를 Physical Resource Block(PRB) 단위로 보고할 수 있는지 여부, Autonomous denial 기능을 지원하는지 여부 등이 포함 될 수 있다.
각 단말 능력 정보는 optional with signal 혹은 optional without signal로 간주된다.
1e-20단계에서, 상기 기지국(1e-10) 상기 단말(1e-05)이 소정의 정보를 상기 기지국(1e-10)으로 보고하도록 설정 할 수 있다. (OtherConfig (idc-AssistanceConfig)) 상기 기지국(1e-10)은 상기 단말(1e-05)에게 소정의 IE idc-AssistanceConfig 을 통해, 상기 단말(1e-05)이 상기 소정의 정보를 자신에게 보고할 수 있음을 소정의 지시자를 통해 설정한다.
상기 IE가 설정되면, 상기 단말(1e-05)은 IDC 문제를 겪고 있는 New Radio(NR) 주파수 정보, 혹은 상향링크 Carrier Aggregation이 설정되었을 때, NR 주파수로부터 Inter-Modulation Distortion/harmonics에 의한 IDC 문제가 타 NR 주파수 혹은 타 통신모듈에 발생하였음을 보고할 수 있음을 의미한다.
특히, 상기 IE에는 상기 IDC 문제를 겪고 있는 NR 주파수들 중, 보고할 수 있는 주파수 리스트를 포함한다. 상기 리스트를 CandidateServingFreqListNR IE에 수납하며, 상기 리스트에 속하는 각 주파수는 하나의 중심 주파수를 지시하는 ARFCN-ValueNR IE로 지시된다. IDC 문제를 겪더라도, 상기 리스트에 속하지 않는 주파수는 보고되지 않아도 된다. 만약 상기 IE가 제공되지 않는다면, 상기 단말은 자신이 지원하는 NR 주파수에서 IDC 문제를 겪는 주파수 정보를 상기 기지국에 보고한다.
본 개시에서는 상기 idc-AssistanceConfig에 포함될 하기와 같은 설정 정보를 추가적으로 제안한다.
- 단말이 선호하는 FDM 혹은 TDM 기반 해결 방법을 보고할 수 있는지 여부를 지시하는 설정 지시자,
- CG (Cell Group) 혹은 DRX group 별로 단말이 선호하는 DRX 설정 정보를 보고할 수 있는지 여부를 지시하는 설정 지시자,
- IDC 문제에 영향을 받은 혹은 미치는 주파수 범위를 BWP 단위로 보고할 수 있는지 여부를 지시하는 설정 지시자,
- IDC 문제에 영향을 받은 혹은 미치는 주파수 범위를 PRB 단위로 보고할 수 있는지 여부를 지시하는 설정 지시자,
- Autonomous denial 기능을 수행하는데 필요한 설정 정보
등이 포함 될 수 있다.
상기 설정 지시자(들) 혹은 설정 정보가 상기 idc-AssistanceConfig IE에 포함되면, 상기 단말은 상기 지시자에 대응하는 정보의 보고 혹은 기능을 수행할 수 있다.
본 개시의 일 실시 예에 따른 상기 autonomous denial 기능을 수행하는데 필요한 설정 정보는 단말이 연속적으로 autonomous denial 할 수 있는 상향링크 서브프레임 수, 상향링크 슬롯 수, 상향링크 심볼 수 혹은 상향링크 전송 시간 구간 정보 (예를 들어, ms 단위)와, 상기 autonomous denial 동작을 적용할 수 있는 시간 구간 정보 (autonomous denial validity)를 포함하고 있다.
상기 autonomous denial validity을 지시하는 단위로는 상향링크 서브프레임, 상향링크 슬롯, 상향링크 심볼 혹은 상향링크 전송 절대 시간 (예를 들어, ms 단위)가 사용될 수 있다.
IDC 문제가 발생되면, 상기 단말은 상기 IDC 문제를 제거 혹은 완화시키기 위해, 소정의 상향링크 전송을 상기 설정된 연속적으로 autonomous denial할 수 있는 최대 시간까지 일시 중지시킬 수 있다.
기지국은 상기 autonomous denial 설정 정보를 cell group별 (혹은 MAC entity별), 주파수별, 셀별, BWP별, PRB별 혹은 DRX group별로 제공할 수도 있다.
따라서, 상기 기지국은 선택적으로 상기 autonomous denial 기능을 상기 단말에게 허용할 수 있다. 예를 들어, 특정 셀에서 전송 지연에 민감한 서비스가 제공되는 경우, 기지국은 상기 셀에 대해 상기 autonomous denial 기능을 설정하지 않을 수 있다.
IDC 문제가 발생되면, 상기 단말(1e-05)은 상기 경우에 속하는 셀, BWP 혹은 PRB의 상향링크 전송을 상기 대응하는 설정 정보에 따라 일시 중지시킬 수 있다. 따라서, 각 경우에 따라, 이를 지시하기 위한 지시자 정보가 하기와 같이 함께 제공될 수 있다.
