WO2023210255A1 - Standby assistance device, program, and method - Google Patents

Standby assistance device, program, and method Download PDF

Info

Publication number
WO2023210255A1
WO2023210255A1 PCT/JP2023/013154 JP2023013154W WO2023210255A1 WO 2023210255 A1 WO2023210255 A1 WO 2023210255A1 JP 2023013154 W JP2023013154 W JP 2023013154W WO 2023210255 A1 WO2023210255 A1 WO 2023210255A1
Authority
WO
WIPO (PCT)
Prior art keywords
cost
standby
controller
waiting
place
Prior art date
Application number
PCT/JP2023/013154
Other languages
French (fr)
Japanese (ja)
Inventor
佳樹 久本
智史 大月
健一 中島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023210255A1 publication Critical patent/WO2023210255A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present disclosure relates to a standby support device, program, and method. More specifically, the present disclosure relates to a standby support device, program, and method installed in a mobile body having an automatic driving function.
  • the monitoring center monitors the status of the mobile body by periodically communicating with a remote monitoring center. This achieves high safety for moving objects.
  • Patent Document 1 discloses a system that automatically stops a self-driving car when communication between a monitoring center and the self-driving car is interrupted to ensure safety.
  • the moving object when the moving object automatically stops and enters the standby state, the moving object receives external forces from the surroundings, and it may be difficult to wait appropriately.
  • a self-navigating ship can be affected by wind and waves after it automatically stops.
  • a self-propelled vehicle When a self-propelled vehicle is stopped on a slope, there is a possibility that the self-propelled vehicle will start moving due to gravity.
  • an object of the present disclosure is to provide a standby support device, a program, and a method that realize appropriate standby of a moving object while taking into account external forces from the surroundings.
  • This standby support device is installed in a mobile object that has an automatic driving function.
  • This standby support device includes a communication device that communicates with the outside, an acquisition device that acquires surrounding information of the mobile object, or a storage device that stores surrounding information of the mobile object, and a controller.
  • the controller determines whether the communication state of the communication device is normal or abnormal, and when the communication state is determined to be abnormal, the controller determines the communication state based on the surrounding information from the acquisition device or the surrounding information from the storage device.
  • a waiting place cost that varies depending on an external force that the moving body receives from the surrounding environment in a direction that promotes movement is calculated, a waiting place is set based on the calculation result, and a route to the waiting place is determined.
  • This standby support program operates a processor installed in a mobile object that has an automatic driving function.
  • This program includes a process for determining whether the communication status between the mobile body and the outside is normal or abnormal, and a process for determining whether the communication status between the mobile body and the outside is normal or abnormal, and when the communication status is determined to be abnormal, the mobile body is The process of calculating a waiting place cost that varies depending on an external force received from the environment in a direction that encourages movement, the process of setting a waiting place based on the calculation result, and the process of determining a route to the waiting place. Let the processor execute it.
  • This standby support method is used in a mobile object that has an automatic driving function. This method determines whether the communication state between the mobile object and the outside is normal or abnormal, and when the communication state is determined to be abnormal, the mobile object is removed from the surrounding environment based on surrounding information of the mobile object.
  • the waiting place cost which varies depending on the external force received in the direction that encourages movement, is calculated, the waiting place is set based on the calculation result, and the route to the waiting place is determined.
  • the controller calculates the standby place cost that represents the suitability of the standby place.
  • This waiting space cost varies depending on the external force that the moving body receives from the surrounding environment in a direction that encourages movement.
  • the present standby support device can set an appropriate standby place even when an external force is applied to the moving object from the surroundings.
  • FIG. 1 is a schematic diagram showing an autonomous ship equipped with a standby support device according to an embodiment.
  • FIG. 2 is a block diagram showing the standby support device of FIG. 1.
  • FIG. 3 is a flow diagram showing the processing of the controller of FIG. 2.
  • FIG. 4 is a schematic diagram showing the surrounding situation of the autonomous ship of FIG. 1.
  • FIG. 5 is an example of the waiting location cost set in the situation of FIG. 4.
  • FIG. 6 is an example of waiting place costs set in other situations.
  • FIG. 7A is a plan view showing a self-propelled vehicle equipped with a standby support device according to another embodiment and its surroundings
  • FIG. 7B is a side view showing the self-propelled vehicle and its surroundings. It is.
  • FIG. 8 is an example of the waiting location cost set in the situation of FIG. 7.
  • FIG. 9 is another example of waiting place costs set in other situations.
  • FIG. 10 is a schematic diagram showing an automatic aircraft equipped with a standby support device according to still another embodiment and the situation around it
  • FIG. 1 shows an autonomous ship 4 equipped with a standby support device 2 according to an embodiment.
  • the autonomous ship 4 is an unmanned ship.
  • the autonomous ship 4 does not need to be an unmanned ship.
  • the autonomous ship 4 may operate automatically under the supervision of a crew member.
  • the autonomous ship 4 is communicating with a monitoring center 6.
  • the monitoring center 6 communicates with the autonomous ship 4 to monitor the autonomous ship 4 and control its operation as necessary.
  • the autonomous ship 4 acquires current position information from the GNSS satellite 8.
  • this autonomous ship 4 is equipped with a standby support device 2 and a drive device 10.
  • the standby support device 2 determines whether the autonomous ship 4 is in a state where it can be normally monitored or controlled by the monitoring center 6. When the standby support device 2 determines that the device is not in a state where it can be monitored or controlled, it sets an appropriate standby place and determines a route to the standby place.
  • the drive device 10 automatically moves the autonomous ship 4 to the waiting location along this route.
  • the drive device 10 is typically an engine and its controller.
  • the drive device 10 may be an electric motor and its controller.
  • FIG. 2 shows a communication satellite 22, a GNSS satellite 8, a LiDAR 24, and a camera 26 that send surrounding information to the standby support device 2.
  • radar or sonar may send surrounding information to standby support device 2.
  • LiDAR 24 and camera 26 are mounted on autonomous ship 4. The LiDAR 24 and the camera 26 may be installed at a location facing the sea, such as a coastal location or a lighthouse. In this case, the information acquired by LiDAR 24 and camera 26 is sent to autonomous ship 4 via wireless communication.
  • the communication device 12 performs wireless communication with the monitoring center 6.
  • Communicator 12 receives data from monitoring center 6 and sends it to controller 18 .
  • the communicator 12 sends data from the controller 18 to the monitoring center 6.
  • the acquirer 14 acquires surrounding information from the communication satellite 22, GNSS satellite 8, LiDAR 24, and camera 26.
  • the acquirer 14 receives information on the weather, tides, etc. around the autonomous ship 4 from, for example, a communication satellite 22.
  • the acquirer 14 acquires the current position of the autonomous ship 4 from the GNSS satellite 8.
  • the acquirer 14 acquires information about surrounding obstacles from the LiDAR 24 and the camera 26. Acquirer 14 sends these ambient information to controller 18 .
  • the storage device 16 stores surrounding information acquired in advance.
  • the storage device 16 stores an environmental map.
  • This environmental map includes information on obstacles such as shallow waters and bridges, and information on areas suitable for anchoring.
  • the storage device 16 stores information on the amount of ship traffic acquired in advance over a predetermined period of time. That is, the storage device 16 stores information on which areas are congested sea areas.
  • Storage device 16 is typically a hard disk or a semiconductor memory.
  • the controller 18 determines whether the autonomous ship 4 can be normally monitored or controlled by the monitoring center 6, sets a waiting place, determines the route to the waiting place, and outputs the results from the output device 20. It is sent to the drive device 10 and the display device 28.
  • the controller 18 includes a processor (CPU) and a program that causes the processor to execute processing. Although not shown, the program is stored in the storage device 16. Part or all of the controller 18 may be configured with a dedicated circuit.
  • the drive device 10 automatically moves the autonomous ship 4 to the waiting location according to the route sent from the controller 18.
  • the display device 28 displays information on the route and waiting location determined by the controller 18.
  • the crew member can check the route and waiting location information on the display device 28, and manually operate the autonomous ship 4 using an operating device (not shown) if necessary. can.
  • the standby support device 2 and the display device 28 constitute a standby support system.
  • the display device 28 and the operating device may be integrated.
  • FIG. 3 shows the processing flow of the controller 18.
  • This flow also shows the operating state of the autonomous ship 4.
  • this autonomous ship 4 has the following states: normal automatic operation A1, standby automatic operation A2, and standby A3.
  • the processing of the controller 18 is activated repeatedly at predetermined time intervals in the normal automatic operation A1 state.
  • the controller 18 has processes from step S1 to step S7.
  • step S1 it is determined whether the autonomous ship 4 is in a state where it can be normally monitored or controlled by the monitoring center 6. Specifically, the controller 18 determines whether the communication status between the autonomous ship 4 and the monitoring center 6 is normal or abnormal by checking whether predetermined communication is possible with the monitoring center 6 via the communication device 12. Determine whether Furthermore, in this embodiment, the controller 18 detects the presence or absence of hacking by detecting whether the behavior of the drive device 10 is normal. For example, the controller 18 monitors a predetermined signal within the drive device 10 and tests whether this signal is exhibiting a predetermined movement. Alternatively, the controller 18 checks whether the command from the monitoring center and the operation of the drive device 10 match.
  • the processing of the controller 18 ends.
  • the autonomous ship 4 is operated in the automatic operation A1 state. If the communication with the monitoring center 6 is not normal or if hacking is detected, which is an "abnormal state", the next step S2 is executed.
  • step S2 a waiting place is set by calculating a waiting place cost representing the degree of suitability as a waiting place for each predetermined position.
  • Step S2 is (S2-1) Setting of obstacle cost, distance cost, traffic cost, and anchorage cost (S2-2) Calculation of waiting place cost (S2-3) Including the steps of setting waiting place.
  • FIG. 4 is a schematic diagram showing an example of the surrounding situation of the autonomous ship 4.
  • this self-navigating ship 4 is located in a congested sea area 30 with a large amount of traffic.
  • An anchorage area 34 suitable for anchoring is located on the left front of the autonomous ship 4.
  • Other ships 36 are navigating around this autonomous ship 4.
  • Arrow A in FIG. 4 represents the direction of the current.
  • step (S2-1) the controller 18 sets obstacle cost, distance cost, traffic cost, and anchorage cost for each position within a predetermined range from information on the surrounding situation.
  • the obstacle cost is a cost representing obstacles around the autonomous ship 4. Obstacle costs increase at locations where obstacles exist.
  • the "obstacle cost map" in FIG. 5 represents the obstacle costs set at each position as a map. In FIG. 5, the x-axis and y-axis represent the position in the plane direction. The z-axis represents the set cost.
  • the symbol Po represents the position of the autonomous ship 4. As shown in the obstacle cost map of FIG. 5, in this example, the obstacle cost is set to be large at the position where the shallow water 32 exists and the position where the other vessel 36 exists.
  • the controller 18 obtains the location of the shoal 32 from an environmental map, the location of other vessels 36 from LiDAR 24, radar, or camera 26 information, and sets the obstacle cost.
  • the distance cost is a cost representing the distance from the current position of the autonomous ship 4.
  • the distance cost increases as the distance from the autonomous ship 4 increases.
  • the set distance cost is shown in the distance cost map of FIG. 5. As shown in FIG. 5, the distance cost is minimized at the position of the autonomous ship 4, and increases as distance from this position increases.
  • the traffic cost is a cost representing the amount of ship traffic. The higher the volume of ship traffic in an area, the higher the traffic cost.
  • the set traffic cost is shown in the traffic cost map of FIG. 5. As shown in FIG. 5, the traffic cost is set to be large in the congested sea area 30.
  • controller 18 obtains traffic information from storage 16 and sets traffic costs. The traffic cost may be set by the current actual ship traffic obtained from the communication satellite 22.
  • the anchorage cost is a cost that represents the suitability of an anchorage location.
  • the anchorage cost for each position is determined from information on "areas suitable for anchoring" (anchoring areas) stored in the environmental map and tidal current and wind power information obtained from the communication satellite 22.
  • anchoring areas an anchoring area
  • the anchoring cost in the anchoring area is set lower than in other areas.
  • FIG. 5 shows an anchoring cost map in this case. In the anchoring area 34, the anchoring cost is set low.
  • the smaller the tidal current and wind power the smaller the difference in anchoring cost between the anchoring area and other areas is set.
  • An example of an anchorage cost map in the absence of tidal currents and wind power is shown in FIG.
  • the anchorage cost is set constant regardless of location.
  • the obstacle cost, distance cost, and traffic cost are the same as in FIG. 5.
  • the difference in anchoring cost between the anchoring area and other areas may be set to continuously increase in proportion to the increase in tidal current or wind power.
  • the difference in anchoring cost between the anchoring area and other areas may be set to increase in stages as the tidal current or wind force increases.
  • step (S2-2) the controller 18 calculates the waiting place cost at each position by adding up the obstacle cost, distance cost, traffic cost, and anchorage cost for the corresponding position.
  • FIG. 5 shows a waiting location cost map when there are tidal currents and wind force exerting external forces on the autonomous ship 4.
  • FIG. 6 shows a waiting location cost map in the case where there is no tidal current or wind force exerting an external force on the autonomous ship 4.
  • step (S2-3) the controller 18 sets the position where the waiting place cost is the smallest as the waiting place.
  • the symbol Po represents the current position of the autonomous ship 4
  • the symbol Pt represents the set waiting location. In this embodiment, if there are multiple positions with the lowest waiting place cost, all of them are set as waiting places. Which of these locations will be selected as the actual waiting location will be determined at the same time as route determination, which will be described later.
  • the cost of the anchorage varies depending on the tidal current and wind force that exert force on the autonomous vessel 4 in a direction that encourages movement, and the cost of the waiting area also varies accordingly.
  • the waiting place Pt can be set at different positions depending on the tidal current and wind force that exert force on the autonomous ship 4 in a direction that urges it to move.
  • a waiting location Pt is set corresponding to the external force.
  • step S3 the controller 18 determines whether the autonomous ship 4 has arrived at the waiting place Pt by comparing the current position Po and the waiting place Pt. "Arrival" at this time includes a case where the position of the automated navigation ship 4 when the abnormality is first detected in step S1 matches the waiting location Pt (a case where the automated navigation ship 4 does not need to move). If the autonomous ship 4 has not arrived at the waiting place Pt, the process moves to step S4. If the autonomous ship 4 has arrived at the waiting location Pt, the process moves to step S5.
  • step S4 the controller 18 determines a route from the current position Po to the waiting location Pt.
  • the route with the minimum total waiting place cost (referred to as route cost) on the route is selected. If there are a plurality of waiting places Pt with the minimum waiting place cost, the route with the minimum route cost is selected from among the possible routes from the current position Po to all the waiting places Pt.
  • route cost a route determined by this process is indicated by an arrow L. Path L is sent to drive device 10 .
  • the autonomous ship 4 automatically moves along this route L, and enters the standby automatic operation A2 state.
  • the process of the controller 18 returns to step S2.
  • the route determination method is not limited to the above. For example, if there are multiple waiting places Pt, and the ship drives on the right, the waiting place Pt that is located on the rightmost side of the front side of the autonomous ship 4 is selected, and the route is selected from among the possible routes so far. The route with the minimum total cost may be selected.
  • step S5 the controller 18 determines a standby method.
  • whether the autonomous ship 4 is a drifting ship or an anchored ship is determined by the tidal current or wind force that exerts an external force on the autonomous ship 4.
  • a vessel is considered to be an anchored vessel when the tidal current or wind force is above a predetermined value, and a drifting vessel when the tidal current or wind force is less than a predetermined value.
  • the autonomous ship 4 enters the standby A3 state according to this result.
  • step S6 similarly to step S1, it is determined whether the communication state between the autonomous ship 4 and the monitoring center 6 is normal or abnormal, and the presence or absence of hacking is detected. If these are in the "normal state", the processing of the controller 18 ends. The automatic operation ship 4 normally operates under automatic operation A1. If this is an "abnormal state”, the next step S7 is executed.
  • step S7 it is determined whether a predetermined time has elapsed since the most recent standby state. If the predetermined time has not elapsed, step S6 is repeated. If the predetermined time has elapsed, the process returns to step S2, and the setting of the waiting place, the determination of the route to the waiting place, and the determination of the waiting method are carried out again.
  • step S1 when an "abnormal state" is detected in step S1, the controller 18 stores the target point in the normal automatic operation A1 in the memory 16, and then returns the target point in step S6 and When it is determined that the vehicle is in a "normal state", the controller 18 may read out this target point from the memory 16 and set it as the target point for automatic driving.
  • the target point for normal automatic operation A1 is written in the memory 16 in advance, and when it is determined in step S6 that it is in a "normal state”, the controller 18 reads this target point from the memory 16 and uses it for automatic operation. It may also be set as a target point.
  • the controller 18 of the standby support device 2 calculates a standby place cost that represents the suitability of the autonomous ship 4 as a standby place.
  • This waiting place cost includes an anchoring cost that represents the degree of suitability as an anchoring place.
  • This anchorage cost varies depending on the tidal current and wind force that exert force on the autonomously operated vessel 4. This makes it possible to set an appropriate standby position that corresponds to the magnitude of the tidal current and wind force.
  • This standby support device 2 realizes appropriate standby of the autonomous ship 4 in consideration of external forces from the surroundings.
  • the controller 18 determines whether the communication state with the monitoring center 6 is normal or abnormal and detects hacking even after the autonomous ship 4 starts standby. If a predetermined period of time elapses without the communication status becoming normal or with the communication state being hacked, the controller 18 sets the waiting location, determines the route to the waiting location, and determines the waiting method again.
  • the tidal currents and wind forces that exert force on the autonomous ship 4 may change over time. For example, changes in tidal currents and wind forces may require a change from a drifting vessel to an anchored vessel.
  • This standby support device 2 realizes appropriate standby of the autonomous ship 4 even if the surrounding environment changes during standby.
  • the waiting place cost includes a traffic cost representing the amount of traffic.
  • a traffic cost representing the amount of traffic.
  • the waiting location cost includes a distance cost representing the distance from the current position of the autonomous ship 4.
  • the waiting place cost includes an obstacle cost representing the presence of an obstacle. This makes it possible to determine a route that avoids obstacles. This allows for safe movement to the waiting area.
  • whether the autonomous ship 4 is a drifting ship or an anchored ship is determined by an external force applied to the autonomous ship 4.
  • an external force applied to the autonomous ship 4 By anchoring the vessel when external forces are large, safe standby can be achieved.
  • FIG. 7 is a schematic diagram showing a self-propelled vehicle 40 equipped with a standby support device 2 according to another embodiment and the surrounding situation of this self-propelled vehicle 40.
  • FIG. 7A is a plan view of the self-propelled vehicle 40 and the surrounding situation
  • FIG. 7B is a side view of the self-propelled vehicle 40 and the surrounding situation.
  • the self-propelled vehicle 40 is an unmanned vehicle that automatically travels within a predetermined area.
  • the self-propelled vehicle 40 may be a vehicle in which a driver can ride.
  • This self-propelled vehicle 40 is communicating with the monitoring center 6.
  • the monitoring center 6 communicates with the self-propelled vehicle 40 to monitor the self-propelled vehicle 40 and perform travel control as necessary.
  • the self-propelled vehicle 40 also obtains current position information from the GNSS satellite 8.
  • this self-propelled vehicle 40 includes a standby support device 2 and a drive device 10.
  • the standby support device 2 determines whether the self-propelled vehicle 40 is in a state where it can be normally monitored or controlled by the monitoring center 6. When the standby support device 2 determines that the vehicle is not in a controllable state, it sets an appropriate standby place, determines a route to the standby place, and notifies the drive device 10 of the results.
  • the drive device 10 automatically moves the self-propelled vehicle 40 to the standby location along this route.
  • the drive device 10 is typically an engine and its controller.
  • the drive device 10 may be a motor and its controller.
  • the self-propelled vehicle 40 may include the display device 28.
  • the display device 28 displays information on the route and waiting location determined by the controller 18.
  • the driver can check information on the route and waiting location on the display device 28 and manually operate the self-propelled vehicle 40.
  • the standby support device 2 and the display device 28 constitute a standby support system. In a self-propelled vehicle 40 without a driver on board, the display device 28 may not be provided.
  • the block diagram of the standby support device 2 of this embodiment is the same as that in FIG. 2.
  • This device includes a communicator 12, an acquirer 14, a memory 16, a controller 18, and an output device 20.
  • the controller 18 does not have a hacking detection function.
  • the controller 18 may have a hacking detection function.
  • the acquirer 14 acquires information on obstacles such as surrounding buildings and vehicles from the communication satellite 22, LiDAR 24 (in this embodiment, radar or optical sensor), and camera 26.
  • the acquirer 14 acquires the current position of the self-propelled vehicle 40 from the GNSS satellite 8.
  • Acquirer 14 sends this information to controller 18 .
  • the storage device 16 stores surrounding information acquired in advance.
  • the storage device 16 stores an environmental map.
