WO2023210394A1 - Composition, film, light sensor, and method for producing light sensor - Google Patents

Composition, film, light sensor, and method for producing light sensor Download PDF

Info

Publication number
WO2023210394A1
WO2023210394A1 PCT/JP2023/015020 JP2023015020W WO2023210394A1 WO 2023210394 A1 WO2023210394 A1 WO 2023210394A1 JP 2023015020 W JP2023015020 W JP 2023015020W WO 2023210394 A1 WO2023210394 A1 WO 2023210394A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
particles
mass
film
composition
Prior art date
Application number
PCT/JP2023/015020
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 大井
恭平 荒山
大貴 瀧下
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023210394A1 publication Critical patent/WO2023210394A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter

Definitions

  • the present invention relates to a composition containing particles with a high refractive index.
  • the present invention also relates to a film, an optical sensor, and a method of manufacturing an optical sensor.
  • Titanium oxide is a particle with a high refractive index. Attempts are being made to use such particles with a high refractive index in light scattering films and the like.
  • Patent Document 1 discloses a light scattering sheet including a light scattering layer containing a plurality of polymers having mutually different refractive indexes and having a co-continuous phase structure in at least some regions, which transmits incident light isotropically.
  • the invention relates to a light-scattering sheet which has a scattering angle of 2 to 40 degrees showing the maximum value of the scattered light intensity, and has a total light transmittance of 70 to 100%. It is believed that any of the continuous phases forming the co-continuous phase structure may include high refractive particulates.
  • a known method for increasing the light scattering properties of a film is to use particles that have a large particle size and a high refractive index.
  • particles with a high refractive index generally tend to have a high specific gravity.
  • the particles may settle during storage of the composition. For this reason, with conventionally known compositions, it has been difficult to achieve both high levels of storage stability and light scattering properties of the obtained film.
  • the light scattering sheet of the invention described in Patent Document 1 since the light scattering sheet of the invention described in Patent Document 1 is said to have a total light transmittance of 70 to 100%, the light scattering sheet of the invention described in Patent Document 1 does not transmit visible light. It is not a member that appropriately blocks light, but rather has a high visible light transmittance.
  • an object of the present invention is to provide a composition that can form a film that has good storage stability and excellent heat resistance and light scattering properties. It is also an object of the present invention to provide a film, an optical sensor, and a method for manufacturing an optical sensor.
  • the present invention provides the following.
  • a composition comprising particles having a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less, a film-forming component, and a solvent,
  • the film-forming component includes a rheology control agent and two or more resins, or a rheology control agent, one or more resins, and one or more polymerizable monomers
  • composition according to ⁇ 1>, wherein the rheology control agent is an organic compound.
  • the rheology control agent has an amine value of 150 mgKOH/g or less.
  • ⁇ 5> The rheology control agent according to any one of ⁇ 1> to ⁇ 4>, wherein the rheology control agent contains an organic compound having at least one structure selected from the group consisting of an amide structure, a urea structure, and a urethane structure.
  • Composition. ⁇ 6> The composition according to any one of ⁇ 1> to ⁇ 5>, wherein the rheology control agent contains an amide compound.
  • ⁇ 7> The composition according to any one of ⁇ 1> to ⁇ 6>, wherein the content of the rheology control agent in the composition is 0.1 to 5% by mass.
  • the film-forming component includes a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher linking group, a resin having a repeating unit having a graft chain, and the rheology control agent.
  • ⁇ 13> When a film with a thickness of 8 ⁇ m was formed by heating at 200° C. for 5 minutes using the above composition, the film contained the first phase containing the particles and the first phase.
  • composition according to any one of ⁇ 1> to ⁇ 12> which has a phase-separated structure with the second phase having a smaller content of particles than the second phase.
  • phase separation structure is a sea-island structure or a co-continuous phase structure.
  • particles are inorganic particles.
  • ⁇ 16> A film obtained using the composition according to any one of ⁇ 1> to ⁇ 15>.
  • An optical sensor comprising the film according to ⁇ 16>.
  • the present invention it is possible to provide a composition, a film, an optical sensor, and a method for producing an optical sensor that can form a film that has good storage stability, excellent heat resistance, and light scattering properties.
  • FIG. 1 is a schematic diagram showing an embodiment of the optical sensor of the present invention. It is a schematic diagram showing other embodiments of the optical sensor of the present invention.
  • a numerical range expressed using " ⁇ " means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • a group (atomic group) in this specification the description that does not indicate substituted or unsubstituted includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
  • alkyl group includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • (meth)acrylate represents acrylate and methacrylate
  • (meth)acrylic represents acrylic and methacryl
  • (meth)allyl represents allyl and methallyl
  • (meth)acrylic represents allyl and methallyl
  • acryloyl represents acryloyl and methacryloyl.
  • Me in the chemical formula represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • exposure includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified.
  • the light used for exposure include actinic rays or radiation such as the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
  • the weight average molecular weight and number average molecular weight are defined as polystyrene equivalent values measured by gel permeation chromatography (GPC).
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are expressed using, for example, HLC-8220GPC (manufactured by Tosoh Corporation) and columns such as TOSOH TSKgel Super HZM-H and TOSOH TSKgel Super HZ4000. It can be determined by using a column connected to TOSOH TSKgel Super HZ2000 and using tetrahydrofuran as a developing solvent.
  • the refractive index value is the refractive index value for light with a wavelength of 589 nm at 23° C. unless otherwise specified.
  • composition of the present invention comprises: A composition comprising particles having a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less, a film-forming component, and a solvent,
  • the film-forming component includes a rheology control agent and two or more resins, or a rheology control agent, one or more resins, and one or more polymerizable monomers,
  • the above composition is characterized in that the thixotropy index value calculated from the following formula is 1.3 or more.
  • Thixotropy index value ⁇ 1/ ⁇ 2 ⁇ 1 is the viscosity at 23 °C measured using a rotational viscometer at a shear rate of 20 s -1 , ⁇ 2 is the viscosity at 23° C. measured using a rotational viscometer at a shear rate of 200 s ⁇ 1 .
  • the composition of the present invention has good storage stability and can form a film with excellent heat resistance and light scattering properties.
  • the reason why such an effect is obtained is presumed to be due to the following.
  • Particles with a refractive index of 2.0 or more generally have a large specific gravity, but the composition of the present invention contains a rheology control agent, the composition has a thixotropy index value of 1.3 or more, and
  • the average primary particle size is 200 nm or less, which is a relatively small particle size, so sedimentation of the particles in a composition containing a solvent can be suppressed, making it an excellent product. It is presumed that the storage stability was obtained.
  • a phase-separated structure is formed by promoting aggregation of resins existing near the particles, such as resins adsorbed to the particles, and particles.
  • a phase-separated structure comprising a first phase containing particles with a refractive index of 2.0 or more in the film and a second phase containing fewer particles than the first phase.
  • the film obtained from the composition of the present invention has excellent light scattering properties.
  • a rheology control agent it is assumed that a strong network structure is formed in the film through intermolecular interactions, and it is possible to suppress changes in the dispersion state of particles in the film due to heating. It is presumed that it can be done. Therefore, the film obtained using the composition of the present invention has excellent heat resistance.
  • the thixotropic index value of the composition of the present invention is preferably 1.40 to 4.00.
  • the upper limit is preferably 3.00 or less, more preferably 2.50 or less, because a thicker film can be formed.
  • the lower limit is preferably 1.60 or more, more preferably 1.80 or more from the viewpoint of storage stability.
  • the composition of the present invention preferably has a viscosity of 20 to 400 mPa ⁇ s at 23° C. as measured using a rotational viscometer at a shear rate of 20 s ⁇ 1 .
  • the upper limit is preferably 350 mPa ⁇ s or less, more preferably 300 mPa ⁇ s or less.
  • the lower limit is preferably 25 mPa ⁇ s or more, more preferably 30 mPa ⁇ s or more.
  • the composition of the present invention preferably has a viscosity of 10 to 100 mPa ⁇ s at 23° C. as measured using a rotational viscometer at a shear rate of 200 s ⁇ 1 .
  • the upper limit is preferably 80 mPa ⁇ s or less, more preferably 60 mPa ⁇ s or less.
  • the lower limit is preferably 20 mPa ⁇ s or more, more preferably 30 mPa ⁇ s or more.
  • the film When the composition of the present invention is heated at 200° C. for 5 minutes to form a film with a thickness of 8 ⁇ m, the film contains a first phase containing the particles and a larger amount of the particles than the first phase. It is preferable that a phase-separated structure is formed with the second phase having a small content of particles. By forming such a phase-separated structure in the film, light scattering properties are improved, and the angular dependence of scattered light can also be reduced.
  • the base material of the first phase and the second phase is a film-forming component or a cured product derived from the film-forming component.
  • the mere aggregate of the particles is one form of particles, and the mere aggregate of the particles itself is not the first phase.
  • the first phase is a film-forming component or a cured product derived from a film-forming component in which the particles are present.
  • the second phase may have a lower content of the particles than the first phase, and may not substantially contain the particles.
  • the content of the particles in the second phase is preferably 30% by mass or less, and 20% by mass or less of the total amount of the particles contained in the composition, because better light scattering properties are easily obtained.
  • the content is more preferably 10% by mass or less, even more preferably 5% by mass or less, and particularly preferably the second phase does not substantially contain the particles.
  • the second phase does not substantially contain the above particles means that the content of the above particles is 1% by mass or less of the total amount of the particles contained in the composition, and 0.5% by mass or less of the total amount of the particles contained in the composition. It is preferable that the amount is not more than % by mass, and it is particularly preferable that the second phase does not contain the above-mentioned particles.
  • the formation of a phase-separated structure of the first phase and the second phase in the film can be observed using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or an optical microscope. I can do it.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • I can do it.
  • the cross section of the resulting film in the thickness direction is By observing using a microscope (SEM), transmission electron microscope (TEM), or optical microscope, it is possible to examine whether a phase-separated structure of the first phase and the second phase is formed in the film.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • optical microscope it is possible to examine whether a phase-separated structure of the first phase and the second phase is formed in the film.
  • exposure for curing the polymerizable compound may be performed before the heating.
  • phase-separated structure it can be achieved by appropriately changing the types of resins and polymerizable monomers used in the film-forming components.
  • One embodiment includes a method of using a film-forming component that includes a first resin and a second resin that has low compatibility with the first resin.
  • a film-forming component that includes a first resin and a second resin that has low compatibility with the first resin.
  • a phase-separated structure of a phase containing the first resin as a main component and a phase containing the second resin as a main component can be formed during film formation.
  • the phase containing the resin as a dispersant as a main component is A large number of particles can be unevenly distributed.
  • Another embodiment is a method in which the film-forming component contains a first resin and a polymerizable monomer having low compatibility with the first resin.
  • a phase-separated structure between a phase containing the first resin as a main component and a phase containing a cured product derived from a polymerizable monomer as a main component is formed during film formation. I can do it.
  • the types of resins and polymerizable monomers used in the film-forming components are appropriately changed, and the film-forming components are spinodally decomposed during film formation to form the first phase and the second phase. Examples include methods of forming a phase-separated structure.
  • the phase separation structure in the membrane is such that phase interfaces exist isotropically in the membrane, and for example, a sea-island structure or a co-continuous phase structure is more preferable.
  • a sea-island structure is a structure formed by a sea region that is a continuous region and an island region that is a discontinuous region.
  • the second phase may be the ocean and the first phase may form an island, or the first phase may be the ocean and the second phase may form an island. It is preferable from the viewpoint of transmittance that the first phase is sea and the second phase forms islands.
  • the co-continuous phase structure is a network structure in which the first phase and the second phase form a continuous phase structure in an interpenetrating manner.
  • the maximum value of the transmittance of light in the wavelength range of 400 to 700 nm is the wavelength of light scattering. From the viewpoint of reducing dependence, it is preferably 80% or less, more preferably 70% or less, even more preferably 60% or less, and particularly preferably 50% or less.
  • the lower limit of the maximum transmittance is preferably 1% or more, more preferably 5% or more, even more preferably 10% or more, even more preferably 15% or more, and 20% or more. % or more is particularly preferable.
  • the maximum value of the transmittance of light in the wavelength range of 400 to 1000 nm of the above film is preferably 80% or less, more preferably 75% or less, even more preferably 70% or less, and 60% or less. It is even more preferable that it is, and it is especially preferable that it is 50% or less.
  • the lower limit of the maximum transmittance is preferably 1% or more, more preferably 5% or more, even more preferably 10% or more, even more preferably 15% or more, and 20% or more. % or more is particularly preferable.
  • the average value of the interphase refractive index difference in the film is preferably 0.1 or more, more preferably 0.2 or more, even more preferably 0.3 or more, and 0.4 or more. It is particularly preferable that there be.
  • the haze of the above film based on JIS K 7136 is preferably 30 to 100%.
  • the upper limit is preferably 99% or less, more preferably 95% or less, and even more preferably 90% or less.
  • the lower limit is preferably 35% or more, more preferably 40% or more, and even more preferably 50% or more.
  • Formation of a film having such spectral characteristics can be achieved by appropriately adjusting the shape of the phase separation structure, the refractive index of the particles, the amount and uneven distribution of the particles in the film, etc. At this time, the higher the refractive index of the particles, the amount of particles present, and the degree of uneven distribution of particles, the better.
  • the solid content concentration of the composition of the present invention is preferably 5 to 90% by mass.
  • the upper limit is preferably 85% by mass or more, more preferably 80% by mass or more, even more preferably 75% by mass or less, even more preferably 70% by mass or less, and even more preferably 60% by mass or less. It is even more preferable.
  • the lower limit is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more.
  • composition of the present invention includes particles having a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less (hereinafter also referred to as particles P1).
  • the average primary particle diameter of the particles P1 is 200 nm or less, and preferably 100 mn or less from the viewpoint of storage stability of the composition.
  • the average primary particle diameter of the particles P1 is preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 100 nm or less, and 20 nm or more, from the viewpoint of storage stability of the composition and light scattering properties of the resulting film. It is more preferably 100 nm or more, even more preferably 30 nm or more and 100 nm or less, even more preferably 40 nm or more and 100 nm or less, and particularly preferably 50 nm or more and 100 nm or less.
  • the average primary particle diameter of particles is a value measured by the following method. That is, the primary particle diameter of the particles can be determined by observing the particles with a transmission electron microscope (TEM) and observing the portions where the particles are not aggregated (primary particles). The particle size distribution of the particles can be determined by taking a transmission electron micrograph of the primary particles using a transmission electron microscope, and then measuring the particle size distribution using an image processing device using the photograph.
  • the average primary particle diameter of particles is the number-based arithmetic mean diameter calculated from the particle size distribution.
  • an electron microscope (H-7000) manufactured by Hitachi, Ltd. is used as a transmission electron microscope
  • Luzex AP manufactured by Nireco Co., Ltd. is used as an image processing device.
  • the refractive index of the particles P1 is 2.0 or more, preferably 2.2 or more, and more preferably 2.4 or more.
  • the upper limit of the refractive index of the particles P1 is not particularly limited, but can be 5.0 or less, and can also be 4.0 or less.
  • the refractive index of the particles is a value measured by the following method.
  • a dispersion liquid is prepared using particles, a resin (dispersant) having a known refractive index, and propylene glycol monomethyl ether acetate.
  • the prepared dispersion liquid and a resin with a known refractive index were mixed to prepare coating liquids with particle concentrations of 10% by mass, 20% by mass, 30% by mass, and 40% by mass in the total solid content of the coating liquid. do.
  • the refractive index of the resulting film is measured using ellipsometry (Lambda Ace RE-3300, manufactured by SCREEN Holdings, Inc.). Thereafter, the refractive index corresponding to the concentration of particles is plotted on a graph to derive the refractive index of the particles.
  • the specific gravity of the particles P1 is preferably 1 to 7 g/cm 3 .
  • the upper limit is preferably 6 g/cm 3 or less, more preferably 5 g/cm 3 or less.
  • the lower limit of the specific gravity is not particularly limited, but can be 1.5 g/cm 3 or more, and can also be 2 g/cm 3 or more.
  • the particles P1 are preferably transparent or white particles. Moreover, it is preferable that the particles P1 are inorganic particles. Specific examples of the inorganic particles include titanium oxide particles, strontium titanate particles, barium titanate particles, zinc oxide particles, magnesium oxide particles, zirconium oxide particles, barium sulfate particles, zinc sulfide particles, and the like.
  • the inorganic particles used as the particles P1 are preferably particles containing titanium atoms, and more preferably titanium oxide particles.
  • the content (purity) of titanium dioxide (TiO 2 ) in the titanium oxide particles is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 85% by mass or more.
  • the titanium oxide particles preferably have a content of lower titanium oxide, titanium oxynitride, etc. expressed by Ti n O 2n-1 (n represents a number from 2 to 4) of 30% by mass or less, It is more preferably 20% by mass or less, and even more preferably 15% by mass or less.
  • the titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide.
  • Rutile-type titanium oxide is preferred from the viewpoint of colorability and stability of dispersions and compositions over time.
  • rutile-type titanium oxide exhibits little change in color difference even when heated, and has good coloring properties.
  • the rutilization rate of titanium oxide is preferably 95% or more, more preferably 99% or more.
  • the rutile-type titanium oxide known ones can be used. There are two methods for producing rutile-type titanium oxide: a sulfuric acid method and a chlorine method, and titanium oxide produced by either method can be suitably used.
  • the sulfuric acid method uses ilmenite ore and titanium slag as raw materials, dissolves them in concentrated sulfuric acid to separate iron as iron sulfate, and hydrolyzes the separated solution to obtain hydroxide precipitates.
  • rutile-type titanium oxide is preferably rutile-type titanium oxide obtained by a chlorine method.
  • the specific surface area of the titanium oxide particles is preferably 10 to 400 m 2 /g, more preferably 10 to 200 m 2 /g, as measured by the BET (Brunauer, Emmett, Teller) method. It is more preferably 150 m 2 /g, particularly preferably 10 to 40 m 2 /g, and most preferably 10 to 20 m 2 /g.
  • the pH of titanium oxide is preferably 6 to 8.
  • the oil absorption amount of titanium oxide is preferably 10 to 60 (g/100g), more preferably 10 to 40 (g/100g).
  • the total amount of Fe 2 O 3 , Al 2 O 3 , SiO 2 , Nb 2 O 5 and Na 2 O is preferably 0.1% by mass or less, and preferably 0.05% by mass or less. It is more preferable that the amount is present, even more preferably that it is 0.02% by mass or less, and it is especially preferable that it is substantially free of these.
  • the shape of the titanium oxide particles There is no particular restriction on the shape of the titanium oxide particles. Examples include isotropic shapes (for example, spherical shapes, polyhedral shapes, etc.), anisotropic shapes (for example, needle shapes, rod shapes, plate shapes, etc.), and irregular shapes.
  • the hardness (Mohs hardness) of the titanium oxide particles is preferably from 5 to 8, more preferably from 7 to 7.5.
  • Inorganic particles such as titanium oxide particles may be surface treated with a surface treatment agent such as an organic compound.
  • Surface treatment agents used for surface treatment of titanium oxide include polyol, aluminum oxide, aluminum hydroxide, silica (silicon oxide), hydrated silica, alkanolamine, stearic acid, organosiloxane, zirconium oxide, hydrogen dimethicone, and silane coupling agent. , titanate coupling agents, and the like. Among these, silane coupling agents are preferred.
  • the surface treatment may be performed using a single type of surface treatment agent or a combination of two or more types of surface treatment agents.
  • inorganic particles such as titanium oxide particles are coated with a basic metal oxide or a basic metal hydroxide.
  • the basic metal oxide or hydroxide include metal compounds containing magnesium, zirconium, cerium, strontium, antimony, barium, or calcium.
  • titanium oxide particles the titanium oxide particles described in "Titanium oxide physical properties and applied technology, Manabu Seino, pages 13-45, published June 25, 1991, Gihodo Publishing" can also be suitably used.
  • particles P1 commercially available particles can be preferably used. Commercially available products may be used as they are, or those that have been classified may be used. Commercially available titanium oxide particles include, for example, the trade names TYPEQUE R-550, R-580, R-630, R-670, R-680, R-780, and R-780-2 manufactured by Ishihara Sangyo Co., Ltd.
  • strontium titanate particles include SW-100 (manufactured by Titanium Kogyo Co., Ltd.).
  • barium sulfate particles include BF-1L (manufactured by Sakai Chemical Industry Co., Ltd.).
  • zinc oxide particles include Zincox Super F-1 (manufactured by Hakusui Tech Co., Ltd.).
  • zirconium oxide particles include Z-NX (manufactured by Taiyo Koko Co., Ltd.) and Zirconeo-Cp (manufactured by ITEC Co., Ltd.).
  • the content of particles P1 is preferably 5 to 90% by mass based on the total solid content of the composition.
  • the upper limit is preferably 85% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less.
  • the lower limit is preferably 6% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more.
  • the composition of the present invention may contain only one type of particle P1, or may contain two or more types of particles P1.
  • When only one type of particle P1 is included better storage stability is likely to be obtained. Furthermore, when two or more types of particles P1 are included, the angular dependence of light scattering can be further reduced.
  • the total amount thereof is preferably within the above range.
  • the composition of the present invention can contain particles having a refractive index of less than 2.0, an average primary particle size of 500 nm or more, and a specific gravity smaller than particle P1 (hereinafter also referred to as particle P2).
  • particle P2 a specific gravity smaller than particle P1
  • the composition of the present invention further contains particles P2 in addition to particles P1, scattering occurs between particles P1 and P2, and the light irradiated to the film can be efficiently scattered and transmitted. . Therefore, by using such a composition, a film with better light scattering properties can be formed.
  • the average primary particle diameter of the particles P2 is 500 nm or more, preferably 500 nm or more and 6000 nm or less, more preferably 500 nm or more and 5000 nm or less, even more preferably 500 nm or more and less than 3000 nm, and 500 nm or more and 2500 nm or less. It is even more preferably 500 nm or more and 2000 nm or less, particularly preferably 500 nm or more and 1500 nm or less, and most preferably 500 nm or more and 1000 nm or less.
  • the refractive index of the particles P2 is less than 2.0, preferably 1.9 or less, more preferably 1.8 or less, and particularly preferably 1.7 or less.
  • the lower limit of the refractive index of the particles P2 is not particularly limited, but can be 1.0 or more, and can also be 1.1 or more.
  • the difference between the refractive index of the particles P1 and the refractive index of the particles P2 is preferably 0.5 or more, more preferably 0.7 or more, because a film with excellent light scattering properties can be easily obtained. , more preferably 0.9 or more.
  • the value of the refractive index of the particles P1 is calculated from the mass average value of the refractive index of the two or more types of particles P1. use The same applies to the case where the composition of the present invention contains two or more types of particles P2.
  • the specific gravity of the particles P2 is preferably 2.5 g/cm 3 or less, more preferably 2.4 g/cm 3 or less, even more preferably 2.2 g/cm 3 or less, and 2.0 g/cm 3 or less. /cm 3 or less is particularly preferable.
  • the lower limit of the specific gravity of the particles P2 is not particularly limited, but it can be 0.5 g/cm 3 or more, and can also be 0.9 g/cm 3 or more.
  • the particles P2 are preferably transparent or white particles.
  • the particles P2 include inorganic particles and resin particles.
  • the inorganic particles include silica particles, hollow titanium oxide particles, hollow zirconia particles, and silica particles are preferred.
  • Commercially available inorganic particles include the Thylysia series (for example, Thylysia 310P, etc.) manufactured by Fuji Silysia Chemical Co., Ltd., and the Seahoster series (for example, Seahoster KE-S250) manufactured by Nippon Shokubai Co., Ltd.
  • resin particles include particles made of synthetic resins such as (meth)acrylic resin, styrene resin, polyamide resin, polyimide resin, polyolefin resin, polyurethane resin, polyurea resin, polyester resin, melanin resin, and silicone resin, as well as chitin and chitosan.
  • synthetic resin particles include particles made of natural polymers such as cellulose, crosslinked starch, and crosslinked cellulose.
  • synthetic resin particles are preferably used because they have advantages such as easy control of particle size.
  • resin particles can be made into fine particles by crushing, but resin particles can be produced by emulsion suspension polymerization. , preferred from the viewpoint of ease of particle size control and accuracy.
  • PMMA polymethyl methacrylate
  • Resin particles are also available as commercial products, such as MX-40T, MX-80H3wT, MX-150, MX-180TA, MX-300, MX-500, MX-1000, MX-1500H, MR-2HG, MR-7HG, MR-10HG, MR-3GSN, MR-5GSN, MR-7G, MR-10G, MR-5C, MR-7GC (acrylic resin particles manufactured by Soken Chemical Co., Ltd.), SX-130H, SX-350H, SX-500H (manufactured by Soken Kagaku Co., Ltd., styrene resin particles), MBX-5, MBX-8, MBX-12MBX-15, MBX-20, MB20X-5, MB30X-5, MB30X- 8.
  • MX-40T MX-80H3wT
  • MX-150 MX-180TA
  • MX-300 MX-500
  • MX-1000 MX-1500H
  • MB30X-20, SBX-6, SBX-8, SBX-12, SBX-17 (all manufactured by Sekisui Plastics Co., Ltd., acrylic resin particles), Chemipearl W100, W200, W300, W308, W310, W400 , W401, W405, W410, W500, WF640, W700, W800, W900, W950, WP100 (manufactured by Mitsui Chemicals, Inc., polyolefin resin particles), Tospearl 120 (manufactured by Momentive Performance Technologies, silicone resin particles) , Optobeads 2000M (manufactured by Nissan Chemical Co., Ltd., melanin resin particles), and the like.
  • the particles P2 are hollow particles.
  • a hollow particle refers to a particle that has voids inside the particle surface where no material constituting the particle exists.
  • the size, shape, and number of the void portions are not particularly limited.
  • the particle may have an outer shell structure with a void in the center, or may have a structure in which a plurality of fine voids are dispersed inside the particle.
  • the porosity of the hollow particles is preferably 1 to 90%.
  • the lower limit of the porosity is preferably 5% or more, more preferably 10% or more.
  • the upper limit of the porosity is preferably 85% or less, more preferably 80% or less.
  • the porosity of the hollow particles refers to the ratio of the volume occupied by voids to the total volume of the hollow particles.
  • the porosity of hollow particles can be determined by observing the hollow particles using a transmission electron microscope, measuring the outer diameter and pore diameter, and calculating the "ratio of volume occupied by pores to the total volume" using the following formula. It can be measured with Formula: ⁇ (void diameter) 3 / (outer diameter) 3 ⁇ 100%
  • 100 hollow particles observed with a transmission electron microscope are arbitrarily selected, and the circular equivalent diameters of the outside and voids of each of these hollow particles are measured to determine the outer diameter and void diameter, and the above-mentioned
  • One method is to calculate the porosity using a formula and use the average value as the porosity.
  • the material of the shell of the particle (its refractive index) and the hollow shape are known, this can be determined by measuring the particle's refractive index.
  • the shape of the hollow particles is preferably spherical, but may have a shape other than spherical, such as an amorphous shape.
  • the hollow particles may be hollow particles made of an inorganic material (hereinafter also referred to as hollow inorganic particles) or hollow particles made of a resin material (hereinafter also referred to as hollow resin particles).
  • Materials constituting the hollow resin particles include (meth)acrylic resin, styrene resin, polyamide resin, polyimide resin, polyolefin resin, polyurethane resin, polyurea resin, polyester resin, silicone resin, melanin resin, etc. Acrylic resins and styrene resins are preferred, and (meth)acrylic resins are more preferred.
  • methods for producing hollow resin particles include a method in which resin particles contain a foaming agent and then the foaming agent is foamed, or a method in which a volatile substance is encapsulated in resin particles and then the volatile substance is evaporated into a gas.
  • the hollow inorganic particles are preferably hollow silica particles. That is, the hollow inorganic particles are preferably silica particles having a void in the center. Specific examples of hollow silica particles include hollow particles described in JP-A No. 2013-237593, International Publication No. 2007/060884, and the like.
  • the content of particles P2 is preferably 1 to 70% by mass based on the total solid content of the composition.
  • the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less.
  • the lower limit is preferably 2% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more.
  • the composition of the present invention may contain only one type of particle P2, or may contain two or more types of particles P2. When only one type of particle P2 is included, better storage stability is likely to be obtained. Furthermore, when two or more types of particles P2 are included, the angular dependence of light scattering can be further reduced. When two or more types of particles P2 are included, the total amount thereof is preferably within the above range.
  • the total content of particles P1 and particles P2 in the total solid content of the composition is preferably 30% by mass or more, more preferably 35% by mass or more, and preferably 40% by mass or more. More preferred.
  • the upper limit is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less.
  • particles P1 be in an amount of 20 to 500 parts by mass relative to 100 parts by mass of particles P2.
  • the upper limit is preferably 450 parts by mass or less, more preferably 400 parts by mass or less, and even more preferably 300 parts by mass or less.
  • the lower limit is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, and even more preferably 35 parts by mass or more.
  • the composition of the present invention includes a film-forming component.
  • the film forming component used in the present invention includes a rheology control agent and two or more resins, or a rheology control agent, one or more resins, and one or more polymerizable monomers.
  • the film-forming component preferably contains a rheology control agent and two or more resins.
  • the content of the rheology control agent in the composition of the present invention is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass.
  • the lower limit is preferably 0.2% by mass or more.
  • the upper limit is preferably 4% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less.
  • the composition of the present invention preferably contains 0.5 to 20 parts by mass of a rheology control agent based on 100 parts by mass of the particles P1 described above.
  • the upper limit is preferably 18 parts by mass or less, more preferably 16 parts by mass or less, and even more preferably 14 parts by mass or less.
  • the lower limit is preferably 0.8 parts by mass or more, more preferably 1.0 parts by mass or more, and even more preferably 1.2 parts by mass or more.
  • the content of resin in the total solid content of the composition of the present invention is preferably 5 to 80% by mass.
  • the lower limit is preferably 8% by mass or more, more preferably 10% by mass or more.
  • the upper limit is preferably 75% by mass or less, more preferably 70% by mass or less.
  • the composition of the present invention preferably contains 0.3 to 30 parts by weight of a rheology control agent based on 100 parts by weight of the resin.
  • the upper limit is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 10 parts by mass or less.
  • the lower limit is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, and even more preferably 1.5 parts by mass or more.
  • the film-forming components each include a resin as a dispersant for the particles P1, a resin as a binder, and a rheology control agent.
  • the resin used as the binder preferably has low compatibility with the resin used as the dispersant.
  • the composition of the present invention preferably contains 40 to 300 parts by weight of a resin as a binder per 100 parts by weight of a resin as a dispersant.
  • the upper limit is preferably 250 parts by mass or less, more preferably 200 parts by mass or less.
  • the lower limit is preferably 50 parts by mass or more, more preferably 100 parts by mass or more.
  • the composition of the present invention preferably contains 5 to 150 parts by mass of a resin as a dispersant based on 100 parts by mass of the particles P1 described above.
  • the upper limit is preferably 140 parts by mass or less, more preferably 125 parts by mass or less, and even more preferably 100 parts by mass or less.
  • the lower limit is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and even more preferably 25 parts by mass or more.
  • the composition of the present invention preferably contains 1 to 50 parts by weight of a rheology control agent based on 100 parts by weight of the resin as a binder.
  • the upper limit is preferably 45 parts by mass or less, more preferably 40 parts by mass or less.
  • the lower limit is preferably 2 parts by mass or more, more preferably 4 parts by mass or more.
  • the composition of the present invention preferably contains 1 to 50 parts by weight of a rheology control agent per 100 parts by weight of the resin as a dispersant.
  • the upper limit is preferably 45 parts by mass or less, more preferably 40 parts by mass or less.
  • the lower limit is preferably 3 parts by mass or more, more preferably 5 parts by mass or more.
  • the resin as a dispersant and the resin as a binder can be appropriately selected from the resins described below.
  • dispersants are also available as commercial products, and specific examples include the Disperbyk series (for example, Disperbyk-111, 2001, etc.) manufactured by Byk Chemie, and Solsperse manufactured by Nippon Lubrizol Co., Ltd. series (for example, Solsperse 20000, 76500, etc.), Ajisperse series manufactured by Ajinomoto Fine Techno, Inc., and the like.
  • the product described in paragraph number 0129 of JP 2012-137564A and the product described in paragraph number 0235 of JP 2017-194662A can also be used as a dispersant.
  • the film-forming component preferably includes a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher-valent linking group, a resin having a repeating unit having a graft chain, and a rheology control agent.
  • a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher-valent linking group e.g., a resin having a repeating unit having a graft chain
  • a rheology control agent e.g., rheology control agent facilitates the formation of a strong network structure through intermolecular interactions in the resulting film, making it possible to more effectively suppress changes in the dispersion state of particles in the film due to heating.
  • the heat resistance of the resulting film can be further improved. Details of the resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher-valent linking group and the resin having a repeating unit having a graft chain will be described later.
  • the film-forming component contains a resin having a structure in which multiple polymer chains are bonded to a trivalent or higher linking group and a resin containing a repeating unit having a graft chain, one of the resins is a dispersant, and the other resin is a dispersant. is preferably a binder.
  • the polymer chain in a resin with a structure in which multiple polymer chains are bonded to a trivalent or higher linking group is a polymer chain composed of repeating units with a different structure from the graft chain in a resin containing a repeating unit with a graft chain. It is preferable that
  • a polymer chain in a resin with a structure in which multiple polymer chains are bonded to a trivalent or higher linking group is a polymer chain composed of repeating units of a polyether structure, a polyester structure, a poly(meth)acrylic structure, or a polystyrene structure.
  • the graft chain in the resin containing a repeating unit having a graft chain is a repeating unit with a structure different from the above polymer chain, and is composed of a polyether structure, a polyester structure, a poly(meth)acrylic structure, or a polystyrene structure. Examples include combinations of grafted chains.
  • the content of the resin containing a repeating unit having a graft chain is preferably 20 to 250 parts by weight based on 100 parts by weight of the resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher linking group.
  • the upper limit is preferably 230 parts by mass or less, more preferably 200 parts by mass or less.
  • the lower limit is preferably 30 parts by mass or more, more preferably 50 parts by mass or more.
  • the total content of the resin containing a structure in which a plurality of polymer chains are bonded to a trivalent or higher-valent linking group and the resin containing a repeating unit having a graft chain in the resin contained in the composition of the present invention is 5% by mass.
  • the content is preferably at least 8% by mass, more preferably at least 8% by mass, even more preferably at least 10% by mass.
  • the upper limit can be 100% by mass or less.
  • the content of the polymerizable monomer is preferably 0.1 to 40% by mass based on the total solid content of the composition.
  • the lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more.
  • the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less.
  • the polymerizable monomers may be used alone or in combination of two or more. When two or more types of polymerizable monomers are used in combination, the total amount is preferably within the above range.
  • two or more types of radically polymerizable monomers may be used alone, or a radically polymerizable monomer and a cationically polymerizable monomer may be used in combination.
  • the total content of the polymerizable monomer and resin is preferably 10 to 90% by mass based on the total solid content of the composition.
  • the upper limit is preferably 80% by mass or less, more preferably 75% by mass or less, and even more preferably 70% by mass or less.
  • the lower limit is preferably 20% by mass or more, more preferably 30% by mass or more.
  • the composition of the present invention preferably contains 10 to 400 parts by mass of the polymerizable monomer based on 100 parts by mass of the resin.
  • the lower limit is preferably 15 parts by mass or more, more preferably 20 parts by mass or more.
  • the upper limit is preferably 380 parts by mass or less, more preferably 350 parts by mass or less.
  • the composition of the present invention preferably contains 0.5 to 20 parts by mass of a rheology control agent per 100 parts by mass of the polymerizable monomer.
  • the lower limit is preferably 1 part by mass or more, more preferably 3 parts by mass or more.
  • the upper limit is preferably 18 parts by mass or less, more preferably 15 parts by mass or less.
  • the film forming component includes a rheology control agent.
  • a rheology control agent is a component that imparts pseudoplasticity or thixotropy to a composition, and is also referred to as a thixotropic agent or a thixotropy imparting agent.
  • rheology control agents include organic compounds and clay minerals.
  • Organic compounds are preferred because they are easily mixed with organic solvents, can form a uniform network structure in the film, and can further improve film resistance. It is preferable that
  • Clay minerals used as rheology control agents include bentonite, silica, and calcium carbonate. These clay minerals may be treated with quaternary ammonium ions, carboxylic acids, phosphoric acids, etc.
  • Commercially available clay minerals include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Somasif ME-100, Somasif MAE, Somasif MTE, Somasif MEE, Somasif MPE (manufactured by Co-op Chemical Co., Ltd.).
  • the organic compound used as a rheology control agent is preferably an organic compound having at least one structure selected from the group consisting of an ester structure, an ether structure, an amide structure, a urea structure, and a urethane structure.
  • An organic compound having at least one structure selected from the group consisting of a structure and a urethane structure is more preferable, and an organic compound having an amide structure is more preferable.
  • the organic compound is preferably an amide compound, a urethane compound, or a urea compound, and more preferably an amide compound.
  • a hydrogen bond is formed with the resin at the amide structure site of the amide compound, and the thixotropy of the composition can be further enhanced. Therefore, the storage stability of the composition can be further improved.
  • the formation of a phase-separated structure can be further promoted by promoting the aggregation of resins existing near the particles, such as resins adsorbed to the particles, and particles, thereby further promoting the formation of a phase-separated structure. can further improve the light scattering properties of.
  • a stronger network structure can be formed in the film, and the heat resistance of the resulting film can be further improved.
  • amide compound examples include fatty acid amide, polyamide, polyaminoamide, and modified products thereof, and preferably polyaminoamide and modified products thereof.
  • Examples of the above-mentioned modified products include carboxylates, sulfonic acids, phosphates, ester salts, etc., and carboxylates are preferred.
  • the weight average molecular weight of the organic compound used as the rheology control agent is preferably 200 to 100,000.
  • the lower limit is preferably 500 or more, more preferably 1000 or more.
  • the upper limit is preferably 80,000 or less, more preferably 50,000 or less.
  • organic compounds used as rheology control agents include DISPARLON DA-1401, DISPARLON 1850, DISPARLON PW-36, DISPARLON 1831, DISPARLON DA-703-50, and DISPARLON. 1860, DISPARLON DA-325, DISPARLON DA-375, DISPARLON DA-234, DISPARLON 6700 (manufactured by Kusumoto Kasei Co., Ltd.), BYK-P 105, BYK-W 940, BYK-W 961, BYK-W 966, BYK-W 980, ANTI-TERRA- 204 (or more (manufactured by Bikkemie Co., Ltd.).
  • the amine value of the rheology control agent is preferably 200 mgKOH/g or less, more preferably 100 mgKOH/g or less, and even more preferably 50 mgKOH/g or less.
  • the lower limit is preferably 5 mgKOH/g or more, more preferably 8 mgKOH/g or more, and even more preferably 10 mgKOH/g or more.
  • the acid value of the rheology control agent is preferably 400 mgKOH/g or less, more preferably 200 mgKOH/g or less, even more preferably 100 mgKOH/g or less, even more preferably 60 mgKOH/g or less. Preferably, it is particularly preferably 45 mgKOH/g or less.
  • the lower limit is preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, and even more preferably 15 mgKOH/g or more.
  • the film forming component includes a resin.
  • the resin any known resin can be used.
  • examples include resins, polyimide resins, polyamide resins, polyolefin resins, cyclic olefin resins, polyester resins, styrene resins, silicone resins, and urethane resins.
  • the weight average molecular weight of the resin is preferably 2,000 to 2,000,000.
  • the upper limit is preferably 1,000,000 or less, more preferably 500,000 or less.
  • the lower limit is preferably 3000 or more, more preferably 4000 or more, and even more preferably 5000 or more.
  • a resin having an acid group can be used as the resin.
  • resins having acid groups include resins having repeating units having acid groups.
  • the acid group include a carboxy group, a phosphoric acid group, a sulfo group, a phenolic hydroxy group, and a carboxy group is preferred.
  • the carboxy group is preferably an aromatic carboxy group.
  • the aromatic carboxy group refers to a group having a structure in which one or more carboxy groups are bonded to an aromatic ring.
  • the number of carboxy groups bonded to the aromatic ring is preferably 1 to 4, more preferably 1 to 2.
  • the resin having an acid group may be a resin containing at least one type of repeating unit selected from a repeating unit represented by formula (2-1) and a repeating unit represented by formula (2-2). preferable.
  • R 21 and R 22 each independently represent a hydrogen atom or an alkyl group
  • L 21 represents a single bond or a divalent linking group
  • the divalent linking group represented by L 11 includes an alkylene group, an arylene group, -O-, -CO-, -COO-, -OCO-, -CONH-, -NHCO-, -NH-, -S- and Examples include groups that are combinations of two or more of these.
  • the alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 15 carbon atoms.
  • the alkylene group may be linear, branched, or cyclic.
  • the number of carbon atoms in the arylene group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 10.
  • the alkylene group and arylene group may have a substituent.
  • the divalent linking group represented by L 11 is preferably a group containing an alkylene group.
  • the acid value of the resin having acid groups is preferably 20 to 200 mgKOH/g.
  • the lower limit is preferably 25 mgKOH/g or more, more preferably 30 mgKOH/g or more.
  • the upper limit is preferably 150 mgKOH/g or less, more preferably 120 mgKOH/g or less.
  • the resin includes a repeating unit derived from a compound represented by the following formula (ED1) and/or a compound represented by the following formula (ED2) (hereinafter, these compounds may be referred to as "ether dimer”). Resin can be used.
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
  • the description in JP-A No. 2010-168539 can be referred to.
  • paragraph number 0317 of JP-A-2013-029760 can be referred to, the contents of which are incorporated herein.
  • a resin containing a repeating unit derived from a compound represented by the following formula (X) can be used as the resin.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 10 carbon atoms
  • R 3 represents a hydrogen atom or an alkylene group having 1 to 20 carbon atoms that may contain a benzene ring.
  • n represents an integer from 1 to 15.
  • a resin containing a repeating unit having a graft chain can also be used.
  • the resin contains a repeating unit having a graft chain, it is possible to more effectively suppress aggregation of particles in the composition due to steric hindrance caused by the graft chain, and excellent storage stability can be obtained. Moreover, it is easy to form the above-mentioned phase separation structure in the film during film formation, and the light scattering properties of the obtained film can be more easily improved.
  • a resin containing a repeating unit having a graft chain may be used as a dispersant or as a binder.
  • the graft chain preferably contains a repeating unit of at least one type of structure selected from a polyether structure, a polyester structure, a poly(meth)acrylic structure, a polystyrene structure, a polyurethane structure, a polyurea structure, and a polyamide structure; It is more preferable to contain a repeating unit having at least one type of structure selected from a polyester structure, a poly(meth)acrylic structure, and a polystyrene structure. It is even more preferable to contain a repeating unit having a polyether structure or a polyester structure. It is particularly preferable to include units.
  • repeating units having a polyester structure include repeating units having a structure represented by formula (G-1), formula (G-4), or formula (G-5).
  • Examples of repeating units having a polyether structure include repeating units having a structure represented by formula (G-2).
  • Examples of the repeating unit of the poly(meth)acrylic structure include a repeating unit of the structure represented by formula (G-3).
  • Examples of the repeating unit of the polystyrene structure include a repeating unit of the structure represented by formula (G-6).
  • R G1 and R G2 each independently represent an alkylene group.
  • the alkylene groups represented by R G1 and R G2 are not particularly limited, but are preferably linear or branched alkylene groups having 1 to 20 carbon atoms, and linear or branched alkylene groups having 2 to 16 carbon atoms. More preferred are linear or branched alkylene groups having 3 to 12 carbon atoms.
  • R G3 represents a hydrogen atom or a methyl group
  • Q G1 represents -O- or -NH-
  • L G1 represents a single bond or a divalent linking group
  • R G4 represents hydrogen Represents an atom or substituent.
  • the divalent linking group represented by L G1 includes an alkylene group (preferably an alkylene group having 1 to 12 carbon atoms), an alkyleneoxy group (preferably an alkyleneoxy group having 1 to 12 carbon atoms), and an oxyalkylenecarbonyl group (preferably an alkylene group having 1 to 12 carbon atoms).
  • oxyalkylenecarbonyl group having 1 to 12 carbon atoms is an oxyalkylenecarbonyl group having 1 to 12 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, -SO 2 -, -CO-, -O-, - Examples include COO-, OCO-, -S-, and groups formed by combining two or more of these.
  • the substituents represented by R G4 include hydroxy group, carboxy group, alkyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthioether group, arylthioether group, heterocyclic thioether group, Examples include ethylenically unsaturated bond-containing groups, epoxy groups, oxetanyl groups, and blocked isocyanate groups.
  • R G5 represents a hydrogen atom or a methyl group
  • R G6 represents an aryl group.
  • the number of carbon atoms in the aryl group represented by R G6 is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 12.
  • the aryl group represented by R G6 may have a substituent.
  • Substituents include hydroxy group, carboxy group, alkyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthioether group, arylthioether group, heterocyclic thioether group, ethylenically unsaturated group. Examples include bond-containing groups, epoxy groups, oxetanyl groups, and blocked isocyanate groups.
  • the terminal structure of the graft chain is not particularly limited. It may be a hydrogen atom or a substituent.
  • substituent include an alkyl group, an aryl group, a heteroaryl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, and a heteroarylthioether group.
  • groups having a steric repulsion effect are preferred, and alkyl groups or alkoxy groups having 5 to 24 carbon atoms are preferred.
  • the alkyl group and the alkoxy group may be linear, branched, or cyclic, and preferably linear or branched.
  • the graft chain is represented by the following formula (G-1a), formula (G-2a), formula (G-3a), formula (G-4a), formula (G-5a) or formula (G-6a). It is preferable to have a structure represented by formula (G-1a), formula (G-4a) or formula (G-5a).
  • R G1 and R G2 each represent an alkylene group
  • R G3 represents a hydrogen atom or a methyl group
  • Q G1 represents -O- or -NH-
  • L G1 represents a single bond or Represents a divalent linking group
  • R G4 represents a hydrogen atom or a substituent
  • R G5 represents a hydrogen atom or a methyl group
  • R G6 represents an aryl group
  • W 100 represents a hydrogen atom or a substituent.
  • n1 to n6 each independently represent an integer of 2 or more.
  • R G1 to R G6 , Q G1 , and L G1 have the same meanings as R G1 to R G6 , Q G1 , and L G1 explained in formulas (G-1) to (G-6), and the preferred ranges are also the same. be.
  • W 100 is preferably a substituent.
  • the substituent include an alkyl group, an aryl group, a heteroaryl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, and a heteroarylthioether group.
  • groups having a steric repulsion effect are preferred, and alkyl groups or alkoxy groups having 5 to 24 carbon atoms are preferred.
  • the alkyl group and the alkoxy group may be linear, branched, or cyclic, and preferably linear or branched.
  • n1 to n6 are each preferably an integer of 2 to 100, more preferably an integer of 2 to 80, and even more preferably an integer of 8 to 60.
  • R G1 in each repeating unit may be the same or different.
  • R G1 in each repeating unit may be the same or different.
  • the arrangement of each repeating unit is not particularly limited, and may be random, alternating, or block. The same applies to formulas (G-2a) to (G-6a).
  • the graft chain has a structure represented by formula (G-1a), formula (G-4a), or formula (G-5a), and has a structure containing two or more types of repeating units in which R G1 is different. is also preferable.
  • repeating unit having a graft chain examples include a repeating unit represented by the following formula (A-1-2).
  • X 2 represents a valent linking group
  • L 2 represents a single bond or a divalent linking group
  • W 1 represents a graft chain.
  • the trivalent linking group represented by X 2 includes a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, and a polyether linking group.
  • Examples include a polystyrene-based linking group, a polystyrene-based linking group, and preferably a poly(meth)acrylic-based linking group and a polyalkyleneimine-based linking group, and more preferably a poly(meth)acrylic-based linking group.
  • the divalent linking group represented by L 2 includes an alkylene group (preferably an alkylene group having 1 to 12 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, Examples thereof include -SO 2 -, -CO-, -O-, -COO-, OCO-, -S-, and groups formed by combining two or more of these.
  • Examples of the graft chain represented by W 1 include the above-mentioned graft chains.
  • repeating unit represented by the formula (A-1-2) include a repeating unit represented by the following formula (A-1-2a) and a repeating unit represented by the following formula (A-1-2b). Examples include units.
  • R b1 to R b3 each independently represent a hydrogen atom or an alkyl group
  • Q b1 is -CO-, -COO-, -OCO-, -CONH-, or phenylene.
  • L 2 represents a single bond or a divalent linking group
  • W 1 represents a graft chain.
  • the number of carbon atoms in the alkyl group represented by R b1 to R b3 is preferably 1 to 10, more preferably 1 to 3, and even more preferably 1.
  • Q b1 is preferably -COO- or -CONH-, more preferably -COO-.
  • R b10 and R b11 each independently represent a hydrogen atom or an alkyl group
  • m2 represents an integer of 1 to 5
  • L 2 represents a single bond or a divalent linkage. group
  • W 1 represents a graft chain.
  • the number of carbon atoms in the alkyl group represented by R b10 and R b11 is preferably 1 to 10, more preferably 1 to 3.
  • the weight average molecular weight (Mw) of the repeating unit having a graft chain is preferably 1,000 or more, more preferably 1,000 to 10,000, and even more preferably 1,000 to 7,500.
  • the weight average molecular weight of a repeating unit having a graft chain is a value calculated from the weight average molecular weight of a raw material monomer used for polymerization of the same repeating unit.
  • a repeating unit having a graft chain can be formed by polymerizing a macromonomer.
  • the macromonomer refers to a polymer compound having a polymerizable group introduced at the end of the polymer.
  • the weight average molecular weight of the macromonomer corresponds to the repeating unit having a graft chain.
  • the content of repeating units having graft chains in the resin containing repeating units having graft chains is preferably 10 to 90% by mass.
  • the lower limit is preferably 15% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less.
  • the resin containing a repeating unit having a graft chain further contains a repeating unit having an acid group.
  • the acid group contained in the repeating unit having an acid group include a carboxy group, a phosphoric acid group, a sulfo group, a phenolic hydroxy group, and a carboxy group is preferred.
  • the carboxy group is preferably an aromatic carboxy group.
  • the repeating unit having an acid group is at least one repeating unit selected from the above-mentioned repeating unit represented by formula (2-1) and repeating unit represented by formula (2-2).
  • the content of the repeating unit having an acid group in the resin containing the repeating unit having a graft chain is preferably 1 to 50% by mass.
  • the lower limit is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the upper limit is preferably 40% by mass or less, more preferably 35% by mass or less.
  • the resin containing a repeating unit having a graft chain further contains a repeating unit having an ethylenically unsaturated bond-containing group.
  • the ethylenically unsaturated bond-containing group include a vinyl group, styrene group, maleimide group, (meth)allyl group, (meth)acryloyl group, (meth)acryloyloxy group, (meth)acryloylamide group, etc.
  • the content of the repeating unit having an ethylenically unsaturated bond-containing group in the resin containing the repeating unit having a graft chain is preferably 1 to 50% by mass.
  • the lower limit is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the upper limit is preferably 40% by mass or less, more preferably 35% by mass or less.
  • the weight average molecular weight of the resin containing repeating units having graft chains is preferably 10,000 to 50,000.
  • the lower limit is preferably 12,000 or more, more preferably 13,000 or more.
  • the upper limit is preferably 45,000 or less, more preferably 40,000 or less.
  • the resin it is also preferable to use a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher-valent linking group.
  • the film-forming composition contains such a resin, the aggregation of particles in the film-forming composition can be more effectively suppressed due to steric hindrance caused by the polymer chains, and excellent storage stability can be obtained. .
  • the weight average molecular weight of the resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher linking group is preferably 5,000 to 20,000.
  • the lower limit is preferably 6,000 or more, more preferably 7,000 or more.
  • the upper limit is preferably 18,000 or less, more preferably 15,000 or less.
  • resin (SP-1) As a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher linking group, for example, a resin having a structure represented by the following formula (SP-1) (hereinafter also referred to as resin (SP-1)) Can be mentioned.
  • Z 1 represents a (m+n)-valent linking group
  • Y 1 and Y 2 each independently represent a single bond or a linking group
  • A1 is a heterocyclic group, an acid group, a group having a basic nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group
  • P 1 represents a polymer chain
  • n represents 1 to 20
  • m represents 2 to 20
  • m+n represents 3 to 21
  • n Y 1 and A 1 may be the same or different
  • the m pieces of Y 2 and P 1 may be the same or different.
  • a 1 in formula (SP-1) represents a group containing the above-mentioned functional group.
  • the functional group that A 1 has is preferably a heterocyclic group, an acid group, a group having a basic nitrogen atom, a hydrocarbon group having 4 or more carbon atoms, and a hydroxy group, and more preferably an acid group.
  • the acid group include a carboxy group, a sulfo group, and a phosphoric acid group, with a carboxy group being preferred.
  • At least one of the above-mentioned functional groups may be contained in one A1 , and two or more may be contained in one A1.
  • a 1 preferably contains 1 to 10 substituents, more preferably 1 to 6 substituents.
  • the group containing the above-mentioned functional group represented by A1 includes the above-mentioned functional group, 1 to 200 carbon atoms, 0 to 20 nitrogen atoms, 0 to 100 oxygen atoms, and 1 to 400 oxygen atoms. and a linking group consisting of 0 to 40 sulfur atoms.
  • one or more acid groups may be connected via a chain saturated hydrocarbon group having 1 to 10 carbon atoms, a cyclic saturated hydrocarbon group having 3 to 10 carbon atoms, or an aromatic hydrocarbon group having 5 to 10 carbon atoms.
  • chain saturated hydrocarbon group having 1 to 10 carbon atoms a chain saturated hydrocarbon group having 1 to 10 carbon atoms
  • a cyclic saturated hydrocarbon group having 3 to 10 carbon atoms or an aromatic hydrocarbon group having 5 to 10 carbon atoms.
  • Examples include groups formed by bonding.
  • the above-mentioned chain saturated hydrocarbon group, cyclic saturated hydrocarbon group and aromatic hydrocarbon group may further have a substituent.
  • Substituents include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 16 carbon atoms, hydroxy groups, carboxy groups, amino groups, sulfonamide groups, N-sulfonylamide groups, acyloxy groups having 1 to 6 carbon atoms, Examples include an alkoxy group having 1 to 20 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 7 carbon atoms, a cyano group, a carbonate group, and an ethylenically unsaturated bond-containing group. Further, the above functional group itself may be A1 .
  • the chemical formula weight of A 1 is preferably 30 to 2,000.
  • the upper limit is preferably 1000 or less, more preferably 800 or less.
  • the lower limit is preferably 50 or more, more preferably 100 or more.
  • the (m+n)-valent linking group represented by Z 1 in formula (SP-1) includes 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, and 1 to 200 carbon atoms. Mention may be made of groups consisting of hydrogen atoms and 0 to 20 sulfur atoms. Examples of the (m+n)-valent linking group include the following structural units or groups formed by combining two or more of the following structural units (which may form a ring structure). * in the following formula represents a bond.
  • the (m+n)-valent linking group may have a substituent.
  • substituents include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 16 carbon atoms, hydroxy groups, amino groups, carboxy groups, sulfonamide groups, N-sulfonylamide groups, and acyloxy groups having 1 to 6 carbon atoms. , an alkoxy group having 1 to 20 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 7 carbon atoms, a cyano group, a carbonate ester group, a group containing an ethylenically unsaturated bond, and the like.
  • the (m+n)-valent linking group represented by Z 1 is preferably a group represented by any one of formulas (Z-1) to (Z-4).
  • Lz 3 represents a trivalent group
  • Tz 3 represents a single bond or a divalent linking group
  • the three Tz 3s may be the same or different from each other.
  • Lz 4 represents a tetravalent group
  • Tz 4 represents a single bond or a divalent linking group
  • the four Tz 4s present may be the same or different from each other.
  • Lz 5 represents a pentavalent group
  • Tz 5 represents a single bond or a divalent linking group
  • the five Tz 5s may be the same or different from each other.
  • Lz 6 represents a hexavalent group
  • Tz 6 represents a single bond or a divalent linking group
  • the six Tz 6s may be the same or different from each other.
  • * represents a bond.
  • the divalent linking group represented by Tz 3 to Tz 6 includes an alkylene group, an arylene group, a heterocyclic group, -O-, -CO-, -COO-, -OCO-, -NR-, -CONR-, - Examples include NRCO-, -S-, -SO-, -SO 2 -, and a linking group formed by linking two or more of these.
  • R each independently represents a hydrogen atom, an alkyl group, or an aryl group.
  • the number of carbon atoms in the alkyl group and alkylene group is preferably 1 to 30.
  • the upper limit is more preferably 25 or less, and even more preferably 20 or less.
  • the lower limit is more preferably 2 or more, and even more preferably 3 or more.
  • the alkyl group and alkylene group may be linear, branched, or cyclic.
  • the number of carbon atoms in the aryl group and arylene group is preferably 6 to 20, more preferably 6 to 12.
  • the heterocyclic group preferably has a 5-membered ring or a 6-membered ring.
  • the heteroatom contained in the heterocyclic group is preferably an oxygen atom, a nitrogen atom, or a sulfur atom.
  • the number of heteroatoms that the heterocyclic group has is preferably 1 to 3.
  • the alkylene group, arylene group, heterocyclic group, alkyl group, and aryl group may be unsubstituted or may have the above-mentioned substituents.
  • Examples of the trivalent group represented by Lz 3 include a group obtained by removing one hydrogen atom from the above divalent linking group.
  • Examples of the tetravalent group represented by Lz 4 include a group obtained by removing two hydrogen atoms from the above divalent linking group.
  • the pentavalent group represented by Lz 5 includes a group obtained by removing three hydrogen atoms from the above divalent linking group.
  • Examples of the hexavalent group represented by Lz 6 include a group obtained by removing four hydrogen atoms from the above divalent linking group.
  • the trivalent to hexavalent groups represented by Lz 3 to Lz 6 may have the above-mentioned substituents.
  • the chemical formula weight of Z 1 is preferably 20 to 3,000.
  • the upper limit is preferably 2000 or less, more preferably 1500 or less.
  • the lower limit is preferably 50 or more, more preferably 100 or more. Note that the chemical formula weight of Z 1 is a value calculated from the structural formula.
  • Y 1 and Y 2 each independently represent a single bond or a linking group.
  • the linking group include groups consisting of 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 to 20 sulfur atoms. It will be done. The above-mentioned group may further have the above-mentioned substituent.
  • Examples of the linking group represented by Y 1 and Y 2 include the following structural units or groups constituted by a combination of two or more of the following structural units. * in the following formula represents a bond.
  • P 1 represents a polymer chain.
  • the polymer chain represented by P 1 preferably contains a repeating unit of at least one type of structure selected from a polyether structure, a polyester structure, a poly(meth)acrylic structure, a polystyrene structure, a polyurethane structure, a polyurea structure, and a polyamide structure, It is more preferable to contain a repeating unit of at least one type of structure selected from a polyether structure, a polyester structure, a poly(meth)acrylic structure, and a polystyrene structure, and it is even more preferable to contain a repeating unit of a poly(meth)acrylic structure.
