WO2023210629A1 - Resin composition for optical waveguide, and dry film and optical waveguide using same - Google Patents

Resin composition for optical waveguide, and dry film and optical waveguide using same Download PDF

Info

Publication number
WO2023210629A1
WO2023210629A1 PCT/JP2023/016252 JP2023016252W WO2023210629A1 WO 2023210629 A1 WO2023210629 A1 WO 2023210629A1 JP 2023016252 W JP2023016252 W JP 2023016252W WO 2023210629 A1 WO2023210629 A1 WO 2023210629A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
optical waveguide
resin composition
resin
mass
Prior art date
Application number
PCT/JP2023/016252
Other languages
French (fr)
Japanese (ja)
Inventor
彩 吉田
潤子 栗副
直幸 近藤
麻稀 田中
敦史 山口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023210629A1 publication Critical patent/WO2023210629A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to a resin composition for an optical waveguide, and a dry film and optical waveguide using the same.
  • optical fiber has been the mainstream as a transmission medium in the fields of FTTH (Fiber to the Home) and long-distance and medium-distance communications in the automotive field.
  • FTTH Fiber to the Home
  • high-speed transmission using light has become necessary even over short distances of 1 m or less.
  • optical waveguide-type optical wiring boards are used, which are capable of high-density wiring (narrow pitch, branching, crossing, multilayering, etc.), surface mounting, integration with electrical boards, and bendability in small diameters, which are not possible with optical fibers. is suitable.
  • optical waveguide As a material used to form an optical waveguide, for example, acrylic resin, which is widely used in the manufacture of optical fibers, is known.
  • acrylic resin which is widely used in the manufacture of optical fibers
  • optical waveguides made of acrylic resin do not have heat resistance that can withstand heating conditions used to form electrical circuits, such as high-temperature reflow conditions for lead-free solder.
  • Patent Documents 1 and 2 a resin composition containing an epoxy resin and a curing agent is used to form bonding members for optical waveguides and electric circuit boards in order to suppress the deterioration of connection reliability due to high temperatures.
  • Patent Documents 1 and 2 by setting the thermal expansion coefficient of the bonding member to 80 ppm or less, it is possible to suppress a decrease in the mechanical strength of the bonding member at a high temperature, and a decrease in electrical connection reliability can be suppressed. It is said that it can be done.
  • Patent Document 3 discloses an optical waveguide forming material containing an epoxy resin as a main component and a boron-based photoacid generator.
  • the board When components are mounted on a board on which optical waveguides are laminated by reflow or the like (connected to an optical element), the board may be subjected to heat treatment at 150° C. or higher.
  • the resin compositions used in the inventions described in Patent Documents 1 and 2 have a low coefficient of thermal expansion in their cured products, but also have a low glass transition temperature (Tg) of 0 to 150°C. If the material has a Tg of 150° C. or lower, the storage modulus at 150° C. will be small, and there is a risk that the end face of the waveguide will be deformed when subjected to the heat treatment described above. When the waveguide end face is deformed, a problem arises in that connection reliability decreases. Further, the optical waveguide forming material described in Patent Document 3 is also not an invention that solves the problem of deformation of the waveguide end face described above.
  • the present invention provides a resin composition for optical waveguides that can improve the above problems, reduce end face deformation due to component mounting under high temperatures, and suppress deterioration in connection reliability, as well as dry films and optical waveguides using the same.
  • the purpose is to provide.
  • the resin composition for an optical waveguide contains an epoxy resin (A) and a photoacid generator (B), and the epoxy resin (A) has three or more epoxy groups. It also contains a polyfunctional epoxy resin (a-1) having an epoxy equivalent of 250 g/eq or less and a bisphenol A epoxy resin (a-2), and the photoacid generator (B) is an antimony-based photoacid generator. It is characterized by containing.
  • FIG. 1 is a schematic cross-sectional view for explaining one embodiment of a method for forming an optical waveguide using the resin composition of this embodiment.
  • the resin composition for an optical waveguide (hereinafter sometimes simply referred to as a resin composition) of the present embodiment contains an epoxy resin (A) and a photoacid generator (B).
  • the epoxy resin (A) contains a polyfunctional epoxy resin (a-1) having three or more epoxy groups and an epoxy equivalent of 250 g/eq or less, and a bisphenol A epoxy resin (a-2).
  • the photoacid generator (B) contains an antimony-based photoacid generator.
  • the present invention it is possible to provide a resin composition for an optical waveguide that can reduce end face deformation due to component mounting under high temperature and suppress deterioration in connection reliability, as well as a dry film and an optical waveguide using the same. .
  • the resin composition of this embodiment has a high storage modulus at 150° C. in its cured product. If the storage elastic modulus at 150° C. is high, it is possible to suppress end face deformation, which is a problem especially when used in a cladding layer, and further, it is possible to suppress a decrease in connection reliability. Further, the resin composition of the present embodiment preferably has a storage modulus of 100 MPa or more at 150° C. after curing. It is thought that this makes it possible to more reliably obtain the effects described above. A more preferable storage modulus (150° C.) is 110 MPa or more. Although the upper limit of the storage modulus is not particularly limited, it is preferably 600 MPa or less from the viewpoint that if the elastic modulus is large, the warpage of the underlying base material on which the waveguide is formed will increase.
  • the resin composition of this embodiment is for optical waveguides, and can be used for both cladding layers and core layers. Since the above-mentioned deformation of the waveguide end face mainly occurs in the cladding layer, the resin composition of this embodiment can be used more effectively for the cladding layer.
  • Epoxy resin (A) The epoxy resin (A) of this embodiment includes a polyfunctional epoxy resin (a-1) having three or more epoxy groups and an epoxy equivalent of 250 g/eq or less, and a bisphenol A epoxy resin (a-2). Contains. Additionally, a hydrogenated bisphenol A type epoxy resin (a-3) may be contained. Further, the epoxy resin (A) may contain a hydroxyl group-containing epoxy (a-1). Each epoxy resin will be explained below.
  • ⁇ Multifunctional epoxy resin (a-1) As the polyfunctional epoxy resin (a-1) of the present embodiment, any polyfunctional epoxy resin having three or more epoxy groups and an epoxy equivalent of 250 g/eq or less can be used without particular limitation. More specifically, for example, 2-[4-(2,3-epoxypropoxy)phenyl]-2-[4-[1,1-bis[4-([2,3-epoxypropoxy]phenyl)] Examples include ethyl]phenyl]propane and cresol novolac type epoxy resins.
  • polyfunctional epoxy resins (a-1) can also be used, such as "VG3101” manufactured by Printec Co., Ltd., "EHPE-3150” manufactured by Daicel Chemical Industries, Ltd., and “EHPE-3150” manufactured by Nippon Kayaku Co., Ltd. Examples include “EPPN-502".
  • the polyfunctional epoxy resin (a-1) may be used alone or in combination of two or more.
  • the epoxy resin (A) contains the polyfunctional epoxy resin (a-1), the handleability when the resin composition is made into a film is improved.
  • the lower limit of the epoxy equivalent of the polyfunctional epoxy resin (a-1) is not particularly limited, but from the viewpoint of film handling properties, it is preferably 150 g/eq or more.
  • the content of the polyfunctional epoxy resin (a-1) in the resin composition of the present embodiment is preferably 10% by mass or more and 20% by mass or less based on the total amount of the epoxy resin (A). With such a content, there is an advantage that good handling property when made into a film is more reliably obtained, and also good releasability of a release film during production of an optical waveguide is obtained.
  • a more preferable content is 10% by mass or more and 15% by mass or less.
  • the bisphenol A epoxy resin (a-2) used in this embodiment may be a solid bisphenol A epoxy resin or a liquid bisphenol A epoxy resin.
  • the epoxy equivalent of the bisphenol A epoxy resin (a-2) is preferably about 170 to 1200 g/eq.
  • the bisphenol A type epoxy resin (a-2) may be prepared by a known method, but a commercially available one can also be used. Examples include 1002, 1003, 1055, 1004, 1004AF, 1003F, 1004F, 1005F, 1004FS, 1006FS, and 1007FS. In addition, if it is liquid, examples include “Epicron (registered trademark) 850S” manufactured by DIC Corporation and "JER (registered trademark) 825" manufactured by Mitsubishi Chemical Corporation.
  • the bisphenol A type epoxy resin (a-2) may be used alone or in combination of two or more.
  • at least one solid bisphenol A epoxy resin and at least one liquid bisphenol A epoxy resin are used in combination. is desirable.
  • the resin composition of the present embodiment has the advantage that it becomes a highly transparent resin composition and is easily cured by ultraviolet light.
  • the content of the bisphenol A epoxy resin (a-2) in the resin composition of the present embodiment is not particularly limited, but may be 50% by mass or more and 95% by mass or less based on the total amount of the epoxy resin (A). preferable.
  • Such a content has the advantage that the film is easy to handle, has high transparency, and is easy to cure with ultraviolet light.
  • the content is more preferably 80% by mass or more and 90% by mass or less, and even more preferably 85% by mass or more and 90% by mass or less.
  • the resin composition of the present embodiment may further contain, as the epoxy resin (A), a hydrogenated bisphenol A type epoxy resin (a-3) in addition to the epoxy resin described above.
  • the refractive index can be made relatively small when used as an optical waveguide, and when used as a cladding layer, there is a difference in refractive index from the core layer. It has the advantage of being easier to attach.
  • the hydrogenated bisphenol A type epoxy resin (a-3) may be prepared by a known method, but a commercially available one can also be used.
  • "JER (registered trademark) YX8040” manufactured by Mitsubishi Chemical Corporation” "JER (registered trademark) YX8034” manufactured by Mitsubishi Chemical Corporation, etc. can be used.
  • the resin composition of the present embodiment contains hydrogenated bisphenol A type epoxy resin (a-3), its content is not particularly limited, but is 4% by mass or more and 10% by mass based on the total amount of epoxy resin (A). It is preferable that it is below. Such a content has the advantage that the above-mentioned refractive index can be more reliably reduced and it can be used as a cladding layer. A more preferable content is 5% by mass or more and 9% by mass or less.
  • the resin composition of the present embodiment may contain a hydroxyl group-containing epoxy resin (a-4) as the epoxy resin (A).
  • a-4 hydroxyl group-containing epoxy resin
  • the film is particularly easy to handle, and the film obtained from the resin composition of this embodiment has the advantage of having excellent adhesion to the base and substrate. be.
  • the hydroxyl group-containing epoxy resin (a-4) of the present embodiment is not particularly limited as long as it has a hydroxyl group.
  • the above-mentioned polyfunctional epoxy resin (a-1), bisphenol A type epoxy resin (a -2) and/or the hydrogenated bisphenol A type epoxy resin (a-3) are epoxy resins having a hydroxyl group, they correspond to the hydroxyl group-containing epoxy resin (a-4) in this embodiment.
  • the bisphenol A type epoxy resin (a-2) contains a hydroxyl group-containing epoxy resin (a-4), such as Mitsubishi Chemical Corporation's: 1001 and 1006FS, and DIC Corporation's: 1055, 4050, YD-011, YD-014 of Nippon Steel Chemical & Materials Co., Ltd., etc. can be used as the hydroxyl group-containing epoxy resin (a-4).
  • the hydroxyl group-containing epoxy resin (a-4) may be used alone or in combination of two or more.
  • the amount of hydroxyl groups derived from the hydroxyl group-containing epoxy resin (a-4) contained in the epoxy resin (A) of this embodiment is preferably 0.00050 mol/g or more. It is thought that this makes it possible to more reliably obtain the above-mentioned effects.
  • a more preferable amount of hydroxyl groups is 0.0010 mol/g or more.
  • the upper limit of the amount of hydroxyl groups is not particularly limited, but from the viewpoint that if the amount of hydroxyl groups is excessive, the water absorption rate increases and there is a risk of adversely affecting the subsequent long-term reliability, it is 0.0025 mol/g or less. It is preferable.
  • the amount of hydroxyl groups means the numerical value measured by the method described in the Example mentioned later.
  • the content of the hydroxyl group-containing epoxy resin (a-4) contained in the epoxy resin (A) of this embodiment is preferably 40% by mass or more and 90% by mass or less based on the total amount of the epoxy resin (A). . It is thought that this makes it possible to more reliably obtain the above-mentioned effects.
  • a more preferable content is 40% by mass or more and 80% by mass or less.
  • the content of the bisphenol A type epoxy resin (a-2) and the hydroxyl group content may overlap.
  • the resin composition of this embodiment may contain epoxy resins other than the above-mentioned epoxy resins.
  • epoxy resins other than the above-mentioned epoxy resins.
  • bifunctional epoxy resins eg, EG-200, CG-500, manufactured by Osaka Gas Chemical Co., Ltd.
  • EG-200, CG-500 manufactured by Osaka Gas Chemical Co., Ltd.
  • the content of epoxy resins other than the above-mentioned epoxy resins (a-1) to ((a-4) is 5% by mass or more based on the total amount of the epoxy resin (A). , preferably about 40% by mass or less.
  • the resin composition of this embodiment contains a photoacid generator (B) (curing agent).
  • the photoacid generator (B) is not particularly limited as long as it contains an antimony-based photoacid generator and can promote photocuring of the resin composition containing the epoxy resin (A).
  • Examples of the photoacid generator include antimony-based photoacid generators, boron-based photoacid generators, and the like.
  • the resin composition of the present embodiment can have a high storage modulus at 150°C when cured. By having such a high storage modulus after curing, deformation of the end face when used as an optical waveguide can be suppressed.
  • the photoacid generator is a polymerization initiator for ring-opening polymerization of the epoxy groups of each of the epoxy resins, and is a compound that can initiate the reaction with light.
  • the antimony-based photoacid generator that can be used in this embodiment, for example, "CPI-101A” manufactured by San-Apro Co., Ltd., "SP-170” manufactured by ADEKA Co., Ltd., etc. can be used.
  • the antimony-based photoacid generator the above-mentioned exemplified compounds may be used alone, or two or more types may be used in combination.
  • the photoacid generator (B) of the present embodiment may contain a photoacid generator other than the antimony-based photoacid generator, as long as the effects of the present invention are not impaired.
  • the content of the photoacid generator (B) in the resin composition of this embodiment is not particularly limited, but should be 0.2% by mass or more and 0.4% by mass or less based on the total amount of the epoxy resin (A). is preferred. Such a content has the advantage of having a high storage modulus at 150°C. A more preferable content is 0.25% by mass or more and 0.3% by mass or less.
  • the resin composition of the present embodiment may also contain additives such as an antioxidant, a leveling agent, a coupling agent (silane coupling agent), a flame retardant, and an inorganic filler.
  • additives such as an antioxidant, a leveling agent, a coupling agent (silane coupling agent), a flame retardant, and an inorganic filler.
  • the resin composition of this embodiment preferably contains an antioxidant.
  • the antioxidant is not particularly limited, and phenol-based antioxidants, phosphite-based antioxidants, sulfur-based antioxidants, and the like can be used. Among these, phenolic antioxidants are preferred.
  • Specific phenolic antioxidants include, for example, AO-20, AO-30, AO-40, AO-50, AO-60, AO-80 manufactured by Adeka Co., Ltd., and AO-80 manufactured by Sumitomo Chemical Co., Ltd. Examples include SUMILIZER GA-80.
  • the content of the antioxidant is preferably 5% by mass or less based on the total amount of the epoxy resin. Further, since the antioxidant does not need to be contained, it is preferably 0% by mass or more. That is, the content of the antioxidant is preferably 0% by mass or more and 5% by mass or less based on the total amount of the epoxy resin.
