WO2023210710A1 - Cooling structure, and structure - Google Patents

Cooling structure, and structure Download PDF

Info

Publication number
WO2023210710A1
WO2023210710A1 PCT/JP2023/016524 JP2023016524W WO2023210710A1 WO 2023210710 A1 WO2023210710 A1 WO 2023210710A1 JP 2023016524 W JP2023016524 W JP 2023016524W WO 2023210710 A1 WO2023210710 A1 WO 2023210710A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling structure
packaging material
outer packaging
joint component
joint
Prior art date
Application number
PCT/JP2023/016524
Other languages
French (fr)
Japanese (ja)
Inventor
広明 庄田
孝宏 山下
誠一 伊藤
裕二 福川
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023210710A1 publication Critical patent/WO2023210710A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to a cooling structure and a structure.
  • a vehicle equipped with a motor such as a hybrid vehicle or an electric vehicle, is equipped with a drive means for driving the motor.
  • the driving means includes a power module including a plurality of power semiconductors such as IGBTs (Insulated Gate Bipolar Transistors), electronic components such as capacitors, bus bars that electrically connect these electronic components, and the like.
  • IGBTs Insulated Gate Bipolar Transistors
  • capacitors capacitors
  • bus bars that electrically connect these electronic components, and the like.
  • the driving means since the driving means generates heat due to switching loss, resistance loss, etc., it is desirable to cool the driving means efficiently. Furthermore, it is desirable to efficiently cool heat generated from battery modules mounted on vehicles.
  • a cooling structure As a material for a structure (hereinafter also referred to as a cooling structure) for cooling an object that generates heat (hereinafter also referred to as a cooled object), a metal with high thermal conductivity such as aluminum is generally used.
  • a metal with high thermal conductivity such as aluminum is generally used.
  • the inner core has an uneven structure to form a flow path inside the bag-shaped outer packaging material, which is made of a laminate material in which both sides of a metal heat transfer layer are laminated with resin layers.
  • a cooling structure in which materials are arranged has been proposed (for example, see Patent Document 1).
  • the cooling structure described in Patent Document 1 is provided with a refrigerant inlet and an outlet on the side surface of the cooling structure, but depending on the shape of the object to be cooled, the condition of the installation space, etc. It is desirable that a refrigerant inlet and an outlet be provided on one of the main surfaces of the refrigerant. However, it has been found that when the refrigerant inlet and outlet are provided on one of the main surfaces of the cooling structure described in Patent Document 1, wrinkles may occur in the outer packaging material. When the thickness of the cooling structure is thin, wrinkles generated in the outer packaging material may compress the internal space and impede the flow of the refrigerant. For this reason, it is desirable to suppress the occurrence of wrinkles in the outer packaging material. In view of this situation, an object of the present disclosure is to provide a cooling structure in which the occurrence of wrinkles in an outer packaging material is suppressed, a structure including the cooling structure, and a method for manufacturing the cooling structure.
  • Means for solving the above problems include the following aspects.
  • ⁇ 1> Comprising a first outer packaging material, a second outer packaging material, and a joint component, The cooling structure, wherein the joint part is fixed to a first outer wrapper and not fixed to a second outer wrapper.
  • ⁇ 2> The cooling structure according to ⁇ 1>, wherein the joint component includes a joint portion and a base, and the base is fixed to the first outer wrapping material.
  • ⁇ 3> The cooling structure according to ⁇ 1> or ⁇ 2>, further comprising an inner core material disposed between the first outer wrapping material and the second outer wrapping material.
  • ⁇ 4> A structure comprising the cooling structure according to any one of ⁇ 1> to ⁇ 3> and a cooled object provided at a position facing the first outer wrapping material of the cooling structure.
  • a method for manufacturing a cooling structure the method comprising: fixing a first outer wrapping material to which the joint component is fixed, and a second outer wrapping material.
  • a cooling structure in which the occurrence of wrinkles in an outer packaging material is suppressed a structure including this cooling structure, and a method for manufacturing the cooling structure are provided.
  • FIG. 1 is a schematic perspective view showing an example of the appearance of a cooling structure of the present disclosure.
  • 2 is a schematic cross-sectional view showing the internal structure of the cooling structure shown in FIG. 1.
  • FIG. It is a figure which shows an example of the manufacturing process of a cooling structure different from this disclosure. It is a figure showing an example of the manufacturing process of the cooling structure of this indication.
  • 2 is a schematic cross-sectional view showing the internal structure of the cooling structure shown in FIG. 1.
  • the configuration of the embodiments is not limited to the configuration shown in the drawings.
  • the sizes of the members in each figure are conceptual, and the relative size relationships between the members are not limited thereto.
  • members having substantially the same function are given the same reference numerals in all drawings, and redundant explanations will be omitted.
  • the term "layer” includes not only the case where the layer is formed in the entire area when observing the area where the layer exists, but also the case where the layer is formed only in a part of the area. included.
  • the term “laminate” refers to stacking layers, and two or more layers may be bonded, or two or more layers may be removable.
  • the cooling structure of the present disclosure includes: Comprising a first outer packaging material, a second outer packaging material, and a joint component,
  • the joint component is a cooling structure fixed to the first outer wrapper and not fixed to the second outer wrapper.
  • cooling structure refers to an object that cools an object to be cooled by circulating a refrigerant therein.
  • joint component refers to a component that allows refrigerant to flow into or flow out of the cooling structure.
  • FIG. 1 is a schematic perspective view showing the appearance of a cooling structure according to one embodiment of the present disclosure.
  • the cooling structure 100 shown in FIG. 1 includes a first outer packaging material 10A, a first joint component 20A disposed at a refrigerant inlet, and a second joint component 20B disposed at a refrigerant outlet. There is.
  • a second outer wrapping material 10B (not shown) is arranged on the opposite side of the first outer wrapping material 10A of the cooling structure 100.
  • FIG. 2 is a cross-sectional view schematically showing an example of the internal structure of the cooling structure 100 shown in FIG. 1. Specifically, it is a cross-sectional view taken along the line AA of the cooling structure 100 shown in FIG.
  • first outer packaging material 10A and the second outer packaging material 10B are arranged facing each other and fixed at their ends.
  • a first joint component 20A and a second joint component 20B are each fixed to the first outer packaging material 10A.
  • the first joint part 20A and the second joint part 20B each include a joint part a for attaching refrigerant piping and a base part b to be fixed to the first outer packaging material, and each base part b is attached to the first outer packaging material. It is fixed to the material 10A.
  • the cooling structure 100 configured as shown in FIGS. 1 and 2 is arranged such that the surface on the first outer packaging material 10A side faces an object to be cooled such as a battery module, and the joint portion of the first joint component 20A Refrigerant piping is attached to the joint part a of the joint part a and the second joint part 20B, respectively.
  • the refrigerant flows into the joint part a of the first joint part 20A and flows out from the joint part a of the second joint part 20B.
  • the first joint component 20A and the second joint component 20B are provided near both ends of the cooling structure 100, but the invention is not limited to this case.
  • both the first joint component 20A and the second joint component 20B are provided near one end of the cooling structure 100, and the refrigerant flowing from the first joint component 20A reciprocates inside the cooling structure. It may flow out from the second joint component 20B.
  • the first joint component 20A and the second joint component 20B are fixed only to the first outer packaging material 10A. Therefore, wrinkles are less likely to occur in the second outer packaging material 10B compared to the case where the first joint component 20A and the second joint component 20B are fixed to both the first outer packaging material 10A and the second outer packaging material 10B. The reason will be explained based on FIGS. 3 and 4.
  • the joint component 20 shown in FIGS. 3 and 4 may be either the first joint component 10A or the second joint component 10B.
  • FIG. 3 is a diagram schematically showing an example of a manufacturing process of a cooling structure in which a joint component is fixed to both a first outer wrapping material and a second outer wrapping material.
  • the joint component 20 used in the method shown in FIG. 3 includes a joint part a, a base part b, and a leg part c, in which the base part b is fixed to the first outer packaging material 10A, and the leg part c is fixed to the second outer packaging material 10B. Ru.
  • the joint component 20 is placed between the first outer packaging material 10A and the second outer packaging material 10B.
  • FIG. 3A the joint component 20 is placed between the first outer packaging material 10A and the second outer packaging material 10B.
  • the joint component 20 expands due to heat applied by a hot plate or the like used for welding, and the diameter d1 of the base b expands to become d2, and is fixed to the second outer packaging material 10B.
  • the second outer wrapping material 10B also expands due to the heat, but its expansion coefficient is different from that of the joint component 20. Therefore, when the joint component 20 contracts due to cooling and the diameter d2 of the base b returns to the original dimension d1, the dimensions of the second outer packaging material 10B do not return to the original dimensions, and the second outer packaging material 10B Wrinkles occur in the part where the joint part 20 is not welded (that is, the part corresponding to the part between the legs c of the joint part 20).
  • FIG. 4 is a diagram schematically showing an example of a manufacturing process of a cooling structure in which a joint component is fixed only to a first outer packaging material.
  • the base b of the joint component 20 is fixed to the first outer packaging material 10A.
  • the end of the first outer packaging material 10A is fixed to the end of the second outer packaging material 10B.
  • each fixed portion is cooled.
  • the joint component 20 is not fixed to the second outer packaging material 10B. Therefore, even if the diameter of the base b of the joint component 20 expands from d1 to d2 or contracts from d2 to d1 due to the heat applied to the joint component 20 when fixing is performed by welding or the like, the second outer packaging material 10B No wrinkles will occur.
  • the material of the outer packaging material is not particularly limited, but preferably contains metal from the viewpoint of thermal conductivity.
  • the metal material include aluminum, aluminum alloy, copper, copper alloy, stainless steel, and nickel.
  • the outer packaging material may contain only one kind of metal or two or more kinds of metals. From the viewpoint of thermal conductivity, cost, etc., aluminum is preferable.
  • the metal contained in the outer packaging material may be in the form of plated metal foil, clad metal made by bonding different metals, or the like.
  • the outer packaging material has a resin layer on at least one surface.
  • the outer wrapping materials or the outer wrapping material and the joint component can be fixed by welding, for example.
  • the material of the resin layer is not particularly limited.
  • examples include polyolefins such as polyethylene and polypropylene or modified resins thereof, fluororesins, polyesters such as polyethylene terephthalate, and thermoplastic resins such as polyvinyl chloride. Since these resins have excellent weldability, they are also useful in that the outer wrapping materials or the outer wrapping material and the inner core material can be easily fixed to each other by heating.
  • the outer packaging material is preferably a laminate having a metal layer and a resin layer. It is more preferable that the laminate has the following.
  • the resins contained in the resin layers placed on both sides of the metal layer may be of the same type or different types. Good too.