  • Examples of the repeating unit of the polyester structure include repeating units of the structure represented by the above-mentioned formula (G-1), formula (G-4), or formula (G-5).
  • Examples of the repeating unit of the polyether structure include the repeating unit of the structure represented by the above-mentioned formula (G-2).
  • Examples of the repeating unit of the poly(meth)acrylic structure include the repeating unit of the structure represented by the above-mentioned formula (G-3).
  • Examples of the repeating unit of the polystyrene structure include the repeating unit of the structure represented by the above-mentioned formula (G-6).
  • the polymer chain represented by P 1 may include a repeating unit having an acid group.
  • the acid group contained in the repeating unit having an acid group include a carboxy group, a phosphoric acid group, a sulfo group, a phenolic hydroxy group, and a carboxy group is preferred. Further, the carboxy group is preferably an aromatic carboxy group. It is also preferable that the repeating unit having an acid group is at least one repeating unit selected from the above-mentioned repeating unit represented by formula (2-1) and repeating unit represented by formula (2-2).
  • the content of the repeating unit having an acid group in all the repeating units constituting P 1 is preferably 1 to 50 mol%.
  • the lower limit is preferably 5 mol% or more, more preferably 10 mol% or more.
  • the upper limit is preferably 40 mol% or less, more preferably 30 mol% or less.
  • the polymer chain represented by P 1 may further include a repeating unit having an ethylenically unsaturated bond-containing group.
  • the ethylenically unsaturated bond-containing group include a vinyl group, styrene group, maleimide group, (meth)allyl group, (meth)acryloyl group, (meth)acryloyloxy group, (meth)acryloylamide group, etc. It is preferably a meth)acryloyl group, a (meth)acryloyloxy group or a (meth)acryloylamide group, more preferably a (meth)acryloyloxy group, and even more preferably an acryloyloxy group.
  • the content of the repeating unit having an ethylenically unsaturated bond-containing group in all the repeating units constituting P 1 is preferably 1 to 50 mol%.
  • the lower limit is preferably 5 mol% or more, more preferably 10 mol% or more.
  • the upper limit is preferably 40 mol% or less, more preferably 30 mol% or less.
  • the weight average molecular weight of the polymer chain represented by P 1 is preferably 1,000 or more, more preferably 1,000 to 10,000.
  • the upper limit is preferably 9,000 or less, more preferably 6,000 or less, and even more preferably 3,000 or less.
  • the lower limit is preferably 1200 or more, more preferably 1400 or more.
  • the weight average molecular weight of P1 is a value calculated from the weight average molecular weight of the raw material used to introduce the polymer chain.
  • resin (SP-1) examples include polymer compounds C-1 to C-31 described in paragraph numbers 0196 to 0209 of JP-A No. 2013-043962, and paragraph numbers of JP-A No. 2014-177613.
  • examples include polymer compounds (C-1) to (C-61) described in No. 0256 to 0269, and resins having the structure described in paragraph number 0061 of International Publication No. 2018/163668, the contents of which are included in this specification. incorporated into the book.
  • a random polymer or a block polymer can also be used as the resin.
  • the film-forming component may contain a polymerizable monomer.
  • a polymerizable monomer known compounds that can be crosslinked by radicals, acids, or heat can be used. Examples include compounds having an ethylenically unsaturated bond-containing group and compounds having a cyclic ether group. Examples of the ethylenically unsaturated bond-containing group include a vinyl group, (meth)allyl group, (meth)acryloyl group, and (meth)acryloyloxy group. Examples of the cyclic ether group include an epoxy group and an oxetanyl group.
  • the polymerizable monomer is preferably a radically polymerizable monomer or a cationically polymerizable monomer, and more preferably a radically polymerizable monomer.
  • the radically polymerizable monomer is not particularly limited as long as it is a compound that can be polymerized by the action of radicals.
  • the radically polymerizable monomer is preferably a compound having an ethylenically unsaturated bond-containing group, more preferably a compound having two or more ethylenically unsaturated bond-containing groups, and a compound having three or more ethylenically unsaturated bond-containing groups. is even more preferable.
  • the upper limit of the number of ethylenically unsaturated bond-containing groups is, for example, preferably 15 or less, more preferably 6 or less.
  • ethylenically unsaturated bond-containing groups include vinyl groups, styrene groups, (meth)allyl groups, (meth)acryloyl groups, and (meth)acryloyloxy groups. It is preferable that it is a group.
  • the radically polymerizable monomer is preferably a 3- to 15-functional (meth)acrylate compound, more preferably a 3- to 6-functional (meth)acrylate compound.
  • the radically polymerizable monomer contains a ring structure.
  • the molecular weight of the radically polymerizable monomer is preferably 200 to 3,000.
  • the upper limit of the molecular weight is preferably 2,500 or less, more preferably 2,000 or less.
  • the lower limit of the molecular weight is preferably 250 or more, more preferably 300 or more.
  • the radically polymerizable monomer is a compound having at least one addition-polymerizable ethylene group and an ethylenically unsaturated bond-containing group having a boiling point of 100° C. or higher under normal pressure.
  • Examples include monofunctional acrylates and methacrylates such as polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, phenoxyethyl(meth)acrylate; polyethylene glycol di(meth)acrylate, trimethylolethane tri(meth)acrylate; ) acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, hexanediol(meth)acrylate ) acrylate, trimethylolpropane tri(acryloyloxypropyl) ether, tri(acryloyloxyethyl) isocyanurate and mixtures thereof, preferably pentaerythritol
  • n is 0-14 and m is 1-8.
  • a plurality of R's and T's in the same molecule may be the same or different.
  • Specific examples of compounds represented by formulas (MO-1) to (MO-5) include compounds described in paragraph numbers 0248 to 0251 of JP-A No. 2007-269779, the content of which is incorporated herein by reference. Incorporated into the specification.
  • radically polymerizable monomers examples include dipentaerythritol tri(meth)acrylate (commercial product: KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetra(meth)acrylate (commercial product: KAYARAD D- 320; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol penta(meth)acrylate (as a commercial product KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa(meth)acrylate (as a commercial product) is KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., NK ester A-DPH-12E; manufactured by Shin-Nakamura Chemical Industries, Ltd.), and these (meth)acryloyl groups are bonded via ethylene glycol and/or propylene glycol residues.
  • Radically polymerizable monomers include trimethylolpropane tri(meth)acrylate, trimethylolpropanepropylene oxide modified tri(meth)acrylate, trimethylolpropane ethylene oxide modified tri(meth)acrylate, isocyanuric acid ethylene oxide modified tri(meth)acrylate, and pentaerythritol. It is also preferable to use trifunctional (meth)acrylate compounds such as tri(meth)acrylate. Commercially available trifunctional (meth)acrylate compounds include Aronix M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306, M-305.
  • M-303, M-452, M-450 (manufactured by Toagosei Co., Ltd.), NK ester A9300, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, TMPT (manufactured by Shin Nakamura Chemical Co., Ltd.), KAYARAD GPO-303, TMPTA, THE-330, TPA-330, PET-30 (manufactured by Nippon Kayaku Co., Ltd.) Examples include.
  • the radically polymerizable monomer may be a compound having an acid group such as a carboxy group, a sulfo group, or a phosphoric acid group.
  • examples of the radically polymerizable monomer having an acid group include esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids.
  • Commercially available products include, for example, Aronix series M-305, M-510, and M-520 manufactured by Toagosei Co., Ltd.
  • the acid value of the radically polymerizable monomer having an acid group is preferably 0.1 to 40 mgKOH/g.
  • the lower limit is preferably 5 mgKOH/g or more.
  • the upper limit is preferably 30 mgKOH/g or less.
  • the radically polymerizable monomer may be a compound containing a ring structure.
  • a radically polymerizable monomer containing a ring structure By using a radically polymerizable monomer containing a ring structure, a phase separation structure can be easily formed in the film during film formation, and a film with better light scattering properties can be formed.
  • the ring structure contained in the radically polymerizable monomer is preferably an aliphatic ring because the above-mentioned effects are more likely to be obtained. Further, the aliphatic ring is preferably an aliphatic bridged ring.
  • An aliphatic bridged ring is an aliphatic ring having a structure in which two or more atoms that are not adjacent to each other are connected in one aliphatic ring.
  • the aliphatic bridged ring examples include a tricyclodecane ring and an adamantane ring, with a tricyclodecane ring being preferred.
  • the number of ring structures contained in the radically polymerizable monomer is preferably 1 to 5, more preferably 1 to 3, and more preferably 1 from the viewpoint of monomer mobility.
  • Specific examples of radically polymerizable monomers containing a ring structure include dimethylol-tricyclodecane diacrylate, 1,3-adamantanediol diacrylate, and the like.
  • Examples of the cationically polymerizable monomer include compounds having a cationically polymerizable group.
  • Examples of cationic polymerizable groups include cyclic ether groups such as epoxy groups and oxetanyl groups.
  • the cationic polymerizable monomer is preferably a compound having a cyclic ether group, and more preferably a compound having an epoxy group (also referred to as an epoxy compound).
  • the molecular weight of the cationically polymerizable monomer is preferably 200 to 3,000.
  • the upper limit of the molecular weight is preferably 2,500 or less, more preferably 2,000 or less.
  • the lower limit of the molecular weight is preferably 250 or more, more preferably 300 or more.
  • Examples of the epoxy compound include compounds having one or more epoxy groups in one molecule, and preferably compounds having two or more epoxy groups. It is preferable that one molecule contains 1 to 100 epoxy groups.
  • the upper limit of the number of epoxy groups can be, for example, 10 or less, or 5 or less.
  • the lower limit of epoxy groups is preferably 2 or more.
  • Examples of the epoxy compound include a compound represented by the following formula (EP1).
  • R EP1 to R EP3 each independently represent a hydrogen atom, a halogen atom, or an alkyl group.
  • the alkyl group may have a cyclic structure and may have a substituent.
  • R EP1 and R EP2 and R EP2 and R EP3 may be bonded to each other to form a ring structure.
  • Q EP represents a single bond or an organic group with n EP value.
  • R EP1 to R EP3 may be combined with Q EP to form a ring structure.
  • n EP represents an integer of 2 or more, preferably 2 to 10, more preferably 2 to 6. However, when Q EP is a single bond, n EP is 2.
  • cationically polymerizable monomer examples include the Adeka Glycilol series (eg, ADEKA Glycilol ED-505, etc.) manufactured by ADEKA Corporation, and the EPOLEAD series (eg, EPOLEAD GT401, etc.) manufactured by Daicel Corporation.
  • Adeka Glycilol series eg, ADEKA Glycilol ED-505, etc.
  • EPOLEAD series eg, EPOLEAD GT401, etc.
  • the composition of the present invention contains a solvent.
  • the solvent include organic solvents. There are basically no particular restrictions on the solvent as long as it satisfies the solubility of each component and the coatability of the composition.
  • the organic solvent include ester solvents, ketone solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents. For these details, the description in paragraph number 0223 of International Publication No. 2015/166779 can be referred to, and the contents thereof are incorporated herein. Ester solvents substituted with a cyclic alkyl group and ketone solvents substituted with a cyclic alkyl group can also be preferably used.
  • organic solvents include acetone, methyl ethyl ketone, cyclohexane, cyclohexanone, cyclopentanone, ethyl acetate, butyl acetate, cyclohexyl acetate, ethylene dichloride, tetrahydrofuran, toluene, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol dimethyl ether.
  • an organic solvent with a low metal content it is preferable to use an organic solvent with a low metal content, and the metal content of the organic solvent is preferably 10 mass ppb (parts per billion) or less, for example. If necessary, an organic solvent at a mass ppt (parts per trillion) level may be used, and such an organic solvent is provided by Toyo Gosei Co., Ltd. (Kagaku Kogyo Nippo, November 13, 2015).
  • Examples of methods for removing impurities such as metals from organic solvents include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter.
  • the filter pore diameter of the filter used for filtration is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene, or nylon.
  • the organic solvent may contain isomers (compounds with the same number of atoms but different structures). Moreover, only one type of isomer may be included, or multiple types may be included.
  • the content of peroxide in the organic solvent is preferably 0.8 mmol/L or less, and more preferably substantially free of peroxide.
  • the content of the solvent in the composition is preferably 10 to 95% by mass.
  • the lower limit is preferably 15% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, even more preferably 30% by mass or more, and 40% by mass. It is even more preferable that it is the above.
  • the upper limit is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less. Only one type of solvent may be used, or two or more types may be used in combination. When two or more types of solvents are used in combination, it is preferable that the total amount is within the above range.
  • the composition of the present invention can contain a photoinitiator.
  • the photopolymerization initiator include radical photopolymerization initiators and cationic photopolymerization initiators. It is preferable to select and use the polymerizable monomer depending on the type of the polymerizable monomer. When a radically polymerizable monomer is used as the polymerizable monomer, it is preferable to use a photoradical polymerization initiator as the photopolymerization initiator. Furthermore, when a cationically polymerizable monomer is used as the polymerizable monomer, it is preferable to use a photocationic polymerization initiator as the photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited and can be appropriately selected from known photopolymerization initiators. For example, a compound having photosensitivity to light from the ultraviolet region to the visible region is preferable.
  • the content of the photopolymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to 15% by mass based on the total solid content of the composition. It is even more preferable.
  • the composition of the present invention may contain only one type of photopolymerization initiator, or may contain two or more types of photopolymerization initiators. When two or more types of photopolymerization initiators are included, the total amount thereof is preferably within the above range.
  • Photoradical polymerization initiator examples include halogenated hydrocarbon derivatives (for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, etc.), acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, Examples include thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, and the like.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, etc.
  • acylphosphine compounds examples include thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, and the like.
  • photopolymerization initiators include trihalomethyltriazine compounds, benzyl dimethyl ketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, and hexaarylbylene compounds.
  • imidazole compounds onium compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds, cyclopentadiene-benzene-iron complexes, halomethyloxadiazole compounds and 3-aryl substituted coumarin compounds, oxime compounds, ⁇ -hydroxyketones
  • the compound is more preferably a compound selected from a compound, an ⁇ -aminoketone compound, and an acylphosphine compound, and even more preferably an oxime compound.
  • photoradical polymerization initiators compounds described in paragraphs 0065 to 0111 of JP-A No. 2014-130173, compounds described in Japanese Patent No. 6301489, MATERIAL STAGE 37 to 60p, vol.
  • ⁇ -hydroxyketone compounds include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (manufactured by IGM Resins B.V.), Irgacure 184, and Irgacure 1. 173, Irgacure 2959, Irgacure 127 (all BASF (manufactured by a company).
  • Commercially available ⁇ -aminoketone compounds include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (manufactured by IGM Resins B.V.), Irgacure 907, and Irgacure.
  • acylphosphine compounds include Omnirad 819, Omnirad TPO H (manufactured by IGM Resins B.V.), Irgacure 819, Irgacure TPO (manufactured by BASF), and the like.
  • Examples of oxime compounds include the compounds described in JP-A No. 2001-233842, the compounds described in JP-A No. 2000-080068, the compounds described in JP-A No. 2006-342166, and the compounds described in J. C. S. Perkin II (1979, pp. 1653-1660); C. S. Perkin II (1979, pp. 156-162), Journal of Photopolymer Science and Technology (1995, pp. 202-232), JP-A-2000 - Compounds described in Publication No. 066385, Compounds described in Japanese Patent Publication No. 2004-534797, compounds described in Japanese Patent Application Publication No. 2006-342166, compounds described in Japanese Patent Application Publication No. 2017-019766, compounds described in Japanese Patent No.
  • oxime compounds include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3-(4-toluenesulfonyloxy)iminobutan-2-one, 2-ethoxycarbonyloxyimino -1-phenylpropan-1-one, 1-[4-(phenylthio)phenyl]-3-cyclohexyl-propane-1,2-dione-2-(O-acetyloxime), and the like.
  • An oxime compound having a fluorene ring can also be used as a photoradical polymerization initiator.
  • Specific examples of oxime compounds having a fluorene ring include compounds described in JP-A No. 2014-137466.
  • oxime compound having a skeleton in which at least one benzene ring of the carbazole ring is a naphthalene ring is also possible.
  • oxime compounds having a skeleton in which at least one benzene ring of the carbazole ring is a naphthalene ring include compounds described in International Publication No. 2013/083505.
  • An oxime compound having a fluorine atom can also be used as a photoradical polymerization initiator.
  • Specific examples of oxime compounds having a fluorine atom include compounds described in JP-A No. 2010-262028, compounds 24, 36 to 40 described in Japanese Patent Application Publication No. 2014-500852, and compounds described in JP-A No. 2013-164471. Examples include compound (C-3).
  • an oxime compound having a nitro group can be used as a photoradical polymerization initiator. It is also preferable that the oxime compound having a nitro group is in the form of a dimer.
  • Specific examples of oxime compounds having a nitro group include compounds described in paragraph numbers 0031 to 0047 of JP 2013-114249, paragraphs 0008 to 0012, and 0070 to 0079 of JP 2014-137466, Examples include compounds described in paragraph numbers 0007 to 0025 of Japanese Patent No. 4223071, and Adeka Arcles NCI-831 (manufactured by ADEKA Corporation).
  • an oxime compound having a benzofuran skeleton can also be used.
  • Specific examples include OE-01 to OE-75 described in International Publication No. 2015/036910.
  • photoradical polymerization initiator it is also possible to use an oxime compound in which a substituent having a hydroxy group is bonded to the carbazole skeleton.
  • photopolymerization initiators include compounds described in International Publication No. 2019/088055.
  • oxime compounds include compounds with the structures shown below.
  • the oxime compound is preferably a compound having a maximum absorption wavelength in a wavelength range of 350 to 500 nm, more preferably a compound having a maximum absorption wavelength in a wavelength range of 360 to 480 nm.
  • the molar extinction coefficient of the oxime compound at a wavelength of 365 nm or 405 nm is preferably high, more preferably from 1000 to 300,000, even more preferably from 2000 to 300,000, and even more preferably from 5000 to 200,000. It is particularly preferable that there be.
  • the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure with a spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using ethyl acetate at a concentration of 0.01 g/L.
  • a difunctional, trifunctional or more functional photoradical polymerization initiator may be used as the photoradical polymerization initiator.
  • a radical photopolymerization initiator two or more radicals are generated from one molecule of the radical photopolymerization initiator, so that good sensitivity can be obtained.
  • the crystallinity decreases and the solubility in solvents improves, making it difficult to precipitate over time, thereby improving the stability of the resin composition over time.
  • Specific examples of bifunctional or trifunctional or more functional photoradical polymerization initiators include those listed in Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No.
  • the content of the photoradical polymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to 15% by mass based on the total solid content of the composition. It is even more preferable that there be.
  • the composition of the present invention may contain only one type of photopolymerization initiator, or may contain two or more types of photopolymerization initiators. When two or more types of photopolymerization initiators are included, the total amount thereof is preferably within the above range.
  • photocationic polymerization initiators include photoacid generators.
  • photoacid generators include onium salt compounds such as diazonium salts, phosphonium salts, sulfonium salts, and iodonium salts, imidosulfonates, oxime sulfonates, diazodisulfones, disulfones, and o-nitrobenzyl, which decompose to generate acids when exposed to light.
  • onium salt compounds such as diazonium salts, phosphonium salts, sulfonium salts, and iodonium salts, imidosulfonates, oxime sulfonates, diazodisulfones, disulfones, and o-nitrobenzyl, which decompose to generate acids when exposed to light.
  • sulfonate compounds such as sulfonate.
  • photocationic polymerization initiator examples include compounds represented by the following formulas (b1), (b2), and (b3).
  • R 201 to R 207 each independently represent an organic group.
  • the organic group preferably has 1 to 30 carbon atoms. Examples of the organic group include an alkyl group and an aryl group.
  • two of R 201 to R 203 may combine to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, or a carbonyl group.
  • X ⁇ represents a non-nucleophilic anion.
  • non-nucleophilic anions examples include sulfonic acid anions, carboxylic acid anions, bis(alkylsulfonyl)amide anions, tris(alkylsulfonyl)methide anions, BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ and the like.
  • photocationic polymerization initiators include ADEKA ARCLES SP series (for example, ADEKA ARCLES SP-606, etc.) manufactured by ADEKA Corporation, IRGACURE 250, IRGACURE 270, and IRGACURE 290 manufactured by BASF Corporation.
  • the content of the photocationic polymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to 15% by mass based on the total solid content of the composition. It is even more preferable that there be.
  • the composition of the present invention may contain only one type of photopolymerization initiator, or may contain two or more types of photopolymerization initiators. When two or more types of photopolymerization initiators are included, the total amount thereof is preferably within the above range.
  • the composition of the invention may further contain a pigment derivative.
  • the pigment derivative include compounds having a structure in which a portion of the chromophore is substituted with an acidic group, a basic group, or a phthalimidomethyl group.
  • the acid group include a sulfo group, a carboxy group, and their quaternary ammonium bases.
  • the basic group include an amino group.
  • the content of the pigment derivative is preferably 1 to 30 parts by weight, more preferably 3 to 20 parts by weight, based on 100 parts by weight of the pigment. Only one type of pigment derivative may be used, or two or more types may be used in combination. When two or more types of pigment derivatives are used in combination, it is preferable that the total amount is within the above range.
  • the composition of the present invention may contain a color inhibitor.
  • the coloring inhibitor include phenol compounds, phosphite compounds, thioether compounds, etc., and preferably phenol compounds with a molecular weight of 500 or more, phosphite compounds with a molecular weight of 500 or more, or thioether compounds with a molecular weight of 500 or more.
  • the coloring inhibitor is preferably a phenol compound, more preferably a phenol compound having a molecular weight of 500 or more.
  • phenol compound examples include hindered phenol compounds.
  • compounds having a substituent at the site adjacent to the phenolic hydroxy group (ortho position) are preferred.
  • the above-mentioned substituents are preferably substituted or unsubstituted alkyl groups having 1 to 22 carbon atoms.
  • compounds having a phenol group and a phosphite group in the same molecule are also preferred.
  • polysubstituted phenolic compounds are preferably used as the phenolic hydroxy group-containing compounds.
  • polysubstituted phenolic compounds There are three types of polysubstituted phenol compounds (formula (A) hindered type, formula (B) semi There are two types: hindered type and formula (C) less hindered type).
  • R is a hydrogen atom or a substituent.
  • R is a hydrogen atom, a halogen atom, an amino group that may have a substituent, an alkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent.
  • Alkoxy group, aryloxy group which may have a substituent, alkylamino group which may have a substituent, arylamino group which may have a substituent, alkylsulfonyl group which may have a substituent , an arylsulfonyl group which may have a substituent is preferable, an amino group which may have a substituent, an alkyl group which may have a substituent, an aryl group which may have a substituent, a substituent More preferred are an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, an alkylamino group which may have a substituent, and an arylamino group which may have a substituent.
  • a more preferable form is a complex coloring inhibitor in which a plurality of structures exhibiting antioxidant functions represented by the above formulas (A) to (C) exist in the same molecule, and specifically, the above formula (A) Compounds in which 2 to 4 structures exhibiting an antioxidant function represented by (C) are present in the same molecule are preferred.
  • the semi-hindered type of formula (B) is more preferred.
  • Typical examples available as commercial products include (A) Sumilizer BHT (manufactured by Sumitomo Chemical), Irganox 1010, 1222 (manufactured by BASF), ADEKA STAB AO-20, AO-50, AO-60 (ADEKA Corporation). (manufactured by).
  • Examples of (B) include Sumilizer BBM-S (manufactured by Sumitomo Chemical Co., Ltd.), Irganox 245 (manufactured by BASF Corporation), and ADEKA STAB AO-80 (manufactured by ADEKA Corporation).
  • Examples of (C) include ADEKA STAB AO-30 and AO-40 (manufactured by ADEKA Co., Ltd.).
  • Examples of the phosphite compound and thioether compound include the compounds described in paragraphs 0213 to 0214 of International Publication No. 2017/159910 and commercially available products.
  • commercially available coloring inhibitors include ADEKA STAB AO-50F, ADEKA STAB AO-60G, ADEKA STAB AO-330 (ADEKA Corporation), and the like.
  • compounds described in paragraphs 0211 to 0223 of JP-A-2015-034961 can also be used as the coloring inhibitor.
  • the content of the coloring inhibitor is preferably 0.01 to 20% by mass, more preferably 0.1 to 15% by mass, and 0.3 to 5% by mass based on the total solid content of the composition. It is even more preferable that there be. Only one type of coloring inhibitor may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
  • the composition of the present invention can contain a UV absorber.
  • the ultraviolet absorber include conjugated diene compounds, aminobutadiene compounds, methyldibenzoyl compounds, coumarin compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, acrylonitrile compounds, hydroxyphenyltriazine compounds, and the like. Specific examples of such compounds include paragraph numbers 0038 to 0052 of JP2009-217221A, paragraphs 0052 to 0072 of JP2012-208374A, and paragraphs 0317 to 0317 of JP2013-068814A.
  • UV absorbers examples include UV-503 (manufactured by Daito Kagaku Co., Ltd.), Tinuvin series and Uvinul series manufactured by BASF, and Sumisorb series manufactured by Sumika Chemtex Co., Ltd. .
  • examples of the benzotriazole compound include the MYUA series manufactured by Miyoshi Yushi (Kagaku Kogyo Nippo, February 1, 2016).
  • the ultraviolet absorbers include compounds described in paragraph numbers 0049 to 0059 of Patent No.
  • the content of the ultraviolet absorber is preferably 0.1 to 10% by mass, more preferably 0.1 to 7% by mass, and 0.1 to 5% by mass based on the total solid content of the composition. It is more preferable that the amount is 0.1 to 3% by mass, and particularly preferably 0.1 to 3% by mass. Only one type of ultraviolet absorber may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
  • the composition of the present invention can contain a silane coupling agent.
  • a silane coupling agent means a silane compound having a hydrolyzable group and other functional groups.
  • hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond through at least one of a hydrolysis reaction and a condensation reaction. Examples of the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group, and an alkoxy group is preferred. That is, the silane coupling agent is preferably a compound having an alkoxysilyl group.
  • Examples of functional groups other than hydrolyzable groups include vinyl groups, (meth)allyl groups, (meth)acryloyl groups, (meth)acryloyloxy groups, mercapto groups, epoxy groups, oxetanyl groups, amino groups, and ureido groups. group, sulfide group, isocyanate group, phenyl group, etc., and amino group, (meth)acryloyl group, (meth)acryloyloxy group, and epoxy group are preferable.
  • silane coupling agents include N- ⁇ -aminoethyl- ⁇ -aminopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-602), N- ⁇ -aminoethyl- ⁇ -amino Propyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-603), N- ⁇ -aminoethyl- ⁇ -aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBE-602), ⁇ -Aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-903), ⁇ -aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-
  • silane coupling agent examples include compounds described in paragraph numbers 0018 to 0036 of JP-A No. 2009-288703 and compounds described in paragraph numbers 0056 to 0066 of JP-A-2009-242604. , the contents of which are incorporated herein.
  • the content of the silane coupling agent is preferably 0.01 to 10% by mass, more preferably 0.1 to 7% by mass, and 1 to 5% by mass based on the total solid content of the composition. More preferably. Only one type of silane coupling agent may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
  • the composition of the present invention can contain a polymerization inhibitor.
  • polymerization inhibitors include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, 1,4-benzoquinone, 4,4'-thiobis(3-methyl-6-tert -butylphenol), 2,2'-methylenebis(4-methyl-6-t-butylphenol), and N-nitrosophenylhydroxyamine salts (ammonium salts, cerous salts, etc.), with p-methoxyphenol being preferred.
  • the content of the polymerization inhibitor is preferably 0.0001 to 5% by mass, more preferably 0.0001 to 1% by mass based on the total solid content of the composition.
  • compositions of the invention may contain chain transfer agents.
  • chain transfer agent a compound described in paragraph 0225 of International Publication No. 2017/159190 can be used.
  • the content of the chain transfer agent is preferably 0.2 to 5.0% by mass, more preferably 0.4 to 3.0% by mass based on the total solid content of the composition. Further, the content of the chain transfer agent is preferably 1 to 40 parts by weight, more preferably 2 to 20 parts by weight, based on 100 parts by weight of the polymerizable monomer. Only one type of chain transfer agent may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
  • the composition of the present invention can further contain a sensitizer.
  • the sensitizer is preferably a compound that sensitizes the photopolymerization initiator using an electron transfer mechanism or an energy transfer mechanism.
  • Examples of the sensitizer include compounds having absorption in the range of 300 to 450 nm.
  • the content of the sensitizer is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass based on the total solid content of the composition. Only one type of sensitizer may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
  • the composition of the present invention can further contain a co-sensitizer.
  • the co-sensitizer is preferably a compound that has the effect of further improving the sensitivity of the photopolymerization initiator or sensitizer to actinic radiation, or suppressing inhibition of polymerization of polymerizable monomers by oxygen.
  • the description in paragraphs 0254 to 0257 of JP 2010-106268A (corresponding paragraphs 0277 to 0279 of U.S. Patent Application Publication No. 2011/0124824) can be referred to. The contents are incorporated herein.
  • the content of the co-sensitizer is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, and 1.5 to 20% by mass based on the total solid content of the composition. More preferably. Only one type of co-sensitizer may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
  • the composition of the present invention may contain various types of surfactants from the viewpoint of further improving coating suitability.
  • various surfactants such as fluorine surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants can be used.
  • the surfactant is preferably a silicone surfactant or a fluorine surfactant.
  • the fluorine content in the fluorine surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid saving, and has good solubility in the composition.
  • fluorine-based surfactants examples include surfactants described in paragraph numbers 0060 to 0064 of JP 2014-041318 (corresponding paragraph numbers 0060 to 0064 of WO 2014/017669), and the like; Examples include the surfactants described in paragraph numbers 0117 to 0132 of Publication No. 132503 and the surfactants described in JP-A-2020-008634, the contents of which are incorporated herein.
  • Commercially available fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144.
  • Fluorine-based surfactants include acrylic compounds that have a molecular structure with a functional group containing a fluorine atom, and when heated, the functional group containing a fluorine atom is severed and the fluorine atom volatizes. Can be used.
  • fluorine-based surfactants include Megafac DS series manufactured by DIC Corporation (Kagaku Kogyo Nippo (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)); Fuck DS-21 is an example.
  • fluorine-based surfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
  • fluorine-based surfactants include the fluorine-based surfactants described in JP-A No. 2016-216602, the content of which is incorporated herein.
  • a block polymer can also be used as the fluorosurfactant.
  • the fluorine-based surfactant has a repeating unit derived from a (meth)acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy group, propyleneoxy group) (meth).
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used.
  • the fluorine-containing surfactants described in paragraphs 0016 to 0037 of JP-A No. 2010-032698 and the following compounds are also exemplified as the fluorine-containing surfactant used in the present invention.
  • the weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example 14,000. In the above compound, % indicating the proportion of repeating units is mol%.
  • a fluorine-based surfactant a fluorine-containing polymer having an ethylenically unsaturated bond-containing group in its side chain can also be used. Specific examples include compounds described in paragraph numbers 0050 to 0090 and paragraph numbers 0289 to 0295 of JP-A No. 2010-164965, Megafac RS-101, RS-102, RS-718K manufactured by DIC Corporation, Examples include RS-72-K. Further, as the fluorine-based surfactant, compounds described in paragraph numbers 0015 to 0158 of JP-A No. 2015-117327 can also be used.
  • a fluorine-containing imide salt compound represented by formula (fi-1) is also preferable to use as a surfactant.
  • m represents 1 or 2
  • n represents an integer of 1 to 4
  • a represents 1 or 2
  • X a+ represents an a-valent metal ion, a primary ammonium ion, or Represents a secondary ammonium ion, tertiary ammonium ion, quaternary ammonium ion or NH 4 + .
  • nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2 (BASF Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Japan Lubrizol Co., Ltd.), NCW-101, NCW-1001, NCW-1002 (Fujifilm Wa
  • silicone surfactants examples include DOWSIL SH8400, SH8400 FLUID, FZ-2122, 67 Additive, 74 Additive, M Additive, SF 8419 OIL (manufactured by Dow Toray Industries, Inc.), and TS.
  • F-4300, TSF-4445, TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), KP-341, KF-6000, KF-6001, KF-6002, KF-6003 (manufactured by Shin-Etsu Chemical Co., Ltd.) , BYK-307, BYK-322, BYK-323, BYK-330, BYK-333, BYK-3760, BYK-UV3510 (manufactured by BYK Chemie), and the like.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass based on the total solid content of the composition. Only one type of surfactant may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
  • plasticizers examples include dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, triacetylglycerin, and the like.
  • the container for storing the composition of the present invention is not particularly limited, and any known container can be used.
  • the inner wall of the container is preferably made of glass, stainless steel, or the like for the purpose of preventing metal elution from the inner wall of the container, increasing the storage stability of the composition, and suppressing deterioration of the components.
  • composition of the present invention can be prepared by mixing the components described above.
  • each component may be blended all at once, or each component may be blended sequentially after at least one of dissolving and dispersing each component in a solvent.
  • the preparation of the composition includes a process of dispersing particles.
  • mechanical forces used for dispersing particles include compression, squeezing, impact, shearing, cavitation, and the like.
  • Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high speed impellers, sand grinders, flow jet mixers, high pressure wet atomization, ultrasonic dispersion, and the like.
  • pulverizing particles in a sand mill (bead mill) it is preferable to use small-diameter beads or increase the filling rate of beads, thereby increasing the pulverizing efficiency.
  • the process and dispersion machine for dispersing particles are described in "Encyclopedia of Dispersion Technology, Published by Information Technology Corporation, July 15, 2005” and “Dispersion Technology and Industrial Applications Centered on Suspension (Solid/Liquid Dispersion System)".
  • the process and dispersion machine described in Paragraph No. 0022 of JP2015-157893A, "Comprehensive Data Collection, Published by Management Development Center Publishing Department, October 10, 1978” can be suitably used.
  • the particles may be refined in a salt milling step.
  • the descriptions in JP-A No. 2015-194521 and JP-A No. 2012-046629 can be referred to, for example.
  • any filter that has been conventionally used for filtration and the like can be used without particular limitation.
  • fluororesins such as polytetrafluoroethylene (PTFE), polyamide resins such as nylon (e.g. nylon-6, nylon-6,6), polyolefin resins (high density, ultra-high molecular weight) such as polyethylene, polypropylene (PP), etc.
  • PTFE polytetrafluoroethylene
  • nylon e.g. nylon-6, nylon-6,6)
  • polyolefin resins high density, ultra-high molecular weight
  • polyethylene polypropylene
  • PP polypropylene
  • filters using materials such as polyolefin resin (including polyolefin resin).
  • polypropylene (including high-density polypropylene) and nylon are preferred.
  • the pore diameter of the filter is preferably 0.01 to 10.0 ⁇ m, more preferably 0.05 to 3.0 ⁇ m, and even more preferably about 0.1 to 2.0 ⁇ m.
  • various filters provided by Nippon Pole Co., Ltd. (DFA4201NIEY, etc.), Advantech Toyo Co., Ltd., Nippon Entegris Co., Ltd. (formerly Nippon Microlith Co., Ltd.), Kitz Microfilter Co., Ltd., etc. can be used.
  • a fiber filter medium as the filter.
  • the fibrous filter medium include polypropylene fiber, nylon fiber, and glass fiber.
  • Commercially available products include the SBP type series (SBP008, etc.), the TPR type series (TPR002, TPR005, etc.), and the SHPX type series (SHPX003, etc.) manufactured by Loki Techno.
  • filters When using filters, different filters (for example, a first filter and a second filter, etc.) may be combined. At that time, filtration with each filter may be performed only once, or may be performed two or more times. Further, filters having different pore diameters within the above-mentioned range may be combined. Alternatively, only the dispersion liquid may be filtered with the first filter, and then filtered with the second filter after other components are mixed.
  • filters for example, a first filter and a second filter, etc.
  • the film of the present invention is a film obtained using the composition of the present invention described above.
  • the maximum value of the transmittance of light in the wavelength range of 400 to 700 nm of the film of the present invention is preferably 80% or less, more preferably 70% or less, even more preferably 60% or less, Particularly preferably, it is 50% or less.
  • the lower limit of the maximum transmittance is preferably 1% or more, more preferably 5% or more, even more preferably 10% or more, even more preferably 15% or more, and 20% or more. % or more is particularly preferable.
  • the maximum value of the transmittance of light in the wavelength range of 400 to 1000 nm of the film of the present invention is preferably 80% or less, more preferably 75% or less, even more preferably 70% or less, It is even more preferably 60% or less, particularly preferably 50% or less.
  • the lower limit of the maximum transmittance value is preferably 1% or more, more preferably 5% or more, even more preferably 10% or more, even more preferably 15% or more, and 20% or more. % or more is particularly preferable.
  • the film of the present invention has a first phase containing the above-mentioned particles P1 (particles with a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less), and It is preferable that a phase-separated structure is formed with the second phase having a small content of the particles P1. Moreover, it is preferable that the phase separation structure is a sea-island structure or a co-continuous phase structure. By forming these phase separation structures, light can be effectively scattered between the first phase and the second phase, and particularly excellent light scattering properties are likely to be obtained.
  • the second phase may be the ocean and the first phase may form an island, or the first phase may be the ocean and the second phase may form an island. It is preferable from the viewpoint of transmittance that the first phase is sea and the second phase forms islands. It is preferable from the viewpoint of angular dependence that the first phase forms an island and the second phase forms an ocean.
  • the haze of the film of the present invention based on JIS K 7136 is preferably 30 to 100%.
  • the upper limit is preferably 99% or less, more preferably 95% or less, and even more preferably 90% or less.
  • the lower limit is preferably 35% or more, more preferably 40% or more, and even more preferably 50% or more. If the haze of the film is within the above range, sufficient light scattering ability can be obtained while ensuring a sufficient amount of light transmission.
  • the value of L* in the CIE1976 L*a*b* color system of the film of the present invention is preferably 35 to 100.
  • the value of L* is preferably 40 or more, more preferably 50 or more, and even more preferably 60 or more. According to this aspect, a film with excellent whiteness can be obtained. Further, the value of L* is preferably 95 or less, more preferably 90 or less, and even more preferably 85 or less. According to this aspect, a film having appropriate visible transparency can be obtained.
  • the value of a* is preferably -15 or more, more preferably -10 or more, and even more preferably -5 or more. Further, the value of a* is preferably 10 or less, more preferably 5 or less, and even more preferably 0 or less. According to this aspect, a film with excellent whiteness can be obtained.
  • the value of b* is preferably -35 or more, more preferably -30 or more, and even more preferably -25 or more. Moreover, the value of b* is preferably 20 or less, more preferably 10 or less, and even more preferably 0 or less. According to this aspect, a film with excellent whiteness can be obtained.
  • the thickness of the film of the present invention is preferably 1 to 40 ⁇ m.
  • the upper limit of the film thickness is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the lower limit of the film thickness is preferably 2 ⁇ m or more, more preferably 4 ⁇ m or more, and even more preferably 5 ⁇ m or more. If the film thickness is within the above range, sufficient light scattering ability can be obtained. Furthermore, it is expected that the optical sensitivity of the device will be improved by making the sensor thinner and suppressing crosstalk.
  • the film of the present invention has high light scattering properties and is preferably used as a light scattering film.
  • the film of the present invention can be suitably used as a scattering layer for light emitting devices, a scattering layer for display devices, a scattering layer for environmental light sensors, and the like.
  • the composition of the present invention and the film obtained from the composition can also be suitably used for head-mounted displays.
  • a head-mounted display consists of a display element, an eyepiece, a light source, a projection part, etc., and can be used either inside or between the display elements.
  • Examples of head-mounted displays include JP 2019-061199, JP 2021-032975, JP 2019-032434, JP 2018-018077, JP 2016-139112, and U.S. patents.
  • Application Publication No. 2021/0063745, China Patent Application Publication No. 112394509, US Patent No. 10921499, Korean Publication No. 10-2018-0061467, JP 2018-101034, JP Examples include head-mounted displays described in Publication No. 2020-101671, Taiwan Patent Application Publication No. 202028805, and the like.
  • the membrane of the present invention can be manufactured by applying the composition of the present invention onto a support.
  • the support include substrates made of materials such as silicon, alkali-free glass, soda glass, Pyrex (registered trademark) glass, and quartz glass.
  • An organic film, an inorganic film, or the like may be formed on these substrates.
  • the material for the organic film include resin.
  • a substrate made of resin can also be used as the support.
  • a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), a transparent conductive film, etc. may be formed on the support.
  • a black matrix that isolates each pixel may be formed on the support.
  • an undercoat layer may be provided on the support for improving adhesion with the upper layer, preventing substance diffusion, or flattening the substrate surface. Further, when a glass substrate is used as a support, it is preferable to form an inorganic film on the glass substrate or to use the glass substrate after dealkalization treatment.
  • a known method can be used to apply the composition to the support.
  • Various methods such as inkjet (for example, on-demand method, piezo method, thermal method), ejection printing such as nozzle jet, flexo printing, screen printing, gravure printing, reverse offset printing, metal mask printing, etc. Examples include printing method; transfer method using a mold etc.; nanoimprint method.
  • the application method for inkjet is not particularly limited, and for example, the method described in the patent publication "Expanding and Usable Inkjet - Infinite Possibilities Seen in Patents," Published February 2005, Sumibe Techno Research.
  • spin coating is preferably carried out in the range of 300 to 6000 rpm, and more preferably spin coating is carried out in the range of 400 to 3000 rpm.
  • the temperature of the support during spin coating is preferably 10 to 100°C, more preferably 20 to 70°C. Within the above range, it is easy to produce a film with excellent coating uniformity.
  • the dropping method (drop casting) it is preferable to form a dropping area of the composition using a photoresist as a partition on the support so that a uniform film with a predetermined thickness can be obtained.
  • a desired film thickness can be obtained by controlling the amount of the composition dropped, the solid content concentration, and the area of the dropping region.
  • the composition layer formed on the support may be dried (prebaked).
  • the prebaking conditions are preferably, for example, at a temperature of 60 to 150° C. for 30 seconds to 15 minutes.
  • the film manufacturing method may further include a step of forming a pattern.
  • the pattern forming method include a pattern forming method using a photolithography method and a pattern forming method using a dry etching method. Note that when the film of the present invention is used as a flat film, the step of forming a pattern may not be performed. Hereinafter, the process of forming a pattern will be described in detail.
  • the pattern forming method using the photolithography method includes a step of exposing a composition layer formed by applying the composition of the present invention to light in a pattern (exposure step), and removing the unexposed portion of the composition layer. It is preferable to include a step of developing to form a pattern (developing step). If necessary, a step of baking the developed pattern (post-bake step) may be provided. Each step will be explained below.
  • the composition layer is exposed in a pattern.
  • the composition layer can be pattern-exposed by exposing the composition layer to light through a mask having a predetermined mask pattern using an exposure device such as a stepper. This allows the exposed portion to be cured.
  • radiation (light) that can be used for exposure include g-line and i-line.
  • light with a wavelength of 300 nm or less preferably light with a wavelength of 180 to 300 nm
  • Examples of light with a wavelength of 300 nm or less include KrF rays (wavelength 248 nm), ArF rays (wavelength 193 nm), and KrF rays (wavelength 248 nm).
  • pulse exposure is an exposure method in which exposure is performed by repeating light irradiation and pauses in short cycles (for example, on the millisecond level or less).
  • the pulse width is preferably 100 nanoseconds (ns) or less, more preferably 50 nanoseconds or less, and even more preferably 30 nanoseconds or less.
  • the lower limit of the pulse width is not particularly limited, but can be 1 femtosecond (fs) or more, and can also be 10 femtoseconds or more.
  • the frequency is preferably 1 kHz or more, more preferably 2 kHz or more, and even more preferably 4 kHz or more.
  • the upper limit of the frequency is preferably 50 kHz or less, more preferably 20 kHz or less, and even more preferably 10 kHz or less.
  • the maximum instantaneous illuminance is preferably 500000000 W/m 2 or more, more preferably 100000000 W/m 2 or more, and even more preferably 200000000 W/m 2 or more.
  • the upper limit of the maximum instantaneous illuminance is preferably 1000000000 W/m 2 or less, more preferably 800000000 W/m 2 or less, and even more preferably 500000000 W/m 2 or less.
  • the pulse width refers to the time during which light is irradiated in a pulse period.
  • frequency refers to the number of pulse periods per second.
  • the maximum instantaneous illuminance is the average illuminance within the time period during which light is irradiated in the pulse period.
  • the pulse period is a period in which one cycle includes light irradiation and a pause in pulse exposure.
  • the irradiation amount is preferably 0.03 to 2.5 J/cm 2 , more preferably 0.05 to 1.0 J/cm 2 , and even more preferably 0.08 to 0.5 J/cm 2 .
  • the oxygen concentration during exposure can be selected as appropriate. For example, exposure may be carried out in the atmosphere, or in a low oxygen atmosphere with an oxygen concentration of 19% by volume or less (for example, 15% by volume, 5% by volume, substantially oxygen-free); Exposure may be performed under a high oxygen atmosphere of more than 21% by volume (eg, 22% by volume, 30% by volume, 50% by volume). Further, the exposure illuminance can be set as appropriate, and is preferably selected from the range of 1,000 to 100,000 W/m 2 .
  • the oxygen concentration and the exposure illuminance may be appropriately combined.
  • the illumination intensity may be 10,000 W/m 2 at an oxygen concentration of 10% by volume, or 20,000 W/m 2 at an oxygen concentration of 35% by volume.
  • the unexposed portions of the composition layer after exposure are developed and removed to form a pattern.
  • the composition layer in the unexposed area can be removed by development using a developer.
  • the temperature of the developer is preferably, for example, 20 to 30°C.
  • the development time is preferably 20 to 180 seconds.
  • the process of shaking off the developer every 60 seconds and supplying a new developer may be repeated several times.
  • Examples of the developer include organic solvents, alkaline developers, and alkaline developers are preferably used.
  • an alkaline aqueous solution (alkaline developer) prepared by diluting an alkaline agent with pure water is preferable.
  • alkaline agents include ammonia, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxyamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • alkaline compounds examples include alkaline compounds and inorganic alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium silicate, and sodium metasilicate.
  • alkali agent compounds with a large molecular weight are preferable from the environmental and safety standpoints.
  • the concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass.
  • the developer may contain a surfactant.
  • the surfactant include the above-mentioned surfactants, with nonionic surfactants being preferred.
  • the developing solution may be manufactured as a concentrated solution and then diluted to a required concentration before use.
  • the dilution ratio is not particularly limited, but can be set, for example, in the range of 1.5 to 100 times.
  • wash (rinse) with pure water after development.
  • rinsing is preferably performed by supplying a rinsing liquid to the developed composition layer while rotating the support on which the developed composition layer is formed. It is also preferable to move the nozzle that discharges the rinsing liquid from the center of the support to the peripheral edge of the support. At this time, when moving the nozzle from the center of the support to the peripheral edge, the nozzle may be moved while gradually decreasing its moving speed. By performing rinsing in this manner, in-plane variations in rinsing can be suppressed. The same effect can also be obtained by gradually reducing the rotational speed of the support while moving the nozzle from the center of the support to the peripheral edge.
  • post-bake After development, it is preferable to perform additional exposure treatment or heat treatment (post-bake) after drying. Additional exposure processing and post-bake are post-development curing processing to complete curing.
  • the heating temperature in post-baking is preferably 100 to 260°C, for example.
  • the lower limit of the heating temperature is preferably 120°C or higher, more preferably 160°C or higher.
  • the upper limit of the heating temperature is preferably 240°C or lower, more preferably 220°C or lower.
  • Post-baking can be carried out in a continuous or batch manner using a heating means such as a hot plate, convection oven (hot air circulation dryer), or high-frequency heater to maintain the developed film under the above conditions.
  • the light used for exposure is preferably light with a wavelength of 400 nm or less. Further, the additional exposure process may be performed by the method described in Korean Patent Publication No. 10-2017-0122130.
  • Pattern formation by the dry etching method involves applying the composition of the present invention onto a support, curing the formed composition layer to form a cured product layer, and then applying a patterned resist onto this cured product layer. This can be carried out by a method such as forming a layer, and then dry etching the cured material layer using an etching gas using a patterned resist layer as a mask.
  • a method such as forming a layer, and then dry etching the cured material layer using an etching gas using a patterned resist layer as a mask.
  • the optical sensor of the present invention has the film of the present invention.
  • Types of optical sensors include environmental light sensors, illuminance sensors, etc., which are preferably used as environmental light sensors.
  • An environmental light sensor is a sensor that detects the hue of surrounding light (environmental light).
  • the optical sensor of the present invention can be manufactured using the film manufacturing method described above. Further, the optical sensor of the present invention can also be manufactured through the steps of applying the composition of the present invention described above on a support to form a composition layer, and exposing the composition layer to light. .
  • the support to which the composition is applied, the method of applying the composition, and the exposure conditions are the same as those explained in the above-mentioned film manufacturing method.
  • the optical sensor of the present invention also preferably has an optical filter having at least one type of pixel selected from colored pixels and pixels of an infrared transmission filter.
  • colored pixels include red pixels, blue pixels, green pixels, yellow pixels, cyan pixels, magenta pixels, and the like.
  • the film of the present invention is provided on the light incident side of the optical filter. By providing the film of the present invention on the light incident side of the optical filter, the angular dependence of each pixel can be further reduced.
  • an optical filter 110 having pixels 111 to 114 is provided on a photoelectric conversion element 101.
  • a film 121 of the present invention is then formed on the optical filter 110.
  • An example of the pixels 111 to 114 constituting the optical filter 110 is a combination in which the pixel 111 is a red pixel, the pixel 112 is a blue pixel, the pixel 113 is a green pixel, and the pixel 114 is an infrared transmission filter pixel.
  • an optical filter 110 having four types of pixels pixels 111 to 114
  • the number of types of pixels may be one to three, or five types. It may be more than that. It can be selected as appropriate depending on the purpose.
  • a flattening layer may be interposed between the photoelectric conversion element 101 and the optical filter 110 or between the optical filter 110 and the film 121 of the present invention.
  • FIG. 2 shows another embodiment of the optical sensor.
  • an optical filter 110 having pixels 111 to 114 is provided on the photoelectric conversion element 101.
  • the optical filter 110 has the same configuration as the embodiment described above.
  • a member in which the film 122 of the present invention is formed on the surface of a transparent support 130 is placed on the optical filter 110.
  • Examples of the transparent support 130 include a glass substrate, a resin substrate, and the like.
  • a member in which the film 122 of the present invention is formed on the surface of a transparent support 130 is arranged at a predetermined interval on the optical filter 110.
  • the transparent support 130 may be in contact with the member on which the film 122 of the present invention is formed. Further, in the optical sensor 2 shown in FIG.
  • the film 122 of the present invention is formed only on one side of the transparent support 130, but the film 122 of the present invention may be formed on both sides of the transparent support 130. .
  • the film 122 of the present invention is formed on the surface of the transparent support 130 on the optical filter 110 side, but the film 122 of the present invention is formed on the surface of the transparent support 130 on the opposite side to the optical filter 110.
  • the film 122 of the present invention may be formed thereon.
  • a flattening layer may be interposed between the photoelectric conversion element 101 and the optical filter 110 or between the film 122 of the present invention and the transparent support 130.
  • the primary particle diameter of the particles was determined by observing the particles using a transmission electron microscope (TEM) and observing the portions where the particles were not aggregated (primary particles). Specifically, after taking a transmission electron micrograph of the primary particles using a transmission microscope, the particle size distribution was determined using the photograph using an image processing device. The average primary particle diameter of the particles was the number-based arithmetic mean diameter calculated from the particle size distribution.
  • An electron microscope (H-7000) manufactured by Hitachi, Ltd. was used as a transmission electron microscope, and Luzex AP manufactured by Nireco Co., Ltd. was used as an image processing device.
  • a dispersion liquid was prepared using particles, a resin (dispersant) with a known refractive index, and propylene glycol monomethyl ether acetate. Thereafter, the prepared dispersion liquid and a resin with a known refractive index were mixed to prepare coating liquids with particle concentrations of 10% by mass, 20% by mass, 30% by mass, and 40% by mass in the total solid content of the coating liquid. did. After forming a film with a thickness of 300 nm on a silicon wafer with these coating liquids, the refractive index of the obtained film was measured using ellipsometry (Lambda Ace RE-3300, manufactured by SCREEN Holdings, Inc.). Thereafter, the concentration and refractive index of the particles were plotted on a graph to derive the refractive index of the particles.
  • ⁇ Measurement of specific gravity of particles> 50 g of particles were placed in a 100 mL volumetric flask. Subsequently, 100 mL of water was measured using another 100 mL measuring cylinder. Thereafter, enough water was measured into a volumetric flask to cover the particles, and then ultrasonic waves were applied to the volumetric flask to blend the particles with the water. Thereafter, additional water was added until the volumetric flask reached the marked line, and the specific gravity was calculated as 50 g/(volume of water remaining in the volumetric flask) specific gravity.
  • 1-dodecanethiol (5.60 g, 27.7 mmol) and dimethyl 2,2'-azobis(isobutyrate) (9.92 g, 43.1 mmol) were added and stirred for 2 hours.
  • dimethyl 2,2'-azobis(isobutyrate) (9.92 g, 43.1 mmol) was added, and the mixture was further stirred for 2 hours.
  • dimethyl 2,2'-azobis(isobutyrate) (9.92 g, 43.1 mmol) was added, the temperature was raised to 90° C., and the mixture was stirred for 3 hours.
  • the macromonomer MM-1 is a 50% by mass solution of a compound having the following structure in propylene glycol monomethyl ether acetate.
  • dimethyl 2,2'-azobis(isobutyrate) (1.29 g, 6.00 mmol) was added, the temperature was raised to 90° C., and the mixture was stirred for 2 hours. It was cooled to room temperature to obtain a 30% by mass solution of intermediate D-1' (yield: 2630 g).
  • propylene glycol monomethyl ether acetate (549 g) was added to a three-neck flask, and after adjusting the oxygen concentration to 1% or less by replacing the air with nitrogen at room temperature, the liquid temperature was raised to 80°C and stirred (nitrogen flow rate 50 mL/ min, stirring speed 200 rpm).
  • resins B-1 to B-11 and D-1 to D-10 are as follows.
  • the numbers appended to the main chain are mass ratios, and the numbers appended to side chains are molar ratios.
  • Resin D-9 is a block polymer in which the two units on the left and the two units on the right of b in the formula each form a block.
  • the weight average molecular weight and acid value of the resin are shown in the table below.
  • composition was produced by mixing the raw materials listed in the table below.
  • Dispersions 1 to 19 Dispersions 1 to 19 described above
  • M-1 KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd., dipentaerythritol hexa(meth)acrylate)
  • M-2 KAYARAD RP-1040 (manufactured by Nippon Kayaku Co., Ltd., compound with the following structure)
  • M-3 NK ester A-TMMT (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
  • M-4 Light acrylate DCP-A (manufactured by Kyoeisha Chemical Co., Ltd., dimethylol-tricyclodecane diacrylate)
  • I-1 Irgacure OXE01 (manufactured by BASF Japan Co., Ltd.)
  • I-2 Omnirad 369 (manufactured by IGM Resins B.V.)
  • I-3 Omnirad TPO H (manufactured by IGM Resins B.V.)
  • I-4 Irgacure OXE03 (manufactured by BASF Japan Co., Ltd.)
  • A-1 ADEKA STAB AO-80 (manufactured by ADEKA Co., Ltd., coloring prevention agent)
  • A-2 Irganox 1010 (manufactured by BASF, anti-coloring agent)
  • A-3 Compound with the following structure (silane coupling agent)
  • TI value ⁇ 1/ ⁇ 2 ⁇ 1 is the viscosity at 23 °C measured at a shear rate of 20 s ⁇ 1 ; ⁇ 2 is the viscosity at 23° C. measured at a shear rate of 200 s ⁇ 1 .
  • i-line stepper exposure device FPA-3000i5+ manufactured by Canon Inc.
  • exposure was performed by irradiating light with a wavelength of 365 nm at an exposure dose of 1000 mJ/cm 2 , and then a hot plate at 220°C was used.
  • a heat treatment post-bake was performed for 5 minutes using a film to form a film.
  • the transmittance of the obtained film in the wavelength range of 400 to 1000 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Technology Co., Ltd.).
  • Each composition was coated onto an 8-inch glass wafer with an undercoat layer (manufactured by Fujifilm Electronics Materials Co., Ltd., CT-4000L; thickness 0.1 ⁇ m) using a spin coater so that the thickness after post-baking was 8 ⁇ m.
  • the coating was applied using a hot plate at 120°C for 2 minutes (prebaking).
  • FPA-3000i5+ manufactured by Canon Inc.
  • exposure was performed by irradiating light with a wavelength of 365 nm at an exposure dose of 1000 mJ/cm 2 , and then using a hot plate at 220 °C.
  • a heat treatment (post-bake) was performed for 5 minutes to form a film with a thickness of 8 ⁇ m.
  • the transmittance of the obtained film in the wavelength range of 400 to 1000 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Tech Corporation), and the maximum value of transmittance (T max ) and The absolute value of the difference (transmittance difference ⁇ T) between the transmittance of light with a wavelength of 940 nm (T 940 ) and the transmittance of light with a wavelength of 450 nm (T 450 ) was calculated, and evaluated based on the following criteria.
  • Transmittance difference ⁇ T
  • Transmittance difference ⁇ T is less than 15% 4: Transmittance difference ⁇ T is 15% or more and less than 25% 3: Transmittance difference ⁇ T is 25% or more and less than 30% 2: Transmittance difference ⁇ T is 30 % or more and less than 35% 1: Transmittance difference ⁇ T is 35% or more
  • T max - 5 The maximum value T max of transmittance is 60% or less 4: The maximum value T max of transmittance is more than 60% and less than 70% 3: The maximum value T max of transmittance is more than 70% and 75% 2: The maximum value T max of transmittance is more than 75% and less than 80%. 1: The maximum value T max of transmittance is more than 80%.
  • Each composition was coated onto an 8-inch glass wafer with an undercoat layer (manufactured by Fujifilm Electronics Materials Co., Ltd., CT-4000L; thickness 0.1 ⁇ m) using a spin coater so that the thickness after post-baking was 8 ⁇ m.
  • the coating was applied using a hot plate at 120°C for 2 minutes (prebaking).
  • FPA-3000i5+ manufactured by Canon Inc.
  • exposure was performed by irradiating light with a wavelength of 365 nm at an exposure dose of 1000 mJ/cm 2 , and then using a hot plate at 220 °C.
  • a heat treatment (post-bake) was performed for 5 minutes to form a film with a thickness of 8 ⁇ m.
  • a heat resistance test was conducted on the obtained film by heating it at 265° C. for 5 minutes.
  • the transmittance of the film after the heat resistance test was measured, the maximum change in transmittance was determined, and the heat resistance was evaluated based on the following criteria.
  • the transmittance was measured five times for each sample, and the average value of the three measurements excluding the maximum and minimum values was used.
  • the maximum value of the change in transmittance means the change in the wavelength at which the change in transmittance of the film before and after the heat resistance test is the largest in the wavelength range of 400 to 1000 nm.
  • Amount of change in transmittance
  • the maximum value of the change in transmittance is 3% or less 4: The maximum value of the change in transmittance exceeds 3% and is 5% or less 3: The maximum value of the change in transmittance is 5% 2: The maximum change in transmittance exceeds 8% and is 10% or less 1: The maximum change in transmittance exceeds 10%
  • compositions of Examples had good storage stability and were able to form films with excellent light scattering properties and heat resistance.
  • the coating was applied using a spin coater so that the final thickness was 8 ⁇ m, and heat treatment (prebaking) was performed using a 120° C. hot plate for 2 minutes.
  • prebaking heat treatment
  • FPA-3000i5+ manufactured by Canon Inc.
  • exposure was performed by irradiating light with a wavelength of 365 nm at an exposure dose of 1000 mJ/cm 2 , and then a hot plate at 220°C was used.
  • a heat treatment (post-bake) was performed for 5 minutes using , to form a film with a thickness of 8 ⁇ m.
  • a cross section of the obtained film in the thickness direction was observed using a scanning electron microscope (SEM) (S-4800H, manufactured by Hitachi High-Tech Corporation) (magnification: 10,000 times) to confirm the uneven distribution of particles.
  • SEM scanning electron microscope
  • Optical sensor 101 Photoelectric conversion elements 111 to 114: Pixel 110: Optical filters 121, 122: Film 130: Transparent support