Per cell group: MCG and/or SCG index, applicable for all MR-DC types (even for EN-DC)
Per freq: ARFCN-Value or meas object id
Per FR: FR1 or FR2 index
Per cell: ServCellIndex, CGI or PCI
Per BWP/PRB: BWP의 경우, BWP id 혹은 locationAndBandwidth 필드, PRB의 경우, startPRB 및 nroPRBs 필드 (상세한 BWP 혹은 PRB을 지시하는 방법은 후술한다)
Per DRX group: default and/or secondary (per CG) index
1e-25단계에서, 상기 단말(1e-05)이 IDC 문제를 겪게 되면(identifying IDC problem), 1e-30단계에서, IDC관련 정보는 idc-Assistance 필드에 수납되며, 상기 IE는 하나의 RRC 메시지인 UEAssistanceInformation 메시지에 수납되어 상기 기지국(1e-10)에 전달된다 (1e-30). (UEAssistanceInformation (Idc-Assistance))
기존에는 idc-Assistance 필드에 두 가지 필드가 수납될 수 있다. 하나는 affectedCarrierFreqList 필드로 IDC 문제를 겪고 있는 주파수 정보를 지시하는데 이용된다. 다른 하나는 affectedCarrierFreqCombList 필드로, 상향링크 Carrier Aggregation이 설정되었을 때, NR 주파수의 Inter-Modulation Distortion/harmonics에 의해 발생한 IDC 문제를 겪고 있는 타 NR 주파수 혹은 타 통신모듈을 지시하는데 이용된다. 상기 affectedCarrierFreqList 필드 및 affectedCarrierFreqCombList 필드에서 NR 주파수는 ARFCN-ValueNR로 지시된다.
본 개시에서는 단말이 기지국에 보고할 수 있는 신규 IDC 관련 정보로 하기와 같은 정보를 제안한다.
- MR-DC assistance information
- Affected BWP list 혹은 affected BWP combination list
- Affected PRB list 혹은 affected PRB combination list
- 단말 선호 DRX 패턴 정보 (DRX assistance info)
- 단말 선호 TDM 패턴 정보
- Hardware sharing 문제
하기에서, 본 개시의 일 실시 예에 따른 단말이 기지국에 보고할 수 있는 IDC 관련 정보를 구체적으로 설명하기로 한다.
- MR-DC assistance information
단말이 MR-DC에서 설정된 NR 혹은 Long Term Evolution(LTE) 주파수의 inter-modulation distortion/harmonics에 발생한 IDC 문제가 어떤 NR 혹은 LTE 주파수, GPS, BT, WLAN 등 다른 통신 모듈에 발생하였는지 여부를 보고할 수 있다. 보다 구체적으로, IDC 문제를 겪고 있는 시스템의 종류 (victim system type, 예를 들어, GPS, BT, WLAN 등), IDC 간섭이 미치는 방향 (interference direction), IDC 문제의 영향을 받고 있는 NR 주파수 리스트 및 LTE 주파수 리스트 정보가 기지국에 보고될 수 있다. 이 때, 상기 NR 주파수와 LTE 주파수는 각각 ARFCN-ValueNR와 ARFCN-ValueEUTRA로 지시되는 것을 특징으로 한다.
상기 정보는 신규 MRDC-AssistanceInfo IE에 수납되며, 상기 신규 IE는 UEAssistanceInformation 메시지에 수납되어 단말에서 기지국으로 보고된다.
- Affected BWP list 혹은 affected BWP combination list/Affected PRB list 혹은 affected PRB combination list
기존에는 주파수 (carrier) 단위로 IDC 문제를 겪고 있는 주파수 정보를 보고할 수 있었다. 본 개시에서는 설정에 따라, 단말은 BWP 혹은 PRB 단위로 IDC 문제를 겪고 있는 주파수 범위를 기지국에 보고할 수 있다.
단말은 하나의 NR 주파수에서 IDC 문제를 겪고 있는 하나 이상의 BWP 혹은 PRB을 보고할 수 있다. 예를 들어, UEAssistanceInformation 메시지에 수납되는 신규 Affected BWP list 혹은 affected BWP combination list, Affected PRB list 혹은 affected PRB combination list 정보가 도입될 수 있다.
상기 Affected BWP list 혹은 Affected PRB list는 IDC 문제를 겪고 있는 하나 이상의 BWP 혹은 PRB 정보를 보고하는데 이용된다. 상기 Affected BWP list 혹은 Affected PRB list에는 IDC 간섭이 미치는 방향 (interference direction) 정보도 포함될 수 있다.
한편, affected BWP combination list 혹은 affected PRB combination list는 CA 혹은 MR-DC 에서 NR 주파수의 inter-modulation distortion/harmonics가 어떤 BWP 혹은 PRB에 IDC 문제를 발생시키는지 나타내는데 이용된다. 신규 Affected BWP list 혹은 affected BWP combination list, Affected PRB list 혹은 affected PRB combination list 정보에서 IDC 문제를 겪고 있는 BWP 혹은 PRB을 지시하기 위해서는 여러 옵션이 있을 수 있다.
본 개시의 일 실시 예에 따르면, BWP을 지시하는 방법으로BWP ID을 활용하는 방법, locationAndBandwidth 필드를 활용하는 방법과 소정의 비트맵 정보를 도입하는 방법을 제안한다.
옵션 1: BWP ID을 활용하는 방법
기지국은 하나의 서빙 셀 별로 복수 개의 BWP을 설정할 수 있다. 각 BWP를 구분하기 위하여, 기지국은 각 BWP마다 BWP-id을 설정한다. 단말은 IDC 문제를 겪고 있는 BWP을 지시하기 위해, 기 설정된 BWP-id을 이용할 수 있다. 다만, 상기 BWP ID는 하나의 셀 내에서만 유효하므로 (즉, 셀마다 재활용되는 아이디), BWP ID와 함께 상기 BWP에 대응하는 셀의 아이디 (예를 들어, 서빙셀 인덱스, CGI 혹은 PCI 정보) 혹은 셀 주파수 정보 (예를 들어, ARFCN-ValueNR)도 함께 보고될 수 있다.