  • a resin layer corresponding to the outer surface of the cooling structure of the outer packaging material is arranged with consideration to heat resistance, etc., and a resin layer on the opposite side is arranged to prevent welding between the outer packaging materials or between the outer packaging material and the joint parts.
  • the resin layer may be arranged taking this into consideration.
  • the thickness of the metal layer is not particularly limited. From the viewpoint of strength and thermal conductivity, the thickness of the metal layer is preferably 4 ⁇ m or more, more preferably 6 ⁇ m or more, and even more preferably 8 ⁇ m or more. From the viewpoint of thinning, the thickness of the metal layer is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less. From this viewpoint, the thickness of the metal layer is preferably 4 ⁇ m to 300 ⁇ m, more preferably 6 ⁇ m to 200 ⁇ m, and even more preferably 8 ⁇ m to 100 ⁇ m.
  • the thickness of the resin layer is not particularly limited. From the viewpoints of insulation, sufficient protection of the metal layer, adhesion to the object to be heat exchanged, etc., the thickness of the resin layer is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and 20 ⁇ m or more. It is even more preferable that there be. From the viewpoint of thinning, the thickness of the resin layer is preferably 5000 ⁇ m or less, more preferably 3000 ⁇ m or less, and even more preferably 1000 ⁇ m or less. From this viewpoint, the thickness of the resin layer is preferably 10 ⁇ m to 5000 ⁇ m, more preferably 15 ⁇ m to 3000 ⁇ m, and even more preferably 20 ⁇ m to 1000 ⁇ m.
  • the thickness of the resin layer represents the thickness of each resin layer.
  • the thickness of the resin layer on the inside of the cooling structure must be equal to or greater than the thickness of the resin layer on the outside. Good too.
  • the method of laminating the metal layer and the resin layer is not particularly limited.
  • they may be laminated using an adhesive or by a known lamination method.
  • the overall thickness of the outer packaging material can be designed depending on the material of the outer packaging material, desired function, etc.
  • the total thickness of the outer packaging material may be 4 ⁇ m to 15,000 ⁇ m, 10 ⁇ m to 10,000 ⁇ m, or 30 ⁇ m to 5,000 ⁇ m.
  • the joint component is not particularly limited as long as it has a shape that can be fixed to the first outer packaging material.
  • the joint component may be an object including, for example, a joint portion for attaching refrigerant piping and a base portion for fixing to the first outer packaging material.
  • the material of the joint parts is not particularly limited.
  • the joint component When the joint component is fixed to the first outer packaging material by welding, the joint component preferably contains a thermoplastic resin. Joint components containing thermoplastic resin can be manufactured by known methods such as injection molding.
  • the joint parts arranged in the cooling structure may be a combination of a joint part that allows the refrigerant to flow into the cooling structure and a joint part that allows the refrigerant to flow out from the inside of the cooling structure.
  • the joint component may be in a state in which a joint part through which the refrigerant flows in and a joint part through which the refrigerant flows out are integrated.
  • the position of the joint parts placed in the cooling structure is not particularly limited.
  • a joint part that allows the refrigerant to flow in and a joint part that allows the refrigerant to flow out may be arranged at both ends of the cooling structure, and a joint part that allows the refrigerant to flow into one end of the cooling structure and a joint part that allows the refrigerant to flow out of the cooling structure may be arranged at both ends of the cooling structure.
  • Joint parts may also be arranged.
  • the cooling structure may include an inner core disposed between the first outer wrapper and the second outer wrapper.
  • the inner core material disposed between the first outer wrapping material and the second outer wrapping material serves, for example, to form a flow path for the refrigerant to flow inside the cooling structure, and to serve as a support supporting the internal space of the cooling structure.
  • the inner core material may be a sheet-like material having an uneven shape.
  • the sheet-like object having an uneven shape include a sheet-like object that is folded into a corrugated shape by corrugating or pleating, a sheet-like object that has unevenness such as projections formed by embossing, and the like.
  • FIG. 5 is a schematic cross-sectional view showing the internal structure of the cooling structure when the inner core material folded into a corrugated shape is arranged between the first outer wrapping material and the second outer wrapping material.
  • FIG. 5 is a cross-sectional view of the cooling structure 100 shown in FIG. 1 taken along line BB.
  • the inner core member 30 serves as a support supporting the internal space of the cooling structure.
  • the cross-sectional shape of the inner core material shown in FIG. 5 is an example, and the present disclosure is not limited thereto. For example, the number of folds of the inner core may be different from the number shown in FIG.
  • the material of the inner core material is not particularly limited, but preferably contains metal from the viewpoint of thermal conductivity.
  • the metal material include aluminum, aluminum alloy, copper, copper alloy, stainless steel, and nickel.
  • the inner core material may contain only one kind of metal or two or more kinds of metals. From the viewpoint of thermal conductivity, cost, etc., aluminum is preferable.
  • the metal contained in the inner core material may be in the form of plated metal foil, clad metal made by bonding different metals, or the like.
  • At least the surface of the inner core material is made of resin. Since the surface of the inner core material is made of resin, the inner core material and the outer wrapping material can be fixed by welding, for example.
  • the material of the resin is not particularly limited.
  • examples include polyolefins such as polyethylene and polypropylene or modified resins thereof, fluororesins, polyesters such as polyethylene terephthalate, and thermoplastic resins such as polyvinyl chloride. Since these resins have excellent weldability, they are also useful in that the outer wrapping materials or the outer wrapping material and the inner core material can be easily fixed to each other by heating.
  • the inner core material is preferably a laminate having a metal layer and a resin layer. More preferably, it is a laminate having:
  • the resins contained in the resin layers placed on both sides of the metal layer may be of the same type or different types. Good too.
  • the thickness of the metal layer is not particularly limited. From the viewpoint of strength and thermal conductivity, the thickness of the metal layer is preferably 4 ⁇ m or more, more preferably 6 ⁇ m or more, and even more preferably 8 ⁇ m or more. From the viewpoint of thinning, the thickness of the metal layer is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less. From this viewpoint, the thickness of the metal layer is preferably 4 ⁇ m to 300 ⁇ m, more preferably 6 ⁇ m to 200 ⁇ m, and even more preferably 8 ⁇ m to 100 ⁇ m.
  • the thickness of the resin layer is not particularly limited. From the viewpoints of insulation, sufficient protection of the metal layer, adhesion to the object to be heat exchanged, etc., the thickness of the resin layer is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and 20 ⁇ m or more. It is even more preferable that there be. From the viewpoint of thinning, the thickness of the resin layer is preferably 5000 ⁇ m or less, more preferably 3000 ⁇ m or less, and even more preferably 1000 ⁇ m or less. From this viewpoint, the thickness of the resin layer is preferably 10 ⁇ m to 5000 ⁇ m, more preferably 15 ⁇ m to 3000 ⁇ m, and even more preferably 20 ⁇ m to 1000 ⁇ m. When resin layers are arranged on both sides of the metal layer, the thickness of the resin layer represents the thickness of each resin layer.
  • the method of laminating the metal layer and the resin layer is not particularly limited.
  • they may be laminated using an adhesive or by a known lamination method.
  • the overall thickness of the inner core material can be designed depending on the material of the inner core material, desired function, etc.
  • the total thickness of the inner core may be between 4 ⁇ m and 15,000 ⁇ m, between 10 ⁇ m and 10,000 ⁇ m, and between 30 ⁇ m and 5,000 ⁇ m.
  • the number of inner core materials arranged in the cooling structure is not particularly limited.
  • one inner core member may be placed inside the cooling structure, or a plurality of inner core members having predetermined dimensions may be arranged side by side inside the cooling structure.
  • a plurality of inner core members having predetermined dimensions may be arranged side by side inside the cooling structure.
  • the thickness of the cooling structure is not particularly limited and can be selected depending on the usage of the cooling structure.
  • the thickness of the cooling structure may be, for example, in the range of 0.5 mm to 50 mm.
  • the above thickness is the thickness of the portion of the cooling structure where the flow path exists, and if the thickness is not constant, it is the arithmetic mean value of the values measured at five arbitrary locations.
  • the first outer wrapping material and the second outer wrapping material are each a laminate having a polypropylene (PP) layer, a metal layer, and a polyethylene terephthalate (PET) layer in this order
  • the inner core material includes a PP layer
  • It is a laminate having a metal layer and a PP layer in this order, and has a structure in which the PP layers of the first outer wrapping material and the second outer wrapping material are each fixed to the PP layer of the inner core material.
  • the outer surface is covered with a PET layer, the PP layers of the first outer wrapping material and the second outer wrapping material are welded at the ends, and the PP layers of the first outer wrapping material and the second outer wrapping material are welded inside. It has a structure in which the layers and the PP layer of the inner core material are welded together.
  • the cooling structure of the present disclosure can be widely used for cooling heating elements, for example, for cooling battery modules, power semiconductor modules, etc. installed in electronic devices such as smartphones and personal computers, electric vehicles, hybrid vehicles, etc. It is valid.
  • the structure of the present disclosure includes the above-described cooling structure of the present disclosure and a cooled object provided at a position facing the first outer wrapping material of the cooling structure.
  • a joint component fixed to the first outer wrapping material of the cooling structure is connected to a refrigerant pipe to supply the refrigerant into the inside of the cooling structure, and the joint component is connected to the first outer wrapping material to face the first outer wrapping material.
  • Cools an object to be cooled provided at a position. Examples of the object to be cooled include electronic devices such as smartphones and personal computers, battery modules installed in electric vehicles, hybrid vehicles, and power semiconductor modules.
  • the method for manufacturing a cooling structure of the present disclosure includes: fixing the joint component to the first outer packaging material; The method includes fixing a first outer wrapping material to which a joint component is fixed, and a second outer wrapping material.
  • the joint components are not fixed to the second outer packaging material. Therefore, in the cooling structure manufactured by the above method, the occurrence of wrinkles in the second outer wrapping material is suppressed.
  • the method of fixing the joint component to the first outer packaging material and the method of fixing the first outer packaging material and the second outer packaging material to which the joint component is fixed are not particularly limited. From the viewpoint of productivity, it is preferable that the above-mentioned fixing is performed by welding.
  • the method of fixing by welding is not particularly limited, and can be carried out using a hot plate or the like.
  • the inner core material disposed between the first outer wrapping material and the second outer wrapping material, the first outer wrapping material and the second outer wrapping material are may be fixed.
  • the inside of the cooling structure is divided into a plurality of spaces. A flow path can be formed.
  • the details and preferred embodiments of the cooling structure manufactured by the above method are the same as the details and preferred embodiments of the cooling structure of the present disclosure described above.
  • the details and preferred aspects of the outer wrapping material, joint parts, and inner core material used in manufacturing the cooling structure are the same as the details and preferred aspects of the outer wrapping material, joint parts, and inner core material that constitute the cooling structure of the present disclosure described above. It is.