  • the resin composition according to the present embodiment as described above can reduce end face deformation due to component mounting under high temperature in an optical waveguide using the resin composition, and can suppress a decrease in connection reliability.
  • the resin composition of this embodiment preferably has excellent heat resistance in its cured product, and from the viewpoint of more reliably providing a high storage modulus, curing of the resin composition of this embodiment
  • the glass transition temperature (Tg) of the product is preferably in the range of 120°C or higher and 180°C or lower. It is considered that by doing so, it is possible to more reliably obtain an optical waveguide that has sufficient storage modulus and heat resistance and is less likely to deform. It is further preferable that the Tg is 130°C or more and 160°C or less.
  • the resin composition for an optical waveguide can be used as a material for a dry film used when manufacturing an optical waveguide.
  • the dry film for an optical waveguide according to another embodiment of the present invention is not particularly limited as long as it includes a layer made of the resin composition.
  • the dry film for an optical waveguide includes a layer made of a semi-cured product or a cured product of the resin composition (hereinafter also simply referred to as a resin composition layer).
  • the dry film of this embodiment may include a base film laminated on at least one surface of the resin composition layer.
  • a protective film may be laminated on the other surface of the resin composition layer.
  • the dry film for optical waveguides of this embodiment only needs to include the resin composition layer, and may include other layers in addition to the film base material and the protective film, or may include the film base material and the protective film. Not required.
  • the film base material is not particularly limited, and examples thereof include polyethylene terephthalate (PET) film, biaxially oriented polypropylene film, polyethylene naphthalate film, and polyimide film. Among these, PET film is preferably used.
  • the protective film is not particularly limited, and examples thereof include polypropylene films and the like.
  • the method for producing the dry film for optical waveguides of this embodiment is not particularly limited, and examples thereof include the following methods. First, a solvent or the like is added to the above-described resin composition for an optical waveguide to form a varnish, and the varnish is applied onto a film base material. Examples of this coating include coating using a comma coater or the like. Then, by drying this varnish, a resin composition layer is formed on the film base material. Furthermore, a protective film is laminated on this resin composition layer. Examples of the lamination method include a thermal lamination method.
  • the resin composition layer in this dry film for an optical waveguide is used as a material for the optical waveguide.
  • the dry film for optical waveguides may be used when manufacturing the core of the optical waveguide or when manufacturing the cladding, but it is preferable to use it for the cladding for the reasons already mentioned.
  • the dry film of this embodiment also has excellent handling properties.
  • the resin composition for an optical waveguide according to the present embodiment does not necessarily need to be used as a dry film, and may be used, for example, in the form of a varnish. Similar to the dry film for optical waveguides, this composition for optical waveguides may be used when manufacturing the core of the optical waveguide or when manufacturing the cladding. In this way, when an optical waveguide is manufactured using the resin composition for an optical waveguide and the dry film for an optical waveguide, an optical waveguide that is less prone to deformation of the end face even when subjected to heat treatment and has high connection reliability can be obtained.
  • the present invention also includes an optical waveguide formed from the above-described resin composition for an optical waveguide and the dry film for an optical waveguide.
  • the optical waveguide of this embodiment is an optical waveguide including a core layer and a cladding layer having a lower refractive index than the core layer, and the cladding layer and/or the core layer are made of the above-mentioned resin composition for optical waveguide. It is also characterized by being formed of a dry film.
  • the cladding layer is formed of the above-mentioned resin composition for optical waveguide or dry film.
  • the optical waveguide of this embodiment is difficult to cause end face deformation even under high temperatures and has high connection reliability, so it is very useful for industrial use.
  • symbol in FIG. 1 shows the following: 1 Dry film for cladding, 2 Dry film for core, 3 cladding, 3a undercladding, 3b overcladding, 4 core.
  • a cladding dry film and a core dry film are used to form the core and cladding, respectively.
  • the above-mentioned dry film for optical waveguide is used as the dry film for cladding.
  • a dry film 1 for cladding is laminated on the surface of a substrate 10 on which an electric circuit 11 is formed, and then the dry film 1 for cladding is laminated by irradiation with light such as ultraviolet rays and heating. harden.
  • the substrate 10 for example, a flexible printed wiring board in which an electric circuit is formed on one side of a transparent base material such as a polyimide film, a printed wiring board such as glass epoxy, etc. are used.
  • an underclad 3a is formed in a layered manner on the surface of the substrate 10 as shown in FIG. 1(b).
  • a mask in which a core pattern slit is formed is overlaid, and a mask that can be cured by light such as ultraviolet light is passed through the slit.
  • the exposure method may be a selective exposure method using a mask, or a direct writing method in which laser light is scanned and irradiated along the pattern shape.
  • the core dry film 2 the above-mentioned optical waveguide dry film may be used, but it is preferable to use a dry film having a higher refractive index than the cladding dry film 1.
  • the core dry film 2 is developed using a developer such as an aqueous flux cleaning agent to remove the resin in the uncured portions of the core dry film 2 that are not exposed to light.
  • a developer such as an aqueous flux cleaning agent to remove the resin in the uncured portions of the core dry film 2 that are not exposed to light.
  • the cladding dry film 1 is laminated to cover the undercladding 3a and the core 4. Then, by curing the clad dry film 1 by irradiating light or heating, an over clad 3b as shown in FIG. 1(f) is formed. In this way, an optical waveguide A is formed on the surface of the substrate 10, in which the core 4 is embedded in the cladding 3 consisting of the undercladding 3a and the overcladding 3b.
  • the optical waveguide A obtained in this manner can suppress deformation of the end face of the cladding layer due to high temperatures, reduce optical loss, and achieve excellent connection reliability even at high temperatures. Therefore, the substrate 10 on which such an optical waveguide A is formed is preferably used as a printed wiring board for optical transmission, and is preferably used for, for example, a mobile phone or a personal digital assistant.
  • the resin composition for an optical waveguide according to the first aspect of the present invention contains an epoxy resin (A) and a photoacid generator (B), and the epoxy resin (A) has three or more epoxy groups. It also contains a polyfunctional epoxy resin (a-1) having an epoxy equivalent of 250 g/eq or less and a bisphenol A epoxy resin (a-2), and the photoacid generator (B) is an antimony-based photoacid generator. It is characterized by containing.
  • the resin composition for optical waveguides according to the second aspect of the present invention is the resin composition for optical waveguides according to the first aspect, in which the epoxy resin (A) further contains hydrogenated bisphenol A type epoxy resin (a-3). Contains.
  • the content of the polyfunctional epoxy resin (a-1) is 10% by mass or more and 20% by mass or less based on the total amount of the epoxy resin (A).
  • a resin composition for an optical waveguide according to the first or second aspect is 10% by mass or more and 20% by mass or less based on the total amount of the epoxy resin (A).
  • the content of the hydrogenated bisphenol A epoxy resin (a-3) is 4% by mass or more and 10% by mass based on the total amount of the epoxy resin (A).
  • the following is a resin composition for an optical waveguide according to a second or third aspect.
  • the resin composition for optical waveguides according to the fifth aspect of the present invention is the resin composition for optical waveguides according to any one of the first to fourth aspects, which has a storage modulus of 100 MPa or more at 150° C. after curing. .
  • the resin composition for optical waveguides according to the sixth aspect of the present invention is the resin composition for optical waveguides according to any one of the first to fifth aspects, wherein the epoxy resin (A) contains a hydroxyl group-containing epoxy resin (a-4). It is a composition.
  • the amount of hydroxyl groups derived from the hydroxyl group-containing epoxy resin (a-4) contained in the epoxy resin (A) is 0.00050 mol/g or more.
  • the resin composition for optical waveguides according to the eighth aspect of the present invention is the resin composition for optical waveguides according to the sixth or seventh aspect, wherein the bisphenol A epoxy resin (a-2) contains a hydroxyl group-containing epoxy resin (a-4). It is a resin composition.
  • the content of the hydroxyl group-containing epoxy resin (a-4) is 40% by mass or more and 90% by mass or less based on the total amount of the epoxy resin (A).
  • the dry film according to the tenth aspect of the present invention includes a layer made of an uncured or semi-cured product of the resin composition for optical waveguide according to any one of the first to ninth aspects.
  • An optical waveguide according to an eleventh aspect of the present invention is an optical waveguide comprising a core layer and a cladding layer having a lower refractive index than the core layer, wherein the cladding layer is the optical waveguide according to any one of the first to ninth aspects. It is formed using a resin composition for wave paths.
  • ⁇ Test Example 1> ⁇ Preparation of resin composition for optical waveguide> The components were blended according to the composition (parts by mass) shown in Table 1 below, and the mixed solvent of MEK and toluene was adjusted to 55 parts by mass per 100 parts by mass of the resin, and heated to 50 to 80 °C. Mixed while heating. Next, resin varnishes of the resin compositions for optical waveguides of Examples 1 to 16 and Comparative Examples 1 to 4 were prepared by filtering with a membrane filter having a pore size of 0.5 ⁇ m and defoaming.
  • the resin composition varnish for optical waveguides of each example and comparative example was applied to a PET film manufactured by Toyobo Co., Ltd. (product number A4100) using a K control coater manufactured by Matsuo Sangyo Co., Ltd., and dried at 130°C for 10 minutes to a predetermined thickness.
  • a dry film with a resin layer thickness of 20 ⁇ m was obtained by thermally laminating a release film OPP-MA420 manufactured by Oji Special Paper.
  • Glass transition temperature (Tg) and storage modulus at 150°C The dry film of each Example and each Comparative Example was cut into a size of 10 mm x 40 mm and attached to a dynamic viscoelasticity measuring device (DMS6100 manufactured by Seiko Instruments Inc.). The test was conducted with a strain amplitude of 10 ⁇ m, a frequency of 10 Hz (sine wave), and a temperature increase rate of 5° C./min, and the calculated peak temperature of tan ⁇ was adopted as the glass transition temperature. Furthermore, the storage modulus (MPa) at 150° C. was also measured in the same manner using the measuring device.
  • DMS6100 dynamic viscoelasticity measuring device
  • an optical waveguide was formed using the dry films of each Example and each Comparative Example.
  • the dry films of Examples 1 to 10 and Comparative Examples 1 to 4 were used as the dry film for the cladding, and the dry film of Example 11 was used as the dry film for the core layer. Used as a film.
  • the dry film of Example 11 was used as the dry film for the cladding, and the dry film of the resin composition of Example 10 containing 0% by mass of YX8040 was prepared and used for the core layer.
  • the dry film for cladding Using the dry film for cladding, it was laminated onto a substrate that had been subjected to oxygen plasma treatment using a vacuum laminator "V-130" at 65° C. and 0.3 MPa. Then, the curable film for cladding was irradiated with ultraviolet light at 2 J/cm 2 using an ultra-high pressure mercury lamp, and after the release film was peeled off, it was heat-treated at 140°C for 30 minutes to form the under cladding with the dry film for cladding cured. Formed.
  • this core dry film was laminated on the surface of the underclad using a vacuum laminator "V-130" under the same conditions as above. After peeling off the release film, heat treatment was performed at 100°C for 15 minutes, a mask was placed on the film, and exposure was performed using an ultra-high pressure mercury lamp at a light intensity of 2 J/cm 2 , followed by heat treatment at 140°C for 13 minutes. Next, the unexposed portions of the dry film are dissolved and removed by developing using a water-based flux cleaning agent ("Pine Alpha ST-100SX" manufactured by Arakawa Chemical Co., Ltd.) adjusted to 55 ° C. as a developer. Furthermore, after finishing washing with water and air blowing, a core was formed by drying at 120° C. for 15 minutes.
  • a water-based flux cleaning agent (“Pine Alpha ST-100SX” manufactured by Arakawa Chemical Co., Ltd.) adjusted to 55 ° C. as a developer.
  • a dry film for cladding was laminated thereon using a vacuum laminator "V-130" at 80° C. and 0.3 MPa. After peeling off the release film, the curable film for cladding was heat-treated at 140°C for 20 minutes, and then the curable film for cladding was irradiated with ultraviolet light at 2 J/cm 2 using an ultra-high pressure mercury lamp, and heat-treated at 140°C for 30 minutes. The dry film was cured to form an overcladding, and an optical waveguide for evaluation testing was obtained.
  • V-130 vacuum laminator
  • the optical waveguide sample was cut into a size of 50 mm x 50 mm using a DAC552 manufactured by DISCO Co., Ltd. at a rate of 0.3 mm/sec so that the core was exposed.
  • the substrate sample on which the optical waveguide was laminated obtained above was heat-treated at 150°C for 1 hour, and a white confocal microscope manufactured by Lasertec Co., Ltd. was used to check the roughness of the surface of the optical waveguide substrate end surface where the core was exposed.
  • the amount of end face deformation ( ⁇ m) of the cladding layer was measured by observing the deformation of the cladding layer.
  • the cured product of the resin composition of the present invention has a high Tg and a storage modulus at 150°C, and even after heat treatment at a high temperature (150°C), it is possible to form an optical waveguide. It was confirmed that the amount of deformation of the end face of the (cladding) could be suppressed. Further, by comparing Example 11 with the dry films of other Examples, the resin composition of the present invention has a relatively low refractive index by containing hydrogenated bisphenol A type epoxy resin (a-3). It was also confirmed that it could be used suitably for cladding. Furthermore, from the results of Examples 9 and 10, it was found that the effect can be more reliably obtained by keeping the content of the hydrogenated bisphenol A epoxy resin (a-3) within a suitable range.
  • Blend amount (mass) of hydroxyl group-containing epoxy resin (a-4) ("jER (registered trademark) 1001" (hereinafter simply “1001"), "Epicote (registered trademark) 1006FS” (hereinafter simply "1006"))
  • the number of molecules (mol) of each epoxy resin contained in the resin composition was calculated by dividing the number of epoxy resins contained in the resin composition. Furthermore, since 1001 contains 2.1 hydroxyl groups in its skeleton and 1006 contains 5.5 hydroxyl groups in its skeleton, multiply these values by the number of molecules of each epoxy resin calculated earlier.
  • the amount of hydroxyl groups contained in the resin composition was calculated by adding up each of the obtained values and dividing the resulting value by the total amount of epoxy resin.
  • Example 14 it was found that by including the hydroxyl group-containing epoxy resin (a-4), the resin composition of the present invention further improves the handling properties of the film when used as a dry film and the substrate when used as an optical waveguide. It was found that the adhesion was excellent. Furthermore, according to the results of Examples 1 to 13 and Examples 15 to 16, when the amount of hydroxyl groups derived from the hydroxyl group-containing epoxy resin (a-4) was within an appropriate range, the film handling properties and adhesion properties were further improved. It was also confirmed that good results could be obtained.
  • the present invention has wide industrial applicability in technical fields related to optical waveguides and opto-electrical composite wiring boards.