옵션 2: locationAndBandwidth 필드를 활용하는 방법
NR 표준에서는 BWP (BandWidth Part)의 주파수 domain의 위치 및 대역폭을 지시하는데, locationAndBandwidth 필드가 이용되고 있다. 단말은 IDC 문제를 겪고 있는 BWP을 지시하기 위해서, 상기 필드를 이용할 수 있다.
옵션 3: 신규 비트맵 정보 도입
하나의 carrier (혹은 셀)에 설정된 각 BWP에 대응하는 비트로 구성된 비트맵을 도입한다. 하나의 BWP가 IDC 문제를 겪고 있다면, 상기 BWP에 대응하는 비트에 '0' 혹은 '1' 값을 설정하여, 상기 상태를 지시할 수 있다. 상기 비트맵은 이에 대응하는 셀의 아이디 (예를 들어, 서빙 셀 인덱스, CGI 혹은 PCI 정보) 혹은 셀 주파수 정보 (예를 들어, ARFCN-ValueNR)도 함께 보고될 수 있다.
본 개시의 일 실시 예에 따르면, PRB을 지시하는 방법으로 PRB ID을 활용하는 방법, startPRB 필드와 nrofPRBs 필드를 활용하는 방법과 소정의 비트맵 정보를 도입하는 방법을 제안한다.
옵션 1: 하나의 carrier 내의 PRB 구분을 위해 설정된 PRB ID을 활용하는 방법
기지국은 하나의 carrier 내의 하나의 PRB (Physical Resource Block)의 위치를 지시하기 위해, PRB ID을 설정할 수 있다. 단말은 IDC 문제를 겪고 있는 BWP을 지시하기 위해, 기 설정된 BWP-id을 이용할 수 있다. 다만, 상기 BWP ID는 하나의 셀 내에서만 유효하므로 (즉, 셀마다 재활용되는 아이디), BWP ID와 함께 상기 BWP에 대응하는 셀의 아이디 (예를 들어, 서빙셀 인덱스, CGI 혹은 PCI 정보) 혹은 셀 주파수 정보 (예를 들어, ARFCN-ValueNR)도 함께 보고될 수 있다.
옵션 2: startPRB 필드와 nrofPRBs 필드를 활용하는 방법
IDC 문제의 영향을 받고 있는 하나 이상의 연속된 PRB을 지시하기 위해, startPRB와 nrofPRBs 필드를 활용할 수 있다. startPRB 필드는 하나의 PRB을 지시하는 인덱스 (index) 정보이며, nrofPRBs 필드는 PRB의 개수를 지시하는 값이다. 이 때, startPRB 필드의 '0' 인덱스 값은 하나의 BWP의 첫번째 PRB 혹은 하나의 carrier의 첫번째 PRB을 나타낼 수 있다.
옵션 3: 신규 비트맵 정보 도입
하나의 carrier (혹은 셀) 혹은 BWP에 속한 각 PRB에 대응하는 비트로 구성된 비트맵을 도입한다. 하나의 PRB가 IDC 문제를 겪고 있다면, 상기 PRB에 대응하는 비트에 '0' 또는 '1' 값을 설정하여, 상기 상태를 지시할 수 있다. 첫번째 비트는 carrier 혹은 BWP에 속한 첫번째 PRB에 대응된다. 상기 비트맵은 이에 대응하는 셀의 아이디 (예를 들어, 서빙셀 인덱스, CGI 혹은 PCI 정보) 혹은 셀 주파수 정보 (예를 들어, ARFCN-ValueNR), BWP 정보도 함께 보고될 수 있다.
상기 BWP 및 PRB을 지시하는 방법들은 단독 혹은 혼용해서 적용할 수도 있다.
- 단말 선호 DRX 패턴 정보 (DRX assistance info)
단말은 IDC 문제를 제거 혹은 완화시키기 위해, 자신이 선호하는 DRX 패턴 정보를 기지국에 보고할 수 있다.
상기 DRX 패턴 정보는 drx-cycleLength, drx-Offset, drx-ActiveTime 필드들로 구성된다. 상기 필드 drx-cycleLength는 단말이 선호하는 DRX 사이클 길이 값을 의미한다. 상기 필드 drx-Offset는 단말이 선호하는 DRX 시작 오프셋 값을 의미한다. 상기 필드 drx-ActiveTime은 단말이 선호하는 active time 값을 의미한다.
본 개시에서는 상기 drx-cycleLength 및 drx-ActiveTime 값을 절대 시간 (예를 들어, ms 단위)로 설정하는 것을 특징으로 하며, 상기 필드 drx-Offset 는 서브프레임 혹은 슬롯 혹은 심볼 단위로 설정하는 것을 특징으로 한다.
일반적으로 DRX은 MAC entity별로 설정이 가능하다. 예를 들어, DC (Dual Connectivity)에서는 MN과 SN에 각각 MAC entity가 존재하므로, DC 상태에 있는 단말은 두 가지의 DRX을 각 MAC entity로부터 설정 받을 수 있다.