Abstract

A composition containing particles having a refractive index of 2.0 or greater and an average primary particle diameter of 200 nm or less, a film-forming component, and a solvent, wherein: the film-forming component contains a rheology control agent and two or more types of resin, or contains a rheology control agent, one or more types of resin, and one or more types of polymerizable monomer; and the thixotropic index value is 1.3 or greater. A film, a light sensor, and a method for producing a light sensor using the abovementioned composition.

Description

組成物、膜、光センサおよび光センサの製造方法Composition, film, optical sensor, and method for producing optical sensor
 本発明は、屈折率の高い粒子を含む組成物に関する。また、本発明は、膜、光センサおよび光センサの製造方法に関する。 The present invention relates to a composition containing particles with a high refractive index. The present invention also relates to a film, an optical sensor, and a method of manufacturing an optical sensor.
 酸化チタンは屈折率が高い粒子である。このような屈折率の高い粒子を光散乱膜などに用いる試みが検討されている。 Titanium oxide is a particle with a high refractive index. Attempts are being made to use such particles with a high refractive index in light scattering films and the like.
 特許文献1には、互いに屈折率の異なる複数のポリマーを含み、かつ少なくとも一部の領域で共連続相構造を有する光散乱層を含む光散乱シートであって、入射光を等方的に透過して散乱し、かつ散乱光強度の極大値を示す散乱角が2~40°であるとともに、全光線透過率が70~100%である光散乱シートに関する発明が記載されている。共連続相構造を形成するいずれかの連続相は、高屈折微粒子を含んでもよいとされている。 Patent Document 1 discloses a light scattering sheet including a light scattering layer containing a plurality of polymers having mutually different refractive indexes and having a co-continuous phase structure in at least some regions, which transmits incident light isotropically. The invention relates to a light-scattering sheet which has a scattering angle of 2 to 40 degrees showing the maximum value of the scattered light intensity, and has a total light transmittance of 70 to 100%. It is believed that any of the continuous phases forming the co-continuous phase structure may include high refractive particulates.
特開2016-161859号公報Japanese Patent Application Publication No. 2016-161859
 近年では、可視光を適度に遮光し、かつ、光散乱性の高い膜についての需要が増えている。膜の光散乱性を高めるには、粒径が大きく、かつ、屈折率が高い粒子を用いる方法が知られている。しかしながら、屈折率の高い粒子は、一般的に比重が大きい傾向がある。このような比重の大きい粒子を、溶剤を含む組成物中に含有させて用いた場合、組成物の保管時に粒子が沈降することがある。このため、従来知られている組成物では、保存安定性と、得られる膜の光散乱性とを高い水準で両立させることは困難であった。 In recent years, demand has increased for films that appropriately block visible light and have high light scattering properties. A known method for increasing the light scattering properties of a film is to use particles that have a large particle size and a high refractive index. However, particles with a high refractive index generally tend to have a high specific gravity. When such particles with a large specific gravity are used in a composition containing a solvent, the particles may settle during storage of the composition. For this reason, with conventionally known compositions, it has been difficult to achieve both high levels of storage stability and light scattering properties of the obtained film.
 また、本発明者の検討によれば、屈折率が高い粒子を含む組成物を用いて膜を形成して得られる膜についての耐熱性に関し、更なる改善の余地があることが分かった。 Further, according to the studies of the present inventors, it was found that there is room for further improvement regarding the heat resistance of a film obtained by forming a film using a composition containing particles with a high refractive index.
 なお、特許文献1に記載された発明の光散乱シートは、全光線透過率が70~100%であるとされていることから、特許文献1に記載された発明の光散乱シートは可視光を適度に遮光するような部材ではなく、むしろ、可視光透過性の高いものである。 In addition, since the light scattering sheet of the invention described in Patent Document 1 is said to have a total light transmittance of 70 to 100%, the light scattering sheet of the invention described in Patent Document 1 does not transmit visible light. It is not a member that appropriately blocks light, but rather has a high visible light transmittance.
 よって、本発明の目的は、保存安定性が良好で、耐熱性および光散乱性に優れた膜を形成できる組成物を提供することにある。また、本発明の目的は、膜、光センサおよび光センサの製造方法を提供することにある。 Therefore, an object of the present invention is to provide a composition that can form a film that has good storage stability and excellent heat resistance and light scattering properties. It is also an object of the present invention to provide a film, an optical sensor, and a method for manufacturing an optical sensor.
 かかる状況のもと、本発明者が鋭意検討を行った結果、後述する組成物により上記目的を達成できることを見出し、本発明を完成するに至った。本発明は以下を提供する。 Under such circumstances, the inventors of the present invention have conducted extensive studies and have found that the above object can be achieved with the composition described below, leading to the completion of the present invention. The present invention provides the following.
 <1> 屈折率が2.0以上で平均一次粒子径が200nm以下の粒子と、膜形成成分と、溶剤と、を含む組成物であって、
 上記膜形成成分は、レオロジーコントロール剤と2種以上の樹脂とを含むか、または、レオロジーコントロール剤と1種以上の樹脂と1種以上の重合性モノマーとを含み、
 上記組成物は、下記式から算出されるチキソトロピーインデックス値が1.3以上である、組成物;
 チキソトロピーインデックス値=β1/β2
 β1は、回転粘度計を使用し、ずり速度20s-1で測定した23℃での粘度であり、
 β2は、回転粘度計を使用し、ずり速度200s-1で測定した23℃での粘度である。
 <2> 上記レオロジーコントロール剤が有機化合物である、<1>に記載の組成物。
 <3> 上記レオロジーコントロール剤のアミン価が150mgKOH/g以下である、<1>または<2>に記載の組成物。
 <4> 上記レオロジーコントロール剤の酸価が45mgKOH/g以下である、<1>~<3>のいずれか1つに記載の組成物。
 <5> 上記レオロジーコントロール剤は、アミド構造、ウレア構造およびウレタン構造からなる群より選ばれる少なくとも1種の構造を有する有機化合物を含む、<1>~<4>のいずれか1つに記載の組成物。
 <6> 上記レオロジーコントロール剤は、アミド化合物を含む<1>~<5>のいずれか1つに記載の組成物。
 <7> 上記組成物中における上記レオロジーコントロール剤の含有量が0.1~5質量%である、<1>~<6>のいずれか1つに記載の組成物。
 <8> 上記膜形成成分は、上記粒子の分散剤としての樹脂と、バインダーとしての樹脂と、上記レオロジーコントロール剤とを含む、<1>~<7>のいずれか1つに記載の組成物。
 <9> 上記バインダーとしての樹脂の100質量部に対して、上記レオロジーコントロール剤を1~50質量部含む、<8>に記載の組成物。
 <10> 上記粒子の100質量部に対して、上記レオロジーコントロール剤を0.5~20質量部含む、<1>~<9>のいずれか1つに記載の組成物。
 <11> 上記膜形成成分は、3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂と、グラフト鎖を有する繰り返し単位を有する樹脂と、上記レオロジーコントロール剤とを含む、<1>~<10>のいずれか1つに記載の組成物。
 <12> 上記グラフト鎖がポリエステル構造の繰り返し単位を含み、グラフト鎖を含む構成単位の重量平均分子量が1000以上である、<11>に記載の組成物。
 <13> 上記組成物を用いて、200℃で5分加熱して厚さ8μmの膜を製膜した際に、上記膜中には上記粒子を含む第1の相と、上記第1の相よりも上記粒子の含有量が少ない第2の相との相分離構造が形成されている、<1>~<12>のいずれか1つに記載の組成物。
 <14> 上記相分離構造は海島構造または共連続相構造である、<13>に記載の組成物。
 <15> 上記粒子が無機粒子である、<1>~<14>のいずれか1つに記載の組成物。
 <16> <1>~<15>のいずれか1つに記載の組成物を用いて得られる膜。
 <17> <16>に記載の膜を含む光センサ。
 <18> <1>~<15>のいずれか1つに記載の組成物を支持体上に適用して組成物層を形成する工程と、
 上記組成物層を露光する工程と、を含む、
 光センサの製造方法。
<1> A composition comprising particles having a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less, a film-forming component, and a solvent,
The film-forming component includes a rheology control agent and two or more resins, or a rheology control agent, one or more resins, and one or more polymerizable monomers,
The composition has a thixotropy index value of 1.3 or more calculated from the following formula;
Thixotropy index value = β1/β2
β1 is the viscosity at 23 °C measured using a rotational viscometer at a shear rate of 20 s -1 ,
β2 is the viscosity at 23° C. measured using a rotational viscometer at a shear rate of 200 s −1 .
<2> The composition according to <1>, wherein the rheology control agent is an organic compound.
<3> The composition according to <1> or <2>, wherein the rheology control agent has an amine value of 150 mgKOH/g or less.
<4> The composition according to any one of <1> to <3>, wherein the rheology control agent has an acid value of 45 mgKOH/g or less.
<5> The rheology control agent according to any one of <1> to <4>, wherein the rheology control agent contains an organic compound having at least one structure selected from the group consisting of an amide structure, a urea structure, and a urethane structure. Composition.
<6> The composition according to any one of <1> to <5>, wherein the rheology control agent contains an amide compound.
<7> The composition according to any one of <1> to <6>, wherein the content of the rheology control agent in the composition is 0.1 to 5% by mass.
<8> The composition according to any one of <1> to <7>, wherein the film-forming component includes a resin as a dispersant for the particles, a resin as a binder, and the rheology control agent. .
<9> The composition according to <8>, which contains 1 to 50 parts by mass of the rheology control agent based on 100 parts by mass of the resin as the binder.
<10> The composition according to any one of <1> to <9>, which contains 0.5 to 20 parts by mass of the rheology control agent based on 100 parts by mass of the particles.
<11> The film-forming component includes a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher linking group, a resin having a repeating unit having a graft chain, and the rheology control agent. The composition according to any one of > to <10>.
<12> The composition according to <11>, wherein the graft chain includes a repeating unit of a polyester structure, and the weight average molecular weight of the structural unit containing the graft chain is 1000 or more.
<13> When a film with a thickness of 8 μm was formed by heating at 200° C. for 5 minutes using the above composition, the film contained the first phase containing the particles and the first phase. The composition according to any one of <1> to <12>, which has a phase-separated structure with the second phase having a smaller content of particles than the second phase.
<14> The composition according to <13>, wherein the phase separation structure is a sea-island structure or a co-continuous phase structure.
<15> The composition according to any one of <1> to <14>, wherein the particles are inorganic particles.
<16> A film obtained using the composition according to any one of <1> to <15>.
<17> An optical sensor comprising the film according to <16>.
<18> Applying the composition according to any one of <1> to <15> on a support to form a composition layer;
exposing the composition layer to light;
A method of manufacturing an optical sensor.
 本発明によれば、保存安定性が良好で、耐熱性および光散乱性に優れた膜を形成できる組成物、膜、光センサおよび光センサの製造方法を提供することができる。 According to the present invention, it is possible to provide a composition, a film, an optical sensor, and a method for producing an optical sensor that can form a film that has good storage stability, excellent heat resistance, and light scattering properties.
本発明の光センサの一実施形態を示す概略図である。FIG. 1 is a schematic diagram showing an embodiment of the optical sensor of the present invention. 本発明の光センサの他の実施形態を示す概略図である。It is a schematic diagram showing other embodiments of the optical sensor of the present invention.
 以下において、本発明の内容について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)を包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)を包含する。
 本明細書において、「(メタ)アクリレート」は、アクリレート及びメタクリレートを表し、「(メタ)アクリル」は、アクリル及びメタクリルを表し、「(メタ)アリル」は、アリル及びメタリルを表し、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルを表す。
 本明細書において、化学式中のMeはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を、Phはフェニル基をそれぞれ示す。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
 本明細書において、重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定したポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8220GPC(東ソー(株)製)を用い、カラムとして、TOSOH TSKgel Super HZM-HとTOSOH TSKgel Super HZ4000とTOSOH TSKgel Super HZ2000とを連結したカラムを用い、展開溶媒としてテトラヒドロフランを用いることによって求めることができる。
 本明細書において、屈折率の値は、特に断りがない限り、23℃での波長589nmの光に対する屈折率の値である。
The content of the present invention will be explained in detail below.
Although the description of the constituent elements described below may be made based on typical embodiments of the present invention, the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
In the description of a group (atomic group) in this specification, the description that does not indicate substituted or unsubstituted includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group). For example, the term "alkyl group" includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In the present specification, "(meth)acrylate" represents acrylate and methacrylate, "(meth)acrylic" represents acrylic and methacryl, "(meth)allyl" represents allyl and methallyl, "(meth)acrylic" represents allyl and methallyl, ) "acryloyl" represents acryloyl and methacryloyl.
In the present specification, Me in the chemical formula represents a methyl group, Et represents an ethyl group, Pr represents a propyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, "exposure" includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams, unless otherwise specified. Examples of the light used for exposure include actinic rays or radiation such as the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
In this specification, the weight average molecular weight and number average molecular weight are defined as polystyrene equivalent values measured by gel permeation chromatography (GPC). In this specification, the weight average molecular weight (Mw) and number average molecular weight (Mn) are expressed using, for example, HLC-8220GPC (manufactured by Tosoh Corporation) and columns such as TOSOH TSKgel Super HZM-H and TOSOH TSKgel Super HZ4000. It can be determined by using a column connected to TOSOH TSKgel Super HZ2000 and using tetrahydrofuran as a developing solvent.
In this specification, the refractive index value is the refractive index value for light with a wavelength of 589 nm at 23° C. unless otherwise specified.
<組成物>
 本発明の組成物は、
 屈折率が2.0以上で平均一次粒子径が200nm以下の粒子と、膜形成成分と、溶剤と、を含む組成物であって、
 上記膜形成成分は、レオロジーコントロール剤と2種以上の樹脂とを含むか、または、レオロジーコントロール剤と1種以上の樹脂と1種以上の重合性モノマーとを含み、
 上記組成物は、下記式から算出されるチキソトロピーインデックス値が1.3以上であることを特徴とする。
 チキソトロピーインデックス値=β1/β2
 β1は、回転粘度計を使用し、ずり速度20s-1で測定した23℃での粘度であり、
 β2は、回転粘度計を使用し、ずり速度200s-1で測定した23℃での粘度である。
<Composition>
The composition of the present invention comprises:
A composition comprising particles having a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less, a film-forming component, and a solvent,
The film-forming component includes a rheology control agent and two or more resins, or a rheology control agent, one or more resins, and one or more polymerizable monomers,
The above composition is characterized in that the thixotropy index value calculated from the following formula is 1.3 or more.
Thixotropy index value = β1/β2
β1 is the viscosity at 23 °C measured using a rotational viscometer at a shear rate of 20 s -1 ,
β2 is the viscosity at 23° C. measured using a rotational viscometer at a shear rate of 200 s −1 .
 本発明の組成物は、保存安定性が良好で、耐熱性および光散乱性に優れた膜を形成できる。このような効果が得られる理由は、以下によるものであると推測される。
 屈折率が2.0以上の粒子は一般的に比重の大きいものが多いが、本発明の組成物は、レオロジーコントロール剤を含み、組成物のチキソトロピーインデックス値が1.3以上であり、かつ、屈折率が2.0以上の粒子として、平均一次粒子径が200nm以下と、比較的小さい粒子径のものを用いているので、溶剤を含む組成物中での上記粒子の沈降を抑制でき、優れた保存安定性が得られたと推測される。
 また、屈折率が2.0以上の粒子として、平均粒子径の小さいものを用いた場合、一般的には得られる膜の光散乱性は低くなる傾向にあるが、本発明の組成物は、レオロジーコントロール剤を含む上記膜形成成分を含むことにより、製膜時において、粒子に吸着している樹脂などの粒子近傍に存在している樹脂や粒子同士の凝集を促進して相分離構造の形成を促進させることができ、膜中に屈折率が2.0以上の粒子を含む第1の相と、第1の相よりも前述の粒子の含有量が少ない第2の相との相分離構造を形成することができると推測される。膜中にこのような相分離構造が形成されることにより、膜中で粒子の存在位置に偏りができ、膜中に屈折率の大きい領域である第1の相と屈折率の小さい領域である第2の相とが混在すると考えられる。この2つの相の間で光の散乱が生じるため、本発明の組成物により得られた膜は光散乱性に優れる。
 また、レオロジーコントロール剤を含むことにより、膜中では分子間相互作用を介した強固なネットワーク構造が形成されていると推測され、加熱による膜中の粒子の分散状態などの変動を抑制することができると推測される。このため、本発明の組成物により得られた膜は耐熱性に優れる。
The composition of the present invention has good storage stability and can form a film with excellent heat resistance and light scattering properties. The reason why such an effect is obtained is presumed to be due to the following.
Particles with a refractive index of 2.0 or more generally have a large specific gravity, but the composition of the present invention contains a rheology control agent, the composition has a thixotropy index value of 1.3 or more, and As the particles with a refractive index of 2.0 or more are used, the average primary particle size is 200 nm or less, which is a relatively small particle size, so sedimentation of the particles in a composition containing a solvent can be suppressed, making it an excellent product. It is presumed that the storage stability was obtained.
Furthermore, when particles with a small average particle diameter are used as particles with a refractive index of 2.0 or more, the light scattering properties of the resulting film generally tend to be low; however, the composition of the present invention By including the above-mentioned film-forming components including a rheology control agent, during film formation, a phase-separated structure is formed by promoting aggregation of resins existing near the particles, such as resins adsorbed to the particles, and particles. A phase-separated structure comprising a first phase containing particles with a refractive index of 2.0 or more in the film and a second phase containing fewer particles than the first phase. It is assumed that it is possible to form a By forming such a phase-separated structure in the film, the positions of particles are uneven in the film, and the first phase is a region with a high refractive index and the first phase is a region with a low refractive index in the film. It is thought that the second phase coexists with the second phase. Since light scattering occurs between these two phases, the film obtained from the composition of the present invention has excellent light scattering properties.
In addition, by including a rheology control agent, it is assumed that a strong network structure is formed in the film through intermolecular interactions, and it is possible to suppress changes in the dispersion state of particles in the film due to heating. It is presumed that it can be done. Therefore, the film obtained using the composition of the present invention has excellent heat resistance.
 本発明の組成物のチキソトロピーインデックス値は、1.40~4.00であることが好ましい。上限は、より厚みの大きい膜を形成することができるという理由から、3.00以下であることが好ましく、2.50以下であることがより好ましい。下限は、保存安定性の観点から1.60以上であることが好ましく、1.80以上であることがより好ましい。 The thixotropic index value of the composition of the present invention is preferably 1.40 to 4.00. The upper limit is preferably 3.00 or less, more preferably 2.50 or less, because a thicker film can be formed. The lower limit is preferably 1.60 or more, more preferably 1.80 or more from the viewpoint of storage stability.
 本発明の組成物は、回転粘度計を使用してずり速度20s-1で測定した23℃での粘度が20~400mPa・sであることが好ましい。上限は、350mPa・s以下であることが好ましく、300mPa・s以下であることがより好ましい。下限は、25mPa・s以上であることが好ましく、30mPa・s以上であることがより好ましい。 The composition of the present invention preferably has a viscosity of 20 to 400 mPa·s at 23° C. as measured using a rotational viscometer at a shear rate of 20 s −1 . The upper limit is preferably 350 mPa·s or less, more preferably 300 mPa·s or less. The lower limit is preferably 25 mPa·s or more, more preferably 30 mPa·s or more.
 本発明の組成物は、回転粘度計を使用してずり速度200s-1で測定した23℃での粘度が、10~100mPa・sであることが好ましい。上限は、80mPa・s以下であることが好ましく、60mPa・s以下であることがより好ましい。下限は、20mPa・s以上であることが好ましく、30mPa・s以上であることがより好ましい。 The composition of the present invention preferably has a viscosity of 10 to 100 mPa·s at 23° C. as measured using a rotational viscometer at a shear rate of 200 s −1 . The upper limit is preferably 80 mPa·s or less, more preferably 60 mPa·s or less. The lower limit is preferably 20 mPa·s or more, more preferably 30 mPa·s or more.
 本発明の組成物は、200℃で5分加熱して厚さ8μmの膜を製膜した際に、上記膜中には上記粒子を含む第1の相と、上記第1の相よりも上記粒子の含有量が少ない第2の相との相分離構造が形成されることが好ましい。膜中にこのような相分離構造が形成されることにより、光散乱性が向上し、また、散乱光の角度依存性を低減させることもできる。 When the composition of the present invention is heated at 200° C. for 5 minutes to form a film with a thickness of 8 μm, the film contains a first phase containing the particles and a larger amount of the particles than the first phase. It is preferable that a phase-separated structure is formed with the second phase having a small content of particles. By forming such a phase-separated structure in the film, light scattering properties are improved, and the angular dependence of scattered light can also be reduced.
 第1の相及び第2の相の母材は、膜形成成分又は膜形成成分由来の硬化物である。また、上記粒子の単なる凝集物は粒子の一形態であって、上記粒子の単なる凝集物そのものは第1の相ではない。膜形成成分又は膜形成成分由来の硬化物中に、上記粒子が存在しているものが上記第1の相である。また、第2の相は、第1の相よりも上記粒子の含有量が少ないものであればよく、上記粒子を実質的に含んでいなくてもよい。より優れた光散乱性が得られやすいという理由から第2の相は、上記粒子の含有量は、組成物に含まれる上記粒子の全量の30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましく、5質量%以下であることがより一層好ましく、第2の相は、上記粒子を実質的に含まないことが特に好ましい。ここで、第2の相が上記粒子を実質的に含まないとは、上記粒子の含有量は、組成物に含まれる上記粒子の全量の1質量%以下であることを意味し、0.5質量%以下であることが好ましく、第2の相は、上記粒子を含まないことが特に好ましい。 The base material of the first phase and the second phase is a film-forming component or a cured product derived from the film-forming component. Further, the mere aggregate of the particles is one form of particles, and the mere aggregate of the particles itself is not the first phase. The first phase is a film-forming component or a cured product derived from a film-forming component in which the particles are present. Further, the second phase may have a lower content of the particles than the first phase, and may not substantially contain the particles. The content of the particles in the second phase is preferably 30% by mass or less, and 20% by mass or less of the total amount of the particles contained in the composition, because better light scattering properties are easily obtained. The content is more preferably 10% by mass or less, even more preferably 5% by mass or less, and particularly preferably the second phase does not substantially contain the particles. Here, the second phase does not substantially contain the above particles means that the content of the above particles is 1% by mass or less of the total amount of the particles contained in the composition, and 0.5% by mass or less of the total amount of the particles contained in the composition. It is preferable that the amount is not more than % by mass, and it is particularly preferable that the second phase does not contain the above-mentioned particles.
 膜中に第1の相と、第2の相との相分離構造が形成されていることは、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)又は光学顕微鏡を用いて観測することができる。例えば、組成物をガラス基板などの支持体上に塗布し、例えば200℃で5分加熱して厚さ4μmの膜を製膜した後、得られた膜の厚み方向の断面を、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)又は光学顕微鏡を用いて観察することで膜中に第1の相と、第2の相との相分離構造が形成されているかどうか調べることができる。
 また、例えば組成物が膜形成成分として重合性化合物及び光重合開始剤を含む場合、上記加熱の前に重合性化合物の硬化のための露光を行ってもよい。
The formation of a phase-separated structure of the first phase and the second phase in the film can be observed using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or an optical microscope. I can do it. For example, after coating the composition on a support such as a glass substrate and heating it at 200°C for 5 minutes to form a film with a thickness of 4 μm, the cross section of the resulting film in the thickness direction is By observing using a microscope (SEM), transmission electron microscope (TEM), or optical microscope, it is possible to examine whether a phase-separated structure of the first phase and the second phase is formed in the film. .
Further, for example, when the composition contains a polymerizable compound and a photopolymerization initiator as film-forming components, exposure for curing the polymerizable compound may be performed before the heating.
 上記相分離構造を形成するためには、膜形成成分に用いられる樹脂や重合性モノマーの種類などを適宜変更することで達成できる。 In order to form the above-mentioned phase-separated structure, it can be achieved by appropriately changing the types of resins and polymerizable monomers used in the film-forming components.
 一態様として、膜形成成分として第1の樹脂と、第1の樹脂との相溶性の低い第2の樹脂とを含むものを用いる方法が挙げられる。このような膜形成成分を用いた場合には、膜形成時に第1の樹脂を主成分として含む相と、第2の樹脂を主成分として含む相との相分離構造を形成することができる。例えば、第1の樹脂および第2の樹脂の一方が粒子の分散剤としての樹脂で、他方がバインダー樹脂であるものを用いた場合には、分散剤としての樹脂を主成分として含む相には粒子を多く偏在させることができる。 One embodiment includes a method of using a film-forming component that includes a first resin and a second resin that has low compatibility with the first resin. When such a film-forming component is used, a phase-separated structure of a phase containing the first resin as a main component and a phase containing the second resin as a main component can be formed during film formation. For example, when one of the first resin and the second resin is a resin as a dispersant for particles and the other is a binder resin, the phase containing the resin as a dispersant as a main component is A large number of particles can be unevenly distributed.
 また、別の態様として、膜形成成分として第1の樹脂と、第1の樹脂との相溶性の低い重合性モノマーを含むものを用いる方法が挙げられる。このような膜形成成分を用いた場合には、膜形成時に第1の樹脂を主成分として含む相と、重合性モノマー由来の硬化物を主成分として含む相との相分離構造を形成することができる。 Another embodiment is a method in which the film-forming component contains a first resin and a polymerizable monomer having low compatibility with the first resin. When such a film-forming component is used, a phase-separated structure between a phase containing the first resin as a main component and a phase containing a cured product derived from a polymerizable monomer as a main component is formed during film formation. I can do it.
 また、別の態様としては、膜形成成分に用いられる樹脂や重合性モノマーの種類などを適宜変更し、製膜時に膜形成成分をスピノーダル分解させて、第1の相と、第2の相との相分離構造を形成する方法が挙げられる。 In another embodiment, the types of resins and polymerizable monomers used in the film-forming components are appropriately changed, and the film-forming components are spinodally decomposed during film formation to form the first phase and the second phase. Examples include methods of forming a phase-separated structure.
 上記膜における相分離構造は、膜中で相界面が等方的に存在することが好ましく、例えば海島構造または共連続相構造であることがより好ましい。これらの相分離構造が形成されていることにより、第1の相と第2の相との間で光を効果的に散乱することができ、特に優れた光散乱性が得られやすい。なお、海島構造とは、連続領域である海領域と、非連続領域である島領域により形成される構造のことである。海島構造においては、第2の相が海で、第1の相が島を形成していてもよく、第1の相が海で、第2の相が島を形成していてもよい。第1の相が海で、第2の相が島を形成している場合は、透過率の観点で好ましい。第1の相が島で、第2の相が海を形成して場合は、角度依存性の観点で好ましい。また、共連続相構造とは、第1の相と第2の相のそれぞれが相互貫入的に連続相構造を形成しているネットワーク構造のことである。 It is preferable that the phase separation structure in the membrane is such that phase interfaces exist isotropically in the membrane, and for example, a sea-island structure or a co-continuous phase structure is more preferable. By forming these phase separation structures, light can be effectively scattered between the first phase and the second phase, and particularly excellent light scattering properties are likely to be obtained. Note that the sea-island structure is a structure formed by a sea region that is a continuous region and an island region that is a discontinuous region. In the sea-island structure, the second phase may be the ocean and the first phase may form an island, or the first phase may be the ocean and the second phase may form an island. It is preferable from the viewpoint of transmittance that the first phase is sea and the second phase forms islands. It is preferable from the viewpoint of angular dependence that the first phase forms an island and the second phase forms an ocean. Further, the co-continuous phase structure is a network structure in which the first phase and the second phase form a continuous phase structure in an interpenetrating manner.
 本発明の組成物を用いて200℃で5分加熱して厚さ8μmの膜を形成した際において、この膜の波長400~700nmの範囲の光の透過率の最大値は、光散乱の波長依存性低減の観点から80%以下であることが好ましく、70%以下であることがより好ましく、60%以下であることが更に好ましく、50%以下であることが特に好ましい。上記透過率の最大値の下限は1%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることが更に好ましく、15%以上であることがより一層好ましく、20%以上であることが特に好ましい。
 また、上記膜の400~1000nmの光の透過率の最大値は、80%以下であることが好ましく、75%以下であることがより好ましく、70%以下であることが更に好ましく、60%以下であることがより一層好ましく、50%以下であることが特に好ましい。上記透過率の最大値の下限は1%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることが更に好ましく、15%以上であることがより一層好ましく、20%以上であることが特に好ましい。
When the composition of the present invention is heated at 200°C for 5 minutes to form a film with a thickness of 8 μm, the maximum value of the transmittance of light in the wavelength range of 400 to 700 nm is the wavelength of light scattering. From the viewpoint of reducing dependence, it is preferably 80% or less, more preferably 70% or less, even more preferably 60% or less, and particularly preferably 50% or less. The lower limit of the maximum transmittance is preferably 1% or more, more preferably 5% or more, even more preferably 10% or more, even more preferably 15% or more, and 20% or more. % or more is particularly preferable.
Further, the maximum value of the transmittance of light in the wavelength range of 400 to 1000 nm of the above film is preferably 80% or less, more preferably 75% or less, even more preferably 70% or less, and 60% or less. It is even more preferable that it is, and it is especially preferable that it is 50% or less. The lower limit of the maximum transmittance is preferably 1% or more, more preferably 5% or more, even more preferably 10% or more, even more preferably 15% or more, and 20% or more. % or more is particularly preferable.
 上記膜中の相間屈折率差の平均値は、0.1以上であることが好ましく、0.2以上であることがより好ましく、0.3以上であることがさらに好ましく、0.4以上であることが特に好ましい。 The average value of the interphase refractive index difference in the film is preferably 0.1 or more, more preferably 0.2 or more, even more preferably 0.3 or more, and 0.4 or more. It is particularly preferable that there be.
 上記膜のJIS K 7136に基づくヘイズは、30~100%であることが好ましい。上限は99%以下であることが好ましく、95%以下であることがより好ましく、90%以下であることが更に好ましい。下限は35%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることが更に好ましい。 The haze of the above film based on JIS K 7136 is preferably 30 to 100%. The upper limit is preferably 99% or less, more preferably 95% or less, and even more preferably 90% or less. The lower limit is preferably 35% or more, more preferably 40% or more, and even more preferably 50% or more.
 このような分光特性を有する膜を形成するには、相分離構造の形状、粒子の屈折率、粒子の膜中の存在量や偏在具合などを適宜調整することで達成することができる。この際、粒子の屈折率、粒子の存在量、粒子の偏在具合は高いほどよい。 Formation of a film having such spectral characteristics can be achieved by appropriately adjusting the shape of the phase separation structure, the refractive index of the particles, the amount and uneven distribution of the particles in the film, etc. At this time, the higher the refractive index of the particles, the amount of particles present, and the degree of uneven distribution of particles, the better.
 本発明の組成物の固形分濃度は、5~90質量%であることが好ましい。上限は、85質量%以上であることが好ましく、80質量%以上であることがより好ましく、75質量%以下であることが更に好ましく、70質量%以下がより一層好ましく、60質量%以下であることが更に一層好ましい。下限は、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましい。 The solid content concentration of the composition of the present invention is preferably 5 to 90% by mass. The upper limit is preferably 85% by mass or more, more preferably 80% by mass or more, even more preferably 75% by mass or less, even more preferably 70% by mass or less, and even more preferably 60% by mass or less. It is even more preferable. The lower limit is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more.
 以下、本発明の組成物に用いられる各成分について説明する。 Each component used in the composition of the present invention will be explained below.
<<粒子P1(屈折率が2.0以上で平均一次粒子径が200nm以下の粒子)>>
 本発明の組成物は、屈折率が2.0以上で平均一次粒子径が200nm以下の粒子(以下、粒子P1ともいう)を含む。
<<Particle P1 (particles with a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less)>>
The composition of the present invention includes particles having a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less (hereinafter also referred to as particles P1).
 粒子P1の平均一次粒子径は、200nm以下であり、組成物の保存安定性の観点から100mn以下であることが好ましい。また、粒子P1の平均一次粒子径は、組成物の保存安定性および得られる膜の光散乱性の観点から5nm以上100nm以下であることが好ましく、10nm以上100nm以下であることがより好ましく、20nm以上100nm以下であることが更に好ましく、30nm以上100nm以下であることがより一層好ましく、40nm以上100nm以下であることが更に一層好ましく、50nm以上100nm以下であることが特に好ましい。 The average primary particle diameter of the particles P1 is 200 nm or less, and preferably 100 mn or less from the viewpoint of storage stability of the composition. In addition, the average primary particle diameter of the particles P1 is preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 100 nm or less, and 20 nm or more, from the viewpoint of storage stability of the composition and light scattering properties of the resulting film. It is more preferably 100 nm or more, even more preferably 30 nm or more and 100 nm or less, even more preferably 40 nm or more and 100 nm or less, and particularly preferably 50 nm or more and 100 nm or less.
 なお、本明細書において、粒子の平均一次粒子径は以下の方法で測定した値である。すなわち、粒子の一次粒子径は、粒子を透過型電子顕微鏡(TEM)で観察し、粒子が凝集していない部分(一次粒子)を観測することで求めることができる。粒子の粒度分布については、一次粒子を、透過型電子顕微鏡を用いて透過型電子顕微鏡写真を撮影した後、その写真を用いて画像処理装置で粒度分布を測定して求めることができる。本明細書において、粒子の平均一次粒子径は、粒度分布から算出された個数基準の算術平均径を平均一次粒子径とした。本明細書では、透過型電子顕微鏡として(株)日立製作所製電子顕微鏡(H-7000)を用い、画像処理装置として(株)ニレコ製ルーゼックスAPを用いる。 In addition, in this specification, the average primary particle diameter of particles is a value measured by the following method. That is, the primary particle diameter of the particles can be determined by observing the particles with a transmission electron microscope (TEM) and observing the portions where the particles are not aggregated (primary particles). The particle size distribution of the particles can be determined by taking a transmission electron micrograph of the primary particles using a transmission electron microscope, and then measuring the particle size distribution using an image processing device using the photograph. In this specification, the average primary particle diameter of particles is the number-based arithmetic mean diameter calculated from the particle size distribution. In this specification, an electron microscope (H-7000) manufactured by Hitachi, Ltd. is used as a transmission electron microscope, and Luzex AP manufactured by Nireco Co., Ltd. is used as an image processing device.
 粒子P1の屈折率は、2.0以上であり、2.2以上であることが好ましく、2.4以上であることが更に好ましい。粒子P1の屈折率の上限は特に限定はないが5.0以下とすることができ、4.0以下とすることもできる。 The refractive index of the particles P1 is 2.0 or more, preferably 2.2 or more, and more preferably 2.4 or more. The upper limit of the refractive index of the particles P1 is not particularly limited, but can be 5.0 or less, and can also be 4.0 or less.
 なお、粒子の屈折率は以下の方法で測定した値である。まず、粒子と、屈折率が既知である樹脂(分散剤)と、プロピレングリコールモノメチルエーテルアセテートとを用いて分散液を作製する。その後、作製した分散液と屈折率が既知の樹脂とを混合し、塗布液の全固形分中における粒子の濃度が10質量%、20質量%、30質量%、40質量%の塗布液を作製する。これらの塗布液をシリコンウエハ上に300nmの厚さで製膜した後、得られる膜の屈折率をエリプソメトリー(ラムダエースRE-3300、(株)SCREENホールディングス製)を用いて測定する。その後、粒子の濃度に対応する屈折率をグラフ上にプロットし、粒子の屈折率を導出する。 Note that the refractive index of the particles is a value measured by the following method. First, a dispersion liquid is prepared using particles, a resin (dispersant) having a known refractive index, and propylene glycol monomethyl ether acetate. Thereafter, the prepared dispersion liquid and a resin with a known refractive index were mixed to prepare coating liquids with particle concentrations of 10% by mass, 20% by mass, 30% by mass, and 40% by mass in the total solid content of the coating liquid. do. After depositing these coating solutions on a silicon wafer to a thickness of 300 nm, the refractive index of the resulting film is measured using ellipsometry (Lambda Ace RE-3300, manufactured by SCREEN Holdings, Inc.). Thereafter, the refractive index corresponding to the concentration of particles is plotted on a graph to derive the refractive index of the particles.
 粒子P1の比重は、1~7g/cmであることが好ましい。上限は6g/cm以下であることが好ましく、5g/cm以下であることがより好ましい。比重の下限は特に限定はないが、1.5g/cm以上とすることができ、2g/cm以上とすることもできる。 The specific gravity of the particles P1 is preferably 1 to 7 g/cm 3 . The upper limit is preferably 6 g/cm 3 or less, more preferably 5 g/cm 3 or less. The lower limit of the specific gravity is not particularly limited, but can be 1.5 g/cm 3 or more, and can also be 2 g/cm 3 or more.
 なお、本明細書において、粒子の比重は、以下の方法で測定した値である。まず、100mLメスフラスコ中に50gの粒子を投入する。続いて別の100mLメスシリンダーを用いて水を100mL量り取る。その後、まず粒子が浸る程度、量り取った水をメスフラスコに入れ、続いて、メスフラスコに超音波を加えて、粒子と水をなじませた。その後、メスフラスコの標線に到達するまで追加で水を入れ、50g/(メスフラスコに残った水の体積)=比重として算出する。 Note that in this specification, the specific gravity of particles is a value measured by the following method. First, 50 g of particles are placed in a 100 mL volumetric flask. Next, measure out 100 mL of water using another 100 mL graduated cylinder. After that, enough water was measured into a volumetric flask to cover the particles, and then ultrasonic waves were applied to the volumetric flask to blend the particles with the water. Then, add additional water until it reaches the marked line of the volumetric flask, and calculate the specific gravity as 50 g/(volume of water remaining in the volumetric flask) = specific gravity.
 粒子P1は、透明または白色の粒子であることが好ましい。また、粒子P1は無機粒子であることが好ましい。無機粒子の具体例としては、酸化チタン粒子、チタン酸ストロンチウム粒子、チタン酸バリウム粒子、酸化亜鉛粒子、酸化マグネシウム粒子、酸化ジルコニウム粒子、硫酸バリウム粒子、硫化亜鉛粒子などが挙げられる。粒子P1として用いられる無機粒子は、チタン原子を有する粒子であることが好ましく、酸化チタン粒子であることがより好ましい。 The particles P1 are preferably transparent or white particles. Moreover, it is preferable that the particles P1 are inorganic particles. Specific examples of the inorganic particles include titanium oxide particles, strontium titanate particles, barium titanate particles, zinc oxide particles, magnesium oxide particles, zirconium oxide particles, barium sulfate particles, zinc sulfide particles, and the like. The inorganic particles used as the particles P1 are preferably particles containing titanium atoms, and more preferably titanium oxide particles.
 酸化チタン粒子は、二酸化チタン(TiO)の含有量(純度)が70質量%以上であることが好ましく、80質量%以上であることがより好ましく、85質量%以上であることが更に好ましい。酸化チタン粒子は、Ti2n-1(nは2~4の数を表す。)で表される低次酸化チタン、酸窒化チタン等の含有量が30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが更に好ましい。 The content (purity) of titanium dioxide (TiO 2 ) in the titanium oxide particles is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 85% by mass or more. The titanium oxide particles preferably have a content of lower titanium oxide, titanium oxynitride, etc. expressed by Ti n O 2n-1 (n represents a number from 2 to 4) of 30% by mass or less, It is more preferably 20% by mass or less, and even more preferably 15% by mass or less.
 酸化チタンは、ルチル型酸化チタンであってもよく、アナターゼ型酸化チタンでもよい。着色性、分散液や組成物の経時安定性の観点から、ルチル型酸化チタンが好ましい。特にルチル型酸化チタンは加熱しても、色差の変化が少なく、良好な着色性を有している。また、酸化チタンのルチル化率は、95%以上が好ましく、99%以上がより好ましい。 The titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide. Rutile-type titanium oxide is preferred from the viewpoint of colorability and stability of dispersions and compositions over time. In particular, rutile-type titanium oxide exhibits little change in color difference even when heated, and has good coloring properties. Moreover, the rutilization rate of titanium oxide is preferably 95% or more, more preferably 99% or more.
 ルチル型酸化チタンとしては、公知のものを使用することができる。ルチル型酸化チタンの製造方法には、硫酸法と塩素法の2種類あり、いずれの製造方法により製造された酸化チタンも好適に使用することができる。ここで、硫酸法は、イルメナイト鉱石やチタンスラグを原料とし、これを濃硫酸に溶解して鉄分を硫酸鉄として分離し、分離した溶液を加水分解して水酸化物の沈殿物を得て、これを高温で焼成してルチル型酸化チタンを取り出す製造方法をいう。また、塩素法は、合成ルチルや天然ルチルを原料とし、これを約1000℃の高温で塩素ガスとカーボンを反応させて四塩化チタンを合成し、これを酸化してルチル型酸化チタンを取り出す製造方法をいう。ルチル型酸化チタンは、塩素法で得られるルチル型酸化チタンが好ましい。 As the rutile-type titanium oxide, known ones can be used. There are two methods for producing rutile-type titanium oxide: a sulfuric acid method and a chlorine method, and titanium oxide produced by either method can be suitably used. Here, the sulfuric acid method uses ilmenite ore and titanium slag as raw materials, dissolves them in concentrated sulfuric acid to separate iron as iron sulfate, and hydrolyzes the separated solution to obtain hydroxide precipitates. This is a manufacturing method in which rutile-type titanium oxide is extracted by firing the titanium oxide at a high temperature. In the chlorine method, synthetic rutile or natural rutile is used as a raw material, and titanium tetrachloride is synthesized by reacting chlorine gas and carbon at a high temperature of approximately 1000°C, which is then oxidized to produce rutile-type titanium oxide. means a method. The rutile-type titanium oxide is preferably rutile-type titanium oxide obtained by a chlorine method.
 酸化チタン粒子の比表面積は、BET(Brunauer,Emmett,Teller)法にて測定した値が10~400m/gであることが好ましく、10~200m/gであることがより好ましく、10~150m/gであることが更に好ましく、10~40m/gであることが特に好ましく、10~20m/gであることが最も好ましい。酸化チタンのpHは、6~8が好ましい。酸化チタンの吸油量は、10~60(g/100g)であることが好ましく、10~40(g/100g)であることがより好ましい。 The specific surface area of the titanium oxide particles is preferably 10 to 400 m 2 /g, more preferably 10 to 200 m 2 /g, as measured by the BET (Brunauer, Emmett, Teller) method. It is more preferably 150 m 2 /g, particularly preferably 10 to 40 m 2 /g, and most preferably 10 to 20 m 2 /g. The pH of titanium oxide is preferably 6 to 8. The oil absorption amount of titanium oxide is preferably 10 to 60 (g/100g), more preferably 10 to 40 (g/100g).
 酸化チタン粒子は、Fe、Al、SiO、NbおよびNaOの合計量が、0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.02質量%以下であることがさらに好ましく、これらを実質的に含まないことが特に好ましい。 In the titanium oxide particles, the total amount of Fe 2 O 3 , Al 2 O 3 , SiO 2 , Nb 2 O 5 and Na 2 O is preferably 0.1% by mass or less, and preferably 0.05% by mass or less. It is more preferable that the amount is present, even more preferably that it is 0.02% by mass or less, and it is especially preferable that it is substantially free of these.
 酸化チタン粒子の形状には特に制限はない。例えば、等方性形状(例えば、球状、多面体状等)、異方性形状(例えば、針状、棒状、板状等)、不定形状等の形状が挙げられる。酸化チタン粒子の硬度(モース硬度)は、5~8であることが好ましく、7~7.5であることがより好ましい。 There is no particular restriction on the shape of the titanium oxide particles. Examples include isotropic shapes (for example, spherical shapes, polyhedral shapes, etc.), anisotropic shapes (for example, needle shapes, rod shapes, plate shapes, etc.), and irregular shapes. The hardness (Mohs hardness) of the titanium oxide particles is preferably from 5 to 8, more preferably from 7 to 7.5.
 酸化チタン粒子などの無機粒子は、有機化合物などの表面処理剤により表面処理されていてもよい。酸化チタンの表面処理に用いる表面処理剤としては、ポリオール、酸化アルミニウム、水酸化アルミニウム、シリカ(酸化ケイ素)、含水シリカ、アルカノールアミン、ステアリン酸、オルガノシロキサン、酸化ジルコニウム、ハイドロゲンジメチコン、シランカップリング剤、チタネートカップリング剤などが挙げられる。中でもシランカップリング剤が好ましい。表面処理は、1種類単独の表面処理剤を用いて実施してもよく、2種類以上の表面処理剤を組み合わせて実施してもよい。 Inorganic particles such as titanium oxide particles may be surface treated with a surface treatment agent such as an organic compound. Surface treatment agents used for surface treatment of titanium oxide include polyol, aluminum oxide, aluminum hydroxide, silica (silicon oxide), hydrated silica, alkanolamine, stearic acid, organosiloxane, zirconium oxide, hydrogen dimethicone, and silane coupling agent. , titanate coupling agents, and the like. Among these, silane coupling agents are preferred. The surface treatment may be performed using a single type of surface treatment agent or a combination of two or more types of surface treatment agents.
 酸化チタン粒子などの無機粒子は、塩基性金属酸化物又は塩基性金属水酸化物により被覆されていることも好ましい。塩基性金属酸化物又は塩基性金属水酸化物として、マグネシウム、ジルコニウム、セリウム、ストロンチウム、アンチモン、バリウム又はカルシウム等を含有する金属化合物が挙げられる。 It is also preferable that inorganic particles such as titanium oxide particles are coated with a basic metal oxide or a basic metal hydroxide. Examples of the basic metal oxide or hydroxide include metal compounds containing magnesium, zirconium, cerium, strontium, antimony, barium, or calcium.
 また、酸化チタン粒子としては「酸化チタン 物性と応用技術 清野学著 13~45ページ 1991年6月25日発行、技報堂出版発行」に記載の酸化チタン粒子も好適に使用できる。 Furthermore, as the titanium oxide particles, the titanium oxide particles described in "Titanium oxide physical properties and applied technology, Manabu Seino, pages 13-45, published June 25, 1991, Gihodo Publishing" can also be suitably used.
 粒子P1は、市販されているものを好ましく用いることができる。市販品はそのまま使用してもよく、分級処理したものを用いてもよい。酸化チタン粒子の市販品としては、例えば、石原産業(株)製の商品名タイペークR-550、R-580、R-630、R-670、R-680、R-780、R-780-2、R-820、R-830、R-850、R-855、R-930、R-980、CR-50、CR-50-2、CR-57、CR-58、CR-58-2、CR-60、CR-60-2、CR-63、CR-67、CR-Super70、CR-80、CR-85、CR-90、CR-90-2、CR-93、CR-95、CR-953、CR-97、PF-736、PF-737、PF-742、PF-690、PF-691、PF-711、PF-739、PF-740、PC-3、S-305、CR-EL、PT-301、PT-401M、PT-401L、PT-501A、PT-501R、UT771、TTO-51、TTO-80A、TTO-S-2、A-220、MPT-136、MPT-140、MPT-141;
 堺化学工業(株)製の商品名R-3L、R-5N、R-7E、R-11P、R-21、R-25、R-32、R-42、R-44、R-45M、R-62N、R-310、R-650、SR-1、D-918、GTR-100、FTR-700、TCR-52、A-110、A-190、SA-1、SA-1L、STR-100A-LP、STR-100C-LP、TCA-123E;
 テイカ(株)製の商品名JR、JRNC、JR-301、JR-403、JR-405、JR-600A、JR-600E、JR-603、JR-605、JR-701、JR-800、JR-805、JR-806、JR-1000、MT-01、MT-05、MT-10EX、MT-100S、MT-100TV、MT-100Z、MT-100AQ、MT-100WP、MT-100SA、MT-100HD、MT-150EX、MT-150W、MT-300HD、MT-500B、MT-500SA、MT-500HD、MT-600B、MT-600SA、MT-700B、MT-700BS、MT-700HD、MT-700Z;
 チタン工業(株)製の商品名KR-310、KR-380、KR-380N、ST-485SA15;
 富士チタン工業(株)製の商品名TR-600、TR-700、TR-750、TR-840、TR-900;
 白石カルシウム(株)製の商品名Brilliant1500等が挙げられる。また、特開2015-067794号公報の段落番号0025~0027に記載の酸化チタン粒子を用いることもできる。
As the particles P1, commercially available particles can be preferably used. Commercially available products may be used as they are, or those that have been classified may be used. Commercially available titanium oxide particles include, for example, the trade names TYPEQUE R-550, R-580, R-630, R-670, R-680, R-780, and R-780-2 manufactured by Ishihara Sangyo Co., Ltd. , R-820, R-830, R-850, R-855, R-930, R-980, CR-50, CR-50-2, CR-57, CR-58, CR-58-2, CR -60, CR-60-2, CR-63, CR-67, CR-Super70, CR-80, CR-85, CR-90, CR-90-2, CR-93, CR-95, CR-953 , CR-97, PF-736, PF-737, PF-742, PF-690, PF-691, PF-711, PF-739, PF-740, PC-3, S-305, CR-EL, PT -301, PT-401M, PT-401L, PT-501A, PT-501R, UT771, TTO-51, TTO-80A, TTO-S-2, A-220, MPT-136, MPT-140, MPT-141 ;
Product names R-3L, R-5N, R-7E, R-11P, R-21, R-25, R-32, R-42, R-44, R-45M, manufactured by Sakai Chemical Industry Co., Ltd. R-62N, R-310, R-650, SR-1, D-918, GTR-100, FTR-700, TCR-52, A-110, A-190, SA-1, SA-1L, STR- 100A-LP, STR-100C-LP, TCA-123E;
Product names manufactured by Teika Co., Ltd. JR, JRNC, JR-301, JR-403, JR-405, JR-600A, JR-600E, JR-603, JR-605, JR-701, JR-800, JR- 805, JR-806, JR-1000, MT-01, MT-05, MT-10EX, MT-100S, MT-100TV, MT-100Z, MT-100AQ, MT-100WP, MT-100SA, MT-100HD, MT-150EX, MT-150W, MT-300HD, MT-500B, MT-500SA, MT-500HD, MT-600B, MT-600SA, MT-700B, MT-700BS, MT-700HD, MT-700Z;
Product names KR-310, KR-380, KR-380N, ST-485SA15 manufactured by Titan Kogyo Co., Ltd.;
Product names TR-600, TR-700, TR-750, TR-840, TR-900 manufactured by Fuji Titanium Industry Co., Ltd.;
Examples include Brilliant 1500, a product of Shiraishi Calcium Co., Ltd. Further, titanium oxide particles described in paragraph numbers 0025 to 0027 of JP-A-2015-067794 can also be used.
 チタン酸ストロンチウム粒子の市販品としては、SW-100(チタン工業(株)製)などが挙げられる。硫酸バリウム粒子の市販品としては、BF-1L(堺化学工業(株)製)などが挙げられる。酸化亜鉛粒子の市販品としては、Zincox Super F-1(ハクスイテック(株)製)などが挙げられる。酸化ジルコニウム粒子の市販品としては、Z-NX(太陽鉱工(株)製)、Zirconeo-Cp((株)アイテック製)などが挙げられる。 Commercially available strontium titanate particles include SW-100 (manufactured by Titanium Kogyo Co., Ltd.). Commercially available barium sulfate particles include BF-1L (manufactured by Sakai Chemical Industry Co., Ltd.). Commercially available zinc oxide particles include Zincox Super F-1 (manufactured by Hakusui Tech Co., Ltd.). Commercially available zirconium oxide particles include Z-NX (manufactured by Taiyo Koko Co., Ltd.) and Zirconeo-Cp (manufactured by ITEC Co., Ltd.).
 粒子P1の含有量は、組成物の全固形分中5~90質量%であることが好ましい。上限は、85質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。下限は、6質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましい。 The content of particles P1 is preferably 5 to 90% by mass based on the total solid content of the composition. The upper limit is preferably 85% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less. The lower limit is preferably 6% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more.
 本発明の組成物は、粒子P1を1種類のみ含んでいてもよく、2種以上含んでいてもよい。粒子P1を1種類のみ含む場合はより優れた保存安定性が得られやすい。また、粒子P1を2種以上含む場合は、光散乱の角度依存性をより低減することができる。粒子P1を2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The composition of the present invention may contain only one type of particle P1, or may contain two or more types of particles P1. When only one type of particle P1 is included, better storage stability is likely to be obtained. Furthermore, when two or more types of particles P1 are included, the angular dependence of light scattering can be further reduced. When two or more types of particles P1 are included, the total amount thereof is preferably within the above range.
<<粒子P2>>
 本発明の組成物は、屈折率が2.0未満で、平均一次粒子径が500nm以上で、粒子P1よりも比重の小さい粒子(以下、粒子P2ともいう)を含有することができる。本発明の組成物が粒子P1のほかに更に粒子P2を含む場合は、粒子P1と粒子P2との間で散乱が生じて、膜に照射された光を効率よく散乱して透過させることができる。このため、このような組成物を用いることでより光散乱性に優れた膜を形成することができる。
<<Particle P2>>
The composition of the present invention can contain particles having a refractive index of less than 2.0, an average primary particle size of 500 nm or more, and a specific gravity smaller than particle P1 (hereinafter also referred to as particle P2). When the composition of the present invention further contains particles P2 in addition to particles P1, scattering occurs between particles P1 and P2, and the light irradiated to the film can be efficiently scattered and transmitted. . Therefore, by using such a composition, a film with better light scattering properties can be formed.
 粒子P2の平均一次粒子径は、500nm以上であり、500nm以上6000nm以下であることが好ましく、500nm以上5000nm以下であることがより好ましく、500nm以上3000nm未満であることが更に好ましく、500nm以上2500nm以下であることがより一層好ましく、500nm以上2000nm以下であることが更に一層好ましく、500nm以上1500nm以下であることが特に好ましく、500nm以上1000nm以下であることが最も好ましい。 The average primary particle diameter of the particles P2 is 500 nm or more, preferably 500 nm or more and 6000 nm or less, more preferably 500 nm or more and 5000 nm or less, even more preferably 500 nm or more and less than 3000 nm, and 500 nm or more and 2500 nm or less. It is even more preferably 500 nm or more and 2000 nm or less, particularly preferably 500 nm or more and 1500 nm or less, and most preferably 500 nm or more and 1000 nm or less.
 粒子P2の屈折率は、2.0未満であり、1.9以下であることが好ましく、1.8以下であることが更に好ましく、1.7以下であることが特に好ましい。粒子P2の屈折率の下限は特に限定はないが1.0以上とすることができ、1.1以上とすることもできる。 The refractive index of the particles P2 is less than 2.0, preferably 1.9 or less, more preferably 1.8 or less, and particularly preferably 1.7 or less. The lower limit of the refractive index of the particles P2 is not particularly limited, but can be 1.0 or more, and can also be 1.1 or more.
 粒子P1の屈折率と粒子P2の屈折率の差は、光散乱性に優れた膜が得られやすいという理由から、0.5以上であることが好ましく、0.7以上であることがより好ましく、0.9以上であることが更に好ましい。なお、本発明の組成物が粒子P1を2種以上含む場合は、上記屈折率の差の算出にあたり、粒子P1の屈折率の値は、2種以上の粒子P1の屈折率の質量平均値を用いる。本発明の組成物が粒子P2を2種以上含む場合についても同様である。 The difference between the refractive index of the particles P1 and the refractive index of the particles P2 is preferably 0.5 or more, more preferably 0.7 or more, because a film with excellent light scattering properties can be easily obtained. , more preferably 0.9 or more. In addition, when the composition of the present invention contains two or more types of particles P1, in calculating the above-mentioned difference in refractive index, the value of the refractive index of the particles P1 is calculated from the mass average value of the refractive index of the two or more types of particles P1. use The same applies to the case where the composition of the present invention contains two or more types of particles P2.