Abstract

One aspect of the present invention relates to a resin composition for an optical waveguide, the resin composition containing an epoxy resin (A) and a photoacid generator (B). The epoxy resin (A) contains: a polyfunctional epoxy resin (a-1) that has three or more epoxy groups and an epoxy-equivalent weight of 250 g/eq or less; and a bisphenol A-type epoxy resin (a-2). The photoacid generator (B) contains an antimony-based photoacid generator.

Description

光導波路用樹脂組成物、並びに、それを用いたドライフィルム及び光導波路Resin composition for optical waveguide, dry film and optical waveguide using the same
 本発明は、光導波路用樹脂組成物、並びに、それを用いたドライフィルム及び光導波路に関する。 The present invention relates to a resin composition for an optical waveguide, and a dry film and optical waveguide using the same.
 従来、FTTH(Fiber to the Home)や車載分野の長距離、中距離通信の分野で伝送媒体として光ファイバーが主流であった。近年、1m以内の短距離においても光を用いた高速伝送が必要となってきている。この領域には、光ファイバーではできない、高密度配線(狭ピッチ、分岐、交差、多層化等)、表面実装性、電気基板との一体化、小径での曲げが可能な光導波路型の光配線板が適している。 Conventionally, optical fiber has been the mainstream as a transmission medium in the fields of FTTH (Fiber to the Home) and long-distance and medium-distance communications in the automotive field. In recent years, high-speed transmission using light has become necessary even over short distances of 1 m or less. In this area, optical waveguide-type optical wiring boards are used, which are capable of high-density wiring (narrow pitch, branching, crossing, multilayering, etc.), surface mounting, integration with electrical boards, and bendability in small diameters, which are not possible with optical fibers. is suitable.
 光導波路を形成するために用いられる材料としては、例えば、光ファイバーの製造に広く用いられているアクリル樹脂が知られている。しかしながら、アクリル樹脂で形成された光導波路は、電気回路を形成させる際の加熱条件、例えば、鉛フリーはんだの高温でのリフロー条件に耐えうる耐熱性を有していない。 As a material used to form an optical waveguide, for example, acrylic resin, which is widely used in the manufacture of optical fibers, is known. However, optical waveguides made of acrylic resin do not have heat resistance that can withstand heating conditions used to form electrical circuits, such as high-temperature reflow conditions for lead-free solder.
 これまでに、高温による接続信頼性の低下を抑制するために、エポキシ樹脂と硬化剤を含む樹脂組成物を用いて、光導波路や電気回路基板における接合部材を形成することが報告されている(特許文献1および2)。特許文献1および2記載の技術では、前記接合部材の熱膨張係数を80ppm以下とすることによって、高温になった接合部材の機械強度の低下を抑制でき、電気的な接続信頼性の低下が抑制できるとされている。 To date, it has been reported that a resin composition containing an epoxy resin and a curing agent is used to form bonding members for optical waveguides and electric circuit boards in order to suppress the deterioration of connection reliability due to high temperatures ( Patent Documents 1 and 2). In the techniques described in Patent Documents 1 and 2, by setting the thermal expansion coefficient of the bonding member to 80 ppm or less, it is possible to suppress a decrease in the mechanical strength of the bonding member at a high temperature, and a decrease in electrical connection reliability can be suppressed. It is said that it can be done.
 一方で、光導波路用形成材料としては、光カチオン重合または硬化が可能な形成材料が用いられるが、その硬化後の着色を回避するために、光酸発生剤が用いられる。例えば、特許文献3では、エポキシ樹脂を主成分とし、ホウ素系光酸発生剤を含有してなる光導波路用形成材料が開示されている。 On the other hand, as the forming material for the optical waveguide, a forming material that can be photocationically polymerized or hardened is used, but a photoacid generator is used to avoid coloring after curing. For example, Patent Document 3 discloses an optical waveguide forming material containing an epoxy resin as a main component and a boron-based photoacid generator.
 光導波路を積層した基板にリフローなどで部品実装する(光素子と接続させる)際は、150℃以上の熱処理に供することがある。しかし、上記特許文献1および2記載の発明で使用されている樹脂組成物は、その硬化物における熱膨張係数は低いが、ガラス転移温度(Tg)も0~150℃と低くなっている。Tgが150℃以下の材料だと150℃における貯蔵弾性率が小さくなり、前記のような熱処理を経ると導波路端面が変形してしまうおそれがある。導波路端面が変形すると、接続信頼性が低下するという問題が生じる。また、特許文献3に記載の光導波路用形成材料も、上述の導波路端面の変形という問題を解決するような発明ではない。 When components are mounted on a board on which optical waveguides are laminated by reflow or the like (connected to an optical element), the board may be subjected to heat treatment at 150° C. or higher. However, the resin compositions used in the inventions described in Patent Documents 1 and 2 have a low coefficient of thermal expansion in their cured products, but also have a low glass transition temperature (Tg) of 0 to 150°C. If the material has a Tg of 150° C. or lower, the storage modulus at 150° C. will be small, and there is a risk that the end face of the waveguide will be deformed when subjected to the heat treatment described above. When the waveguide end face is deformed, a problem arises in that connection reliability decreases. Further, the optical waveguide forming material described in Patent Document 3 is also not an invention that solves the problem of deformation of the waveguide end face described above.
国際公開第2020/203366号International Publication No. 2020/203366 特開2020-166107号公報Japanese Patent Application Publication No. 2020-166107 特開2011-237518号公報Japanese Patent Application Publication No. 2011-237518
 そこで、本発明は上記問題を改善し、高温下の部品実装による端面変形を低減し、接続信頼性の低下を抑制できる光導波路用樹脂組成物、並びに、それを用いたドライフィルムおよび光導波路を提供することを目的とする。 Therefore, the present invention provides a resin composition for optical waveguides that can improve the above problems, reduce end face deformation due to component mounting under high temperatures, and suppress deterioration in connection reliability, as well as dry films and optical waveguides using the same. The purpose is to provide.
 本発明者らは、前記課題を解決すべく鋭意検討した結果、以下の構成により前記課題を解決できることを見出した。 As a result of intensive study to solve the above problem, the present inventors found that the above problem could be solved by the following configuration.
 すなわち、本発明の一局面に係る光導波路用樹脂組成物は、エポキシ樹脂(A)と光酸発生剤(B)とを含有し、エポキシ樹脂(A)は、エポキシ基を3個以上有し且つエポキシ当量が250g/eq以下である多官能エポキシ樹脂(a-1)と、ビスフェノールA型エポキシ樹脂(a-2)とを含有し、光酸発生剤(B)はアンチモン系光酸発生剤を含有することを特徴とする。 That is, the resin composition for an optical waveguide according to one aspect of the present invention contains an epoxy resin (A) and a photoacid generator (B), and the epoxy resin (A) has three or more epoxy groups. It also contains a polyfunctional epoxy resin (a-1) having an epoxy equivalent of 250 g/eq or less and a bisphenol A epoxy resin (a-2), and the photoacid generator (B) is an antimony-based photoacid generator. It is characterized by containing.
図1は、本実施形態の樹脂組成物を用いて、光導波路を形成する方法の一実施態様を説明するための断面模式図である。FIG. 1 is a schematic cross-sectional view for explaining one embodiment of a method for forming an optical waveguide using the resin composition of this embodiment.
 以下に、本発明を実施するための実施形態を具体的に説明するが、本発明はこれらに限定されるわけではない。 Embodiments for carrying out the present invention will be specifically described below, but the present invention is not limited thereto.
 [光導波路用樹脂組成物]
 本実施形態の光導波路用樹脂組成物(以下、単に樹脂組成物と呼ぶこともある)は、エポキシ樹脂(A)と光酸発生剤(B)とを含有する。エポキシ樹脂(A)は、エポキシ基を3個以上有し且つエポキシ当量が250g/eq以下である多官能エポキシ樹脂(a-1)と、ビスフェノールA型エポキシ樹脂(a-2)とを含有する。また、光酸発生剤(B)はアンチモン系光酸発生剤を含有する。
[Resin composition for optical waveguide]
The resin composition for an optical waveguide (hereinafter sometimes simply referred to as a resin composition) of the present embodiment contains an epoxy resin (A) and a photoacid generator (B). The epoxy resin (A) contains a polyfunctional epoxy resin (a-1) having three or more epoxy groups and an epoxy equivalent of 250 g/eq or less, and a bisphenol A epoxy resin (a-2). . Moreover, the photoacid generator (B) contains an antimony-based photoacid generator.
 本発明によれば、高温下の部品実装による端面変形を低減し、接続信頼性の低下を抑制できる光導波路用樹脂組成物、並びに、それを用いたドライフィルムおよび光導波路を提供することができる。 According to the present invention, it is possible to provide a resin composition for an optical waveguide that can reduce end face deformation due to component mounting under high temperature and suppress deterioration in connection reliability, as well as a dry film and an optical waveguide using the same. .
 具体的には、上述したような構成によって、本実施形態の樹脂組成物は、その硬化物において、150℃における高い貯蔵弾性率を備える。150℃における貯蔵弾性率が高ければ、特にクラッド層に用いた場合に問題となる端面変形を抑制することができ、ひいては、接続信頼性が低下することを抑制できる。さらに、本実施形態の樹脂組成物は、硬化後の150℃における貯蔵弾性率が100MPa以上であることが好ましい。それにより、上述したような効果をより確実に得ることができると考えられる。さらに好ましい貯蔵弾性率(150℃)は110MPa以上である。前記貯蔵弾性率の上限値は特に限定はされないが、弾性率が大きいと導波路を形成した下地基材の反りが増大する観点から、600MPa以下であることが好ましい。 Specifically, with the configuration described above, the resin composition of this embodiment has a high storage modulus at 150° C. in its cured product. If the storage elastic modulus at 150° C. is high, it is possible to suppress end face deformation, which is a problem especially when used in a cladding layer, and further, it is possible to suppress a decrease in connection reliability. Further, the resin composition of the present embodiment preferably has a storage modulus of 100 MPa or more at 150° C. after curing. It is thought that this makes it possible to more reliably obtain the effects described above. A more preferable storage modulus (150° C.) is 110 MPa or more. Although the upper limit of the storage modulus is not particularly limited, it is preferably 600 MPa or less from the viewpoint that if the elastic modulus is large, the warpage of the underlying base material on which the waveguide is formed will increase.
 本実施形態の樹脂組成物は、光導波路用であり、クラッド層用としてもコア層用としても使用することが可能である。上述したような導波路端面の変形は主にクラッド層において生じるため、本実施形態の樹脂組成物をクラッド層用として用いることにより、より効果を発揮することができる。 The resin composition of this embodiment is for optical waveguides, and can be used for both cladding layers and core layers. Since the above-mentioned deformation of the waveguide end face mainly occurs in the cladding layer, the resin composition of this embodiment can be used more effectively for the cladding layer.
 (エポキシ樹脂(A))
 本実施形態のエポキシ樹脂(A)は、エポキシ基を3個以上有し且つエポキシ当量が250g/eq以下である多官能エポキシ樹脂(a-1)と、ビスフェノールA型エポキシ樹脂(a-2)とを含有する。さらに加えて、水添ビスフェノールA型エポキシ樹脂(a-3)を含有していてもよい。また、エポキシ樹脂(A)は水酸基含有エポキシ(a-1)を含有していてもよい。以下に各エポキシ樹脂について説明する。
(Epoxy resin (A))
The epoxy resin (A) of this embodiment includes a polyfunctional epoxy resin (a-1) having three or more epoxy groups and an epoxy equivalent of 250 g/eq or less, and a bisphenol A epoxy resin (a-2). Contains. Additionally, a hydrogenated bisphenol A type epoxy resin (a-3) may be contained. Further, the epoxy resin (A) may contain a hydroxyl group-containing epoxy (a-1). Each epoxy resin will be explained below.
 ・多官能エポキシ樹脂(a-1)
 本実施形態の多官能エポキシ樹脂(a-1)としては、エポキシ基を3個以上有し且つエポキシ当量が250g/eq以下である多官能エポキシ樹脂であれば特に限定なく使用することができる。より具体的には、例えば、2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-([2,3-エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン、クレゾールノボラック型エポキシ樹脂等が挙げられる。また多官能エポキシ樹脂(a-1)は、市販のものを使用することもでき、例えば、株式会社プリンテック製の「VG3101」、ダイセル化学工業製の「EHPE-3150」、日本化薬性の「EPPN-502」等が挙げられる。多官能エポキシ樹脂(a-1)は1種を単独で使用してもよいし、2種以上を組み合わせて用いてもよい。
・Multifunctional epoxy resin (a-1)
As the polyfunctional epoxy resin (a-1) of the present embodiment, any polyfunctional epoxy resin having three or more epoxy groups and an epoxy equivalent of 250 g/eq or less can be used without particular limitation. More specifically, for example, 2-[4-(2,3-epoxypropoxy)phenyl]-2-[4-[1,1-bis[4-([2,3-epoxypropoxy]phenyl)] Examples include ethyl]phenyl]propane and cresol novolac type epoxy resins. Furthermore, commercially available polyfunctional epoxy resins (a-1) can also be used, such as "VG3101" manufactured by Printec Co., Ltd., "EHPE-3150" manufactured by Daicel Chemical Industries, Ltd., and "EHPE-3150" manufactured by Nippon Kayaku Co., Ltd. Examples include "EPPN-502". The polyfunctional epoxy resin (a-1) may be used alone or in combination of two or more.
 本実施形態の樹脂組成物において、エポキシ樹脂(A)が多官能エポキシ樹脂(a-1)を含むことにより、樹脂組成物をフィルムにした際の取り扱い性が良好となる。 In the resin composition of the present embodiment, since the epoxy resin (A) contains the polyfunctional epoxy resin (a-1), the handleability when the resin composition is made into a film is improved.
 なお、多官能エポキシ樹脂(a-1)のエポキシ当量の下限値は特に限定はされないが、フィルム取り扱い性の観点から150g/eq以上であることが好ましい。 Note that the lower limit of the epoxy equivalent of the polyfunctional epoxy resin (a-1) is not particularly limited, but from the viewpoint of film handling properties, it is preferably 150 g/eq or more.