따라서 개시 발명에서는 상기 단말이 선호하는 DRX 패턴 정보를 복수 개 제공하는 것을 제안한다. 예를 들어, 단말은 cell group별, DRX group별 혹은 FR(Frequency Range)별로 각기 다른 선호하는 DRX 패턴 정보를 보고할 수 있다. 이 때, 각 패턴 정보를 구분하기 위해 신규 지시자들이 함께 기지국에 보고될 수 있다.
Per cell group: MCG and/or SCG index, applicable for all MR-DC types (even for EN-DC)
Per DRX group: default and/or secondary (per CG) index
Per FR: FR1 or FR2 index
특히, NR에서는 하나의 MAC entity에서 secondary DRX을 설정할 수 있게 개선되었다. 즉, 기지국은 default DRX와 secondary DRX의 두 종류의 DRX 설정 정보 세트를 단말에게 설정할 수 있다. 다만, secondary DRX 설정 정보에는 Drx-onDurationTimer와 drx-InactivityTimer만 포함될 수 있다. DRX cycle과 같은 나머지 설정 정보는 default DRX 설정 정보를 따른다. 이는 DRX cycle등이 달라짐으로써 발생할 수 있는 복잡도를 배제하기 위함이었다.
본 개시에서는 secondary DRX에 대해서도 단말이 선호하는 DRX 패턴 정보를 기지국에 보고할 수 있는 것을 특징으로 한다. 상기 DRX assistance info에서 drx-ActiveTime 값이 Secondary DRX에서의 Drx-onDurationTimer와 drx-InactivityTimer에 영향을 줄 수 있기 때문에, 상기 단말은 상기 secondary DRX에 대한 선호 패턴 정보로 drx-ActiveTime 필드만 보고할 수 있다. 그러나, 만약 단말이 default DRX에 대해 선호하는 패턴 정보를 기지국에 보고하지 않는다면, secondary DRX에 대한 선호 패턴 정보에 모든 DRX assistance info가 포함될 수도 있다.
상기 정보는 신규 drx-AssistanceInfo IE에 수납되며, 상기 신규 IE는 UEAssistanceInformation 메시지에 수납되어 단말에서 기지국으로 보고된다. 한편, UE power saving 목적으로, 단말은 자신이 선호하는 DRX 설정 정보를 UEAssistanceInformation 메시지를 통해 기지국에 보고할 수 있다 (하기 참고). 하기 IE가 IDC 문제 해결을 위한 단말 선호 패턴 정보로 재활용될 수도 있다.
Figure PCTKR2023005361-appb-img-000001
- 단말 선호 TDM 패턴 정보
단말은 IDC 문제를 제거 혹은 완화시키기 위해, 자신이 선호하는 TDM 패턴 정보를 기지국에 보고할 수 있다. 상기 TDM 패턴 정보는 bit string format을 가지며, 각 비트는 하나의 서브프레임 (subframe), 슬롯 (slot), 심볼 (symbol) 혹은 소정의 단위 시간과 대응될 수 있다. 상기 패턴은 N개의 서브프레임, 슬롯, 심볼 길이 혹은 소정의 단위 시간을 나타내며, 소정의 시점부터 시작되며, 연이어 반복될 수 있다. 패턴의 시작은 SFN mod x = 0 혹은 소정의 수식에 따라 결정될 수 있다. 예를 들어, 상기 소정의 수식이란 하기과 같을 수 있다.
[SFN*10+ subframe number] mod X = offset1, and/or
[SFN*number of slots per radio frame + slot number] mod X = offset2
여기서 X은 적용되는 수식에 따라 서브프레임 혹은 슬롯일 수 있으며, offset1, offset2 값은 기지국에 의해 설정되거나 미리 정의되어 있을 수 있다. 상기 두 수식은 단독 혹은 함께 고려될 수도 있다.
단말은 복수 개의 상기 TDM 패턴 정보를 기지국에 보고할 수 있다. 즉, cell group별 (혹은 MAC entity별), 주파수별, 셀별, BWP별, PRB별 혹은 DRX group별로 제공할 수도 있다. 이 때, 각 경우를 구분하기 위해, 하기 소정의 지시자들이 함께 보고될 수 있다.
Per cell group: MCG and/or SCG index, applicable for all MR-DC types (even for EN-DC)
Per freq: ARFCN-Value or meas object id
Per FR: FR1 or FR2 index
Per cell: ServCellIndex, CGI or PCI
Per BWP/PRB: BWP의 경우, BWP id 혹은 locationAndBandwidth 필드, PRB의 경우, startPRB 및 nroPRBs 필드 (상세한 BWP 혹은 PRB을 지시하는 방법은 앞서 기술하였다)
Per DRX group: default and/or secondary (per CG) index
- Hardware sharing 문제
단말은 hardware sharing에 문제가 있음을 지시하는 지시자 정보를 기지국에 보고할 수 있다. 이 때, 상기 단말은 hardware sharing에 문제가 있는 시스템의 종류 (예를 들어, NR, LTE, GPS, BT, WLAN ..) 혹은 hardware sharing에 문제를 야기시키는 NR 혹은 LTE 주파수 정보를 함께 보고할 수도 있다.
