WO2023210215A1 - Cultivation assistance system - Google Patents

Cultivation assistance system Download PDF

Info

Publication number
WO2023210215A1
WO2023210215A1 PCT/JP2023/011291 JP2023011291W WO2023210215A1 WO 2023210215 A1 WO2023210215 A1 WO 2023210215A1 JP 2023011291 W JP2023011291 W JP 2023011291W WO 2023210215 A1 WO2023210215 A1 WO 2023210215A1
Authority
WO
WIPO (PCT)
Prior art keywords
cultivation
work
record
work record
estimated
Prior art date
Application number
PCT/JP2023/011291
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 宮地
昌 佐々木
早映子 柴垣
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2023210215A1 publication Critical patent/WO2023210215A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the present invention relates to a cultivation support system.
  • cutting-edge technologies such as robots, ICT (Information and Communication Technology), AI (Artificial Intelligence), and IoT (Internet of Things)
  • ICT Information and Communication Technology
  • AI Artificial Intelligence
  • IoT Internet of Things
  • Patent Document 1 discloses that in a field where crops such as asparagus are cultivated, information on the location and results of work performed (spraying pesticides, harvesting, etc.) is recorded in a database, and the work records are used to predict future work and consumption. A system has been proposed that can be used to provide information to people.
  • the present invention has been made in view of the above circumstances, and aims to provide a technology for supporting the recording of cultivation operations performed in the past.
  • the present disclosure includes a cultivation parameter acquisition unit that acquires cultivation parameters that are indicators related to cultivation of a target crop, and estimates cultivation operations performed by a user on the target crop in the past based on the cultivation parameters.
  • an estimation means a cultivation work storage means for storing cultivation work record data that is a record of cultivation work performed on the target crop;
  • the cultivation support system includes a work record updating means for updating record data.
  • the cultivation parameter acquisition means may acquire the cultivation parameters based on information measured by a sensor or information input from an external device.
  • the cultivation parameters may include an index regarding the external shape of the target crop, an index regarding the growth state of the target crop, or an index regarding the cultivation environment of the target crop.
  • the estimating means may estimate the cultivation work performed by the user on the target crop in the past by analyzing time-series data of the cultivation parameters accumulated over a predetermined period.
  • the cultivation work record data may include at least information on the implementation timing and amount of cultivation work.
  • the cultivation support system may further include a work proposal unit that creates a future work plan for the target crop based on the cultivation work record data and proposes the future work plan to the user.
  • the cultivation work record data may include a user input work record that is information on the cultivation work input by the user, and an estimated work record that is information on the cultivation work estimated by the estimation means.
  • the work record updating means determines whether or not a user input work record corresponding to the estimated work record exists in the cultivation work record data, and when the corresponding user input work record does not exist, the estimated work record is updated. may be added to the cultivation work record data.
  • the cultivation work record data may include a user input work record that is information on the cultivation work input by the user, and an estimated work record that is information on the cultivation work estimated by the estimation means.
  • the work record updating means determines whether or not a user input work record corresponding to the estimated work record exists in the cultivation work record data, and determines whether or not a corresponding user input work record exists, but the corresponding user input work record does not exist. If there is a discrepancy between the record and the estimated work record, the cultivation work record data is corrected by the estimated work record, or the user is informed that there is a discrepancy between the user input work record and the estimated work record. You can also output it.
  • the cultivation support system may further include a work history display unit that generates and displays a work history screen representing a history of cultivation work performed on the target crop based on the cultivation work record data.
  • the work history display means may generate the work history screen so that user input work records and estimated work records can be distinguished.
  • the work history display means may provide a user interface that allows cultivation work to be input or modified on the work history screen.
  • the present disclosure includes a step in which a computer acquires a cultivation parameter that is an index related to cultivation of a target crop, and a step in which the computer acquires a cultivation operation performed by a user on the target crop in the past based on the cultivation parameter.
  • a cultivation support method comprising the steps of: estimating the estimated cultivation operation information; and updating cultivation operation record data, which is a record of cultivation operations carried out on the target crop, based on the estimated cultivation operation information. including.
  • the present disclosure includes a program for causing a computer to execute each step of the cultivation support method described above.