 本実施形態の樹脂組成物における多官能エポキシ樹脂(a-1)の含有量は、エポキシ樹脂(A)全量に対して10質量%以上20質量%以下であることが好ましい。このような含有量であれば、フィルムにした際の良好な取り扱い性がより確実に得られつつ、また、光導波路作製時の離形フィルム剥離性が良好であるといった利点がある。より好ましい含有量は、10質量%以上、15質量%以下である。 The content of the polyfunctional epoxy resin (a-1) in the resin composition of the present embodiment is preferably 10% by mass or more and 20% by mass or less based on the total amount of the epoxy resin (A). With such a content, there is an advantage that good handling property when made into a film is more reliably obtained, and also good releasability of a release film during production of an optical waveguide is obtained. A more preferable content is 10% by mass or more and 15% by mass or less.
 ・ビスフェノールA型エポキシ樹脂(a-2)
 本実施形態で使用するビスフェノールA型エポキシ樹脂(a-2)は、固形状ビスフェノールA型エポキシ樹脂であっても液状ビスフェノールA型エポキシ樹脂であってもよい。ビスフェノールA型エポキシ樹脂(a-2)のエポキシ当量は170~1200g/eq程度であることが好ましい。
・Bisphenol A type epoxy resin (a-2)
The bisphenol A epoxy resin (a-2) used in this embodiment may be a solid bisphenol A epoxy resin or a liquid bisphenol A epoxy resin. The epoxy equivalent of the bisphenol A epoxy resin (a-2) is preferably about 170 to 1200 g/eq.
 ビスフェノールA型エポキシ樹脂(a-2)は、公知の方法で調製してもよいが、市販のものを使用することもでき、例えば、固形状であれば、三菱化学株式会社製の:1001、1002、1003,1055、1004、1004AF、1003F、1004F、1005F、1004FS、1006FS、及び1007FS等が挙げられる。また、液状であれば、DIC株式会社製の「エピクロン(登録商標)850S」、三菱ケミカル株式会社製の「JER(登録商標)825」等が挙げられる。 The bisphenol A type epoxy resin (a-2) may be prepared by a known method, but a commercially available one can also be used. Examples include 1002, 1003, 1055, 1004, 1004AF, 1003F, 1004F, 1005F, 1004FS, 1006FS, and 1007FS. In addition, if it is liquid, examples include "Epicron (registered trademark) 850S" manufactured by DIC Corporation and "JER (registered trademark) 825" manufactured by Mitsubishi Chemical Corporation.
 ビスフェノールA型エポキシ樹脂(a-2)は、1種を単独で使用してもよいし、2種以上を組み合わせて用いてもよい。好ましくは、フィルムのタック調整、フィルム取り扱い性(粉落ち、割れ防止)の観点から、固形状ビスフェノールA型エポキシ樹脂を少なくとも1種と液状ビスフェノールA型エポキシ樹脂を少なくとも1種で組み合わせて使用することが望ましい。 The bisphenol A type epoxy resin (a-2) may be used alone or in combination of two or more. Preferably, from the viewpoint of film tack adjustment and film handling properties (powder falling and crack prevention), at least one solid bisphenol A epoxy resin and at least one liquid bisphenol A epoxy resin are used in combination. is desirable.
 本実施形態の樹脂組成物はビスフェノールA型エポキシ樹脂(a-2)を含むことにより、透明性の高い樹脂組成物となり、紫外線硬化が容易になるという利点がある。 By containing the bisphenol A epoxy resin (a-2), the resin composition of the present embodiment has the advantage that it becomes a highly transparent resin composition and is easily cured by ultraviolet light.
 本実施形態の樹脂組成物におけるビスフェノールA型エポキシ樹脂(a-2)の含有量は、特に限定はされないが、エポキシ樹脂(A)全量に対して50質量%以上95質量%以下であることが好ましい。このような含有量であれば、フィルムの取り扱い性が良好で、且つ、透明性が高く紫外線硬化が容易になるといった利点がある。より好ましい含有量は、80質量%以上90質量%以下であり、さらに好ましくは85質量%以上、90質量%以下である。 The content of the bisphenol A epoxy resin (a-2) in the resin composition of the present embodiment is not particularly limited, but may be 50% by mass or more and 95% by mass or less based on the total amount of the epoxy resin (A). preferable. Such a content has the advantage that the film is easy to handle, has high transparency, and is easy to cure with ultraviolet light. The content is more preferably 80% by mass or more and 90% by mass or less, and even more preferably 85% by mass or more and 90% by mass or less.
 ・水添ビスフェノールA型エポキシ樹脂(a-3)
 本実施形態の樹脂組成物には、エポキシ樹脂(A)として、上述したようなエポキシ樹脂に加えて、水添ビスフェノールA型エポキシ樹脂(a-3)がさらに含有されていてもよい。水添ビスフェノールA型エポキシ樹脂(a-3)を含有することにより、光導波路とした際に屈折率を比較的小さくすることができ、クラッド層用として用いた場合にコア層との屈折率差がつけやすくなるという利点がある。
・Hydrogenated bisphenol A type epoxy resin (a-3)
The resin composition of the present embodiment may further contain, as the epoxy resin (A), a hydrogenated bisphenol A type epoxy resin (a-3) in addition to the epoxy resin described above. By containing hydrogenated bisphenol A type epoxy resin (a-3), the refractive index can be made relatively small when used as an optical waveguide, and when used as a cladding layer, there is a difference in refractive index from the core layer. It has the advantage of being easier to attach.
 水添ビスフェノールA型エポキシ樹脂(a-3)は、公知の方法で調製してもよいが、市販のものを使用することもでき、例えば、三菱ケミカル株式会社製の「JER(登録商標)YX8040」、三菱ケミカル株式会社製の「JER(登録商標)YX8034」等を使用することができる。 The hydrogenated bisphenol A type epoxy resin (a-3) may be prepared by a known method, but a commercially available one can also be used. For example, "JER (registered trademark) YX8040" manufactured by Mitsubishi Chemical Corporation ", "JER (registered trademark) YX8034" manufactured by Mitsubishi Chemical Corporation, etc. can be used.
 本実施形態の樹脂組成物が水添ビスフェノールA型エポキシ樹脂(a-3)を含む場合、その含有量は特に限定はされないが、エポキシ樹脂(A)全量に対して4質量%以上10質量%以下であることが好ましい。このような含有量であれば、上述したような屈折率をより確実に小さくでき、クラッド層として使用できるといった利点がある。より好ましい含有量は、5質量%以上、9質量%以下である。 When the resin composition of the present embodiment contains hydrogenated bisphenol A type epoxy resin (a-3), its content is not particularly limited, but is 4% by mass or more and 10% by mass based on the total amount of epoxy resin (A). It is preferable that it is below. Such a content has the advantage that the above-mentioned refractive index can be more reliably reduced and it can be used as a cladding layer. A more preferable content is 5% by mass or more and 9% by mass or less.
 本実施形態の樹脂組成物には、エポキシ樹脂(A)として、水酸基含有エポキシ樹脂(a-4)が含有されていてもよい。水酸基含有エポキシ樹脂(a-4)を含有することにより、特にフィルム取り扱い性がより良好となり、本実施形態の樹脂組成物によって得られるフィルムにおいて、下地や基板との接着性にも優れるという利点がある。 The resin composition of the present embodiment may contain a hydroxyl group-containing epoxy resin (a-4) as the epoxy resin (A). By containing the hydroxyl group-containing epoxy resin (a-4), the film is particularly easy to handle, and the film obtained from the resin composition of this embodiment has the advantage of having excellent adhesion to the base and substrate. be.
 本実施形態の水酸基含有エポキシ樹脂(a-4)としては、水酸基を有するエポキシ樹脂であれば特に限定はなく、例えば、上述した多官能エポキシ樹脂(a-1)、ビスフェノールA型エポキシ樹脂(a-2)、及び/又は水添ビスフェノールA型エポキシ樹脂(a-3)が、水酸基を有するエポキシ樹脂であれば、それらは本実施形態における水酸基含有エポキシ樹脂(a-4)に該当する。これらの中でも、ビスフェノールA型エポキシ樹脂(a-2)が水酸基含有エポキシ樹脂(a-4)を含有していることが好ましく、三菱化学株式会社製の:1001、1006FS、DIC株式会社製の:1055、4050、日鉄ケミカルケミカル&マテリアル株式会社の:YD-011、YD-014等を、水酸基含有エポキシ樹脂(a-4)として使用することができる。水酸基含有エポキシ樹脂(a-4)は、1種を単独で使用してもよいし、2種以上を組み合わせて用いてもよい。 The hydroxyl group-containing epoxy resin (a-4) of the present embodiment is not particularly limited as long as it has a hydroxyl group. For example, the above-mentioned polyfunctional epoxy resin (a-1), bisphenol A type epoxy resin (a -2) and/or the hydrogenated bisphenol A type epoxy resin (a-3) are epoxy resins having a hydroxyl group, they correspond to the hydroxyl group-containing epoxy resin (a-4) in this embodiment. Among these, it is preferable that the bisphenol A type epoxy resin (a-2) contains a hydroxyl group-containing epoxy resin (a-4), such as Mitsubishi Chemical Corporation's: 1001 and 1006FS, and DIC Corporation's: 1055, 4050, YD-011, YD-014 of Nippon Steel Chemical & Materials Co., Ltd., etc. can be used as the hydroxyl group-containing epoxy resin (a-4). The hydroxyl group-containing epoxy resin (a-4) may be used alone or in combination of two or more.
 本実施形態のエポキシ樹脂(A)に含まれる、水酸基含有エポキシ樹脂(a-4)由来の水酸基量は、0.00050mol/g以上であることが好ましい。それにより、上述した効果をより確実に得ることができると考えられる。さらに好ましい水酸基量は0.0010mol/g以上である。また、前記水酸基量の上限は特に限定はされないが、水酸基量が過剰だと吸水率が高くなり、その後の長期信頼性に悪影響を与えるおそれがあるという観点から、0.0025mol/g以下であることが好ましい。なお、本明細書において「水酸基量」とは、後述する実施例に記載の方法で測定した数値を意味する。 The amount of hydroxyl groups derived from the hydroxyl group-containing epoxy resin (a-4) contained in the epoxy resin (A) of this embodiment is preferably 0.00050 mol/g or more. It is thought that this makes it possible to more reliably obtain the above-mentioned effects. A more preferable amount of hydroxyl groups is 0.0010 mol/g or more. Further, the upper limit of the amount of hydroxyl groups is not particularly limited, but from the viewpoint that if the amount of hydroxyl groups is excessive, the water absorption rate increases and there is a risk of adversely affecting the subsequent long-term reliability, it is 0.0025 mol/g or less. It is preferable. In addition, in this specification, "the amount of hydroxyl groups" means the numerical value measured by the method described in the Example mentioned later.
 本実施形態のエポキシ樹脂(A)に含まれる、水酸基含有エポキシ樹脂(a-4)の含有量は、エポキシ樹脂(A)全量に対し、40質量%以上、90質量%以下であることが好ましい。それにより、上述した効果をより確実に得ることができると考えられる。さらに好ましい含有量は、40質量%以上、80質量%以下である。なお、ここで、例えば、ビスフェノールA型エポキシ樹脂(a-2)が水酸基含有エポキシ樹脂(a-4)を含有している場合、ビスフェノールA型エポキシ樹脂(a-2)の含有量と水酸基含有エポキシ樹脂(a-4)の含有量は重複する場合があることに留意すべきである。 The content of the hydroxyl group-containing epoxy resin (a-4) contained in the epoxy resin (A) of this embodiment is preferably 40% by mass or more and 90% by mass or less based on the total amount of the epoxy resin (A). . It is thought that this makes it possible to more reliably obtain the above-mentioned effects. A more preferable content is 40% by mass or more and 80% by mass or less. In addition, here, for example, when the bisphenol A type epoxy resin (a-2) contains a hydroxyl group-containing epoxy resin (a-4), the content of the bisphenol A type epoxy resin (a-2) and the hydroxyl group content It should be noted that the content of epoxy resin (a-4) may overlap.
 さらに、本実施形態の樹脂組成物には、上述したエポキシ樹脂以外のエポキシ樹脂を含んでいてもよい。例えば、二官能エポキシ樹脂(例えば、大阪ガスケミカル株式会社製のEG-200、CG-500等)等が挙げられる。 Furthermore, the resin composition of this embodiment may contain epoxy resins other than the above-mentioned epoxy resins. For example, bifunctional epoxy resins (eg, EG-200, CG-500, manufactured by Osaka Gas Chemical Co., Ltd.), etc. may be mentioned.
 本実施形態のエポキシ樹脂(A)において、上述したエポキシ樹脂(a-1)~((a-4)以外のエポキシ樹脂の含有量としては、エポキシ樹脂(A)全量に対し、5質量%以上、40質量%以下程度であることが好ましい。 In the epoxy resin (A) of this embodiment, the content of epoxy resins other than the above-mentioned epoxy resins (a-1) to ((a-4) is 5% by mass or more based on the total amount of the epoxy resin (A). , preferably about 40% by mass or less.
 (光酸発生剤(B))
 本実施形態の樹脂組成物は、光酸発生剤(B)(硬化剤)を含む。光酸発生剤(B)としては、アンチモン系光酸発生剤を含み、前記エポキシ樹脂(A)を含む樹脂組成物の、光硬化を促進させることができれば、特に限定されない。前記光酸発生剤としては、例えば、アンチモン系光酸発生剤、ホウ素系光酸発生剤等が挙げられる。
(Photoacid generator (B))
The resin composition of this embodiment contains a photoacid generator (B) (curing agent). The photoacid generator (B) is not particularly limited as long as it contains an antimony-based photoacid generator and can promote photocuring of the resin composition containing the epoxy resin (A). Examples of the photoacid generator include antimony-based photoacid generators, boron-based photoacid generators, and the like.
 本実施形態の樹脂組成物は、光酸発生剤(B)としてアンチモン系光酸発生剤を含むことにより、硬化物とした際に、150℃における高い貯蔵弾性率を有することができる。このような硬化後の高い貯蔵弾性率を有することによって、光導波路とした際の端面変形を抑制することができる。 By containing an antimony-based photoacid generator as the photoacid generator (B), the resin composition of the present embodiment can have a high storage modulus at 150°C when cured. By having such a high storage modulus after curing, deformation of the end face when used as an optical waveguide can be suppressed.
 光酸発生剤は、前記各エポキシ樹脂のエポキシ基を開環重合させるための重合開始剤であり、光によって反応を開始させることができる化合物である。本実施形態で使用できるアンチモン系光酸発生剤としては、例えば、サンアプロ株式会社製の「CPI-101A」、株式会社ADEKA製の「SP-170」等を用いることができる。また、前記アンチモン系光酸発生剤は、上記例示化合物を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。さらに、本実施形態の光酸発生剤(B)は、本発明の効果を阻害しない限り、アンチモン系光酸発生剤以外の光酸発生剤を含んでいてもよい。 The photoacid generator is a polymerization initiator for ring-opening polymerization of the epoxy groups of each of the epoxy resins, and is a compound that can initiate the reaction with light. As the antimony-based photoacid generator that can be used in this embodiment, for example, "CPI-101A" manufactured by San-Apro Co., Ltd., "SP-170" manufactured by ADEKA Co., Ltd., etc. can be used. Further, as the antimony-based photoacid generator, the above-mentioned exemplified compounds may be used alone, or two or more types may be used in combination. Furthermore, the photoacid generator (B) of the present embodiment may contain a photoacid generator other than the antimony-based photoacid generator, as long as the effects of the present invention are not impaired.
 本実施形態の樹脂組成物における光酸発生剤(B)の含有量は、特に限定はされないが、エポキシ樹脂(A)全量に対して0.2質量%以上0.4質量%以下であることが好ましい。このような含有量であれば、150℃における高い貯蔵弾性率を有することができるといった利点がある。より好ましい含有量は、0.25質量%以上、0.3質量%以下である。 The content of the photoacid generator (B) in the resin composition of this embodiment is not particularly limited, but should be 0.2% by mass or more and 0.4% by mass or less based on the total amount of the epoxy resin (A). is preferred. Such a content has the advantage of having a high storage modulus at 150°C. A more preferable content is 0.25% by mass or more and 0.3% by mass or less.