Abstract

A cooling structure comprising a first outer packaging material, a second outer packaging material, and a joint component, the joint component being secured to the first outer packaging material and not being secured to the second outer packaging material.

Description

冷却構造体及び構造体Cooling structures and structures
 本開示は、冷却構造体及び構造体に関する。 The present disclosure relates to a cooling structure and a structure.
 スマートフォン、パーソナルコンピューター等の電子機器、電気自動車、ハイブリッド車等に搭載される電池モジュールなどの分野では、発熱対策として水冷式冷却器、ヒートパイプ等を組み込む技術が知られている。また、シリコンカーバイド製等のパワー半導体モジュールにおいても、発熱対策のために冷却板、ヒートシンク等を用いた対策が提案されている。 In the field of battery modules installed in electronic devices such as smartphones and personal computers, electric vehicles, hybrid vehicles, etc., technologies that incorporate water-cooled coolers, heat pipes, etc. as heat countermeasures are known. Furthermore, in power semiconductor modules made of silicon carbide or the like, measures using cooling plates, heat sinks, etc. have been proposed to prevent heat generation.
 例えば、ハイブリッド自動車、電気自動車等のモータを搭載する車両には、モータを駆動する駆動手段が搭載されている。駆動手段は、IGBT(Insulated Gate Bipolar Transistor)等のパワー半導体を複数備えるパワーモジュール、キャパシタ等の電子部品、これら電子部品を電気的に接合するバスバーなどから構成される。モータを駆動する際には、パワー半導体、キャパシタ等、これら電子部品を接合するバスバーに大電流が流れることがある。この場合、スイッチング損失、抵抗損失等によって駆動手段が発熱するため、駆動手段を効率的に冷却することが望まれる。また、車両に搭載された電池モジュールからの発熱についても効率的に冷却することが望まれる。 For example, a vehicle equipped with a motor, such as a hybrid vehicle or an electric vehicle, is equipped with a drive means for driving the motor. The driving means includes a power module including a plurality of power semiconductors such as IGBTs (Insulated Gate Bipolar Transistors), electronic components such as capacitors, bus bars that electrically connect these electronic components, and the like. When driving a motor, a large current may flow through a bus bar that connects electronic components such as power semiconductors and capacitors. In this case, since the driving means generates heat due to switching loss, resistance loss, etc., it is desirable to cool the driving means efficiently. Furthermore, it is desirable to efficiently cool heat generated from battery modules mounted on vehicles.
 発熱する物体(以下、被冷却体ともいう)を冷却するための構造体(以下、冷却構造体ともいう)の材質としては、アルミニウムのような熱伝導性の高い金属が一般に使用されている。一方で、被冷却体の表面への取り付けやすさ、設置スペースの制約等の観点から、冷却構造体の厚みを薄くすることが望まれている。しかしながら、金属製の冷却構造体は一般に薄型化することが難しい。 As a material for a structure (hereinafter also referred to as a cooling structure) for cooling an object that generates heat (hereinafter also referred to as a cooled object), a metal with high thermal conductivity such as aluminum is generally used. On the other hand, from the viewpoint of ease of attachment to the surface of the object to be cooled, restrictions on installation space, etc., it is desired to reduce the thickness of the cooling structure. However, it is generally difficult to reduce the thickness of metal cooling structures.
 薄型化を達成できる冷却構造体として、金属製の伝熱層の両面を樹脂層でラミネートしたラミネート材で形成された袋状の外包材の内部に流路を形成するための凹凸構造を持つ内心材を配置した状態の冷却構造体が提案されている(例えば、特許文献1参照)。 As a cooling structure that can achieve a thinner profile, the inner core has an uneven structure to form a flow path inside the bag-shaped outer packaging material, which is made of a laminate material in which both sides of a metal heat transfer layer are laminated with resin layers. A cooling structure in which materials are arranged has been proposed (for example, see Patent Document 1).
特開2020-3132号公報JP 2020-3132 Publication
 特許文献1に記載された冷却構造体は、冷却構造体の側面にあたる部分に冷媒の流入口及び流出口が設けられているが、被冷却体の形状、設置スペースの状態等によっては冷却構造体の主面の一方に冷媒の流入口及び流出口を設けた構成が望ましい。
 しかしながら、特許文献1に記載された冷却構造体の主面の一方に冷媒の流入口及び流出口を設けると、外包材にシワが発生する場合があることがわかった。
 冷却構造体の厚みが薄い場合には、外包材に生じたシワが内部の空間を圧迫して冷媒の流通を妨げるおそれがある。このため、外包材のシワの発生を抑制することが望ましい。
 かかる状況に鑑み、本開示は、外包材のシワの発生が抑制される冷却構造体、この冷却構造体を含む構造体、及び冷却構造体の製造方法を提供することを課題とする。
The cooling structure described in Patent Document 1 is provided with a refrigerant inlet and an outlet on the side surface of the cooling structure, but depending on the shape of the object to be cooled, the condition of the installation space, etc. It is desirable that a refrigerant inlet and an outlet be provided on one of the main surfaces of the refrigerant.
However, it has been found that when the refrigerant inlet and outlet are provided on one of the main surfaces of the cooling structure described in Patent Document 1, wrinkles may occur in the outer packaging material.
When the thickness of the cooling structure is thin, wrinkles generated in the outer packaging material may compress the internal space and impede the flow of the refrigerant. For this reason, it is desirable to suppress the occurrence of wrinkles in the outer packaging material.
In view of this situation, an object of the present disclosure is to provide a cooling structure in which the occurrence of wrinkles in an outer packaging material is suppressed, a structure including the cooling structure, and a method for manufacturing the cooling structure.
 上記課題を解決するための手段は、以下の態様を含む。
<1>第1外包材と、第2外包材と、ジョイント部品と、を備え、
 前記ジョイント部品は第1外包材に固定され、第2外包材には固定されていない、冷却構造体。
<2>前記ジョイント部品はジョイント部と基部とを備え、前記基部が第1外包材と固定されている、<1>に記載の冷却構造体。
<3>第1外包材及び第2外包材の間に配置される内心材をさらに備える、<1>に又は<2>記載の冷却構造体。
<4><1>~<3>のいずれか1項に記載の冷却構造体と、前記冷却構造体の第1外包材と対向する位置に設けられる被冷却体と、を有する構造体。
<5>ジョイント部品を第1外包材に固定することと、
 前記ジョイント部品が固定された第1外包材と、第2外包材とを固定することと、を含む、冷却構造体の製造方法。
<6>前記固定は溶着により行う、<5>に記載の冷却構造体の製造方法。
Means for solving the above problems include the following aspects.
<1> Comprising a first outer packaging material, a second outer packaging material, and a joint component,
The cooling structure, wherein the joint part is fixed to a first outer wrapper and not fixed to a second outer wrapper.
<2> The cooling structure according to <1>, wherein the joint component includes a joint portion and a base, and the base is fixed to the first outer wrapping material.
<3> The cooling structure according to <1> or <2>, further comprising an inner core material disposed between the first outer wrapping material and the second outer wrapping material.
<4> A structure comprising the cooling structure according to any one of <1> to <3> and a cooled object provided at a position facing the first outer wrapping material of the cooling structure.
<5> Fixing the joint component to the first outer packaging material;
A method for manufacturing a cooling structure, the method comprising: fixing a first outer wrapping material to which the joint component is fixed, and a second outer wrapping material.
<6> The method for manufacturing a cooling structure according to <5>, wherein the fixing is performed by welding.
 本開示によれば、外包材のシワの発生が抑制される冷却構造体、この冷却構造体を含む構造体、及び冷却構造体の製造方法が提供される。 According to the present disclosure, a cooling structure in which the occurrence of wrinkles in an outer packaging material is suppressed, a structure including this cooling structure, and a method for manufacturing the cooling structure are provided.
本開示の冷却構造体の外観の一例を示す概略斜視図である。1 is a schematic perspective view showing an example of the appearance of a cooling structure of the present disclosure. 図1に示す冷却構造体の内部構造を示す概略断面図である。2 is a schematic cross-sectional view showing the internal structure of the cooling structure shown in FIG. 1. FIG. 本開示と異なる冷却構造体の製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of a cooling structure different from this disclosure. 本開示の冷却構造体の製造工程の一例を示す図である。It is a figure showing an example of the manufacturing process of the cooling structure of this indication. 図1に示す冷却構造体の内部構造を示す概略断面図である。2 is a schematic cross-sectional view showing the internal structure of the cooling structure shown in FIG. 1. FIG.
 以下、本開示の実施形態について詳細に説明する。但し、本開示の実施形態は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の実施形態を制限するものではない。 Hereinafter, embodiments of the present disclosure will be described in detail. However, the embodiments of the present disclosure are not limited to the following embodiments. In the following embodiments, the constituent elements (including elemental steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and they do not limit the embodiments of the present disclosure.
 本開示における実施形態について図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、各図面において、実質的に同じ機能を有する部材には、全図面同じ符号を付与し、重複する説明は省略する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
When embodiments of the present disclosure are described with reference to the drawings, the configuration of the embodiments is not limited to the configuration shown in the drawings. Furthermore, the sizes of the members in each figure are conceptual, and the relative size relationships between the members are not limited thereto. Further, in each drawing, members having substantially the same function are given the same reference numerals in all drawings, and redundant explanations will be omitted.
In this disclosure, the term "layer" includes not only the case where the layer is formed in the entire area when observing the area where the layer exists, but also the case where the layer is formed only in a part of the area. included.
In this disclosure, the term "laminate" refers to stacking layers, and two or more layers may be bonded, or two or more layers may be removable.
<冷却構造体>
 本開示の冷却構造体は、
 第1外包材と、第2外包材と、ジョイント部品と、を備え、
 前記ジョイント部品は第1外包材に固定され、第2外包材には固定されていない、冷却構造体である。
<Cooling structure>
The cooling structure of the present disclosure includes:
Comprising a first outer packaging material, a second outer packaging material, and a joint component,
The joint component is a cooling structure fixed to the first outer wrapper and not fixed to the second outer wrapper.
 本開示において「冷却構造体」とは、内部に冷媒を流通させて被冷却体を冷却する物体を意味する。
 本開示において「ジョイント部品」とは、冷却構造体の内部に冷媒を流入又は冷却構造体の内部から冷媒を流出させるための部品を意味する。
In the present disclosure, the term "cooling structure" refers to an object that cools an object to be cooled by circulating a refrigerant therein.
In the present disclosure, the term "joint component" refers to a component that allows refrigerant to flow into or flow out of the cooling structure.
 以下、本開示の冷却構造体について図面を参照して説明する。なお、本開示の実施形態は図面に記載の態様に限定されない。 Hereinafter, the cooling structure of the present disclosure will be described with reference to the drawings. Note that the embodiments of the present disclosure are not limited to the embodiments illustrated in the drawings.
 図1は本開示の一態様の冷却構造体の外観を示す概略斜視図である。
 図1に示す冷却構造体100は、第1外包材10Aと、冷媒の流入口に配置される第1ジョイント部品20Aと、冷媒の流出口に配置される第2ジョイント部品20Bと、を備えている。冷却構造体100の第1外包材10Aと逆側には、第2外包材10B(図示せず)が配置されている。