  • the present invention may be understood as a cultivation support system, a cultivation work recording system, a cultivation work estimation system, etc., which have at least a part of the above means, or an information processing device that constitutes a part of such a system. It may also be viewed as an information processing device used in combination with other systems. Furthermore, the present invention may also be understood as a cultivation management system, cultivation equipment, cultivation facility, field, etc. that include such a system. Further, the present invention may be understood as a cultivation support method, a cultivation support system control method, a cultivation work recording method, a cultivation estimation method, a cultivation method, etc., including at least a part of the above processing.
  • the present invention can also be understood as a program for realizing such a method and a recording medium (storage medium) on which the program is recorded non-temporarily. Note that each of the above means and processes can be combined to the extent possible to constitute the present invention.
  • FIG. 1 is a diagram showing the overall picture of the cultivation management system.
  • FIG. 2 is a diagram showing the configuration of the cultivation support system.
  • FIG. 3 is a flowchart of cultivation parameter collection processing.
  • FIG. 4A is an example of time series data of cultivation parameters (soil moisture content).
  • FIG. 4B is an example of the amount of change in cultivation parameters.
  • FIG. 4C is an example of a work estimation table.
  • FIG. 5 is a flowchart of the cultivation work estimation process.
  • FIG. 6A is an example of time-series data of cultivation parameters (LAI).
  • FIG. 6B is an example of the amount of change in cultivation parameters.
  • FIG. 6C is an example of a work estimation table.
  • FIG. 7A is an example of time-series data of cultivation parameters (EC values).
  • FIG. 7B is an example of the amount of change in cultivation parameters.
  • FIG. 7C is an example of a work estimation table.
  • FIG. 8A is an example of time-series data of cultivation parameters (indoor/outdoor temperature, indoor/outdoor humidity).
  • FIG. 8B is an example of the amount of change in cultivation parameters.
  • FIG. 8C is an example of a work estimation table.
  • FIG. 9A is an example of time-series data of cultivation parameters (indoor and outdoor temperatures).
  • FIG. 9B is an example of the amount of change in cultivation parameters.
  • FIG. 9C is an example of a work estimation table.
  • FIG. 10A is an example of time-series data of cultivation parameters (indoor and outdoor solar radiation).
  • FIG. 10B is an example of the amount of change in cultivation parameters.
  • FIG. 10A is an example of time-series data of cultivation parameters (indoor and outdoor solar radiation).
  • FIG. 10B is an example of the amount of change in cultivation parameters.
  • FIG. 10A is an example
  • FIG. 10C is an example of a work estimation table.
  • FIG. 11A is an example of time series data of cultivation parameters (wind speed).
  • FIG. 11B is an example of a work estimation table.
  • 12A and 12B are examples of work history screens.
  • 13A to 13C are examples of detailed information screens for work records.
  • FIG. 14A is an example of a work determination table.
  • FIG. 14B is an example of work advice.
  • FIG. 1 schematically shows the overall picture of the cultivation management system.
  • the cultivation management system MS is a system for managing and supporting the cultivation work of crops to be cultivated (hereinafter referred to as target crops P), and its main components include a cultivation environment control system 2 and cultivation support. It includes a system 1 and a user terminal 3.
  • the cultivation environment control system 2 has a function (environment monitoring function) of acquiring various information related to the cultivation environment of the target crop P using a plurality of environmental sensors installed in the field 20 (house etc.) of the target crop P, It has a function to control the cultivation equipment installed in the field 20 (environmental control function).
  • the environmental sensors include, for example, a soil moisture sensor 21 buried in a ridge of the target crop P, an image sensor (camera) 22 that photographs the target crop P, a temperature and humidity sensor 23 that measures the temperature and humidity in the field 20, and the like. be.
  • an EC electrical conductivity
  • Cultivation equipment to be controlled includes an irrigation system 24, an air conditioning system 25, a switch 26 for windows and blackout curtains, and the like.
  • cultivation equipment a fertilizing device, a lighting device, a pesticide spraying device, a circulation fan, a warming machine, etc. may be used.
  • the method of controlling the cultivation equipment includes fully automatic control in which the cultivation environment control system 2 automatically and adaptively controls the cultivation equipment to achieve the optimal environmental conditions according to the results of environmental monitoring, and a method in which the cultivation environment control system 2 automatically and adaptively controls the cultivation equipment according to instructions from the user. There is semi-automatic control that controls cultivation equipment.