 (その他の成分)
 また本実施形態の樹脂組成物には、上記以外にも、酸化防止剤、レベリング剤、カップリング剤(シランカップリング剤)、難燃剤、無機フィラー等の添加剤を配合することもできる。
(Other ingredients)
In addition to the above, the resin composition of the present embodiment may also contain additives such as an antioxidant, a leveling agent, a coupling agent (silane coupling agent), a flame retardant, and an inorganic filler.
 耐熱性をより高めるという点では、本実施形態の樹脂組成物は酸化防止剤を含むことが好ましい。前記酸化防止剤は、特に限定されず、フェノール系の酸化防止剤、ホスファイト系の酸化防止剤、及び硫黄系の酸化防止剤等を用いることができる。中でも、フェノール系酸化防止剤が好ましい。 In terms of further increasing heat resistance, the resin composition of this embodiment preferably contains an antioxidant. The antioxidant is not particularly limited, and phenol-based antioxidants, phosphite-based antioxidants, sulfur-based antioxidants, and the like can be used. Among these, phenolic antioxidants are preferred.
 具体的なフェノール系の酸化防止剤としては、例えば、株式会社アデカ製の、AO-20、AO-30、AO-40、AO-50、AO-60、AO-80、住友化学株式会社製のSUMILIZER GA-80等が挙げられる。 Specific phenolic antioxidants include, for example, AO-20, AO-30, AO-40, AO-50, AO-60, AO-80 manufactured by Adeka Co., Ltd., and AO-80 manufactured by Sumitomo Chemical Co., Ltd. Examples include SUMILIZER GA-80.
 前記酸化防止剤の含有量は、エポキシ樹脂全量に対して、5質量%以下であることが好ましい。また、前記酸化防止剤は、含有していなくてもよいので、0質量%以上であることが好ましい。すなわち、前記酸化防止剤の含有量は、エポキシ樹脂全量に対して、0質量%以上5質量%以下であることが好ましい。 The content of the antioxidant is preferably 5% by mass or less based on the total amount of the epoxy resin. Further, since the antioxidant does not need to be contained, it is preferably 0% by mass or more. That is, the content of the antioxidant is preferably 0% by mass or more and 5% by mass or less based on the total amount of the epoxy resin.
 以上に説明したような、本実施形態に係る樹脂組成物は、それを用いた光導波路において、高温下の部品実装による端面変形を低減し、接続信頼性の低下を抑制できる。 The resin composition according to the present embodiment as described above can reduce end face deformation due to component mounting under high temperature in an optical waveguide using the resin composition, and can suppress a decrease in connection reliability.
 本実施形態の樹脂組成物はその硬化物において優れた耐熱性を備えていることが好ましいという観点、並びに、高い貯蔵弾性率をより確実に備えるという観点から、本実施形態の樹脂組成物の硬化物におけるガラス転移温度(Tg)は、120℃以上180℃以下の範囲であることが好ましい。それにより、十分な貯蔵弾性率および耐熱性を備えつつ、かつ、変形しにくい光導波路をより確実に得ることができると考えられる。前記Tgはさらに130℃以上、160℃以下であることが好ましい。 From the viewpoint that the resin composition of this embodiment preferably has excellent heat resistance in its cured product, and from the viewpoint of more reliably providing a high storage modulus, curing of the resin composition of this embodiment The glass transition temperature (Tg) of the product is preferably in the range of 120°C or higher and 180°C or lower. It is considered that by doing so, it is possible to more reliably obtain an optical waveguide that has sufficient storage modulus and heat resistance and is less likely to deform. It is further preferable that the Tg is 130°C or more and 160°C or less.
 [光導波路用ドライフィルム]
 前記光導波路用樹脂組成物は、光導波路を製造する際に用いるドライフィルムの材料として用いることができる。
[Dry film for optical waveguide]
The resin composition for an optical waveguide can be used as a material for a dry film used when manufacturing an optical waveguide.
 本発明の他の一実施形態に係る光導波路用ドライフィルムは、前記樹脂組成物からなる層を備えるものであれば、特に限定されない。具体的には、光導波路用ドライフィルムは、前記樹脂組成物の半硬化物又は硬化物からなる層(以下、単に樹脂組成物層とも称す)を含む。また、本実施形態のドライフィルムは、前記樹脂組成物層の少なくとも一方の面上に積層された基材フィルムを含んでいてもよい。さらに、前記樹脂組成物層の他方の面上に、保護フィルムが積層されていてもよい。 The dry film for an optical waveguide according to another embodiment of the present invention is not particularly limited as long as it includes a layer made of the resin composition. Specifically, the dry film for an optical waveguide includes a layer made of a semi-cured product or a cured product of the resin composition (hereinafter also simply referred to as a resin composition layer). Further, the dry film of this embodiment may include a base film laminated on at least one surface of the resin composition layer. Furthermore, a protective film may be laminated on the other surface of the resin composition layer.
 本実施形態の光導波路用ドライフィルムは、前記樹脂組成物層を備えていればよく、フィルム基材及び保護フィルムだけではなく他の層を備えていてもよいし、フィルム基材及び保護フィルムも必須ではない。 The dry film for optical waveguides of this embodiment only needs to include the resin composition layer, and may include other layers in addition to the film base material and the protective film, or may include the film base material and the protective film. Not required.
 前記フィルム基材は、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)フィルム、二軸延伸ポリプロピレンフィルム、ポリエチレンナフタレートフィルム、及びポリイミドフィルム等が挙げられる。この中でも、PETフィルムが好ましく用いられる。 The film base material is not particularly limited, and examples thereof include polyethylene terephthalate (PET) film, biaxially oriented polypropylene film, polyethylene naphthalate film, and polyimide film. Among these, PET film is preferably used.
 また、前記保護フィルムは、特に限定されないが、例えば、ポリプロピレンフィルム等が挙げられる。 Furthermore, the protective film is not particularly limited, and examples thereof include polypropylene films and the like.
 本実施形態の光導波路用ドライフィルムの製造方法は、特に限定されないが、例えば、以下の方法等が挙げられる。まず、上述した光導波路用樹脂組成物に溶媒等を加えて、ワニス状にし、そのワニスを、フィルム基材上に塗布する。この塗布は、コンマコーター等を用いる塗布等が挙げられる。そして、このワニスを乾燥させることにより、フィルム基材上に、樹脂組成物層を形成する。さらに、この樹脂組成物層上に、保護フィルムを積層する。その積層方法としては、例えば、熱ラミネート法等が挙げられる。 The method for producing the dry film for optical waveguides of this embodiment is not particularly limited, and examples thereof include the following methods. First, a solvent or the like is added to the above-described resin composition for an optical waveguide to form a varnish, and the varnish is applied onto a film base material. Examples of this coating include coating using a comma coater or the like. Then, by drying this varnish, a resin composition layer is formed on the film base material. Furthermore, a protective film is laminated on this resin composition layer. Examples of the lamination method include a thermal lamination method.
 この光導波路用ドライフィルムにおける前記樹脂組成物層が、光導波路の材料として用いられる。光導波路用ドライフィルムは、光導波路のコアを製造する際に用いてもよいし、クラッドを製造する際に用いてもよいが、すでに述べた理由からクラッド用として使用することが好ましい。本実施形態のドライフィルムは取り扱い性にも優れている。 The resin composition layer in this dry film for an optical waveguide is used as a material for the optical waveguide. The dry film for optical waveguides may be used when manufacturing the core of the optical waveguide or when manufacturing the cladding, but it is preferable to use it for the cladding for the reasons already mentioned. The dry film of this embodiment also has excellent handling properties.
 また、本実施形態に係る光導波路用樹脂組成物は、必ずしもドライフィルムとして用いる必要はなく、例えば、ワニス状にして用いてもよい。この光導波路用組成物は、光導波路用ドライフィルムと同様、光導波路のコアを製造する際に用いてもよいし、クラッドを製造する際に用いてもよい。このように、前記光導波路用樹脂組成物及び前記光導波路用ドライフィルムを用いて光導波路を製造すると、熱処理に供しても端面変形などを起こしにくく、接続信頼性の高い光導波路が得られる。 Furthermore, the resin composition for an optical waveguide according to the present embodiment does not necessarily need to be used as a dry film, and may be used, for example, in the form of a varnish. Similar to the dry film for optical waveguides, this composition for optical waveguides may be used when manufacturing the core of the optical waveguide or when manufacturing the cladding. In this way, when an optical waveguide is manufactured using the resin composition for an optical waveguide and the dry film for an optical waveguide, an optical waveguide that is less prone to deformation of the end face even when subjected to heat treatment and has high connection reliability can be obtained.
 なお、本発明には、上述した光導波路用樹脂組成物及び前記光導波路用ドライフィルムから形成される光導波路も包含される。すなわち、本実施形態の光導波路は、コア層及び前記コア層よりも屈折率の低いクラッド層を備える光導波路であり、前記クラッド層及び/又は前記コア層が、上述の光導波路用樹脂組成物またドライフィルムで形成されていることを特徴とする。好ましい実施形態では、前記クラッド層が、上述の光導波路用樹脂組成物またドライフィルムで形成されている。実施形態の光導波路は、高温下においても端面変形を起こしにくく、接続信頼性が高いため、産業利用上非常に有用である。 Note that the present invention also includes an optical waveguide formed from the above-described resin composition for an optical waveguide and the dry film for an optical waveguide. That is, the optical waveguide of this embodiment is an optical waveguide including a core layer and a cladding layer having a lower refractive index than the core layer, and the cladding layer and/or the core layer are made of the above-mentioned resin composition for optical waveguide. It is also characterized by being formed of a dry film. In a preferred embodiment, the cladding layer is formed of the above-mentioned resin composition for optical waveguide or dry film. The optical waveguide of this embodiment is difficult to cause end face deformation even under high temperatures and has high connection reliability, so it is very useful for industrial use.
 以下に、本実施形態のドライフィルムを用いて基板上に光導波路を形成する一実施態様について、図1を参照しながら説明する。なお、図1における各符号は以下を示す:1  クラッド用ドライフィルム、2 コア用ドライフィルム、3 クラッド、3a アンダークラッド、3b オーバークラッド、4 コア。 An embodiment of forming an optical waveguide on a substrate using the dry film of this embodiment will be described below with reference to FIG. 1. In addition, each code|symbol in FIG. 1 shows the following: 1 Dry film for cladding, 2 Dry film for core, 3 cladding, 3a undercladding, 3b overcladding, 4 core.
 本実施形態の光導波路の形成には、コア及びクラッドを形成するために、それぞれクラッド用ドライフィルム及びコア用ドライフィルムを用いる。なお、本実施形態ではクラッド用ドライフィルムとして、上述の光導波路用ドライフィルムを用いる。 In forming the optical waveguide of this embodiment, a cladding dry film and a core dry film are used to form the core and cladding, respectively. In addition, in this embodiment, the above-mentioned dry film for optical waveguide is used as the dry film for cladding.
 はじめに、図1(a)に示すように、電気回路11が形成された基板10の表面にクラッド用ドライフィルム1をラミネートした後、紫外線などの光照射や加熱をすることによりクラッド用ドライフィルム1を硬化させる。なお、基板10としては、例えば、ポリイミドフィルムのような透明基材の片面に電気回路が形成されたフレキシブルプリント配線板やガラスエポキシのようなプリント配線板等が用いられる。このような工程により、図1(b)に示すような、基板10の表面にアンダークラッド3aが積層形成される。 First, as shown in FIG. 1(a), a dry film 1 for cladding is laminated on the surface of a substrate 10 on which an electric circuit 11 is formed, and then the dry film 1 for cladding is laminated by irradiation with light such as ultraviolet rays and heating. harden. Note that as the substrate 10, for example, a flexible printed wiring board in which an electric circuit is formed on one side of a transparent base material such as a polyimide film, a printed wiring board such as glass epoxy, etc. are used. Through these steps, an underclad 3a is formed in a layered manner on the surface of the substrate 10 as shown in FIG. 1(b).
 次に、図1(c)に示すように、アンダークラッド3aの表面にコア用ドライフィルム2をラミネートした後、コアパターンのスリットが形成されたマスクを重ね、スリットを通して紫外線など光硬化が可能な光を照射することによって、コア用ドライフィルム2にコアパターンで露光する。なお、露光方法としては、マスクを用いて選択露光する方法の他、パターン形状に沿ってレーザ光を走査して照射する直接描画方式で行ってもよい。コア用ドライフィルム2としては、上述の光導波路用ドライフィルムを使用してもよいが、クラッド用ドライフィルム1より屈折率の高いドライフィルムを使用することが好ましい。 Next, as shown in FIG. 1(c), after laminating the core dry film 2 on the surface of the undercladding 3a, a mask in which a core pattern slit is formed is overlaid, and a mask that can be cured by light such as ultraviolet light is passed through the slit. By irradiating light, the core dry film 2 is exposed in a core pattern. The exposure method may be a selective exposure method using a mask, or a direct writing method in which laser light is scanned and irradiated along the pattern shape. As the core dry film 2, the above-mentioned optical waveguide dry film may be used, but it is preferable to use a dry film having a higher refractive index than the cladding dry film 1.
 次に、露光の後、コア用ドライフィルム2を水性フラックス洗浄剤等の現像液を用いて現像処理することにより、コア用ドライフィルム2の露光されていない未硬化の部分の樹脂を除去する。それにより、図1(d)に示すように、アンダークラッド3aの表面に所定のコアパターンのコア4が形成される。 Next, after exposure, the core dry film 2 is developed using a developer such as an aqueous flux cleaning agent to remove the resin in the uncured portions of the core dry film 2 that are not exposed to light. Thereby, as shown in FIG. 1(d), cores 4 of a predetermined core pattern are formed on the surface of the undercladding 3a.