1e-35단계에서, 상기 정보를 수신한 상기 기지국(1e-10)은 상기 단말(1e-05)이 겪고 있는 IDC 문제를 분석하고, 이를 제거 혹은 완화하기 위해 재설정을 결정한다 (1e-35). (building new configuration based on the received Idc-Assistance field)
1e-40단계에서 상기 기지국(1-e01)은 재설정 정보를 RRCReconfiguration 메시지를 이용하여, 상기 단말(1e-05)에게 전송한다 (1e-40). (RRCReocnfiguration)
상기 단말(1e-05)이 IDC 문제를 겪을 때, Logged minimization of drive test(MDT) 동작을 수행하고 있을 수 있다. Logged MDT란 망 최적화에 필요한 정보를 단말이 주기적으로 기록하여, 기지국에 보고하는 기술이다. 기존에는 IDC 문제가 발생할 경우, 상기 단말은 Logged MDT 동작을 중지하고, IDC 문제에 영향을 받은 log에 IDC 문제로 인해 오염되었음을 지시하는 지시자를 포함시킨다.
그러나, IDC 문제가 특정 주파수, BWP, PRB에 대해서만 발생하였을 경우, Logged MDT 동작을 중지하는 것보다는 IDC 문제로 인해 오염된 측정 정보만 log에서 제외하는 것이 효율적이다.
따라서, 본 개시의 일 실시 예에 따르면, IDC 문제가 발생한 기간에 기록되는 log에서는 IDC 문제를 겪은 측정 정보를 log에서 제외시키고, IDC 문제로 인해 제외된 측정 결과가 있음을 지시하는 지시자가 포함될 수 있다. 또는 IDC 문제로 인해 log에서 배제된 주파수 정보를 log에 포함시킬 수도 있다.
단말은 기지국에서 자신의 능력 정보를 보고하며, 상기 능력 정보는 IDC 문제가 발생할 시 Logged MDT 동작을 수행할 수 있음을 지시하는 지시자가 포함된다. 상기 기지국은 LoggedMeasurementConfiguration 메시지를 이용하여, IDC 문제가 발생 시에도 Logged MDT 동작을 수행하라고 상기 단말에게 설정할 수 있다.
상기 단말은 RRC_IDLE 혹은 RRC_INACTIVE 상태로 전환되면, 상기 설정 정보에 따라 Logged MDT 동작을 수행한다. 이 때, IDC 문제가 특정 주파수, BWP, PRB에 대해서만 발생하였다고 인지하면, 상기 단말은 IDC 문제에 영향을 받은 측정 정보를 기록하는 동작을 중지한다. 대신, IDC 문제로 인해 제외된 측정 결과가 있음을 지시하는 지시자 또는 IDC 문제로 인해 log에서 배제된 주파수/BWP/PRB 정보를 log에 포함시킨다.
상기 기록된 정보는 상기 단말이 연결 모드로 전환된 후, UE Information procedure (UEInformationRequest 및 UEInformationResponse 메시지)을 통해 기지국에 보고될 수 있다.
도 1f는 본 개시의 일 실시 예에 따른 단말 동작의 순서도이다.
1f-05 단계에서 단말은 기지국에게 자신이 상기 소정의 IDC(In-Device Coexistence) 정보를 보고할 수 있는 능력이 있음을 보고한다. (Reporting UE capabilities)
1f-10 단계에서 상기 단말은 상기 기지국으로부터 RRCReconfiguration 메시지를 수신한다. 상기 메시지에는 idc-AssistanceConfig IE가 포함된 OtherConfig IE가 수납되어 있다. 상기 IE idc-AssistanceConfig은 상기 단말이 상기 소정의 정보를 자신에게 보고할 수 있음을 설정하는데 이용된다. (Receiving OtherConfig IE)
1f-15 단계에서 상기 단말은 자신의 IDC 문제를 겪고 있는지 여부를 판단한다. (Evaluating If UE experiences IDC problem)
1f-20 단계에서 상기 단말은 상기 제안하는 정보를 포함한 UEAssistanceInformation 메시지를 전송한다. (Transmitting UEAssistanceInformation including the IDC-Assistance IE)
도 1g는 본 개시의 일 실시 예에 따른 기지국 동작의 순서도이다.
1g-05 단계에서 기지국은 단말로부터 단말 능력 정보를 수신한다. (Receiving UE capabilities)
1g-10 단계에서 상기 기지국은 idc-AssistanceConfig필드가 포함된 IE otherConfig을 상기 단말에게 전송한다. (Transmitting IE OtherConfig)
1g-15 단계에서 상기 기지국은 상기 단말로부터 UEAssistanceInformation 메시지를 수신한다. 상기 메시지에는 IDC-Assistance 필드가 포함될 수 있다. (Receiving UEAssistanceinformation)
1g-20 단계에서 상기 기지국은 상기 수신한 정보를 기반으로 설정 파라미터들을 구성한다. (Building configuration while identifying IDC problem experienced by UE)
1g-25 단계에서 상기 기지국은 상기 설정 정보를 RRCReconfiguration 메시지에 수납하여, 상기 단말에게 전송한다. (Transmitting RRCReconfiguration)
도 1h는 본 개시의 일 실시 예에 따른 단말의 내부 구조를 도시하는 블록도이다.
상기 도면을 참고하면, 상기 단말은 RF(Radio Frequency)처리부(1h-10), 기저대역(baseband)처리부(1h-20), 저장부(1h-30), 제어부(1h-40)를 포함한다.
상기 RF처리부(1h-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(1h-10)는 상기 기저대역처리부(1h-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF처리부(1h-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 단말은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(1h-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(1h-10)는 빔포밍(beamforming)을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(1h-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다.
상기 기저대역처리부(1h-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(1h-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(1h-20)은 상기 RF처리부(1h-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(1h-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(1h-20)은 상기 RF처리부(1h-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다.
상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상기 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.