  • a control that automatically opens/closes a window or changes the temperature setting of an air conditioner when the temperature measured by the temperature/humidity sensor 23 deviates from the optimal range falls under the former category, and the user can control the timing and amount of watering.
  • Control in which an instruction is given to the cultivation environment control system 2 and the cultivation environment control system 2 operates the irrigation device 24 in accordance with the instruction corresponds to the latter.
  • the cultivation environment control system 2 transmits environmental data to the cultivation support system 1 periodically or at necessary timing.
  • the environmental data may include, for example, environmental information measured by an environmental sensor, control logs of cultivation equipment, and the like.
  • the cultivation support system 1 is a system that collects and manages information related to the cultivation of target crops P, and provides various support services to users.
  • the cultivation support system 1 has a cultivation operation database (hereinafter referred to as "cultivation operation DB") that stores cultivation operation record data that is a record of cultivation operations performed on the target crop P.
  • Cultivation operations include various tasks such as irrigation, fertilization (additional fertilization), attraction, leaf removal, bud removal, flower thinning, fruit thinning, pesticide spraying, window opening/closing, warming machine operation, blackout curtain opening/closing, circulation fan operation, lighting operation, etc. be.
  • the cultivation operations to be performed may differ depending on the type of target crop P and the configuration of the cultivation management system MS, the types of cultivation operations to be recorded should be designed as appropriate depending on the system configuration and scope of application. good.
  • the user When the user performs some kind of cultivation work on the target crop P, in principle, the user himself/herself operates the user terminal 3 and inputs information about the performed cultivation work (implementation timing, amount of work, etc.).
  • a work record input by the user (referred to as a "user input work record") is transmitted to the cultivation support system 1 and stored in the cultivation work DB.
  • the user By accessing the cultivation support system 1 from the user terminal 3, the user can view the past work history accumulated in the cultivation work DB, or receive work advice generated by the cultivation support system 1 (cultivation to be performed next). (recommendations for work, etc.).
  • This support information serves as a reference when the user plans future work.
  • the cultivation support system 1 estimates the cultivation operations performed in the past on the target crop P based on the environmental data (especially the environmental information measured by the environmental sensor) collected from the cultivation environment control system 2. , has a function of updating the cultivation work record data in the cultivation work DB based on the estimation results.
  • the cultivation support system 1 determines whether a user input work record corresponding to cultivation work information estimated from environmental data (referred to as "estimated work record") exists in the cultivation work record data in the cultivation work DB. , and if there is no corresponding user-input work record, the estimated work record may be added to the cultivation work record data. In addition, if there is a user input work record corresponding to the estimated work record, but there is a difference between the corresponding user input work record and the estimated work record, the cultivation support system 1 records the cultivation work using the estimated work record. The data may be modified or the user may be notified of a discrepancy between the user input work record and the estimated work record.
  • the input of the work record by the user and the estimation of the work record by the cultivation support system 1 are combined, but if the estimation accuracy of the cultivation support system 1 is sufficiently high, the work record by the user In principle, the input may not be necessary.
  • the user's burden on recording the cultivation operations can be reduced to substantially zero, and the user's convenience can be improved.
  • the cultivation support system 1 includes a cultivation parameter acquisition section 10, a cultivation parameter storage section 11, a cultivation work estimation logic storage section 12, a cultivation work estimation section 13, a cultivation work DB 14, a work record update section 15, a work proposal section 16, and a work history display. It has a section 17.
  • the cultivation parameter acquisition unit 10 has a function as a cultivation parameter acquisition means that acquires indicators related to cultivation of the target crop P (referred to as "cultivation parameters").
  • the cultivation parameter storage unit 11 has a function of storing time-series data of cultivation parameters collected by the cultivation parameter acquisition unit 10.
  • the cultivation work estimation logic storage unit 12 has a function of storing a work estimation table showing the causal relationship between cultivation work and cultivation parameters.
  • the cultivation work estimating unit 13 has a function as an estimation means for estimating the cultivation work performed on the target crop P in the past based on the cultivation parameters.
  • the cultivation work DB 14 has a function as a cultivation work storage means for storing cultivation work record data that is a record of cultivation work performed on the target crop P.
  • the work record updating unit 15 has a function as a work record updating unit that updates the cultivation work record data in the cultivation work DB 14 based on the information on the cultivation work estimated by the cultivation work estimating unit 13.