 次に、図1(e)に示すように、アンダークラッド3a及びコア4を被覆するようにクラッド用ドライフィルム1をラミネートして積層する。そして、光照射や加熱をしてクラッド用ドライフィルム1を硬化させることにより、図1(f)に示すようなオーバークラッド3bが形成される。このようにして、基板10の表面に、アンダークラッド3aとオーバークラッド3bからなるクラッド3内にコア4が埋入されてなる光導波路Aが形成される。 Next, as shown in FIG. 1(e), the cladding dry film 1 is laminated to cover the undercladding 3a and the core 4. Then, by curing the clad dry film 1 by irradiating light or heating, an over clad 3b as shown in FIG. 1(f) is formed. In this way, an optical waveguide A is formed on the surface of the substrate 10, in which the core 4 is embedded in the cladding 3 consisting of the undercladding 3a and the overcladding 3b.
 このようにして得られる光導波路Aでは、上述した構成を備えることにより、高温によるクラッド層端面の変形を抑えて、光の損失を低減でき、高温下においても優れた接続信頼性を実現できる。よってこのような光導波路Aが形成された基板10は、光伝送用プリント配線板として好ましく用いられ、例えば、携帯電話や携帯情報端末等に好ましく用いられる。 By having the above-described configuration, the optical waveguide A obtained in this manner can suppress deformation of the end face of the cladding layer due to high temperatures, reduce optical loss, and achieve excellent connection reliability even at high temperatures. Therefore, the substrate 10 on which such an optical waveguide A is formed is preferably used as a printed wiring board for optical transmission, and is preferably used for, for example, a mobile phone or a personal digital assistant.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses techniques in various aspects as described above, and the main techniques are summarized below.
 本発明の第1の態様に係る光導波路用樹脂組成物は、エポキシ樹脂(A)と光酸発生剤(B)とを含有し、エポキシ樹脂(A)は、エポキシ基を3個以上有し且つエポキシ当量が250g/eq以下である多官能エポキシ樹脂(a-1)と、ビスフェノールA型エポキシ樹脂(a-2)とを含有し、光酸発生剤(B)はアンチモン系光酸発生剤を含有することを特徴とする。 The resin composition for an optical waveguide according to the first aspect of the present invention contains an epoxy resin (A) and a photoacid generator (B), and the epoxy resin (A) has three or more epoxy groups. It also contains a polyfunctional epoxy resin (a-1) having an epoxy equivalent of 250 g/eq or less and a bisphenol A epoxy resin (a-2), and the photoacid generator (B) is an antimony-based photoacid generator. It is characterized by containing.
 本発明の第2の態様に係る光導波路用樹脂組成物は、第1の態様の光導波路用樹脂組成物において、エポキシ樹脂(A)が水添ビスフェノールA型エポキシ樹脂(a-3)をさらに含有している。 The resin composition for optical waveguides according to the second aspect of the present invention is the resin composition for optical waveguides according to the first aspect, in which the epoxy resin (A) further contains hydrogenated bisphenol A type epoxy resin (a-3). Contains.
 本発明の第3の態様に係る光導波路用樹脂組成物は、多官能エポキシ樹脂(a-1)の含有量が、エポキシ樹脂(A)全量に対して10質量%以上20質量%以下である、第1または第2の態様の光導波路用樹脂組成物である。 In the resin composition for an optical waveguide according to the third aspect of the present invention, the content of the polyfunctional epoxy resin (a-1) is 10% by mass or more and 20% by mass or less based on the total amount of the epoxy resin (A). , a resin composition for an optical waveguide according to the first or second aspect.
 本発明の第4の態様に係る光導波路用樹脂組成物は、水添ビスフェノールA型エポキシ樹脂(a-3)の含有量が、エポキシ樹脂(A)全量に対して4質量%以上10質量%以下である、第2または第3の態様の光導波路用樹脂組成物である。 In the optical waveguide resin composition according to the fourth aspect of the present invention, the content of the hydrogenated bisphenol A epoxy resin (a-3) is 4% by mass or more and 10% by mass based on the total amount of the epoxy resin (A). The following is a resin composition for an optical waveguide according to a second or third aspect.
 本発明の第5の態様に係る光導波路用樹脂組成物は、硬化後の150℃における貯蔵弾性率が100MPa以上である、第1~4のいずれかの態様の光導波路用樹脂組成物である。 The resin composition for optical waveguides according to the fifth aspect of the present invention is the resin composition for optical waveguides according to any one of the first to fourth aspects, which has a storage modulus of 100 MPa or more at 150° C. after curing. .
 本発明の第6の態様に係る光導波路用樹脂組成物は、エポキシ樹脂(A)が水酸基含有エポキシ樹脂(a-4)を含有する、第1~5のいずれかの態様の光導波路用樹脂組成物である。 The resin composition for optical waveguides according to the sixth aspect of the present invention is the resin composition for optical waveguides according to any one of the first to fifth aspects, wherein the epoxy resin (A) contains a hydroxyl group-containing epoxy resin (a-4). It is a composition.
 本発明の第7の態様に係る光導波路用樹脂組成物は、エポキシ樹脂(A)に含まれる、水酸基含有エポキシ樹脂(a-4)に由来する水酸基量は0.00050mol/g以上である、第6の態様の光導波路用樹脂組成物である。 In the optical waveguide resin composition according to the seventh aspect of the present invention, the amount of hydroxyl groups derived from the hydroxyl group-containing epoxy resin (a-4) contained in the epoxy resin (A) is 0.00050 mol/g or more. This is a resin composition for an optical waveguide according to a sixth aspect.
 本発明の第8の態様に係る光導波路用樹脂組成物は、ビスフェノールA型エポキシ樹脂(a-2)が水酸基含有エポキシ樹脂(a-4)を含む、第6または7の態様の光導波路用樹脂組成物である。 The resin composition for optical waveguides according to the eighth aspect of the present invention is the resin composition for optical waveguides according to the sixth or seventh aspect, wherein the bisphenol A epoxy resin (a-2) contains a hydroxyl group-containing epoxy resin (a-4). It is a resin composition.
 本発明の第9の態様に係る光導波路用樹脂組成物は、水酸基含有エポキシ樹脂(a-4)の含有量がエポキシ樹脂(A)全量に対して40質量%以上90質量%以下である、第6~8のいずれかの態様の光導波路用樹脂組成物である。 In the resin composition for an optical waveguide according to the ninth aspect of the present invention, the content of the hydroxyl group-containing epoxy resin (a-4) is 40% by mass or more and 90% by mass or less based on the total amount of the epoxy resin (A). This is a resin composition for an optical waveguide according to any one of the sixth to eighth aspects.
 本発明の第10の態様に係るドライフィルムは、第1~9のいずれかの態様の光導波路用樹脂組成物の未硬化物または半硬化物からなる層を含む。 The dry film according to the tenth aspect of the present invention includes a layer made of an uncured or semi-cured product of the resin composition for optical waveguide according to any one of the first to ninth aspects.
 本発明の第11の態様に係る光導波路は、コア層及び前記コア層よりも屈折率の低いクラッド層を備える光導波路であり、前記クラッド層が、第1~9のいずれかの態様の光導波路用樹脂組成物を用いて形成されている。 An optical waveguide according to an eleventh aspect of the present invention is an optical waveguide comprising a core layer and a cladding layer having a lower refractive index than the core layer, wherein the cladding layer is the optical waveguide according to any one of the first to ninth aspects. It is formed using a resin composition for wave paths.
 以下に、本発明について、実施例によりさらに具体的に説明する。なお、本発明は以下の実施例により何ら限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that the present invention is not limited in any way by the following examples.
 はじめに、本実施例における樹脂組成物の調製に用いた原材料を以下にまとめて示す。 First, the raw materials used to prepare the resin composition in this example are summarized below.
 〈エポキシ樹脂(A)〉
 (多官能エポキシ樹脂(a-1))
・「VG3101M80」:多官能エポキシ樹脂、株式会社プリンテック製(エポキシ基3個、エポキシ当量205~215g/eq)
・「EHPE-3150」:多官能エポキシ樹脂、ダイセル化学工業株式会社製(エポキシ基3個以上、エポキシ当量170~190g/eq)
・「EPPN502H」:多官能エポキシ樹脂、日本化薬株式会社製(エポキシ基3個以上、エポキシ当量169g/eq)
・「1032H60」:多官能エポキシ樹脂、三菱ケミカル株式会社製(エポキシ基3個以上、エポキシ当量163~175g/eq)
 (ビスフェノールA型エポキシ樹脂(a-2))
・「エピクロン(登録商標)850S」:ビスフェノールA型エポキシ樹脂、DIC株式会社製(エポキシ当量183~193g/eq)
・「jER(登録商標)1001」:ビスフェノールA型エポキシ樹脂、三菱ケミカル株式会社製(エポキシ当量450~500g/eq)、水酸基含有エポキシ樹脂(a-4)にも相当する
・「エピコート(登録商標)1006FS」:ビスフェノールA型エポキシ樹脂、三菱ケミカル株式会社製(エポキシ当量900~1100g/eq)、水酸基含有エポキシ樹脂(a-4)にも相当する
 (水添ビスフェノールA型エポキシ樹脂(a-3))
・「JER(登録商標)YX8040」:水添ビスフェノールA型エポキシ樹脂、三菱ケミカル株式会社製
 (上記以外のエポキシ樹脂)
・「CG-500」:二官能エポキシ樹脂、大阪ガスケミカル株式会社製
 〈光酸発生剤(B)〉
・「CPI-101A」:アンチモン系光酸発生剤、サンアプロ株式会社製
・「CPI-210」:リン系光酸発生剤、サンアプロ株式会社製
<Epoxy resin (A)>
(Polyfunctional epoxy resin (a-1))
・“VG3101M80”: Multifunctional epoxy resin, manufactured by Printec Co., Ltd. (3 epoxy groups, epoxy equivalent 205 to 215 g/eq)
・"EHPE-3150": Multifunctional epoxy resin, manufactured by Daicel Chemical Industries, Ltd. (3 or more epoxy groups, epoxy equivalent 170 to 190 g/eq)
・"EPPN502H": Multifunctional epoxy resin, manufactured by Nippon Kayaku Co., Ltd. (3 or more epoxy groups, epoxy equivalent 169 g/eq)
・"1032H60": Multifunctional epoxy resin, manufactured by Mitsubishi Chemical Corporation (3 or more epoxy groups, epoxy equivalent 163 to 175 g/eq)
(Bisphenol A epoxy resin (a-2))
・"Epicron (registered trademark) 850S": Bisphenol A type epoxy resin, manufactured by DIC Corporation (epoxy equivalent: 183 to 193 g/eq)
・“jER (registered trademark) 1001”: Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation (epoxy equivalent: 450 to 500 g/eq), also corresponds to hydroxyl group-containing epoxy resin (a-4) ・“Epicoat (registered trademark) ) 1006FS”: Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation (epoxy equivalent: 900 to 1100 g/eq), also equivalent to hydroxyl group-containing epoxy resin (a-4) (Hydrogenated bisphenol A type epoxy resin (a-3) ))
・"JER (registered trademark) YX8040": Hydrogenated bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation (epoxy resins other than the above)
・“CG-500”: Bifunctional epoxy resin, manufactured by Osaka Gas Chemical Co., Ltd. <Photoacid generator (B)>
・“CPI-101A”: Antimony-based photoacid generator, manufactured by San-Apro Co., Ltd. ・“CPI-210”: Phosphorous-based photoacid generator, manufactured by San-Apro Co., Ltd.
 <試験例1>
 <光導波路用樹脂組成物の調製>
 下記表1に示したような配合組成(質量部)で成分を配合し、MEKとトルエンの混合溶媒が樹脂100質量部に対して、55質量部になるように調整し、50~80℃に加熱しながら混合した。次に、孔径0.5μmのメンブランフィルタで濾過した後、脱泡することによって、実施例1~16および比較例1~4の光導波路用樹脂組成物の樹脂ワニスを調整した。
<Test Example 1>
<Preparation of resin composition for optical waveguide>
The components were blended according to the composition (parts by mass) shown in Table 1 below, and the mixed solvent of MEK and toluene was adjusted to 55 parts by mass per 100 parts by mass of the resin, and heated to 50 to 80 °C. Mixed while heating. Next, resin varnishes of the resin compositions for optical waveguides of Examples 1 to 16 and Comparative Examples 1 to 4 were prepared by filtering with a membrane filter having a pore size of 0.5 μm and defoaming.
 <ドライフィルムの形成>
 各実施例および比較例の光導波路用樹脂組成物ワニスを、松尾産業株式会社製のKコントロールコーターを用いて東洋紡績製PETフィルム(品番A4100)に塗布、130℃で10分間乾燥して所定厚みとし離型フィルムである王子特殊紙製OPP-MA420を熱ラミネートすることで、樹脂層の厚みが20μmの用ドライフィルムを得た。
<Formation of dry film>
The resin composition varnish for optical waveguides of each example and comparative example was applied to a PET film manufactured by Toyobo Co., Ltd. (product number A4100) using a K control coater manufactured by Matsuo Sangyo Co., Ltd., and dried at 130°C for 10 minutes to a predetermined thickness. A dry film with a resin layer thickness of 20 μm was obtained by thermally laminating a release film OPP-MA420 manufactured by Oji Special Paper.
 <評価方法>
 (屈折率)
 各実施例および各比較例のドライフィルム2枚を真空ラミネーター「V-130」で50℃、0.3MPaの条件でラミネートし貼り合わせ紫外線照射し、120℃10分の仮硬化後PETフィルムを剥がして140℃30分熱処理することによって硬化させ、ドライフィルムの硬化物を得た。得られた硬化物について、温度25℃において、1310nmの波長での屈折率をアッベ屈折計により測定した。
<Evaluation method>
(Refractive index)
Two dry films of each Example and each Comparative Example were laminated using a vacuum laminator "V-130" at 50°C and 0.3 MPa, irradiated with ultraviolet rays, and after temporary curing at 120°C for 10 minutes, the PET film was peeled off. The film was cured by heat treatment at 140° C. for 30 minutes to obtain a cured dry film. Regarding the obtained cured product, the refractive index at a wavelength of 1310 nm was measured using an Abbe refractometer at a temperature of 25°C.
 (ガラス転移温度(Tg)、及び、150℃での貯蔵弾性率)
 各実施例および各比較例のドライフィルムを10mm×40mmにカットし、動的粘弾性測定装置(セイコーインスツルメンツ株式会社製DMS6100)に取り付けた。歪振幅10μm、周波数10Hz(正弦波)、昇温レート5℃/minで試験を行い、算出されるtanδのピーク温度をガラス転移温度として採用した。また、150℃での貯蔵弾性率(MPa)も前記測定装置を用いて同様に計測した。
(Glass transition temperature (Tg) and storage modulus at 150°C)
The dry film of each Example and each Comparative Example was cut into a size of 10 mm x 40 mm and attached to a dynamic viscoelasticity measuring device (DMS6100 manufactured by Seiko Instruments Inc.). The test was conducted with a strain amplitude of 10 μm, a frequency of 10 Hz (sine wave), and a temperature increase rate of 5° C./min, and the calculated peak temperature of tan δ was adopted as the glass transition temperature. Furthermore, the storage modulus (MPa) at 150° C. was also measured in the same manner using the measuring device.
 本試験では、150℃での貯蔵弾性率については、100MPa以上を合格として評価した。 In this test, a storage modulus of 100 MPa or more at 150°C was evaluated as passing.
 (端面変形量)
 まず、各実施例および各比較例のドライフィルムを用いて、光導波路を形成した。実施例1~10及び比較例1~4の光導波路については、それぞれ実施例1~10及び比較例1~4のドライフィルムをクラッド用ドライフィルムとし、実施例11のドライフィルムをコア層用ドライフィルムとして使用した。実施例11の光導波路については、実施例11のドライフィルムをクラッド用ドライフィルムとし、コア層用としては実施例10の樹脂組成物のYX8040が0質量%のもののドライフィルムを作製し使用した。
(Amount of end face deformation)