FIG. 1 is a schematic perspective view showing the appearance of a cooling structure according to one embodiment of the present disclosure.
The cooling structure 100 shown in FIG. 1 includes a first outer packaging material 10A, a first joint component 20A disposed at a refrigerant inlet, and a second joint component 20B disposed at a refrigerant outlet. There is. A second outer wrapping material 10B (not shown) is arranged on the opposite side of the first outer wrapping material 10A of the cooling structure 100.
 図2は図1に示す冷却構造体100の内部構造の一例を概略的に示す断面図である。具体的には、図1に示す冷却構造体100をA-A線で切断したときの断面図である。 FIG. 2 is a cross-sectional view schematically showing an example of the internal structure of the cooling structure 100 shown in FIG. 1. Specifically, it is a cross-sectional view taken along the line AA of the cooling structure 100 shown in FIG.
 図2に示すように、第1外包材10Aと第2外包材10Bとは互いに対向して配置され、端部で固定されている。
 第1外包材10Aには、第1ジョイント部品20A及び第2ジョイント部品20Bがそれぞれ固定されている。
 第1ジョイント部品20A及び第2ジョイント部品20Bは、冷媒の配管を取り付けるためのジョイント部aと、第1外包材に固定されるための基部bとをそれぞれ備え、それぞれの基部bが第1外包材10Aに固定されている。
As shown in FIG. 2, the first outer packaging material 10A and the second outer packaging material 10B are arranged facing each other and fixed at their ends.
A first joint component 20A and a second joint component 20B are each fixed to the first outer packaging material 10A.
The first joint part 20A and the second joint part 20B each include a joint part a for attaching refrigerant piping and a base part b to be fixed to the first outer packaging material, and each base part b is attached to the first outer packaging material. It is fixed to the material 10A.
 図1及び図2に示す構成の冷却構造体100は、例えば、第1外包材10A側の面が電池モジュールのような被冷却体と対向するように配置され、第1ジョイント部品20Aのジョイント部aと第2ジョイント部品20Bのジョイント部aに冷媒の配管がそれぞれ取り付けられる。冷媒は、第1ジョイント部品20Aのジョイント部aから流入し、第2ジョイント部品20Bのジョイント部aから流出する。 For example, the cooling structure 100 configured as shown in FIGS. 1 and 2 is arranged such that the surface on the first outer packaging material 10A side faces an object to be cooled such as a battery module, and the joint portion of the first joint component 20A Refrigerant piping is attached to the joint part a of the joint part a and the second joint part 20B, respectively. The refrigerant flows into the joint part a of the first joint part 20A and flows out from the joint part a of the second joint part 20B.
 図1及び図2に示す冷却構造体100では、第1ジョイント部品20A及び第2ジョイント部品20Bが冷却構造体100の両端部付近にそれぞれ設けられているが、この場合に制限されない。
 例えば、第1ジョイント部品20A及び第2ジョイント部品20Bの双方が冷却構造体100の一方の端部付近に設けられ、第1ジョイント部品20Aから流入した冷媒が冷却構造体の内部を一往復して第2ジョイント部品20Bから流出してもよい。
In the cooling structure 100 shown in FIGS. 1 and 2, the first joint component 20A and the second joint component 20B are provided near both ends of the cooling structure 100, but the invention is not limited to this case.
For example, both the first joint component 20A and the second joint component 20B are provided near one end of the cooling structure 100, and the refrigerant flowing from the first joint component 20A reciprocates inside the cooling structure. It may flow out from the second joint component 20B.
 図1及び図2に示す冷却構造体100は、第1ジョイント部品20A及び第2ジョイント部品20Bが第1外包材10Aのみに固定されている。このため、第1ジョイント部品20A及び第2ジョイント部品20Bが第1外包材10Aと第2外包材10Bの両方に固定されている場合に比べて第2外包材10Bにシワが生じにくい。その理由について、図3及び図4に基づいて説明する。
 図3及び図4に示すジョイント部品20は、第1ジョイント部品10A及び第2ジョイント部品10Bのいずれであってもよい。
In the cooling structure 100 shown in FIGS. 1 and 2, the first joint component 20A and the second joint component 20B are fixed only to the first outer packaging material 10A. Therefore, wrinkles are less likely to occur in the second outer packaging material 10B compared to the case where the first joint component 20A and the second joint component 20B are fixed to both the first outer packaging material 10A and the second outer packaging material 10B. The reason will be explained based on FIGS. 3 and 4.
The joint component 20 shown in FIGS. 3 and 4 may be either the first joint component 10A or the second joint component 10B.
 図3は、ジョイント部品を第1外包材と第2外包材の両方に固定する冷却構造体の製造工程の一例を概略的に示す図である。
 図3に示す方法で使用するジョイント部品20は、ジョイント部a、基部b及び脚部cを備え、基部bが第1外包材10Aと固定され、脚部cが第2外包材10Bと固定される。
 まず、図3の(A)に示すように、ジョイント部品20を第1外包材10Aと第2外包材10Bとの間に配置する。
 次いで、図3の(B)に示すように、溶着によって第1外包材10Aと第2外包材10Bの端部を固定するとともに、ジョイント部品20の基部bを第1外包材10Aと固定し、脚部cを第2外包材10Bと固定する。
 次いで、図3の(C)に示すように、固定した各部位を冷却する。
FIG. 3 is a diagram schematically showing an example of a manufacturing process of a cooling structure in which a joint component is fixed to both a first outer wrapping material and a second outer wrapping material.
The joint component 20 used in the method shown in FIG. 3 includes a joint part a, a base part b, and a leg part c, in which the base part b is fixed to the first outer packaging material 10A, and the leg part c is fixed to the second outer packaging material 10B. Ru.
First, as shown in FIG. 3A, the joint component 20 is placed between the first outer packaging material 10A and the second outer packaging material 10B.
Next, as shown in FIG. 3B, the ends of the first outer packaging material 10A and the second outer packaging material 10B are fixed by welding, and the base b of the joint component 20 is fixed to the first outer packaging material 10A, The leg part c is fixed to the second outer wrapping material 10B.
Next, as shown in FIG. 3C, each fixed portion is cooled.
 図3に示す方法では、溶着に使用する熱板等により与えられる熱によってジョイント部品20が膨張し、基部bの径d1が拡張してd2になった状態で第2外包材10Bと固定される。このとき、第2外包材10Bも熱によって膨張するが、その膨張率はジョイント部品20の膨張率と異なっている。このため、冷却によりジョイント部品20が収縮して基部bの径d2がもとの寸法d1に戻ったときに、第2外包材10Bの寸法はもとの寸法に戻らず、第2外包材10Bがジョイント部品20と溶着していない部分(すなわち、ジョイント部品20の脚部cの間に相当する部分)にシワが発生する。 In the method shown in FIG. 3, the joint component 20 expands due to heat applied by a hot plate or the like used for welding, and the diameter d1 of the base b expands to become d2, and is fixed to the second outer packaging material 10B. . At this time, the second outer wrapping material 10B also expands due to the heat, but its expansion coefficient is different from that of the joint component 20. Therefore, when the joint component 20 contracts due to cooling and the diameter d2 of the base b returns to the original dimension d1, the dimensions of the second outer packaging material 10B do not return to the original dimensions, and the second outer packaging material 10B Wrinkles occur in the part where the joint part 20 is not welded (that is, the part corresponding to the part between the legs c of the joint part 20).
 図4は、ジョイント部品を第1外包材にのみ固定する冷却構造体の製造工程の一例を概略的に示す図である。
 まず、図4の(A)に示すように、ジョイント部品20の基部bを第1外包材10Aに固定する。
 次いで、図4の(B)に示すように、第1外包材10Aの端部を第2外包材10Bの端部と固定する。
 次いで、図4の(C)に示すように、固定した各部位を冷却する。
FIG. 4 is a diagram schematically showing an example of a manufacturing process of a cooling structure in which a joint component is fixed only to a first outer packaging material.
First, as shown in FIG. 4A, the base b of the joint component 20 is fixed to the first outer packaging material 10A.
Next, as shown in FIG. 4(B), the end of the first outer packaging material 10A is fixed to the end of the second outer packaging material 10B.
Next, as shown in FIG. 4C, each fixed portion is cooled.
 図4に示す方法では、ジョイント部品20が第2外包材10Bに固定されていない。このため、固定を溶着等により行う場合にジョイント部品20に加えられる熱によってジョイント部品20の基部bの径がd1からd2に拡張、又はd2からd1に収縮しても、第2外包材10Bにシワが発生することがない。 In the method shown in FIG. 4, the joint component 20 is not fixed to the second outer packaging material 10B. Therefore, even if the diameter of the base b of the joint component 20 expands from d1 to d2 or contracts from d2 to d1 due to the heat applied to the joint component 20 when fixing is performed by welding or the like, the second outer packaging material 10B No wrinkles will occur.
 以下、冷却構造体を構成する各部材について説明する。ただし、本開示はこれらの説明に限定されない。 Hereinafter, each member constituting the cooling structure will be explained. However, the present disclosure is not limited to these descriptions.
(外包材)
 外包材の材質は特に制限されないが、熱伝導性の観点から金属を含むことが好ましい。金属材料としては、アルミニウム、アルミニウム合金、銅、銅合金、ステンレス、ニッケル等が挙げられる。外包材に含まれる金属は1種のみでも2種以上であってもよい。熱伝導性、コスト等の観点からは、アルミニウムが好ましい。
 外包材に含まれる金属は、メッキ加工された金属箔、異種金属を接合したクラッドメタル等の状態であってもよい。
(outer packaging material)
The material of the outer packaging material is not particularly limited, but preferably contains metal from the viewpoint of thermal conductivity. Examples of the metal material include aluminum, aluminum alloy, copper, copper alloy, stainless steel, and nickel. The outer packaging material may contain only one kind of metal or two or more kinds of metals. From the viewpoint of thermal conductivity, cost, etc., aluminum is preferable.
The metal contained in the outer packaging material may be in the form of plated metal foil, clad metal made by bonding different metals, or the like.
 外包材は、少なくとも一方の表面に樹脂層を有することが好ましい。外包材の少なくとも一方の表面に樹脂層を有することで、例えば、外包材同士、又は外包材とジョイント部品とを、溶着により固定することができる。 It is preferable that the outer packaging material has a resin layer on at least one surface. By having a resin layer on at least one surface of the outer wrapping material, the outer wrapping materials or the outer wrapping material and the joint component can be fixed by welding, for example.
 樹脂層の材質は、特に制限されない。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン又はこれらの変性樹脂、フッ素系樹脂、ポリエチレンテレフタレート等のポリエステル、ポリ塩化ビニル等の熱可塑性樹脂が挙げられる。これらの樹脂は溶着性に優れるため、加熱により外包材同士又は外包材と内心材とを容易に固定できる点でも有用である。 The material of the resin layer is not particularly limited. Examples include polyolefins such as polyethylene and polypropylene or modified resins thereof, fluororesins, polyesters such as polyethylene terephthalate, and thermoplastic resins such as polyvinyl chloride. Since these resins have excellent weldability, they are also useful in that the outer wrapping materials or the outer wrapping material and the inner core material can be easily fixed to each other by heating.
 熱伝導性と溶着性を両立させる観点からは、外包材は、金属層と、樹脂層と、を有する積層体であることが好ましく、金属層と、金属層の両面に配置される樹脂層とを有する積層体であることがより好ましい。
 外包材が金属層と、金属層の両面に配置される樹脂層とを有する積層体である場合、金属層の両面に配置される樹脂層に含まれる樹脂は同種であっても異種であってもよい。例えば、外包材の冷却構造体の外表面に相当する樹脂層には耐熱性等を考慮した樹脂層を配置し、逆側の樹脂層には外包材同士又は外包材とジョイント部品との溶着性を考慮した樹脂層を配置してもよい。
From the viewpoint of achieving both thermal conductivity and weldability, the outer packaging material is preferably a laminate having a metal layer and a resin layer. It is more preferable that the laminate has the following.