  • the work proposal unit 16 has a function as a work proposal means that creates a future work plan for the target crop P based on the cultivation work record data in the cultivation work DB 14 and proposes work advice to the user.
  • the work history display unit 17 generates a work history screen representing the history of cultivation work performed on the target crop P based on the cultivation work record data in the cultivation work DB 14, and displays the work history screen on the user terminal 3. It has a function as a display means.
  • the cultivation support system 1 can be configured, for example, by a computer equipped with hardware resources such as a processor (CPU, GPU, etc.), memory (main storage), storage (auxiliary storage), and communication I/F.
  • the functions shown in FIG. 2 are implemented in software by loading a program stored in storage into memory and causing a processor to execute the program.
  • the cultivation support system 1 may be configured with one computer, or may be configured using techniques such as distributed computing and cloud computing. Further, part or all of the functions shown in FIG. 2 may be realized by a circuit such as an ASIC or an FPGA. Alternatively, some of the functions shown in FIG. 2 may be provided in the cultivation environment control system 2 or the user terminal 3.
  • FIG. 3 is a flowchart of cultivation parameter collection processing. The process in FIG. 3 is executed by the cultivation parameter acquisition unit 10 periodically or every time environmental data is received from the cultivation environment control system 2.
  • the cultivation parameter acquisition unit 10 receives the environmental data sent from the cultivation environment control system 2.
  • Environmental data includes measurement information obtained by environmental sensors (sensing data (raw data) output from sensors, or information processed or extracted from sensing data), cultivation equipment control logs, etc. is included.
  • the received environmental data is temporarily stored in memory or storage.
  • the cultivation parameter acquisition unit 10 acquires cultivation parameters based on the measurement information of the environmental sensor obtained in step S300.
  • Any index may be used as the cultivation parameter as long as it is related to cultivation of the target crop P.
  • indicators related to the external shape of the target crop P indicators related to the growth condition of the target crop P, indicators related to the cultivation environment of the target crop P (conditions of the soil and the space surrounding the target crop P (including inside and outside the greenhouse), etc.) are used as cultivation parameters. may apply. Specific examples include soil moisture content, LAI (Leaf Area Index), number of flowers, real number, EC value (electrical conductivity), outdoor temperature, indoor temperature, outdoor humidity, indoor humidity, outdoor solar radiation, and indoor solar radiation.
  • cultivation parameters include volume, wind speed, soil pH, CO2 concentration, and illuminance.
  • the cultivation parameters are preferably information that can be obtained without relying on manual input by humans. Although information extracted directly or indirectly from the measurement information of environmental sensors is preferable, there are other ways to extract cultivation information from various types of information input from external devices, such as control logs of cultivation equipment included in environmental data. Parameters may also be extracted.
  • the cultivation parameter acquisition unit 10 does not need to acquire all of these indicators, and may appropriately design the cultivation parameters to be used according to the type of target crop P, the configuration of the cultivation environment control system 2, the field 20, and the like.
  • step S302 the cultivation parameter acquisition unit 10 stores the cultivation parameter information acquired in step S301 in the cultivation parameter storage unit 11.
  • FIG. 4A shows an example of time-series data of cultivation parameters accumulated in the cultivation parameter storage unit 11.
  • the example in FIG. 4A is data in which the amount of soil moisture (water content) in the ridges of the target crop P is recorded based on the measurement information of the soil moisture sensor 21. It can be seen that the measurements taken at 9:00 a.m. and 9:10 a.m. on January 26th were 20%, and the measurements taken at 9:20 a.m. and 9:30 a.m. were 25%. Time-series data is similarly collected and accumulated for cultivation parameters other than soil moisture content.
  • FIG. 5 is a flowchart of the cultivation work estimation process. The process in FIG. 5 is executed by the cultivation work estimating section 13 and the work record updating section 15 periodically or every time the cultivation parameters are updated.
  • step S500 the cultivation work estimation unit 13 reads time-series data of cultivation parameters from the cultivation parameter storage unit 11.
  • time-series data for a period necessary for subsequent estimation processing is captured.
  • time-series data for the most recent several days may be used.
  • time-series data from several weeks to several months, or all time-series data from planting to the present time may be used.
  • the purpose is to detect tasks that are performed many times during the day, such as operating windows or air conditioning equipment, it may be sufficient to use time-series data for one day or several hours. be.