  • This environmental map includes information on obstacles such as buildings and information on areas unsuitable for parking, such as around emergency equipment.
  • the storage device 16 stores traffic information acquired in advance over a predetermined period of time. That is, the storage device 16 stores information on which areas have a high traffic volume.
  • the controller 18 determines whether the self-propelled vehicle 40 can be normally monitored or controlled by the monitoring center 6, sets a waiting place, determines a route to the waiting place, and transmits the results from the output device 20 to the drive device. Send to 10.
  • the processing flow of this controller 18 is the same as the processing flow of FIG. 3. Since the processing content of each step is different from each step in FIG. 3, in the following explanation, the steps corresponding to each step from S1 to S7 are named S1a to S7a.
  • step S1a it is determined whether the self-propelled vehicle 40 is in a state where it can be normally monitored or controlled by the monitoring center 6.
  • the controller 18 determines whether the communication state between the self-propelled vehicle 40 and the monitoring center 6 is normal or abnormal by checking whether predetermined communication with the monitoring center 6 is possible. If the controller 18 is in a "normal state” in which normal communication is performed with the monitoring center 6, the processing of the controller 18 ends.
  • the self-propelled vehicle 40 is normally driven in a state of automatic operation A1. If the communication state with the monitoring center 6 is in an "abnormal state" that is not normal, the next step S2a is executed.
  • step S2a a waiting place is set by calculating a waiting place cost representing the degree of suitability as a waiting place for each predetermined position.
  • Step S2a is (S2a-1) Setting obstacle cost, distance cost, traffic cost, and slope cost (S2a-2) Calculating waiting place cost (S2a-3) Setting the waiting place.
  • S2a-1 Setting obstacle cost, distance cost, traffic cost, and slope cost
  • S2a-2 Calculating waiting place cost
  • S2a-3 Setting the waiting place.
  • FIGS. 7A and 7B the surrounding situation of the self-propelled vehicle 40 is shown in FIGS. 7A and 7B.
  • the symbol R in FIG. 7A represents an area with heavy traffic.
  • This self-propelled vehicle 40 is located in a region R with heavy traffic.
  • Other vehicles 42 are running in front and behind the self-propelled vehicle 40 .
  • the self-propelled vehicle 40 is located on a slope.
  • step (S2a-1) the controller 18 sets obstacle cost, distance cost, traffic cost, and slope cost from the surrounding situation.
  • the obstacle cost is a cost representing obstacles around the self-propelled vehicle 40. Obstacle costs increase at locations where obstacles exist.
  • the set obstacle costs are shown in the obstacle cost map of FIG. As shown in FIG. 8, in this example, the obstacle cost is set to be large at a position where another vehicle 42 is present.
  • the controller 18 obtains the location of other vehicles 42 from LiDAR 24 (radar or optical sensor) or camera 26 information to set the obstacle cost.
  • the distance cost represents the distance from the current position of the self-propelled vehicle 40.
  • the distance cost increases as the distance from the self-propelled vehicle 40 increases.
  • the set distance cost is shown in the distance cost map of FIG. 8.
  • the traffic cost is a cost representing the amount of vehicle traffic. The higher the volume of vehicle traffic in an area, the higher the traffic cost.
  • the set traffic cost is shown in the traffic cost map of FIG. 8.
  • controller 18 obtains traffic information from storage 16 and sets traffic costs. The traffic cost may be determined by the current actual vehicle traffic obtained from the communication satellite 22.
  • the slope cost is a cost representing the slope of the ground at each position. If the slope is large, the stopped self-propelled vehicle 40 may start to move due to the force of gravity exerted on the self-propelled vehicle 40. At a position where the slope is large, the slope cost is set to be large.
  • the tilt cost is a cost representing the influence of gravity that exerts a force on the self-propelled vehicle 40 in a direction that promotes movement.
  • the slope cost set in the case of FIG. 7B is shown in the slope cost map of FIG. 8. In this embodiment, controller 18 sets the slope cost from slope information stored in the environmental map.
  • FIG. 9 shows the slope cost when the entire target area is horizontal. In this example, the slope cost is set to be constant regardless of location in the target area.
  • the obstacle cost, distance cost, and traffic cost are the same as in FIG. 8.
  • the inclination cost may be set to continuously increase in proportion to the increase in the inclination angle.
  • the inclination cost may be set to increase in stages as the inclination angle increases.
  • step (S2a-2) the controller 18 calculates the waiting place cost at each position by adding up the obstacle cost, distance cost, traffic cost, and slope cost for the corresponding position.
  • FIG. 8 shows a waiting location cost map when there is a sloped part on the ground.
  • FIG. 9 shows a waiting location cost map when the entire surface of the ground is horizontal.
  • step (S2a-3) the controller 18 sets the position where the waiting place cost is the smallest as the waiting place.
  • the symbol Po represents the current position of the self-propelled vehicle 40
  • the symbol Pt represents the set waiting location. In this embodiment, if there are multiple positions with the lowest waiting place cost, all of them are set as waiting places. Which of these locations will be selected as the actual waiting location will be determined at the same time as route determination, which will be described later.
  • the inclination cost varies depending on the degree of inclination that exerts a force on the self-propelled vehicle 40 in a direction that encourages movement, and the waiting place cost also varies accordingly.
  • the waiting place Pt can be set at different positions depending on the degree of inclination that exerts a force on the self-propelled vehicle 40 in a direction that encourages movement. It is possible to set a waiting area that corresponds to external forces.
  • a "stopping cost" representing the suitability of the vehicle as a standby position may be further set. For example, in front of an entrance or exit, on top of an underground fire hydrant, or other locations inappropriate for the self-propelled vehicle 40 to wait, the parking cost is set to be large. The stopping cost for each location is set from information on various facilities stored in the environmental map. The stopping cost is added together with other costs when calculating the waiting place cost.
  • step S3a the controller 18 determines whether the self-propelled vehicle 40 has arrived at the waiting place Pt by comparing the current position Po and the waiting place Pt. If the self-propelled vehicle 40 has not arrived at the waiting location Pt, the process moves to step S4a. If the self-propelled vehicle 40 has arrived at the waiting location Pt, the process moves to step S5a.
  • step S4a the controller 18 determines a route from the current position Po to the waiting location Pt.
  • the route with the minimum route cost is selected from among the possible routes from the current position Po to the waiting location Pt. If there are a plurality of waiting places Pt with the minimum waiting place cost, the route with the minimum route cost is selected from among the possible routes from the current position Po to all the waiting places Pt.
  • FIG. 7A an example of the determined route is indicated by an arrow L. Path L is sent to drive device 10 . The self-propelled vehicle 40 automatically moves along this route L, entering the standby automatic operation A2 state. The process of the controller 18 returns to step S2a.
  • the route determination method is not limited to the above. For example, when there are multiple waiting places Pt, since vehicles drive on the left in Japan, the waiting place Pt located furthest to the left in front of this self-propelled vehicle 40 is selected, and the route The path with the least cost may be selected.
  • step S5a the controller 18 determines the standby method.
  • the controller 18 determines whether to perform "stopping" in which the running direction is stopped using the normal brake, or "double brake parking” in which the parking brake is applied.
  • the degree of inclination is greater than a predetermined value, the vehicle is considered to be parked with double brakes, and when the degree of inclination is less than the predetermined value, the vehicle is stopped. This result is sent to the drive device 10, and the self-propelled vehicle 40 enters the standby A3 state according to this result.
  • step S6a similarly to step S1a, it is determined whether the communication state between the self-propelled vehicle 40 and the monitoring center 6 is normal or abnormal. If the communication state is normal, the controller 18 ends the process. The self-propelled vehicle 40 is normally in automatic operation A1. If the communication state is abnormal, the next step S7a is executed.
  • step S7a it is determined whether a predetermined time has elapsed since the most recent standby state. If the predetermined time has not elapsed, step S6a is repeated. If the predetermined time has elapsed, the process returns to step S2a and the waiting location is reset.
  • the controller 18 of the standby support device 2 calculates a standby place cost that represents the suitability of the standby place for the self-propelled vehicle 40.
  • This waiting place cost includes ramp cost.
  • an appropriate standby position can be set in consideration of the gravity that exerts a force on the self-propelled vehicle 40.
  • the standby support device 2 realizes appropriate standby of the self-propelled vehicle 40 in consideration of external forces from the surroundings.
  • a stopping cost representing the suitability of the self-propelled vehicle 40 as a standby position may be further provided. By adding the stopping cost to the calculation of the waiting place cost, waiting at a more appropriate place can be realized.
  • step S1a when an "abnormal state" is detected in step S1a, the controller 18 stores the target point in the normal automatic operation A1 in the storage device 16, and performs step S6a and the like.
  • the controller 18 may read out this target point from the memory 16 and set it as the target point for automatic driving.
  • the target point for normal automatic operation A1 is written in the memory 16 in advance, and when it is determined in step S6a that the state is "normal,” the controller 18 reads this target point from the memory 16 and uses it for automatic operation. It may also be set as a target point.
  • FIG. 10 is a schematic diagram showing an automatic aircraft 46 equipped with a standby support device 2 according to another embodiment and the surrounding situation of this automatic aircraft 46.
  • autonomous aircraft 46 is a drone.
  • the automatic aircraft 46 may be an aircraft on which a pilot can board.
  • This automatic aircraft 46 is communicating with the monitoring center 6.
  • the monitoring center 6 monitors the automatic aircraft 46 and performs flight control as necessary by communicating with the automatic aircraft 46.
  • the automatic aircraft 46 also obtains current position information from the GNSS satellite 8.
  • This automatic aircraft 46 is equipped with a standby support device 2 and a drive device.
  • the standby support device 2 determines whether the automatic aircraft 46 is in a state where it can be normally monitored or controlled by the monitoring center 6. When it is determined that the standby support device 2 is not in a controllable state, an appropriate standby place is set, a route to the standby place is determined, and the results are communicated to the drive device.
  • the drive device automatically flies the automatic aircraft 46 to the waiting location according to this route.
  • the automatic aircraft 46 may be equipped with the display device 28.
  • the display device 28 displays information on the route and waiting location determined by the controller 18.
  • the pilot can check the route and waiting location information on the display device 28 and manually operate the automatic aircraft 46.
  • the standby support device 2 and the display device 28 constitute a standby support system.
  • the display device 28 may be omitted.
  • the block diagram of the standby support device 2 of this embodiment is the same as that in FIG. 2. Below, the processing of the controller 18 of the standby support device 2 will be explained.
  • the processing flow of this controller 18 is the same as the processing flow of FIG. 3. However, since the processing content of each step is different from each step in FIG. 3, in the following explanation, steps corresponding to steps S1 to S7 are named S1b to S7b, respectively.
  • step S1b it is determined whether the automatic aircraft 46 is in a state where it can be normally monitored or controlled by the monitoring center 6.
  • the controller 18 determines whether the communication state between the automatic aircraft 46 and the monitoring center 6 is normal or abnormal by checking whether predetermined communication with the monitoring center 6 is possible. If the controller 18 is in a "normal state” in which normal communication is performed with the monitoring center 6, the processing of the controller 18 ends.
  • the automatic aircraft 46 is normally operated in a state of automatic operation A1. If the communication state with the monitoring center 6 is in an "abnormal state" that is not normal, the next step S2b is executed.
  • step S2b a waiting place is set by calculating a waiting place cost representing the degree of suitability as a waiting place for each predetermined position.
  • Step S2b is (S2b-1) Setting obstacle cost, distance cost, and landing cost (S2b-2) Calculating waiting place cost (S2b-3) This step includes setting the waiting place.
  • step (S2b-1) the controller 18 sets an obstacle cost, a distance cost, and a landing cost for each position within a predetermined three-dimensional range from the surrounding situation information.
  • the cost maps of the obstacle cost, distance cost, and landing cost are maps in a three-dimensional space, respectively.
  • the obstacle cost is a cost representing obstacles around the automatic aircraft 46. Obstacle costs increase at locations where obstacles such as other aircraft, buildings, trees, etc. exist. No-fly zones also have an obstacle cost attached to them as obstacles. Information on other aircraft is obtained from LiDAR24 (radar). Buildings, no-fly zones, etc. are acquired from the environmental map stored in the memory 16.
  • the distance cost is a cost representing the distance from the current position of the automatic aircraft 46. The greater the distance from the autonomous aircraft 46, the greater the distance cost.
  • Landing cost is a cost that represents the suitability of a landing place.
  • the landing cost for each location is determined from the information on the "landable area 48" stored in the environmental map and the wind power information obtained from the communication satellite 22.
  • the landing cost of the landing possible area 48 is set to be smaller than that of other areas.
  • the wind force is low, the automatic aircraft 46 is capable of hovering.
  • Automated aircraft 46 does not need to land. In this case, the difference in landing cost between the landing possible area 48 and other areas is set small. That is, landing costs vary depending on the wind force exerting the force on the autonomous aircraft 46.
  • the difference in landing cost between the landing possible area and other areas may be set to continuously increase in proportion to the increase in wind power.
  • the difference in landing cost between the landing possible area and other areas may be set to increase in stages as the wind power increases.
  • step (S2b-2) the controller 18 calculates the waiting place cost at each position by adding up the obstacle cost, distance cost, and landing cost for the corresponding positions.
  • step (S2b-3) the controller 18 sets the position where the waiting place cost is the smallest as the waiting place.
  • a "traffic cost" representing the amount of aircraft traffic may be further set.
  • the traffic cost is set higher as the area has more aircraft traffic.
  • controller 18 obtains traffic information from storage 16 and sets traffic costs.
  • the traffic cost may be determined by the current actual vehicle traffic obtained from the communication satellite 22. Traffic costs are added along with other costs when calculating waiting location costs.
  • step S3b the controller 18 determines whether the automatic aircraft 46 has arrived at the waiting location by comparing the current position and the waiting location. If the automatic aircraft 46 has not arrived at the waiting location, the process moves to step S4b. If the automatic aircraft 46 has arrived at the waiting location, the process moves to step S5b.
  • step S4b the controller 18 determines a route from the current position to the waiting location.
  • the route with the minimum route cost is selected from among the possible routes from the current location to the waiting location.
  • the determined route is sent to the drive device.
  • an example of a route determined by this process is indicated by an arrow L.
  • the automatic aircraft 46 automatically moves along this route L, entering the standby automatic operation A2 state.
  • the process of the controller 18 returns to step S2b.
  • step S5b the controller 18 determines the standby method.
  • “hovering” or “landing” is determined depending on whether the waiting location is in the air or on the ground.
  • the automatic aircraft 46 enters a standby state A3.
  • step S6b similarly to step S1b, it is determined whether the communication state between the automatic aircraft 46 and the monitoring center 6 is normal or abnormal. If the communication state is normal, the processing of the controller 18 ends. The automatic aircraft 46 enters normal automatic operation A1. If the communication state is abnormal, the next step S7b is executed.
  • step S7b it is determined whether a predetermined time has elapsed since the most recent standby state. If the predetermined time has not elapsed, step S6b is repeated. If the predetermined time has elapsed, the process returns to step S2b and the waiting location is reset.
  • the controller 18 of the standby support device 2 calculates a standby place cost that represents the degree of suitability as a standby place for the automatic aircraft 46.
  • This waiting place cost includes a landing cost that represents the degree of suitability as a landing place.
  • This landing cost varies depending on the wind force exerting the force on the autonomous aircraft 46. This makes it possible to set an appropriate standby position that corresponds to the magnitude of the wind force.
  • This standby support device 2 realizes appropriate standby of the automatic aircraft 46 in consideration of external forces from the surroundings.
  • the external force applied to the automatic aircraft 46 determines whether to land or hover.
  • a safe standby can be achieved by landing when the external force from the wind is large. By hovering when this external force is small, it is possible to efficiently transition from standby to normal automatic operation.
  • step S1b when an "abnormal state" is detected in step S1b, the controller 18 stores the target point in the normal automatic operation A1 in the memory 16, and performs step S6b and the like.
  • the controller 18 may read out this target point from the memory 16 and set it as the target point for automatic driving.
  • the target point for normal automatic operation A1 is written in the memory 16 in advance, and when it is determined in step S6b that it is in a "normal state", the controller 18 reads this target point from the memory 16 and uses it for automatic operation. It may also be set as a target point.
  • each controller device disclosed herein may include a general purpose processor, special purpose processor, integrated circuit, ASIC (Application Specific Integrated Circuit), conventional circuit, and/or configured or programmed to perform the disclosed functions. or a combination thereof.
  • Processors are considered processing circuits or circuits because they include transistors and other circuits.
  • a circuit, unit, or means is hardware that performs the recited functions or is hardware that is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means or unit is a combination of hardware and software, the software being used for the configuration of the hardware and/or the processor.
  • the standby support device 2 can realize an appropriate standby of the moving body by taking into account external forces from the surroundings. From this, the superiority of this standby support device 2 is clear.
  • a standby support device installed in a mobile body having an automatic driving function comprising a communication device that communicates with the outside, an acquisition device that acquires surrounding information of the moving object, or a storage device that stores surrounding information of the moving object, and a controller, The controller determines whether the communication state of the communication device is normal or abnormal, and when the communication state is determined to be abnormal, the controller determines the communication state based on the surrounding information from the acquisition device or the surrounding information from the storage device.
  • a standby support device that calculates a waiting place cost that varies depending on an external force that a moving body receives from the surrounding environment in a direction that encourages movement, sets a waiting place based on the calculation result, and determines a route to the waiting place. .
  • the controller further performs hacking detection;
  • the standby support device according to item 1 or 2, wherein the controller, when detecting the occurrence of hacking, sets the standby place and determines a route to the standby place.
  • the mobile object is an autonomous ship
  • the controller calculates an obstacle cost based on surrounding obstacles, a distance cost based on the distance from the autonomous ship, a traffic cost based on surrounding traffic volume, and an anchoring cost based on the suitability of the anchoring location. Calculate the waiting place cost; 4.
  • the standby support device according to any one of items 1 to 3, wherein the anchoring cost varies depending on the current or wind speed that applies an external force to the autonomous ship.
  • the mobile object is a self-propelled vehicle
  • the controller calculates the waiting place cost based on an obstacle cost based on surrounding obstacles, a distance cost based on the distance from the self-propelled vehicle, a traffic cost based on surrounding traffic volume, and a slope cost,
  • the standby support device according to any one of items 1 to 3, wherein the inclination cost varies based on the inclination of the ground that applies an external force to the self-propelled vehicle.
  • the mobile object is an automatic aircraft
  • the controller calculates the holding location cost based on an obstacle cost based on surrounding obstacles, a distance cost based on a distance from the automatic aircraft, a suitability as a landing location, and a landing cost;
  • the standby support device according to any one of items 1 to 3, wherein the landing cost varies depending on the wind speed that applies an external force to the automatic aircraft.
  • a standby support system comprising the standby support device according to any one of items 1 to 11, and a display device that displays information on the standby place and a route to the standby place.
  • the standby support device comprising a communication device that communicates with the outside, an acquisition device that acquires surrounding information of the moving object, or a storage device that stores surrounding information of the moving object, and a controller,
  • the controller determines whether the communication state of the communication device is normal or abnormal, and when the communication state is determined to be abnormal, the controller determines the communication state based on the surrounding information from the acquisition device or the surrounding information from the storage device.
  • a program that operates a processor installed in a mobile object having an automatic driving function A process for determining whether a communication state between the mobile object and the outside is normal or abnormal, and a process for determining whether the communication state between the mobile object and the outside is normal or abnormal, and a process for causing the mobile object to move from the surrounding environment based on surrounding information of the mobile object when the communication state is determined to be abnormal.
  • causing the processor to execute a process of calculating a waiting place cost that varies depending on an external force received in the urging direction, a process of setting a waiting place based on the calculation result, and a process of determining a route to the waiting place.
  • a program for standby assistance A process for determining whether a communication state between the mobile object and the outside is normal or abnormal.
  • a method used in a mobile body having an automatic driving function comprising: Determining whether a communication state between the mobile object and the outside is normal or abnormal, and if the communication state is determined to be abnormal, a direction in which the mobile object is encouraged to move from the surrounding environment based on surrounding information of the mobile object.
  • a standby support method that calculates a standby place cost that varies depending on an external force applied to the standby place, sets a standby place based on the calculation result, and determines a route to the standby place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mathematical Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Alarm Systems (AREA)