 粒子P2の比重は、2.5g/cm以下であることが好ましく、2.4g/cm以下であることがより好ましく、2.2g/cm以下であることが更に好ましく、2.0g/cm以下であることが特に好ましい。粒子P2の比重の下限は特に限定はないが、0.5g/cm以上とすることができ、0.9g/cm以上とすることもできる。 The specific gravity of the particles P2 is preferably 2.5 g/cm 3 or less, more preferably 2.4 g/cm 3 or less, even more preferably 2.2 g/cm 3 or less, and 2.0 g/cm 3 or less. /cm 3 or less is particularly preferable. The lower limit of the specific gravity of the particles P2 is not particularly limited, but it can be 0.5 g/cm 3 or more, and can also be 0.9 g/cm 3 or more.
 粒子P2は、透明または白色の粒子であることが好ましい。粒子P2としては、無機粒子および樹脂粒子などが挙げられる。無機粒子の種類としては、シリカ粒子、中空酸化チタン粒子、中空ジルコニア粒子などが挙げられ、シリカ粒子であることが好ましい。無機粒子の市販品としては、富士シリシア化学(株)製のサイリシアシリーズ(例えば、サイリシア310Pなど)、(株)日本触媒製のシーホスターシリーズ(例えば、シーホスターKE-S250)などが挙げられる。 The particles P2 are preferably transparent or white particles. Examples of the particles P2 include inorganic particles and resin particles. Examples of the inorganic particles include silica particles, hollow titanium oxide particles, hollow zirconia particles, and silica particles are preferred. Commercially available inorganic particles include the Thylysia series (for example, Thylysia 310P, etc.) manufactured by Fuji Silysia Chemical Co., Ltd., and the Seahoster series (for example, Seahoster KE-S250) manufactured by Nippon Shokubai Co., Ltd.
 樹脂粒子としては、(メタ)アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリエステル樹脂、メラニン樹脂、シリコーン樹脂などの合成樹脂からなる粒子、及び、キチン、キトサン、セルロース、架橋澱粉、架橋セルロース等の天然高分子からなる粒子などが挙げられる。なかでも、合成樹脂粒子は、粒子サイズを制御しやすいなどの利点があり、好ましく用いられる。 Examples of resin particles include particles made of synthetic resins such as (meth)acrylic resin, styrene resin, polyamide resin, polyimide resin, polyolefin resin, polyurethane resin, polyurea resin, polyester resin, melanin resin, and silicone resin, as well as chitin and chitosan. Examples include particles made of natural polymers such as cellulose, crosslinked starch, and crosslinked cellulose. Among these, synthetic resin particles are preferably used because they have advantages such as easy control of particle size.
 樹脂粒子の製造方法としては、ポリメチルメタクリレート(PMMA)のような比較的に硬い樹脂の場合では、破砕法による微粒子化も可能であるが、乳化懸濁重合法により樹脂粒子を製造する方法が、粒子径制御の容易性、精度から好ましい。樹脂粒子の製造方法については、「超微粒子と材料」日本材料科学会編、裳華房、1993年発刊、「微粒子・粉体の作製と応用」川口春馬監修、シーエムシー出版、2005年発刊等に詳細に記載されている。 In the case of relatively hard resins such as polymethyl methacrylate (PMMA), resin particles can be made into fine particles by crushing, but resin particles can be produced by emulsion suspension polymerization. , preferred from the viewpoint of ease of particle size control and accuracy. Regarding the manufacturing method of resin particles, see "Ultrafine Particles and Materials" edited by the Japan Materials Science Society, Shokabo, published in 1993, "Preparation and Application of Fine Particles and Powders" supervised by Haruma Kawaguchi, CMC Publishing, published in 2005. etc. are described in detail.
 樹脂粒子は市販品としても入手可能であり、例えば、MX-40T、MX-80H3wT、MX-150、MX-180TA、MX-300、MX-500、MX-1000、MX-1500H、MR-2HG、MR-7HG,MR-10HG、MR-3GSN、MR-5GSN、MR-7G、MR-10G、MR-5C、MR-7GC(以上、綜研化学(株)製、アクリル樹脂粒子)、SX-130H、SX-350H、SX-500H(以上、綜研化学(株)製、スチレン樹脂粒子)、MBX-5、MBX-8、MBX-12MBX-15、MBX-20、MB20X-5、MB30X-5、MB30X-8、MB30X-20、SBX-6、SBX-8、SBX-12、SBX-17(以上、積水化成品工業(株)製、アクリル樹脂粒子)、ケミパールW100、W200、W300、W308、W310、W400、W401、W405、W410、W500、WF640、W700、W800、W900、W950、WP100(以上、三井化学(株)製、ポリオレフィン樹脂粒子)、トスパール120(モメンティブ・パフォーマンス・テクノロジーズ社製、シリコーン樹脂粒子)、オプトビーズ2000M(日産化学(株)製、メラニン樹脂粒子)などが挙げられる。 Resin particles are also available as commercial products, such as MX-40T, MX-80H3wT, MX-150, MX-180TA, MX-300, MX-500, MX-1000, MX-1500H, MR-2HG, MR-7HG, MR-10HG, MR-3GSN, MR-5GSN, MR-7G, MR-10G, MR-5C, MR-7GC (acrylic resin particles manufactured by Soken Chemical Co., Ltd.), SX-130H, SX-350H, SX-500H (manufactured by Soken Kagaku Co., Ltd., styrene resin particles), MBX-5, MBX-8, MBX-12MBX-15, MBX-20, MB20X-5, MB30X-5, MB30X- 8. MB30X-20, SBX-6, SBX-8, SBX-12, SBX-17 (all manufactured by Sekisui Plastics Co., Ltd., acrylic resin particles), Chemipearl W100, W200, W300, W308, W310, W400 , W401, W405, W410, W500, WF640, W700, W800, W900, W950, WP100 (manufactured by Mitsui Chemicals, Inc., polyolefin resin particles), Tospearl 120 (manufactured by Momentive Performance Technologies, silicone resin particles) , Optobeads 2000M (manufactured by Nissan Chemical Co., Ltd., melanin resin particles), and the like.
 粒子P2は、中空粒子であることも好ましい。中空粒子とは、粒子表面より内部に粒子を構成する素材が存在しない空隙部分を持つ粒子のことを指す。空隙部分のサイズや形状、数は特に限定されない。中心部分に空隙部分を持つ外殻構造であってもよいし、粒子内部に微細な空隙部が複数分散した構造であってもよい。 It is also preferable that the particles P2 are hollow particles. A hollow particle refers to a particle that has voids inside the particle surface where no material constituting the particle exists. The size, shape, and number of the void portions are not particularly limited. The particle may have an outer shell structure with a void in the center, or may have a structure in which a plurality of fine voids are dispersed inside the particle.
 中空粒子の空隙率は1~90%であることが好ましい。空隙率の下限は5%以上であることが好ましく、10%以上であることがより好ましい。空隙率の上限は85%以下であることが好ましく、80%以下であることがより好ましい。なお、中空粒子の空隙率とは、中空粒子の体積の総量に対する空隙が占める体積の割合を言う。中空粒子の空隙率は、透過型電子顕微鏡を用いて中空粒子を観察して外径と空隙径を測長し、下記の式によって「体積の総量に対する空隙が占める体積の割合」を算出することで測ることが出来る。
 式:{(空隙径)/(外径)}×100%
The porosity of the hollow particles is preferably 1 to 90%. The lower limit of the porosity is preferably 5% or more, more preferably 10% or more. The upper limit of the porosity is preferably 85% or less, more preferably 80% or less. Note that the porosity of the hollow particles refers to the ratio of the volume occupied by voids to the total volume of the hollow particles. The porosity of hollow particles can be determined by observing the hollow particles using a transmission electron microscope, measuring the outer diameter and pore diameter, and calculating the "ratio of volume occupied by pores to the total volume" using the following formula. It can be measured with
Formula: {(void diameter) 3 / (outer diameter) 3 }×100%
 より具体的には、透過型電子顕微鏡によって観察された中空粒子を任意に100個選定し、これらの中空粒子についてそれぞれ外側と空隙の円相当径を測長して外径、空隙径とし、上記式によって空隙率を算出してその平均値を空隙率とする方法が挙げられる。また、粒子のシェルの材料(その屈折率)と中空状であることがわかっている場合には、粒子屈折率の測定から知ることも出来る。 More specifically, 100 hollow particles observed with a transmission electron microscope are arbitrarily selected, and the circular equivalent diameters of the outside and voids of each of these hollow particles are measured to determine the outer diameter and void diameter, and the above-mentioned One method is to calculate the porosity using a formula and use the average value as the porosity. Furthermore, if the material of the shell of the particle (its refractive index) and the hollow shape are known, this can be determined by measuring the particle's refractive index.
 中空粒子の形状は、球形であることが好ましいが、不定形等の球形以外の形状であってもよい。 The shape of the hollow particles is preferably spherical, but may have a shape other than spherical, such as an amorphous shape.
 中空粒子は、無機材料で構成された中空粒子(以下、中空無機粒子ともいう)であってもよく、樹脂材料で構成された中空粒子(以下、中空樹脂粒子ともいう)であってもよい。 The hollow particles may be hollow particles made of an inorganic material (hereinafter also referred to as hollow inorganic particles) or hollow particles made of a resin material (hereinafter also referred to as hollow resin particles).
 中空樹脂粒子を構成する材料としては、(メタ)アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリエステル樹脂、シリコーン樹脂、メラニン樹脂などが挙げられ、(メタ)アクリル樹脂およびスチレン樹脂が好ましく、(メタ)アクリル樹脂がより好ましい。中空樹脂粒子の製造方法としては、例えば、樹脂粒子に発泡剤を含有させておき、後に発泡剤を発泡させる方法や、樹脂粒子中に揮発性物質を封入しておき、後に揮発性物質をガス化させて膨張させる方法や、樹脂粒子を溶融させ、これに空気等の気体を注入する方法や、重合性単量体と非重合性の溶剤を混合して重合し、溶剤を内包した樹脂粒子を得た後、溶剤を除去する方法(以下、溶剤除去法ともいう)等が挙げられる。 Materials constituting the hollow resin particles include (meth)acrylic resin, styrene resin, polyamide resin, polyimide resin, polyolefin resin, polyurethane resin, polyurea resin, polyester resin, silicone resin, melanin resin, etc. Acrylic resins and styrene resins are preferred, and (meth)acrylic resins are more preferred. Examples of methods for producing hollow resin particles include a method in which resin particles contain a foaming agent and then the foaming agent is foamed, or a method in which a volatile substance is encapsulated in resin particles and then the volatile substance is evaporated into a gas. There are two methods: melting resin particles and injecting gas such as air into the resin particles, and mixing and polymerizing a polymerizable monomer with a non-polymerizable solvent to create resin particles that encapsulate the solvent. Examples include a method of removing the solvent after obtaining the solvent (hereinafter also referred to as a solvent removal method).
 中空無機粒子としては、中空シリカ粒子であることが好ましい。すなわち、中空無機粒子は、中心部分に空隙部分を持つシリカ粒子であることが好ましい。中空シリカ粒子の具体例としては、特開2013-237593号公報、国際公開第2007/060884号などに記載されている中空粒子が挙げられる。 The hollow inorganic particles are preferably hollow silica particles. That is, the hollow inorganic particles are preferably silica particles having a void in the center. Specific examples of hollow silica particles include hollow particles described in JP-A No. 2013-237593, International Publication No. 2007/060884, and the like.
 粒子P2の含有量は、組成物の全固形分中1~70質量%であることが好ましい。上限は、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。下限は、2質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。本発明の組成物は、粒子P2を1種類のみ含んでいてもよく、2種以上含んでいてもよい。粒子P2を1種類のみ含む場合はより優れた保存安定性が得られやすい。また、粒子P2を2種以上含む場合は、光散乱の角度依存性をより低減することができる。粒子P2を2種以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of particles P2 is preferably 1 to 70% by mass based on the total solid content of the composition. The upper limit is preferably 60% by mass or less, more preferably 50% by mass or less. The lower limit is preferably 2% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more. The composition of the present invention may contain only one type of particle P2, or may contain two or more types of particles P2. When only one type of particle P2 is included, better storage stability is likely to be obtained. Furthermore, when two or more types of particles P2 are included, the angular dependence of light scattering can be further reduced. When two or more types of particles P2 are included, the total amount thereof is preferably within the above range.
 組成物の全固形分中における粒子P1と粒子P2との合計の含有量は、30質量%以上であることが好ましく、35質量%以上であることがより好ましく、40質量%以上であることが更に好ましい。上限は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。 The total content of particles P1 and particles P2 in the total solid content of the composition is preferably 30% by mass or more, more preferably 35% by mass or more, and preferably 40% by mass or more. More preferred. The upper limit is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less.
 組成物における粒子P1と粒子P2との割合については、粒子P2の100質量部に対して粒子P1が20~500質量部であることが好ましい。上限は、450質量部以下であることが好ましく、400質量部以下であることがより好ましく、300質量部以下であることが更に好ましい。下限は、25質量部以上であることが好ましく、30質量部以上であることがより好ましく、35質量部以上であることが更に好ましい。 Regarding the ratio of particles P1 and particles P2 in the composition, it is preferable that particles P1 be in an amount of 20 to 500 parts by mass relative to 100 parts by mass of particles P2. The upper limit is preferably 450 parts by mass or less, more preferably 400 parts by mass or less, and even more preferably 300 parts by mass or less. The lower limit is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, and even more preferably 35 parts by mass or more.
<<膜形成成分>>
 本発明の組成物は膜形成成分を含む。本発明で用いられる膜形成成分は、レオロジーコントロール剤と2種以上の樹脂とを含むか、または、レオロジーコントロール剤と1種以上の樹脂と1種以上の重合性モノマーとを含む。膜形成成分は、レオロジーコントロール剤と2種以上の樹脂とを含むものであることが好ましい。
<<Film-forming component>>
The composition of the present invention includes a film-forming component. The film forming component used in the present invention includes a rheology control agent and two or more resins, or a rheology control agent, one or more resins, and one or more polymerizable monomers. The film-forming component preferably contains a rheology control agent and two or more resins.
 本発明の組成物中におけるレオロジーコントロール剤の含有量は0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。下限は0.2質量%以上であることが好ましい。上限は4質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることが更に好ましい。 The content of the rheology control agent in the composition of the present invention is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass. The lower limit is preferably 0.2% by mass or more. The upper limit is preferably 4% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less.
 本発明の組成物は、上述した粒子P1の100質量部に対して、レオロジーコントロール剤を0.5~20質量部含むことが好ましい。上限は、18質量部以下であることが好ましく、16量部以下であることがより好ましく、14質量部以下であることが更に好ましい。下限は、0.8質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、1.2質量部以上であることが更に好ましい。 The composition of the present invention preferably contains 0.5 to 20 parts by mass of a rheology control agent based on 100 parts by mass of the particles P1 described above. The upper limit is preferably 18 parts by mass or less, more preferably 16 parts by mass or less, and even more preferably 14 parts by mass or less. The lower limit is preferably 0.8 parts by mass or more, more preferably 1.0 parts by mass or more, and even more preferably 1.2 parts by mass or more.
 本発明の組成物の全固形分中における樹脂の含有量は5~80質量%であることが好ましい。下限は、8質量%以上であることが好ましく、10質量%以上であることがより好ましい。上限は、75質量%以下であることが好ましく、70質量%以下であることがより好ましい。
 本発明の組成物は、樹脂100質量部に対して、レオロジーコントロール剤を0.3~30質量部含むことが好ましい。上限は、25質量部以下であることが好ましく、20量部以下であることがより好ましく、10質量部以下であることが更に好ましい。下限は、0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、1.5質量部以上であることが更に好ましい。
The content of resin in the total solid content of the composition of the present invention is preferably 5 to 80% by mass. The lower limit is preferably 8% by mass or more, more preferably 10% by mass or more. The upper limit is preferably 75% by mass or less, more preferably 70% by mass or less.
The composition of the present invention preferably contains 0.3 to 30 parts by weight of a rheology control agent based on 100 parts by weight of the resin. The upper limit is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 10 parts by mass or less. The lower limit is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, and even more preferably 1.5 parts by mass or more.
 膜形成成分は、上記粒子P1の分散剤としての樹脂と、バインダーとしての樹脂と、レオロジーコントロール剤とをそれぞれ含むことが好ましい。また、バインダーとしての樹脂は、分散剤としての樹脂との相溶性が低いものが好ましい。このような樹脂を組み合わせて用いることで、製膜時に膜中に上述した相分離構造が形成されやすくなり、得られる膜の光散乱性をより向上させることができる。 It is preferable that the film-forming components each include a resin as a dispersant for the particles P1, a resin as a binder, and a rheology control agent. Further, the resin used as the binder preferably has low compatibility with the resin used as the dispersant. By using such resins in combination, the above-mentioned phase separation structure is easily formed in the film during film formation, and the light scattering properties of the resulting film can be further improved.
 本発明の組成物は、分散剤としての樹脂の100質量部に対して、バインダーとしての樹脂を40~300質量部含むことが好ましい。上限は、250質量部以下であることが好ましく、200量部以下であることがより好ましい。下限は、50質量部以上であることが好ましく、100質量部以上であることがより好ましい。
 本発明の組成物は、上述した粒子P1の100質量部に対して、分散剤としての樹脂を5~150質量部含むことが好ましい。上限は、140質量部以下であることが好ましく、125量部以下であることがより好ましく、100質量部以下であることが更に好ましい。下限は、10質量部以上であることが好ましく、15質量部以上であることがより好ましく、25質量部以上であることが更に好ましい。
 本発明の組成物は、バインダーとしての樹脂100質量部に対して、レオロジーコントロール剤を1~50質量部含むことが好ましい。上限は、45質量部以下であることが好ましく、40量部以下であることがより好ましい。下限は、2質量部以上であることが好ましく、4質量部以上であることがより好ましい。
 本発明の組成物は、分散剤としての樹脂100質量部に対して、レオロジーコントロール剤を1~50質量部含むことが好ましい。上限は、45質量部以下であることが好ましく、40量部以下であることがより好ましい。下限は、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。
The composition of the present invention preferably contains 40 to 300 parts by weight of a resin as a binder per 100 parts by weight of a resin as a dispersant. The upper limit is preferably 250 parts by mass or less, more preferably 200 parts by mass or less. The lower limit is preferably 50 parts by mass or more, more preferably 100 parts by mass or more.
The composition of the present invention preferably contains 5 to 150 parts by mass of a resin as a dispersant based on 100 parts by mass of the particles P1 described above. The upper limit is preferably 140 parts by mass or less, more preferably 125 parts by mass or less, and even more preferably 100 parts by mass or less. The lower limit is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and even more preferably 25 parts by mass or more.
The composition of the present invention preferably contains 1 to 50 parts by weight of a rheology control agent based on 100 parts by weight of the resin as a binder. The upper limit is preferably 45 parts by mass or less, more preferably 40 parts by mass or less. The lower limit is preferably 2 parts by mass or more, more preferably 4 parts by mass or more.
The composition of the present invention preferably contains 1 to 50 parts by weight of a rheology control agent per 100 parts by weight of the resin as a dispersant. The upper limit is preferably 45 parts by mass or less, more preferably 40 parts by mass or less. The lower limit is preferably 3 parts by mass or more, more preferably 5 parts by mass or more.
 分散剤としての樹脂およびバインダーとしての樹脂としては、後述する樹脂の中から適宜選択して用いることができる。また、分散剤は、市販品としても入手可能であり、そのような具体例としては、ビックケミー社製のDisperbykシリーズ(例えば、Disperbyk-111、2001など)、日本ルーブリゾール(株)製のソルスパースシリーズ(例えば、ソルスパース20000、76500など)、味の素ファインテクノ(株)製のアジスパーシリーズ等が挙げられる。また、特開2012-137564号公報の段落番号0129に記載された製品、特開2017-194662号公報の段落番号0235に記載された製品を分散剤として用いることもできる。 The resin as a dispersant and the resin as a binder can be appropriately selected from the resins described below. Further, dispersants are also available as commercial products, and specific examples include the Disperbyk series (for example, Disperbyk-111, 2001, etc.) manufactured by Byk Chemie, and Solsperse manufactured by Nippon Lubrizol Co., Ltd. series (for example, Solsperse 20000, 76500, etc.), Ajisperse series manufactured by Ajinomoto Fine Techno, Inc., and the like. Further, the product described in paragraph number 0129 of JP 2012-137564A and the product described in paragraph number 0235 of JP 2017-194662A can also be used as a dispersant.
 膜形成成分は、3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂と、グラフト鎖を有する繰り返し単位を有する樹脂と、レオロジーコントロール剤と、をそれぞれ含むことが好ましい。この態様によれば、組成物中での粒子の凝集などをより効果的に抑制でき、より優れた保存安定性が得られる。更には、製膜時に膜中に上述した相分離構造が形成されやすくなり、得られる膜の光散乱性をより向上させることができる。また、得られる膜中にレオロジーコントロール剤によって分子間相互作用を介した強固なネットワーク構造が形成され易くなり、加熱による膜中の粒子の分散状態などの変動をより効果的に抑制することができ、得られる膜の耐熱性をより向上できる。3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂、および、グラフト鎖を有する繰り返し単位を有する樹脂の詳細については後述する。
 膜形成成分が3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂とグラフト鎖を有する繰り返し単位を含む樹脂と含む場合、いずれか一方の樹脂が分散剤であり、他方の樹脂がバインダーであることが好ましい。また、3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂におけるポリマー鎖は、グラフト鎖を有する繰り返し単位を含む樹脂におけるグラフト鎖とは異なる構造の繰り返し単位で構成されたポリマー鎖であることが好ましい。例えば、3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂におけるポリマー鎖が、ポリエーテル構造、ポリエステル構造、ポリ(メタ)アクリル構造またはポリスチレン構造の繰り返し単位で構成されたポリマー鎖であり、グラフト鎖を有する繰り返し単位を含む樹脂におけるグラフト鎖が、上記ポリマー鎖とは異なる構造の繰り返し単位であって、ポリエーテル構造、ポリエステル構造、ポリ(メタ)アクリル構造またはポリスチレン構造で構成されたグラフト鎖である組み合わせが挙げられる。
 グラフト鎖を有する繰り返し単位を含む樹脂の含有量は、3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂の100質量部に対して20~250質量部であることが好ましい。上限は、230質量部以下であることが好ましく、200量部以下であることがより好ましい。下限は、30質量部以上であることが好ましく、50質量部以上であることがより好ましい。
 本発明の組成物に含まれる樹脂中における3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂とグラフト鎖を有する繰り返し単位を含む樹脂との合計の含有量は、5質量%以上含であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。上限は、100質量%以下とすることができる。
The film-forming component preferably includes a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher-valent linking group, a resin having a repeating unit having a graft chain, and a rheology control agent. According to this aspect, aggregation of particles in the composition can be more effectively suppressed, and better storage stability can be obtained. Furthermore, the above-mentioned phase separation structure is easily formed in the film during film formation, and the light scattering properties of the resulting film can be further improved. In addition, the rheology control agent facilitates the formation of a strong network structure through intermolecular interactions in the resulting film, making it possible to more effectively suppress changes in the dispersion state of particles in the film due to heating. , the heat resistance of the resulting film can be further improved. Details of the resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher-valent linking group and the resin having a repeating unit having a graft chain will be described later.
When the film-forming component contains a resin having a structure in which multiple polymer chains are bonded to a trivalent or higher linking group and a resin containing a repeating unit having a graft chain, one of the resins is a dispersant, and the other resin is a dispersant. is preferably a binder. In addition, the polymer chain in a resin with a structure in which multiple polymer chains are bonded to a trivalent or higher linking group is a polymer chain composed of repeating units with a different structure from the graft chain in a resin containing a repeating unit with a graft chain. It is preferable that For example, a polymer chain in a resin with a structure in which multiple polymer chains are bonded to a trivalent or higher linking group is a polymer chain composed of repeating units of a polyether structure, a polyester structure, a poly(meth)acrylic structure, or a polystyrene structure. and the graft chain in the resin containing a repeating unit having a graft chain is a repeating unit with a structure different from the above polymer chain, and is composed of a polyether structure, a polyester structure, a poly(meth)acrylic structure, or a polystyrene structure. Examples include combinations of grafted chains.
The content of the resin containing a repeating unit having a graft chain is preferably 20 to 250 parts by weight based on 100 parts by weight of the resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher linking group. The upper limit is preferably 230 parts by mass or less, more preferably 200 parts by mass or less. The lower limit is preferably 30 parts by mass or more, more preferably 50 parts by mass or more.
The total content of the resin containing a structure in which a plurality of polymer chains are bonded to a trivalent or higher-valent linking group and the resin containing a repeating unit having a graft chain in the resin contained in the composition of the present invention is 5% by mass. The content is preferably at least 8% by mass, more preferably at least 8% by mass, even more preferably at least 10% by mass. The upper limit can be 100% by mass or less.
 膜形成成分が重合性モノマーを含有する場合、重合性モノマーの含有量は、組成物の全固形分中0.1~40質量%であることが好ましい。下限は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。上限は、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。重合性モノマーは、1種単独で用いてもよいし、2種以上を併用してもよい。重合性モノマーを2種以上併用する場合は、合計量が上記範囲となることが好ましい。また、重合性モノマーを2種併用する場合は、ラジカル重合性モノマーのみを2種以上用いてもよく、ラジカル重合性モノマーとカチオン重合性モノマーとを併用してもよい。 When the film-forming component contains a polymerizable monomer, the content of the polymerizable monomer is preferably 0.1 to 40% by mass based on the total solid content of the composition. The lower limit is preferably 0.5% by mass or more, more preferably 1% by mass or more. The upper limit is preferably 30% by mass or less, more preferably 20% by mass or less. The polymerizable monomers may be used alone or in combination of two or more. When two or more types of polymerizable monomers are used in combination, the total amount is preferably within the above range. Furthermore, when two types of polymerizable monomers are used in combination, two or more types of radically polymerizable monomers may be used alone, or a radically polymerizable monomer and a cationically polymerizable monomer may be used in combination.
 膜形成成分が重合性モノマーを含有する場合、重合性モノマーと樹脂との合計の含有量は、組成物の全固形分中10~90質量%であることが好ましい。上限は、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。下限は、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。 When the film-forming component contains a polymerizable monomer, the total content of the polymerizable monomer and resin is preferably 10 to 90% by mass based on the total solid content of the composition. The upper limit is preferably 80% by mass or less, more preferably 75% by mass or less, and even more preferably 70% by mass or less. The lower limit is preferably 20% by mass or more, more preferably 30% by mass or more.
 膜形成成分が重合性モノマーを含有する場合、本発明の組成物は、樹脂100質量部に対して重合性モノマーを10~400質量部含むことが好ましい。下限は、15質量部以上が好ましく、20質量部以上がより好ましい。上限は、380質量部以下が好ましく、350質量部以下がより好ましい。 When the film-forming component contains a polymerizable monomer, the composition of the present invention preferably contains 10 to 400 parts by mass of the polymerizable monomer based on 100 parts by mass of the resin. The lower limit is preferably 15 parts by mass or more, more preferably 20 parts by mass or more. The upper limit is preferably 380 parts by mass or less, more preferably 350 parts by mass or less.
 膜形成成分が重合性モノマーを含有する場合、本発明の組成物は、重合性モノマー100質量部に対してレオロジーコントロール剤を0.5~20質量部含むことが好ましい。下限は、1質量部以上が好ましく、3質量部以上がより好ましい。上限は、18質量部以下が好ましく、15質量部以下がより好ましい。 When the film-forming component contains a polymerizable monomer, the composition of the present invention preferably contains 0.5 to 20 parts by mass of a rheology control agent per 100 parts by mass of the polymerizable monomer. The lower limit is preferably 1 part by mass or more, more preferably 3 parts by mass or more. The upper limit is preferably 18 parts by mass or less, more preferably 15 parts by mass or less.
 以下、膜形成成分について詳細に説明する。 Hereinafter, the film-forming components will be explained in detail.
(レオロジーコントロール剤)
 膜形成成分は、レオロジーコントロール剤を含む。レオロジーコントロール剤とは、組成物の擬塑性やチキソ性を付与する成分のことであり、揺変剤やチキソトロピー付与剤とも言われている。
(rheology control agent)
The film forming component includes a rheology control agent. A rheology control agent is a component that imparts pseudoplasticity or thixotropy to a composition, and is also referred to as a thixotropic agent or a thixotropy imparting agent.
 レオロジーコントロール剤としては、有機化合物および粘土鉱物などが挙げられ、有機溶剤と均一に混ざりやすく、膜中で均一にネットワーク構造を形成できて、膜耐性をより向上させることができるという理由から有機化合物であることが好ましい。 Examples of rheology control agents include organic compounds and clay minerals. Organic compounds are preferred because they are easily mixed with organic solvents, can form a uniform network structure in the film, and can further improve film resistance. It is preferable that
 レオロジーコントロール剤として用いられる粘土鉱物としては、ベントナイト、シリカ、炭酸カルシウムなどが挙げられる。これらの粘土鉱物は、4級アンモニウムイオン、カルボン酸、リン酸などで処理されていてもよい。粘土鉱物の市販品としては、ルーセンタイトSAN、ルーセンタイトSTN、ルーセンタイトSEN、ルーセンタイトSPN、ソマシフME-100、ソマシフMAE、ソマシフMTE、ソマシフMEE、ソマシフMPE(以上、コープケミカル(株)製)、エスベン、エスベンC、エスベンE、エスベンW、エスベンP、エスベンWX、エスベンN-400、エスベンNX、エスベンNX80、エスベンNO12S、エスベンNEZ、エスベンNO12、エスベンNE、エスベンNZ、エスベンNZ70、オルガナイト、オルガナイトD、オルガナイトT(以上、(株)ホージュン製);クニピアF、クニピアG、クニピアG4(商品名、いずれもクニミネ工業(株)製);チクソゲルVZ、クレイトンHT、クレイトン40(以上、ロックウッド アディティブズ社製)、GARAMITE-1958(ビックケミー社製)などが挙げられる。 Clay minerals used as rheology control agents include bentonite, silica, and calcium carbonate. These clay minerals may be treated with quaternary ammonium ions, carboxylic acids, phosphoric acids, etc. Commercially available clay minerals include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Somasif ME-100, Somasif MAE, Somasif MTE, Somasif MEE, Somasif MPE (manufactured by Co-op Chemical Co., Ltd.). , Esben, Esben C, Esben E, Esben W, Esben P, Esben WX, Esben N-400, Esben NX, Esben NX80, Esben NO12S, Esben NEZ, Esben NO12, Esben NE, Esben NZ, Esben NZ70, Organite, Organite D, Organite T (all manufactured by Hojun Co., Ltd.); Kunipia F, Kunipia G, Kunipia G4 (trade names, all manufactured by Kunimine Industries Co., Ltd.); Thixogel VZ, Clayton HT, Clayton 40 (all manufactured by Kunimine Industries, Ltd.); (manufactured by Rockwood Additives), GARAMITE-1958 (manufactured by Bick-Chemie), and the like.
 レオロジーコントロール剤として用いられる有機化合物としては、エステル構造、エーテル構造、アミド構造、ウレア構造、ウレタン構造からなる群より選ばれる少なくとも1種の構造を有する有機化合物であることが好ましく、アミド構造、ウレア構造およびウレタン構造からなる群より選ばれる少なくとも1種の構造を有する有機化合物であることがより好ましく、アミド構造を有する有機化合物であることがより好ましい。
 上記有機化合物は、アミド化合物、ウレタン化合物またはウレア化合物であることが好ましく、アミド化合物であることがより好ましい。レオロジーコントロール剤としてアミド化合物を用いることにより、組成物の保存安定性を高めつつ、得られる膜の光散乱性および耐熱性をより向上させることができる。組成物中にて、アミド化合物のアミド構造の部位にて樹脂と水素結合が形成され、組成物のチキソ性をより高めることができる。このため、組成物の保存安定性をより向上できる。また、製膜時においては、粒子に吸着している樹脂などの粒子近傍に存在している樹脂や粒子同士の凝集を促進して相分離構造の形成をより促進させることができ、得られる膜の光散乱性をより向上させることができる。更には、製膜時において、膜中により強固なネットワーク構造を形成させることができ、得られる膜の耐熱性をより向上させることもできる。
The organic compound used as a rheology control agent is preferably an organic compound having at least one structure selected from the group consisting of an ester structure, an ether structure, an amide structure, a urea structure, and a urethane structure. An organic compound having at least one structure selected from the group consisting of a structure and a urethane structure is more preferable, and an organic compound having an amide structure is more preferable.
The organic compound is preferably an amide compound, a urethane compound, or a urea compound, and more preferably an amide compound. By using an amide compound as a rheology control agent, it is possible to further improve the light scattering properties and heat resistance of the resulting film while increasing the storage stability of the composition. In the composition, a hydrogen bond is formed with the resin at the amide structure site of the amide compound, and the thixotropy of the composition can be further enhanced. Therefore, the storage stability of the composition can be further improved. In addition, during film formation, the formation of a phase-separated structure can be further promoted by promoting the aggregation of resins existing near the particles, such as resins adsorbed to the particles, and particles, thereby further promoting the formation of a phase-separated structure. can further improve the light scattering properties of. Furthermore, during film formation, a stronger network structure can be formed in the film, and the heat resistance of the resulting film can be further improved.
 アミド化合物としては、脂肪酸アミド、ポリアミド、ポリアミノアミド、および、これらの変性物などが挙げられ、ポリアミノアミド及びその変性物であることが好ましい。 Examples of the amide compound include fatty acid amide, polyamide, polyaminoamide, and modified products thereof, and preferably polyaminoamide and modified products thereof.
 上記変性物としては、カルボン酸塩、スルホン酸、リン酸塩、エステル塩などが挙げられ、カルボン酸塩であることが好ましい。 Examples of the above-mentioned modified products include carboxylates, sulfonic acids, phosphates, ester salts, etc., and carboxylates are preferred.
 レオロジーコントロール剤として用いられる有機化合物の重量平均分子量は、200~100000であることが好ましい。下限は、500以上であることが好ましく、1000以上であることがより好ましい。上限は80000以下であることが好ましく、50000以下であることがより好ましい。 The weight average molecular weight of the organic compound used as the rheology control agent is preferably 200 to 100,000. The lower limit is preferably 500 or more, more preferably 1000 or more. The upper limit is preferably 80,000 or less, more preferably 50,000 or less.
 レオロジーコントロール剤として用いられる有機化合物の市販品としては、DISPARLON DA-1401、DISPARLON 1850、DISPARLON PW-36、DISPARLON 1831、DISPARLON DA-703-50、DISPARLON 1860、DISPARLON DA-325、DISPARLON DA-375、DISPARLON DA-234、DISPARLON 6700(以上、楠本化成(株)製)、BYK-P 105、BYK-W 940、BYK-W 961、BYK-W 966、BYK-W 980、ANTI-TERRA-204(以上、ビックケミー社製)などが挙げられる。 Commercially available organic compounds used as rheology control agents include DISPARLON DA-1401, DISPARLON 1850, DISPARLON PW-36, DISPARLON 1831, DISPARLON DA-703-50, and DISPARLON. 1860, DISPARLON DA-325, DISPARLON DA-375, DISPARLON DA-234, DISPARLON 6700 (manufactured by Kusumoto Kasei Co., Ltd.), BYK-P 105, BYK-W 940, BYK-W 961, BYK-W 966, BYK-W 980, ANTI-TERRA- 204 (or more (manufactured by Bikkemie Co., Ltd.).
 レオロジーコントロール剤のアミン価は、200mgKOH/g以下であることが好ましく、100mgKOH/g以下であることがより好ましく、50mgKOH/g以下であることが更に好ましい。下限は、5mgKOH/g以上であることが好ましく、8mgKOH/g以上であることがより好ましく、10mgKOH/g以上であることが更に好ましい。 The amine value of the rheology control agent is preferably 200 mgKOH/g or less, more preferably 100 mgKOH/g or less, and even more preferably 50 mgKOH/g or less. The lower limit is preferably 5 mgKOH/g or more, more preferably 8 mgKOH/g or more, and even more preferably 10 mgKOH/g or more.
 レオロジーコントロール剤の酸価は、400mgKOH/g以下であることが好ましく、200mgKOH/g以下であることがより好ましく、100mgKOH/g以下であることが更に好ましく、60mgKOH/g以下であることがより一層好ましく、45mgKOH/g以下であることが特に好ましい。下限は、5mgKOH/g以上であることが好ましく、10mgKOH/g以上であることがより好ましく、15mgKOH/g以上であることが更に好ましい。 The acid value of the rheology control agent is preferably 400 mgKOH/g or less, more preferably 200 mgKOH/g or less, even more preferably 100 mgKOH/g or less, even more preferably 60 mgKOH/g or less. Preferably, it is particularly preferably 45 mgKOH/g or less. The lower limit is preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, and even more preferably 15 mgKOH/g or more.
(樹脂)
 膜形成成分は樹脂を含む。樹脂としては、公知の樹脂を任意に使用できる。例えば、(メタ)アクリル樹脂、(メタ)アクリルアミド樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、シリコーン樹脂、ウレタン樹脂などが挙げられる。
(resin)
The film forming component includes a resin. As the resin, any known resin can be used. For example, (meth)acrylic resin, (meth)acrylamide resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyphenylene resin, polyarylene ether phosphine oxide. Examples include resins, polyimide resins, polyamide resins, polyolefin resins, cyclic olefin resins, polyester resins, styrene resins, silicone resins, and urethane resins.
 樹脂の重量平均分子量は、2000~2000000が好ましい。上限は、1000000以下が好ましく、500000以下がより好ましい。下限は、3000以上が好ましく、4000以上がより好ましく、5000以上が更に好ましい。 The weight average molecular weight of the resin is preferably 2,000 to 2,000,000. The upper limit is preferably 1,000,000 or less, more preferably 500,000 or less. The lower limit is preferably 3000 or more, more preferably 4000 or more, and even more preferably 5000 or more.
 樹脂としては、酸基を有する樹脂を用いることができる。酸基を有する樹脂としては、酸基を有する繰り返し単位を有する樹脂などが挙げられる。酸基としては、例えば、カルボキシ基、リン酸基、スルホ基、フェノール性ヒドロキシ基などが挙げられ、カルボキシ基が好ましい。また、カルボキシ基は、芳香族カルボキシ基であることが好ましい。ここで、芳香族カルボキシ基とは、芳香族環にカルボキシ基が1個以上結合した構造の基のことである。芳香族カルボキシ基において、芳香族環に結合したカルボキシ基の数は、1~4個であることが好ましく、1~2個であることがより好ましい。また、酸基を有する樹脂は、式(2-1)で表される繰り返し単位および式(2-2)で表される繰り返し単位から選ばれる少なくとも1種の繰り返し単位を含む樹脂であることが好ましい。
As the resin, a resin having an acid group can be used. Examples of resins having acid groups include resins having repeating units having acid groups. Examples of the acid group include a carboxy group, a phosphoric acid group, a sulfo group, a phenolic hydroxy group, and a carboxy group is preferred. Further, the carboxy group is preferably an aromatic carboxy group. Here, the aromatic carboxy group refers to a group having a structure in which one or more carboxy groups are bonded to an aromatic ring. In the aromatic carboxy group, the number of carboxy groups bonded to the aromatic ring is preferably 1 to 4, more preferably 1 to 2. Further, the resin having an acid group may be a resin containing at least one type of repeating unit selected from a repeating unit represented by formula (2-1) and a repeating unit represented by formula (2-2). preferable.
 式中、R21およびR22はそれぞれ独立して、水素原子またはアルキル基を表し、
 L21は単結合または2価の連結基を表す。
In the formula, R 21 and R 22 each independently represent a hydrogen atom or an alkyl group,
L 21 represents a single bond or a divalent linking group.
 L11が表す2価の連結基としては、アルキレン基、アリーレン基、-O-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-NH-、-S-およびこれらの2種以上を組み合わせた基が挙げられる。アルキレン基の炭素数は、1~30が好ましく、1~20がより好ましく、1~15が更に好ましい。アルキレン基は、直鎖、分岐、環状のいずれでもよい。アリーレン基の炭素数は、6~30が好ましく、6~20がより好ましく、6~10が更に好ましい。アルキレン基およびアリーレン基は置換基を有していてもよい。L11が表す2価の連結基は、アルキレン基を含む基であることが好ましい。 The divalent linking group represented by L 11 includes an alkylene group, an arylene group, -O-, -CO-, -COO-, -OCO-, -CONH-, -NHCO-, -NH-, -S- and Examples include groups that are combinations of two or more of these. The alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 15 carbon atoms. The alkylene group may be linear, branched, or cyclic. The number of carbon atoms in the arylene group is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 10. The alkylene group and arylene group may have a substituent. The divalent linking group represented by L 11 is preferably a group containing an alkylene group.
 酸基を有する樹脂の酸価は、20~200mgKOH/gが好ましい。下限は、25mgKOH/g以上が好ましく、30mgKOH/g以上がより好ましい。上限は、150mgKOH/g以下が好ましく、120mgKOH/g以下がより好ましい。 The acid value of the resin having acid groups is preferably 20 to 200 mgKOH/g. The lower limit is preferably 25 mgKOH/g or more, more preferably 30 mgKOH/g or more. The upper limit is preferably 150 mgKOH/g or less, more preferably 120 mgKOH/g or less.
 樹脂としては、下記式(ED1)で示される化合物および/または下記式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)由来の繰り返し単位を含む樹脂を用いることができる。 The resin includes a repeating unit derived from a compound represented by the following formula (ED1) and/or a compound represented by the following formula (ED2) (hereinafter, these compounds may be referred to as "ether dimer"). Resin can be used.
 式(ED1)中、RおよびRは、それぞれ独立して、水素原子または置換基を有していてもよい炭素数1~25の炭化水素基を表す。
 式(ED2)中、Rは、水素原子または炭素数1~30の有機基を表す。式(ED2)の具体例としては、特開2010-168539号公報の記載を参酌できる。
In formula (ED1), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
In formula (ED2), R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms. As a specific example of formula (ED2), the description in JP-A No. 2010-168539 can be referred to.
 エーテルダイマーの具体例については、特開2013-029760号公報の段落番号0317を参酌することができ、この内容は本明細書に組み込まれる。 For specific examples of ether dimers, paragraph number 0317 of JP-A-2013-029760 can be referred to, the contents of which are incorporated herein.
 樹脂としては、下記式(X)で示される化合物に由来する繰り返し単位を含む樹脂を用いることができる。
 式(X)において、Rは、水素原子またはメチル基を表し、Rは炭素数2~10のアルキレン基を表し、Rは、水素原子またはベンゼン環を含んでもよい炭素数1~20のアルキル基を表す。nは1~15の整数を表す。
As the resin, a resin containing a repeating unit derived from a compound represented by the following formula (X) can be used.
In formula (X), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 10 carbon atoms, and R 3 represents a hydrogen atom or an alkylene group having 1 to 20 carbon atoms that may contain a benzene ring. represents an alkyl group. n represents an integer from 1 to 15.
 樹脂としては、グラフト鎖を有する繰り返し単位を含む樹脂を用いることもできる。樹脂がグラフト鎖を有する繰り返し単位を含むことにより、グラフト鎖による立体障害により、組成物中での粒子の凝集などをより効果的に抑制でき、優れた保存安定性が得られる。また、製膜時に膜中に上述した相分離構造を形成し易く、得られる膜の光散乱性をより向上させやすい。グラフト鎖を有する繰り返し単位を含む樹脂は、分散剤として用いてもよく、バインダーとして用いてもよい。 As the resin, a resin containing a repeating unit having a graft chain can also be used. When the resin contains a repeating unit having a graft chain, it is possible to more effectively suppress aggregation of particles in the composition due to steric hindrance caused by the graft chain, and excellent storage stability can be obtained. Moreover, it is easy to form the above-mentioned phase separation structure in the film during film formation, and the light scattering properties of the obtained film can be more easily improved. A resin containing a repeating unit having a graft chain may be used as a dispersant or as a binder.
 グラフト鎖は、ポリエーテル構造、ポリエステル構造、ポリ(メタ)アクリル構造、ポリスチレン構造、ポリウレタン構造、ポリウレア構造およびポリアミド構造から選ばれる少なくとも1種の構造の繰り返し単位を含むことが好ましく、ポリエーテル構造、ポリエステル構造、ポリ(メタ)アクリル構造およびポリスチレン構造から選ばれる少なくとも1種の構造の繰り返し単位を含むことがより好ましく、ポリエーテル構造またはポリエステル構造の繰り返し単位を含むことが更に好ましく、ポリエステル構造の繰り返し単位を含むことが特に好ましい。 The graft chain preferably contains a repeating unit of at least one type of structure selected from a polyether structure, a polyester structure, a poly(meth)acrylic structure, a polystyrene structure, a polyurethane structure, a polyurea structure, and a polyamide structure; It is more preferable to contain a repeating unit having at least one type of structure selected from a polyester structure, a poly(meth)acrylic structure, and a polystyrene structure. It is even more preferable to contain a repeating unit having a polyether structure or a polyester structure. It is particularly preferable to include units.
 ポリエステル構造の繰り返し単位としては、式(G-1)、式(G-4)または式(G-5)で表される構造の繰り返し単位が挙げられる。ポリエーテル構造の繰り返し単位としては、式(G-2)で表される構造の繰り返し単位が挙げられる。ポリ(メタ)アクリル構造の繰り返し単位としては、式(G-3)で表される構造の繰り返し単位が挙げられる。ポリスチレン構造の繰り返し単位としては、式(G-6)で表される構造の繰り返し単位が挙げられる。
Examples of repeating units having a polyester structure include repeating units having a structure represented by formula (G-1), formula (G-4), or formula (G-5). Examples of repeating units having a polyether structure include repeating units having a structure represented by formula (G-2). Examples of the repeating unit of the poly(meth)acrylic structure include a repeating unit of the structure represented by formula (G-3). Examples of the repeating unit of the polystyrene structure include a repeating unit of the structure represented by formula (G-6).
 上記式において、RG1およびRG2は、それぞれ独立してアルキレン基を表す。RG1およびRG2が表すアルキレン基としては特に制限されないが、炭素数1~20の直鎖状又は分岐状のアルキレン基が好ましく、炭素数2~16の直鎖状又は分岐状のアルキレン基がより好ましく、炭素数3~12の直鎖状又は分岐状のアルキレン基が更に好ましい。 In the above formula, R G1 and R G2 each independently represent an alkylene group. The alkylene groups represented by R G1 and R G2 are not particularly limited, but are preferably linear or branched alkylene groups having 1 to 20 carbon atoms, and linear or branched alkylene groups having 2 to 16 carbon atoms. More preferred are linear or branched alkylene groups having 3 to 12 carbon atoms.
 上記式において、RG3は、水素原子またはメチル基を表し、QG1は、-O-または-NH-を表し、LG1は、単結合または2価の連結基を表し、RG4は、水素原子または置換基を表す。
 LG1が表す2価の連結基としては、アルキレン基(好ましくは炭素数1~12のアルキレン基)、アルキレンオキシ基(好ましくは炭素数1~12のアルキレンオキシ基)、オキシアルキレンカルボニル基(好ましくは炭素数1~12のオキシアルキレンカルボニル基)、アリーレン基(好ましくは炭素数6~20のアリーレン基)、-NH-、-SO-、-SO-、-CO-、-O-、-COO-、OCO-、-S-およびこれらの2以上を組み合わせてなる基が挙げられる。
 RG4が表す置換基としては、ヒドロキシ基、カルボキシ基、アルキル基、アリール基、複素環基、アルコキシ基、アリールオキシ基、複素環オキシ基、アルキルチオエーテル基、アリールチオエーテル基、複素環チオエーテル基、エチレン性不飽和結合含有基、エポキシ基、オキセタニル基およびブロックイソシアネート基等が挙げられる。
In the above formula, R G3 represents a hydrogen atom or a methyl group, Q G1 represents -O- or -NH-, L G1 represents a single bond or a divalent linking group, and R G4 represents hydrogen Represents an atom or substituent.
The divalent linking group represented by L G1 includes an alkylene group (preferably an alkylene group having 1 to 12 carbon atoms), an alkyleneoxy group (preferably an alkyleneoxy group having 1 to 12 carbon atoms), and an oxyalkylenecarbonyl group (preferably an alkylene group having 1 to 12 carbon atoms). is an oxyalkylenecarbonyl group having 1 to 12 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, -SO 2 -, -CO-, -O-, - Examples include COO-, OCO-, -S-, and groups formed by combining two or more of these.
The substituents represented by R G4 include hydroxy group, carboxy group, alkyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthioether group, arylthioether group, heterocyclic thioether group, Examples include ethylenically unsaturated bond-containing groups, epoxy groups, oxetanyl groups, and blocked isocyanate groups.
 RG5は、水素原子またはメチル基を表し、RG6はアリール基を表す。RG6が表すアリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が更に好ましい。RG6が表すアリール基は置換基を有していてもよい。置換基としては、ヒドロキシ基、カルボキシ基、アルキル基、アリール基、複素環基、アルコキシ基、アリールオキシ基、複素環オキシ基、アルキルチオエーテル基、アリールチオエーテル基、複素環チオエーテル基、エチレン性不飽和結合含有基、エポキシ基、オキセタニル基およびブロックイソシアネート基等が挙げられる。 R G5 represents a hydrogen atom or a methyl group, and R G6 represents an aryl group. The number of carbon atoms in the aryl group represented by R G6 is preferably 6 to 30, more preferably 6 to 20, and even more preferably 6 to 12. The aryl group represented by R G6 may have a substituent. Substituents include hydroxy group, carboxy group, alkyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthioether group, arylthioether group, heterocyclic thioether group, ethylenically unsaturated group. Examples include bond-containing groups, epoxy groups, oxetanyl groups, and blocked isocyanate groups.
 グラフト鎖の末端構造としては、特に限定されない。水素原子であってもよく、置換基であってもよい。置換基としては、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基等が挙げられる。なかでも、粒子の分散性向上などの観点から、立体反発効果を有する基が好ましく、炭素数5~24のアルキル基又はアルコキシ基が好ましい。アルキル基およびアルコキシ基は、直鎖状、分岐状、及び、環状のいずれでもよく、直鎖状または分岐状が好ましい。 The terminal structure of the graft chain is not particularly limited. It may be a hydrogen atom or a substituent. Examples of the substituent include an alkyl group, an aryl group, a heteroaryl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, and a heteroarylthioether group. Among these, from the viewpoint of improving the dispersibility of particles, groups having a steric repulsion effect are preferred, and alkyl groups or alkoxy groups having 5 to 24 carbon atoms are preferred. The alkyl group and the alkoxy group may be linear, branched, or cyclic, and preferably linear or branched.
 グラフト鎖としては、下記式(G-1a)、式(G-2a)、式(G-3a)、式(G-4a)、式(G-5a)または式(G-6a)で表される構造であることが好ましく、式(G-1a)、式(G-4a)または式(G-5a)で表される構造であることがより好ましい。
The graft chain is represented by the following formula (G-1a), formula (G-2a), formula (G-3a), formula (G-4a), formula (G-5a) or formula (G-6a). It is preferable to have a structure represented by formula (G-1a), formula (G-4a) or formula (G-5a).
 上記式において、RG1およびRG2は、それぞれアルキレン基を表し、RG3は、水素原子またはメチル基を表し、QG1は、-O-または-NH-を表し、LG1は、単結合または2価の連結基を表し、RG4は、水素原子または置換基を表し、RG5は、水素原子またはメチル基を表し、RG6はアリール基を表し、W100は水素原子または置換基を表し、n1~n6は、それぞれ独立して2以上の整数を表す。RG1~RG6、QG1、LG1については、式(G-1)~(G-6)で説明したRG1~RG6、QG1、LG1と同義であり、好ましい範囲も同様である。 In the above formula, R G1 and R G2 each represent an alkylene group, R G3 represents a hydrogen atom or a methyl group, Q G1 represents -O- or -NH-, and L G1 represents a single bond or Represents a divalent linking group, R G4 represents a hydrogen atom or a substituent, R G5 represents a hydrogen atom or a methyl group, R G6 represents an aryl group, and W 100 represents a hydrogen atom or a substituent. , n1 to n6 each independently represent an integer of 2 or more. R G1 to R G6 , Q G1 , and L G1 have the same meanings as R G1 to R G6 , Q G1 , and L G1 explained in formulas (G-1) to (G-6), and the preferred ranges are also the same. be.
 式(G-1a)~(G-6a)において、W100は置換基であることが好ましい。置換基としては、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基等が挙げられる。なかでも、粒子の分散性向上の観点から、立体反発効果を有する基が好ましく、炭素数5~24のアルキル基又はアルコキシ基が好ましい。アルキル基およびアルコキシ基は、直鎖状、分岐状、及び、環状のいずれでもよく、直鎖状または分岐状が好ましい。 In formulas (G-1a) to (G-6a), W 100 is preferably a substituent. Examples of the substituent include an alkyl group, an aryl group, a heteroaryl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, and a heteroarylthioether group. Among these, from the viewpoint of improving the dispersibility of particles, groups having a steric repulsion effect are preferred, and alkyl groups or alkoxy groups having 5 to 24 carbon atoms are preferred. The alkyl group and the alkoxy group may be linear, branched, or cyclic, and preferably linear or branched.
 式(G-1a)~(G-6a)において、n1~n6は、それぞれ2~100の整数が好ましく、2~80の整数がより好ましく、8~60の整数が更に好ましい。 In formulas (G-1a) to (G-6a), n1 to n6 are each preferably an integer of 2 to 100, more preferably an integer of 2 to 80, and even more preferably an integer of 8 to 60.
 式(G-1a)において、n1が2以上の場合における各繰り返し単位中のRG1同士は、同一であってもよく、異なっていてもよい。また、RG1が異なる繰り返し単位を2種以上含む場合においては、各繰り返し単位の配列は特に限定は無く、ランダム、交互、及び、ブロックのいずれであってもよい。式(G-2a)~式(G-6a)においても同様である。また、グラフト鎖は、式(G-1a)、式(G-4a)または式(G-5a)で表される構造であって、RG1が異なる繰り返し単位を2種以上含む構造であることも好ましい。 In formula (G-1a), when n1 is 2 or more, R G1 in each repeating unit may be the same or different. Further, when RG1 contains two or more types of different repeating units, the arrangement of each repeating unit is not particularly limited, and may be random, alternating, or block. The same applies to formulas (G-2a) to (G-6a). In addition, the graft chain has a structure represented by formula (G-1a), formula (G-4a), or formula (G-5a), and has a structure containing two or more types of repeating units in which R G1 is different. is also preferable.
 グラフト鎖を有する繰り返し単位としては、下記式(A-1-2)で表される繰り返し単位が挙げられる。
Examples of the repeating unit having a graft chain include a repeating unit represented by the following formula (A-1-2).
 式(A-1-2)中、Xは価の連結基を表し、Lは単結合または2価の連結基を表し、Wはグラフト鎖を表す。 In formula (A-1-2), X 2 represents a valent linking group, L 2 represents a single bond or a divalent linking group, and W 1 represents a graft chain.
 Xが表す3価の連結基としては、ポリ(メタ)アクリル系連結基、ポリアルキレンイミン系連結基、ポリエステル系連結基、ポリウレタン系連結基、ポリウレア系連結基、ポリアミド系連結基、ポリエーテル系連結基、ポリスチレン系連結基などが挙げられ、ポリ(メタ)アクリル系連結基、ポリアルキレンイミン系連結基であることが好ましく、ポリ(メタ)アクリル系連結基であることがより好ましい。 The trivalent linking group represented by X 2 includes a poly(meth)acrylic linking group, a polyalkyleneimine linking group, a polyester linking group, a polyurethane linking group, a polyurea linking group, a polyamide linking group, and a polyether linking group. Examples include a polystyrene-based linking group, a polystyrene-based linking group, and preferably a poly(meth)acrylic-based linking group and a polyalkyleneimine-based linking group, and more preferably a poly(meth)acrylic-based linking group.
 Lが表す2価の連結基としては、アルキレン基(好ましくは炭素数1~12のアルキレン基)、アリーレン基(好ましくは炭素数6~20のアリーレン基)、-NH-、-SO-、-SO-、-CO-、-O-、-COO-、OCO-、-S-およびこれらの2以上を組み合わせてなる基が挙げられる。 The divalent linking group represented by L 2 includes an alkylene group (preferably an alkylene group having 1 to 12 carbon atoms), an arylene group (preferably an arylene group having 6 to 20 carbon atoms), -NH-, -SO-, Examples thereof include -SO 2 -, -CO-, -O-, -COO-, OCO-, -S-, and groups formed by combining two or more of these.
 Wが表すグラフト鎖としては、上述したグラフト鎖が挙げられる。 Examples of the graft chain represented by W 1 include the above-mentioned graft chains.
 式(A-1-2)で表される繰り返し単位の具体例としては、下記式(A-1-2a)で表される繰り返し単位、下記式(A-1-2b)で表される繰り返し単位などが挙げられる。
Specific examples of the repeating unit represented by the formula (A-1-2) include a repeating unit represented by the following formula (A-1-2a) and a repeating unit represented by the following formula (A-1-2b). Examples include units.
 式(A-1-2a)中、Rb1~Rb3は、それぞれ独立して水素原子またはアルキル基を表し、Qb1は、-CO-、-COO-、-OCO-、-CONH-またはフェニレン基を表し、Lは、単結合または2価の連結基を表し、Wはグラフト鎖を表す。Rb1~Rb3が表すアルキル基の炭素数は、1~10が好ましく、1~3がより好ましく、1が更に好ましい。Qb1は、-COO-または-CONH-であることが好ましく、-COO-であることがより好ましい。 In formula (A-1-2a), R b1 to R b3 each independently represent a hydrogen atom or an alkyl group, and Q b1 is -CO-, -COO-, -OCO-, -CONH-, or phenylene. group, L 2 represents a single bond or a divalent linking group, and W 1 represents a graft chain. The number of carbon atoms in the alkyl group represented by R b1 to R b3 is preferably 1 to 10, more preferably 1 to 3, and even more preferably 1. Q b1 is preferably -COO- or -CONH-, more preferably -COO-.
 式(A-1-2b)中、Rb10およびRb11は、それぞれ独立して水素原子またはアルキル基を表し、m2は1~5の整数を表し、Lは、単結合または2価の連結基を表し、Wはグラフト鎖を表す。Rb10およびRb11が表すアルキル基の炭素数は、1~10が好ましく、1~3がより好ましい。 In formula (A-1-2b), R b10 and R b11 each independently represent a hydrogen atom or an alkyl group, m2 represents an integer of 1 to 5, and L 2 represents a single bond or a divalent linkage. group, and W 1 represents a graft chain. The number of carbon atoms in the alkyl group represented by R b10 and R b11 is preferably 1 to 10, more preferably 1 to 3.