  • step S501 the cultivation work estimation unit 13 calculates the amount of change (time differential) of the cultivation parameters based on the time series data of the cultivation parameters.
  • FIG. 4B is an example of the amount of change in soil water content calculated from the time series data of FIG. 4A.
  • step S502 the cultivation work estimating unit 13 reads the work estimation table from the cultivation work estimation logic storage unit 12, and uses the work estimation table to estimate the cultivation work performed in the past from the amount of change in the cultivation parameter.
  • the work estimation table is a table that shows the causal relationship between "cultivation work” and "amount of change (or value) of cultivation parameters.”
  • FIG. 4C is an example of a work estimation table showing the relationship between the cultivation work "irrigation” and the amount of change in the cultivation parameter "soil moisture content”. For example, based on experimental data in field 20, past observed data, empirical rules, etc., when no irrigation is performed, when there is natural rainfall, when irrigation is applied at 3 [L/m2], By defining the average amount of change in soil water content in the four cases when 6 [L/m2] of irrigation is performed, a work estimation table like the one shown in FIG. 4C can be created.
  • the cultivation work estimating unit 13 estimates the causal event "cultivation work” from the resultant event "amount of change in cultivation parameters" by using the work estimation table like a reverse dictionary. For example, when a change in soil moisture content as shown in FIG. m2] of irrigation was carried out.
  • the implementation timing and amount are estimated as the results. obtained as.
  • the implementation timing is, for example, the date and time when the cultivation work was performed, and is typically equal to the date and time when a change appears in the value of the cultivation parameter.
  • the amount of implementation represents the degree of cultivation work, and in the example of FIG. 4C, corresponds to the amount of watering. Obtaining such an estimation result makes it possible for the user to understand when, what kind of cultivation work, and to what extent.
  • step S503 If the estimation result that cultivation work is present is obtained in step S502 (YES in step S503), the work record updating unit 15 updates the cultivation work record data in the cultivation work DB 14 based on the information on the estimated cultivation work. Update (step S504). Specifically, a work record including information such as the type of cultivation work, implementation timing (date and time), and amount of work performed is newly added to the cultivation work record data. At this time, it is preferable that a flag be attached to the work record to identify whether it is a user input work record or an estimated work record.
  • FIG. 4C merely shows an example of the work estimation table.
  • the definition of the amount of change and the work content may be designed as appropriate depending on the equipment and conditions of the field 20, the type of target crop P, etc.
  • a work estimation model created by machine learning such as deep learning may be used. For example, by performing supervised learning using experimental data in the field 20 or data observed in the past as teacher data, when the "amount of change in cultivation parameters" is given as input, "the amount of change in the cultivation ” can be created as an estimation result.
  • FIG. 6A is an example of data recording the LAI of the target crop P.
  • the LAI may be calculated from an image of the target crop P captured by the image sensor 22, or may be measured using an LAI sensor or the like.
  • FIG. 6B is an example of the amount of change in LAI calculated from the LAI time series data in FIG. 6A. As the crop grows, the number and size of leaves increase, so LAI typically increases monotonically. Therefore, when the LAI decreases, it can be considered that cultivation operations such as “attraction” and "defoliation” have been carried out.
  • FIG. 7A is an example of data recording the EC value of the soil of the target crop P.
  • the EC value can be measured with an EC sensor buried in the soil.
  • FIG. 7B is an example of the amount of change in the EC value calculated from the time series data of the EC value in FIG. 7A.
  • the EC value indicates the total amount of water-soluble salts in the soil, and has a positive correlation with the content of nitrogen fertilizer in the soil. Therefore, when the EC value increases significantly, it can be considered that additional fertilization has been performed.
  • FIG. 8A is an example of data recording outdoor temperature, indoor temperature, outdoor humidity, and indoor humidity in a greenhouse for the target crop P. These data can be measured by temperature and humidity sensors installed outside and inside the field 20, respectively.
  • FIG. 8B is an example of the amount of change in the indoor-outdoor temperature difference and the indoor-outdoor humidity difference calculated from the time-series data in FIG. 8A.
  • the indoor-outdoor temperature difference is the difference between indoor temperature and outdoor temperature
  • the indoor-outdoor humidity difference is the difference between indoor humidity and outdoor humidity.
  • the inside of the greenhouse at a temperature and humidity suitable for cultivating the target crop P at all times, so if the temperature or humidity of the outside air is inappropriate, close the windows of the greenhouse and use air conditioning equipment or a heating device to maintain the optimal temperature.