상기 저장부(1h-30)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(1h-30)는 제2무선 접속 기술을 이용하여 무선 통신을 수행하는 제2접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 상기 저장부(1h-30)는 상기 제어부(1h-40)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(1h-40)는 상기 단말의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(1h-40)는 상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10)을 통해 신호를 송수신한다. 또한, 상기 제어부(1h-40)는 상기 저장부(1h-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1h-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부(1h-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다.
도 1i는 본 개시의 일 실시 예에 따른 기지국의 구조를 도시하는 블록도이다.
상기 도면에 도시된 바와 같이, 상기 기지국은 RF처리부(1i-10), 기저대역처리부(1i-20), 백홀통신부(1i-30), 저장부(1i-40), 제어부(1i-50)를 포함하여 구성된다.
상기 RF처리부(1i-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(1i-10)는 상기 기저대역처리부(1i-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF처리부(1i-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 제1접속 노드는 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(1i-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(1i-10)는 빔포밍을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(1i-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
상기 기저대역처리부(1i-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(1i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(1i-20)은 상기 RF처리부(1i-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(1i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(1i-20)은 상기 RF처리부(1i-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 기저대역처리부(1i-20) 및 상기 RF처리부(1i-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(1i-20) 및 상기 RF처리부(1i-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
상기 백홀통신부(1i-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀통신부(1i-30)는 상기 주기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.
상기 저장부(1i-40)는 상기 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(1i-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부(1i-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부(1i-40)는 상기 제어부(1i-50)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(1i-50)는 상기 주기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(1i-50)는 상기 기저대역처리부(1i-20) 및 상기 RF처리부(1i-10)을 통해 또는 상기 백홀통신부(1i-30)을 통해 신호를 송수신한다. 또한, 상기 제어부(1i-50)는 상기 저장부(1i-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1i-50)는 적어도 하나의 프로세서를 포함할 수 있다.
본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.
상술한 본 개시의 구체적인 실시 예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다.
한편, 본 발명의 방법을 설명하는 도면에서 설명의 순서가 반드시 실행의 순서와 대응되지는 않으며, 선후 관계가 변경되거나 병렬적으로 실행될 수도 있다.
또는, 본 발명의 방법을 설명하는 도면은 본 발명의 본질을 해치지 않는 범위 내에서 일부의 구성 요소가 생략되고 일부의 구성요소만을 포함할 수 있다.
또한, 본 발명의 방법은 발명의 본질을 해치지 않는 범위 내에서 각 실시예에 포함된 내용의 일부 또는 전부가 조합되어 실행될 수도 있다.
본 개시의 다양한 실시예들이 전술되었다. 전술한 본 개시의 설명은 예시를 위한 것이며, 본 개시의 실시예들은 개시된 실시예들에 한정되는 것은 아니다. 본 개시가 속하는 기술분야의 통상의 지식을 가진 자는 본 개시의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 본 개시의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 개시의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 무선 통신 시스템에서 복수 개의 셀 그룹에 연결된 단말이 수행하는 방법에 있어서,
    기지국으로부터, 상기 복수 개의 셀 그룹 (Cell Group) 각각에 대한 기기 내 공존(In-Device Coexistence, IDC) 문제를 해결하기 위한 자동 부정(Autonomous Denial) 관련 설정 정보를 수신하는 단계;
    상기 복수 개의 셀 그룹 각각에 대해, IDC 문제가 발생하였는지 여부를 판단하는 단계; 및
    상기 복수 개의 셀 그룹 중, 특정 셀 그룹에서 상기 IDC 문제가 발생하였다고 판단 한 경우, 상기 IDC 문제가 발생한 특정 셀 그룹에 대해 설정된 Autonomous Denial 관련 설정 정보에 기반하여, 상기 특정 셀 그룹에서의 상향 링크 전송을 중단하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 Autonomous Denial 관련 설정 정보는 Autonomous Denial을 수행 할 수 있는 유효 시간과 관련된 제1 정보, 또는 상기 유효 시간 내 상향 링크를 전송하지 않을 시간과 관련된 제2 정보를 포함하며,
    상기 제1 정보 또는 상기 제2 정보는 슬롯(slot) 단위로 결정되는 것을 특징으로 하는 방법.
  3. 제 2항에 있어서,
    상기 IDC 문제가 발생한 이후, 상기 제2 정보에서 결정된 시간이 지난 경우, 상향 링크 전송을 수행하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  4. 제 1항에 있어서,
    상기 기지국으로 상기 IDC 문제를 보고 할 수 있는 능력이 있음을 보고하기 위한 단말 능력 정보를 전송하는 단계를 더 포함하며,
    상기 단말 능력 정보는 상기 단말이 Autonomous Denial 기능을 지원하는지 여부에 관한 정보를 포함하는 것을 특징으로 하는 방법.
  5. 무선 통신 시스템에서의 기지국이 수행하는 방법에 있어서,
    제1 셀 그룹 (Cell Group)의 자동 부정 (Autonomous Denial) 관련 설정 정보 및 제2 셀 그룹의 Autonomous Denial 관련 설정 정보를 포함하는 기기 내 공존(In-Device Coexistence, IDC) 문제를 해결하기 위한 Autonomous Denial 관련 설정 정보를 획득하는 단계;
    단말로, 상기 Autonomous Denial 관련 설정 정보를 전송하는 단계; 및
    상기 제1 셀 그룹 또는 상기 제2 셀 그룹 중 어느 한 특정 셀 그룹과 관련하여 단말 내IDC 문제가 발생한 경우, 상기 IDC 문제가 발생한 특정 셀 그룹에 상응하는 Autonomous Denial 관련 설정 정보에 기반하여, 상향 링크 전송을 수신하지 않는 단계를 포함하는 것을 특징으로 하는 방법.