First, an optical waveguide was formed using the dry films of each Example and each Comparative Example. For the optical waveguides of Examples 1 to 10 and Comparative Examples 1 to 4, the dry films of Examples 1 to 10 and Comparative Examples 1 to 4 were used as the dry film for the cladding, and the dry film of Example 11 was used as the dry film for the core layer. Used as a film. For the optical waveguide of Example 11, the dry film of Example 11 was used as the dry film for the cladding, and the dry film of the resin composition of Example 10 containing 0% by mass of YX8040 was prepared and used for the core layer.
 クラッド用ドライフィルムを用い、真空ラミネーター「V-130」で65℃、0.3MPaの条件で酸素プラズマ処理を施した基板にラミネートした。そして超高圧水銀灯で2J/cmの条件で紫外光をクラッド用硬化性フィルムに照射し、さらに離型フィルムを剥した後に140℃で30分間熱処理し、クラッド用ドライフィルムが硬化したアンダークラッドを形成した。 Using the dry film for cladding, it was laminated onto a substrate that had been subjected to oxygen plasma treatment using a vacuum laminator "V-130" at 65° C. and 0.3 MPa. Then, the curable film for cladding was irradiated with ultraviolet light at 2 J/cm 2 using an ultra-high pressure mercury lamp, and after the release film was peeled off, it was heat-treated at 140°C for 30 minutes to form the under cladding with the dry film for cladding cured. Formed.
 次に、コア用ドライフィルムを用い、このコア用ドライフィルムをアンダークラッドの表面に、真空ラミネーター「V-130」で上記と同条件でラミネートした。離形フィルムを剥がした後に100℃15分間熱処理し、マスクを載せて超高圧水銀灯で2J/cmの光量で露光し、140℃で13分間熱処理を行なった。次いで、現像液として55℃に調整した水系フラックス洗浄剤(荒川化学工業(株)製「パインアルファST-100SX」)を用いて現像処理することによって、ドライフィルムの未露光部分を溶解除去し、さらに水で仕上げ洗浄してエアブローした後、120℃で15分間乾燥することによって、コアを形成した。 Next, using a core dry film, this core dry film was laminated on the surface of the underclad using a vacuum laminator "V-130" under the same conditions as above. After peeling off the release film, heat treatment was performed at 100°C for 15 minutes, a mask was placed on the film, and exposure was performed using an ultra-high pressure mercury lamp at a light intensity of 2 J/cm 2 , followed by heat treatment at 140°C for 13 minutes. Next, the unexposed portions of the dry film are dissolved and removed by developing using a water-based flux cleaning agent ("Pine Alpha ST-100SX" manufactured by Arakawa Chemical Co., Ltd.) adjusted to 55 ° C. as a developer. Furthermore, after finishing washing with water and air blowing, a core was formed by drying at 120° C. for 15 minutes.
 さらに、その上にクラッド用ドライフィルムを、真空ラミネーター「V-130」で80℃、0.3MPaの条件でラミネートした。そして、離型フィルムを剥した後に140℃で20分間熱処理後、超高圧水銀灯で2J/cmの条件で紫外光をクラッド用硬化性フィルムに照射し、140℃で30分間熱処理し、クラッド用ドライフィルムが硬化したオーバークラッドを形成し、評価試験用の光導波路を得た。 Furthermore, a dry film for cladding was laminated thereon using a vacuum laminator "V-130" at 80° C. and 0.3 MPa. After peeling off the release film, the curable film for cladding was heat-treated at 140°C for 20 minutes, and then the curable film for cladding was irradiated with ultraviolet light at 2 J/cm 2 using an ultra-high pressure mercury lamp, and heat-treated at 140°C for 30 minutes. The dry film was cured to form an overcladding, and an optical waveguide for evaluation testing was obtained.
 その後、光導波路サンプルを株式会社ディスコ製のDAC552を用いて0.3mm/秒でコアが露出するように50mm×50mmのサイズに切断した。 Thereafter, the optical waveguide sample was cut into a size of 50 mm x 50 mm using a DAC552 manufactured by DISCO Co., Ltd. at a rate of 0.3 mm/sec so that the core was exposed.
 次に、上記で得た、光導波路を積層した基板サンプルに150℃1時間熱処理を施し、レーザーテック株式会社製の白色共焦点顕微鏡を用い、コアが露出している光導波路基板端面の表面の粗さを観察することで、クラッド層の端面変形量(μm)を測定した。 Next, the substrate sample on which the optical waveguide was laminated obtained above was heat-treated at 150°C for 1 hour, and a white confocal microscope manufactured by Lasertec Co., Ltd. was used to check the roughness of the surface of the optical waveguide substrate end surface where the core was exposed. The amount of end face deformation (μm) of the cladding layer was measured by observing the deformation of the cladding layer.
 本試験では、前記変形量が1.00μm未満であれば合格と評価した。 In this test, if the amount of deformation was less than 1.00 μm, it was evaluated as passing.
 以上の結果を表1に示す。 The above results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <評価・考察>
 表1の結果から、本発明の樹脂組成物によれば、その硬化物において、Tg、及び、150℃における貯蔵弾性率が高く、高温(150℃)で熱処理した後であっても、光導波路(クラッド)の端面変形量を抑制できることが確認できた。また、実施例11とその他の実施例のドライフィルムとの比較により、本発明の樹脂組成物は、水添ビスフェノールA型エポキシ樹脂(a-3)を含有することにより、屈折率を比較的低くすることができ、クラッド用として好適に使用できることも確認できた。さらには、実施例9~10の結果より、当該効果は、水添ビスフェノールA型エポキシ樹脂(a-3)の含有量が好適な範囲であることによってより確実に得られることもわかった。
<Evaluation/Consideration>
From the results in Table 1, it can be seen that the cured product of the resin composition of the present invention has a high Tg and a storage modulus at 150°C, and even after heat treatment at a high temperature (150°C), it is possible to form an optical waveguide. It was confirmed that the amount of deformation of the end face of the (cladding) could be suppressed. Further, by comparing Example 11 with the dry films of other Examples, the resin composition of the present invention has a relatively low refractive index by containing hydrogenated bisphenol A type epoxy resin (a-3). It was also confirmed that it could be used suitably for cladding. Furthermore, from the results of Examples 9 and 10, it was found that the effect can be more reliably obtained by keeping the content of the hydrogenated bisphenol A epoxy resin (a-3) within a suitable range.
 一方、本発明の規定を満たしていない樹脂組成物をクラッド層に使用した比較例では、いずれも十分な、150℃における貯蔵弾性率を得ることができなかった。また、アンチモン系光酸発生剤ではなくリン系光酸発生剤を使用した比較例1、3~4の光導波路では、クラッドの端面変形が大きくなってしまうことが確認できた。比較例2については、アンチモン系光酸発生剤は含むが多官能エポキシ樹脂(a-1)を含まない樹脂組成物を使用したため、端面変形が大きくなった。 On the other hand, in all of the comparative examples in which resin compositions that did not meet the specifications of the present invention were used in the cladding layer, a sufficient storage modulus at 150°C could not be obtained. In addition, it was confirmed that in the optical waveguides of Comparative Examples 1, 3 and 4 in which a phosphorus-based photoacid generator was used instead of an antimony-based photoacid generator, the end face deformation of the cladding became large. In Comparative Example 2, the end face deformation was large because a resin composition containing an antimony-based photoacid generator but not containing the polyfunctional epoxy resin (a-1) was used.
 <試験例2>
 (水酸基量)
 水酸基含有エポキシ樹脂(a-4)(「jER(登録商標)1001」(以下、単に「1001」)、「エピコート(登録商標)1006FS」(以下、単に「1006」))各々の配合量(質量部)をそれぞれの分子量で割ることで、樹脂組成物中に含まれる各エポキシ樹脂の分子数(mоl)を算出した。さらに、1001は骨格中に2.1個の水酸基を、1006は骨格中に5.5個の水酸基を各々含有しているため、これらの値を先ほど算出した各エポキシ樹脂の分子数に掛け算し出た値を各々足した後、その値を全エポキシ樹脂量で割ることで、樹脂組成物中に含まれる水酸基量(mоl/g)を計算した。具体的な計算式は以下のとおりである。
水酸基量=((1001配合量)/(1001分子量))×2.1+(1006配合量)/(1006分子量))×5.5))/(全エポキシ樹脂配合量)
<Test Example 2>
(Amount of hydroxyl groups)
Blend amount (mass) of hydroxyl group-containing epoxy resin (a-4) ("jER (registered trademark) 1001" (hereinafter simply "1001"), "Epicote (registered trademark) 1006FS" (hereinafter simply "1006")) The number of molecules (mol) of each epoxy resin contained in the resin composition was calculated by dividing the number of epoxy resins contained in the resin composition. Furthermore, since 1001 contains 2.1 hydroxyl groups in its skeleton and 1006 contains 5.5 hydroxyl groups in its skeleton, multiply these values by the number of molecules of each epoxy resin calculated earlier. The amount of hydroxyl groups contained in the resin composition (mol/g) was calculated by adding up each of the obtained values and dividing the resulting value by the total amount of epoxy resin. The specific calculation formula is as follows.
Amount of hydroxyl groups = ((1001 blended amount) / (1001 molecular weight)) x 2.1 + (1006 blended amount) / (1006 molecular weight)) x 5.5)) / (total epoxy resin blended amount)
 (フィルム取り扱い性)
 次に、各実施例のドライフィルムを用いて、フィルム取り扱い性について評価を行った。具体的には、1.フィルムを180°折り曲げた時の折り目に樹脂割れが発生していないか(発生していなければ合格)、及び、2.フィルムをカッターで切断したときの端部からの粉落ちと割れ有無(粉落ちと割れが無ければ合格)にて評価を行った。
(Film handling properties)
Next, the dry films of each example were used to evaluate film handling properties. Specifically, 1. 2. Is there any resin cracking at the crease when the film is bent 180° (if no cracking occurs, pass); and 2. Evaluation was made based on powder falling off from the edge and presence of cracks when the film was cut with a cutter (if there was no falling powder or cracking, the film passed).
 評価基準は、前記1と2の両方において合格であったものを「○」、いずれか一方だけが合格であったものを「△」、両方において不合格であったものを「×」とした。 The evaluation criteria were "○" for those who passed both 1 and 2 above, "△" for those that passed only one of them, and "×" for those that failed both. .
 (密着性1:ダイシング加工後)
 前記端面変形量の評価で作成した有機基板に積層した光導波路サンプルを、株式会社ディスコ製の「DAC552」を用いて0.3mm/秒で切断した。そして、その切断面から光導波路の剥離(浮きなど)が発生していないかどうかを目視で確認した。剥離がないものを合格、剥離があったものを不合格と評価した。
(Adhesion 1: after dicing process)
The optical waveguide sample laminated on the organic substrate prepared in the evaluation of the amount of end face deformation was cut at 0.3 mm/sec using "DAC552" manufactured by DISCO Corporation. Then, it was visually confirmed whether the optical waveguide was peeled off (such as floating) from the cut surface. Those with no peeling were evaluated as passing, and those with peeling were evaluated as failing.
 (密着性2:リフロー処理後)
 前記端面変形量の評価で作成した有機基板に積層した光導波路サンプルを、表面温度のピークが265℃になるような条件でリフロー炉に3回通した。その後、光導波路を室温に戻した時に、基板から光導波路が剥離していないかどうかを確認した。剥離がないものを合格、剥離があったものを不合格と評価した。
(Adhesion 2: after reflow treatment)
The optical waveguide sample laminated on the organic substrate prepared in the evaluation of the amount of end face deformation was passed through a reflow oven three times under conditions such that the peak surface temperature was 265°C. Thereafter, when the optical waveguide was returned to room temperature, it was confirmed whether the optical waveguide had peeled off from the substrate. Those with no peeling were evaluated as passing, and those with peeling were evaluated as failing.
 結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <評価・考察>
 表2の結果から、多官能エポキシ樹脂(a-1)の含有量が適切であることにより、ドライフィルムとして使用する際のフィルム取り扱い性にも優れることが確認できた。実施例10は、多官能エポキシ樹脂(a-1)の含有量が多すぎたため、フィルム取り扱い性にやや劣るという結果になった。
<Evaluation/Consideration>
From the results in Table 2, it was confirmed that the appropriate content of the polyfunctional epoxy resin (a-1) resulted in excellent film handling properties when used as a dry film. In Example 10, the content of the polyfunctional epoxy resin (a-1) was too high, resulting in slightly poor film handling properties.
 また、実施例14の結果から、本発明の樹脂組成物が水酸基含有エポキシ樹脂(a-4)を含むことによって、さらにドライフィルムとして使用する際のフィルム取り扱い性や、光導波路とした際の基板との密着性に優れることがわかった。また、実施例1~13と、実施例15~16の結果によって、水酸基含有エポキシ樹脂(a-4)由来の水酸基量が適切な範囲であることで、前記フィルム取り扱い性と密着性においてさらに良好な結果が得られることも確認できた。 In addition, from the results of Example 14, it was found that by including the hydroxyl group-containing epoxy resin (a-4), the resin composition of the present invention further improves the handling properties of the film when used as a dry film and the substrate when used as an optical waveguide. It was found that the adhesion was excellent. Furthermore, according to the results of Examples 1 to 13 and Examples 15 to 16, when the amount of hydroxyl groups derived from the hydroxyl group-containing epoxy resin (a-4) was within an appropriate range, the film handling properties and adhesion properties were further improved. It was also confirmed that good results could be obtained.
 この出願は、2022年4月27日に出願された日本国特許出願特願2022-73200を基礎とし、その内容は本願に含まれる。 This application is based on Japanese Patent Application No. 2022-73200 filed on April 27, 2022, and its contents are included in this application.
 本発明を表現するために、前述において具体例や図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and fully explained through the embodiments above with reference to specific examples, drawings, etc., but those skilled in the art will be able to modify and/or improve the above-described embodiments. It should be recognized that this can be done easily. Therefore, unless the modification or improvement carried out by a person skilled in the art does not leave the scope of the claims stated in the claims, such modifications or improvements do not fall outside the scope of the claims. It is interpreted as encompassing.
 本発明は、光導波路や光電気複合配線板に関する技術分野において、広範な産業上の利用可能性を有する。