  • - Humidity is controlled, and if the temperature and humidity of the outside air are close to those suitable for cultivation, windows are opened to let in outside air. Therefore, if both the indoor-outdoor temperature difference and the indoor-outdoor humidity difference are small, the window can be considered open, and if at least either the indoor-outdoor temperature difference or the indoor-outdoor humidity difference is large, the window is closed.
  • FIG. 9A is an example of data recording outdoor temperature and indoor temperature in a greenhouse for target crop P. These data can be measured by temperature and humidity sensors installed outside and inside the field 20, respectively.
  • FIG. 9B is an example of the amount of change in the indoor-outdoor temperature difference calculated from the time series data of FIG. 9A.
  • the indoor-outdoor temperature difference is the difference between the indoor temperature and the outdoor temperature.
  • the temperature inside the greenhouse is always maintained at a temperature suitable for cultivating the target crop P, if the temperature of the outside air is too low, a warming machine is operated to raise the temperature inside the greenhouse. Therefore, if the temperature difference between indoor and outdoor becomes significantly large, it can be assumed that the warming machine has been operated. For example, by applying the data in FIG. 9B to the work estimation table in FIG. 9C, an estimated result such as "The warming machine was operated between 7:10 and 7:20 p.m. on January 19th" can be obtained. I can do it.
  • FIG. 10A is an example of data recording the amount of outdoor solar radiation and the amount of indoor solar radiation in a greenhouse for the target crop P. These data can be measured by illuminance sensors installed outside and inside the field 20, respectively.
  • FIG. 10B is an example of the amount of change in the difference between indoor and outdoor solar radiation calculated from the time series data of FIG. 10A. The difference between indoor and outdoor solar radiation is the difference between indoor and outdoor solar radiation.
  • the roof and outer walls of a house are generally made of translucent materials, and unless sunlight is blocked by a blackout curtain or the like, the difference between indoor and outdoor solar radiation is relatively small.
  • the light-blocking curtains are unfolded (closed), the value of the indoor solar radiation becomes much smaller than the outdoor solar radiation, so the difference between the indoor and outdoor solar radiation becomes large. Therefore, when the difference between indoor and outdoor solar radiation becomes significantly large, it can be considered that the light-blocking curtain has been deployed.
  • FIG. 10B by applying the data in FIG. 10B to the work estimation table in FIG. 10C, an estimated result of "100% of the blackout curtains were deployed between 12:00 a.m. and 12:10 a.m. on July 10th" is obtained. be able to.
  • FIG. 11A is an example of data recording the wind speed in the greenhouse of the target crop P. These data can be measured by a wind speed sensor installed inside the house. Note that in the examples cited so far, the cultivation work was estimated based on the amount of change in the cultivation parameters, whereas in the examples of FIGS. 11A and 11B, the cultivation work is estimated from the values of the cultivation parameters themselves.
  • the inside of a house is a closed space, so if there is nothing, there will be no air flow. Therefore, if you want to actively circulate air, a circulation fan is used.
  • the circulation fan when the wind speed is greater than the threshold value, it can be considered that the circulation fan is activated.
  • the data in FIG. 11A to the work estimation table in FIG. 11B, it is possible to obtain the estimated result "The circulation fan was operated between 9:00 a.m. and 9:10 a.m. on January 19th.” I can do it.
  • the timing and amount of pesticide spraying can be estimated based on the humidity inside the greenhouse measured by a humidity sensor, the pH of the soil of the target crop P measured by a pH sensor, etc. good.
  • the timing of CO2 fertilization by a CO2 fertilizer and the amount of fertilization may be estimated based on the CO2 concentration in the house measured by a CO2 sensor.
  • the lighting timing and amount of light of the artificial lighting device may be estimated based on the illuminance of the field measured by the illuminance sensor.
  • FIG. 12A is an example of a work history screen displayed on the user terminal 3 by the work history display unit 17.
  • the vertical axis indicates cultivation work items, and in the example of FIG. 12A, eight types of cultivation work are shown: irrigation, fertilization, attraction, leaf thinning, bud thinning, flower thinning, fruit thinning, and pesticide.
  • the horizontal axis is the date, and in the example of FIG. 12A, the history from January 1, 2022 to January 31, 2022 is shown.