 グラフト鎖を有する繰り返し単位の重量平均分子量(Mw)は、1000以上であることが好ましく、1000~10000であることがより好ましく、1000~7500であることが更に好ましい。なお、本明細書において、グラフト鎖を有する繰り返し単位の重量平均分子量は、同繰り返し単位の重合に用いた原料モノマーの重量平均分子量から算出した値である。例えば、グラフト鎖を有する繰り返し単位は、マクロモノマーを重合することで形成できる。ここで、マクロモノマーとは、ポリマー末端に重合性基が導入された高分子化合物を意味する。マクロモノマーを用いてグラフト鎖を有する繰り返し単位を形成した場合においては、マクロモノマーの重量平均分子量がグラフト鎖を有する繰り返し単位に該当する。 The weight average molecular weight (Mw) of the repeating unit having a graft chain is preferably 1,000 or more, more preferably 1,000 to 10,000, and even more preferably 1,000 to 7,500. In this specification, the weight average molecular weight of a repeating unit having a graft chain is a value calculated from the weight average molecular weight of a raw material monomer used for polymerization of the same repeating unit. For example, a repeating unit having a graft chain can be formed by polymerizing a macromonomer. Here, the macromonomer refers to a polymer compound having a polymerizable group introduced at the end of the polymer. When a repeating unit having a graft chain is formed using a macromonomer, the weight average molecular weight of the macromonomer corresponds to the repeating unit having a graft chain.
 グラフト鎖を有する繰り返し単位を含む樹脂中におけるグラフト鎖を有する繰り返し単位の含有量は、10~90質量%であることが好ましい。下限は15質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。上限は、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。 The content of repeating units having graft chains in the resin containing repeating units having graft chains is preferably 10 to 90% by mass. The lower limit is preferably 15% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more. The upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less.
 グラフト鎖を有する繰り返し単位を含む樹脂は、更に酸基を有する繰り返し単位を含むことが好ましい。酸基を有する繰り返し単位が有する酸基としては、例えば、カルボキシ基、リン酸基、スルホ基、フェノール性ヒドロキシ基などが挙げられ、カルボキシ基が好ましい。また、カルボキシ基は、芳香族カルボキシ基であることが好ましい。酸基を有する繰り返し単位は、上述した式(2-1)で表される繰り返し単位および式(2-2)で表される繰り返し単位から選ばれる少なくとも1種の繰り返し単位であることも好ましい。 It is preferable that the resin containing a repeating unit having a graft chain further contains a repeating unit having an acid group. Examples of the acid group contained in the repeating unit having an acid group include a carboxy group, a phosphoric acid group, a sulfo group, a phenolic hydroxy group, and a carboxy group is preferred. Further, the carboxy group is preferably an aromatic carboxy group. It is also preferable that the repeating unit having an acid group is at least one repeating unit selected from the above-mentioned repeating unit represented by formula (2-1) and repeating unit represented by formula (2-2).
 グラフト鎖を有する繰り返し単位を含む樹脂中における酸基を有する繰り返し単位の含有量は、1~50質量%であることが好ましい。下限は5質量%以上であることが好ましく、10質量%以上であることがより好ましい。上限は、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。 The content of the repeating unit having an acid group in the resin containing the repeating unit having a graft chain is preferably 1 to 50% by mass. The lower limit is preferably 5% by mass or more, more preferably 10% by mass or more. The upper limit is preferably 40% by mass or less, more preferably 35% by mass or less.
 グラフト鎖を有する繰り返し単位を含む樹脂は、更にエチレン性不飽和結合含有基を有する繰り返し単位を含むことが好ましい。エチレン性不飽和結合含有基としては、ビニル基、スチレン基、マレイミド基、(メタ)アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミド基などが挙げられ、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基または(メタ)アクリロイルアミド基であることが好ましく、(メタ)アクリロイルオキシ基であることがより好ましく、アクリロイルオキシ基であることが更に好ましい。 It is preferable that the resin containing a repeating unit having a graft chain further contains a repeating unit having an ethylenically unsaturated bond-containing group. Examples of the ethylenically unsaturated bond-containing group include a vinyl group, styrene group, maleimide group, (meth)allyl group, (meth)acryloyl group, (meth)acryloyloxy group, (meth)acryloylamide group, etc. It is preferably a meth)acryloyl group, a (meth)acryloyloxy group or a (meth)acryloylamide group, more preferably a (meth)acryloyloxy group, and even more preferably an acryloyloxy group.
 グラフト鎖を有する繰り返し単位を含む樹脂中におけるエチレン性不飽和結合含有基を有する繰り返し単位の含有量は、1~50質量%であることが好ましい。下限は5質量%以上であることが好ましく、10質量%以上であることがより好ましい。上限は、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。 The content of the repeating unit having an ethylenically unsaturated bond-containing group in the resin containing the repeating unit having a graft chain is preferably 1 to 50% by mass. The lower limit is preferably 5% by mass or more, more preferably 10% by mass or more. The upper limit is preferably 40% by mass or less, more preferably 35% by mass or less.
 グラフト鎖を有する繰り返し単位を含む樹脂の重量平均分子量は、10000~50000であることが好ましい。下限は、12000以上であることが好ましく、13000以上であることがより好ましい。上限は、45000以下であることが好ましく、40000以下であることがより好ましい。 The weight average molecular weight of the resin containing repeating units having graft chains is preferably 10,000 to 50,000. The lower limit is preferably 12,000 or more, more preferably 13,000 or more. The upper limit is preferably 45,000 or less, more preferably 40,000 or less.
 樹脂としては、3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂を用いることも好ましい。膜形成用組成物がこのような樹脂を含むことにより、ポリマー鎖による立体障害により、膜形成用組成物中での粒子の凝集などをより効果的に抑制でき、優れた保存安定性が得られる。また、製膜時に膜中に上述した相分離構造を形成し易く、得られる膜の光散乱性をより向上させやすい。 As the resin, it is also preferable to use a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher-valent linking group. When the film-forming composition contains such a resin, the aggregation of particles in the film-forming composition can be more effectively suppressed due to steric hindrance caused by the polymer chains, and excellent storage stability can be obtained. . Moreover, it is easy to form the above-mentioned phase separation structure in the film during film formation, and the light scattering properties of the obtained film can be more easily improved.
 3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂の重量平均分子量は、5000~20000であることが好ましい。下限は、6000以上であることが好ましく、7000以上であることがより好ましい。上限は、18000以下であることが好ましく、15000以下であることがより好ましい。 The weight average molecular weight of the resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher linking group is preferably 5,000 to 20,000. The lower limit is preferably 6,000 or more, more preferably 7,000 or more. The upper limit is preferably 18,000 or less, more preferably 15,000 or less.
 3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂としては、例えば、下記式(SP-1)で表される構造の樹脂(以下、樹脂(SP-1)ともいう)が挙げられる。
 式中、Zは、(m+n)価の連結基を表し、
 YおよびYは、それぞれ独立して単結合または連結基を表し、
 Aは、複素環基、酸基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基およびヒドロキシ基から選ばれる官能基を含む基を表し、
 Pはポリマー鎖を表し、
 nは1~20を表し、mは2~20を表し、m+nは3~21であり、
 n個のYおよびAはそれぞれ同一であってもよく、異なっていてもよく、
 m個のYおよびPはそれぞれ同一であってもよく、異なっていてもよい。
As a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher linking group, for example, a resin having a structure represented by the following formula (SP-1) (hereinafter also referred to as resin (SP-1)) Can be mentioned.
In the formula, Z 1 represents a (m+n)-valent linking group,
Y 1 and Y 2 each independently represent a single bond or a linking group,
A1 is a heterocyclic group, an acid group, a group having a basic nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, Represents a group containing a functional group selected from an isocyanate group and a hydroxy group,
P 1 represents a polymer chain;
n represents 1 to 20, m represents 2 to 20, m+n represents 3 to 21,
n Y 1 and A 1 may be the same or different,
The m pieces of Y 2 and P 1 may be the same or different.
 式(SP-1)のAは上述した官能基を含む基を表す。Aが有する官能基は、複素環基、酸基、塩基性窒素原子を有する基、炭素数4以上の炭化水素基およびヒドロキシ基が好ましく、酸基がより好ましい。酸基としては、カルボキシ基、スルホ基、リン酸基が挙げられ、カルボキシ基が好ましい。 A 1 in formula (SP-1) represents a group containing the above-mentioned functional group. The functional group that A 1 has is preferably a heterocyclic group, an acid group, a group having a basic nitrogen atom, a hydrocarbon group having 4 or more carbon atoms, and a hydroxy group, and more preferably an acid group. Examples of the acid group include a carboxy group, a sulfo group, and a phosphoric acid group, with a carboxy group being preferred.
 上述した官能基は、1つのA中に、少なくとも1個含まれていればよく、2個以上を含んでいてもよい。Aは、上述した置換基を1~10個含むことが好ましく、1~6個含むことがより好ましい。また、Aが表す上述した官能基を含む基としては、上述した官能基と、1~200個の炭素原子、0~20個の窒素原子、0~100個の酸素原子、1~400個の水素原子、および0~40個の硫黄原子から成り立つ連結基とが結合して形成された基が挙げられる。例えば、炭素数1~10の鎖状飽和炭化水素基、炭素数3~10の環状飽和炭化水素基、または、炭素数5~10の芳香族炭化水素基を介して1個以上の酸基が結合して形成された基等が挙げられる。上記の鎖状飽和炭化水素基、環状飽和炭化水素基および芳香族炭化水素基はさらに置換基を有していてもよい。置換基としては炭素数1~20のアルキル基、炭素数6~16のアリール基、ヒドロキシ基、カルボキシ基、アミノ基、スルホンアミド基、N-スルホニルアミド基、炭素数1~6のアシルオキシ基、炭素数1~20のアルコキシ基、ハロゲン原子、炭素数2~7のアルコキシカルボニル基、シアノ基、炭酸エステル基、およびエチレン性不飽和結合含有基等が挙げられる。また、上記官能基そのものがAであってもよい。 At least one of the above-mentioned functional groups may be contained in one A1 , and two or more may be contained in one A1. A 1 preferably contains 1 to 10 substituents, more preferably 1 to 6 substituents. In addition, the group containing the above-mentioned functional group represented by A1 includes the above-mentioned functional group, 1 to 200 carbon atoms, 0 to 20 nitrogen atoms, 0 to 100 oxygen atoms, and 1 to 400 oxygen atoms. and a linking group consisting of 0 to 40 sulfur atoms. For example, one or more acid groups may be connected via a chain saturated hydrocarbon group having 1 to 10 carbon atoms, a cyclic saturated hydrocarbon group having 3 to 10 carbon atoms, or an aromatic hydrocarbon group having 5 to 10 carbon atoms. Examples include groups formed by bonding. The above-mentioned chain saturated hydrocarbon group, cyclic saturated hydrocarbon group and aromatic hydrocarbon group may further have a substituent. Substituents include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 16 carbon atoms, hydroxy groups, carboxy groups, amino groups, sulfonamide groups, N-sulfonylamide groups, acyloxy groups having 1 to 6 carbon atoms, Examples include an alkoxy group having 1 to 20 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 7 carbon atoms, a cyano group, a carbonate group, and an ethylenically unsaturated bond-containing group. Further, the above functional group itself may be A1 .
 Aの化学式量としては、30~2000であることが好ましい。上限は、1000以下であることが好ましく、800以下であることがより好ましい。下限は、50以上であることが好ましく、100以上であることがより好ましい。 The chemical formula weight of A 1 is preferably 30 to 2,000. The upper limit is preferably 1000 or less, more preferably 800 or less. The lower limit is preferably 50 or more, more preferably 100 or more.
 式(SP-1)のZが表す(m+n)価の連結基としては、1~100個の炭素原子、0~10個の窒素原子、0~50個の酸素原子、1~200個の水素原子、および0~20個の硫黄原子から成り立つ基が挙げられる。(m+n)価の連結基としては、下記の構造単位または以下の構造単位が2以上組み合わさって構成される基(環構造を形成していてもよい)が挙げられる。以下の式中の*は結合手を表す。 The (m+n)-valent linking group represented by Z 1 in formula (SP-1) includes 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, and 1 to 200 carbon atoms. Mention may be made of groups consisting of hydrogen atoms and 0 to 20 sulfur atoms. Examples of the (m+n)-valent linking group include the following structural units or groups formed by combining two or more of the following structural units (which may form a ring structure). * in the following formula represents a bond.
 (m+n)価の連結基は、置換基を有していてもよい。置換基としては、炭素数1~20のアルキル基、炭素数6~16のアリール基、ヒドロキシ基、アミノ基、カルボキシ基、スルホンアミド基、N-スルホニルアミド基、炭素数1~6のアシルオキシ基、炭素数1~20のアルコキシ基、ハロゲン原子、炭素数2~7までのアルコキシカルボニル基、シアノ基、炭酸エステル基、エチレン性不飽和結合含有基等が挙げられる。 The (m+n)-valent linking group may have a substituent. Examples of substituents include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 16 carbon atoms, hydroxy groups, amino groups, carboxy groups, sulfonamide groups, N-sulfonylamide groups, and acyloxy groups having 1 to 6 carbon atoms. , an alkoxy group having 1 to 20 carbon atoms, a halogen atom, an alkoxycarbonyl group having 2 to 7 carbon atoms, a cyano group, a carbonate ester group, a group containing an ethylenically unsaturated bond, and the like.
 Zが表す(m+n)価の連結基は、式(Z-1)~(Z-4)のいずれかで表される基であることが好ましい。
The (m+n)-valent linking group represented by Z 1 is preferably a group represented by any one of formulas (Z-1) to (Z-4).
 式(Z-1)中、Lzは3価の基を表し、Tzは単結合又は2価の連結基を表し、3個存在するTzは互いに同一であっても異なっていてもよい。
 式(Z-2)中、Lzは4価の基を表し、Tzは単結合又は2価の連結基を表し、4個存在するTzは互いに同一であっても異なっていてもよい。
 式(Z-3)中、Lzは5価の基を表し、Tzは単結合又は2価の連結基を表し、5個存在するTzは互いに同一であっても異なっていてもよい。
 式(Z-4)中、Lzは6価の基を表し、Tzは単結合又は2価の連結基を表し、6個存在するTzは互いに同一であっても異なっていてもよい。
 上記式中、*は結合手を表す。
In formula (Z-1), Lz 3 represents a trivalent group, Tz 3 represents a single bond or a divalent linking group, and the three Tz 3s may be the same or different from each other. .
In formula (Z-2), Lz 4 represents a tetravalent group, Tz 4 represents a single bond or a divalent linking group, and the four Tz 4s present may be the same or different from each other. .
In formula (Z-3), Lz 5 represents a pentavalent group, Tz 5 represents a single bond or a divalent linking group, and the five Tz 5s may be the same or different from each other. .
In formula (Z-4), Lz 6 represents a hexavalent group, Tz 6 represents a single bond or a divalent linking group, and the six Tz 6s may be the same or different from each other. .
In the above formula, * represents a bond.
 Tz~Tzが表す2価の連結基としては、アルキレン基、アリーレン基、複素環基、-O-、-CO-、-COO-、-OCO-、-NR-、-CONR-、-NRCO-、-S-、-SO-、-SO-およびこれらを2個以上連結して形成される連結基が挙げられる。ここで、Rは、それぞれ独立に、水素原子、アルキル基またはアリール基を表す。 The divalent linking group represented by Tz 3 to Tz 6 includes an alkylene group, an arylene group, a heterocyclic group, -O-, -CO-, -COO-, -OCO-, -NR-, -CONR-, - Examples include NRCO-, -S-, -SO-, -SO 2 -, and a linking group formed by linking two or more of these. Here, R each independently represents a hydrogen atom, an alkyl group, or an aryl group.
 アルキル基およびアルキレン基の炭素数は、1~30が好ましい。上限は、25以下がより好ましく、20以下が更に好ましい。下限は、2以上がより好ましく、3以上が更に好ましい。アルキル基およびアルキレン基は、直鎖、分岐、環状のいずれでもよい。
 アリール基およびアリーレン基の炭素数は、6~20が好ましく、6~12がより好ましい。
 複素環基は、5員環または6員環が好ましい。複素環基が有するヘテロ原子は、酸素原子、窒素原子および硫黄原子が好ましい。複素環基が有するヘテロ原子の数は、1~3個が好ましい。
 アルキレン基、アリーレン基、複素環基、アルキル基およびアリール基は、無置換であってもよく、上述した置換基を有してもよい。
The number of carbon atoms in the alkyl group and alkylene group is preferably 1 to 30. The upper limit is more preferably 25 or less, and even more preferably 20 or less. The lower limit is more preferably 2 or more, and even more preferably 3 or more. The alkyl group and alkylene group may be linear, branched, or cyclic.
The number of carbon atoms in the aryl group and arylene group is preferably 6 to 20, more preferably 6 to 12.
The heterocyclic group preferably has a 5-membered ring or a 6-membered ring. The heteroatom contained in the heterocyclic group is preferably an oxygen atom, a nitrogen atom, or a sulfur atom. The number of heteroatoms that the heterocyclic group has is preferably 1 to 3.
The alkylene group, arylene group, heterocyclic group, alkyl group, and aryl group may be unsubstituted or may have the above-mentioned substituents.
 Lzが表す3価の基としては、上記の2価の連結基から水素原子を1個除いた基が挙げられる。Lzが表す4価の基としては、上記の2価の連結基から水素原子を2個除いた基が挙げられる。Lzが表す5価の基としては、上記の2価の連結基から水素原子を3個除いた基が挙げられる。Lzが表す6価の基としては、上記の2価の連結基から水素原子を4個除いた基が挙げられる。Lz~Lzが表す3~6価の基は、上述した置換基を有してもよい。 Examples of the trivalent group represented by Lz 3 include a group obtained by removing one hydrogen atom from the above divalent linking group. Examples of the tetravalent group represented by Lz 4 include a group obtained by removing two hydrogen atoms from the above divalent linking group. The pentavalent group represented by Lz 5 includes a group obtained by removing three hydrogen atoms from the above divalent linking group. Examples of the hexavalent group represented by Lz 6 include a group obtained by removing four hydrogen atoms from the above divalent linking group. The trivalent to hexavalent groups represented by Lz 3 to Lz 6 may have the above-mentioned substituents.
 Zの化学式量は、20~3000であることが好ましい。上限は、2000以下であることが好ましく、1500以下であることがより好ましい。下限は、50以上であることが好ましく、100以上であることがより好ましい。なお、Zの化学式量は、構造式から計算した値である。 The chemical formula weight of Z 1 is preferably 20 to 3,000. The upper limit is preferably 2000 or less, more preferably 1500 or less. The lower limit is preferably 50 or more, more preferably 100 or more. Note that the chemical formula weight of Z 1 is a value calculated from the structural formula.
 (m+n)価の連結基の具体例については、特開2014-177613号公報の段落番号0043~0055を参酌でき、この内容は本明細書に組み込まれる。 For specific examples of the (m+n)-valent linking group, paragraph numbers 0043 to 0055 of JP-A-2014-177613 can be referred to, the contents of which are incorporated herein.
 式(SP-1)において、YおよびYは、それぞれ独立して単結合または連結基を表す。連結基としては、1~100個の炭素原子、0~10個の窒素原子、0~50個の酸素原子、1~200個の水素原子、および0~20個の硫黄原子から成り立つ基が挙げられる。上述の基は、上述した置換基を更に有していてもよい。YおよびYが表す連結基としては、下記の構造単位または以下の構造単位が2以上組み合わさって構成される基を挙げることができる。以下の式中の*は結合手を表す。 In formula (SP-1), Y 1 and Y 2 each independently represent a single bond or a linking group. Examples of the linking group include groups consisting of 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 to 20 sulfur atoms. It will be done. The above-mentioned group may further have the above-mentioned substituent. Examples of the linking group represented by Y 1 and Y 2 include the following structural units or groups constituted by a combination of two or more of the following structural units. * in the following formula represents a bond.
 式(SP-1)において、Pはポリマー鎖を表す。Pが表すポリマー鎖は、ポリエーテル構造、ポリエステル構造、ポリ(メタ)アクリル構造、ポリスチレン構造、ポリウレタン構造、ポリウレア構造およびポリアミド構造から選ばれる少なくとも1種の構造の繰り返し単位を含むことが好ましく、ポリエーテル構造、ポリエステル構造、ポリ(メタ)アクリル構造およびポリスチレン構造から選ばれる少なくとも1種の構造の繰り返し単位を含むことがより好ましく、ポリ(メタ)アクリル構造の繰り返し単位を含むことが更に好ましい。 In formula (SP-1), P 1 represents a polymer chain. The polymer chain represented by P 1 preferably contains a repeating unit of at least one type of structure selected from a polyether structure, a polyester structure, a poly(meth)acrylic structure, a polystyrene structure, a polyurethane structure, a polyurea structure, and a polyamide structure, It is more preferable to contain a repeating unit of at least one type of structure selected from a polyether structure, a polyester structure, a poly(meth)acrylic structure, and a polystyrene structure, and it is even more preferable to contain a repeating unit of a poly(meth)acrylic structure.
 ポリエステル構造の繰り返し単位としては、上述した式(G-1)、式(G-4)または式(G-5)で表される構造の繰り返し単位が挙げられる。ポリエーテル構造の繰り返し単位としては、上述した式(G-2)で表される構造の繰り返し単位が挙げられる。ポリ(メタ)アクリル構造の繰り返し単位としては、上述した式(G-3)で表される構造の繰り返し単位が挙げられる。ポリスチレン構造の繰り返し単位としては、上述した式(G-6)で表される構造の繰り返し単位が挙げられる。 Examples of the repeating unit of the polyester structure include repeating units of the structure represented by the above-mentioned formula (G-1), formula (G-4), or formula (G-5). Examples of the repeating unit of the polyether structure include the repeating unit of the structure represented by the above-mentioned formula (G-2). Examples of the repeating unit of the poly(meth)acrylic structure include the repeating unit of the structure represented by the above-mentioned formula (G-3). Examples of the repeating unit of the polystyrene structure include the repeating unit of the structure represented by the above-mentioned formula (G-6).
 Pが表すポリマー鎖は、酸基を有する繰り返し単位を含んでいてもよい。酸基を有する繰り返し単位が有する酸基としては、例えば、カルボキシ基、リン酸基、スルホ基、フェノール性ヒドロキシ基などが挙げられ、カルボキシ基が好ましい。また、カルボキシ基は、芳香族カルボキシ基であることが好ましい。酸基を有する繰り返し単位は、上述した式(2-1)で表される繰り返し単位および式(2-2)で表される繰り返し単位から選ばれる少なくとも1種の繰り返し単位であることも好ましい。
 Pを構成する全繰り返し単位中における、酸基を有する繰り返し単位の含有量は、1~50モル%であることが好ましい。下限は、5モル%以上であることが好ましく、10モル%以上であることがより好ましい。上限は、40モル%以下であることが好ましく、30モル%以下であることがより好ましい。
The polymer chain represented by P 1 may include a repeating unit having an acid group. Examples of the acid group contained in the repeating unit having an acid group include a carboxy group, a phosphoric acid group, a sulfo group, a phenolic hydroxy group, and a carboxy group is preferred. Further, the carboxy group is preferably an aromatic carboxy group. It is also preferable that the repeating unit having an acid group is at least one repeating unit selected from the above-mentioned repeating unit represented by formula (2-1) and repeating unit represented by formula (2-2).
The content of the repeating unit having an acid group in all the repeating units constituting P 1 is preferably 1 to 50 mol%. The lower limit is preferably 5 mol% or more, more preferably 10 mol% or more. The upper limit is preferably 40 mol% or less, more preferably 30 mol% or less.
 Pが表すポリマー鎖は、更にエチレン性不飽和結合含有基を有する繰り返し単位を含んでいてもよい。エチレン性不飽和結合含有基としては、ビニル基、スチレン基、マレイミド基、(メタ)アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミド基などが挙げられ、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基または(メタ)アクリロイルアミド基であることが好ましく、(メタ)アクリロイルオキシ基であることがより好ましく、アクリロイルオキシ基であることが更に好ましい。
 Pを構成する全繰り返し単位中における、エチレン性不飽和結合含有基を有する繰り返し単位の含有量は、1~50モル%であることが好ましい。下限は、5モル%以上であることが好ましく、10モル%以上であることがより好ましい。上限は、40モル%以下であることが好ましく、30モル%以下であることがより好ましい。
The polymer chain represented by P 1 may further include a repeating unit having an ethylenically unsaturated bond-containing group. Examples of the ethylenically unsaturated bond-containing group include a vinyl group, styrene group, maleimide group, (meth)allyl group, (meth)acryloyl group, (meth)acryloyloxy group, (meth)acryloylamide group, etc. It is preferably a meth)acryloyl group, a (meth)acryloyloxy group or a (meth)acryloylamide group, more preferably a (meth)acryloyloxy group, and even more preferably an acryloyloxy group.
The content of the repeating unit having an ethylenically unsaturated bond-containing group in all the repeating units constituting P 1 is preferably 1 to 50 mol%. The lower limit is preferably 5 mol% or more, more preferably 10 mol% or more. The upper limit is preferably 40 mol% or less, more preferably 30 mol% or less.
 Pが表すポリマー鎖の重量平均分子量は、1000以上であることが好ましく、1000~10000であることがより好ましい。上限は、9000以下であることが好ましく、6000以下であることがより好ましく、3000以下であることが更に好ましい。下限は、1200以上であることが好ましく、1400以上であることがより好ましい。なお、Pの重量平均分子量は、同ポリマー鎖の導入に用いた原料の重量平均分子量から算出した値である。 The weight average molecular weight of the polymer chain represented by P 1 is preferably 1,000 or more, more preferably 1,000 to 10,000. The upper limit is preferably 9,000 or less, more preferably 6,000 or less, and even more preferably 3,000 or less. The lower limit is preferably 1200 or more, more preferably 1400 or more. The weight average molecular weight of P1 is a value calculated from the weight average molecular weight of the raw material used to introduce the polymer chain.
 樹脂(SP-1)の具体例としては、特開2013-043962号公報の段落番号0196~0209に記載された高分子化合物C-1~C-31、特開2014-177613号公報の段落番号0256~0269に記載された高分子化合物(C-1)~(C-61)、国際公開第2018/163668号の段落番号0061に記載された構造の樹脂が挙げられ、これらの内容は本明細書に組み込まれる。 Specific examples of the resin (SP-1) include polymer compounds C-1 to C-31 described in paragraph numbers 0196 to 0209 of JP-A No. 2013-043962, and paragraph numbers of JP-A No. 2014-177613. Examples include polymer compounds (C-1) to (C-61) described in No. 0256 to 0269, and resins having the structure described in paragraph number 0061 of International Publication No. 2018/163668, the contents of which are included in this specification. incorporated into the book.
 樹脂は、ランダムポリマーやブロックポリマーを用いることもできる。 A random polymer or a block polymer can also be used as the resin.
(重合性モノマー)
 膜形成成分は重合性モノマーを含有するものであってもよい。重合性モノマーとしては、ラジカル、酸あるいは熱により架橋可能な公知の化合物を用いることができる。例えば、エチレン性不飽和結合含有基を有する化合物、環状エーテル基を有する化合物等が挙げられる。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基および(メタ)アクリロイルオキシ基などが挙げられる。環状エーテル基としては、エポキシ基、オキセタニル基などが挙げられる。重合性モノマーは、ラジカル重合性モノマーまたはカチオン重合性モノマーが好ましく、ラジカル重合性モノマーがより好ましい。
(Polymerizable monomer)
The film-forming component may contain a polymerizable monomer. As the polymerizable monomer, known compounds that can be crosslinked by radicals, acids, or heat can be used. Examples include compounds having an ethylenically unsaturated bond-containing group and compounds having a cyclic ether group. Examples of the ethylenically unsaturated bond-containing group include a vinyl group, (meth)allyl group, (meth)acryloyl group, and (meth)acryloyloxy group. Examples of the cyclic ether group include an epoxy group and an oxetanyl group. The polymerizable monomer is preferably a radically polymerizable monomer or a cationically polymerizable monomer, and more preferably a radically polymerizable monomer.
 ラジカル重合性モノマーとしては、ラジカルの作用により重合可能な化合物であればよく、特に限定はない。ラジカル重合性モノマーとしては、エチレン性不飽和結合含有基を有する化合物が好ましく、エチレン性不飽和結合含有基を2個以上有する化合物がより好ましく、エチレン性不飽和結合含有基を3個以上有する化合物が更に好ましい。エチレン性不飽和結合含有基の個数の上限は、たとえば、15個以下が好ましく、6個以下がより好ましい。エチレン性不飽和結合含有基としては、ビニル基、スチレン基、(メタ)アリル基、(メタ)アクリロイル基および(メタ)アクリロイルオキシ基などが挙げられ、(メタ)アクリロイル基および(メタ)アクリロイルオキシ基であることが好ましい。ラジカル重合性モノマーは、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。また、ラジカル重合性モノマーは環構造を含むものであることも好ましい。 The radically polymerizable monomer is not particularly limited as long as it is a compound that can be polymerized by the action of radicals. The radically polymerizable monomer is preferably a compound having an ethylenically unsaturated bond-containing group, more preferably a compound having two or more ethylenically unsaturated bond-containing groups, and a compound having three or more ethylenically unsaturated bond-containing groups. is even more preferable. The upper limit of the number of ethylenically unsaturated bond-containing groups is, for example, preferably 15 or less, more preferably 6 or less. Examples of ethylenically unsaturated bond-containing groups include vinyl groups, styrene groups, (meth)allyl groups, (meth)acryloyl groups, and (meth)acryloyloxy groups. It is preferable that it is a group. The radically polymerizable monomer is preferably a 3- to 15-functional (meth)acrylate compound, more preferably a 3- to 6-functional (meth)acrylate compound. Moreover, it is also preferable that the radically polymerizable monomer contains a ring structure.
 ラジカル重合性モノマーの分子量は、200~3000であることが好ましい。分子量の上限は、2500以下が好ましく、2000以下が更に好ましい。分子量の下限は、250以上が好ましく、300以上が更に好ましい。 The molecular weight of the radically polymerizable monomer is preferably 200 to 3,000. The upper limit of the molecular weight is preferably 2,500 or less, more preferably 2,000 or less. The lower limit of the molecular weight is preferably 250 or more, more preferably 300 or more.
 ラジカル重合性モノマーは、少なくとも1個の付加重合可能なエチレン基を有する、常圧下で100℃以上の沸点を持つエチレン性不飽和結合含有基を持つ化合物であることも好ましい。その例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能のアクリレートやメタクリレート;ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート及びこれらの混合物を挙げることができ、ペンタエリスリトールテトラ(メタ)アクリレートであることが好ましい。 It is also preferable that the radically polymerizable monomer is a compound having at least one addition-polymerizable ethylene group and an ethylenically unsaturated bond-containing group having a boiling point of 100° C. or higher under normal pressure. Examples include monofunctional acrylates and methacrylates such as polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, phenoxyethyl(meth)acrylate; polyethylene glycol di(meth)acrylate, trimethylolethane tri(meth)acrylate; ) acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, hexanediol(meth)acrylate ) acrylate, trimethylolpropane tri(acryloyloxypropyl) ether, tri(acryloyloxyethyl) isocyanurate and mixtures thereof, preferably pentaerythritol tetra(meth)acrylate.
 ラジカル重合性モノマーとしては、式(MO-1)~式(MO-5)で表される化合物も好適に用いることができる。なお、式中、Tがオキシアルキレン基の場合には、Tにおける炭素原子側の末端がRに結合する。 As the radically polymerizable monomer, compounds represented by formulas (MO-1) to (MO-5) can also be suitably used. In the formula, when T is an oxyalkylene group, the end of T on the carbon atom side is bonded to R.
 上記式において、nは0~14であり、mは1~8である。同一分子内に複数存在するR、T、は、各々同一であっても、異なっていてもよい。式(MO-1)~(MO-5)で表される化合物の各々において、複数存在するRの少なくとも1つは、-OC(=O)CH=CH、又は、-OC(=O)C(CH)=CHで表される基を表す。式(MO-1)~(MO-5)で表される化合物の具体例としては、特開2007-269779号公報の段落番号0248~0251に記載されている化合物が挙げられ、この内容は本明細書に組み込まれる。 In the above formula, n is 0-14 and m is 1-8. A plurality of R's and T's in the same molecule may be the same or different. In each of the compounds represented by formulas (MO-1) to (MO-5), at least one of the plurality of R's is -OC(=O)CH=CH 2 or -OC(=O) Represents a group represented by C(CH 3 )=CH 2 . Specific examples of compounds represented by formulas (MO-1) to (MO-5) include compounds described in paragraph numbers 0248 to 0251 of JP-A No. 2007-269779, the content of which is incorporated herein by reference. Incorporated into the specification.
 ラジカル重合性モノマーとしては、ジペンタエリスリトールトリ(メタ)アクリレート(市販品としてはKAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラ(メタ)アクリレート(市販品としてはKAYARAD D-320;日本化薬(株)製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬(株)製、NKエステルA-DPH-12E;新中村化学工業(株)製)、およびこれらの(メタ)アクリロイル基がエチレングリコールおよび/またはプロピレングリコール残基を介して結合している構造の化合物(例えば、サートマー社から市販されている、SR454、SR499)、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としてはM-460;東亞合成(株)製)、ペンタエリスリトールテトラ(メタ)アクリレート(新中村化学工業(株)製、NKエステルA-TMMT)、1,6-ヘキサンジオールジアクリレート(日本化薬(株)製、KAYARAD HDDA)、KAYARAD RP-1040(日本化薬(株)製)、アロニックスTO-2349(東亞合成(株)製)、NKオリゴUA-7200(新中村化学工業(株)製)、8UH-1006、8UH-1012(大成ファインケミカル(株)製)、ライトアクリレートPOB-A0(共栄社化学(株)製)などを用いることもできる。 Examples of radically polymerizable monomers include dipentaerythritol tri(meth)acrylate (commercial product: KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetra(meth)acrylate (commercial product: KAYARAD D- 320; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol penta(meth)acrylate (as a commercial product KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa(meth)acrylate (as a commercial product) is KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., NK ester A-DPH-12E; manufactured by Shin-Nakamura Chemical Industries, Ltd.), and these (meth)acryloyl groups are bonded via ethylene glycol and/or propylene glycol residues. Compounds with a structure in which they are bonded together (for example, commercially available from Sartomer, SR454, SR499), diglycerin EO (ethylene oxide) modified (meth)acrylate (commercially available product is M-460; manufactured by Toagosei Co., Ltd.) ), pentaerythritol tetra(meth)acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-TMMT), 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA), KAYARAD RP- 1040 (manufactured by Nippon Kayaku Co., Ltd.), Aronix TO-2349 (manufactured by Toagosei Co., Ltd.), NK Oligo UA-7200 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 8UH-1006, 8UH-1012 (manufactured by Taisei Fine Chemical Co., Ltd.) Co., Ltd.), light acrylate POB-A0 (manufactured by Kyoeisha Kagaku Co., Ltd.), and the like can also be used.
 ラジカル重合性モノマーは、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキシド変性トリ(メタ)アクリレート、イソシアヌル酸エチレンオキシド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能の(メタ)アクリレート化合物を用いることも好ましい。3官能の(メタ)アクリレート化合物の市販品としては、アロニックスM-309、M-310、M-321、M-350、M-360、M-313、M-315、M-306、M-305、M-303、M-452、M-450(東亞合成(株)製)、NKエステル A9300、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、A-TMPT、TMPT(新中村化学工業(株)製)、KAYARAD GPO-303、TMPTA、THE-330、TPA-330、PET-30(日本化薬(株)製)などが挙げられる。 Radically polymerizable monomers include trimethylolpropane tri(meth)acrylate, trimethylolpropanepropylene oxide modified tri(meth)acrylate, trimethylolpropane ethylene oxide modified tri(meth)acrylate, isocyanuric acid ethylene oxide modified tri(meth)acrylate, and pentaerythritol. It is also preferable to use trifunctional (meth)acrylate compounds such as tri(meth)acrylate. Commercially available trifunctional (meth)acrylate compounds include Aronix M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306, M-305. , M-303, M-452, M-450 (manufactured by Toagosei Co., Ltd.), NK ester A9300, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, TMPT (manufactured by Shin Nakamura Chemical Co., Ltd.), KAYARAD GPO-303, TMPTA, THE-330, TPA-330, PET-30 (manufactured by Nippon Kayaku Co., Ltd.) Examples include.
 ラジカル重合性モノマーは、カルボキシ基、スルホ基、リン酸基等の酸基を有する化合物であってもよい。酸基を有するラジカル重合性モノマーとしては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルなどが挙げられる。市販品としては、例えば、東亞合成株式会社製のアロニックスシリーズのM-305、M-510、M-520などが挙げられる。酸基を有するラジカル重合性モノマーの酸価は、0.1~40mgKOH/gが好ましい。下限は5mgKOH/g以上が好ましい。上限は、30mgKOH/g以下が好ましい。 The radically polymerizable monomer may be a compound having an acid group such as a carboxy group, a sulfo group, or a phosphoric acid group. Examples of the radically polymerizable monomer having an acid group include esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids. Commercially available products include, for example, Aronix series M-305, M-510, and M-520 manufactured by Toagosei Co., Ltd. The acid value of the radically polymerizable monomer having an acid group is preferably 0.1 to 40 mgKOH/g. The lower limit is preferably 5 mgKOH/g or more. The upper limit is preferably 30 mgKOH/g or less.
 ラジカル重合性モノマーは環構造を含む化合物であってもよい。環構造を含むラジカル重合性モノマーを用いることで、製膜時に膜中に相分離構造を形成させやすく、より光散乱性に優れた膜を形成することができる。ラジカル重合性モノマーに含まれる環構造は、上記効果がより顕著に得られやすいという理由から脂肪族環であることが好ましい。また、脂肪族環は、脂肪族架橋環であることが好ましい。脂肪族架橋環とは、1つの脂肪族環において、互いに隣接しない2個以上の原子が連結した構造の脂肪族環のことである。脂肪族架橋環の具体例としては、トリシクロデカン環、アダマンタン環などが挙げられ、トリシクロデカン環であることが好ましい。ラジカル重合性モノマー中に含まれる環構造の数は、モノマーの運動性の観点から1~5個であることが好ましく、1~3個であることがより好ましく、1個であることがより好ましい。環構造を含むラジカル重合性モノマーの具体例としては、ジメチロール-トリシクロデカンジアクリレート、1,3-アダマンタンジオールジアクリレートなどが挙げられる。 The radically polymerizable monomer may be a compound containing a ring structure. By using a radically polymerizable monomer containing a ring structure, a phase separation structure can be easily formed in the film during film formation, and a film with better light scattering properties can be formed. The ring structure contained in the radically polymerizable monomer is preferably an aliphatic ring because the above-mentioned effects are more likely to be obtained. Further, the aliphatic ring is preferably an aliphatic bridged ring. An aliphatic bridged ring is an aliphatic ring having a structure in which two or more atoms that are not adjacent to each other are connected in one aliphatic ring. Specific examples of the aliphatic bridged ring include a tricyclodecane ring and an adamantane ring, with a tricyclodecane ring being preferred. The number of ring structures contained in the radically polymerizable monomer is preferably 1 to 5, more preferably 1 to 3, and more preferably 1 from the viewpoint of monomer mobility. . Specific examples of radically polymerizable monomers containing a ring structure include dimethylol-tricyclodecane diacrylate, 1,3-adamantanediol diacrylate, and the like.
 カチオン重合性モノマーとしては、カチオン重合性基を有する化合物が挙げられる。カチオン重合性基としては、エポキシ基、オキセタニル基などの環状エーテル基などが挙げる。カチオン重合性モノマーは、環状エーテル基を有する化合物であることが好ましく、エポキシ基を有する化合物(エポキシ化合物ともいう)であることがより好ましい。 Examples of the cationically polymerizable monomer include compounds having a cationically polymerizable group. Examples of cationic polymerizable groups include cyclic ether groups such as epoxy groups and oxetanyl groups. The cationic polymerizable monomer is preferably a compound having a cyclic ether group, and more preferably a compound having an epoxy group (also referred to as an epoxy compound).
 カチオン重合性モノマーの分子量は、200~3000であることが好ましい。分子量の上限は、2500以下が好ましく、2000以下が更に好ましい。分子量の下限は、250以上が好ましく、300以上が更に好ましい。 The molecular weight of the cationically polymerizable monomer is preferably 200 to 3,000. The upper limit of the molecular weight is preferably 2,500 or less, more preferably 2,000 or less. The lower limit of the molecular weight is preferably 250 or more, more preferably 300 or more.
 エポキシ化合物としては、1分子内にエポキシ基を1個以上有する化合物が挙げられ、エポキシ基を2個以上有する化合物が好ましい。エポキシ基は、1分子内に1~100個有することが好ましい。エポキシ基の上限は、例えば、10個以下とすることもでき、5個以下とすることもできる。エポキシ基の下限は、2個以上が好ましい。 Examples of the epoxy compound include compounds having one or more epoxy groups in one molecule, and preferably compounds having two or more epoxy groups. It is preferable that one molecule contains 1 to 100 epoxy groups. The upper limit of the number of epoxy groups can be, for example, 10 or less, or 5 or less. The lower limit of epoxy groups is preferably 2 or more.
 エポキシ化合物としては、下記式(EP1)で表される化合物が挙げられる。
Examples of the epoxy compound include a compound represented by the following formula (EP1).
 式(EP1)中、REP1~REP3は、それぞれ独立して、水素原子、ハロゲン原子またはアルキル基を表す。アルキル基は、環状構造を有するものであってもよく、また、置換基を有していてもよい。REP1とREP2、REP2とREP3は、互いに結合して環構造を形成していてもよい。QEPは単結合またはnEP価の有機基を表す。REP1~REP3は、QEPと結合して環構造を形成していても良い。nEPは2以上の整数を表し、好ましくは2~10であり、より好ましくは2~6である。但しQEPが単結合の場合、nEPは2である。REP1~REP3、QEPの詳細について、特開2014-089408号公報の段落番号0087~0088の記載を参酌でき、この内容は本明細書に組み込まれる。式(EP1)で表される化合物の具体例としては、特開2014-089408号公報の段落0090に記載の化合物、特開2010-054632号公報の段落番号0151に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。 In formula (EP1), R EP1 to R EP3 each independently represent a hydrogen atom, a halogen atom, or an alkyl group. The alkyl group may have a cyclic structure and may have a substituent. R EP1 and R EP2 and R EP2 and R EP3 may be bonded to each other to form a ring structure. Q EP represents a single bond or an organic group with n EP value. R EP1 to R EP3 may be combined with Q EP to form a ring structure. n EP represents an integer of 2 or more, preferably 2 to 10, more preferably 2 to 6. However, when Q EP is a single bond, n EP is 2. For details of R EP1 to R EP3 and Q EP , the description in paragraph numbers 0087 to 0088 of JP-A No. 2014-089408 can be referred to, and the contents thereof are incorporated into the present specification. Specific examples of the compound represented by formula (EP1) include the compound described in paragraph 0090 of JP 2014-089408, and the compound described in paragraph 0151 of JP 2010-054632, and these The content of is incorporated herein.
 カチオン重合性モノマーとしては、市販品を用いることもできる。例えば、(株)ADEKA製のアデカグリシロールシリーズ(例えば、アデカグリシロールED-505など)、(株)ダイセル製のエポリードシリーズ(例えば、エポリードGT401など)などが挙げられる。 Commercially available products can also be used as the cationically polymerizable monomer. Examples include the Adeka Glycilol series (eg, ADEKA Glycilol ED-505, etc.) manufactured by ADEKA Corporation, and the EPOLEAD series (eg, EPOLEAD GT401, etc.) manufactured by Daicel Corporation.
<<溶剤>>
 本発明の組成物は、溶剤を含有する。溶剤としては、有機溶剤が挙げられる。溶剤は、各成分の溶解性や組成物の塗布性を満足すれば基本的には特に制限はない。有機溶剤としては、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、炭化水素系溶剤などが挙げられる。これらの詳細については、国際公開第2015/166779号の段落番号0223の記載を参酌でき、この内容は本明細書に組み込まれる。また、環状アルキル基が置換したエステル系溶剤、環状アルキル基が置換したケトン系溶剤も好ましく用いることもできる。有機溶剤の具体例としては、アセトン、メチルエチルケトン、シクロヘキサン、シクロヘキサノン、シクロペンタノン、酢酸エチル、酢酸ブチル、酢酸シクロヘキシル、エチレンジクロライド、テトラヒドロフラン、トルエン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセチルアセトン、ジアセトンアルコール、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテルアセテート、3-メトキシプロパノール、2-メトキシエタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシプロピルアセテート、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、乳酸メチル、乳酸エチル、ブチルジグリコールアセテート、3-メトキシブチルアセテート、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、ガンマブチロラクトン、スルホラン、アニソール、1,4-ジアセトキシブタン、ジエチレングリコールモノエチルエーテルアセタート、二酢酸ブタン-1,3-ジイル、ジプロピレングリコールメチルエーテルアセタート、2-メトキシプロピルアセテート、2-メトキシ-1-プロパノール、イソプロピルアルコールなどが挙げられる。これらの有機溶剤は、単独にて、又は混合して使用することができる。
<<Solvent>>
The composition of the present invention contains a solvent. Examples of the solvent include organic solvents. There are basically no particular restrictions on the solvent as long as it satisfies the solubility of each component and the coatability of the composition. Examples of the organic solvent include ester solvents, ketone solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents. For these details, the description in paragraph number 0223 of International Publication No. 2015/166779 can be referred to, and the contents thereof are incorporated herein. Ester solvents substituted with a cyclic alkyl group and ketone solvents substituted with a cyclic alkyl group can also be preferably used. Specific examples of organic solvents include acetone, methyl ethyl ketone, cyclohexane, cyclohexanone, cyclopentanone, ethyl acetate, butyl acetate, cyclohexyl acetate, ethylene dichloride, tetrahydrofuran, toluene, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol dimethyl ether. , propylene glycol monomethyl ether, propylene glycol monoethyl ether, acetylacetone, diacetone alcohol, ethylene glycol monomethyl ether acetate, ethylene glycol ethyl ether acetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether acetate, 3-methoxypropanol, 2-methoxy Ethanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 3-methoxypropyl acetate, N,N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone , methyl lactate, ethyl lactate, butyl diglycol acetate, 3-methoxybutyl acetate, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, gamma-butyrolactone, sulfolane, anisole, 1 , 4-diacetoxybutane, diethylene glycol monoethyl ether acetate, butane-1,3-diyl diacetate, dipropylene glycol methyl ether acetate, 2-methoxypropyl acetate, 2-methoxy-1-propanol, isopropyl alcohol, etc. Can be mentioned. These organic solvents can be used alone or in combination.
 本発明においては、金属含有量の少ない有機溶剤を用いることが好ましく、有機溶剤の金属含有量は、例えば10質量ppb(parts per billion)以下であることが好ましい。必要に応じて質量ppt(parts per trillion)レベルの有機溶剤を用いてもよく、そのような有機溶剤は例えば東洋合成社が提供している(化学工業日報、2015年11月13日)。 In the present invention, it is preferable to use an organic solvent with a low metal content, and the metal content of the organic solvent is preferably 10 mass ppb (parts per billion) or less, for example. If necessary, an organic solvent at a mass ppt (parts per trillion) level may be used, and such an organic solvent is provided by Toyo Gosei Co., Ltd. (Kagaku Kogyo Nippo, November 13, 2015).
 有機溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いたろ過を挙げることができる。ろ過に用いるフィルタのフィルタ孔径としては、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が更に好ましい。フィルタの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。 Examples of methods for removing impurities such as metals from organic solvents include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter. The filter pore diameter of the filter used for filtration is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. The material of the filter is preferably polytetrafluoroethylene, polyethylene, or nylon.
 有機溶剤は、異性体(原子数が同じであるが構造が異なる化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。 The organic solvent may contain isomers (compounds with the same number of atoms but different structures). Moreover, only one type of isomer may be included, or multiple types may be included.
 有機溶剤中の過酸化物の含有率は0.8mmol/L以下であることが好ましく、過酸化物を実質的に含まないことがより好ましい。 The content of peroxide in the organic solvent is preferably 0.8 mmol/L or less, and more preferably substantially free of peroxide.
 組成物中における溶剤の含有量は10~95質量%であることが好ましい。下限は、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが更に好ましく、30質量%以上であることがより一層好ましく、40質量%以上であることが更に一層好ましい。上限は、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。溶剤は、1種のみを用いてもよいし、2種以上を併用してもよい。溶剤を2種以上併用する場合は、それらの合計が上記範囲であることが好ましい。 The content of the solvent in the composition is preferably 10 to 95% by mass. The lower limit is preferably 15% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, even more preferably 30% by mass or more, and 40% by mass. It is even more preferable that it is the above. The upper limit is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less. Only one type of solvent may be used, or two or more types may be used in combination. When two or more types of solvents are used in combination, it is preferable that the total amount is within the above range.
<<光重合開始剤>>
 本発明の組成物は、光重合開始剤を含有することができる。光重合開始剤としては、光ラジカル重合開始剤、光カチオン重合開始剤などが挙げられる。重合性モノマーの種類に応じて選択して用いることが好ましい。重合性モノマーとしてラジカル重合性モノマーを用いた場合においては、光重合開始剤として光ラジカル重合開始剤を用いることが好ましい。また、重合性モノマーとしてカチオン重合性モノマーを用いた場合においては、光重合開始剤として光カチオン重合開始剤を用いることが好ましい。光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外領域から可視領域の光線に対して感光性を有する化合物が好ましい。
<<Photopolymerization initiator>>
The composition of the present invention can contain a photoinitiator. Examples of the photopolymerization initiator include radical photopolymerization initiators and cationic photopolymerization initiators. It is preferable to select and use the polymerizable monomer depending on the type of the polymerizable monomer. When a radically polymerizable monomer is used as the polymerizable monomer, it is preferable to use a photoradical polymerization initiator as the photopolymerization initiator. Furthermore, when a cationically polymerizable monomer is used as the polymerizable monomer, it is preferable to use a photocationic polymerization initiator as the photopolymerization initiator. The photopolymerization initiator is not particularly limited and can be appropriately selected from known photopolymerization initiators. For example, a compound having photosensitivity to light from the ultraviolet region to the visible region is preferable.
 光重合開始剤の含有量は、組成物の全固形分中0.1~30質量%であることが好ましく、0.5~20質量%であることがより好ましく、1~15質量%であることが更に好ましい。本発明の組成物は、光重合開始剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。光重合開始剤を2種類以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of the photopolymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to 15% by mass based on the total solid content of the composition. It is even more preferable. The composition of the present invention may contain only one type of photopolymerization initiator, or may contain two or more types of photopolymerization initiators. When two or more types of photopolymerization initiators are included, the total amount thereof is preferably within the above range.
(光ラジカル重合開始剤)
 光ラジカル重合開始剤としては、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物など)、アシルホスフィン化合物、ヘキサアリールビイミダゾール化合物、オキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、α-ヒドロキシケトン化合物、α-アミノケトン化合物などが挙げられる。光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体、ハロメチルオキサジアゾール化合物および3-アリール置換クマリン化合物であることが好ましく、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、および、アシルホスフィン化合物から選ばれる化合物であることがより好ましく、オキシム化合物であることが更に好ましい。また、光ラジカル重合開始剤としては、特開2014-130173号公報の段落0065~0111に記載された化合物、特許第6301489号公報に記載された化合物、MATERIAL STAGE 37~60p,vol.19,No.3,2019に記載されたパーオキサイド系光重合開始剤、国際公開第2018/221177号に記載の光重合開始剤、国際公開第2018/110179号に記載の光重合開始剤、特開2019-043864号公報に記載の光重合開始剤、特開2019-044030号公報に記載の光重合開始剤、特開2019-167313号公報に記載の過酸化物系開始剤、特開2020-055992号公報に記載のオキサゾリジン基を有するアミノアセトフェノン系開始剤、特開2013-190459号公報に記載のオキシム系光重合開始剤、特開2020-172619号公報に記載の重合体、国際公開第2020/152120号に記載の式1で表される化合物などが挙げられ、これらの内容は本明細書に組み込まれる。
(Photoradical polymerization initiator)
Examples of the photoradical polymerization initiator include halogenated hydrocarbon derivatives (for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, etc.), acylphosphine compounds, hexaarylbiimidazole compounds, oxime compounds, organic peroxides, Examples include thio compounds, ketone compounds, aromatic onium salts, α-hydroxyketone compounds, α-aminoketone compounds, and the like. From the viewpoint of exposure sensitivity, photopolymerization initiators include trihalomethyltriazine compounds, benzyl dimethyl ketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, and hexaarylbylene compounds. Preferred are imidazole compounds, onium compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds, cyclopentadiene-benzene-iron complexes, halomethyloxadiazole compounds and 3-aryl substituted coumarin compounds, oxime compounds, α-hydroxyketones The compound is more preferably a compound selected from a compound, an α-aminoketone compound, and an acylphosphine compound, and even more preferably an oxime compound. In addition, as photoradical polymerization initiators, compounds described in paragraphs 0065 to 0111 of JP-A No. 2014-130173, compounds described in Japanese Patent No. 6301489, MATERIAL STAGE 37 to 60p, vol. 19, No. 3,2019, the photopolymerization initiator described in International Publication No. 2018/221177, the photopolymerization initiator described in International Publication No. 2018/110179, JP 2019-043864 The photopolymerization initiator described in JP-A No. 2019-044030, the peroxide-based initiator described in JP-A No. 2019-167313, the photopolymerization initiator described in JP-A No. 2020-055992 The aminoacetophenone initiator having an oxazolidine group as described, the oxime photopolymerization initiator described in JP 2013-190459, the polymer described in JP 2020-172619, the WO 2020/152120 Examples include compounds represented by Formula 1, the contents of which are incorporated herein.
 α-ヒドロキシケトン化合物の市販品としては、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127(以上、IGM Resins B.V.社製)、Irgacure 184、Irgacure 1173、Irgacure 2959、Irgacure 127(以上、BASF社製)などが挙げられる。α-アミノケトン化合物の市販品としては、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(以上、IGM Resins B.V.社製)、Irgacure 907、Irgacure 369、Irgacure 369E、Irgacure 379EG(以上、BASF社製)などが挙げられる。アシルホスフィン化合物の市販品としては、Omnirad 819、Omnirad TPO H(以上、IGM Resins B.V.社製)、Irgacure 819、Irgacure TPO(以上、BASF社製)などが挙げられる。 Commercially available α-hydroxyketone compounds include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (manufactured by IGM Resins B.V.), Irgacure 184, and Irgacure 1. 173, Irgacure 2959, Irgacure 127 (all BASF (manufactured by a company). Commercially available α-aminoketone compounds include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (manufactured by IGM Resins B.V.), Irgacure 907, and Irgacure. 369, Irgacure 369E, Irgacure 379EG (all manufactured by BASF) (manufactured by). Commercially available acylphosphine compounds include Omnirad 819, Omnirad TPO H (manufactured by IGM Resins B.V.), Irgacure 819, Irgacure TPO (manufactured by BASF), and the like.
 オキシム化合物としては、特開2001-233842号公報に記載の化合物、特開2000-080068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、J.C.S.Perkin II(1979年、pp.1653-1660)に記載の化合物、J.C.S.Perkin II(1979年、pp.156-162)に記載の化合物、Journal of Photopolymer Science and Technology(1995年、pp.202-232)に記載の化合物、特開2000-066385号公報に記載の化合物、特表2004-534797号公報に記載の化合物、特開2006-342166号公報に記載の化合物、特開2017-019766号公報に記載の化合物、特許第6065596号公報に記載の化合物、国際公開第2015/152153号に記載の化合物、国際公開第2017/051680号に記載の化合物、特開2017-198865号公報に記載の化合物、国際公開第2017/164127号の段落番号0025~0038に記載の化合物、国際公開第2013/167515号に記載の化合物、特許第5430746号に記載の化合物、特許第5647738号に記載の化合物などが挙げられる。オキシム化合物の具体例としては、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オン、1-[4-(フェニルチオ)フェニル]-3-シクロヘキシル-プロパン-1,2-ジオン-2-(O-アセチルオキシム)などが挙げられる。市販品としては、Irgacure OXE01、Irgacure OXE02、Irgacure OXE03、Irgacure OXE04(以上、BASF社製)、TR-PBG-304、TR-PBG-327(トロンリー社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-014052号公報に記載の光重合開始剤2)が挙げられる。また、オキシム化合物としては、着色性が無い化合物や、透明性が高く変色し難い化合物を用いることも好ましい。市販品としては、アデカアークルズNCI-730、NCI-831、NCI-930(以上、(株)ADEKA製)などが挙げられる。 Examples of oxime compounds include the compounds described in JP-A No. 2001-233842, the compounds described in JP-A No. 2000-080068, the compounds described in JP-A No. 2006-342166, and the compounds described in J. C. S. Perkin II (1979, pp. 1653-1660); C. S. Perkin II (1979, pp. 156-162), Journal of Photopolymer Science and Technology (1995, pp. 202-232), JP-A-2000 - Compounds described in Publication No. 066385, Compounds described in Japanese Patent Publication No. 2004-534797, compounds described in Japanese Patent Application Publication No. 2006-342166, compounds described in Japanese Patent Application Publication No. 2017-019766, compounds described in Japanese Patent No. 6065596, International Publication No. 2015 /152153, the compound described in International Publication No. 2017/051680, the compound described in JP 2017-198865, the compound described in paragraph numbers 0025 to 0038 of International Publication No. 2017/164127, Examples include the compound described in International Publication No. 2013/167515, the compound described in Patent No. 5430746, the compound described in Patent No. 5647738, and the like. Specific examples of oxime compounds include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3-(4-toluenesulfonyloxy)iminobutan-2-one, 2-ethoxycarbonyloxyimino -1-phenylpropan-1-one, 1-[4-(phenylthio)phenyl]-3-cyclohexyl-propane-1,2-dione-2-(O-acetyloxime), and the like. Commercially available products include Irgacure OXE01, Irgacure OXE02, Irgacure OXE03, Irgacure OXE04 (manufactured by BASF), TR-PBG-304, TR-PBG-327 (manufactured by Tronley), and Adeka Optomer N-1919. ((stock) ) Photopolymerization initiator 2) manufactured by ADEKA and described in JP-A-2012-014052. Further, as the oxime compound, it is also preferable to use a compound without coloring property or a compound with high transparency and resistance to discoloration. Commercially available products include ADEKA Arkles NCI-730, NCI-831, and NCI-930 (manufactured by ADEKA Co., Ltd.).