Abstract

This standby assistance device 2 comprises: a communication apparatus 12 that communicates with an external unit; an acquisition apparatus 14 that acquires surroundings information for a mobile body, or a storage apparatus 16 in which surroundings information for the mobile body are stored; and a controller 18. The controller 18 determines whether the communication status of the communication apparatus 12 is normal or abnormal, and if said communication status has been determined to be abnormal, calculates a standby location cost on the basis of the surroundings information from the acquisition apparatus 14 or the surroundings information from the storage apparatus 16, said standby location cost varying due to an external force that the mobile body receives from the surrounding environment in a direction facilitating movement, and sets a standby location on the basis of the results of this calculation and determines a route to said standby location.

Description

待機支援装置、プログラム及び方法Standby support device, program and method
 本開示は、待機支援装置、プログラム及び方法に関する。より詳細には、本開示は、自動運転機能を有する移動体に搭載される待機支援装置、プログラム及び方法に関する。 The present disclosure relates to a standby support device, program, and method. More specifically, the present disclosure relates to a standby support device, program, and method installed in a mobile body having an automatic driving function.
 近年、自動運航船、無人車両等の、自動運転機能を有する移動体の実用化が進んでいる。これらの移動体では、遠隔地の監視センターと定期的に通信を行うことで、監視センターが移動体の状態を監視している。これにより、移動体の高い安全性を実現している。 In recent years, the practical use of mobile objects with autonomous driving functions, such as autonomous ships and unmanned vehicles, has progressed. In these mobile bodies, the monitoring center monitors the status of the mobile body by periodically communicating with a remote monitoring center. This achieves high safety for moving objects.
 監視センターと移動体との通信は、機器の故障、電波状態の悪化等により、正常に行われないことが起こりうる。特許文献1には、安全確保のため、監視センターと自動運転車との通信が途絶えたときに、この自動運転車を自動停止させるシステムが、開示されている。 Communication between the monitoring center and mobile objects may not be performed properly due to equipment failure, deterioration of radio wave conditions, etc. Patent Document 1 discloses a system that automatically stops a self-driving car when communication between a monitoring center and the self-driving car is interrupted to ensure safety.
特開2021-71753公報JP 2021-71753 Publication
 上記のシステムでは、移動体が自動停止して待機状態となったときに、移動体が周囲から外力を受け、適切な待機が難しい場合がある。例えば、自動運航船は、自動停止後に風や波の影響を受けうる。自走車両は、停止位置が坂道であった場合に、重力により動き出す可能性がある。 In the above system, when the moving object automatically stops and enters the standby state, the moving object receives external forces from the surroundings, and it may be difficult to wait appropriately. For example, a self-navigating ship can be affected by wind and waves after it automatically stops. When a self-propelled vehicle is stopped on a slope, there is a possibility that the self-propelled vehicle will start moving due to gravity.
 そこで、本開示の目的は、周囲からの外力を考慮して移動体の適切な待機を実現する、待機支援装置、プログラム及び方法の提供にある。 Therefore, an object of the present disclosure is to provide a standby support device, a program, and a method that realize appropriate standby of a moving object while taking into account external forces from the surroundings.
 本待機支援装置は、自動運転機能を有する移動体に搭載される。本待機支援装置は、外部との通信を行う通信器、前記移動体の周囲情報を取得する取得器又は前記移動体の周囲情報を記憶した記憶器、及びコントローラを備える。前記コントローラは、前記通信器の通信状態が正常か異常かを判定し、前記通信状態が異常と判定した場合に、前記取得器からの周囲情報又は前記記憶器からの周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算し、この計算結果を基にして待機場所を設定し、前記待機場所までの経路を決定する。 This standby support device is installed in a mobile object that has an automatic driving function. This standby support device includes a communication device that communicates with the outside, an acquisition device that acquires surrounding information of the mobile object, or a storage device that stores surrounding information of the mobile object, and a controller. The controller determines whether the communication state of the communication device is normal or abnormal, and when the communication state is determined to be abnormal, the controller determines the communication state based on the surrounding information from the acquisition device or the surrounding information from the storage device. A waiting place cost that varies depending on an external force that the moving body receives from the surrounding environment in a direction that promotes movement is calculated, a waiting place is set based on the calculation result, and a route to the waiting place is determined.
 本待機支援プログラムは、自動運転機能を有する移動体に搭載されたプロセッサを動作させる。このプログラムは、前記移動体と外部との通信状態が正常か異常かを判定する処理と、前記通信状態が異常と判定した場合に前記移動体の周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算する処理と、この計算結果を基にして待機場所を設定する処理と、前記待機場所までの経路を決定する処理と、を前記プロセッサに実行させる。 This standby support program operates a processor installed in a mobile object that has an automatic driving function. This program includes a process for determining whether the communication status between the mobile body and the outside is normal or abnormal, and a process for determining whether the communication status between the mobile body and the outside is normal or abnormal, and when the communication status is determined to be abnormal, the mobile body is The process of calculating a waiting place cost that varies depending on an external force received from the environment in a direction that encourages movement, the process of setting a waiting place based on the calculation result, and the process of determining a route to the waiting place. Let the processor execute it.
 本待機支援方法は、自動運転機能を有する移動体で使用される。この方法は、前記移動体と外部との通信状態が正常か異常かを判定し、前記通信状態が異常と判定した場合に前記移動体の周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算し、この計算結果を基にして待機場所を設定し、前記待機場所までの経路を決定する。 This standby support method is used in a mobile object that has an automatic driving function. This method determines whether the communication state between the mobile object and the outside is normal or abnormal, and when the communication state is determined to be abnormal, the mobile object is removed from the surrounding environment based on surrounding information of the mobile object. The waiting place cost, which varies depending on the external force received in the direction that encourages movement, is calculated, the waiting place is set based on the calculation result, and the route to the waiting place is determined.
 本待機支援装置では、コントローラは、待機場所としての適正度を表す待機場所コストを計算する。この待機場所コストは、前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する。これにより、本待機支援装置では、移動体に周囲からの外力が付加される場合においても、適正な待機場所を設定することができる。 In this standby support device, the controller calculates the standby place cost that represents the suitability of the standby place. This waiting space cost varies depending on the external force that the moving body receives from the surrounding environment in a direction that encourages movement. As a result, the present standby support device can set an appropriate standby place even when an external force is applied to the moving object from the surroundings.
図1は、一実施形態に係る待機支援装置を搭載した自動運航船が示された、模式図である。FIG. 1 is a schematic diagram showing an autonomous ship equipped with a standby support device according to an embodiment. 図2は、図1の待機支援装置が示された、ブロック図である。FIG. 2 is a block diagram showing the standby support device of FIG. 1. 図3は、図2のコントローラの処理が示された、フロー図である。FIG. 3 is a flow diagram showing the processing of the controller of FIG. 2. 図4は、図1の自動運航船の周囲の状況が示された、模式図である。FIG. 4 is a schematic diagram showing the surrounding situation of the autonomous ship of FIG. 1. 図5は、図4の状況において設定された待機場所コストの例である。FIG. 5 is an example of the waiting location cost set in the situation of FIG. 4. 図6は、他の状況において設定された待機場所コストの例である。FIG. 6 is an example of waiting place costs set in other situations. 図7Aは他の実施形態に係る待機支援装置を搭載した自走車両及びその周囲の状況が示された平面図であり、図7Bはこの自走車両及びその周囲の状況が示された側面図である。FIG. 7A is a plan view showing a self-propelled vehicle equipped with a standby support device according to another embodiment and its surroundings, and FIG. 7B is a side view showing the self-propelled vehicle and its surroundings. It is. 図8は、図7の状況において設定された待機場所コストの例である。FIG. 8 is an example of the waiting location cost set in the situation of FIG. 7. 図9は、他の状況において設定された待機場所コストの他の例である。FIG. 9 is another example of waiting place costs set in other situations. 図10は、さらに他の実施形態に係る待機支援装置を搭載した自動航空機及びその周囲の状況が示された、模式図である。FIG. 10 is a schematic diagram showing an automatic aircraft equipped with a standby support device according to still another embodiment and the situation around it.
 以下、適宜図面が参照されつつ、好ましい実施形態が詳細に説明される。 Hereinafter, preferred embodiments will be described in detail with reference to the drawings as appropriate.
[第1の実施形態]
 図1には、一実施形態に係る待機支援装置2を搭載した自動運航船4が示されている。この実施形態では、この自動運航船4は無人船である。自動運航船4は無人船でなくてもよい。自動運航船4が、乗組員の監視のもとに自動運転をしていてもよい。図1に示されるように、自動運航船4は、監視センター6と通信を行っている。監視センター6は、自動運航船4と通信することで、自動運航船4の監視と、必要に応じて運行制御とを行っている。また自動運航船4は、GNSS衛星8から現在位置情報を取得している。
[First embodiment]
FIG. 1 shows an autonomous ship 4 equipped with a standby support device 2 according to an embodiment. In this embodiment, the autonomous ship 4 is an unmanned ship. The autonomous ship 4 does not need to be an unmanned ship. The autonomous ship 4 may operate automatically under the supervision of a crew member. As shown in FIG. 1, the autonomous ship 4 is communicating with a monitoring center 6. The monitoring center 6 communicates with the autonomous ship 4 to monitor the autonomous ship 4 and control its operation as necessary. Furthermore, the autonomous ship 4 acquires current position information from the GNSS satellite 8.
 図1に示されるように、この自動運航船4は、待機支援装置2及び駆動装置10を備えている。待機支援装置2は、自動運航船4が監視センター6により正常に監視又は制御可能な状態であるかを判定する。待機支援装置2は、監視又は制御可能な状態でないと判断したとき、適切な待機場所の設定及び待機場所までの経路の決定を行う。駆動装置10は、この経路に従って、待機場所まで自動運航船4を自動で移動させる。駆動装置10は、典型的にはエンジンとその制御器である。駆動装置10は、電動モータとその制御器であってもよい。 As shown in FIG. 1, this autonomous ship 4 is equipped with a standby support device 2 and a drive device 10. The standby support device 2 determines whether the autonomous ship 4 is in a state where it can be normally monitored or controlled by the monitoring center 6. When the standby support device 2 determines that the device is not in a state where it can be monitored or controlled, it sets an appropriate standby place and determines a route to the standby place. The drive device 10 automatically moves the autonomous ship 4 to the waiting location along this route. The drive device 10 is typically an engine and its controller. The drive device 10 may be an electric motor and its controller.
 図2に、待機支援装置2のブロック図が示されている。この待機支援装置2は、通信器12、取得器14、記憶器16、コントローラ18及び出力器20を備える。図2には、待機支援装置2に周囲の情報を送る、通信衛星22、GNSS衛星8、LiDAR24及びカメラ26が示されている。LiDAR24に加えて、レーダー又ソナーが待機支援装置2に周囲の情報を送ってもよい。LiDAR24及びカメラ26は、自動運航船4に搭載されている。LiDAR24及びカメラ26が、沿岸地や灯台等の海に面した場所に設置されていてもよい。この場合、LiDAR24及びカメラ26が取得した情報は、無線通信にて自動運航船4に送られる。 A block diagram of the standby support device 2 is shown in FIG. This standby support device 2 includes a communication device 12, an acquisition device 14, a storage device 16, a controller 18, and an output device 20. FIG. 2 shows a communication satellite 22, a GNSS satellite 8, a LiDAR 24, and a camera 26 that send surrounding information to the standby support device 2. In addition to LiDAR 24, radar or sonar may send surrounding information to standby support device 2. LiDAR 24 and camera 26 are mounted on autonomous ship 4. The LiDAR 24 and the camera 26 may be installed at a location facing the sea, such as a coastal location or a lighthouse. In this case, the information acquired by LiDAR 24 and camera 26 is sent to autonomous ship 4 via wireless communication.
 通信器12は、監視センター6と無線通信を行う。通信器12は、監視センター6からデータを受信し、これをコントローラ18に送る。通信器12は、コントローラ18からのデータを監視センター6に送る。 The communication device 12 performs wireless communication with the monitoring center 6. Communicator 12 receives data from monitoring center 6 and sends it to controller 18 . The communicator 12 sends data from the controller 18 to the monitoring center 6.
 取得器14は、通信衛星22、GNSS衛星8、LiDAR24及びカメラ26から、周囲情報を取得する。取得器14は、例えば通信衛星22から自動運航船4の周囲の天候、潮流等の情報を受け取る。取得器14は、GNSS衛星8からこの自動運航船4の現在位置を取得する。取得器14は、LiDAR24及びカメラ26から、周囲の障害物の情報を取得する。取得器14は、これらの周囲情報をコントローラ18に送る。 The acquirer 14 acquires surrounding information from the communication satellite 22, GNSS satellite 8, LiDAR 24, and camera 26. The acquirer 14 receives information on the weather, tides, etc. around the autonomous ship 4 from, for example, a communication satellite 22. The acquirer 14 acquires the current position of the autonomous ship 4 from the GNSS satellite 8. The acquirer 14 acquires information about surrounding obstacles from the LiDAR 24 and the camera 26. Acquirer 14 sends these ambient information to controller 18 .
 記憶器16には、予め取得された周囲情報が格納されている。例えば記憶器16には、環境地図が格納されている。この環境地図は、浅瀬や橋梁等の障害物の情報及び錨泊に適した領域の情報を含む。記憶器16には、予め所定の期間にわたって取得された、船舶の交通量の情報が記憶されている。すなわち、記憶器16には、どの領域が輻輳海域であるかの情報が記憶されている。記憶器16は、典型的にはハードディスク又は半導体メモリである。 The storage device 16 stores surrounding information acquired in advance. For example, the storage device 16 stores an environmental map. This environmental map includes information on obstacles such as shallow waters and bridges, and information on areas suitable for anchoring. The storage device 16 stores information on the amount of ship traffic acquired in advance over a predetermined period of time. That is, the storage device 16 stores information on which areas are congested sea areas. Storage device 16 is typically a hard disk or a semiconductor memory.
 コントローラ18は、自動運航船4が監視センター6により正常に監視又は制御可能な状態であるかの判定と、待機場所の設定及び待機場所までの経路の決定とを行い、結果を出力器20から駆動装置10及び表示装置28に送る。この実施形態では、コントローラ18は、プロセッサ(CPU)とこのプロセッサに処理を実行させるプログラムとで構成されている。図示されないが、プログラムは、記憶器16に格納されている。コントローラ18の一部又は全部が、専用の回路で構成されていてもよい。 The controller 18 determines whether the autonomous ship 4 can be normally monitored or controlled by the monitoring center 6, sets a waiting place, determines the route to the waiting place, and outputs the results from the output device 20. It is sent to the drive device 10 and the display device 28. In this embodiment, the controller 18 includes a processor (CPU) and a program that causes the processor to execute processing. Although not shown, the program is stored in the storage device 16. Part or all of the controller 18 may be configured with a dedicated circuit.
 駆動装置10は、コントローラ18から送られた経路に従って待機場所まで自動運航船4を自動で移動させる。表示装置28は、コントローラ18が決定した経路及び待機場所の情報を表示する。自動運航船4に乗組員が乗っている場合、乗組員は経路及び待機場所の情報を表示装置28で確認し、必要に応じて図示しない操作装置によって自動運航船4を手動で操作することができる。待機支援装置2と表示装置28とは、待機支援システムを構成する。表示装置28と操作装置とは一体化されていてもよい。 The drive device 10 automatically moves the autonomous ship 4 to the waiting location according to the route sent from the controller 18. The display device 28 displays information on the route and waiting location determined by the controller 18. When a crew member is on board the autonomous ship 4, the crew member can check the route and waiting location information on the display device 28, and manually operate the autonomous ship 4 using an operating device (not shown) if necessary. can. The standby support device 2 and the display device 28 constitute a standby support system. The display device 28 and the operating device may be integrated.
 図3には、コントローラ18の処理フローが示されている。このフローには、自動運航船4の運転状態も示されている。図で示されるように、この自動運航船4は、通常自動運転A1、待機用自動運転A2及び待機A3の状態を有する。この実施形態では、コントローラ18の処理は、通常自動運転A1の状態において、所定の時間間隔で繰り返し起動される。図3に示されるように、コントローラ18は、ステップS1からステップS7までの処理を有している。 FIG. 3 shows the processing flow of the controller 18. This flow also shows the operating state of the autonomous ship 4. As shown in the figure, this autonomous ship 4 has the following states: normal automatic operation A1, standby automatic operation A2, and standby A3. In this embodiment, the processing of the controller 18 is activated repeatedly at predetermined time intervals in the normal automatic operation A1 state. As shown in FIG. 3, the controller 18 has processes from step S1 to step S7.
 ステップS1では、自動運航船4が監視センター6により正常に監視又は制御可能な状態であるかの判定が行われる。具体的には、コントローラ18は、通信器12を介して、監視センター6と所定の交信ができるか否かを確認することで、自動運航船4と監視センター6との通信状態が正常か異常かを判定する。さらにこの実施形態では、コントローラ18は、駆動装置10の挙動が正常であるか否かを検知することで、ハッキングの有無を検知する。例えばコントローラ18は、駆動装置10内の所定の信号を監視し、この信号が所定の動きをしているか否かを検査する。又はコントローラ18は、監視センターからの指令と、駆動装置10の動作とが整合しているか否かを検査する。監視センター6と正常な交信が行われ、かつハッキングが検知されない「正常状態」である場合、コントローラ18の処理は終了する。自動運航船4は、自動運転A1の状態で運行される。監視センター6との交信が正常ではない、又はハッキングが検知された「異常状態」である場合、次のステップS2が実行される。 In step S1, it is determined whether the autonomous ship 4 is in a state where it can be normally monitored or controlled by the monitoring center 6. Specifically, the controller 18 determines whether the communication status between the autonomous ship 4 and the monitoring center 6 is normal or abnormal by checking whether predetermined communication is possible with the monitoring center 6 via the communication device 12. Determine whether Furthermore, in this embodiment, the controller 18 detects the presence or absence of hacking by detecting whether the behavior of the drive device 10 is normal. For example, the controller 18 monitors a predetermined signal within the drive device 10 and tests whether this signal is exhibiting a predetermined movement. Alternatively, the controller 18 checks whether the command from the monitoring center and the operation of the drive device 10 match. If the communication is normal with the monitoring center 6 and hacking is not detected, which is the "normal state", the processing of the controller 18 ends. The autonomous ship 4 is operated in the automatic operation A1 state. If the communication with the monitoring center 6 is not normal or if hacking is detected, which is an "abnormal state", the next step S2 is executed.
 ステップS2では、待機場所としての適切度を表す待機場所コストを所定の位置毎に計算することにより、待機場所が設定される。ステップS2は、
(S2-1)障害物コスト、距離コスト、交通量コスト及び錨舶コストの設定
(S2-2)待機場所コストの計算
(S2-3)待機場所の設定
のステップを含む。以下ではこれらのステップが、図4-6の例を参照して説明される。
In step S2, a waiting place is set by calculating a waiting place cost representing the degree of suitability as a waiting place for each predetermined position. Step S2 is
(S2-1) Setting of obstacle cost, distance cost, traffic cost, and anchorage cost (S2-2) Calculation of waiting place cost (S2-3) Including the steps of setting waiting place. These steps will be explained below with reference to the examples of FIGS. 4-6.
 図4は、自動運航船4の周囲状況の一例を表す模式図である。図4に示されるように、この自動運航船4は、交通量の多い輻輳海域30に位置している。輻輳海域30の右側には、自動運航船4が航行できない浅瀬32が存在する。自動運航船4の左前方に、錨泊に適した錨泊領域34が位置している。この自動運航船4の周囲には、他の船舶36が航行している。図4の矢印Aは、潮流の方向を表している。 FIG. 4 is a schematic diagram showing an example of the surrounding situation of the autonomous ship 4. As shown in FIG. 4, this self-navigating ship 4 is located in a congested sea area 30 with a large amount of traffic. On the right side of the congested sea area 30, there is a shallow water 32 in which the autonomous ship 4 cannot navigate. An anchorage area 34 suitable for anchoring is located on the left front of the autonomous ship 4. Other ships 36 are navigating around this autonomous ship 4. Arrow A in FIG. 4 represents the direction of the current.
 ステップ(S2-1)では、コントローラ18は、周囲状況の情報から、所定の範囲内のそれぞれの位置に、障害物コスト、距離コスト、交通量コスト及び錨舶コストを設定する。 In step (S2-1), the controller 18 sets obstacle cost, distance cost, traffic cost, and anchorage cost for each position within a predetermined range from information on the surrounding situation.
 障害物コストは、自動運航船4の周囲の障害物を表すコストである。障害物が存在する位置では、障害物コストが大きくなる。図5の「障害物コストマップ」は、それぞれの位置に設定された障害物コストを、マップとして表したものである。図5においてx軸及びy軸が、平面方向位置を表す。z軸が設定されたコストを表す。符号Poが、自動運航船4の位置を表す。図5の障害物コストマップに示されるように、この例では、浅瀬32が存在する位置及び他の船舶36が存在する位置において、障害物コストが大きく設定される。この実施形態では、コントローラ18は、浅瀬32の位置を環境地図から取得し、他の船舶36の位置をLiDAR24、レーダー又はカメラ26の情報から取得して、障害物コストを設定する。 The obstacle cost is a cost representing obstacles around the autonomous ship 4. Obstacle costs increase at locations where obstacles exist. The "obstacle cost map" in FIG. 5 represents the obstacle costs set at each position as a map. In FIG. 5, the x-axis and y-axis represent the position in the plane direction. The z-axis represents the set cost. The symbol Po represents the position of the autonomous ship 4. As shown in the obstacle cost map of FIG. 5, in this example, the obstacle cost is set to be large at the position where the shallow water 32 exists and the position where the other vessel 36 exists. In this embodiment, the controller 18 obtains the location of the shoal 32 from an environmental map, the location of other vessels 36 from LiDAR 24, radar, or camera 26 information, and sets the obstacle cost.