When the outer packaging material is a laminate having a metal layer and a resin layer placed on both sides of the metal layer, the resins contained in the resin layers placed on both sides of the metal layer may be of the same type or different types. Good too. For example, a resin layer corresponding to the outer surface of the cooling structure of the outer packaging material is arranged with consideration to heat resistance, etc., and a resin layer on the opposite side is arranged to prevent welding between the outer packaging materials or between the outer packaging material and the joint parts. The resin layer may be arranged taking this into consideration.
 金属層の厚みは特に制限されない。強度及び熱伝導性の観点からは、金属層の厚みは4μm以上であることが好ましく、6μm以上であることがより好ましく、8μm以上であることがさらに好ましい。薄型化の観点からは、金属層の厚みは300μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることがさらに好ましい。かかる観点からは、金属層の厚みは、4μm~300μmであることが好ましく、6μm~200μmであることがより好ましく、8μm~100μmであることがさらに好ましい。 The thickness of the metal layer is not particularly limited. From the viewpoint of strength and thermal conductivity, the thickness of the metal layer is preferably 4 μm or more, more preferably 6 μm or more, and even more preferably 8 μm or more. From the viewpoint of thinning, the thickness of the metal layer is preferably 300 μm or less, more preferably 200 μm or less, and even more preferably 100 μm or less. From this viewpoint, the thickness of the metal layer is preferably 4 μm to 300 μm, more preferably 6 μm to 200 μm, and even more preferably 8 μm to 100 μm.
 樹脂層の厚みは特に制限されない。絶縁性、金属層の十分な保護、被熱交換体への密着性等の観点からは、樹脂層の厚みは、10μm以上であることが好ましく、15μm以上であることがより好ましく、20μm以上であることがさらに好ましい。薄型化の観点からは、樹脂層の厚みは、5000μm以下であることが好ましく、3000μm以下であることがより好ましく、1000μm以下であることがさらに好ましい。かかる観点からは、樹脂層の厚みは、10μm~5000μmであることが好ましく、15μm~3000μmであることがより好ましく、20μm~1000μmであることがさらに好ましい。
 樹脂層が金属層の両面に配置される場合、上記樹脂層の厚みは、それぞれの樹脂層の厚みを表す。
 一態様において、樹脂層が金属層の両面に設けられる場合、金属層の十分な保護の観点からは、冷却構造体の内側となる樹脂層の厚みは外側となる樹脂層の厚み以上であってもよい。
The thickness of the resin layer is not particularly limited. From the viewpoints of insulation, sufficient protection of the metal layer, adhesion to the object to be heat exchanged, etc., the thickness of the resin layer is preferably 10 μm or more, more preferably 15 μm or more, and 20 μm or more. It is even more preferable that there be. From the viewpoint of thinning, the thickness of the resin layer is preferably 5000 μm or less, more preferably 3000 μm or less, and even more preferably 1000 μm or less. From this viewpoint, the thickness of the resin layer is preferably 10 μm to 5000 μm, more preferably 15 μm to 3000 μm, and even more preferably 20 μm to 1000 μm.
When resin layers are arranged on both sides of the metal layer, the thickness of the resin layer represents the thickness of each resin layer.
In one embodiment, when the resin layer is provided on both sides of the metal layer, from the viewpoint of sufficient protection of the metal layer, the thickness of the resin layer on the inside of the cooling structure must be equal to or greater than the thickness of the resin layer on the outside. Good too.
 外包材が金属層と樹脂層とを有する積層体である場合、金属層と樹脂層とを積層する方法は特に制限されない。例えば、接着剤を用いて積層してもよく、公知のラミネート方法によって積層してもよい。 When the outer packaging material is a laminate having a metal layer and a resin layer, the method of laminating the metal layer and the resin layer is not particularly limited. For example, they may be laminated using an adhesive or by a known lamination method.
 外包材の全体の厚みは、外包材の材質、所望の機能等に応じて設計可能である。例えば、外包材の全体の厚みは、4μm~15,000μmであってもよく、10μm~10,000μmであってもよく、30μm~5,000μmであってもよい。 The overall thickness of the outer packaging material can be designed depending on the material of the outer packaging material, desired function, etc. For example, the total thickness of the outer packaging material may be 4 μm to 15,000 μm, 10 μm to 10,000 μm, or 30 μm to 5,000 μm.
(ジョイント部品)
 ジョイント部品は、第1外包材に固定できる形状を有する部品であれば特に制限されない。ジョイント部品は、例えば、冷媒の配管を取り付けるためのジョイント部と、第1外包材に固定するための基部と、を備える物体であってもよい。
(Joint parts)
The joint component is not particularly limited as long as it has a shape that can be fixed to the first outer packaging material. The joint component may be an object including, for example, a joint portion for attaching refrigerant piping and a base portion for fixing to the first outer packaging material.
 ジョイント部品の材質は、特に制限されない。ジョイント部品の第1外包材への固定を溶着により行う場合は、ジョイント部品は熱可塑性樹脂を含むことが好ましい。熱可塑性樹脂を含むジョイント部品は、射出成形等の公知の手法で製造できる。 The material of the joint parts is not particularly limited. When the joint component is fixed to the first outer packaging material by welding, the joint component preferably contains a thermoplastic resin. Joint components containing thermoplastic resin can be manufactured by known methods such as injection molding.
 冷却構造体に配置されるジョイント部品は、冷却構造体の内部に冷媒を流入させるジョイント部品と、冷却構造体の内部から冷媒を流出させるジョイント部品と、の組み合わせであってもよい。あるいは、ジョイント部品は、冷媒を流入させるジョイント部と冷媒を流出させるジョイント部とを一体化した状態であってもよい。 The joint parts arranged in the cooling structure may be a combination of a joint part that allows the refrigerant to flow into the cooling structure and a joint part that allows the refrigerant to flow out from the inside of the cooling structure. Alternatively, the joint component may be in a state in which a joint part through which the refrigerant flows in and a joint part through which the refrigerant flows out are integrated.
 冷却構造体に配置されるジョイント部品の位置は、特に制限されない。例えば、冷却構造体の両端部に冷媒を流入させるジョイント部品と冷媒を流出させるジョイント部品とをそれぞれ配置してもよく、冷却構造体の端部の一方に冷媒を流入させるジョイント部品と冷媒を流出させるジョイント部品とを配置してもよい。 The position of the joint parts placed in the cooling structure is not particularly limited. For example, a joint part that allows the refrigerant to flow in and a joint part that allows the refrigerant to flow out may be arranged at both ends of the cooling structure, and a joint part that allows the refrigerant to flow into one end of the cooling structure and a joint part that allows the refrigerant to flow out of the cooling structure may be arranged at both ends of the cooling structure. Joint parts may also be arranged.
(内心材)
 冷却構造体は、第1外包材及び第2外包材の間に配置される内心材を備えてもよい。
 第1外包材及び第2外包材の間に配置される内心材は、例えば、冷却構造体の内部に冷媒が流通するための流路を形成する役割、冷却構造体の内部空間を支える支柱としての役割等を果たす。
(Inner core wood)
The cooling structure may include an inner core disposed between the first outer wrapper and the second outer wrapper.
The inner core material disposed between the first outer wrapping material and the second outer wrapping material serves, for example, to form a flow path for the refrigerant to flow inside the cooling structure, and to serve as a support supporting the internal space of the cooling structure. fulfill the roles of
 冷却構造体の内部に冷媒が流通するための流路を形成する観点から、内心材は凹凸形状を有するシート状物であってもよい。
 凹凸形状を有するシート状物としては、例えば、コルゲート加工又はプリーツ加工によって波型に折り曲げられたシート状物、エンボス加工によって突起等の凹凸が形成されたシート状物体等が挙げられる。
From the viewpoint of forming a flow path for the refrigerant to flow inside the cooling structure, the inner core material may be a sheet-like material having an uneven shape.
Examples of the sheet-like object having an uneven shape include a sheet-like object that is folded into a corrugated shape by corrugating or pleating, a sheet-like object that has unevenness such as projections formed by embossing, and the like.
 図5は、波型に折り曲げられた内心材を第1外包材及び第2外包材の間に配置したときの冷却構造体の内部構造を示す概略断面図である。具体的は、図5は図1に示す冷却構造体100をB-B線で切断したときの断面図である。
 図5に示すように、波型に折り曲げられた内心材30を第1外包材10A及び第2外包材10Bの間に配置することで、第1外包材10A及び第2外包材10Bの間の空間を複数の領域に区切ることができ、区切られた複数の空間を流路として利用することができる。さらに、内心材30は冷却構造体の内部空間を支える支柱としての役割を果たす。
 図5に示す内心材の断面形状は一例であり、本開示はこれに制限されない。例えば、内心材の折り曲げ回数は図5に示す数と異なっていてもよい。
FIG. 5 is a schematic cross-sectional view showing the internal structure of the cooling structure when the inner core material folded into a corrugated shape is arranged between the first outer wrapping material and the second outer wrapping material. Specifically, FIG. 5 is a cross-sectional view of the cooling structure 100 shown in FIG. 1 taken along line BB.
As shown in FIG. 5, by arranging the inner core material 30 bent into a wave shape between the first outer packaging material 10A and the second outer packaging material 10B, The space can be divided into a plurality of regions, and the plurality of divided spaces can be used as flow paths. Further, the inner core member 30 serves as a support supporting the internal space of the cooling structure.
The cross-sectional shape of the inner core material shown in FIG. 5 is an example, and the present disclosure is not limited thereto. For example, the number of folds of the inner core may be different from the number shown in FIG.
 内心材の材質は特に制限されないが、熱伝導性の観点から金属を含むことが好ましい。金属材料としては、アルミニウム、アルミニウム合金、銅、銅合金、ステンレス、ニッケル等が挙げられる。内心材に含まれる金属は1種のみでも2種以上であってもよい。熱伝導性、コスト等の観点からは、アルミニウムが好ましい。
 内心材に含まれる金属は、メッキ加工された金属箔、異種金属を接合したクラッドメタル等の状態であってもよい。
The material of the inner core material is not particularly limited, but preferably contains metal from the viewpoint of thermal conductivity. Examples of the metal material include aluminum, aluminum alloy, copper, copper alloy, stainless steel, and nickel. The inner core material may contain only one kind of metal or two or more kinds of metals. From the viewpoint of thermal conductivity, cost, etc., aluminum is preferable.
The metal contained in the inner core material may be in the form of plated metal foil, clad metal made by bonding different metals, or the like.
 内心材は、少なくとも表面が樹脂製であることが好ましい。内心材の表面が樹脂製であることで、例えば、内心材と外包材とを溶着により固定することができる。 It is preferable that at least the surface of the inner core material is made of resin. Since the surface of the inner core material is made of resin, the inner core material and the outer wrapping material can be fixed by welding, for example.
 樹脂の材質は、特に制限されない。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン又はこれらの変性樹脂、フッ素系樹脂、ポリエチレンテレフタレート等のポリエステル、ポリ塩化ビニル等の熱可塑性樹脂が挙げられる。これらの樹脂は溶着性に優れるため、加熱により外包材同士又は外包材と内心材とを容易に固定できる点でも有用である。 The material of the resin is not particularly limited. Examples include polyolefins such as polyethylene and polypropylene or modified resins thereof, fluororesins, polyesters such as polyethylene terephthalate, and thermoplastic resins such as polyvinyl chloride. Since these resins have excellent weldability, they are also useful in that the outer wrapping materials or the outer wrapping material and the inner core material can be easily fixed to each other by heating.
 熱伝導性と溶着性を両立させる観点からは、内心材は金属層と、樹脂層と、を有する積層体であることが好ましく、金属層と、金属層の両面に配置される樹脂層とを有する積層体であることがより好ましい。
 内心材が金属層と、金属層の両面に配置される樹脂層とを有する積層体である場合、金属層の両面に配置される樹脂層に含まれる樹脂は同種であっても異種であってもよい。
From the viewpoint of achieving both thermal conductivity and weldability, the inner core material is preferably a laminate having a metal layer and a resin layer. More preferably, it is a laminate having:
When the inner core material is a laminate having a metal layer and resin layers placed on both sides of the metal layer, the resins contained in the resin layers placed on both sides of the metal layer may be of the same type or different types. Good too.
 金属層の厚みは特に制限されない。強度及び熱伝導性の観点からは、金属層の厚みは4μm以上であることが好ましく、6μm以上であることがより好ましく、8μm以上であることがさらに好ましい。薄型化の観点からは、金属層の厚みは300μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることがさらに好ましい。かかる観点からは、金属層の厚みは、4μm~300μmであることが好ましく、6μm~200μmであることがより好ましく、8μm~100μmであることがさらに好ましい。 The thickness of the metal layer is not particularly limited. From the viewpoint of strength and thermal conductivity, the thickness of the metal layer is preferably 4 μm or more, more preferably 6 μm or more, and even more preferably 8 μm or more. From the viewpoint of thinning, the thickness of the metal layer is preferably 300 μm or less, more preferably 200 μm or less, and even more preferably 100 μm or less. From this viewpoint, the thickness of the metal layer is preferably 4 μm to 300 μm, more preferably 6 μm to 200 μm, and even more preferably 8 μm to 100 μm.
 樹脂層の厚みは特に制限されない。絶縁性、金属層の十分な保護、被熱交換体への密着性等の観点からは、樹脂層の厚みは、10μm以上であることが好ましく、15μm以上であることがより好ましく、20μm以上であることがさらに好ましい。薄型化の観点からは、樹脂層の厚みは、5000μm以下であることが好ましく、3000μm以下であることがより好ましく、1000μm以下であることがさらに好ましい。かかる観点からは、樹脂層の厚みは、10μm~5000μmであることが好ましく、15μm~3000μmであることがより好ましく、20μm~1000μmであることがさらに好ましい。
 樹脂層が金属層の両面に配置される場合、上記樹脂層の厚みは、それぞれの樹脂層の厚みを表す。
The thickness of the resin layer is not particularly limited. From the viewpoints of insulation, sufficient protection of the metal layer, adhesion to the object to be heat exchanged, etc., the thickness of the resin layer is preferably 10 μm or more, more preferably 15 μm or more, and 20 μm or more. It is even more preferable that there be. From the viewpoint of thinning, the thickness of the resin layer is preferably 5000 μm or less, more preferably 3000 μm or less, and even more preferably 1000 μm or less. From this viewpoint, the thickness of the resin layer is preferably 10 μm to 5000 μm, more preferably 15 μm to 3000 μm, and even more preferably 20 μm to 1000 μm.
When resin layers are arranged on both sides of the metal layer, the thickness of the resin layer represents the thickness of each resin layer.
 内心材が金属層と樹脂層とを有する積層体である場合、金属層と樹脂層とを積層する方法は特に制限されない。例えば、接着剤を用いて積層してもよく、公知のラミネート方法によって積層してもよい。 When the inner core material is a laminate having a metal layer and a resin layer, the method of laminating the metal layer and the resin layer is not particularly limited. For example, they may be laminated using an adhesive or by a known lamination method.
 内心材の全体の厚みは、内心材の材質、所望の機能等に応じて設計可能である。例えば、内心材の全体の厚みは、4μm~15,000μmであってもよく、10μm~10,000μmであってもよく、30μm~5,000μmであってもよい。 The overall thickness of the inner core material can be designed depending on the material of the inner core material, desired function, etc. For example, the total thickness of the inner core may be between 4 μm and 15,000 μm, between 10 μm and 10,000 μm, and between 30 μm and 5,000 μm.
 冷却構造体に配置される内心材の数は、特に制限されない。例えば、1つの内心材を冷却構造体の内部に配置しても、所定の寸法の複数の内心材を冷却構造体の内部に並べて配置してもよい。複数の内心材を冷却構造体の内部に並べて配置する場合は、冷却構造体の寸法にあわせた内心材を作製する代わりに冷却構造体の内部に配置する内心材の数を調整することで所望の流路を形成することができ、量産性の観点から優れている。 The number of inner core materials arranged in the cooling structure is not particularly limited. For example, one inner core member may be placed inside the cooling structure, or a plurality of inner core members having predetermined dimensions may be arranged side by side inside the cooling structure. When arranging multiple inner core members side by side inside a cooling structure, instead of fabricating inner core members according to the dimensions of the cooling structure, it is possible to adjust the number of inner core members to be placed inside the cooling structure as desired. It is possible to form a flow path, which is excellent from the viewpoint of mass production.
 冷却構造体の厚みは特に制限されず、冷却構造体の用途等に応じて選択できる。
 冷却構造体の厚みは、例えば、0.5mm~50mmの範囲内であってもよい。
 上記厚みは冷却構造体の流路が存在する部分の厚みであり、厚みが一定でない場合は任意の5箇所で測定した値の算術平均値である。
The thickness of the cooling structure is not particularly limited and can be selected depending on the usage of the cooling structure.
The thickness of the cooling structure may be, for example, in the range of 0.5 mm to 50 mm.
The above thickness is the thickness of the portion of the cooling structure where the flow path exists, and if the thickness is not constant, it is the arithmetic mean value of the values measured at five arbitrary locations.
 冷却構造体のある実施形態では、第1外包材及び第2外包材はそれぞれポリプロピレン(PP)層、金属層及びポリエチレンテレフタレート(PET)層をこの順に有する積層体であり、内心材はPP層、金属層及びPP層をこの順に有する積層体であり、第1外包材及び第2外包材のPP層がそれぞれ内心材のPP層と固定された構造を有する。
 上記実施形態の冷却構造体は、外表面がPET層で被覆され、端部では第1外包材及び第2外包材のPP層が溶着され、内部では第1外包材及び第2外包材のPP層と内心材のPP層とが溶着した構造を有する。
In an embodiment of the cooling structure, the first outer wrapping material and the second outer wrapping material are each a laminate having a polypropylene (PP) layer, a metal layer, and a polyethylene terephthalate (PET) layer in this order, and the inner core material includes a PP layer, It is a laminate having a metal layer and a PP layer in this order, and has a structure in which the PP layers of the first outer wrapping material and the second outer wrapping material are each fixed to the PP layer of the inner core material.
In the cooling structure of the above embodiment, the outer surface is covered with a PET layer, the PP layers of the first outer wrapping material and the second outer wrapping material are welded at the ends, and the PP layers of the first outer wrapping material and the second outer wrapping material are welded inside. It has a structure in which the layers and the PP layer of the inner core material are welded together.
 本開示の冷却構造体は、発熱体の冷却に広く利用可能であり、例えば、スマートフォン、パーソナルコンピューター等の電子機器、電気自動車、ハイブリッド車等に搭載される電池モジュール、パワー半導体モジュールなどの冷却に有効である。 The cooling structure of the present disclosure can be widely used for cooling heating elements, for example, for cooling battery modules, power semiconductor modules, etc. installed in electronic devices such as smartphones and personal computers, electric vehicles, hybrid vehicles, etc. It is valid.
<構造体>
 本開示の構造体は、前述の本開示の冷却構造体と、冷却構造体の第1外包材と対向する位置に設けられる被冷却体と、を有する。
 本開示の構造体では、例えば、冷却構造体の第1外包材に固定されているジョイント部品を冷媒の配管と接続して冷媒を冷却構造体の内部に供給し、第1外包材と対向する位置に設けられる被冷却体を冷却する。
 被冷却体としては、スマートフォン、パーソナルコンピューター等の電子機器、電気自動車、ハイブリッド車等に搭載される電池モジュール、パワー半導体モジュールなどが挙げられる。
<Structure>
The structure of the present disclosure includes the above-described cooling structure of the present disclosure and a cooled object provided at a position facing the first outer wrapping material of the cooling structure.
In the structure of the present disclosure, for example, a joint component fixed to the first outer wrapping material of the cooling structure is connected to a refrigerant pipe to supply the refrigerant into the inside of the cooling structure, and the joint component is connected to the first outer wrapping material to face the first outer wrapping material. Cools an object to be cooled provided at a position.
Examples of the object to be cooled include electronic devices such as smartphones and personal computers, battery modules installed in electric vehicles, hybrid vehicles, and power semiconductor modules.
<冷却構造体の製造方法>
 本開示の冷却構造体の製造方法は、
 ジョイント部品を第1外包材に固定することと、
 ジョイント部品が固定された第1外包材と、第2外包材とを固定することと、を含む。
<Method for manufacturing cooling structure>
The method for manufacturing a cooling structure of the present disclosure includes:
fixing the joint component to the first outer packaging material;
The method includes fixing a first outer wrapping material to which a joint component is fixed, and a second outer wrapping material.
 上記方法により製造される冷却構造体は、ジョイント部品が第2外包材に固定されない。このため、上記方法により製造される冷却構造体では第2外包材におけるシワの発生が抑制される。 In the cooling structure manufactured by the above method, the joint components are not fixed to the second outer packaging material. Therefore, in the cooling structure manufactured by the above method, the occurrence of wrinkles in the second outer wrapping material is suppressed.
 上記方法においてジョイント部品を第1外包材に固定する方法、及びジョイント部品が固定された第1外包材と第2外包材とを固定する方法は特に制限されない。
 生産性の観点からは、上記固定は溶着により行うことが好ましい。固定を溶着により行う方法は特に制限されず、熱板等を用いて行うことができる。
In the above method, the method of fixing the joint component to the first outer packaging material and the method of fixing the first outer packaging material and the second outer packaging material to which the joint component is fixed are not particularly limited.
From the viewpoint of productivity, it is preferable that the above-mentioned fixing is performed by welding. The method of fixing by welding is not particularly limited, and can be carried out using a hot plate or the like.
 上記方法において、第1外包材と第2外包材とを固定する際に、第1外包材と第2外包材との間に配置された内心材と、第1外包材及び第2外包材とを固定してもよい。
 第1外包材と第2外包材との間に内心材を配置し、内心材を第1外包材及び第2外包材と固定することで、冷却構造体の内部に複数の空間に区切られた流路を形成することができる。
In the above method, when fixing the first outer wrapping material and the second outer wrapping material, the inner core material disposed between the first outer wrapping material and the second outer wrapping material, the first outer wrapping material and the second outer wrapping material are may be fixed.
By arranging the inner core material between the first outer wrapping material and the second outer wrapping material and fixing the inner core material to the first outer wrapping material and the second outer wrapping material, the inside of the cooling structure is divided into a plurality of spaces. A flow path can be formed.
 上記方法で製造される冷却構造体の詳細及び好ましい態様は、上述した本開示の冷却構造体の詳細及び好ましい態様と同様である。
 冷却構造体の製造に使用される外包材、ジョイント部品及び内心材の詳細及び好ましい態様は、上述した本開示の冷却構造体を構成する外包材、ジョイント部品及び内心材の詳細及び好ましい態様と同様である。
The details and preferred embodiments of the cooling structure manufactured by the above method are the same as the details and preferred embodiments of the cooling structure of the present disclosure described above.
The details and preferred aspects of the outer wrapping material, joint parts, and inner core material used in manufacturing the cooling structure are the same as the details and preferred aspects of the outer wrapping material, joint parts, and inner core material that constitute the cooling structure of the present disclosure described above. It is.
 特願2022-075455号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。 The disclosure of Japanese Patent Application No. 2022-075455 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (6)