 光ラジカル重合開始剤として、フルオレン環を有するオキシム化合物を用いることもできる。フルオレン環を有するオキシム化合物の具体例としては、特開2014-137466号公報に記載の化合物が挙げられる。 An oxime compound having a fluorene ring can also be used as a photoradical polymerization initiator. Specific examples of oxime compounds having a fluorene ring include compounds described in JP-A No. 2014-137466.
 光ラジカル重合開始剤として、カルバゾール環の少なくとも1つのベンゼン環がナフタレン環となった骨格を有するオキシム化合物を用いることもできる。そのようなオキシム化合物の具体例としては、国際公開第2013/083505号に記載の化合物が挙げられる。 As a photoradical polymerization initiator, it is also possible to use an oxime compound having a skeleton in which at least one benzene ring of the carbazole ring is a naphthalene ring. Specific examples of such oxime compounds include compounds described in International Publication No. 2013/083505.
 光ラジカル重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物、特表2014-500852号公報に記載の化合物24、36~40、特開2013-164471号公報に記載の化合物(C-3)などが挙げられる。 An oxime compound having a fluorine atom can also be used as a photoradical polymerization initiator. Specific examples of oxime compounds having a fluorine atom include compounds described in JP-A No. 2010-262028, compounds 24, 36 to 40 described in Japanese Patent Application Publication No. 2014-500852, and compounds described in JP-A No. 2013-164471. Examples include compound (C-3).
 光ラジカル重合開始剤として、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013-114249号公報の段落番号0031~0047、特開2014-137466号公報の段落番号0008~0012、0070~0079に記載されている化合物、特許4223071号公報の段落番号0007~0025に記載されている化合物、アデカアークルズNCI-831((株)ADEKA製)が挙げられる。 As a photoradical polymerization initiator, an oxime compound having a nitro group can be used. It is also preferable that the oxime compound having a nitro group is in the form of a dimer. Specific examples of oxime compounds having a nitro group include compounds described in paragraph numbers 0031 to 0047 of JP 2013-114249, paragraphs 0008 to 0012, and 0070 to 0079 of JP 2014-137466, Examples include compounds described in paragraph numbers 0007 to 0025 of Japanese Patent No. 4223071, and Adeka Arcles NCI-831 (manufactured by ADEKA Corporation).
 光ラジカル重合開始剤として、ベンゾフラン骨格を有するオキシム化合物を用いることもできる。具体例としては、国際公開第2015/036910号に記載されるOE-01~OE-75が挙げられる。 As a photoradical polymerization initiator, an oxime compound having a benzofuran skeleton can also be used. Specific examples include OE-01 to OE-75 described in International Publication No. 2015/036910.
 光ラジカル重合開始剤としては、カルバゾール骨格にヒドロキシ基を有する置換基が結合したオキシム化合物を用いることもできる。このような光重合開始剤としては国際公開第2019/088055号に記載された化合物などが挙げられる。 As the photoradical polymerization initiator, it is also possible to use an oxime compound in which a substituent having a hydroxy group is bonded to the carbazole skeleton. Examples of such photopolymerization initiators include compounds described in International Publication No. 2019/088055.
 オキシム化合物の具体例としては、以下に示す構造の化合物が挙げられる。 Specific examples of oxime compounds include compounds with the structures shown below.
 オキシム化合物は、波長350~500nmの範囲に極大吸収波長を有する化合物が好ましく、波長360~480nmの範囲に極大吸収波長を有する化合物がより好ましい。また、オキシム化合物の波長365nm又は波長405nmにおけるモル吸光係数は、感度の観点から、高いことが好ましく、1000~300000であることがより好ましく、2000~300000であることが更に好ましく、5000~200000であることが特に好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチルを用い、0.01g/Lの濃度で測定することが好ましい。 The oxime compound is preferably a compound having a maximum absorption wavelength in a wavelength range of 350 to 500 nm, more preferably a compound having a maximum absorption wavelength in a wavelength range of 360 to 480 nm. In addition, from the viewpoint of sensitivity, the molar extinction coefficient of the oxime compound at a wavelength of 365 nm or 405 nm is preferably high, more preferably from 1000 to 300,000, even more preferably from 2000 to 300,000, and even more preferably from 5000 to 200,000. It is particularly preferable that there be. The molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure with a spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using ethyl acetate at a concentration of 0.01 g/L.
 光ラジカル重合開始剤としては、2官能あるいは3官能以上の光ラジカル重合開始剤を用いてもよい。そのような光ラジカル重合開始剤を用いることにより、光ラジカル重合開始剤の1分子から2つ以上のラジカルが発生するため、良好な感度が得られる。また、非対称構造の化合物を用いた場合においては、結晶性が低下して溶剤などへの溶解性が向上して、経時で析出しにくくなり、樹脂組成物の経時安定性を向上させることができる。2官能あるいは3官能以上の光ラジカル重合開始剤の具体例としては、特表2010-527339号公報、特表2011-524436号公報、国際公開第2015/004565号、特表2016-532675号公報の段落番号0407~0412、国際公開第2017/033680号の段落番号0039~0055に記載されているオキシム化合物の2量体、特表2013-522445号公報に記載されている化合物(E)および化合物(G)、国際公開第2016/034963号に記載されているCmpd1~7、特表2017-523465号公報の段落番号0007に記載されているオキシムエステル類光開始剤、特開2017-167399号公報の段落番号0020~0033に記載されている光開始剤、特開2017-151342号公報の段落番号0017~0026に記載されている光重合開始剤(A)、特許第6469669号公報に記載されているオキシムエステル光開始剤などが挙げられる。 As the photoradical polymerization initiator, a difunctional, trifunctional or more functional photoradical polymerization initiator may be used. By using such a radical photopolymerization initiator, two or more radicals are generated from one molecule of the radical photopolymerization initiator, so that good sensitivity can be obtained. In addition, when a compound with an asymmetric structure is used, the crystallinity decreases and the solubility in solvents improves, making it difficult to precipitate over time, thereby improving the stability of the resin composition over time. . Specific examples of bifunctional or trifunctional or more functional photoradical polymerization initiators include those listed in Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No. 2015/004565, and Japanese Patent Application Publication No. 2016-532675. Dimers of oxime compounds described in paragraph numbers 0407 to 0412, paragraph numbers 0039 to 0055 of International Publication No. 2017/033680, compound (E) and compound ( G), Cmpd1 to 7 described in International Publication No. 2016/034963, oxime ester photoinitiators described in paragraph number 0007 of Japanese Patent Publication No. 2017-523465, Photoinitiators described in paragraph numbers 0020 to 0033, photoinitiators (A) described in paragraph numbers 0017 to 0026 of JP2017-151342A, and photoinitiators (A) described in Japanese Patent No. 6469669. Examples include oxime ester photoinitiators.
 光ラジカル重合開始剤の含有量は、組成物の全固形分中0.1~30質量%であることが好ましく、0.5~20質量%であることがより好ましく、1~15質量%であることが更に好ましい。本発明の組成物は、光重合開始剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。光重合開始剤を2種類以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of the photoradical polymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to 15% by mass based on the total solid content of the composition. It is even more preferable that there be. The composition of the present invention may contain only one type of photopolymerization initiator, or may contain two or more types of photopolymerization initiators. When two or more types of photopolymerization initiators are included, the total amount thereof is preferably within the above range.
(光カチオン重合開始剤)
 光カチオン重合開始剤としては、光酸発生剤が挙げられる。光酸発生剤としては、光照射により分解して酸を発生する、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩などのオニウム塩化合物、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネート等のスルホネート化合物などを挙げることができる。
(Photocationic polymerization initiator)
Examples of photocationic polymerization initiators include photoacid generators. Examples of photoacid generators include onium salt compounds such as diazonium salts, phosphonium salts, sulfonium salts, and iodonium salts, imidosulfonates, oxime sulfonates, diazodisulfones, disulfones, and o-nitrobenzyl, which decompose to generate acids when exposed to light. Examples include sulfonate compounds such as sulfonate.
 光カチオン重合開始剤としては、例えば、下記式(b1)、(b2)、(b3)で表される化合物が挙げられる。
Examples of the photocationic polymerization initiator include compounds represented by the following formulas (b1), (b2), and (b3).
 上記式において、R201~R207は、各々独立に有機基を表す。有機基の炭素数は、1~30であることが好ましい。有機基としては、アルキル基、アリール基などが挙げられる。式(b1)において、R201~R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル結合、アミド結合、カルボニル基を含んでいてもよい。上記式において、Xは、非求核性アニオンを表す。非求核性アニオンとしては、例えばスルホン酸アニオン、カルボン酸アニオン、ビス(アルキルスルホニル)アミドアニオン、トリス(アルキルスルホニル)メチドアニオン、BF 、PF 、SbF などが挙げられる。式(b1)、(b2)、(b3)で表される化合物の詳細については特開2009-258603号公報の段落番号0139~0214の記載を参酌でき、この内容は本明細書に組み込まれる。 In the above formula, R 201 to R 207 each independently represent an organic group. The organic group preferably has 1 to 30 carbon atoms. Examples of the organic group include an alkyl group and an aryl group. In formula (b1), two of R 201 to R 203 may combine to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, or a carbonyl group. . In the above formula, X represents a non-nucleophilic anion. Examples of non-nucleophilic anions include sulfonic acid anions, carboxylic acid anions, bis(alkylsulfonyl)amide anions, tris(alkylsulfonyl)methide anions, BF 4 , PF 6 , SbF 6 and the like. For details of the compounds represented by formulas (b1), (b2), and (b3), the description in paragraphs 0139 to 0214 of JP-A No. 2009-258603 can be referred to, the contents of which are incorporated herein.
 光カチオン重合開始剤は市販品を用いることもできる。光カチオン重合開始剤の市販品としては、(株)ADEKA製のアデカアークルズ SPシリーズ(例えば、アデカアークルズSP-606など)、(株)BASF製 IRGACURE250、IRGACURE270、IRGACURE290などが挙げられる。 Commercially available products can also be used as the photocationic polymerization initiator. Commercially available photocationic polymerization initiators include ADEKA ARCLES SP series (for example, ADEKA ARCLES SP-606, etc.) manufactured by ADEKA Corporation, IRGACURE 250, IRGACURE 270, and IRGACURE 290 manufactured by BASF Corporation.
 光カチオン重合開始剤の含有量は、組成物の全固形分中0.1~30質量%であることが好ましく、0.5~20質量%であることがより好ましく、1~15質量%であることが更に好ましい。本発明の組成物は、光重合開始剤を1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。光重合開始剤を2種類以上含む場合は、それらの合計量が上記範囲となることが好ましい。 The content of the photocationic polymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and 1 to 15% by mass based on the total solid content of the composition. It is even more preferable that there be. The composition of the present invention may contain only one type of photopolymerization initiator, or may contain two or more types of photopolymerization initiators. When two or more types of photopolymerization initiators are included, the total amount thereof is preferably within the above range.
<<顔料誘導体>>
 本発明の組成物は、更に顔料誘導体を含有することができる。顔料誘導体としては、発色団の一部分を、酸性基、塩基性基またはフタルイミドメチル基で置換した構造を有する化合物が挙げられる。酸基としては、スルホ基、カルボキシ基及びその4級アンモニウム塩基などが挙げられる。塩基性基としては、アミノ基などが挙げられる。顔料誘導体の詳細は、特開2011-252065号公報の段落番号0162~0183の記載を参酌でき、この内容は本明細書に組み込まれる。顔料誘導体の含有量は、顔料100質量部に対し、1~30質量部であることが好ましく、3~20質量部であることがより好ましい。顔料誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。顔料誘導体を2種以上併用する場合は、それらの合計が上記範囲であることが好ましい。
<<Pigment derivative>>
The composition of the invention may further contain a pigment derivative. Examples of the pigment derivative include compounds having a structure in which a portion of the chromophore is substituted with an acidic group, a basic group, or a phthalimidomethyl group. Examples of the acid group include a sulfo group, a carboxy group, and their quaternary ammonium bases. Examples of the basic group include an amino group. For details of the pigment derivative, the description in paragraphs 0162 to 0183 of JP-A No. 2011-252065 can be referred to, the contents of which are incorporated herein. The content of the pigment derivative is preferably 1 to 30 parts by weight, more preferably 3 to 20 parts by weight, based on 100 parts by weight of the pigment. Only one type of pigment derivative may be used, or two or more types may be used in combination. When two or more types of pigment derivatives are used in combination, it is preferable that the total amount is within the above range.
<<着色防止剤>>
 本発明の組成物は、着色防止剤を含有することができる。着色防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられ、分子量500以上のフェノール化合物、分子量500以上の亜リン酸エステル化合物又は分子量500以上のチオエーテル化合物であることが好ましい。着色防止剤は、フェノール化合物であることが好ましく、分子量500以上のフェノール化合物であることがより好ましい。
<<Coloring inhibitor>>
The composition of the present invention may contain a color inhibitor. Examples of the coloring inhibitor include phenol compounds, phosphite compounds, thioether compounds, etc., and preferably phenol compounds with a molecular weight of 500 or more, phosphite compounds with a molecular weight of 500 or more, or thioether compounds with a molecular weight of 500 or more. . The coloring inhibitor is preferably a phenol compound, more preferably a phenol compound having a molecular weight of 500 or more.
 フェノール化合物としては、ヒンダードフェノール化合物が挙げられる。特に、フェノール性ヒドロキシ基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1~22の置換又は無置換のアルキル基が好ましい。また、同一分子内にフェノール基と亜リン酸エステル基を有する化合物も好ましい。 Examples of the phenol compound include hindered phenol compounds. In particular, compounds having a substituent at the site adjacent to the phenolic hydroxy group (ortho position) are preferred. The above-mentioned substituents are preferably substituted or unsubstituted alkyl groups having 1 to 22 carbon atoms. Also preferred are compounds having a phenol group and a phosphite group in the same molecule.
 フェノール性ヒドロキシ基含有化合物類としては、多置換フェノール系化合物が好適に用いられる。多置換フェノール系化合物には、安定なフェノキシラジカル生成に起因する捕捉するパーオキシラジカルへの反応性から、置換位置および構造の異なる3種類(下記式(A)ヒンダードタイプ、式(B)セミヒンダードタイプおよび式(C)レスヒンダードタイプ)がある。
 式(A)~(C)において、Rは水素原子または置換基である。Rは、水素原子、ハロゲン原子、置換基を有してもよいアミノ基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアルキルアミノ基、置換基を有してもよいアリールアミノ基、置換基を有してもよいアルキルスルホニル基、置換基を有してもよいアリールスルホニル基が好ましく、置換基を有してもよいアミノ基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアルキルアミノ基、置換基を有してもよいアリールアミノ基がより好ましい。
As the phenolic hydroxy group-containing compounds, polysubstituted phenolic compounds are preferably used. There are three types of polysubstituted phenol compounds (formula (A) hindered type, formula (B) semi There are two types: hindered type and formula (C) less hindered type).
In formulas (A) to (C), R is a hydrogen atom or a substituent. R is a hydrogen atom, a halogen atom, an amino group that may have a substituent, an alkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent. Alkoxy group, aryloxy group which may have a substituent, alkylamino group which may have a substituent, arylamino group which may have a substituent, alkylsulfonyl group which may have a substituent , an arylsulfonyl group which may have a substituent is preferable, an amino group which may have a substituent, an alkyl group which may have a substituent, an aryl group which may have a substituent, a substituent More preferred are an alkoxy group which may have a substituent, an aryloxy group which may have a substituent, an alkylamino group which may have a substituent, and an arylamino group which may have a substituent.
 さらに好ましい形態は、上記式(A)~(C)で表される酸化防止機能を発現する構造が同一分子内に複数存在する複合系着色防止剤であり、具体的には上記式(A)~(C)で表される酸化防止機能を発現する構造が同一分子内に2~4個存在する化合物が好ましい。これらの中では、式(B)セミヒンダードタイプがより好ましい。市販品として入手できる代表例としては、(A)としてはSumilizer BHT(住友化学製)、Irganox 1010、1222(BASF社製)、アデカスタブAO-20、AO-50、AO-60((株)ADEKA製)などが挙げられる。(B)としてはSumilizer BBM-S(住友化学(株)製)、Irganox 245(BASF社製)、アデカスタブAO-80((株)ADEKA製)などが挙げられる。(C)としてはアデカスタブAO-30、AO-40((株)ADEKA製)などが挙げられる。 A more preferable form is a complex coloring inhibitor in which a plurality of structures exhibiting antioxidant functions represented by the above formulas (A) to (C) exist in the same molecule, and specifically, the above formula (A) Compounds in which 2 to 4 structures exhibiting an antioxidant function represented by (C) are present in the same molecule are preferred. Among these, the semi-hindered type of formula (B) is more preferred. Typical examples available as commercial products include (A) Sumilizer BHT (manufactured by Sumitomo Chemical), Irganox 1010, 1222 (manufactured by BASF), ADEKA STAB AO-20, AO-50, AO-60 (ADEKA Corporation). (manufactured by). Examples of (B) include Sumilizer BBM-S (manufactured by Sumitomo Chemical Co., Ltd.), Irganox 245 (manufactured by BASF Corporation), and ADEKA STAB AO-80 (manufactured by ADEKA Corporation). Examples of (C) include ADEKA STAB AO-30 and AO-40 (manufactured by ADEKA Co., Ltd.).
 亜リン酸エステル化合物及びチオエーテル化合物としては、国際公開第2017/159910号の段落0213~0214に記載の化合物及び市販品が挙げられる。着色防止剤の市販品としては、上述の代表例のほかに、アデカスタブ AO-50F、アデカスタブ AO-60G、アデカスタブ AO-330((株)ADEKA)などが挙げられる。また、着色防止剤には、特開2015-034961号公報の段落0211~0223に記載の化合物を用いることもできる。 Examples of the phosphite compound and thioether compound include the compounds described in paragraphs 0213 to 0214 of International Publication No. 2017/159910 and commercially available products. In addition to the representative examples mentioned above, commercially available coloring inhibitors include ADEKA STAB AO-50F, ADEKA STAB AO-60G, ADEKA STAB AO-330 (ADEKA Corporation), and the like. Furthermore, compounds described in paragraphs 0211 to 0223 of JP-A-2015-034961 can also be used as the coloring inhibitor.
 着色防止剤の含有量は、組成物の全固形分中0.01~20質量%であることが好ましく、0.1~15質量%であることがより好ましく、0.3~5質量%であることが更に好ましい。着色防止剤は、1種類のみを用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合は、それらの合計量が上記範囲となることが好ましい。 The content of the coloring inhibitor is preferably 0.01 to 20% by mass, more preferably 0.1 to 15% by mass, and 0.3 to 5% by mass based on the total solid content of the composition. It is even more preferable that there be. Only one type of coloring inhibitor may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
<<紫外線吸収剤>>
 本発明の組成物は、紫外線吸収剤を含有することができる。紫外線吸収剤としては、共役ジエン化合物、アミノブタジエン化合物、メチルジベンゾイル化合物、クマリン化合物、サリシレート化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、アクリロニトリル化合物、ヒドロキシフェニルトリアジン化合物などが挙げられる。このような化合物の具体例としては、特開2009-217221号公報の段落番号0038~0052、特開2012-208374号公報の段落番号0052~0072、特開2013-068814号公報の段落番号0317~0334、特開2016-162946号公報の段落番号0061~0080、国際公開第2021/132247号の段落番号0022~0024に記載された化合物が挙げられ、これらの内容は本明細書に組み込まれる。紫外線吸収剤の市販品としては、例えば、UV-503(大東化学(株)製)、BASF社製のTinuvinシリーズ、Uvinul(ユビナール)シリーズ、住化ケムテックス(株)製のSumisorbシリーズなどが挙げられる。また、ベンゾトリアゾール化合物としては、ミヨシ油脂製のMYUAシリーズ(化学工業日報、2016年2月1日)が挙げられる。また、紫外線吸収剤は、特許第6268967号公報の段落番号0049~0059に記載された化合物、国際公開第2016/181987号の段落番号0059~0076に記載された化合物、国際公開第2020/137819号に記載されたチオアリール基置換ベンゾトリアゾール型紫外線吸収剤を用いることもできる。
<<Ultraviolet absorber>>
The composition of the present invention can contain a UV absorber. Examples of the ultraviolet absorber include conjugated diene compounds, aminobutadiene compounds, methyldibenzoyl compounds, coumarin compounds, salicylate compounds, benzophenone compounds, benzotriazole compounds, acrylonitrile compounds, hydroxyphenyltriazine compounds, and the like. Specific examples of such compounds include paragraph numbers 0038 to 0052 of JP2009-217221A, paragraphs 0052 to 0072 of JP2012-208374A, and paragraphs 0317 to 0317 of JP2013-068814A. 0334, the compounds described in paragraph numbers 0061 to 0080 of JP 2016-162946, and paragraph numbers 0022 to 0024 of International Publication No. 2021/132247, the contents of which are incorporated herein. Examples of commercially available UV absorbers include UV-503 (manufactured by Daito Kagaku Co., Ltd.), Tinuvin series and Uvinul series manufactured by BASF, and Sumisorb series manufactured by Sumika Chemtex Co., Ltd. . Furthermore, examples of the benzotriazole compound include the MYUA series manufactured by Miyoshi Yushi (Kagaku Kogyo Nippo, February 1, 2016). In addition, the ultraviolet absorbers include compounds described in paragraph numbers 0049 to 0059 of Patent No. 6268967, compounds described in paragraph numbers 0059 to 0076 of International Publication No. 2016/181987, and compounds described in International Publication No. 2020/137819. It is also possible to use the thioaryl group-substituted benzotriazole type ultraviolet absorbers described in .
 紫外線吸収剤の含有量は、組成物の全固形分中0.1~10質量%であることが好ましく、0.1~7質量%であることがより好ましく、0.1~5質量%であることが更に好ましく、0.1~3質量%であることが特に好ましい。紫外線吸収剤は、1種類のみを用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合は、それらの合計量が上記範囲となることが好ましい。 The content of the ultraviolet absorber is preferably 0.1 to 10% by mass, more preferably 0.1 to 7% by mass, and 0.1 to 5% by mass based on the total solid content of the composition. It is more preferable that the amount is 0.1 to 3% by mass, and particularly preferably 0.1 to 3% by mass. Only one type of ultraviolet absorber may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
<<シランカップリング剤>>
 本発明の組成物は、シランカップリング剤を含有することができる。本明細書において、シランカップリング剤とは、加水分解性基とそれ以外の官能基とを有するシラン化合物のことを意味する。また、加水分解性基とは、ケイ素原子に直結し、加水分解反応及び縮合反応の少なくともいずれかによってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基などが挙げられ、アルコキシ基が好ましい。すなわち、シランカップリング剤は、アルコキシシリル基を有する化合物が好ましい。また、加水分解性基以外の官能基としては、例えば、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、メルカプト基、エポキシ基、オキセタニル基、アミノ基、ウレイド基、スルフィド基、イソシアネート基、フェニル基などが挙げられ、アミノ基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基およびエポキシ基が好ましい。シランカップリング剤の具体例としては、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン(信越化学工業(株)製、商品名 KBM-602)、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン(信越化学工業(株)製、商品名 KBM-603)、N-β-アミノエチル-γ-アミノプロピルトリエトキシシラン(信越化学工業(株)製、商品名 KBE-602)、γ-アミノプロピルトリメトキシシラン(信越化学工業(株)製、商品名 KBM-903)、γ-アミノプロピルトリエトキシシラン(信越化学工業(株)製、商品名 KBE-903)、3-メタクリロキシプロピルメチルジメトキシシラン(信越化学工業(株)製、商品名 KBM-502)、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製、商品名 KBM-503)等がある。また、シランカップリング剤の具体例については、特開2009-288703号公報の段落番号0018~0036に記載の化合物、特開2009-242604号公報の段落番号0056~0066に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。
<<Silane coupling agent>>
The composition of the present invention can contain a silane coupling agent. In this specification, a silane coupling agent means a silane compound having a hydrolyzable group and other functional groups. Furthermore, the term "hydrolyzable group" refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond through at least one of a hydrolysis reaction and a condensation reaction. Examples of the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group, and an alkoxy group is preferred. That is, the silane coupling agent is preferably a compound having an alkoxysilyl group. Examples of functional groups other than hydrolyzable groups include vinyl groups, (meth)allyl groups, (meth)acryloyl groups, (meth)acryloyloxy groups, mercapto groups, epoxy groups, oxetanyl groups, amino groups, and ureido groups. group, sulfide group, isocyanate group, phenyl group, etc., and amino group, (meth)acryloyl group, (meth)acryloyloxy group, and epoxy group are preferable. Specific examples of silane coupling agents include N-β-aminoethyl-γ-aminopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-602), N-β-aminoethyl-γ-amino Propyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-603), N-β-aminoethyl-γ-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBE-602), γ-Aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-903), γ-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBE-903), 3-methacryloxy Examples include propylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-502), 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KBM-503), and the like. Specific examples of the silane coupling agent include compounds described in paragraph numbers 0018 to 0036 of JP-A No. 2009-288703 and compounds described in paragraph numbers 0056 to 0066 of JP-A-2009-242604. , the contents of which are incorporated herein.
 シランカップリング剤の含有量は、組成物の全固形分中0.01~10質量%であることが好ましく、0.1~7質量%であることがより好ましく、1~5質量%であることが更に好ましい。シランカップリング剤は、1種類のみを用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合は、それらの合計量が上記範囲となることが好ましい。 The content of the silane coupling agent is preferably 0.01 to 10% by mass, more preferably 0.1 to 7% by mass, and 1 to 5% by mass based on the total solid content of the composition. More preferably. Only one type of silane coupling agent may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
<<重合禁止剤>>
 本発明の組成物は、重合禁止剤を含有することができる。重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、1,4-ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン塩(アンモニウム塩、第一セリウム塩等)が挙げられ、p-メトキシフェノールが好ましい。重合禁止剤の含有量は、組成物の全固形分中0.0001~5質量%であることが好ましく、0.0001~1質量%であることがより好ましい。
<<Polymerization inhibitor>>
The composition of the present invention can contain a polymerization inhibitor. Examples of polymerization inhibitors include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, 1,4-benzoquinone, 4,4'-thiobis(3-methyl-6-tert -butylphenol), 2,2'-methylenebis(4-methyl-6-t-butylphenol), and N-nitrosophenylhydroxyamine salts (ammonium salts, cerous salts, etc.), with p-methoxyphenol being preferred. The content of the polymerization inhibitor is preferably 0.0001 to 5% by mass, more preferably 0.0001 to 1% by mass based on the total solid content of the composition.
<<連鎖移動剤>>
 本発明の組成物は、連鎖移動剤を含有することができる。連鎖移動剤としては、国際公開第2017/159190号の段落0225に記載の化合物を用いることができる。連鎖移動剤の含有量は、組成物の全固形分中0.2~5.0質量%であることが好ましく、0.4~3.0質量%であることがより好ましい。また、連鎖移動剤の含有量は、重合性モノマーの100質量部に対し、1~40質量部であることが好ましく、2~20質量部であることがより好ましい。連鎖移動剤は、1種類のみを用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合は、それらの合計量が上記範囲となることが好ましい。
<<Chain transfer agent>>
Compositions of the invention may contain chain transfer agents. As the chain transfer agent, a compound described in paragraph 0225 of International Publication No. 2017/159190 can be used. The content of the chain transfer agent is preferably 0.2 to 5.0% by mass, more preferably 0.4 to 3.0% by mass based on the total solid content of the composition. Further, the content of the chain transfer agent is preferably 1 to 40 parts by weight, more preferably 2 to 20 parts by weight, based on 100 parts by weight of the polymerizable monomer. Only one type of chain transfer agent may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
<<増感剤>>
 本発明の組成物は、更に増感剤を含有することができる。増感剤は、光重合開始剤に対し、電子移動機構又はエネルギー移動機構で増感させる化合物であることが好ましい。増感剤としては、300~450nmの範囲に吸収を有する化合物が挙げられる。増感剤の詳細については、特開2010-106268号公報の段落番号0231~0253(対応する米国特許出願公開第2011/0124824号明細書の段落番号0256~0273)の記載を参酌でき、この内容は本明細書に組み込まれる。増感剤の含有量は、組成物の全固形分中0.1~20質量%であることが好ましく、0.5~15質量%であることがより好ましい。増感剤は、1種類のみを用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合は、それらの合計量が上記範囲となることが好ましい。
<<Sensitizer>>
The composition of the present invention can further contain a sensitizer. The sensitizer is preferably a compound that sensitizes the photopolymerization initiator using an electron transfer mechanism or an energy transfer mechanism. Examples of the sensitizer include compounds having absorption in the range of 300 to 450 nm. For details on the sensitizer, the description in paragraphs 0231 to 0253 of JP 2010-106268A (corresponding paragraphs 0256 to 0273 of US Patent Application Publication No. 2011/0124824) can be referred to, and the contents thereof is incorporated herein. The content of the sensitizer is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass based on the total solid content of the composition. Only one type of sensitizer may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
<<共増感剤>>
 本発明の組成物は、更に共増感剤を含有することができる。共増感剤は、光重合開始剤や増感剤の活性放射線に対する感度を一層向上させる、あるいは、酸素による重合性モノマーの重合阻害を抑制する等の作用を有する化合物であることが好ましい。共増感剤の詳細については、特開2010-106268号公報の段落番号0254~0257(対応する米国特許出願公開第2011/0124824号明細書の段落番号0277~0279)の記載を参酌でき、この内容は本明細書に組み込まれる。共増感剤の含有量は、組成物の全固形分中0.1~30質量%であることが好ましく、1~25質量%であることがより好ましく、1.5~20質量%であることが更に好ましい。共増感剤は1種類のみを用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合は、それらの合計量が上記範囲となることが好ましい。
<<Co-sensitizer>>
The composition of the present invention can further contain a co-sensitizer. The co-sensitizer is preferably a compound that has the effect of further improving the sensitivity of the photopolymerization initiator or sensitizer to actinic radiation, or suppressing inhibition of polymerization of polymerizable monomers by oxygen. For details of the co-sensitizer, the description in paragraphs 0254 to 0257 of JP 2010-106268A (corresponding paragraphs 0277 to 0279 of U.S. Patent Application Publication No. 2011/0124824) can be referred to. The contents are incorporated herein. The content of the co-sensitizer is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, and 1.5 to 20% by mass based on the total solid content of the composition. More preferably. Only one type of co-sensitizer may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
<<界面活性剤>>
 本発明の組成物は、塗布適性をより向上させる観点から、各種類の界面活性剤を含有させてもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用することができる。界面活性剤はシリコーン系界面活性剤またはフッ素系界面活性剤であることが好ましい。
<<Surfactant>>
The composition of the present invention may contain various types of surfactants from the viewpoint of further improving coating suitability. As the surfactant, various surfactants such as fluorine surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants can be used. The surfactant is preferably a silicone surfactant or a fluorine surfactant.
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好適であり、より好ましくは5~30質量%であり、特に好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、組成物中における溶解性も良好である。 The fluorine content in the fluorine surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass. A fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid saving, and has good solubility in the composition.
 フッ素系界面活性剤としては、特開2014-041318号公報の段落番号0060~0064(対応する国際公開第2014/017669号の段落番号0060~0064)等に記載の界面活性剤、特開2011-132503号公報の段落番号0117~0132に記載の界面活性剤、特開2020-008634号公報に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF-171、F-172、F-173、F-176、F-177、F-141、F-142、F-143、F-144、F-437、F-475、F-477、F-479、F-482、F-554、F-555-A、F-556、F-557、F-558、F-559、F-560、F-561、F-565、F-563、F-568、F-575、F-780、EXP、MFS-330、R-01、R-40、R-40-LM、R-41、R-41-LM、RS-43、R-43、TF-1956、RS-90、R-94、RS-72-K、DS-21(以上、DIC(株)製)、フロラードFC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、AGC(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)、フタージェント208G、215M、245F、601AD、601ADH2、602A、610FM、710FL、710FM、710FS、FTX-218(以上、(株)NEOS製)等が挙げられる。 Examples of fluorine-based surfactants include surfactants described in paragraph numbers 0060 to 0064 of JP 2014-041318 (corresponding paragraph numbers 0060 to 0064 of WO 2014/017669), and the like; Examples include the surfactants described in paragraph numbers 0117 to 0132 of Publication No. 132503 and the surfactants described in JP-A-2020-008634, the contents of which are incorporated herein. Commercially available fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143, F-144. , F-437, F-475, F-477, F-479, F-482, F-554, F-555-A, F-556, F-557, F-558, F-559, F-560 , F-561, F-565, F-563, F-568, F-575, F-780, EXP, MFS-330, R-01, R-40, R-40-LM, R-41, R -41-LM, RS-43, R-43, TF-1956, RS-90, R-94, RS-72-K, DS-21 (manufactured by DIC Corporation), Florado FC430, FC431, FC171 (all manufactured by Sumitomo 3M Ltd.), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC-1068, SC-381, SC-383, S-393, KH- 40 (manufactured by AGC Corporation), PolyFox PF636, PF656, PF6320, PF6520, PF7002 (manufactured by OMNOVA), Ftergent 208G, 215M, 245F, 601AD, 601ADH2, 602A, 610FM, 710FL, 710 FM, 710FS , FTX-218 (manufactured by NEOS Co., Ltd.), and the like.
 フッ素系界面活性剤は、フッ素原子を含有する官能基を持つ分子構造を有し、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC(株)製のメガファックDSシリーズ(化学工業日報(2016年2月22日)、日経産業新聞(2016年2月23日))、例えば、メガファックDS-21が挙げられる。 Fluorine-based surfactants include acrylic compounds that have a molecular structure with a functional group containing a fluorine atom, and when heated, the functional group containing a fluorine atom is severed and the fluorine atom volatizes. Can be used. Examples of such fluorine-based surfactants include Megafac DS series manufactured by DIC Corporation (Kagaku Kogyo Nippo (February 22, 2016), Nikkei Sangyo Shimbun (February 23, 2016)); Fuck DS-21 is an example.
 フッ素系界面活性剤は、フッ素化アルキル基またはフッ素化アルキレンエーテル基を有するフッ素原子含有ビニルエーテル化合物と、親水性のビニルエーテル化合物との重合体を用いることも好ましい。このようなフッ素系界面活性剤は、特開2016-216602号公報に記載されたフッ素系界面活性剤が挙げられ、この内容は本明細書に組み込まれる。 As the fluorine-based surfactant, it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound. Examples of such fluorine-based surfactants include the fluorine-based surfactants described in JP-A No. 2016-216602, the content of which is incorporated herein.
 フッ素系界面活性剤は、ブロックポリマーを用いることもできる。フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができる。また、特開2010-032698号公報の段落番号0016~0037に記載されたフッ素含有界面活性剤や、下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
 上記の化合物の重量平均分子量は、好ましくは3000~50000であり、例えば、14000である。上記の化合物中、繰り返し単位の割合を示す%はモル%である。
A block polymer can also be used as the fluorosurfactant. The fluorine-based surfactant has a repeating unit derived from a (meth)acrylate compound having a fluorine atom and two or more (preferably five or more) alkyleneoxy groups (preferably ethyleneoxy group, propyleneoxy group) (meth). A fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used. Further, the fluorine-containing surfactants described in paragraphs 0016 to 0037 of JP-A No. 2010-032698 and the following compounds are also exemplified as the fluorine-containing surfactant used in the present invention.
The weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example 14,000. In the above compound, % indicating the proportion of repeating units is mol%.
 フッ素系界面活性剤は、エチレン性不飽和結合含有基を側鎖に有する含フッ素重合体を用いることもできる。具体例としては、特開2010-164965号公報の段落番号0050~0090および段落番号0289~0295に記載された化合物、DIC(株)製のメガファックRS-101、RS-102、RS-718K、RS-72-K等が挙げられる。また、フッ素系界面活性剤は、特開2015-117327号公報の段落番号0015~0158に記載の化合物を用いることもできる。 As the fluorine-based surfactant, a fluorine-containing polymer having an ethylenically unsaturated bond-containing group in its side chain can also be used. Specific examples include compounds described in paragraph numbers 0050 to 0090 and paragraph numbers 0289 to 0295 of JP-A No. 2010-164965, Megafac RS-101, RS-102, RS-718K manufactured by DIC Corporation, Examples include RS-72-K. Further, as the fluorine-based surfactant, compounds described in paragraph numbers 0015 to 0158 of JP-A No. 2015-117327 can also be used.
 国際公開第2020/084854号に記載の界面活性剤を、炭素数6以上のパーフルオロアルキル基を有する界面活性剤の代替として用いることも、環境規制の観点から好ましい。 It is also preferable from the viewpoint of environmental regulations to use the surfactant described in International Publication No. 2020/084854 as a substitute for a surfactant having a perfluoroalkyl group having 6 or more carbon atoms.
 式(fi-1)で表される含フッ素イミド塩化合物を界面活性剤として用いることも好ましい。
 式(fi-1)中、mは1または2を表し、nは1~4の整数を表し、aは1または2を表し、Xa+はa価の金属イオン、第1級アンモニウムイオン、第2級アンモニウムイオン、第3級アンモニウムイオン、第4級アンモニウムイオンまたはNH を表す。
It is also preferable to use a fluorine-containing imide salt compound represented by formula (fi-1) as a surfactant.
In formula (fi-1), m represents 1 or 2, n represents an integer of 1 to 4, a represents 1 or 2, and X a+ represents an a-valent metal ion, a primary ammonium ion, or Represents a secondary ammonium ion, tertiary ammonium ion, quaternary ammonium ion or NH 4 + .
 ノニオン系界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセロールエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、プルロニックL10、L31、L61、L62、10R5、17R2、25R2(BASF社製)、テトロニック304、701、704、901、904、150R1(BASF社製)、ソルスパース20000(日本ルーブリゾール(株)製)、NCW-101、NCW-1001、NCW-1002(富士フイルム和光純薬(株)製)、パイオニンD-6112、D-6112-W、D-6315(竹本油脂(株)製)、オルフィンE1010、サーフィノール104、400、440(日信化学工業(株)製)などが挙げられる。 Examples of nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2 (BASF Tetronic 304, 701, 704, 901, 904, 150R1 (manufactured by BASF), Solsperse 20000 (manufactured by Japan Lubrizol Co., Ltd.), NCW-101, NCW-1001, NCW-1002 (Fujifilm Wa (manufactured by Hikari Junyaku Co., Ltd.), Pionin D-6112, D-6112-W, D-6315 (manufactured by Takemoto Yushi Co., Ltd.), Olfin E1010, Surfynol 104, 400, 440 (manufactured by Nissin Chemical Industry Co., Ltd.) ), etc.
 シリコーン系界面活性剤としては、DOWSIL SH8400、SH8400 FLUID、FZ-2122、67 Additive、74 Additive、M Additive、SF 8419 OIL(以上、ダウ・東レ(株)製)、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP-341、KF-6000、KF-6001、KF-6002、KF-6003(以上、信越化学工業(株)製)、BYK-307、BYK-322、BYK-323、BYK-330、BYK-333、BYK-3760、BYK-UV3510(以上、ビックケミー社製)等が挙げられる。 Examples of silicone surfactants include DOWSIL SH8400, SH8400 FLUID, FZ-2122, 67 Additive, 74 Additive, M Additive, SF 8419 OIL (manufactured by Dow Toray Industries, Inc.), and TS. F-4300, TSF-4445, TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), KP-341, KF-6000, KF-6001, KF-6002, KF-6003 (manufactured by Shin-Etsu Chemical Co., Ltd.) , BYK-307, BYK-322, BYK-323, BYK-330, BYK-333, BYK-3760, BYK-UV3510 (manufactured by BYK Chemie), and the like.
 シリコーン系界面活性剤には下記構造の化合物を用いることもできる。
Compounds having the following structure can also be used as silicone surfactants.
 界面活性剤の含有量は、組成物の全固形分中0.001~2.0質量%であることが好ましく、0.005~1.0質量%であることがより好ましい。界面活性剤は、1種類のみを用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合は、それらの合計量が上記範囲となることが好ましい。 The content of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass based on the total solid content of the composition. Only one type of surfactant may be used, or two or more types may be used in combination. When two or more types are used together, it is preferable that their total amount falls within the above range.
<<その他の添加剤>>
 更に、組成物に対しては、膜の物性を改良するために可塑剤や感脂化剤等の公知の添加剤を加えてもよい。可塑剤としては、例えば、ジオクチルフタレート、ジドデシルフタレート、トリエチレングリコールジカプリレート、ジメチルグリコールフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジブチルセバケート、トリアセチルグリセリン等が挙げられる。
<<Other additives>>
Furthermore, known additives such as plasticizers and oil-sensitizing agents may be added to the composition in order to improve the physical properties of the film. Examples of the plasticizer include dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, triacetylglycerin, and the like.
<収容容器>
 本発明の組成物の収容容器としては、特に限定はなく、公知の収容容器を用いることができる。また、収容容器として、原材料や組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成する多層ボトルや6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。また、容器内壁は、容器内壁からの金属溶出を防ぎ、組成物の保存安定性を高めたり、成分変質を抑制するなどの目的で、ガラス製やステンレス製などにすることも好ましい。
<Storage container>
The container for storing the composition of the present invention is not particularly limited, and any known container can be used. In addition, in order to prevent impurities from entering raw materials and compositions, we use multi-layer bottles with an inner wall made of 6 types of 6 layers of resin, and bottles with 7 layers of 6 types of resin as storage containers. It is also preferable to use Examples of such a container include the container described in JP-A No. 2015-123351. Further, the inner wall of the container is preferably made of glass, stainless steel, or the like for the purpose of preventing metal elution from the inner wall of the container, increasing the storage stability of the composition, and suppressing deterioration of the components.
<組成物の調製方法>
 本発明の組成物は、前述の成分を混合して調製できる。組成物の調製に際しては、各成分を一括配合してもよいし、各成分を溶剤に溶解および分散のうち少なくとも一方をした後に逐次配合してもよい。また、配合する際の投入順序や作業条件は特に制約を受けない。
<Method for preparing composition>
The composition of the present invention can be prepared by mixing the components described above. When preparing the composition, each component may be blended all at once, or each component may be blended sequentially after at least one of dissolving and dispersing each component in a solvent. Furthermore, there are no particular restrictions on the order of addition or working conditions when blending.
 組成物の調製にあたり、粒子を分散させるプロセスを含むことが好ましい。粒子を分散させるプロセスにおいて、粒子の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断、キャビテーションなどが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、ボールミル、ペイントシェーカー、マイクロフルイダイザー、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化、超音波分散などが挙げられる。またサンドミル(ビーズミル)における粒子の粉砕においては、径の小さいビーズを使用する、ビーズの充填率を大きくする事等により粉砕効率を高めた条件で処理することが好ましい。また、粉砕処理後にろ過、遠心分離などで粗粒子を除去することが好ましい。また、粒子を分散させるプロセスおよび分散機は、「分散技術大全、株式会社情報機構発行、2005年7月15日」や「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」、特開2015-157893号公報の段落番号0022に記載のプロセス及び分散機を好適に使用出来る。また、粒子を分散させるプロセスにおいては、ソルトミリング工程にて粒子の微細化処理を行ってもよい。ソルトミリング工程に用いられる素材、機器、処理条件等は、例えば特開2015-194521号公報、特開2012-046629号公報の記載を参酌できる。 Preferably, the preparation of the composition includes a process of dispersing particles. In the process of dispersing particles, mechanical forces used for dispersing particles include compression, squeezing, impact, shearing, cavitation, and the like. Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high speed impellers, sand grinders, flow jet mixers, high pressure wet atomization, ultrasonic dispersion, and the like. In addition, when pulverizing particles in a sand mill (bead mill), it is preferable to use small-diameter beads or increase the filling rate of beads, thereby increasing the pulverizing efficiency. Further, it is preferable to remove coarse particles by filtration, centrifugation, etc. after the pulverization treatment. In addition, the process and dispersion machine for dispersing particles are described in "Encyclopedia of Dispersion Technology, Published by Information Technology Corporation, July 15, 2005" and "Dispersion Technology and Industrial Applications Centered on Suspension (Solid/Liquid Dispersion System)". The process and dispersion machine described in Paragraph No. 0022 of JP2015-157893A, "Comprehensive Data Collection, Published by Management Development Center Publishing Department, October 10, 1978" can be suitably used. Further, in the process of dispersing particles, the particles may be refined in a salt milling step. For the materials, equipment, processing conditions, etc. used in the salt milling process, the descriptions in JP-A No. 2015-194521 and JP-A No. 2012-046629 can be referred to, for example.
 組成物の調製にあたり、異物の除去や欠陥の低減などの目的で、フィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられるものであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン(例えばナイロン-6、ナイロン-6,6)等のポリアミド樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)およびナイロンが好ましい。 When preparing the composition, it is preferable to filter it with a filter for the purpose of removing foreign substances and reducing defects. As the filter, any filter that has been conventionally used for filtration and the like can be used without particular limitation. For example, fluororesins such as polytetrafluoroethylene (PTFE), polyamide resins such as nylon (e.g. nylon-6, nylon-6,6), polyolefin resins (high density, ultra-high molecular weight) such as polyethylene, polypropylene (PP), etc. Examples include filters using materials such as polyolefin resin (including polyolefin resin). Among these materials, polypropylene (including high-density polypropylene) and nylon are preferred.
 フィルタの孔径は、0.01~10.0μmであることが好ましく、0.05~3.0μmであることがより好ましく、0.1~2.0μm程であることが更に好ましい。フィルタの孔径値については、フィルタメーカーの公称値を参照することができる。フィルタは、日本ポール株式会社(DFA4201NIEYなど)、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)および株式会社キッツマイクロフィルタ等が提供する各種フィルタを用いることができる。 The pore diameter of the filter is preferably 0.01 to 10.0 μm, more preferably 0.05 to 3.0 μm, and even more preferably about 0.1 to 2.0 μm. Regarding the pore size value of the filter, reference can be made to the nominal value of the filter manufacturer. As the filter, various filters provided by Nippon Pole Co., Ltd. (DFA4201NIEY, etc.), Advantech Toyo Co., Ltd., Nippon Entegris Co., Ltd. (formerly Nippon Microlith Co., Ltd.), Kitz Microfilter Co., Ltd., etc. can be used.
 フィルタとしてファイバ状のろ材を用いることも好ましい。ファイバ状のろ材としては、ポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられる。市販品としては、ロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)が挙げられる。 It is also preferable to use a fiber filter medium as the filter. Examples of the fibrous filter medium include polypropylene fiber, nylon fiber, and glass fiber. Commercially available products include the SBP type series (SBP008, etc.), the TPR type series (TPR002, TPR005, etc.), and the SHPX type series (SHPX003, etc.) manufactured by Loki Techno.
 フィルタを使用する際、異なるフィルタ(例えば、第1のフィルタと第2のフィルタなど)を組み合わせてもよい。その際、各フィルタでのろ過は、1回のみでもよいし、2回以上行ってもよい。また、上述した範囲内で異なる孔径のフィルタを組み合わせてもよい。また、第1のフィルタでのろ過は、分散液のみに対して行い、他の成分を混合した後で、第2のフィルタでろ過を行ってもよい。 When using filters, different filters (for example, a first filter and a second filter, etc.) may be combined. At that time, filtration with each filter may be performed only once, or may be performed two or more times. Further, filters having different pore diameters within the above-mentioned range may be combined. Alternatively, only the dispersion liquid may be filtered with the first filter, and then filtered with the second filter after other components are mixed.
<膜>
 本発明の膜は、上述した本発明の組成物を用いて得られる膜である。
 本発明の膜の波長400~700nmの範囲の光の透過率の最大値は、80%以下であることが好ましく、70%以下であることがより好ましく、60%以下であることが更に好ましく、50%以下であることが特に好ましい。上記透過率の最大値の下限は1%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることが更に好ましく、15%以上であることがより一層好ましく、20%以上であることが特に好ましい。
<Membrane>
The film of the present invention is a film obtained using the composition of the present invention described above.
The maximum value of the transmittance of light in the wavelength range of 400 to 700 nm of the film of the present invention is preferably 80% or less, more preferably 70% or less, even more preferably 60% or less, Particularly preferably, it is 50% or less. The lower limit of the maximum transmittance is preferably 1% or more, more preferably 5% or more, even more preferably 10% or more, even more preferably 15% or more, and 20% or more. % or more is particularly preferable.
 本発明の膜の波長400~1000nmの範囲の光の透過率の最大値は、80%以下であることが好ましく、75%以下であることがより好ましく、70%以下であることが更に好ましく、60%以下であることがより一層好ましく、50%以下であることが特に好ましい。上記透過率の最大値の下限は1%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることが更に好ましく、15%以上であることがより一層好ましく、20%以上であることが特に好ましい。 The maximum value of the transmittance of light in the wavelength range of 400 to 1000 nm of the film of the present invention is preferably 80% or less, more preferably 75% or less, even more preferably 70% or less, It is even more preferably 60% or less, particularly preferably 50% or less. The lower limit of the maximum transmittance value is preferably 1% or more, more preferably 5% or more, even more preferably 10% or more, even more preferably 15% or more, and 20% or more. % or more is particularly preferable.
 光散乱性の観点から、本発明の膜は、上述した粒子P1(屈折率が2.0以上で平均一次粒子径が200nm以下の粒子)を含む第1の相と、上記第1の相よりも上記粒子P1の含有量が少ない第2の相との相分離構造が形成されていることが好ましい。また、上記相分離構造は、海島構造又は共連続相構造であることが好ましい。これらの相分離構造が形成されていることにより、第1の相と第2の相との間で光を効果的に散乱することができ、特に優れた光散乱性が得られやすい。海島構造においては、第2の相が海で、第1の相が島を形成していてもよく、第1の相が海で、第2の相が島を形成していてもよい。第1の相が海で、第2の相が島を形成している場合は、透過率の観点で好ましい。第1の相が島で、第2の相が海を形成して場合は、角度依存性の観点で好ましい。 From the viewpoint of light scattering properties, the film of the present invention has a first phase containing the above-mentioned particles P1 (particles with a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less), and It is preferable that a phase-separated structure is formed with the second phase having a small content of the particles P1. Moreover, it is preferable that the phase separation structure is a sea-island structure or a co-continuous phase structure. By forming these phase separation structures, light can be effectively scattered between the first phase and the second phase, and particularly excellent light scattering properties are likely to be obtained. In the sea-island structure, the second phase may be the ocean and the first phase may form an island, or the first phase may be the ocean and the second phase may form an island. It is preferable from the viewpoint of transmittance that the first phase is sea and the second phase forms islands. It is preferable from the viewpoint of angular dependence that the first phase forms an island and the second phase forms an ocean.
 本発明の膜のJIS K 7136に基づくヘイズは、30~100%であることが好ましい。上限は99%以下であることが好ましく、95%以下であることがより好ましく、90%以下であることが更に好ましい。下限は35%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることが更に好ましい。膜のヘイズが上記範囲であれば、十分な光透過量を確保しつつ、十分な光散乱能を得ることができる。 The haze of the film of the present invention based on JIS K 7136 is preferably 30 to 100%. The upper limit is preferably 99% or less, more preferably 95% or less, and even more preferably 90% or less. The lower limit is preferably 35% or more, more preferably 40% or more, and even more preferably 50% or more. If the haze of the film is within the above range, sufficient light scattering ability can be obtained while ensuring a sufficient amount of light transmission.
 本発明の膜のCIE1976のL*a*b*表色系におけるL*の値は、35~100であることが好ましい。L*の値は、40以上であることが好ましく、50以上であることがより好ましく、60以上であることが更に好ましい。この態様によれば、白色度に優れた膜とすることができる。また、L*の値は、95以下であることが好ましく、90以下であることがより好ましく、85以下であることが更に好ましい。この態様によれば、適度な可視透明性を有する膜とすることができる。 The value of L* in the CIE1976 L*a*b* color system of the film of the present invention is preferably 35 to 100. The value of L* is preferably 40 or more, more preferably 50 or more, and even more preferably 60 or more. According to this aspect, a film with excellent whiteness can be obtained. Further, the value of L* is preferably 95 or less, more preferably 90 or less, and even more preferably 85 or less. According to this aspect, a film having appropriate visible transparency can be obtained.
 a*の値は、-15以上が好ましく、-10以上がより好ましく、-5以上が更に好ましい。また、a*の値は、10以下が好ましく、5以下がより好ましく、0以下が更に好ましい。この態様によれば、白色度に優れた膜とすることができる。 The value of a* is preferably -15 or more, more preferably -10 or more, and even more preferably -5 or more. Further, the value of a* is preferably 10 or less, more preferably 5 or less, and even more preferably 0 or less. According to this aspect, a film with excellent whiteness can be obtained.
 b*の値は、-35以上が好ましく、-30以上がより好ましく、-25以上が更に好ましい。また、b*の値は、20以下が好ましく、10以下がより好ましく、0以下が更に好ましい。この態様によれば、白色度に優れた膜とすることができる。 The value of b* is preferably -35 or more, more preferably -30 or more, and even more preferably -25 or more. Moreover, the value of b* is preferably 20 or less, more preferably 10 or less, and even more preferably 0 or less. According to this aspect, a film with excellent whiteness can be obtained.