 距離コストは、自動運航船4の現在位置からの距離を表すコストである。自動運航船4から距離が遠い位置ほど、距離コストは大きくなる。設定された距離コストが、図5の距離コストマップに示されている。図5に示されるように、距離コストは自動運航船4の位置で最小となり、この位置から離れるにつれて、大きく設定されている。 The distance cost is a cost representing the distance from the current position of the autonomous ship 4. The distance cost increases as the distance from the autonomous ship 4 increases. The set distance cost is shown in the distance cost map of FIG. 5. As shown in FIG. 5, the distance cost is minimized at the position of the autonomous ship 4, and increases as distance from this position increases.
 交通量コストは、船舶の交通量の多さを表すコストである。船舶の交通量が多い領域ほど、交通量コストは大きくなる。設定された交通量コストが、図5の交通量コストマップに示されている。図5に示されるように、輻輳海域30において交通量コストが大きく設定されている。この実施形態では、コントローラ18は、交通量の情報を記憶器16から取得して、交通量コストを設定する。交通量コストが、通信衛星22から得られた現在の実際の船舶の交通量により、設定されてもよい。 The traffic cost is a cost representing the amount of ship traffic. The higher the volume of ship traffic in an area, the higher the traffic cost. The set traffic cost is shown in the traffic cost map of FIG. 5. As shown in FIG. 5, the traffic cost is set to be large in the congested sea area 30. In this embodiment, controller 18 obtains traffic information from storage 16 and sets traffic costs. The traffic cost may be set by the current actual ship traffic obtained from the communication satellite 22.
 錨舶コストは、錨泊場所としての適切度を表すコストである。この実施形態では、各位置の錨舶コストは、環境地図に格納された「錨泊に適した領域」(錨泊領域)の情報と、通信衛星22から得た潮流及び風力情報とから決定される。自動運航船4に力を及ぼす潮流及び風力があり、自動運航船4が漂流する可能性があるときには、自動運航船4は、待機のためには錨舶する必要がある。この場合、錨泊領域での錨泊コストは他の領域より小さく設定される。図5には、この場合の錨泊コストマップが示されている。錨泊領域34において、錨泊コストが小さく設定されている。 The anchorage cost is a cost that represents the suitability of an anchorage location. In this embodiment, the anchorage cost for each position is determined from information on "areas suitable for anchoring" (anchoring areas) stored in the environmental map and tidal current and wind power information obtained from the communication satellite 22. When there is a tidal current and wind force exerting force on the autonomous ship 4 and there is a possibility that the autonomous ship 4 may drift, the autonomous ship 4 needs to be at anchor in order to wait. In this case, the anchoring cost in the anchoring area is set lower than in other areas. FIG. 5 shows an anchoring cost map in this case. In the anchoring area 34, the anchoring cost is set low.
 潮流及び風力が小さく、潮流及び風力により自動運航船4が移動する可能性が少ないときは、自動運航船4は錨舶する必要性が小さい。この実施形態では、潮流及び風力が小さいほど、錨泊領域とその他の領域との、錨泊コストの差は小さく設定される。潮流及び風力がない場合の錨舶コストマップの例が、図6に示されている。図6の例では、錨舶コストは場所によらず一定に設定されている。図6において、障害物コスト、距離コスト、交通量コストは、図5の場合と同じである。 When the tidal currents and wind power are small and there is little possibility that the autonomous ship 4 will move due to the tidal currents and wind power, there is little need for the autonomous ship 4 to anchor. In this embodiment, the smaller the tidal current and wind power, the smaller the difference in anchoring cost between the anchoring area and other areas is set. An example of an anchorage cost map in the absence of tidal currents and wind power is shown in FIG. In the example of FIG. 6, the anchorage cost is set constant regardless of location. In FIG. 6, the obstacle cost, distance cost, and traffic cost are the same as in FIG. 5.
 錨泊コストの設定の仕方は、種々考えられる。潮流又は風力が大きくなるのに比例して、錨泊領域とその他の領域との錨泊コストの差が連続的に大きくなるように設定されてもよい。潮流又は風力が大きくなるのに従って、錨泊領域とその他の領域との錨泊コストの差が段階的に大きくなるように設定されてもよい。 There are various ways to set anchoring costs. The difference in anchoring cost between the anchoring area and other areas may be set to continuously increase in proportion to the increase in tidal current or wind power. The difference in anchoring cost between the anchoring area and other areas may be set to increase in stages as the tidal current or wind force increases.
 ステップ(S2-2)では、コントローラ18は、障害物コスト、距離コスト、交通量コスト及び錨舶コストを対応する位置について足し合わせることで、それぞれの位置での待機場所コストを計算する。図5には、自動運航船4に外力を及ぼす潮流及び風力がある場合の、待機場所コストマップが示されている。図6には、自動運航船4に外力を及ぼす潮流及び風力がない場合の、待機場所コストマップが示されている。 In step (S2-2), the controller 18 calculates the waiting place cost at each position by adding up the obstacle cost, distance cost, traffic cost, and anchorage cost for the corresponding position. FIG. 5 shows a waiting location cost map when there are tidal currents and wind force exerting external forces on the autonomous ship 4. FIG. 6 shows a waiting location cost map in the case where there is no tidal current or wind force exerting an external force on the autonomous ship 4.
 ステップ(S2-3)では、コントローラ18は、待機場所コストが最も小さい位置を待機場所として設定する。図5及び6において、符号Poは自動運航船4の現在位置を表し、符号Ptは設定された待機場所を表す。この実施形態では、待機場所コストが最も小さい位置が複数存在する場合、全てを待機場所として設定する。これらのうちどれを実際の待機場所として選択するかは、後述する経路の決定の際に、併せて決定される。 In step (S2-3), the controller 18 sets the position where the waiting place cost is the smallest as the waiting place. In FIGS. 5 and 6, the symbol Po represents the current position of the autonomous ship 4, and the symbol Pt represents the set waiting location. In this embodiment, if there are multiple positions with the lowest waiting place cost, all of them are set as waiting places. Which of these locations will be selected as the actual waiting location will be determined at the same time as route determination, which will be described later.
 図5及び6に示されるように、錨舶コストは自動運航船4に対して移動を促す方向に力を及ぼす潮流及び風力により変動し、これに対応して待機場所コストも変動する。待機場所Ptは、自動運航船4に対して移動を促す方向に力を及ぼす潮流及び風力により、異なった位置に設定されうる。外力に対応して、待機場所Ptが設定される。 As shown in FIGS. 5 and 6, the cost of the anchorage varies depending on the tidal current and wind force that exert force on the autonomous vessel 4 in a direction that encourages movement, and the cost of the waiting area also varies accordingly. The waiting place Pt can be set at different positions depending on the tidal current and wind force that exert force on the autonomous ship 4 in a direction that urges it to move. A waiting location Pt is set corresponding to the external force.
 ステップS3では、コントローラ18は、現在位置Poと待機場所Ptとを比較することで、自動運航船4が待機場所Ptに到着したか否かを判断する。このときの「到着」は、ステップS1で最初に異常を検知したときの自動運航船4の位置が、待機場所Ptと一致する場合(自動運航船4が移動する必要がない場合)を含む。自動運航船4が待機場所Ptに到着していない場合、処理はステップS4に移る。自動運航船4が待機場所Ptに到着している場合、処理はステップS5に移る。 In step S3, the controller 18 determines whether the autonomous ship 4 has arrived at the waiting place Pt by comparing the current position Po and the waiting place Pt. "Arrival" at this time includes a case where the position of the automated navigation ship 4 when the abnormality is first detected in step S1 matches the waiting location Pt (a case where the automated navigation ship 4 does not need to move). If the autonomous ship 4 has not arrived at the waiting place Pt, the process moves to step S4. If the autonomous ship 4 has arrived at the waiting location Pt, the process moves to step S5.
 ステップS4では、コントローラ18は、現在位置Poから待機場所Ptまでの経路を決定する。この実施形態では、現在位置Poから待機場所Ptまでの可能な経路のうち、経路上の待機場所コストの合計(経路コストと称される)が最小となる経路が選択される。待機場所コストが最小となる待機場所Ptが複数存在する場合では、現在位置Poから全ての待機場所Ptまでの可能な経路のうち、経路コストが最小の経路が選択される。図4には、この処理で決定された経路の例が、矢印Lで示されている。経路Lは駆動装置10に送られる。自動運航船4はこの経路Lに従って自動で移動する、待機用自動運転A2の状態となる。コントローラ18の処理は、ステップS2に戻る。 In step S4, the controller 18 determines a route from the current position Po to the waiting location Pt. In this embodiment, among the possible routes from the current position Po to the waiting place Pt, the route with the minimum total waiting place cost (referred to as route cost) on the route is selected. If there are a plurality of waiting places Pt with the minimum waiting place cost, the route with the minimum route cost is selected from among the possible routes from the current position Po to all the waiting places Pt. In FIG. 4, an example of a route determined by this process is indicated by an arrow L. Path L is sent to drive device 10 . The autonomous ship 4 automatically moves along this route L, and enters the standby automatic operation A2 state. The process of the controller 18 returns to step S2.
 経路の決定の方法は、上記に限られない。例えば、待機場所Ptが複数存在する場合、船舶は右側通行であるため、この自動運航船4の前方側で最も右側に位置する待機場所Ptを選択し、ここまでの可能な経路のうち、経路コストの合計が最小の経路が選択されてもよい。 The route determination method is not limited to the above. For example, if there are multiple waiting places Pt, and the ship drives on the right, the waiting place Pt that is located on the rightmost side of the front side of the autonomous ship 4 is selected, and the route is selected from among the possible routes so far. The route with the minimum total cost may be selected.
 ステップS5では、コントローラ18は、待機方法の決定を行う。この実施形態では、自動運航船4に外力を及ぼす潮流又は風力により、漂舶か錨舶かが決められる。潮流又は風力が所定の値以上の場合が錨舶とされ、潮流又は風力が所定の値より小さいときは漂舶とされる。自動運航船4は、この結果に従った待機A3の状態となる。 In step S5, the controller 18 determines a standby method. In this embodiment, whether the autonomous ship 4 is a drifting ship or an anchored ship is determined by the tidal current or wind force that exerts an external force on the autonomous ship 4. A vessel is considered to be an anchored vessel when the tidal current or wind force is above a predetermined value, and a drifting vessel when the tidal current or wind force is less than a predetermined value. The autonomous ship 4 enters the standby A3 state according to this result.
 ステップS6では、ステップS1と同様に、自動運航船4と監視センター6との通信状態が正常か異常かの判定、及びハッキングの有無の検知が行われる。これらが「正常状態」である場合、コントローラ18の処理は終了する。自動運航船4は通常自動運転A1となる。これが「異常状態」である場合、次のステップS7が実行される。 In step S6, similarly to step S1, it is determined whether the communication state between the autonomous ship 4 and the monitoring center 6 is normal or abnormal, and the presence or absence of hacking is detected. If these are in the "normal state", the processing of the controller 18 ends. The automatic operation ship 4 normally operates under automatic operation A1. If this is an "abnormal state", the next step S7 is executed.
 ステップS7では、直近の待機状態になってから、所定の時間経過したか否かが判定される。所定の時間経過していないときは、ステップS6が繰り返される。所定の時間経過しているときは、ステップS2に戻り、待機場所の設定、待機場所への経路の決定及び待機方法の決定が、再度実施される。 In step S7, it is determined whether a predetermined time has elapsed since the most recent standby state. If the predetermined time has not elapsed, step S6 is repeated. If the predetermined time has elapsed, the process returns to step S2, and the setting of the waiting place, the determination of the route to the waiting place, and the determination of the waiting method are carried out again.
 なお、上記の実施形態では説明されていないが、ステップS1において「異常状態」が検知されたとき、コントローラ18が通常自動運転A1での目標地点を記憶器16に格納しておき、ステップS6おいて「正常状態」と判定されたとき、コントローラ18が記憶器16からこの目標地点を読み出してこれを自動運転の目標地点として設定してもよい。通常自動運転A1での目標地点が予め記憶器16に書き込まれており、ステップS6において「正常状態」と判定されたとき、コントローラ18が記憶器16からこの目標地点を読み出し、これを自動運転の目標地点として設定してもよい。 Although not explained in the above embodiment, when an "abnormal state" is detected in step S1, the controller 18 stores the target point in the normal automatic operation A1 in the memory 16, and then returns the target point in step S6 and When it is determined that the vehicle is in a "normal state", the controller 18 may read out this target point from the memory 16 and set it as the target point for automatic driving. The target point for normal automatic operation A1 is written in the memory 16 in advance, and when it is determined in step S6 that it is in a "normal state", the controller 18 reads this target point from the memory 16 and uses it for automatic operation. It may also be set as a target point.
 以下では、本実施形態の作用効果が説明される。 Below, the effects of this embodiment will be explained.
 本実施形態では、待機支援装置2のコントローラ18は、自動運航船4の待機場所としての適切度を表す待機場所コストを計算する。この待機場所コストは、錨泊場所としての適切度を表す、錨泊コストを含む。この錨舶コストは、自動運航船4に力を及ぼす潮流及び風力により変動する。これにより、潮流及び風力の大きさに対応した、適切な待機位置が設定できる。本待機支援装置2は、周囲からの外力を考慮した自動運航船4の適切な待機を実現している。 In the present embodiment, the controller 18 of the standby support device 2 calculates a standby place cost that represents the suitability of the autonomous ship 4 as a standby place. This waiting place cost includes an anchoring cost that represents the degree of suitability as an anchoring place. This anchorage cost varies depending on the tidal current and wind force that exert force on the autonomously operated vessel 4. This makes it possible to set an appropriate standby position that corresponds to the magnitude of the tidal current and wind force. This standby support device 2 realizes appropriate standby of the autonomous ship 4 in consideration of external forces from the surroundings.
 本実施形態では、コントローラ18は、自動運航船4が待機を開始した後にも監視センター6との通信状態が正常か異常であるかの判定とハッキングの検知とを行う。通信状態が正常とならないまま、又はハッキングされたまま所定の時間経過した場合、コントローラ18は、待機場所の設定、待機場所への経路の決定及び待機方法の決定を、再度実施する。自動運航船4に力を及ぼす潮流及び風力は、時間の経過とともに変化しうる。例えば、潮流及び風力の変化により、漂舶から錨舶への変更が必要となることが起こりうる。本待機支援装置2は、待機中に周囲の環境が変化した場合でも、自動運航船4の適切な待機を実現している。 In this embodiment, the controller 18 determines whether the communication state with the monitoring center 6 is normal or abnormal and detects hacking even after the autonomous ship 4 starts standby. If a predetermined period of time elapses without the communication status becoming normal or with the communication state being hacked, the controller 18 sets the waiting location, determines the route to the waiting location, and determines the waiting method again. The tidal currents and wind forces that exert force on the autonomous ship 4 may change over time. For example, changes in tidal currents and wind forces may require a change from a drifting vessel to an anchored vessel. This standby support device 2 realizes appropriate standby of the autonomous ship 4 even if the surrounding environment changes during standby.
 本実施形態では、待機場所コストは、交通量の多さを表す交通量コストを含む。これにより、他の船舶36が航行する頻度が低い位置を、待機場所とすることができる。これは、待機中の自動運航船4が、他の船舶36の航行の障害となることを防止する。これは、自動運航船4の安全な待機の実現に寄与する。 In this embodiment, the waiting place cost includes a traffic cost representing the amount of traffic. Thereby, a position where other ships 36 navigate less frequently can be used as a waiting place. This prevents the automatic navigation ship 4 on standby from becoming an obstacle to the navigation of other ships 36. This contributes to realizing safe standby of the autonomous ship 4.
 本実施形態では、待機場所コストは、自動運航船4の現在位置からの距離を表す距離コストを含む。これにより、待機場所への経路を短くすることができる。これは、待機場所への移動時の、安全性の向上に寄与する。 In this embodiment, the waiting location cost includes a distance cost representing the distance from the current position of the autonomous ship 4. Thereby, the route to the waiting area can be shortened. This contributes to improved safety when moving to the waiting area.
 本実施形態では、待機場所コストは、障害物の存在を表す、障害物コストを含む。これにより、障害物を避けた経路の決定が可能となる。これにより、待機場所への安全な移動が実現されている。 In this embodiment, the waiting place cost includes an obstacle cost representing the presence of an obstacle. This makes it possible to determine a route that avoids obstacles. This allows for safe movement to the waiting area.
 本実施形態では、自動運航船4に付加される外力によって、漂舶か錨舶かが決められる。外力が大きいときに錨舶とすることで、安全な待機が実現できる。外力が小さいときに漂舶とすることで、待機から通常自動運転への効率的な移行が可能となる。 In this embodiment, whether the autonomous ship 4 is a drifting ship or an anchored ship is determined by an external force applied to the autonomous ship 4. By anchoring the vessel when external forces are large, safe standby can be achieved. By allowing the ship to drift when the external force is small, it is possible to efficiently transition from standby to normal automatic operation.
[第2の実施形態]
 図7は、他の実施形態に係る待機支援装置2を搭載した自走車両40及びこの自走車両40の周囲状況を表す模式図である。図7Aは自走車両40及び周囲状況の平面図であり、図7Bは自走車両40及び周囲状況の側面図である。この実施形態では、自走車両40は、所定のエリア内を自動で走行する無人車両である。自走車両40が、ドライバーが搭乗できる車両であってもよい。この自走車両40は、監視センター6と通信を行っている。監視センター6は、自走車両40と通信することで、自走車両40の監視と、必要に応じて走行制御とを行っている。また自走車両40は、GNSS衛星8から現在位置情報を取得している。
[Second embodiment]
FIG. 7 is a schematic diagram showing a self-propelled vehicle 40 equipped with a standby support device 2 according to another embodiment and the surrounding situation of this self-propelled vehicle 40. FIG. 7A is a plan view of the self-propelled vehicle 40 and the surrounding situation, and FIG. 7B is a side view of the self-propelled vehicle 40 and the surrounding situation. In this embodiment, the self-propelled vehicle 40 is an unmanned vehicle that automatically travels within a predetermined area. The self-propelled vehicle 40 may be a vehicle in which a driver can ride. This self-propelled vehicle 40 is communicating with the monitoring center 6. The monitoring center 6 communicates with the self-propelled vehicle 40 to monitor the self-propelled vehicle 40 and perform travel control as necessary. The self-propelled vehicle 40 also obtains current position information from the GNSS satellite 8.
 図7Bに示されるように、この自走車両40は、待機支援装置2及び駆動装置10を備えている。待機支援装置2は、自走車両40が監視センター6により正常に監視又は制御可能な状態であるかを判定する。待機支援装置2は、制御可能な状態でないと判断したとき、適切な待機場所の設定及び待機場所までの経路の決定を行い、結果を駆動装置10に伝える。駆動装置10は、この経路に従って、待機場所まで自走車両40を自動で移動させる。駆動装置10は、典型的にはエンジンとその制御器である。駆動装置10は、モータとその制御器であってもよい。 As shown in FIG. 7B, this self-propelled vehicle 40 includes a standby support device 2 and a drive device 10. The standby support device 2 determines whether the self-propelled vehicle 40 is in a state where it can be normally monitored or controlled by the monitoring center 6. When the standby support device 2 determines that the vehicle is not in a controllable state, it sets an appropriate standby place, determines a route to the standby place, and notifies the drive device 10 of the results. The drive device 10 automatically moves the self-propelled vehicle 40 to the standby location along this route. The drive device 10 is typically an engine and its controller. The drive device 10 may be a motor and its controller.
 自走車両40が表示装置28を備えていてもよい。表示装置28は、コントローラ18が決定した経路及び待機場所の情報を表示する。自走車両40にドライバーが乗っている場合、ドライバーは経路及び待機場所の情報を表示装置28で確認し、自走車両40を手動で操作することができる。待機支援装置2と表示装置28とは、待機支援システムを構成する。ドライバーが搭乗しない自走車両40では、表示装置28はなくてもよい。 The self-propelled vehicle 40 may include the display device 28. The display device 28 displays information on the route and waiting location determined by the controller 18. When a driver is riding in the self-propelled vehicle 40, the driver can check information on the route and waiting location on the display device 28 and manually operate the self-propelled vehicle 40. The standby support device 2 and the display device 28 constitute a standby support system. In a self-propelled vehicle 40 without a driver on board, the display device 28 may not be provided.
 この実施形態の待機支援装置2のブロック図は、図2と同様である。この装置は、通信器12、取得器14、記憶器16、コントローラ18及び出力器20を備える。この実施形態では、コントローラ18は、ハッキングの検知機能を有していない。コントローラ18が、ハッキングの検知機能を有していてもよい。 The block diagram of the standby support device 2 of this embodiment is the same as that in FIG. 2. This device includes a communicator 12, an acquirer 14, a memory 16, a controller 18, and an output device 20. In this embodiment, the controller 18 does not have a hacking detection function. The controller 18 may have a hacking detection function.
 取得器14は、通信衛星22、LiDAR24(この実施形態では、レーダー又は光センサ)及びカメラ26から、周囲の建物、車両等の障害物の情報を取得する。取得器14は、GNSS衛星8からこの自走車両40の現在位置を取得する。取得器14は、これらの情報をコントローラ18に送る。 The acquirer 14 acquires information on obstacles such as surrounding buildings and vehicles from the communication satellite 22, LiDAR 24 (in this embodiment, radar or optical sensor), and camera 26. The acquirer 14 acquires the current position of the self-propelled vehicle 40 from the GNSS satellite 8. Acquirer 14 sends this information to controller 18 .
 記憶器16には、予め取得された周囲情報が記憶されている。例えば、記憶器16には、環境地図が格納されている。この環境地図は、建物等の障害物の情報、及び緊急用設備の周辺等の駐車に不適な領域の情報を含む。記憶器16には、予め所定の期間にわたって取得された、交通量の情報が記憶されている。すなわち、記憶器16には、どこが交通量の多い領域であるかの情報が記憶されている。 The storage device 16 stores surrounding information acquired in advance. For example, the storage device 16 stores an environmental map. This environmental map includes information on obstacles such as buildings and information on areas unsuitable for parking, such as around emergency equipment. The storage device 16 stores traffic information acquired in advance over a predetermined period of time. That is, the storage device 16 stores information on which areas have a high traffic volume.
 コントローラ18は、自走車両40が監視センター6により正常に監視又は制御可能な状態であるかの判定、待機場所の設定及び待機場所までの経路の決定を行い、結果を出力器20から駆動装置10に送る。このコントローラ18の処理の流れは、図3の処理の流れと同じである。各ステップの処理の内容は、図3の各ステップと異なるところがあるため、以下の説明では、S1からS7の各ステップに対応するステップは、S1aからS7aの名前が付されている。 The controller 18 determines whether the self-propelled vehicle 40 can be normally monitored or controlled by the monitoring center 6, sets a waiting place, determines a route to the waiting place, and transmits the results from the output device 20 to the drive device. Send to 10. The processing flow of this controller 18 is the same as the processing flow of FIG. 3. Since the processing content of each step is different from each step in FIG. 3, in the following explanation, the steps corresponding to each step from S1 to S7 are named S1a to S7a.