  1.  第1外包材と、第2外包材と、ジョイント部品と、を備え、
     前記ジョイント部品は第1外包材に固定され、第2外包材には固定されていない、冷却構造体。
    Comprising a first outer packaging material, a second outer packaging material, and a joint component,
    The cooling structure, wherein the joint part is fixed to a first outer wrapper and not fixed to a second outer wrapper.
  2.  前記ジョイント部品はジョイント部と基部とを備え、前記基部が第1外包材と固定されている、請求項1に記載の冷却構造体。 The cooling structure according to claim 1, wherein the joint component includes a joint portion and a base, and the base is fixed to the first outer wrapping material.
  3.  第1外包材及び第2外包材の間に配置される内心材をさらに備える、請求項1に記載の冷却構造体。 The cooling structure according to claim 1, further comprising an inner core material disposed between the first outer wrapping material and the second outer wrapping material.
  4.  請求項1~請求項3のいずれか1項に記載の冷却構造体と、前記冷却構造体の第1外包材と対向する位置に設けられる被冷却体と、を有する構造体。 A structure comprising the cooling structure according to any one of claims 1 to 3, and a cooled object provided at a position facing the first outer packaging material of the cooling structure.
  5.  ジョイント部品を第1外包材に固定することと、
     前記ジョイント部品が固定された第1外包材と、第2外包材とを固定することと、を含む、冷却構造体の製造方法。
    fixing the joint component to the first outer packaging material;
    A method for manufacturing a cooling structure, the method comprising: fixing a first outer wrapping material to which the joint component is fixed, and a second outer wrapping material.
  6.  前記固定は溶着により行う、請求項5に記載の冷却構造体の製造方法。 The method for manufacturing a cooling structure according to claim 5, wherein the fixing is performed by welding.
PCT/JP2023/016524 2022-04-28 2023-04-26 Cooling structure, and structure WO2023210710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022075455 2022-04-28
JP2022-075455 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210710A1 true WO2023210710A1 (en) 2023-11-02