 本発明の膜の厚さは、1~40μmであることが好ましい。膜厚の上限は、30μm以下が好ましく、20μm以下がより好ましく、15μm以下が更に好ましい。膜厚の下限は、2μm以上が好ましく、4μm以上がより好ましく、5μm以上が更に好ましい。膜厚が上記範囲であれば、十分な光散乱能を得ることができる。更には、センサの薄膜化、クロストーク抑制によるデバイス光学感度の向上という効果も期待できる。 The thickness of the film of the present invention is preferably 1 to 40 μm. The upper limit of the film thickness is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 15 μm or less. The lower limit of the film thickness is preferably 2 μm or more, more preferably 4 μm or more, and even more preferably 5 μm or more. If the film thickness is within the above range, sufficient light scattering ability can be obtained. Furthermore, it is expected that the optical sensitivity of the device will be improved by making the sensor thinner and suppressing crosstalk.
 本発明の膜は、高い光散乱性を有しており、光散乱膜として好ましく用いられる。例えば、本発明の膜は、発光素子用の散乱層、表示素子用の散乱層、環境光センサ用の散乱層などに好適に使用できる。 The film of the present invention has high light scattering properties and is preferably used as a light scattering film. For example, the film of the present invention can be suitably used as a scattering layer for light emitting devices, a scattering layer for display devices, a scattering layer for environmental light sensors, and the like.
 本発明の組成物、およびその組成物から得られた膜は、ヘッドマウントディスプレイにも好適に使用できる。ヘッドマウントディスプレイは表示素子、接眼部、光源、投影部などからなり、その内部、間、いずれの位置にも使用できる。ヘッドマウントディスプレイの例としては、特開2019-061199号公報、 特開2021-032975号公報、特開2019-032434号公報、特開2018-018077号公報、特開2016-139112号公報、米国特許出願公開第2021/0063745号明細書、中国特許出願公開第112394509号明細書、米国特許第10921499号明細書、韓国公開特許第10-2018-0061467号公報、特開2018-101034号公報、特開2020-101671号公報、台湾特許出願公開第202028805号公報等に記載のヘッドマウントディスプレイが挙げられる。 The composition of the present invention and the film obtained from the composition can also be suitably used for head-mounted displays. A head-mounted display consists of a display element, an eyepiece, a light source, a projection part, etc., and can be used either inside or between the display elements. Examples of head-mounted displays include JP 2019-061199, JP 2021-032975, JP 2019-032434, JP 2018-018077, JP 2016-139112, and U.S. patents. Application Publication No. 2021/0063745, China Patent Application Publication No. 112394509, US Patent No. 10921499, Korean Publication No. 10-2018-0061467, JP 2018-101034, JP Examples include head-mounted displays described in Publication No. 2020-101671, Taiwan Patent Application Publication No. 202028805, and the like.
<膜の製造方法>
 本発明の膜は、本発明の組成物を支持体上に適用する工程を経て製造できる。支持体としては、例えば、シリコン、無アルカリガラス、ソーダガラス、パイレックス(登録商標)ガラス、石英ガラスなどの材質で構成された基板が挙げられる。これらの基板には、有機膜や無機膜などが形成されていてもよい。有機膜の材料としては樹脂などが挙げられる。また、支持体としては、樹脂で構成された基板を用いることもできる。また、支持体には、電荷結合素子(CCD)、相補型金属酸化膜半導体(CMOS)、透明導電膜などが形成されていてもよい。また、支持体には、各画素を隔離するブラックマトリクスが形成されている場合もある。また、支持体には、必要により、上部の層との密着性改良、物質の拡散防止或いは基板表面の平坦化のために下塗り層を設けてもよい。また、支持体としてガラス基板を用いる場合においては、ガラス基板上に無機膜を形成したり、ガラス基板を脱アルカリ処理して用いることが好ましい。
<Membrane manufacturing method>
The membrane of the present invention can be manufactured by applying the composition of the present invention onto a support. Examples of the support include substrates made of materials such as silicon, alkali-free glass, soda glass, Pyrex (registered trademark) glass, and quartz glass. An organic film, an inorganic film, or the like may be formed on these substrates. Examples of the material for the organic film include resin. Furthermore, a substrate made of resin can also be used as the support. Further, a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), a transparent conductive film, etc. may be formed on the support. Further, a black matrix that isolates each pixel may be formed on the support. Further, if necessary, an undercoat layer may be provided on the support for improving adhesion with the upper layer, preventing substance diffusion, or flattening the substrate surface. Further, when a glass substrate is used as a support, it is preferable to form an inorganic film on the glass substrate or to use the glass substrate after dealkalization treatment.
 支持体への組成物の適用方法としては、公知の方法を用いることができる。例えば、滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(たとえば、特開2009-145395号公報に記載されている方法);インクジェット(例えばオンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷などの各種印刷法;金型等を用いた転写法;ナノインプリント法などが挙げられる。インクジェットでの適用方法としては、特に限定されず、例えば「広がる・使えるインクジェット-特許に見る無限の可能性-、2005年2月発行、住ベテクノリサーチ」に示された特許公報に記載の方法(特に115~133ページ)や、特開2003-262716号公報、特開2003-185831号公報、特開2003-261827号公報、特開2012-126830号公報、特開2006-169325号公報などに記載の方法が挙げられる。スピンコート法での塗布は、塗布適性の観点から、300~6000rpmの範囲でスピン塗布することが好ましく、400~3000rpmの範囲でスピン塗布することが更に好ましい。また、スピンコート時における支持体の温度は、10~100℃が好ましく、20~70℃がより好ましい。上記の範囲であれば、塗布均一性に優れた膜を製造しやすい。滴下法(ドロップキャスト)の場合、所定の膜厚で、均一な膜が得られるように、支持体上にフォトレジストを隔壁とする組成物の滴下領域を形成することが好ましい。組成物の滴下量および固形分濃度、滴下領域の面積を制御することで、所望の膜厚が得られる。 A known method can be used to apply the composition to the support. For example, drop casting method; slit coating method; spray method; roll coating method; spin coating method; casting coating method; slit and spin method; Various methods such as inkjet (for example, on-demand method, piezo method, thermal method), ejection printing such as nozzle jet, flexo printing, screen printing, gravure printing, reverse offset printing, metal mask printing, etc. Examples include printing method; transfer method using a mold etc.; nanoimprint method. The application method for inkjet is not particularly limited, and for example, the method described in the patent publication "Expanding and Usable Inkjet - Infinite Possibilities Seen in Patents," Published February 2005, Sumibe Techno Research. (especially pages 115 to 133), JP 2003-262716, JP 2003-185831, JP 2003-261827, JP 2012-126830, JP 2006-169325, etc. Examples include the methods described. In the spin coating method, from the viewpoint of coating suitability, spin coating is preferably carried out in the range of 300 to 6000 rpm, and more preferably spin coating is carried out in the range of 400 to 3000 rpm. Further, the temperature of the support during spin coating is preferably 10 to 100°C, more preferably 20 to 70°C. Within the above range, it is easy to produce a film with excellent coating uniformity. In the case of the dropping method (drop casting), it is preferable to form a dropping area of the composition using a photoresist as a partition on the support so that a uniform film with a predetermined thickness can be obtained. A desired film thickness can be obtained by controlling the amount of the composition dropped, the solid content concentration, and the area of the dropping region.
 支持体上に形成した組成物層は、乾燥(プリベーク)してもよい。プリベーク条件は、例えば、60~150℃の温度で、30秒間~15分間が好ましい。 The composition layer formed on the support may be dried (prebaked). The prebaking conditions are preferably, for example, at a temperature of 60 to 150° C. for 30 seconds to 15 minutes.
 膜の製造方法においては、更にパターンを形成する工程を含んでいてもよい。パターン形成方法としては、フォトリソグラフィ法を用いたパターン形成方法や、ドライエッチング法を用いたパターン形成方法が挙げられる。なお、本発明の膜を平坦膜として用いる場合には、パターンを形成する工程を行わなくてもよい。以下、パターンを形成する工程について詳細に説明する。 The film manufacturing method may further include a step of forming a pattern. Examples of the pattern forming method include a pattern forming method using a photolithography method and a pattern forming method using a dry etching method. Note that when the film of the present invention is used as a flat film, the step of forming a pattern may not be performed. Hereinafter, the process of forming a pattern will be described in detail.
(フォトリソグラフィ法でパターン形成する場合)
 フォトリソグラフィ法でのパターン形成方法は、本発明の組成物を適用して形成した組成物層に対しパターン状に露光する工程(露光工程)と、未露光部の組成物層を除去することにより現像してパターンを形成する工程(現像工程)と、を含むことが好ましい。必要に応じて、現像されたパターンをベークする工程(ポストベーク工程)を設けてもよい。以下、各工程について説明する。
(When forming a pattern using photolithography)
The pattern forming method using the photolithography method includes a step of exposing a composition layer formed by applying the composition of the present invention to light in a pattern (exposure step), and removing the unexposed portion of the composition layer. It is preferable to include a step of developing to form a pattern (developing step). If necessary, a step of baking the developed pattern (post-bake step) may be provided. Each step will be explained below.
<<露光工程>>
 露光工程では組成物層をパターン状に露光する。例えば、組成物層に対し、ステッパー等の露光装置を用いて、所定のマスクパターンを有するマスクを介して露光することで、組成物層をパターン露光することができる。これにより、露光部分を硬化することができる。露光に際して用いることができる放射線(光)としては、g線、i線等が挙げられる。また、波長300nm以下の光(好ましくは波長180~300nmの光)を用いることもできる。波長300nm以下の光としては、KrF線(波長248nm)、ArF線(波長193nm)などが挙げられ、KrF線(波長248nm)が好ましい。
<<Exposure process>>
In the exposure step, the composition layer is exposed in a pattern. For example, the composition layer can be pattern-exposed by exposing the composition layer to light through a mask having a predetermined mask pattern using an exposure device such as a stepper. This allows the exposed portion to be cured. Examples of radiation (light) that can be used for exposure include g-line and i-line. Furthermore, light with a wavelength of 300 nm or less (preferably light with a wavelength of 180 to 300 nm) can also be used. Examples of light with a wavelength of 300 nm or less include KrF rays (wavelength 248 nm), ArF rays (wavelength 193 nm), and KrF rays (wavelength 248 nm).
 露光に際して、光を連続的に照射して露光してもよく、パルス的に照射して露光(パルス露光)してもよい。なお、パルス露光とは、短時間(例えば、ミリ秒レベル以下)のサイクルで光の照射と休止を繰り返して露光する方式の露光方法のことである。パルス露光の場合、パルス幅は、100ナノ秒(ns)以下であることが好ましく、50ナノ秒以下であることがより好ましく、30ナノ秒以下であることが更に好ましい。パルス幅の下限は、特に限定はないが、1フェムト秒(fs)以上とすることができ、10フェムト秒以上とすることもできる。周波数は、1kHz以上であることが好ましく、2kHz以上であることがより好ましく、4kHz以上であることが更に好ましい。周波数の上限は50kHz以下であることが好ましく、20kHz以下であることがより好ましく、10kHz以下であることが更に好ましい。最大瞬間照度は、50000000W/m以上であることが好ましく、100000000W/m以上であることがより好ましく、200000000W/m以上であることが更に好ましい。最大瞬間照度の上限は、1000000000W/m以下であることが好ましく、800000000W/m以下であることがより好ましく、500000000W/m以下であることが更に好ましい。なお、パルス幅とは、パルス周期における光が照射されている時間のことである。また、周波数とは、1秒あたりのパルス周期の回数のことである。また、最大瞬間照度とは、パルス周期における光が照射されている時間内での平均照度のことである。また、パルス周期とは、パルス露光における光の照射と休止を1サイクルとする周期のことである。 At the time of exposure, exposure may be performed by continuously irradiating light, or may be performed by irradiating light in a pulsed manner (pulse exposure). Note that pulse exposure is an exposure method in which exposure is performed by repeating light irradiation and pauses in short cycles (for example, on the millisecond level or less). In the case of pulse exposure, the pulse width is preferably 100 nanoseconds (ns) or less, more preferably 50 nanoseconds or less, and even more preferably 30 nanoseconds or less. The lower limit of the pulse width is not particularly limited, but can be 1 femtosecond (fs) or more, and can also be 10 femtoseconds or more. The frequency is preferably 1 kHz or more, more preferably 2 kHz or more, and even more preferably 4 kHz or more. The upper limit of the frequency is preferably 50 kHz or less, more preferably 20 kHz or less, and even more preferably 10 kHz or less. The maximum instantaneous illuminance is preferably 500000000 W/m 2 or more, more preferably 100000000 W/m 2 or more, and even more preferably 200000000 W/m 2 or more. The upper limit of the maximum instantaneous illuminance is preferably 1000000000 W/m 2 or less, more preferably 800000000 W/m 2 or less, and even more preferably 500000000 W/m 2 or less. Note that the pulse width refers to the time during which light is irradiated in a pulse period. Furthermore, frequency refers to the number of pulse periods per second. Further, the maximum instantaneous illuminance is the average illuminance within the time period during which light is irradiated in the pulse period. Further, the pulse period is a period in which one cycle includes light irradiation and a pause in pulse exposure.
 照射量(露光量)は、0.03~2.5J/cmが好ましく、0.05~1.0J/cmがより好ましく、0.08~0.5J/cmが更に好ましい。露光時における酸素濃度については適宜選択することができる。例えば、大気下で露光してもよく、酸素濃度が19体積%以下の低酸素雰囲気下(例えば、15体積%、5体積%、実質的に無酸素)で露光してもよく、酸素濃度が21体積%を超える高酸素雰囲気下(例えば、22体積%、30体積%、50体積%)で露光してもよい。また、露光照度は適宜設定することができ、1000~100000W/mの範囲から選択することが好ましい。酸素濃度と露光照度は適宜条件を組み合わせてよく、例えば、酸素濃度10体積%で照度10000W/m、酸素濃度35体積%で照度20000W/mなどとすることができる。 The irradiation amount (exposure amount) is preferably 0.03 to 2.5 J/cm 2 , more preferably 0.05 to 1.0 J/cm 2 , and even more preferably 0.08 to 0.5 J/cm 2 . The oxygen concentration during exposure can be selected as appropriate. For example, exposure may be carried out in the atmosphere, or in a low oxygen atmosphere with an oxygen concentration of 19% by volume or less (for example, 15% by volume, 5% by volume, substantially oxygen-free); Exposure may be performed under a high oxygen atmosphere of more than 21% by volume (eg, 22% by volume, 30% by volume, 50% by volume). Further, the exposure illuminance can be set as appropriate, and is preferably selected from the range of 1,000 to 100,000 W/m 2 . The oxygen concentration and the exposure illuminance may be appropriately combined. For example, the illumination intensity may be 10,000 W/m 2 at an oxygen concentration of 10% by volume, or 20,000 W/m 2 at an oxygen concentration of 35% by volume.
<<現像工程>>
 次に、露光後の組成物層における未露光部の組成物層を現像除去してパターンを形成する。未露光部の組成物層の現像除去は、現像液を用いて行うことができる。これにより、露光工程における未露光部の組成物層が現像液に溶出し、光硬化した部分だけが支持体上に残る。現像液の温度は、例えば、20~30℃が好ましい。現像時間は、20~180秒が好ましい。また、残渣除去性を向上させるため、現像液を60秒ごとに振り切り、さらに新たに現像液を供給する工程を数回繰り返してもよい。
<<Developing process>>
Next, the unexposed portions of the composition layer after exposure are developed and removed to form a pattern. The composition layer in the unexposed area can be removed by development using a developer. As a result, the unexposed portions of the composition layer in the exposure step are eluted into the developer, and only the photocured portions remain on the support. The temperature of the developer is preferably, for example, 20 to 30°C. The development time is preferably 20 to 180 seconds. Furthermore, in order to improve the ability to remove residues, the process of shaking off the developer every 60 seconds and supplying a new developer may be repeated several times.
 現像液は、有機溶剤、アルカリ現像液などが挙げられ、アルカリ現像液が好ましく用いられる。アルカリ現像液としては、アルカリ剤を純水で希釈したアルカリ性水溶液(アルカリ現像液)が好ましい。アルカリ剤としては、例えば、アンモニア、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、ジグリコールアミン、ジエタノールアミン、ヒドロキシアミン、エチレンジアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンなどの有機アルカリ性化合物や、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウムなどの無機アルカリ性化合物が挙げられる。アルカリ剤は、分子量が大きい化合物の方が環境面および安全面で好ましい。アルカリ性水溶液のアルカリ剤の濃度は、0.001~10質量%が好ましく、0.01~1質量%がより好ましい。現像液は、界面活性剤を含有していてもよい。界面活性剤としては、上述した界面活性剤が挙げられ、ノニオン系界面活性剤が好ましい。現像液は、移送や保管の便宜などの観点より、一旦濃縮液として製造し、使用時に必要な濃度に希釈してもよい。希釈倍率は特に限定されないが、例えば1.5~100倍の範囲に設定することができる。なお、アルカリ性水溶液を現像液として使用した場合には、現像後純水で洗浄(リンス)することが好ましい。また、リンスは、現像後の組成物層が形成された支持体を回転させつつ、現像後の組成物層へリンス液を供給して行うことが好ましい。また、リンス液を吐出させるノズルを支持体の中心部から支持体の周縁部に移動させて行うことも好ましい。この際、ノズルの支持体中心部から周縁部へ移動させるにあたり、ノズルの移動速度を徐々に低下させながら移動させてもよい。このようにしてリンスを行うことで、リンスの面内ばらつきを抑制できる。また、ノズルの支持体中心部から周縁部へ移動させつつ、支持体の回転速度を徐々に低下させても同様の効果が得られる。 Examples of the developer include organic solvents, alkaline developers, and alkaline developers are preferably used. As the alkaline developer, an alkaline aqueous solution (alkaline developer) prepared by diluting an alkaline agent with pure water is preferable. Examples of alkaline agents include ammonia, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxyamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. , ethyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide, dimethylbis(2-hydroxyethyl)ammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo[5.4.0]-7-undecene, etc. Examples include alkaline compounds and inorganic alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium silicate, and sodium metasilicate. As for the alkali agent, compounds with a large molecular weight are preferable from the environmental and safety standpoints. The concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass. The developer may contain a surfactant. Examples of the surfactant include the above-mentioned surfactants, with nonionic surfactants being preferred. For convenience in transportation and storage, the developing solution may be manufactured as a concentrated solution and then diluted to a required concentration before use. The dilution ratio is not particularly limited, but can be set, for example, in the range of 1.5 to 100 times. In addition, when an alkaline aqueous solution is used as a developer, it is preferable to wash (rinse) with pure water after development. Further, rinsing is preferably performed by supplying a rinsing liquid to the developed composition layer while rotating the support on which the developed composition layer is formed. It is also preferable to move the nozzle that discharges the rinsing liquid from the center of the support to the peripheral edge of the support. At this time, when moving the nozzle from the center of the support to the peripheral edge, the nozzle may be moved while gradually decreasing its moving speed. By performing rinsing in this manner, in-plane variations in rinsing can be suppressed. The same effect can also be obtained by gradually reducing the rotational speed of the support while moving the nozzle from the center of the support to the peripheral edge.
 現像後、乾燥を施した後に追加露光処理や加熱処理(ポストベーク)を行うことが好ましい。追加露光処理やポストベークは、硬化を完全なものとするための現像後の硬化処理である。ポストベークにおける加熱温度は、例えば100~260℃が好ましい。加熱温度の下限は120℃以上であることが好ましく、160℃以上であることがより好ましい。加熱温度の上限は240℃以下であることが好ましく、220℃以下であることがより好ましい。ポストベークは、現像後の膜を、上記条件になるようにホットプレートやコンベクションオーブン(熱風循環式乾燥機)、高周波加熱機等の加熱手段を用いて、連続式あるいはバッチ式で行うことができる。追加露光処理を行う場合、露光に用いられる光は、波長400nm以下の光であることが好ましい。また、追加露光処理は、韓国公開特許第10-2017-0122130号公報に記載の方法で行ってもよい。 After development, it is preferable to perform additional exposure treatment or heat treatment (post-bake) after drying. Additional exposure processing and post-bake are post-development curing processing to complete curing. The heating temperature in post-baking is preferably 100 to 260°C, for example. The lower limit of the heating temperature is preferably 120°C or higher, more preferably 160°C or higher. The upper limit of the heating temperature is preferably 240°C or lower, more preferably 220°C or lower. Post-baking can be carried out in a continuous or batch manner using a heating means such as a hot plate, convection oven (hot air circulation dryer), or high-frequency heater to maintain the developed film under the above conditions. . When performing additional exposure processing, the light used for exposure is preferably light with a wavelength of 400 nm or less. Further, the additional exposure process may be performed by the method described in Korean Patent Publication No. 10-2017-0122130.
(ドライエッチング法でパターン形成する場合)
 ドライエッチング法でのパターン形成は、本発明の組成物を支持体上に適用して形成した組成物層を硬化して硬化物層を形成し、次いで、この硬化物層上にパターニングされたレジスト層を形成し、次いで、パターニングされたレジスト層をマスクとして硬化物層に対してエッチングガスを用いてドライエッチングするなどの方法で行うことができる。ドライエッチング法でのパターン形成については、特開2013-064993号公報の段落番号0010~0067の記載を参酌でき、この内容は本明細書に組み込まれる。
(When forming a pattern using dry etching method)
Pattern formation by the dry etching method involves applying the composition of the present invention onto a support, curing the formed composition layer to form a cured product layer, and then applying a patterned resist onto this cured product layer. This can be carried out by a method such as forming a layer, and then dry etching the cured material layer using an etching gas using a patterned resist layer as a mask. Regarding pattern formation by the dry etching method, the descriptions in paragraphs 0010 to 0067 of JP-A No. 2013-064993 can be referred to, and the contents thereof are incorporated into the present specification.
<光センサ>
 本発明の光センサは、本発明の膜を有する。光センサの種類としては、環境光センサ、照度センサなどが挙げられ、環境光センサとして好ましく用いられる。環境光センサとは、周囲の光(環境光)の色合いを検知するセンサのことである。
<Light sensor>
The optical sensor of the present invention has the film of the present invention. Types of optical sensors include environmental light sensors, illuminance sensors, etc., which are preferably used as environmental light sensors. An environmental light sensor is a sensor that detects the hue of surrounding light (environmental light).
 本発明の光センサは、上述した膜の製造方法を経て製造することができる。
 また、本発明の光センサは、上述した本発明の組成物を支持体上に適用して組成物層を形成する工程と、上記組成物層を露光する工程と、を経て製造することもできる。組成物を適用する支持体、組成物の適用方法、露光条件については、上述した膜の製造方法で説明した内容と同様である。
The optical sensor of the present invention can be manufactured using the film manufacturing method described above.
Further, the optical sensor of the present invention can also be manufactured through the steps of applying the composition of the present invention described above on a support to form a composition layer, and exposing the composition layer to light. . The support to which the composition is applied, the method of applying the composition, and the exposure conditions are the same as those explained in the above-mentioned film manufacturing method.
 本発明の光センサは、本発明の膜の他に、着色画素および赤外線透過フィルタの画素から選ばれる少なくとも1種の画素を有する光学フィルタを有することも好ましい。着色画素としては、赤色画素、青色画素、緑色画素、黄色画素、シアン色画素、マゼンタ色画素などが挙げられる。また、本発明の膜は、上記光学フィルタよりも光入射側に設けられていることが好ましい。光学フィルタよりも光入射側に本発明の膜を設けることで、各画素に対して角度依存性をより低減することができる。 In addition to the film of the present invention, the optical sensor of the present invention also preferably has an optical filter having at least one type of pixel selected from colored pixels and pixels of an infrared transmission filter. Examples of colored pixels include red pixels, blue pixels, green pixels, yellow pixels, cyan pixels, magenta pixels, and the like. Further, it is preferable that the film of the present invention is provided on the light incident side of the optical filter. By providing the film of the present invention on the light incident side of the optical filter, the angular dependence of each pixel can be further reduced.
 図面を用いて光センサの一実施形態を示す。図1に示す光センサ1は、光電変換素子101上に画素111~114を有する光学フィルタ110が設けられている。そして、光学フィルタ110上に本発明の膜121が形成されている。光学フィルタ110を構成する画素111~114の一例として、画素111が赤色画素、画素112が青色画素、画素113が緑色画素、画素114が赤外線透過フィルタの画素である組み合わせが挙げられる。なお、図1に示す光センサ1では、光学フィルタ110として、4種類の画素(画素111~114)を有するものを用いたが、画素の種類は1~3種類であってもよく、5種類以上であってもよい。用途に応じて適宜選択することができる。また、光電変換素子101と光学フィルタ110との間、あるいは、光学フィルタ110と本発明の膜121との間には平坦化層が介在していてもよい。 An embodiment of the optical sensor is shown using drawings. In the optical sensor 1 shown in FIG. 1, an optical filter 110 having pixels 111 to 114 is provided on a photoelectric conversion element 101. A film 121 of the present invention is then formed on the optical filter 110. An example of the pixels 111 to 114 constituting the optical filter 110 is a combination in which the pixel 111 is a red pixel, the pixel 112 is a blue pixel, the pixel 113 is a green pixel, and the pixel 114 is an infrared transmission filter pixel. Note that in the optical sensor 1 shown in FIG. 1, an optical filter 110 having four types of pixels (pixels 111 to 114) is used, but the number of types of pixels may be one to three, or five types. It may be more than that. It can be selected as appropriate depending on the purpose. Further, a flattening layer may be interposed between the photoelectric conversion element 101 and the optical filter 110 or between the optical filter 110 and the film 121 of the present invention.
 図2に光センサの他の実施形態を示す。図2に示す光センサ2においては、光電変換素子101上に画素111~114を有する光学フィルタ110が設けられている。光学フィルタ110は、上述した実施形態と同様の構成のものである。そして、光学フィルタ110上に、透明支持体130の表面に本発明の膜122が形成された部材が配置されている。透明支持体130としては、ガラス基板、樹脂基板などが挙げられる。なお、図2に示す光センサ2では、光学フィルタ110上に、所定の間隔をおいて透明支持体130の表面に本発明の膜122が形成された部材が配置されているが、光学フィルタ110と透明支持体130の表面に本発明の膜122が形成された部材とは接していてもよい。また、図2に示す光センサ2では、透明支持体130の片面のみに本発明の膜122が形成されているが、透明支持体130の両面に本発明の膜122が形成されていてもよい。また、図2に示す光センサ2では、透明支持体130の光学フィルタ110側の面に本発明の膜122が形成されているが、透明支持体130の光学フィルタ110側とは反対側の面に本発明の膜122が形成されていてもよい。また、光電変換素子101と光学フィルタ110との間、あるいは、本発明の膜122と透明支持体130との間には平坦化層が介在していてもよい。 FIG. 2 shows another embodiment of the optical sensor. In the optical sensor 2 shown in FIG. 2, an optical filter 110 having pixels 111 to 114 is provided on the photoelectric conversion element 101. The optical filter 110 has the same configuration as the embodiment described above. A member in which the film 122 of the present invention is formed on the surface of a transparent support 130 is placed on the optical filter 110. Examples of the transparent support 130 include a glass substrate, a resin substrate, and the like. In the optical sensor 2 shown in FIG. 2, a member in which the film 122 of the present invention is formed on the surface of a transparent support 130 is arranged at a predetermined interval on the optical filter 110. The transparent support 130 may be in contact with the member on which the film 122 of the present invention is formed. Further, in the optical sensor 2 shown in FIG. 2, the film 122 of the present invention is formed only on one side of the transparent support 130, but the film 122 of the present invention may be formed on both sides of the transparent support 130. . In addition, in the optical sensor 2 shown in FIG. 2, the film 122 of the present invention is formed on the surface of the transparent support 130 on the optical filter 110 side, but the film 122 of the present invention is formed on the surface of the transparent support 130 on the opposite side to the optical filter 110. The film 122 of the present invention may be formed thereon. Further, a flattening layer may be interposed between the photoelectric conversion element 101 and the optical filter 110 or between the film 122 of the present invention and the transparent support 130.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.
<粒子の平均一次粒子径の測定>
 粒子の一次粒子径は、粒子を透過型電子顕微鏡(TEM)で観察し、粒子が凝集していない部分(一次粒子)を観測して求めた。具体的には、一次粒子を透過型顕微鏡を用いて透過型電子顕微鏡写真を撮影した後、その写真を用いて画像処理装置で粒度分布を測定して求めた。粒子の平均一次粒子径は、粒度分布から算出された個数基準の算術平均径を平均一次粒子径とした。透過型電子顕微鏡として(株)日立製作所製電子顕微鏡(H-7000)を用い、画像処理装置として(株)ニレコ製ルーゼックスAPを用いた。
<Measurement of average primary particle diameter of particles>
The primary particle diameter of the particles was determined by observing the particles using a transmission electron microscope (TEM) and observing the portions where the particles were not aggregated (primary particles). Specifically, after taking a transmission electron micrograph of the primary particles using a transmission microscope, the particle size distribution was determined using the photograph using an image processing device. The average primary particle diameter of the particles was the number-based arithmetic mean diameter calculated from the particle size distribution. An electron microscope (H-7000) manufactured by Hitachi, Ltd. was used as a transmission electron microscope, and Luzex AP manufactured by Nireco Co., Ltd. was used as an image processing device.
<粒子の屈折率の測定>
 粒子と、屈折率が既知である樹脂(分散剤)と、プロピレングリコールモノメチルエーテルアセテートとを用いて分散液を作製した。その後、作製した分散液と屈折率が既知の樹脂とを混合し、塗布液の全固形分中における粒子の濃度が10質量%、20質量%、30質量%、40質量%の塗布液を作製した。これらの塗布液をシリコンウエハ上に300nmの厚さで製膜した後、得られた膜の屈折率をエリプソメトリー(ラムダエースRE-3300、(株)SCREENホールディングス製)を用いて測定した。その後、粒子の濃度と屈折率をグラフ上にプロットし、粒子の屈折率を導出した。
<Measurement of refractive index of particles>
A dispersion liquid was prepared using particles, a resin (dispersant) with a known refractive index, and propylene glycol monomethyl ether acetate. Thereafter, the prepared dispersion liquid and a resin with a known refractive index were mixed to prepare coating liquids with particle concentrations of 10% by mass, 20% by mass, 30% by mass, and 40% by mass in the total solid content of the coating liquid. did. After forming a film with a thickness of 300 nm on a silicon wafer with these coating liquids, the refractive index of the obtained film was measured using ellipsometry (Lambda Ace RE-3300, manufactured by SCREEN Holdings, Inc.). Thereafter, the concentration and refractive index of the particles were plotted on a graph to derive the refractive index of the particles.
<粒子の比重の測定>
 100mLメスフラスコ中に50gの粒子を投入した。続いて別の100mLメスシリンダーを用いて水を100mL量り取った。その後、粒子が浸る程度、量り取った水をメスフラスコに入れ、続いて、メスフラスコに超音波を加えて、粒子と水をなじませた。その後、メスフラスコの標線に到達するまで追加で水を入れ、50g/(メスフラスコに残った水の体積)=比重として算出した。
<Measurement of specific gravity of particles>
50 g of particles were placed in a 100 mL volumetric flask. Subsequently, 100 mL of water was measured using another 100 mL measuring cylinder. Thereafter, enough water was measured into a volumetric flask to cover the particles, and then ultrasonic waves were applied to the volumetric flask to blend the particles with the water. Thereafter, additional water was added until the volumetric flask reached the marked line, and the specific gravity was calculated as 50 g/(volume of water remaining in the volumetric flask) = specific gravity.
<重量平均分子量の測定>
 樹脂の重量平均分子量は、以下の条件に従って、ゲルパーミエーションクロマトグラフィ(GPC)によって測定した。
 カラムの種類:TOSOH TSKgel Super HZM-Hと、TOSOH TSKgel Super HZ4000と、TOSOH TSKgel Super HZ2000とを連結したカラム
 展開溶媒:テトラヒドロフラン
 カラム温度:40℃
 流量(サンプル注入量):1.0μL(サンプル濃度0.1質量%)
 装置名:東ソー(株)製 HLC-8220GPC
 検出器:RI(屈折率)検出器
 検量線ベース樹脂:ポリスチレン樹脂
<Measurement of weight average molecular weight>
The weight average molecular weight of the resin was measured by gel permeation chromatography (GPC) according to the following conditions.
Column type: Column that connects TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, and TOSOH TSKgel Super HZ2000 Developing solvent: Tetrahydrofuran Column temperature: 40°C
Flow rate (sample injection amount): 1.0 μL (sample concentration 0.1% by mass)
Equipment name: HLC-8220GPC manufactured by Tosoh Corporation
Detector: RI (refractive index) detector Calibration curve base resin: Polystyrene resin
<樹脂の合成方法>
(合成例1)樹脂B-1の合成
 三口フラスコにp-ビニル安息香酸(195g、1.32mol)、ベンジルメタクリレート(330g、1.87mol)、マクロモノマーMM-1(525g、0.40mmol)、1-メトキシ-2-プロパノール(758g)を加えた。室温で窒素置換して酸素濃度1%以下に調整したのち、液温を80℃に昇温し、攪拌した(窒素流量50mL/min、攪拌速度250rpm)。温度安定化後、1-ドデカンチオール(5.60g、27.7mmol)、2,2’-アゾビス(イソ酪酸)ジメチル(9.92g、43.1mmol)を加えて、2時間攪拌した。次いで、2,2’-アゾビス(イソ酪酸)ジメチル(9.92g、43.1mmol)を加えて、更に2時間攪拌した。次いで、2,2’-アゾビス(イソ酪酸)ジメチル(9.92g、43.1mmol)を加えて、90℃に昇温し、3時間攪拌した。1-メトキシ-2-プロパノール(667g)を加えて希釈した後に、室温まで冷却し、樹脂B-1を得た(収量:3030g、重量平均分子量:3.1×10、酸価:70.5mgKOH/g)。なお、マクロモノマーMM-1は、下記構造の化合物の50質量%プロピレングリコールモノメチルエーテルアセテート溶液である。
<Resin synthesis method>
(Synthesis Example 1) Synthesis of Resin B-1 In a three-neck flask, p-vinylbenzoic acid (195 g, 1.32 mol), benzyl methacrylate (330 g, 1.87 mol), macromonomer MM-1 (525 g, 0.40 mmol), 1-Methoxy-2-propanol (758g) was added. After adjusting the oxygen concentration to 1% or less by purging with nitrogen at room temperature, the liquid temperature was raised to 80° C. and stirred (nitrogen flow rate 50 mL/min, stirring speed 250 rpm). After the temperature was stabilized, 1-dodecanethiol (5.60 g, 27.7 mmol) and dimethyl 2,2'-azobis(isobutyrate) (9.92 g, 43.1 mmol) were added and stirred for 2 hours. Next, dimethyl 2,2'-azobis(isobutyrate) (9.92 g, 43.1 mmol) was added, and the mixture was further stirred for 2 hours. Next, dimethyl 2,2'-azobis(isobutyrate) (9.92 g, 43.1 mmol) was added, the temperature was raised to 90° C., and the mixture was stirred for 3 hours. After diluting by adding 1-methoxy-2-propanol (667 g), it was cooled to room temperature to obtain resin B-1 (yield: 3030 g, weight average molecular weight: 3.1 x 10 4 , acid value: 70. 5mgKOH/g). Note that the macromonomer MM-1 is a 50% by mass solution of a compound having the following structure in propylene glycol monomethyl ether acetate.
(合成例2)樹脂B-2~B-10の合成
 モノマーの種類および組成比を変更したこと以外は樹脂B-1と同様の方法で樹脂B-2~B-10を合成した。
(合成例3)樹脂B-11の合成
 モノマーの種類および組成比を変更したこと以外は樹脂B-1と同様の方法でプレポリマーB-11’を合成した。
 次に、プレポリマーB-11’の溶液(固形分35質量%、284.40g)に対して、2,2,6,6-テトラメチルピペリジン 1-オキシル(TEMPO)の0.62g(4.00mmol)、4-ヒドロキシブチルアクリレートグリシジルエーテル(4HBAGE)の22.61g(113.00mmol)、テトラブチルアンモニウムブロミドの6.08g(19.00mmol)加えた後に、酸素濃度20%以上で、90℃、48時間攪拌して、下記構造の樹脂B-11得た(収量:310.0g、エチレン性不飽和結合含有基価:0.936mmol/g)。以下の構造式中、主鎖に付記した数値は質量比であり、側鎖に付記した数値は繰り返し単位の数である。
(Synthesis Example 2) Synthesis of Resins B-2 to B-10 Resins B-2 to B-10 were synthesized in the same manner as Resin B-1 except that the type and composition ratio of monomers were changed.
(Synthesis Example 3) Synthesis of Resin B-11 Prepolymer B-11' was synthesized in the same manner as Resin B-1 except that the type of monomer and the composition ratio were changed.
Next, 0.62 g (4.0 g) of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) was added to a solution of prepolymer B-11' (solid content 35% by mass, 284.40 g). After adding 22.61 g (113.00 mmol) of 4-hydroxybutyl acrylate glycidyl ether (4HBAGE) and 6.08 g (19.00 mmol) of tetrabutylammonium bromide, the mixture was heated at 90°C at an oxygen concentration of 20% or more. After stirring for 48 hours, resin B-11 having the following structure was obtained (yield: 310.0 g, ethylenically unsaturated bond-containing group value: 0.936 mmol/g). In the structural formulas below, the numbers appended to the main chain are mass ratios, and the numbers appended to side chains are the number of repeating units.
(合成例4)樹脂D-1の合成
 三口フラスコにジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)(500g、0.64mol)、イタコン酸(291g、2.24mol)、1-メトキシ-2-プロパノール(1845g)を加えた。室温で窒素置換して酸素濃度1%以下に調整したのち、液温を80℃に昇温し、攪拌した(窒素流量50mL/min、攪拌速度200rpm)。温度安定化後、2,2’-アゾビス(イソ酪酸)ジメチル(1.29g、6.00mmol)を加えて、2時間攪拌した。次いで、2,2’-アゾビス(イソ酪酸)ジメチル(1.29g、6.00mmol)を加えて、90℃に昇温し、2時間攪拌した。室温まで冷却し、中間体D-1’の30質量%溶液を得た(収量:2630g)。
 次に、三口フラスコにプロピレングリコールモノメチルエーテルアセテート(549g)を加え、室温で窒素置換して酸素濃度1%以下に調整した後、液温を80℃に昇温し、攪拌した(窒素流量50mL/min、攪拌速度200rpm)。三角フラスコに中間体D-1’(582g、0.14mmol)、メタクリル酸メチル(835g、8.34mol)、メタクリル酸(210g、2.45mol)、プロピレングリコールモノメチルエーテルアセテート(819g)、2,2’-アゾビス(イソ酪酸)ジメチル(7.45g、0.032mmol)を加えた溶液を調製した。三角フラスコ中の溶液を三口フラスコに2.5時間かけて滴下した(ケミカルポンプ使用、滴下速度2.80mL/min)。洗い込み用のプロピレングリコールモノメチルエーテルアセテート(54g)を加えて滴下後、2.5時間攪拌した。2,2’-アゾビス(イソ酪酸)ジメチル(7.45g、0.032mmol)を加えて、90℃に昇温し、2時間攪拌した(攪拌速度250rpmに変更)。室温まで冷却し、樹脂D-1を得た(収量:3060g、重量平均分子量:1.2×10、酸価:158.1mgKOH/g)。
(Synthesis Example 4) Synthesis of Resin D-1 In a three-neck flask, dipentaerythritol hexakis (3-mercaptopropionate) (500 g, 0.64 mol), itaconic acid (291 g, 2.24 mol), 1-methoxy-2 -Propanol (1845g) was added. After adjusting the oxygen concentration to 1% or less by purging with nitrogen at room temperature, the liquid temperature was raised to 80° C. and stirred (nitrogen flow rate 50 mL/min, stirring speed 200 rpm). After the temperature was stabilized, dimethyl 2,2'-azobis(isobutyrate) (1.29 g, 6.00 mmol) was added and stirred for 2 hours. Next, dimethyl 2,2'-azobis(isobutyrate) (1.29 g, 6.00 mmol) was added, the temperature was raised to 90° C., and the mixture was stirred for 2 hours. It was cooled to room temperature to obtain a 30% by mass solution of intermediate D-1' (yield: 2630 g).
Next, propylene glycol monomethyl ether acetate (549 g) was added to a three-neck flask, and after adjusting the oxygen concentration to 1% or less by replacing the air with nitrogen at room temperature, the liquid temperature was raised to 80°C and stirred (nitrogen flow rate 50 mL/ min, stirring speed 200 rpm). In an Erlenmeyer flask, intermediate D-1' (582 g, 0.14 mmol), methyl methacrylate (835 g, 8.34 mol), methacrylic acid (210 g, 2.45 mol), propylene glycol monomethyl ether acetate (819 g), 2,2 A solution was prepared by adding dimethyl '-azobis(isobutyrate) (7.45 g, 0.032 mmol). The solution in the Erlenmeyer flask was dripped into the three-necked flask over 2.5 hours (using a chemical pump, dropping rate 2.80 mL/min). Propylene glycol monomethyl ether acetate (54 g) for washing was added dropwise and then stirred for 2.5 hours. Dimethyl 2,2'-azobis(isobutyrate) (7.45 g, 0.032 mmol) was added, the temperature was raised to 90° C., and the mixture was stirred for 2 hours (stirring speed changed to 250 rpm). It was cooled to room temperature to obtain resin D-1 (yield: 3060 g, weight average molecular weight: 1.2×10 4 , acid value: 158.1 mgKOH/g).
(合成例5) 樹脂D-2~D-8、D-10の合成
 モノマーの種類と組成比を変更したこと以外は樹脂D-1と同様にして樹脂D-2~D-8、D-10を合成した。
(Synthesis Example 5) Synthesis of Resins D-2 to D-8 and D-10 Resins D-2 to D-8 and D- 10 was synthesized.
(合成例6) 樹脂D-9の合成
 特開2011-054439号公報の段落0101及び段落0102に記載の実施例1に準拠して、下記化学式に示す組成(構成成分の種類及び含有量)となるように各構成成分を導く化合物を用いて、下記構造の樹脂D-9を合成した。
(Synthesis Example 6) Synthesis of Resin D-9 Based on Example 1 described in paragraphs 0101 and 0102 of JP-A-2011-054439, the composition (types and content of constituent components) shown in the chemical formula below and Resin D-9 having the following structure was synthesized using compounds that lead to each component as follows.
 樹脂B-1~B-11、D-1~D-10の構造は以下の通りである。主鎖に付記した数値は質量比であり、側鎖に付記した数値はモル比である。なお、樹脂D-9は、式中のbの左側の2つユニットと右側の2ユニットがそれぞれひとかたまりのブロックをなしているブロックポリマーである。
The structures of resins B-1 to B-11 and D-1 to D-10 are as follows. The numbers appended to the main chain are mass ratios, and the numbers appended to side chains are molar ratios. Resin D-9 is a block polymer in which the two units on the left and the two units on the right of b in the formula each form a block.
 樹脂の重量平均分子量および酸価を下記表に記す。 The weight average molecular weight and acid value of the resin are shown in the table below.
<分散液の製造>
 下記の表に記載の組成の混合液に対し、循環型分散装置(ビーズミル)として、寿工業(株)製ウルトラアペックスミルを用いて、以下の分散処理を行い、分散液を製造した。ビーズ径:直径0.2mm
ビーズ充填率:65体積%
周速:6m/秒
ポンプ供給量:10.8kg/時
冷却水:水道水
ビーズミル環状通路内容積:0.15L
分散処理する混合液量:0.65kg
<Production of dispersion>
A liquid mixture having the composition shown in the table below was subjected to the following dispersion treatment using an Ultra Apex Mill manufactured by Kotobuki Kogyo Co., Ltd. as a circulating dispersion device (bead mill) to produce a dispersion liquid. Bead diameter: 0.2mm in diameter
Bead filling rate: 65% by volume
Circumferential speed: 6m/sec Pump supply amount: 10.8kg/hour Cooling water: Tap water Bead mill Annular passage volume: 0.15L
Amount of mixed liquid to be dispersed: 0.65kg
 上記表に記載の原料は以下の通りである。
(粒子)
 P-1~P-7:下記表に記載の粒子
The raw materials listed in the table above are as follows.
(particle)
P-1 to P-7: Particles listed in the table below
(樹脂(分散剤))
 D-1~D-10:上述した樹脂D-1~D-10
(Resin (dispersant))
D-1 to D-10: Resins D-1 to D-10 mentioned above
(溶剤)
 S-1:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 S-2:プロピレングリコールモノメチルエーテル(PGME)
 S-3:シクロペンタノン
(solvent)
S-1: Propylene glycol monomethyl ether acetate (PGMEA)
S-2: Propylene glycol monomethyl ether (PGME)
S-3: Cyclopentanone
<組成物の調製>
 下記表に記載の原料を混合して、組成物を製造した。
<Preparation of composition>
A composition was produced by mixing the raw materials listed in the table below.
 上記表に記載の原料は以下の通りである。
(分散液)
 分散液1~19:上述した分散液1~19
The raw materials listed in the table above are as follows.
(Dispersion liquid)
Dispersions 1 to 19: Dispersions 1 to 19 described above
(樹脂(バインダー樹脂))
 B-1~B-11:上述した樹脂B-1~B-11
(Resin (binder resin))
B-1 to B-11: Resins B-1 to B-11 mentioned above
(レオロジーコントロール剤)
(rheology control agent)
(重合性モノマー)
 M-1:KAYARAD DPHA(日本化薬(株)製、ジペンタエリスリトールヘキサ(メタ)アクリレート)
 M-2:KAYARAD RP-1040(日本化薬(株)製、下記構造の化合物)
 M-3:NKエステルA-TMMT(新中村化学工業(株)製)
 M-4:ライトアクリレートDCP-A(共栄社化学(株)製、ジメチロール-トリシクロデカンジアクリレート)
(Polymerizable monomer)
M-1: KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd., dipentaerythritol hexa(meth)acrylate)
M-2: KAYARAD RP-1040 (manufactured by Nippon Kayaku Co., Ltd., compound with the following structure)
M-3: NK ester A-TMMT (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
M-4: Light acrylate DCP-A (manufactured by Kyoeisha Chemical Co., Ltd., dimethylol-tricyclodecane diacrylate)
(光重合開始剤)
 I-1:Irgacure OXE01(BASFジャパン(株)製)
 I-2:Omnirad 369(IGM Resins B.V.社製)
 I-3:Omnirad TPO H(IGM Resins B.V.社製)
 I-4:Irgacure OXE03(BASFジャパン(株)製)
(Photopolymerization initiator)
I-1: Irgacure OXE01 (manufactured by BASF Japan Co., Ltd.)
I-2: Omnirad 369 (manufactured by IGM Resins B.V.)
I-3: Omnirad TPO H (manufactured by IGM Resins B.V.)
I-4: Irgacure OXE03 (manufactured by BASF Japan Co., Ltd.)
(添加剤)
 A-1:アデカスタブAO-80((株)ADEKA製、着色防止剤)
 A-2:Irganox 1010(BASF社製、着色防止剤)
 A-3:下記構造の化合物(シランカップリング剤)
(Additive)
A-1: ADEKA STAB AO-80 (manufactured by ADEKA Co., Ltd., coloring prevention agent)
A-2: Irganox 1010 (manufactured by BASF, anti-coloring agent)
A-3: Compound with the following structure (silane coupling agent)
(界面活性剤)
 Su-1:KF―6001(信越化学工業社製、下記構造のシリコーン系界面活性剤)
 Su-2:SH8400(ダウ・東レ(株)製、シリコーン系界面活性剤)
(surfactant)
Su-1: KF-6001 (manufactured by Shin-Etsu Chemical Co., Ltd., silicone surfactant with the following structure)
Su-2: SH8400 (manufactured by Dow Toray Industries, Inc., silicone surfactant)
(重合禁止剤)
 In-1:p-メトキシフェノール
 In-2:1,4-ベンゾキノン
(Polymerization inhibitor)
In-1: p-methoxyphenol In-2: 1,4-benzoquinone
(溶剤)
 S-1:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 S-2:プロピレングリコールモノメチルエーテル(PGME)
 S-3:シクロペンタノン
(solvent)
S-1: Propylene glycol monomethyl ether acetate (PGMEA)
S-2: Propylene glycol monomethyl ether (PGME)
S-3: Cyclopentanone
<TI値(チキソトロピーインデックス値)の評価>
 各組成物について、回転粘度計を使用して、ずり速度20s-1または200s-1にて、23℃での粘度を測定し、下記式よりTI値(チキソトロピーインデックス値)を算出した。
 TI値=β1/β2
 β1は、ずり速度20s-1で測定した23℃での粘度であり、
 β2は、ずり速度200s-1で測定した23℃での粘度である。
<Evaluation of TI value (thixotropy index value)>
The viscosity of each composition at 23° C. was measured using a rotational viscometer at a shear rate of 20 s −1 or 200 s −1 , and the TI value (thixotropy index value) was calculated from the following formula.
TI value = β1/β2
β1 is the viscosity at 23 °C measured at a shear rate of 20 s −1 ;
β2 is the viscosity at 23° C. measured at a shear rate of 200 s −1 .
<保存安定性の評価>
 各組成物を液高さが20cmとなる容器に入れて12ヶ月冷蔵庫(4±1℃)で静置した。静置後、上から1cmの液と下から1cmの液をサンプリングし、それぞれ下塗り層(富士フイルムエレクトロニクスマテリアルズ(株)製、CT-4000L;厚さ0.1μm)付き8インチ(=203.2mm)ガラスウエハ上に、ポストベーク後の厚さが8μmになるようにスピンコータを用いて塗布し、110℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行った。次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して、波長365nmの波長の光を1000mJ/cmの露光量で照射して露光し、その後、220℃のホットプレートを用いて5分間加熱処理(ポストベーク)を行い、膜を形成した。得られた膜の波長400~1000nmの範囲における透過率を分光光度計(U-4100、(株)日立ハイテク製)を用いて測定した。
 上から1cmの液を用いて形成した膜の波長400~1000nmの範囲における透過率の最大値(T1)と、下から1cmの液を用いて形成した膜の波長400~1000nmの範囲における透過率の最大値(T2)との差(T1-T2)であるΔTを求め、以下の評価基準に従い保存安定性を評価した。ΔTが小さいほど保存安定性が優れていることを意味する。
 -評価基準-
 5:ΔTが3%以下であった
 4:ΔTが3%より大きく、5%以下であった
 3:ΔTが5%より大きく、8%以下であった
 2:ΔTが8%より大きく、10%以下であった
 1:ΔTが10%より大きい
<Evaluation of storage stability>
Each composition was placed in a container with a liquid height of 20 cm and left standing in a refrigerator (4±1° C.) for 12 months. After standing still, samples were taken from 1 cm of the liquid from the top and 1 cm from the bottom, and each was coated with an 8-inch (=203. 2 mm) onto a glass wafer using a spin coater so that the thickness after post-baking would be 8 μm, and heat treatment (pre-baking) was performed for 120 seconds using a 110° C. hot plate. Next, using an i-line stepper exposure device FPA-3000i5+ (manufactured by Canon Inc.), exposure was performed by irradiating light with a wavelength of 365 nm at an exposure dose of 1000 mJ/cm 2 , and then a hot plate at 220°C was used. A heat treatment (post-bake) was performed for 5 minutes using a film to form a film. The transmittance of the obtained film in the wavelength range of 400 to 1000 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Technology Co., Ltd.).
The maximum value of transmittance (T1) in the wavelength range of 400 to 1000 nm for the film formed using the liquid 1 cm from the top, and the transmittance in the wavelength range 400 to 1000 nm of the film formed using the liquid 1 cm from the bottom. ΔT, which is the difference (T1-T2) from the maximum value (T2), was determined, and the storage stability was evaluated according to the following evaluation criteria. It means that the smaller ΔT is, the better the storage stability is.
-Evaluation criteria-
5: ΔT was less than 3% 4: ΔT was greater than 3% and less than 5% 3: ΔT was greater than 5% and less than 8% 2: ΔT was greater than 8% and 10 % or less 1: ΔT is greater than 10%
<光散乱性の評価>
 各組成物を、下塗り層(富士フイルムエレクトロニクスマテリアルズ(株)製、CT-4000L;厚さ0.1μm)付き8インチのガラスウエハ上に、ポストベーク後の厚さが8μmになるようにスピンコータを用いて塗布し、120℃のホットプレートを用いて2分間加熱処理(プリベーク)を行った。次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して、波長365nmの光を1000mJ/cmの露光量で照射して露光し、その後、220℃のホットプレートを用いて5分間加熱処理(ポストベーク)を行い、厚さ8μmの膜を形成した。得られた膜の波長400~1000nmの範囲における透過率を分光光度計(U-4100、(株)日立ハイテク製)を用いて測定し、前述の範囲における透過率の最大値(Tmax)及び波長940nmの光の透過率(T940)と波長450nmの光の透過率(T450)との差の絶対値(透過率差ΔT)を算出し、以下の基準で評価した。
 透過率差ΔT=|T940-T450
<Evaluation of light scattering>
Each composition was coated onto an 8-inch glass wafer with an undercoat layer (manufactured by Fujifilm Electronics Materials Co., Ltd., CT-4000L; thickness 0.1 μm) using a spin coater so that the thickness after post-baking was 8 μm. The coating was applied using a hot plate at 120°C for 2 minutes (prebaking). Next, using an i-line stepper exposure device FPA-3000i5+ (manufactured by Canon Inc.), exposure was performed by irradiating light with a wavelength of 365 nm at an exposure dose of 1000 mJ/cm 2 , and then using a hot plate at 220 °C. A heat treatment (post-bake) was performed for 5 minutes to form a film with a thickness of 8 μm. The transmittance of the obtained film in the wavelength range of 400 to 1000 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Tech Corporation), and the maximum value of transmittance (T max ) and The absolute value of the difference (transmittance difference ΔT) between the transmittance of light with a wavelength of 940 nm (T 940 ) and the transmittance of light with a wavelength of 450 nm (T 450 ) was calculated, and evaluated based on the following criteria.
Transmittance difference ΔT=|T 940 - T 450 |
 -透過率差ΔTの評価基準-
 5:透過率差ΔTが15%未満である
 4:透過率差ΔTが15%以上25%未満である
 3:透過率差ΔTが25%以上30%未満である
 2:透過率差ΔTが30%以上35%未満である
 1:透過率差ΔTが35%以上である
-Evaluation criteria for transmittance difference ΔT-
5: Transmittance difference ΔT is less than 15% 4: Transmittance difference ΔT is 15% or more and less than 25% 3: Transmittance difference ΔT is 25% or more and less than 30% 2: Transmittance difference ΔT is 30 % or more and less than 35% 1: Transmittance difference ΔT is 35% or more
 -透過率の最大値Tmaxの評価基準-
 5:透過率の最大値Tmaxが60%以下である
 4:透過率の最大値Tmaxが60%を超え70%以下である
 3:透過率の最大値Tmaxが70%を超え75%以下である
 2:透過率の最大値Tmaxが75%を超え80%以下である
 1:透過率の最大値Tmaxが80%を超えている。
- Evaluation criteria for maximum transmittance T max -
5: The maximum value T max of transmittance is 60% or less 4: The maximum value T max of transmittance is more than 60% and less than 70% 3: The maximum value T max of transmittance is more than 70% and 75% 2: The maximum value T max of transmittance is more than 75% and less than 80%. 1: The maximum value T max of transmittance is more than 80%.
<耐熱性の評価>
 各組成物を、下塗り層(富士フイルムエレクトロニクスマテリアルズ(株)製、CT-4000L;厚さ0.1μm)付き8インチのガラスウエハ上に、ポストベーク後の厚さが8μmになるようにスピンコータを用いて塗布し、120℃のホットプレートを用いて2分間加熱処理(プリベーク)を行った。次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して、波長365nmの光を1000mJ/cmの露光量で照射して露光し、その後、220℃のホットプレートを用いて5分間加熱処理(ポストベーク)を行い、厚さ8μmの膜を形成した。
 得られた膜について、265℃で5分間加熱して耐熱性試験を行った。耐熱性試験後の膜の透過率を測定し、透過率の変化量の最大値を求め、以下の基準にて耐熱性を評価した。透過率の測定は各試料につき5回行い、最大値と最小値を除いた3回の結果の平均値を採用した。また、透過率の変化量の最大値とは、耐熱性試験前後の膜の、波長400~1000nmの範囲における透過率の変化量が最も大きい波長における変化量を意味する。
 透過率の変化量=|耐熱性試験前の膜の透過率-耐熱性試験後の膜の透過率|
<Evaluation of heat resistance>
Each composition was coated onto an 8-inch glass wafer with an undercoat layer (manufactured by Fujifilm Electronics Materials Co., Ltd., CT-4000L; thickness 0.1 μm) using a spin coater so that the thickness after post-baking was 8 μm. The coating was applied using a hot plate at 120°C for 2 minutes (prebaking). Next, using an i-line stepper exposure device FPA-3000i5+ (manufactured by Canon Inc.), exposure was performed by irradiating light with a wavelength of 365 nm at an exposure dose of 1000 mJ/cm 2 , and then using a hot plate at 220 °C. A heat treatment (post-bake) was performed for 5 minutes to form a film with a thickness of 8 μm.
A heat resistance test was conducted on the obtained film by heating it at 265° C. for 5 minutes. The transmittance of the film after the heat resistance test was measured, the maximum change in transmittance was determined, and the heat resistance was evaluated based on the following criteria. The transmittance was measured five times for each sample, and the average value of the three measurements excluding the maximum and minimum values was used. Further, the maximum value of the change in transmittance means the change in the wavelength at which the change in transmittance of the film before and after the heat resistance test is the largest in the wavelength range of 400 to 1000 nm.
Amount of change in transmittance = | Transmittance of membrane before heat resistance test - Transmittance of membrane after heat resistance test |
 -評価基準-
 5:透過率の変化量の最大値が3%以下である
 4:透過率の変化量の最大値が3%を超えて5%以下である
 3:透過率の変化量の最大値が5%を超えて8%以下である
 2:透過率の変化量の最大値が8%を超えて10%以下である
 1:透過率の変化量の最大値が10%を超えている
-Evaluation criteria-
5: The maximum value of the change in transmittance is 3% or less 4: The maximum value of the change in transmittance exceeds 3% and is 5% or less 3: The maximum value of the change in transmittance is 5% 2: The maximum change in transmittance exceeds 8% and is 10% or less 1: The maximum change in transmittance exceeds 10%
 上記表に示すように、実施例の組成物は、保存安定性が良好で、光散乱性および耐熱性に優れた膜を形成することができた。 As shown in the table above, the compositions of Examples had good storage stability and were able to form films with excellent light scattering properties and heat resistance.
 実施例1~67の組成物を、下塗り層(富士フイルムエレクトロニクスマテリアルズ(株)製、CT-4000L;厚さ0.1μm)付き8インチ(=203.2mm)のガラスウエハ上に、ポストベーク後の厚さが8μmになるようにスピンコータを用いて塗布し、120℃のホットプレートを用いて2分間加熱処理(プリベーク)を行った。次いで、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して、波長365nmの波長の光を1000mJ/cmの露光量で照射して露光し、その後、220℃のホットプレートを用いて5分間加熱処理(ポストベーク)を行い、厚さ8μmの膜を形成した。得られた膜の厚み方向の断面を、走査型電子顕微鏡(SEM)(S-4800H、(株)日立ハイテク製)を用いて観察(倍率:10000倍)し、粒子の偏在状態を確認して相分離状態が形成されているかどうか調べた。
 得られた膜は、いずれも、膜中に粒子を含む第1の相と、第1の相よりも粒子の含有量が少ない第2の相との相分離構造が形成されていた。
The compositions of Examples 1 to 67 were post-baked onto an 8-inch (=203.2 mm) glass wafer with an undercoat layer (manufactured by Fujifilm Electronics Materials Co., Ltd., CT-4000L; thickness 0.1 μm). The coating was applied using a spin coater so that the final thickness was 8 μm, and heat treatment (prebaking) was performed using a 120° C. hot plate for 2 minutes. Next, using an i-line stepper exposure device FPA-3000i5+ (manufactured by Canon Inc.), exposure was performed by irradiating light with a wavelength of 365 nm at an exposure dose of 1000 mJ/cm 2 , and then a hot plate at 220°C was used. A heat treatment (post-bake) was performed for 5 minutes using , to form a film with a thickness of 8 μm. A cross section of the obtained film in the thickness direction was observed using a scanning electron microscope (SEM) (S-4800H, manufactured by Hitachi High-Tech Corporation) (magnification: 10,000 times) to confirm the uneven distribution of particles. We investigated whether a phase-separated state was formed.
All of the obtained films had a phase-separated structure consisting of a first phase containing particles in the film and a second phase containing fewer particles than the first phase.
1、2:光センサ
101:光電変換素子
111~114:画素
110:光学フィルタ
121、122:膜
130:透明支持体
1, 2: Optical sensor 101: Photoelectric conversion elements 111 to 114: Pixel 110: Optical filters 121, 122: Film 130: Transparent support