 ステップS1aでは、自走車両40が監視センター6により正常に監視又は制御可能な状態であるかの判定が行われる。コントローラ18は、監視センター6との所定の交信ができるか否かを確認することで、自走車両40と監視センター6との通信状態が正常か異常かを判定する。監視センター6と正常な通信が行われる「正常状態」である場合、コントローラ18の処理は終了する。自走車両40は、通常自動運転A1の状態で運転される。監視センター6との通信状態が正常ではない「異常状態」である場合、次のステップS2aが実行される。 In step S1a, it is determined whether the self-propelled vehicle 40 is in a state where it can be normally monitored or controlled by the monitoring center 6. The controller 18 determines whether the communication state between the self-propelled vehicle 40 and the monitoring center 6 is normal or abnormal by checking whether predetermined communication with the monitoring center 6 is possible. If the controller 18 is in a "normal state" in which normal communication is performed with the monitoring center 6, the processing of the controller 18 ends. The self-propelled vehicle 40 is normally driven in a state of automatic operation A1. If the communication state with the monitoring center 6 is in an "abnormal state" that is not normal, the next step S2a is executed.
 ステップS2aでは、待機場所としての適切度を表す待機場所コストを所定の位置毎に計算することにより、待機場所が設定される。ステップS2aは、
(S2a-1)障害物コスト、距離コスト、交通量コスト及び傾斜コストの設定
(S2a-2)待機場所コストの計算
(S2a-3)待機場所の設定
のステップを含む。
以下では、待機場所コストの計算の例が、図7-9を参照して説明される。
In step S2a, a waiting place is set by calculating a waiting place cost representing the degree of suitability as a waiting place for each predetermined position. Step S2a is
(S2a-1) Setting obstacle cost, distance cost, traffic cost, and slope cost (S2a-2) Calculating waiting place cost (S2a-3) Setting the waiting place.
In the following, an example of calculating a waiting location cost will be described with reference to FIGS. 7-9.
 前述のとおり、図7A及び7Bには、自走車両40の周囲状況が示されている。図7Aの符号Rは、交通量の多い領域を表す。この自走車両40は、交通量の多い領域Rに位置している。自走車両40の前方及び後方には、他の車両42が走向している。図7Bに示されるように、自走車両40は坂道に位置している。 As mentioned above, the surrounding situation of the self-propelled vehicle 40 is shown in FIGS. 7A and 7B. The symbol R in FIG. 7A represents an area with heavy traffic. This self-propelled vehicle 40 is located in a region R with heavy traffic. Other vehicles 42 are running in front and behind the self-propelled vehicle 40 . As shown in FIG. 7B, the self-propelled vehicle 40 is located on a slope.
 ステップ(S2a-1)では、コントローラ18は、周囲状況から、障害物コスト、距離コスト、交通量コスト及び傾斜コストを設定する。 In step (S2a-1), the controller 18 sets obstacle cost, distance cost, traffic cost, and slope cost from the surrounding situation.
 障害物コストは、自走車両40の周囲の障害物を表すコストである。障害物が存在する位置では、障害物コストが大きくなる。設定された障害物コストが、図8の障害物コストマップに示されている。図8に示されるように、この例では、他の車両42が存在する位置において、障害物コストが大きく設定される。この実施形態では、コントローラ18は、他の車両42の位置をLiDAR24(レーダー又は光センサ)又はカメラ26の情報から取得して、障害物コストを設定する。 The obstacle cost is a cost representing obstacles around the self-propelled vehicle 40. Obstacle costs increase at locations where obstacles exist. The set obstacle costs are shown in the obstacle cost map of FIG. As shown in FIG. 8, in this example, the obstacle cost is set to be large at a position where another vehicle 42 is present. In this embodiment, the controller 18 obtains the location of other vehicles 42 from LiDAR 24 (radar or optical sensor) or camera 26 information to set the obstacle cost.
 距離コストは、自走車両40の現在位置からの距離を表す。自走車両40から距離が遠くなるほど、距離コストは大きくなる。設定された距離コストが、図8の距離コストマップに示されている。 The distance cost represents the distance from the current position of the self-propelled vehicle 40. The distance cost increases as the distance from the self-propelled vehicle 40 increases. The set distance cost is shown in the distance cost map of FIG. 8.
 交通量コストは、車両の交通量の多さを表すコストである。車両の交通量が多い領域ほど、交通量コストは大きくなる。設定された交通量コストが、図8の交通量コストマップに示されている。この実施形態では、コントローラ18は、交通量の情報を記憶器16から取得して、交通量コストを設定する。交通量コストが、通信衛星22から得られた現在の実際の車両の交通量により、求められてもよい。 The traffic cost is a cost representing the amount of vehicle traffic. The higher the volume of vehicle traffic in an area, the higher the traffic cost. The set traffic cost is shown in the traffic cost map of FIG. 8. In this embodiment, controller 18 obtains traffic information from storage 16 and sets traffic costs. The traffic cost may be determined by the current actual vehicle traffic obtained from the communication satellite 22.
 傾斜コストは、それぞれの位置における、地面の傾斜度を表すコストである。傾斜が大きいと、自走車両40に力を及ぼす重力により、停車した自走車両40が動き出す可能性がある。傾斜が大きい位置では、傾斜コストは大きく設定される。傾斜コストは、自走車両40に対して移動を促す方向に力を及ぼす重力の影響を表すコストである。図7Bの場合において設定された傾斜コストが、図8の傾斜コストマップに示されている。この実施形態では、コントローラ18は、傾斜コストを環境地図に格納された傾斜情報から設定する。 The slope cost is a cost representing the slope of the ground at each position. If the slope is large, the stopped self-propelled vehicle 40 may start to move due to the force of gravity exerted on the self-propelled vehicle 40. At a position where the slope is large, the slope cost is set to be large. The tilt cost is a cost representing the influence of gravity that exerts a force on the self-propelled vehicle 40 in a direction that promotes movement. The slope cost set in the case of FIG. 7B is shown in the slope cost map of FIG. 8. In this embodiment, controller 18 sets the slope cost from slope information stored in the environmental map.
 地面の傾斜が小さい場合には、自走車両40を移動させる方向に付加される重力も小さくなる。地面の傾斜が小さい場合、傾斜領域と水平な領域との、傾斜コストの差は小さく設定される。図9には、対象となる領域全体が水平である場合の傾斜コストが示されている。この例では、対象となる領域において、傾斜コストは場所によらず一定に設定されている。図9において、障害物コスト、距離コスト、交通量コストは、図8の場合と同じである。 When the slope of the ground is small, the gravity applied in the direction in which the self-propelled vehicle 40 is moved is also small. When the slope of the ground is small, the difference in slope cost between the slope area and the horizontal area is set to be small. FIG. 9 shows the slope cost when the entire target area is horizontal. In this example, the slope cost is set to be constant regardless of location in the target area. In FIG. 9, the obstacle cost, distance cost, and traffic cost are the same as in FIG. 8.
 傾斜コストの設定の仕方は、種々考えられる。傾斜角度が大きくなるのに比例して、傾斜コストが連続的に大きくなるように設定されてもよい。傾斜角度が大きくなるのに従って、傾斜コストが段階的に大きくなるように設定されてもよい。 There are various ways to set the slope cost. The inclination cost may be set to continuously increase in proportion to the increase in the inclination angle. The inclination cost may be set to increase in stages as the inclination angle increases.
 ステップ(S2a-2)では、コントローラ18は、障害物コスト、距離コスト、交通量コスト及び傾斜コストを対応する位置について足し合わせることで、それぞれの位置での待機場所コストを計算する。図8には、地面に傾斜している部分がある場合の、待機場所コストマップが示されている。図9には、地面の全面が水平である場合の、待機場所コストマップが示されている。 In step (S2a-2), the controller 18 calculates the waiting place cost at each position by adding up the obstacle cost, distance cost, traffic cost, and slope cost for the corresponding position. FIG. 8 shows a waiting location cost map when there is a sloped part on the ground. FIG. 9 shows a waiting location cost map when the entire surface of the ground is horizontal.
 ステップ(S2a-3)では、コントローラ18は、待機場所コストが最も小さい位置を、待機場所として設定する。図8及び9において、符号Poは自走車両40の現在位置を表し、符号Ptは設定された待機場所を表す。この実施形態では、待機場所コストが最も小さい位置が複数存在する場合、全てを待機場所として設定する。これらのうちどれを実際の待機場所として選択するかは、後述する経路の決定の際に、併せて決定される。 In step (S2a-3), the controller 18 sets the position where the waiting place cost is the smallest as the waiting place. In FIGS. 8 and 9, the symbol Po represents the current position of the self-propelled vehicle 40, and the symbol Pt represents the set waiting location. In this embodiment, if there are multiple positions with the lowest waiting place cost, all of them are set as waiting places. Which of these locations will be selected as the actual waiting location will be determined at the same time as route determination, which will be described later.
 図8及び9に示されるように、傾斜コストは、自走車両40に対して移動を促す方向に力を及ぼす傾斜度により変動し、これに対応して待機場所コストも変動する。待機場所Ptは、自走車両40に対して移動を促す方向に力を及ぼす傾斜度により、異なった位置に設定されうる。外力に対応した待機場所の設定が、可能となっている。 As shown in FIGS. 8 and 9, the inclination cost varies depending on the degree of inclination that exerts a force on the self-propelled vehicle 40 in a direction that encourages movement, and the waiting place cost also varies accordingly. The waiting place Pt can be set at different positions depending on the degree of inclination that exerts a force on the self-propelled vehicle 40 in a direction that encourages movement. It is possible to set a waiting area that corresponds to external forces.
 図8及び9の例では示されていないが、車両の待機位置としての適切度を表す「停車コスト」がさらに設定されてもよい。例えば出入り口の前、地下消火栓の上等、自走車両40の待機に不適切な位置では、停車コストが大きく設定される。各位置の停車コストは、環境地図に格納された各種設備の情報から設定される。停車コストは、待機場所コストの計算時に、他のコストと併せて加えられる。 Although not shown in the examples of FIGS. 8 and 9, a "stopping cost" representing the suitability of the vehicle as a standby position may be further set. For example, in front of an entrance or exit, on top of an underground fire hydrant, or other locations inappropriate for the self-propelled vehicle 40 to wait, the parking cost is set to be large. The stopping cost for each location is set from information on various facilities stored in the environmental map. The stopping cost is added together with other costs when calculating the waiting place cost.
 ステップS3aでは、コントローラ18は、現在位置Poと待機場所Ptとを比較することで、自走車両40が待機場所Ptに到着したか否かを判断する。自走車両40が待機場所Ptに到着していない場合、処理はステップS4aに移る。自走車両40が待機場所Ptに到着している場合、処理はステップS5aに移る。 In step S3a, the controller 18 determines whether the self-propelled vehicle 40 has arrived at the waiting place Pt by comparing the current position Po and the waiting place Pt. If the self-propelled vehicle 40 has not arrived at the waiting location Pt, the process moves to step S4a. If the self-propelled vehicle 40 has arrived at the waiting location Pt, the process moves to step S5a.
 ステップS4aでは、コントローラ18は、現在位置Poから待機場所Ptまでの経路を決定する。この実施形態では、現在位置Poから待機場所Ptまでの可能な経路のうち、経路コストが最小の経路が選択される。待機場所コストが最小となる待機場所Ptが複数存在する場合は、現在位置Poから全ての待機場所Ptまでの可能な経路のうち、経路コストが最小の経路が選択される。図7Aには、決定された経路の例が、矢印Lで示されている。経路Lは、駆動装置10に送られる。自走車両40はこの経路Lに従って自動で移動する、待機用自動運転A2の状態となる。コントローラ18の処理は、ステップS2aに戻る。 In step S4a, the controller 18 determines a route from the current position Po to the waiting location Pt. In this embodiment, the route with the minimum route cost is selected from among the possible routes from the current position Po to the waiting location Pt. If there are a plurality of waiting places Pt with the minimum waiting place cost, the route with the minimum route cost is selected from among the possible routes from the current position Po to all the waiting places Pt. In FIG. 7A, an example of the determined route is indicated by an arrow L. Path L is sent to drive device 10 . The self-propelled vehicle 40 automatically moves along this route L, entering the standby automatic operation A2 state. The process of the controller 18 returns to step S2a.
 経路の決定の方法は、上記に限られない。例えば、待機場所Ptが複数存在する場合、日本では車両は左側通行であるため、この自走車両40の前方側で最も左側に位置する待機場所Ptを選択し、ここまでの経路のうち、経路コストが最小の経路が選択されてもよい。 The route determination method is not limited to the above. For example, when there are multiple waiting places Pt, since vehicles drive on the left in Japan, the waiting place Pt located furthest to the left in front of this self-propelled vehicle 40 is selected, and the route The path with the least cost may be selected.
 ステップS5aでは、コントローラ18は、待機方法の決定を行う。この実施形態では、自走車両40に外力を及ぼす傾斜度により、通常のブレーキで走向を止める「停車」とするか、さらに駐車用ブレーキをかける「二重ブレーキ駐車」とするかが決められる。傾斜度が所定の値以上の場合が二重ブレーキ駐車とされ、傾斜度が所定の値より小さいときは停車とされる。この結果が駆動装置10に送られ、自走車両40は、この結果に従った待機A3の状態となる。 In step S5a, the controller 18 determines the standby method. In this embodiment, depending on the degree of inclination that exerts an external force on the self-propelled vehicle 40, it is determined whether to perform "stopping" in which the running direction is stopped using the normal brake, or "double brake parking" in which the parking brake is applied. When the degree of inclination is greater than a predetermined value, the vehicle is considered to be parked with double brakes, and when the degree of inclination is less than the predetermined value, the vehicle is stopped. This result is sent to the drive device 10, and the self-propelled vehicle 40 enters the standby A3 state according to this result.
 ステップS6aでは、ステップS1aと同様に、自走車両40と監視センター6との通信状態が正常か異常かが判定される。通信状態が正常である場合、コントローラ18は処理を終了する。自走車両40は通常自動運転A1となる。通信状態が異常である場合、次のステップS7aが実行される。 In step S6a, similarly to step S1a, it is determined whether the communication state between the self-propelled vehicle 40 and the monitoring center 6 is normal or abnormal. If the communication state is normal, the controller 18 ends the process. The self-propelled vehicle 40 is normally in automatic operation A1. If the communication state is abnormal, the next step S7a is executed.
 ステップS7aでは、直近の待機状態になってから、所定の時間経過したか否かが判定される。所定の時間経過していないときは、ステップS6aが繰り返される。所定の時間経過しているときは、ステップS2aに戻り、待機場所の再設定が行われる。 In step S7a, it is determined whether a predetermined time has elapsed since the most recent standby state. If the predetermined time has not elapsed, step S6a is repeated. If the predetermined time has elapsed, the process returns to step S2a and the waiting location is reset.
 本実施形態では、待機支援装置2のコントローラ18は、自走車両40の待機場所としての適切度を表す待機場所コストを計算する。この待機場所コストは、傾斜コストを含む。傾斜コストにより、自走車両40に力を及ぼす重力を考慮した、適切な待機位置が設定できる。本待機支援装置2は、周囲からの外力を考慮した自走車両40の適切な待機を実現している。 In the present embodiment, the controller 18 of the standby support device 2 calculates a standby place cost that represents the suitability of the standby place for the self-propelled vehicle 40. This waiting place cost includes ramp cost. By using the tilt cost, an appropriate standby position can be set in consideration of the gravity that exerts a force on the self-propelled vehicle 40. The standby support device 2 realizes appropriate standby of the self-propelled vehicle 40 in consideration of external forces from the surroundings.
 本実施形態では、地面の傾斜度を基にして、待機時に「停車」とするか「二重ブレーキ駐車」とするかが決められる。傾斜による外力が大きいときに二重ブレーキ駐車とすることで、安全な待機が実現できる。傾斜による外力が小さいときに停車とすることで、待機から通常自動運転への効率的な移行が可能となる。 In this embodiment, it is determined whether to "stop" or "double brake parking" during standby based on the slope of the ground. By using dual brake parking when the external force due to inclination is large, safe waiting can be achieved. By stopping the vehicle when the external force caused by the inclination is small, it is possible to efficiently transition from standby to normal automatic operation.
 前述のとおり、自走車両40の待機位置としての適切度を表す、停車コストがさらに設けられていてもよい。待機場所コストの計算に停車コストを付加することで、より適切な場所での待機が実現できる。 As described above, a stopping cost representing the suitability of the self-propelled vehicle 40 as a standby position may be further provided. By adding the stopping cost to the calculation of the waiting place cost, waiting at a more appropriate place can be realized.
 なお、上記の実施形態では説明されていないが、ステップS1aにおいて「異常状態」が検知されたとき、コントローラ18が通常自動運転A1での目標地点を記憶器16に格納しておき、ステップS6aおいて「正常状態」と判定されたとき、コントローラ18が記憶器16からこの目標地点を読み出してこれを自動運転の目標地点として設定してもよい。通常自動運転A1での目標地点が予め記憶器16に書き込まれており、ステップS6aにおいて「正常状態」と判定されたとき、コントローラ18が記憶器16からこの目標地点を読み出し、これを自動運転の目標地点として設定してもよい。 Although not explained in the above embodiment, when an "abnormal state" is detected in step S1a, the controller 18 stores the target point in the normal automatic operation A1 in the storage device 16, and performs step S6a and the like. When it is determined that the vehicle is in a "normal state", the controller 18 may read out this target point from the memory 16 and set it as the target point for automatic driving. The target point for normal automatic operation A1 is written in the memory 16 in advance, and when it is determined in step S6a that the state is "normal," the controller 18 reads this target point from the memory 16 and uses it for automatic operation. It may also be set as a target point.
[第3の実施形態]
 図10は、他の実施形態に係る待機支援装置2を搭載した自動航空機46及びこの自動航空機46の周囲状況を表す模式図である。この実施形態では、自動航空機46はドローンである。自動航空機46が、操縦士が搭乗できる航空機であってもよい。この自動航空機46は、監視センター6と通信を行っている。監視センター6は、自動航空機46と通信することで、自動航空機46の監視と、必要に応じて飛行制御とを行っている。また自動航空機46は、GNSS衛星8から現在位置情報を取得している。
[Third embodiment]
FIG. 10 is a schematic diagram showing an automatic aircraft 46 equipped with a standby support device 2 according to another embodiment and the surrounding situation of this automatic aircraft 46. In this embodiment, autonomous aircraft 46 is a drone. The automatic aircraft 46 may be an aircraft on which a pilot can board. This automatic aircraft 46 is communicating with the monitoring center 6. The monitoring center 6 monitors the automatic aircraft 46 and performs flight control as necessary by communicating with the automatic aircraft 46. The automatic aircraft 46 also obtains current position information from the GNSS satellite 8.
 この自動航空機46は、待機支援装置2及び駆動装置を備えている。待機支援装置2は、自動航空機46が監視センター6により正常に監視又は制御可能な状態であるかを判定する。待機支援装置2が制御可能な状態でないと判断したときは、適切な待機場所の設定及び待機場所までの経路の決定を行い、結果を駆動装置に伝える。駆動装置は、この経路に従って、待機場所まで自動航空機46を自動で飛行させる。 This automatic aircraft 46 is equipped with a standby support device 2 and a drive device. The standby support device 2 determines whether the automatic aircraft 46 is in a state where it can be normally monitored or controlled by the monitoring center 6. When it is determined that the standby support device 2 is not in a controllable state, an appropriate standby place is set, a route to the standby place is determined, and the results are communicated to the drive device. The drive device automatically flies the automatic aircraft 46 to the waiting location according to this route.
 自動航空機46が表示装置28を備えていてもよい。表示装置28は、コントローラ18が決定した経路及び待機場所の情報を表示する。自動航空機46に操縦士が乗っている場合、操縦士は経路及び待機場所の情報を表示装置28で確認し、自動航空機46を手動で操作することができる。待機支援装置2と表示装置28とは、待機支援システムを構成する。操縦士が搭乗しない自動航空機46では、表示装置28はなくてもよい。 The automatic aircraft 46 may be equipped with the display device 28. The display device 28 displays information on the route and waiting location determined by the controller 18. When a pilot is on board the automatic aircraft 46, the pilot can check the route and waiting location information on the display device 28 and manually operate the automatic aircraft 46. The standby support device 2 and the display device 28 constitute a standby support system. In an automatic aircraft 46 without a pilot on board, the display device 28 may be omitted.
 この実施形態の待機支援装置2のブロック図は、図2と同様である。以下では、待機支援装置2のコントローラ18の処理について説明がされる。このコントローラ18の処理の流れは、図3の処理の流れと同じである。ただし、各ステップの処理の内容は、図3の各ステップと異なるところがあるため、以下の説明では、S1からS7の各ステップに対応するステップは、それぞれS1bからS7bの名前が付されている。 The block diagram of the standby support device 2 of this embodiment is the same as that in FIG. 2. Below, the processing of the controller 18 of the standby support device 2 will be explained. The processing flow of this controller 18 is the same as the processing flow of FIG. 3. However, since the processing content of each step is different from each step in FIG. 3, in the following explanation, steps corresponding to steps S1 to S7 are named S1b to S7b, respectively.
 ステップS1bでは、自動航空機46が監視センター6により正常に監視又は制御可能な状態であるかの判定が行われる。コントローラ18は、監視センター6との所定の交信ができるか否かを確認することで、自動航空機46と監視センター6との通信状態が正常か異常かを判定する。監視センター6と正常な通信が行われる「正常状態」である場合、コントローラ18の処理を終了する。自動航空機46は、通常自動運転A1の状態で運転される。監視センター6との通信状態が正常ではない「異常状態」である場合、次のステップS2bが実行される。 In step S1b, it is determined whether the automatic aircraft 46 is in a state where it can be normally monitored or controlled by the monitoring center 6. The controller 18 determines whether the communication state between the automatic aircraft 46 and the monitoring center 6 is normal or abnormal by checking whether predetermined communication with the monitoring center 6 is possible. If the controller 18 is in a "normal state" in which normal communication is performed with the monitoring center 6, the processing of the controller 18 ends. The automatic aircraft 46 is normally operated in a state of automatic operation A1. If the communication state with the monitoring center 6 is in an "abnormal state" that is not normal, the next step S2b is executed.
 ステップS2bでは、待機場所としての適切度を表す待機場所コストを所定の位置毎に計算することにより、待機場所が設定される。ステップS2bは、
(S2b-1)障害物コスト、距離コスト及び着陸コストの設定
(S2b-2)待機場所コストの計算
(S2b-3)待機場所の設定
のステップを含む。
In step S2b, a waiting place is set by calculating a waiting place cost representing the degree of suitability as a waiting place for each predetermined position. Step S2b is
(S2b-1) Setting obstacle cost, distance cost, and landing cost (S2b-2) Calculating waiting place cost (S2b-3) This step includes setting the waiting place.
 ステップ(S2b-1)では、コントローラ18は、周囲状況の情報から、所定の三次元の範囲内のそれぞれの位置に、障害物コスト、距離コスト及び着陸コストを設定する。図示されないが、障害物コスト、距離コスト及び着陸コストのコストマップは、それぞれ三次元空間のマップとなる。 In step (S2b-1), the controller 18 sets an obstacle cost, a distance cost, and a landing cost for each position within a predetermined three-dimensional range from the surrounding situation information. Although not shown, the cost maps of the obstacle cost, distance cost, and landing cost are maps in a three-dimensional space, respectively.