Family

ID=88518735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016524 WO2023210710A1 (en) 2022-04-28 2023-04-26 Cooling structure, and structure

Country Status (1)

Country Link
WO (1) WO2023210710A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061262A (en) * 2018-10-10 2020-04-16 昭和電工株式会社 Heat exchanger using laminate material and doorway structure of the same
JP2020068066A (en) * 2018-10-22 2020-04-30 昭和電工パッケージング株式会社 Sheet type heat transfer device
JP2020123506A (en) * 2019-01-31 2020-08-13 昭和電工株式会社 Heat exchanger
JP2021162198A (en) * 2020-03-31 2021-10-11 昭和電工パッケージング株式会社 Heat exchanger and outer package body therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061262A (en) * 2018-10-10 2020-04-16 昭和電工株式会社 Heat exchanger using laminate material and doorway structure of the same
JP2020068066A (en) * 2018-10-22 2020-04-30 昭和電工パッケージング株式会社 Sheet type heat transfer device
JP2020123506A (en) * 2019-01-31 2020-08-13 昭和電工株式会社 Heat exchanger
JP2021162198A (en) * 2020-03-31 2021-10-11 昭和電工パッケージング株式会社 Heat exchanger and outer package body therefor

Similar Documents

Publication Publication Date Title
JP7126388B2 (en) Resin fusion heat exchanger
JP7274325B2 (en) Heat exchanger
JP7441343B2 (en) Heat exchanger
US11788794B2 (en) Heat exchanger and inner fin thereof
CN214333484U (en) Heat exchanger and inner fin thereof
JP6299618B2 (en) Power converter and manufacturing method thereof
WO2023210710A1 (en) Cooling structure, and structure
JP7353164B2 (en) Heat exchanger
JP7326063B2 (en) Heat exchanger
JP4123279B2 (en) Power converter
WO2023228676A1 (en) Resin component for cooling structure, cooling structure, and structure
WO2023210711A1 (en) Joint component, cooling structure, and structure
JP7410713B2 (en) Heat exchanger
JP2010165714A (en) Apparatus for cooling semiconductor module
JP2021162198A (en) Heat exchanger and outer package body therefor
WO2023248759A1 (en) Cooling structure, and structure
WO2023190755A1 (en) Cooling structure, and structure
WO2022244626A1 (en) Heat exchanger, structure, and method for producing structure
WO2023224017A1 (en) Cooling structure, and structure
JP7369029B2 (en) Heat exchanger
WO2023112899A1 (en) Cooling structure
WO2023224015A1 (en) Cooling structure and structure
JP7446918B2 (en) Heat exchanger and its inner fin
WO2022196192A1 (en) Heat exchanger
JP2022177539A (en) Structure and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796448

Country of ref document: EP

Kind code of ref document: A1