Claims (18)

  1.  屈折率が2.0以上で平均一次粒子径が200nm以下の粒子と、膜形成成分と、溶剤と、を含む組成物であって、
     前記膜形成成分は、レオロジーコントロール剤と2種以上の樹脂とを含むか、または、レオロジーコントロール剤と1種以上の樹脂と1種以上の重合性モノマーとを含み、
     前記組成物は、下記式から算出されるチキソトロピーインデックス値が1.3以上である、組成物;
     チキソトロピーインデックス値=β1/β2
     β1は、回転粘度計を使用し、ずり速度20s-1で測定した23℃での粘度であり、
     β2は、回転粘度計を使用し、ずり速度200s-1で測定した23℃での粘度である。
    A composition comprising particles having a refractive index of 2.0 or more and an average primary particle diameter of 200 nm or less, a film-forming component, and a solvent,
    The film forming component includes a rheology control agent and two or more resins, or a rheology control agent, one or more resins, and one or more polymerizable monomers,
    The composition has a thixotropy index value of 1.3 or more calculated from the following formula;
    Thixotropy index value = β1/β2
    β1 is the viscosity at 23 °C measured using a rotational viscometer at a shear rate of 20 s -1 ,
    β2 is the viscosity at 23° C. measured using a rotational viscometer at a shear rate of 200 s −1 .
  2.  前記レオロジーコントロール剤が有機化合物である、請求項1に記載の組成物。 The composition according to claim 1, wherein the rheology control agent is an organic compound.
  3.  前記レオロジーコントロール剤のアミン価が150mgKOH/g以下である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the rheology control agent has an amine value of 150 mgKOH/g or less.
  4.  前記レオロジーコントロール剤の酸価が45mgKOH/g以下である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the rheology control agent has an acid value of 45 mgKOH/g or less.
  5.  前記レオロジーコントロール剤は、アミド構造、ウレア構造およびウレタン構造からなる群より選ばれる少なくとも1種の構造を有する有機化合物を含む、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the rheology control agent contains an organic compound having at least one structure selected from the group consisting of an amide structure, a urea structure, and a urethane structure.
  6.  前記レオロジーコントロール剤は、アミド化合物を含む請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the rheology control agent contains an amide compound.
  7.  前記組成物中における前記レオロジーコントロール剤の含有量が0.1~5質量%である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the content of the rheology control agent in the composition is 0.1 to 5% by mass.
  8.  前記膜形成成分は、前記粒子の分散剤としての樹脂と、バインダーとしての樹脂と、前記レオロジーコントロール剤とを含む、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the film-forming component includes a resin as a dispersant for the particles, a resin as a binder, and the rheology control agent.
  9.  前記バインダーとしての樹脂の100質量部に対して、前記レオロジーコントロール剤を1~50質量部含む、請求項8に記載の組成物。 The composition according to claim 8, comprising 1 to 50 parts by mass of the rheology control agent based on 100 parts by mass of the resin as the binder.
  10.  前記粒子の100質量部に対して、前記レオロジーコントロール剤を0.5~20質量部含む、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, comprising 0.5 to 20 parts by mass of the rheology control agent based on 100 parts by mass of the particles.
  11.  前記膜形成成分は、3価以上の連結基に複数個のポリマー鎖が結合した構造の樹脂と、グラフト鎖を有する繰り返し単位を有する樹脂と、前記レオロジーコントロール剤とを含む、請求項1または2に記載の組成物。 2. The film-forming component comprises a resin having a structure in which a plurality of polymer chains are bonded to a trivalent or higher linking group, a resin having a repeating unit having a graft chain, and the rheology control agent. The composition described in.
  12.  前記グラフト鎖がポリエステル構造の繰り返し単位を含み、グラフト鎖を含む構成単位の重量平均分子量が1000以上である、請求項11に記載の組成物。 The composition according to claim 11, wherein the graft chain contains a repeating unit of a polyester structure, and the weight average molecular weight of the structural unit containing the graft chain is 1000 or more.
  13.  前記組成物を用いて、200℃で5分加熱して厚さ8μmの膜を製膜した際に、前記膜中には前記粒子を含む第1の相と、前記第1の相よりも前記粒子の含有量が少ない第2の相との相分離構造が形成されている、請求項1または2に記載の組成物。 When a film with a thickness of 8 μm was formed using the composition by heating at 200° C. for 5 minutes, the film contained a first phase containing the particles, and a layer containing the particles more than the first phase. The composition according to claim 1 or 2, wherein a phase-separated structure is formed with the second phase having a small content of particles.
  14.  前記相分離構造は海島構造または共連続相構造である、請求項13に記載の組成物。 The composition according to claim 13, wherein the phase-separated structure is a sea-island structure or a co-continuous phase structure.
  15.  前記粒子が無機粒子である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the particles are inorganic particles.
  16.  請求項1または2に記載の組成物を用いて得られる膜。 A film obtained using the composition according to claim 1 or 2.
  17.  請求項16に記載の膜を含む光センサ。 An optical sensor comprising the film according to claim 16.
  18.  請求項1または2に記載の組成物を支持体上に適用して組成物層を形成する工程と、
     前記組成物層を露光する工程と、を含む、
     光センサの製造方法。
    A step of applying the composition according to claim 1 or 2 on a support to form a composition layer;
    exposing the composition layer to light;
    A method of manufacturing an optical sensor.
PCT/JP2023/015020 2022-04-25 2023-04-13 Composition, film, light sensor, and method for producing light sensor WO2023210394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-071729 2022-04-25
JP2022071729 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023210394A1 true WO2023210394A1 (en) 2023-11-02

Family

ID=88518509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015020 WO2023210394A1 (en) 2022-04-25 2023-04-13 Composition, film, light sensor, and method for producing light sensor

Country Status (2)

Country Link
TW (1) TW202344585A (en)
WO (1) WO2023210394A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216835A (en) * 1990-02-21 1992-08-06 Glaverbel Sa Pigment for coated glass micro-beads and for synthetic polymer
JP2000053733A (en) * 1998-08-11 2000-02-22 Sumitomo Bakelite Co Ltd Electroconductive resin paste and semiconductor apparatus using the same
WO2012111543A1 (en) * 2011-02-18 2012-08-23 三菱瓦斯化学株式会社 Resin composition, prepreg, and metal-foil-cladded laminate board
WO2015146873A1 (en) * 2014-03-26 2015-10-01 積水化学工業株式会社 Light-/moisture-curable resin composition, electronic component adhesive, and display element adhesive
US20170226414A1 (en) * 2016-02-08 2017-08-10 Samsung Electronics Co., Ltd. Formulations, optical materials, products including an optical material, and methods
WO2020262270A1 (en) * 2019-06-27 2020-12-30 富士フイルム株式会社 Composition, film, and optical sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216835A (en) * 1990-02-21 1992-08-06 Glaverbel Sa Pigment for coated glass micro-beads and for synthetic polymer
JP2000053733A (en) * 1998-08-11 2000-02-22 Sumitomo Bakelite Co Ltd Electroconductive resin paste and semiconductor apparatus using the same
WO2012111543A1 (en) * 2011-02-18 2012-08-23 三菱瓦斯化学株式会社 Resin composition, prepreg, and metal-foil-cladded laminate board
WO2015146873A1 (en) * 2014-03-26 2015-10-01 積水化学工業株式会社 Light-/moisture-curable resin composition, electronic component adhesive, and display element adhesive
US20170226414A1 (en) * 2016-02-08 2017-08-10 Samsung Electronics Co., Ltd. Formulations, optical materials, products including an optical material, and methods
WO2020262270A1 (en) * 2019-06-27 2020-12-30 富士フイルム株式会社 Composition, film, and optical sensor

Also Published As

Publication number Publication date
TW202344585A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6893236B2 (en) Compositions, membranes, photosensors and dispersants
JP6688875B2 (en) Composition, film, cured film, optical sensor and method for manufacturing film
JP6744921B2 (en) Dispersion, composition, film, method for producing film and dispersant
KR102652548B1 (en) Compositions, membranes, and optical sensors
JP6701324B2 (en) Composition, film, cured film, optical sensor and method for manufacturing film
WO2019130807A1 (en) Composition, film, color filter, solid-state imaging element, image display device and method for producing compound
JP7470780B2 (en) Composition, film and optical sensor
JP2024014989A (en) Colored photosensitive compositions, cured products, color filters, solid-state imaging devices, and image display devices
WO2020262271A1 (en) Composition, film, and light sensor
TWI722125B (en) Composition, film, hardened film, optical sensor, and film manufacturing method
WO2023210394A1 (en) Composition, film, light sensor, and method for producing light sensor
WO2023054142A1 (en) Composition, resin, film and optical sensor
WO2024053471A1 (en) Photocurable composition, film, light sensor, and method for producing light sensor
WO2022196599A1 (en) Film and photosensor
WO2024043111A1 (en) Photosensitive composition, film, and optical sensor
WO2024043110A1 (en) Photosensitive composition, film, and optical sensor
CN117916279A (en) Composition, resin, film and optical sensor
WO2020045208A1 (en) Lens composition, lens, lens production method, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796138

Country of ref document: EP

Kind code of ref document: A1