 障害物コストは、自動航空機46の周囲の障害物を表すコストである。他の航空機、建物、樹木等の障害物が存在する位置では、障害物コストが大きくなる。飛行禁止区域も、障害物として障害物コストが付される。他の航空機の情報は、LiDAR24(レーダー)から取得される。建物、飛行禁止区域等は、記憶器16に格納された環境地図から取得される。 The obstacle cost is a cost representing obstacles around the automatic aircraft 46. Obstacle costs increase at locations where obstacles such as other aircraft, buildings, trees, etc. exist. No-fly zones also have an obstacle cost attached to them as obstacles. Information on other aircraft is obtained from LiDAR24 (radar). Buildings, no-fly zones, etc. are acquired from the environmental map stored in the memory 16.
 距離コストは、自動航空機46の現在位置からの距離を表すコストである。自動航空機46から距離が遠くなるほど、距離コストは大きくなる。 The distance cost is a cost representing the distance from the current position of the automatic aircraft 46. The greater the distance from the autonomous aircraft 46, the greater the distance cost.
 着陸コストは、着陸場所としての適切度を表すコストである。この実施形態では、各位置の着陸コストは、環境地図に格納された「着陸可能領域48」の情報と、通信衛星22から得た風力情報とから決定される。自動航空機46に力を及ぼす風力があり、ホバリングが危険であるときには、自動航空機46は、待機のために着陸する必要がある。この場合、着陸可能領域48の着陸コストはその他の領域に比べて小さく設定される。風力が小さいときは、自動航空機46はホバリングが可能である。自動航空機46は着陸する必要はない。この場合、着陸可能領域48とその他の領域との、着陸コストの差は小さく設定される。すなわち、着陸コストは、自動航空機46に力を及ぼす風力により変動する。 Landing cost is a cost that represents the suitability of a landing place. In this embodiment, the landing cost for each location is determined from the information on the "landable area 48" stored in the environmental map and the wind power information obtained from the communication satellite 22. When there are wind forces exerting a force on the autonomous aircraft 46 and hovering is dangerous, the autonomous aircraft 46 must land for a hold. In this case, the landing cost of the landing possible area 48 is set to be smaller than that of other areas. When the wind force is low, the automatic aircraft 46 is capable of hovering. Automated aircraft 46 does not need to land. In this case, the difference in landing cost between the landing possible area 48 and other areas is set small. That is, landing costs vary depending on the wind force exerting the force on the autonomous aircraft 46.
 着陸コストの設定の仕方は、種々考えられる。風力が大きくなるのに比例して、着陸可能領域とその他の領域との着陸コストの差が連続的に大きくなるように設定されてもよい。風力が大きくなるのに従って、着陸可能領域とその他の領域との着陸コストの差が段階的に大きくなるように設定されてもよい。 There are various ways to set the landing cost. The difference in landing cost between the landing possible area and other areas may be set to continuously increase in proportion to the increase in wind power. The difference in landing cost between the landing possible area and other areas may be set to increase in stages as the wind power increases.
 ステップ(S2b-2)では、コントローラ18は、障害物コスト、距離コスト及び着陸コストを対応する位置について足し合わせることで、それぞれの位置での待機場所コストを計算する。 In step (S2b-2), the controller 18 calculates the waiting place cost at each position by adding up the obstacle cost, distance cost, and landing cost for the corresponding positions.
 ステップ(S2b-3)では、コントローラ18は、待機場所コストが最も小さい位置を待機場所として設定する。 In step (S2b-3), the controller 18 sets the position where the waiting place cost is the smallest as the waiting place.
 上記の実施形態では示されていないが、航空機の交通量の多さを表す「交通量コスト」がさらに設定されてもよい。航空機の交通量が多い領域ほど、交通量コストは大きく設定される。この実施形態では、コントローラ18は、交通量の情報を記憶器16から取得して、交通量コストを設定する。交通量コストが、通信衛星22から得られた現在の実際の車両の交通量により、求められてもよい。交通量コストは、待機場所コストの計算時に、他のコストと併せて加えられる。 Although not shown in the above embodiment, a "traffic cost" representing the amount of aircraft traffic may be further set. The traffic cost is set higher as the area has more aircraft traffic. In this embodiment, controller 18 obtains traffic information from storage 16 and sets traffic costs. The traffic cost may be determined by the current actual vehicle traffic obtained from the communication satellite 22. Traffic costs are added along with other costs when calculating waiting location costs.
 ステップS3bでは、コントローラ18は、現在位置と待機場所とを比較することで、自動航空機46が待機場所に到着したか否かを判断する。自動航空機46が待機場所に到着していない場合、処理はステップS4bに移る。自動航空機46が待機場所に到着している場合、処理はステップS5bに移る。 In step S3b, the controller 18 determines whether the automatic aircraft 46 has arrived at the waiting location by comparing the current position and the waiting location. If the automatic aircraft 46 has not arrived at the waiting location, the process moves to step S4b. If the automatic aircraft 46 has arrived at the waiting location, the process moves to step S5b.
 ステップS4bでは、コントローラ18は、現在位置から待機場所までの経路を決定する。この実施形態では、現在位置から待機場所までの可能な経路のうち、経路コストが最小の経路が選択される。決定された経路は、駆動装置に送られる。図10には、この処理で決定された経路の例が、矢印Lで示されている。自動航空機46はこの経路Lに従って自動で移動する、待機用自動運転A2の状態となる。コントローラ18の処理は、ステップS2bに戻る。 In step S4b, the controller 18 determines a route from the current position to the waiting location. In this embodiment, the route with the minimum route cost is selected from among the possible routes from the current location to the waiting location. The determined route is sent to the drive device. In FIG. 10, an example of a route determined by this process is indicated by an arrow L. The automatic aircraft 46 automatically moves along this route L, entering the standby automatic operation A2 state. The process of the controller 18 returns to step S2b.
 ステップS5bでは、コントローラ18は、待機方法を決める。この実施形態では、待機場所が空中か又は地上かで「ホバリング」か「着陸」かが決まっている。自動航空機46は、待機A3の状態となる。 In step S5b, the controller 18 determines the standby method. In this embodiment, "hovering" or "landing" is determined depending on whether the waiting location is in the air or on the ground. The automatic aircraft 46 enters a standby state A3.
 ステップS6bでは、ステップS1bと同様に、自動航空機46と監視センター6との通信状態が正常か異常かの判定が行われる。通信状態が正常である場合、コントローラ18の処理を終了する。自動航空機46が通常自動運転A1となる。通信状態が異常である場合、次のステップS7bが実行される。 In step S6b, similarly to step S1b, it is determined whether the communication state between the automatic aircraft 46 and the monitoring center 6 is normal or abnormal. If the communication state is normal, the processing of the controller 18 ends. The automatic aircraft 46 enters normal automatic operation A1. If the communication state is abnormal, the next step S7b is executed.
 ステップS7bでは、直近の待機状態になってから、所定の時間経過したか否かが判定される。所定の時間経過していないときは、ステップS6bが繰り返される。所定の時間経過しているときは、ステップS2bに戻り、待機場所の再設定が行われる。 In step S7b, it is determined whether a predetermined time has elapsed since the most recent standby state. If the predetermined time has not elapsed, step S6b is repeated. If the predetermined time has elapsed, the process returns to step S2b and the waiting location is reset.
 本実施形態では、待機支援装置2のコントローラ18は、自動航空機46の待機場所としての適切度を表す待機場所コストを計算する。この待機場所コストは、着陸場所としての適切度を表す、着陸コストを含む。この着陸コストは、自動航空機46に力を及ぼす風力により変動する。これにより、風力の大きさに対応した、適切な待機位置が設定できる。本待機支援装置2は、周囲からの外力を考慮した自動航空機46の適切な待機を実現している。 In this embodiment, the controller 18 of the standby support device 2 calculates a standby place cost that represents the degree of suitability as a standby place for the automatic aircraft 46. This waiting place cost includes a landing cost that represents the degree of suitability as a landing place. This landing cost varies depending on the wind force exerting the force on the autonomous aircraft 46. This makes it possible to set an appropriate standby position that corresponds to the magnitude of the wind force. This standby support device 2 realizes appropriate standby of the automatic aircraft 46 in consideration of external forces from the surroundings.
 本実施形態では、自動航空機46に付加される外力によって、着陸かホバリングかが決められる。風による外力が大きいときに着陸とすることで、安全な待機が実現できる。この外力が小さいときにホバリングとすることで、待機から通常自動運転への効率的な移行が可能となる。 In this embodiment, the external force applied to the automatic aircraft 46 determines whether to land or hover. A safe standby can be achieved by landing when the external force from the wind is large. By hovering when this external force is small, it is possible to efficiently transition from standby to normal automatic operation.
 なお、上記の実施形態では説明されていないが、ステップS1bにおいて「異常状態」が検知されたとき、コントローラ18が通常自動運転A1での目標地点を記憶器16に格納しておき、ステップS6bおいて「正常状態」と判定されたとき、コントローラ18が記憶器16からこの目標地点を読み出してこれを自動運転の目標地点として設定してもよい。通常自動運転A1での目標地点が予め記憶器16に書き込まれており、ステップS6bにおいて「正常状態」と判定されたとき、コントローラ18が記憶器16からこの目標地点を読み出し、これを自動運転の目標地点として設定してもよい。 Although not described in the above embodiment, when an "abnormal state" is detected in step S1b, the controller 18 stores the target point in the normal automatic operation A1 in the memory 16, and performs step S6b and the like. When it is determined that the vehicle is in a "normal state", the controller 18 may read out this target point from the memory 16 and set it as the target point for automatic driving. The target point for normal automatic operation A1 is written in the memory 16 in advance, and when it is determined in step S6b that it is in a "normal state", the controller 18 reads this target point from the memory 16 and uses it for automatic operation. It may also be set as a target point.
 本明細書で開示するコントローラの各機器の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウエアであるか、または、列挙された機能を実行するようにプログラムされたハードウエアである。ハードウエアは、本明細書に開示されているハードウエアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウエアであってもよい。ハードウエアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウエアとソフトウエアの組み合わせであり、ソフトウエアはハードウエアおよび/またはプロセッサの構成に使用される。 The functionality of each controller device disclosed herein may include a general purpose processor, special purpose processor, integrated circuit, ASIC (Application Specific Integrated Circuit), conventional circuit, and/or configured or programmed to perform the disclosed functions. or a combination thereof. Processors are considered processing circuits or circuits because they include transistors and other circuits. In this disclosure, a circuit, unit, or means is hardware that performs the recited functions or is hardware that is programmed to perform the recited functions. The hardware may be the hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means or unit is a combination of hardware and software, the software being used for the configuration of the hardware and/or the processor.
 以上説明されたとおり、本待機支援装置2により、周囲からの外力を考慮して移動体の適切な待機が実現できる。このことから、本待機支援装置2の優位性は明らかである。 As explained above, the standby support device 2 can realize an appropriate standby of the moving body by taking into account external forces from the surroundings. From this, the superiority of this standby support device 2 is clear.
 [開示項目]
 以下の項目は、好ましい実施形態の開示である。
[Disclosure items]
The following items are disclosures of preferred embodiments.
 [項目1]
 自動運転機能を有する移動体に搭載される待機支援装置であって、
 外部との通信を行う通信器、前記移動体の周囲情報を取得する取得器又は前記移動体の周囲情報を記憶した記憶器、及びコントローラを備え、
 前記コントローラが、前記通信器の通信状態が正常か異常かを判定し、前記通信状態が異常と判定した場合に、前記取得器からの周囲情報又は前記記憶器からの周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算し、この計算結果を基にして待機場所を設定し、前記待機場所までの経路を決定する、待機支援装置。
[Item 1]
A standby support device installed in a mobile body having an automatic driving function,
comprising a communication device that communicates with the outside, an acquisition device that acquires surrounding information of the moving object, or a storage device that stores surrounding information of the moving object, and a controller,
The controller determines whether the communication state of the communication device is normal or abnormal, and when the communication state is determined to be abnormal, the controller determines the communication state based on the surrounding information from the acquisition device or the surrounding information from the storage device. A standby support device that calculates a waiting place cost that varies depending on an external force that a moving body receives from the surrounding environment in a direction that encourages movement, sets a waiting place based on the calculation result, and determines a route to the waiting place. .
 [項目2]
 前記コントローラが、前記待機場所での待機開始から前記通信状態が正常とならないままに所定の時間経過した場合に、前記待機場所の設定及び前記待機場所までの経路の決定を再度行う、項目1に記載の待機支援装置。
[Item 2]
Item 1, wherein the controller re-sets the waiting place and determines the route to the waiting place if a predetermined period of time has passed without the communication state becoming normal after the start of waiting at the waiting place. Standby support device as described.
 [項目3]
 前記コントローラがハッキングの検知をさらに行い、
 前記コントローラが、ハッキングの発生を検知したとき、前記待機場所の設定と、前記待機場所までの経路の決定と、を行う、項目1又は2に記載の待機支援装置。
[Item 3]
The controller further performs hacking detection;
The standby support device according to item 1 or 2, wherein the controller, when detecting the occurrence of hacking, sets the standby place and determines a route to the standby place.
 [項目4]
 前記移動体が自動運航船であり、
 前記コントローラが、周囲の障害物に基づく障害物コスト、前記自動運航船からの距離に基づく距離コスト、周囲の交通量に基づく交通量コスト、及び錨泊場所としての適切度に基づく錨泊コストを基に前記待機場所コストを計算し、
 前記錨泊コストが、前記自動運航船に外力を与える潮流又は風速により変動する、項目1から3のいずれかに記載の待機支援装置。
[Item 4]
The mobile object is an autonomous ship,
The controller calculates an obstacle cost based on surrounding obstacles, a distance cost based on the distance from the autonomous ship, a traffic cost based on surrounding traffic volume, and an anchoring cost based on the suitability of the anchoring location. Calculate the waiting place cost;
4. The standby support device according to any one of items 1 to 3, wherein the anchoring cost varies depending on the current or wind speed that applies an external force to the autonomous ship.
 [項目5]
 前記自動運航船の待機方法を漂泊とするか錨舶とするかを、前記自動運航船が受ける外力を基に決定する、項目4に記載の待機支援装置。
[Item 5]
The standby support device according to item 4, wherein a standby method for the autonomously navigating ship is determined based on an external force received by the autonomously navigating vessel, whether the autonomously navigating vessel is placed on standby by drifting or anchored.
 [項目6]
 前記移動体が自走車両であり、
 前記コントローラが、周囲の障害物に基づく障害物コスト、前記自走車両からの距離に基づく距離コスト、周囲の交通量に基づく交通量コスト、及び傾斜コストを基に前記待機場所コストを計算し、
 前記傾斜コストが、前記自走車両に外力を与える地面の傾斜度に基づいて変動する、項目1から3のいずれかに記載の待機支援装置。
[Item 6]
The mobile object is a self-propelled vehicle,
The controller calculates the waiting place cost based on an obstacle cost based on surrounding obstacles, a distance cost based on the distance from the self-propelled vehicle, a traffic cost based on surrounding traffic volume, and a slope cost,
The standby support device according to any one of items 1 to 3, wherein the inclination cost varies based on the inclination of the ground that applies an external force to the self-propelled vehicle.
 [項目7]
 前記自走車両の待機方法を停車とするか二重ブレーキ駐車とするかを、前記自走車両が受ける外力を基に決定する、項目6に記載の待機支援装置。
[Item 7]
The standby support device according to item 6, which determines whether the self-propelled vehicle is to be parked or parked with dual brakes based on an external force that the self-propelled vehicle receives.
 [項目8]
 前記移動体が自動航空機であり、
  前記コントローラが、周囲の障害物に基づく障害物コスト、前記自動航空機からの距離に基づく距離コスト、着陸場所としての適切度に基づく及び着陸コストを基に前記待機場所コストを計算し、
 前記着陸コストが、前記自動航空機に外力を与える風速により変動する、項目1から3のいずれかに記載の待機支援装置。
[Item 8]
The mobile object is an automatic aircraft,
the controller calculates the holding location cost based on an obstacle cost based on surrounding obstacles, a distance cost based on a distance from the automatic aircraft, a suitability as a landing location, and a landing cost;
The standby support device according to any one of items 1 to 3, wherein the landing cost varies depending on the wind speed that applies an external force to the automatic aircraft.
 [項目9]
 前記自動航空機の待機方法を着陸とするかホバリングとするかを、前記自動航空機が受ける外力を基に決定する、項目8に記載の待機支援装置。
[Item 9]
The standby support device according to item 8, wherein the standby method of the automatic aircraft is determined to be landing or hovering based on an external force received by the automatic aircraft.
 [項目10] 
 前記待機場所コストが、さらに周囲の交通量に基づく交通量コストを基にして計算される、項目8又は9に記載の待機支援装置。
[Item 10]
The waiting support device according to item 8 or 9, wherein the waiting place cost is further calculated based on a traffic cost based on surrounding traffic volume.
 [項目11]
 前記交通量コストが、予め計測され前記記憶器に格納された交通量の情報から設定されるか、又は前記取得器により取得した現在の交通量のデータから設定される、項目4から7及び10のいずれかに記載の待機支援装置。
[Item 11]
Items 4 to 7 and 10, wherein the traffic cost is set from traffic volume information measured in advance and stored in the storage device, or from current traffic volume data acquired by the acquisition device. The standby support device according to any of the above.
 [項目12]
 項目1から11のいずれかに記載の待機支援装置と、前記待機場所及び前記待機場所までの経路の情報を表示する表示装置とを備えた、待機支援システム。
[Item 12]
A standby support system comprising the standby support device according to any one of items 1 to 11, and a display device that displays information on the standby place and a route to the standby place.
 [項目13]
 待機支援装置と駆動装置とを備え、
 前記待機支援装置が、
 外部との通信を行う通信器、前記移動体の周囲情報を取得する取得器又は前記移動体の周囲情報を記憶した記憶器、及びコントローラを備え、
 前記コントローラが、前記通信器の通信状態が正常か異常かを判定し、前記通信状態が異常と判定した場合に、前記取得器からの周囲情報又は前記記憶器からの周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算し、この計算結果を基にして待機場所を設定し、前記待機場所までの経路を決定し、
 前記駆動装置により、前記経路に従って前記待機場所まで自動で移動する、移動体。
[Item 13]
Equipped with a standby support device and a drive device,
The standby support device
comprising a communication device that communicates with the outside, an acquisition device that acquires surrounding information of the moving object, or a storage device that stores surrounding information of the moving object, and a controller,
The controller determines whether the communication state of the communication device is normal or abnormal, and when the communication state is determined to be abnormal, the controller determines the communication state based on the surrounding information from the acquisition device or the surrounding information from the storage device. Calculating a waiting place cost that varies depending on an external force that the moving object receives from the surrounding environment in a direction that promotes movement, setting a waiting place based on the calculation result, and determining a route to the waiting place,
A movable body that is automatically moved to the standby location along the route by the drive device.
 [項目14]
  自動運転機能を有する移動体に搭載されたプロセッサを動作させるプログラムであって、
 前記移動体と外部との通信状態が正常か異常かを判定する処理と、前記通信状態が異常と判定した場合に前記移動体の周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算する処理と、この計算結果を基にして待機場所を設定する処理と、前記待機場所までの経路を決定する処理と、を前記プロセッサに実行させる、待機支援用のプログラム。
[Item 14]
A program that operates a processor installed in a mobile object having an automatic driving function,
A process for determining whether a communication state between the mobile object and the outside is normal or abnormal, and a process for determining whether the communication state between the mobile object and the outside is normal or abnormal, and a process for causing the mobile object to move from the surrounding environment based on surrounding information of the mobile object when the communication state is determined to be abnormal. causing the processor to execute a process of calculating a waiting place cost that varies depending on an external force received in the urging direction, a process of setting a waiting place based on the calculation result, and a process of determining a route to the waiting place. , a program for standby assistance.
 [項目15]
  自動運転機能を有する移動体で使用される方法であって、
 前記移動体と外部との通信状態が正常か異常かを判定し、前記通信状態が異常と判定した場合に前記移動体の周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算し、この計算結果を基にして待機場所を設定し、前記待機場所までの経路を決定する、待機支援方法。
[Item 15]
A method used in a mobile body having an automatic driving function, the method comprising:
Determining whether a communication state between the mobile object and the outside is normal or abnormal, and if the communication state is determined to be abnormal, a direction in which the mobile object is encouraged to move from the surrounding environment based on surrounding information of the mobile object. A standby support method that calculates a standby place cost that varies depending on an external force applied to the standby place, sets a standby place based on the calculation result, and determines a route to the standby place.
 2・・・待機支援装置
 4・・・自動運航船
 6・・・監視センター
 8・・・GNSS衛星
 10・・・駆動装置
 12・・・通信器
 14・・・取得器
 16・・・記憶器
 18・・・コントローラ
 20・・・出力器
 22・・・通信衛星
 24・・・LiDAR
 26・・・カメラ
 28・・・表示/操作装置
 30・・・輻輳海域
 32・・・浅瀬
 34・・・錨泊領域
 36・・・他の船舶
 40・・・自走車両
 42・・・他の船舶
 46・・・自動航空機
2... Standby support device 4... Automatic navigation ship 6... Monitoring center 8... GNSS satellite 10... Drive device 12... Communication device 14... Acquisition device 16... Memory device 18... Controller 20... Output device 22... Communication satellite 24... LiDAR
26...Camera 28...Display/operation device 30...Congested sea area 32...Shallow water 34...Anchoring area 36...Other ships 40...Self-propelled vehicle 42...Others Ship 46...Automatic aircraft