  6. 제 5항에 있어서,
    상기 Autonomous Denial 관련 설정 정보는 Autonomous Denial을 수행 할 수 있는 유효 시간과 관련된 제1 정보, 또는 상기 유효 시간 내 상향 링크를 전송하지 않을 시간과 관련된 제2 정보를 포함하며,
    상기 제1 정보 또는 상기 제2 정보는 슬롯(slot) 단위로 결정되는 것을 특징으로 하는 방법.
  7. 제 6항에 있어서,
    상기 IDC 문제가 발생 한 특정 셀 그룹에서, 상기 IDC 문제가 발생한 이후, 상기 제2 정보에서 결정된 시간이 지난 경우 상향 링크 전송을 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  8. 제 5항에 있어서,
    상기 단말로부터, 상기 IDC 문제를 보고 할 수 있는 능력이 있음을 보고하기 위한 단말 능력 정보를 수신하는 단계를 더 포함하며,
    상기 단말 능력 정보는 상기 단말이 Autonomous Denial 기능을 지원하는지 여부에 관한 정보를 포함하는 것을 특징으로 하는 방법.
  9. 무선 통신 시스템에서의 복수 개의 셀 그룹에 연결된 단말에 있어서,
    신호를 송수신하는 송수신부; 및
    제어부를 포함하며,
    상기 제어부는, 기지국으로부터, 상기 복수 개의 셀 그룹 (Cell Group) 각각에 대한 기기 내 공존(In-Device Coexistence, IDC) 문제를 해결하기 위한 자동 부정(Autonomous Denial) 관련 설정 정보를 수신하고, 상기 복수 개의 셀 그룹 각각에 대해, IDC 문제가 발생하였는지 여부를 판단하며, 상기 복수 개의 셀 그룹 중, 특정 셀 그룹에서 상기 IDC 문제가 발생하였다고 판단 한 경우, 상기 IDC 문제가 발생한 특정 셀 그룹에 대해 설정된 Autonomous Denial 관련 설정 정보에 기반하여, 상기 특정 셀 그룹에서의 상향 링크 전송을 중단하는 것을 특징으로 하는 단말.
  10. 제 9항에 있어서,
    상기 Autonomous Denial 관련 설정 정보는 Autonomous Denial을 수행 할 수 있는 유효 시간과 관련된 제1 정보, 또는 상기 유효 시간 내 상향 링크를 전송하지 않을 시간과 관련된 제2 정보를 포함하며,
    상기 제1 정보 또는 상기 제2 정보는 슬롯(slot) 단위로 결정되는 것을 특징으로 하는 단말.
  11. 제 10항에 있어서,
    상기 제어부는, 상기 IDC 문제가 발생한 이후, 상기 제2 정보에서 결정된 시간이 지난 경우, 상향 링크 전송을 수행하는 것을 특징으로 하는 단말.
  12. 제 9항에 있어서,
    상기 제어부는, 상기 기지국으로 상기 IDC 문제를 보고 할 수 있는 능력이 있음을 보고하기 위한 단말 능력 정보를 전송하는 것을 특징으로 하며,
    상기 단말 능력 정보는 상기 단말이 Autonomous Denial 기능을 지원하는지 여부에 관한 정보를 포함하는 것을 특징으로 하는 단말.
  13. 무선 통신 시스템에서의 기지국에 있어서,
    신호를 송수신하는 송수신부; 및
    제어부를 포함하며,
    상기 제어부는, 제1 셀 그룹 (Cell Group)의 자동 부정 (Autonomous Denial) 관련 설정 정보 및 제2 셀 그룹의 Autonomous Denial 관련 설정 정보를 포함하는 기기 내 공존(In-Device Coexistence, IDC) 문제를 해결하기 위한 Autonomous Denial 관련 설정 정보를 획득하고, 단말로, 상기 Autonomous Denial 관련 설정 정보를 전송하며, 상기 제1 셀 그룹 또는 상기 제2 셀 그룹 중 어느 한 특정 셀 그룹과 관련하여 단말 내IDC 문제가 발생한 경우, 상기 IDC 문제가 발생한 특정 셀 그룹에 상응하는 Autonomous Denial 관련 설정 정보에 기반하여, 상향 링크 전송을 수신하지 않는 단계를 포함하는 것을 특징으로 하는 기지국.
  14. 제 13항에 있어서,
    상기 Autonomous Denial 관련 설정 정보는 Autonomous Denial을 수행 할 수 있는 유효 시간과 관련된 제1 정보, 또는 상기 유효 시간 내 상향 링크를 전송하지 않을 시간과 관련된 제2 정보를 포함하고, 상기 제1 정보 또는 상기 제2 정보는 슬롯(slot) 단위로 결정되며,
    상기 제어부는, 상기 IDC 문제가 발생 한 특정 셀 그룹에서, 상기 IDC 문제가 발생한 이후, 상기 제2 정보에서 결정된 시간이 지난 경우 상향 링크 전송을 수신하는 단계를 더 포함하는 것을 특징으로 하는 기지국.