 
INDUSTRIAL APPLICABILITY The present invention has wide industrial applicability in technical fields related to optical waveguides and opto-electrical composite wiring boards.

Claims (11)

  1.  エポキシ樹脂(A)と光酸発生剤(B)とを含有し、
     エポキシ樹脂(A)は、エポキシ基を3個以上有し且つエポキシ当量が250g/eq以下である多官能エポキシ樹脂(a-1)と、ビスフェノールA型エポキシ樹脂(a-2)とを含有し、
     光酸発生剤(B)はアンチモン系光酸発生剤を含有する、
     光導波路用樹脂組成物。
    Contains an epoxy resin (A) and a photoacid generator (B),
    The epoxy resin (A) contains a polyfunctional epoxy resin (a-1) having three or more epoxy groups and an epoxy equivalent of 250 g/eq or less, and a bisphenol A epoxy resin (a-2). ,
    The photoacid generator (B) contains an antimony-based photoacid generator,
    Resin composition for optical waveguides.
  2.  エポキシ樹脂(A)が水添ビスフェノールA型エポキシ樹脂(a-3)をさらに含有する、請求項1に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 1, wherein the epoxy resin (A) further contains a hydrogenated bisphenol A type epoxy resin (a-3).
  3.  多官能エポキシ樹脂(a-1)の含有量が、エポキシ樹脂(A)全量に対して10質量%以上20質量%以下である、請求項1に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 1, wherein the content of the polyfunctional epoxy resin (a-1) is 10% by mass or more and 20% by mass or less based on the total amount of the epoxy resin (A).
  4.  水添ビスフェノールA型エポキシ樹脂(a-3)の含有量が、エポキシ樹脂(A)全量に対して4質量%以上10質量%以下である、請求項3に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 3, wherein the content of the hydrogenated bisphenol A epoxy resin (a-3) is 4% by mass or more and 10% by mass or less based on the total amount of the epoxy resin (A).
  5.  硬化後の150℃における貯蔵弾性率が100MPa以上である、請求項1に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 1, which has a storage modulus of 100 MPa or more at 150°C after curing.
  6.  エポキシ樹脂(A)が水酸基含有エポキシ樹脂(a-4)を含有する、請求項1に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 1, wherein the epoxy resin (A) contains a hydroxyl group-containing epoxy resin (a-4).
  7.  エポキシ樹脂(A)に含まれる、水酸基含有エポキシ樹脂(a-4)に由来する水酸基量は0.00050mol/g以上である、請求項6に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 6, wherein the amount of hydroxyl groups derived from the hydroxyl group-containing epoxy resin (a-4) contained in the epoxy resin (A) is 0.00050 mol/g or more.
  8.  ビスフェノールA型エポキシ樹脂(a-2)が水酸基含有エポキシ樹脂(a-4)を含む、請求項6に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 6, wherein the bisphenol A epoxy resin (a-2) contains a hydroxyl group-containing epoxy resin (a-4).
  9.  水酸基含有エポキシ樹脂(a-4)の含有量は、エポキシ樹脂(A)全量に対して40質量%以上90質量%以下である、請求項6に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 6, wherein the content of the hydroxyl group-containing epoxy resin (a-4) is 40% by mass or more and 90% by mass or less based on the total amount of the epoxy resin (A).
  10.  請求項1から9のいずれかに記載の光導波路用樹脂組成物の未硬化物または半硬化物からなる層を含む、ドライフィルム。 A dry film comprising a layer made of an uncured or semi-cured product of the resin composition for an optical waveguide according to any one of claims 1 to 9.
  11.  コア層及び前記コア層よりも屈折率の低いクラッド層を備える光導波路であり、
     前記クラッド層が、請求項1から請求項9のいずれかに記載の光導波路用樹脂組成物を用いて形成されている、光導波路。
    An optical waveguide comprising a core layer and a cladding layer with a lower refractive index than the core layer,
    An optical waveguide, wherein the cladding layer is formed using the resin composition for an optical waveguide according to any one of claims 1 to 9.
PCT/JP2023/016252 2022-04-27 2023-04-25 Resin composition for optical waveguide, and dry film and optical waveguide using same WO2023210629A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073200 2022-04-27
JP2022073200 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210629A1 true WO2023210629A1 (en) 2023-11-02

Family

ID=88518993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016252 WO2023210629A1 (en) 2022-04-27 2023-04-25 Resin composition for optical waveguide, and dry film and optical waveguide using same

Country Status (1)

Country Link
WO (1) WO2023210629A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026774A (en) * 2017-08-01 2019-02-21 株式会社Adeka Curable composition, method for producing cured product, and cured product thereof
JP2020184091A (en) * 2015-09-01 2020-11-12 パナソニックIpマネジメント株式会社 Composition for optical waveguide, dry film for optical waveguide, and optical waveguide
JP2021031658A (en) * 2019-08-29 2021-03-01 三菱ケミカル株式会社 Photo-cationic polymerizable composition, photo-molding composition and cured product
JP2021161126A (en) * 2020-03-30 2021-10-11 三菱ケミカル株式会社 Active energy ray-polymerizable composition, composition for three-dimensional molding, and cured product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020184091A (en) * 2015-09-01 2020-11-12 パナソニックIpマネジメント株式会社 Composition for optical waveguide, dry film for optical waveguide, and optical waveguide
JP2019026774A (en) * 2017-08-01 2019-02-21 株式会社Adeka Curable composition, method for producing cured product, and cured product thereof
JP2021031658A (en) * 2019-08-29 2021-03-01 三菱ケミカル株式会社 Photo-cationic polymerizable composition, photo-molding composition and cured product
JP2021161126A (en) * 2020-03-30 2021-10-11 三菱ケミカル株式会社 Active energy ray-polymerizable composition, composition for three-dimensional molding, and cured product

Similar Documents

Publication Publication Date Title
KR101302767B1 (en) Optical waveguide-forming epoxy resin composition, optical waveguide-forming curable film, optical-transmitting flexible printed circuit, and electronic information device
JP6960616B2 (en) Compositions for optical waveguides, dry films for optical waveguides, and optical waveguides
JP6150178B2 (en) Optical waveguide and dry film for producing optical waveguide
JP4894719B2 (en) Optical waveguide
JP4894720B2 (en) Optical waveguide and photoelectric composite substrate
JP5331267B2 (en) Resin composition for optical waveguide, and dry film, optical waveguide and photoelectric composite wiring board using the same
JP5468744B2 (en) Manufacturing method of optical waveguide
JP2007084765A (en) Curable epoxy resin film, optical waveguide using the same and photoelectric composite substrate
JP5583467B2 (en) Metal-clad laminate, photoelectric composite wiring board, method for producing metal-clad laminate, and method for producing photoelectric composite wiring board
WO2023210629A1 (en) Resin composition for optical waveguide, and dry film and optical waveguide using same
JP2012103425A (en) Manufacturing method for photoelectric composite wiring board, and photoelectric composite wiring board manufactured by the same
JP6090655B2 (en) Dry film for optical waveguide, optical waveguide and photoelectric composite wiring board using the same, and method for producing optical composite wiring board
JP7357303B2 (en) Composition for optical waveguide cladding, dry film for optical waveguide cladding, and optical waveguide
JP2023046799A (en) Optical waveguide manufacturing method and materials for optical waveguide
TW201922912A (en) Resin composition for optical waveguide cores, and dry film, optical waveguide core and photoelectric composite wiring board, each of which uses same
JP2012103381A (en) Manufacturing method for photoelectric composite wiring board, and photoelectric composite wiring board manufactured by the same
JP2012103380A (en) Manufacturing method for photoelectric composite wiring board, and photoelectric composite wiring board manufactured by the same
JP2014153581A (en) Dry film for optical waveguide, optical waveguide and photoelectricity composite wiring board using the same, and method of manufacturing photoelectricity composite wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796369

Country of ref document: EP

Kind code of ref document: A1