Claims (15)

  1.  自動運転機能を有する移動体に搭載される待機支援装置であって、
     外部との通信を行う通信器、前記移動体の周囲情報を取得する取得器又は前記移動体の周囲情報を記憶した記憶器、及びコントローラを備え、
     前記コントローラが、前記通信器の通信状態が正常か異常かを判定し、前記通信状態が異常と判定した場合に、前記取得器からの周囲情報又は前記記憶器からの周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算し、この計算結果を基にして待機場所を設定し、前記待機場所までの経路を決定する、待機支援装置。
    A standby support device installed in a mobile body having an automatic driving function,
    comprising a communication device that communicates with the outside, an acquisition device that acquires surrounding information of the moving object, or a storage device that stores surrounding information of the moving object, and a controller,
    The controller determines whether the communication state of the communication device is normal or abnormal, and when the communication state is determined to be abnormal, the controller determines the communication state based on the surrounding information from the acquisition device or the surrounding information from the storage device. A standby support device that calculates a waiting place cost that varies depending on an external force that a moving body receives from the surrounding environment in a direction that encourages movement, sets a waiting place based on the calculation result, and determines a route to the waiting place. .
  2.  前記コントローラが、前記待機場所での待機開始から前記通信状態が正常とならないままに所定の時間経過した場合に、前記待機場所の設定及び前記待機場所までの経路の決定を再度行う、請求項1に記載の待機支援装置。 Claim 1: The controller sets the waiting place and determines the route to the waiting place again if a predetermined period of time has elapsed without the communication state becoming normal after the start of waiting at the waiting place. The standby support device described in .
  3.  前記コントローラがハッキングの検知をさらに行い、
     前記コントローラが、ハッキングの発生を検知したとき、前記待機場所の設定と、前記待機場所までの経路の決定と、を行う、請求項1又は2に記載の待機支援装置。
    The controller further performs hacking detection;
    The standby support device according to claim 1 or 2, wherein the controller sets the standby place and determines a route to the standby place when detecting the occurrence of hacking.
  4.  前記移動体が自動運航船であり、
     前記コントローラが、周囲の障害物に基づく障害物コスト、前記自動運航船からの距離に基づく距離コスト、周囲の交通量に基づく交通量コスト、及び錨泊場所としての適切度に基づく錨泊コストを基に前記待機場所コストを計算し、
     前記錨泊コストが、前記自動運航船に外力を与える潮流又は風速により変動する、請求項1に記載の待機支援装置。
    The mobile object is an autonomous ship,
    The controller calculates an obstacle cost based on surrounding obstacles, a distance cost based on the distance from the autonomous ship, a traffic cost based on surrounding traffic volume, and an anchoring cost based on the suitability of the anchoring location. Calculate the waiting place cost;
    The standby support device according to claim 1, wherein the anchoring cost varies depending on the current or wind speed that applies an external force to the autonomously operating ship.
  5.  前記自動運航船の待機方法を漂泊とするか錨舶とするかを、前記自動運航船が受ける外力を基に決定する、請求項4に記載の待機支援装置。 5. The standby support device according to claim 4, wherein the standby method for the autonomously navigating ship is determined based on an external force received by the autonomously navigating vessel, whether the autonomously navigating vessel is placed on standby as a floating vessel or an anchored vessel.
  6.  前記移動体が自走車両であり、
     前記コントローラが、周囲の障害物に基づく障害物コスト、前記自走車両からの距離に基づく距離コスト、周囲の交通量に基づく交通量コスト、及び傾斜コストを基に前記待機場所コストを計算し、
     前記傾斜コストが、前記自走車両に外力を与える地面の傾斜度に基づいて変動する、請求項1に記載の待機支援装置。
    The mobile object is a self-propelled vehicle,
    The controller calculates the waiting place cost based on an obstacle cost based on surrounding obstacles, a distance cost based on the distance from the self-propelled vehicle, a traffic cost based on surrounding traffic volume, and a slope cost,
    The standby support device according to claim 1, wherein the inclination cost varies based on the inclination of the ground that applies an external force to the self-propelled vehicle.
  7.  前記自走車両の待機方法を停車とするか二重ブレーキ駐車とするかを、前記自走車両が受ける外力を基に決定する、請求項6に記載の待機支援装置。 7. The standby support device according to claim 6, wherein the standby method for the self-propelled vehicle is determined based on an external force received by the self-propelled vehicle, whether the self-propelled vehicle is parked or parked using dual brakes.
  8.  前記移動体が自動航空機であり、
      前記コントローラが、周囲の障害物に基づく障害物コスト、前記自動航空機からの距離に基づく距離コスト、着陸場所としての適切度に基づく及び着陸コストを基に前記待機場所コストを計算し、
     前記着陸コストが、前記自動航空機に外力を与える風速により変動する、請求項1に記載の待機支援装置。
    The mobile object is an automatic aircraft,
    the controller calculates the holding location cost based on an obstacle cost based on surrounding obstacles, a distance cost based on a distance from the automatic aircraft, a suitability as a landing location, and a landing cost;
    The standby support device according to claim 1, wherein the landing cost varies depending on the wind speed that applies an external force to the automatic aircraft.
  9.  前記自動航空機の待機方法を着陸とするかホバリングとするかを、前記自動航空機が受ける外力を基に決定する、請求項8に記載の待機支援装置。 The standby support device according to claim 8, wherein the standby method of the automatic aircraft is determined to be landing or hovering based on an external force received by the automatic aircraft.
  10.  前記待機場所コストが、さらに周囲の交通量に基づく交通量コストを基にして計算される、請求項8に記載の待機支援装置。 The waiting support device according to claim 8, wherein the waiting place cost is further calculated based on a traffic cost based on surrounding traffic volume.
  11.  前記交通量コストが、予め計測され前記記憶器に格納された交通量の情報から設定されるか、又は前記取得器により取得した現在の交通量のデータから設定される、請求項4から7及び10のいずれかに記載の待機支援装置。 Claims 4 to 7, wherein the traffic cost is set from traffic volume information measured in advance and stored in the storage device, or from current traffic volume data acquired by the acquisition device. 10. The standby support device according to any one of 10.
  12.  請求項1又は2に記載の待機支援装置と、前記待機場所及び前記待機場所までの経路の情報を表示する表示装置とを備えた、待機支援システム。 A standby support system comprising the standby support device according to claim 1 or 2, and a display device that displays information on the standby place and a route to the standby place.
  13.  待機支援装置と駆動装置とを備え、
     前記待機支援装置が、
     外部との通信を行う通信器、前記移動体の周囲情報を取得する取得器又は前記移動体の周囲情報を記憶した記憶器、及びコントローラを備え、
     前記コントローラが、前記通信器の通信状態が正常か異常かを判定し、前記通信状態が異常と判定した場合に、前記取得器からの周囲情報又は前記記憶器からの周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算し、この計算結果を基にして待機場所を設定し、前記待機場所までの経路を決定し、
     前記駆動装置により、前記経路に従って前記待機場所まで自動で移動する、移動体。
    Equipped with a standby support device and a drive device,
    The standby support device
    comprising a communication device that communicates with the outside, an acquisition device that acquires surrounding information of the moving object, or a storage device that stores surrounding information of the moving object, and a controller,
    The controller determines whether the communication state of the communication device is normal or abnormal, and when the communication state is determined to be abnormal, the controller determines the communication state based on the surrounding information from the acquisition device or the surrounding information from the storage device. Calculating a waiting place cost that varies depending on an external force that the moving object receives from the surrounding environment in a direction that promotes movement, setting a waiting place based on the calculation result, and determining a route to the waiting place,
    A movable body that is automatically moved to the standby location along the route by the drive device.
  14.  自動運転機能を有する移動体に搭載されたプロセッサを動作させるプログラムであって、
     前記移動体と外部との通信状態が正常か異常かを判定する処理と、前記通信状態が異常と判定した場合に前記移動体の周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算する処理と、この計算結果を基にして待機場所を設定する処理と、前記待機場所までの経路を決定する処理と、を前記プロセッサに実行させる、待機支援用のプログラム。
    A program that operates a processor installed in a mobile object having an automatic driving function,
    A process for determining whether a communication state between the mobile object and the outside is normal or abnormal, and a process for determining whether the communication state between the mobile object and the outside is normal or abnormal, and a process for causing the mobile object to move from the surrounding environment based on surrounding information of the mobile object when the communication state is determined to be abnormal. causing the processor to execute a process of calculating a waiting place cost that varies depending on an external force received in the urging direction, a process of setting a waiting place based on the calculation result, and a process of determining a route to the waiting place. , a program for standby assistance.
  15.  自動運転機能を有する移動体で使用される方法であって、
     前記移動体と外部との通信状態が正常か異常かを判定し、前記通信状態が異常と判定した場合に前記移動体の周囲情報を基にして前記移動体が周囲の環境から移動を促す方向に受ける外力により変動する待機場所コストを計算し、この計算結果を基にして待機場所を設定し、前記待機場所までの経路を決定する、待機支援方法。
    A method used in a mobile body having an automatic driving function, the method comprising:
    Determining whether a communication state between the mobile object and the outside is normal or abnormal, and if the communication state is determined to be abnormal, a direction in which the mobile object is encouraged to move from the surrounding environment based on surrounding information of the mobile object. A standby support method that calculates a standby place cost that varies depending on an external force applied to the standby place, sets a standby place based on the calculation result, and determines a route to the standby place.
PCT/JP2023/013154 2022-04-25 2023-03-30 Standby assistance device, program, and method WO2023210255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-071428 2022-04-25
JP2022071428A JP2023161214A (en) 2022-04-25 2022-04-25 Standby support device, program, and method