  15. 제 13항에 있어서,
    상기 제어부는 상기 단말로부터, 상기 IDC 문제를 보고 할 수 있는 능력이 있음을 보고하기 위한 단말 능력 정보를 수신하는 것을 특징으로 하며,
    상기 단말 능력 정보는 상기 단말이 Autonomous Denial 기능을 지원하는지 여부에 관한 정보를 포함하는 것을 특징으로 하는 기지국.
PCT/KR2023/005361 2022-04-29 2023-04-20 이동통신 시스템에서 idc 문제를 보고하는 방법 및 장치 WO2023211054A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220053570A KR20230153755A (ko) 2022-04-29 2022-04-29 이동통신 시스템에서 idc 문제를 보고하는 방법 및 장치
KR10-2022-0053570 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023211054A1 true WO2023211054A1 (ko) 2023-11-02

Family

ID=88519325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005361 WO2023211054A1 (ko) 2022-04-29 2023-04-20 이동통신 시스템에서 idc 문제를 보고하는 방법 및 장치

Country Status (2)

Country Link
KR (1) KR20230153755A (ko)
WO (1) WO2023211054A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130114583A1 (en) * 2011-11-04 2013-05-09 Sharp Laboratories Of America, Inc. In-device coexistence interference avoidance (idc)
US20140126552A1 (en) * 2012-11-02 2014-05-08 Qualcomm Incorporated Autonomous denial configurations for multi-radio coexistence
US20140369187A1 (en) * 2013-06-12 2014-12-18 Broadcom Corporation Cellular In-Device Coexistence (IDC) Advanced Coexistence Algorithm
US20170245199A1 (en) * 2014-08-08 2017-08-24 Lg Electronics Inc. Method and apparatus for performing autonomous denial for dual connectivity in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130114583A1 (en) * 2011-11-04 2013-05-09 Sharp Laboratories Of America, Inc. In-device coexistence interference avoidance (idc)
US20140126552A1 (en) * 2012-11-02 2014-05-08 Qualcomm Incorporated Autonomous denial configurations for multi-radio coexistence
US20140369187A1 (en) * 2013-06-12 2014-12-18 Broadcom Corporation Cellular In-Device Coexistence (IDC) Advanced Coexistence Algorithm
US20170245199A1 (en) * 2014-08-08 2017-08-24 Lg Electronics Inc. Method and apparatus for performing autonomous denial for dual connectivity in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Introduction of UE capability for Rel-17 sidelink", 3GPP TSG-RAN WG2 MEETING #118-E, R2-2204644, 26 April 2022 (2022-04-26), XP052142672 *

Also Published As

Publication number Publication date
KR20230153755A (ko) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2022158938A1 (en) Method and user equipment for determining resource for sidelink communication
WO2019013571A1 (en) METHOD AND APPARATUS FOR CONFIGURING CONTROL RESOURCE SET FOR 5G NEXT RADIO SYSTEM
WO2018139904A1 (ko) 무선 통신 시스템에서 데이터 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2021215884A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2022240190A1 (en) Apparatus and method for multiplexing switching of integrated access and backhaul node in wireless communication system
WO2022025382A1 (en) Method and apparatus for doppler pre-compensation
WO2020055137A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2022235117A1 (en) Method and apparatus for supporting system information acquisition by sidelink remote terminal over sidelink relay
WO2023211054A1 (ko) 이동통신 시스템에서 idc 문제를 보고하는 방법 및 장치
WO2023239113A1 (ko) 무선 통신 시스템에서 네트워크 전력감소 모드 동작을 위한 방법 및 장치
WO2023191301A1 (ko) 무선통신 시스템에서 비-서빙 셀을 통한 동기화 신호 블록의 송수신 방법 및 장치
WO2023211091A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 위한 단말 간 협력 정보의 관리 방법 및 장치
WO2023090970A1 (ko) 차세대 이동통신 시스템에서 복수 개의 sim을 지원하는 방법 및 장치
WO2023204605A1 (ko) 무선 통신 시스템에서 qoe 설정을 브로드캐스트 하기 위한 방법 및 장치
WO2023211101A1 (en) Method and device for saving energy in wireless communication system
WO2024071953A1 (ko) 무선 통신 시스템에서 네트워크 에너지 절약을 위한 sps 및 cg 송수신 방법 및 장치
WO2024128730A1 (ko) 무선 통신 시스템에서 idc 관련 정보를 송수신하는 방법 및 장치
WO2023219344A1 (en) Method and apparatus to optimize conditional pscell addition and change in wireless communication systems
WO2024096651A1 (ko) 차세대 이동통신 시스템에서 물리 계층 및 mac 계층 지시를 통한 핸드오버의 실패 처리 방법
WO2022211529A1 (en) Beam management method and device
WO2024085485A1 (en) Apparatus and method for handling cell switch off for network energy saving in wireless communication system
WO2024019508A1 (ko) 무선 통신 시스템에서 통일된 빔 기법을 적용할 때 srs를 활성화하는 mac ce를 적용하는 방법 및 장치
WO2023054986A1 (ko) 대역폭에 기반한 무선 통신 시스템의 운용 방법 및 장치
WO2023243978A1 (ko) 무선 통신 시스템에서 특정 기능을 지원하는 랜덤 액세스 설정 및 랜덤 액세스 처리에 대한 랜덤 액세스 보고를 처리하는 장치 및 방법
WO2024117885A1 (en) Method and apparatus for energy savings of a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796701

Country of ref document: EP

Kind code of ref document: A1