Publications (1)

Publication Number Publication Date
WO2023210255A1 true WO2023210255A1 (en) 2023-11-02

Family

ID=88518758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013154 WO2023210255A1 (en) 2022-04-25 2023-03-30 Standby assistance device, program, and method

Country Status (2)

Country Link
JP (1) JP2023161214A (en)
WO (1) WO2023210255A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025860A (en) * 2007-07-17 2009-02-05 Natl Inst For Land & Infrastructure Management Mlit Ship behavior prediction method and system
JP2016181140A (en) * 2015-03-24 2016-10-13 株式会社デンソー Automatic travel control device, control device, and automatic travel control system
JP2020180909A (en) * 2019-04-26 2020-11-05 株式会社Jvcケンウッド Navigation device, method for processing the same, and program
JP2021179742A (en) * 2020-05-12 2021-11-18 ソフトバンク株式会社 System, moving body, program, and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025860A (en) * 2007-07-17 2009-02-05 Natl Inst For Land & Infrastructure Management Mlit Ship behavior prediction method and system
JP2016181140A (en) * 2015-03-24 2016-10-13 株式会社デンソー Automatic travel control device, control device, and automatic travel control system
JP2020180909A (en) * 2019-04-26 2020-11-05 株式会社Jvcケンウッド Navigation device, method for processing the same, and program
JP2021179742A (en) * 2020-05-12 2021-11-18 ソフトバンク株式会社 System, moving body, program, and method

Also Published As

Publication number Publication date
JP2023161214A (en) 2023-11-07

Similar Documents

Publication Publication Date Title
AU2018399375B2 (en) Automatic driving system
EP3356899B1 (en) Method of operating an autonomous vehicle having independent auxiliary control unit
US10037701B2 (en) Watercraft navigation safety system
US11094146B1 (en) Intelligent electrical system for vehicle
JP2019192024A (en) Work vehicle
US20200241535A1 (en) Automated Guided Vehicle Guidance System
JP2014227166A (en) Flying body type visual inspection device
EP4043981A1 (en) Vehicle-based rotating camera methods and systems
ES2742844T3 (en) Procedure for motor operated berthing
KR102524296B1 (en) Vehicle control method and system according to detection of load falling
KR102168842B1 (en) Emergency control device to respond in the event of a loss of communication or failure situation of a hybrid unmanned aerial vehicle
JP2023126830A (en) Base device, base device control method, and base device control program
WO2023210255A1 (en) Standby assistance device, program, and method
KR102025202B1 (en) System for remote controlling of unmanned surface vehicle
Praczyk et al. Report on research with biomimetic autonomous underwater vehicle—navigation and autonomous operation
KR102433595B1 (en) Unmanned transportation apparatus based on autonomous driving for smart maintenance of railroad vehicles
CN113821056A (en) Safety measurement and control method, device, equipment and storage medium for marine unmanned aerial vehicle
CN113533876A (en) Method and system for performing electromagnetic compatibility testing of autonomously driven vehicles
WO2023238539A1 (en) Coordination device, roadside unit, movement control system, program, movement control method, and moving body
US20240111287A1 (en) Automatic berthing system and method
KR20200140324A (en) Tracking stolen robotic vehicles
US20230347935A1 (en) Control method of autonomous vehicle and control system
WO2023238540A1 (en) Supervision device, roadside machine, movement control system, program, movement control method, and moving body
US20230221724A1 (en) System and method for assisting a docking operation
RU2778387C2 (en) Systems and methods for control of robotic vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796002

Country of ref document: EP

Kind code of ref document: A1