  • the cell in which a rectangular icon is displayed on this work history screen is the date on which the work was performed. For example, it can be seen that irrigation work was carried out four times on January 5th, 11th, 20th, and 26th, and fertilization was also carried out on January 11th, 20th, and 26th.
  • a black rectangular icon indicates a user input work record
  • a hatched rectangular icon indicates an estimated work record.
  • a black rectangular icon is displayed in cells where a user input work record exists, and a hatched rectangular icon is displayed only in cells where no user input work record exists. That is, when both a user input work record and an estimated work record exist, the user input work record is displayed preferentially.
  • User input is more reliable, and when the estimation results from the cultivation support system 1 are used in an auxiliary manner (for example, to supplement missing records), a display like that shown in FIG. 12A is preferable.
  • FIG. 12B is another example of the work history screen.
  • the screen in FIG. 12B is characterized in that it displays both the user input work record and the estimated work record.
  • a hatched rectangular icon displayed at the top of the cell indicates an estimated work record, and a black rectangular icon displayed at the bottom of the cell indicates a user input work record. According to such a screen display, it is possible to immediately recognize locations where the user has forgotten to input work records (watering and fertilization on January 20th, leaf removal on January 13th).
  • FIG. 13A is an example of a work record detailed information screen that is displayed when a rectangular icon is selected on the work history screen.
  • the detailed information screen displays, for example, the type of cultivation work, the timing (date and time) of performing the work, the amount of work performed, the name of the user who entered the work record, and the like.
  • the modify button By pressing the modify button, the contents of the work record (for example, implementation date, implementation time, amount of work, etc.) can be modified on this screen (user interface).
  • the delete button is pressed, this work record is deleted from the cultivation work record data.
  • the "estimated" label is displayed instead of the user name. Such a display allows the user to determine whether the work record is based on user input or estimated information.
  • FIG. 13C is an example of a screen that is displayed when there is a difference in recorded content between the estimated work record and the corresponding user input work record.
  • the user can compare the estimated work record and the user input work record and select the correct one. Furthermore, by pressing the modify button, it is also possible to modify the contents of the selected work record.
  • the cultivation support system 1 detects that there is a discrepancy between the estimated work record and the user input work record, it notifies the user terminal 3 of an alert and prompts the user to check the work history screen and correct the work record. It's okay.
  • the work proposal unit 16 reads the cultivation work record data of the target crop P from the cultivation work DB 14 periodically or at the timing when the cultivation work DB 14 is updated. Then, the work proposal unit 16 creates a future work plan for the target crop P (for example, the implementation date and amount of work for the next work, etc.) based on the cultivation work performed in the past, and provides the information to the user. suggest.
  • a future work plan for the target crop P for example, the implementation date and amount of work for the next work, etc.
  • FIG. 14A shows an example of the work determination table referred to by the work proposal unit 16.
  • the work determination table in FIG. 14A defines logic (rules) for determining the timing and amount of the next irrigation work based on the most recent amount of watering. For example, if 3L/m2 of irrigation was carried out on January 26th, the next irrigation work should be carried out at 3L/m2 on January 31st, five days later.
  • FIG. 14B is an example of work advice displayed on the user terminal 3.
  • the cultivation support system 1 of the present embodiment acquires cultivation parameters based on measurement information of an environmental sensor, analyzes time-series data of cultivation parameters, estimates cultivation operations performed in the past, and obtains the estimated results. Cultivation work record data can be updated based on. This allows the cultivation work that has been performed to be automatically recorded, thereby reducing the burden on the user. Furthermore, since omissions and mistakes in work records can be cured or prevented, the reliability of cultivation work record data can be improved. By utilizing highly reliable cultivation work record data and presenting work history and work advice to the user, it becomes possible to provide useful and beneficial support information.
  • the cultivation support system 1 of the embodiment described above collects the measurement information of the environmental sensor via the cultivation environment control system 2
  • the cultivation support system 1 may collect the measurement information directly from the environmental sensor.
  • the cultivation support system 1 of the embodiment described above performs both user input and estimation based on cultivation parameters, the user input is not essential. For example, all work records may be automatically recorded by estimation based on cultivation parameters, and the user may input input only when an error in estimation occurs or when adding or correcting information. .
  • Cultivation parameter acquisition means (10) for acquiring cultivation parameters that are indicators related to cultivation of the target crop (P); Estimating means (13) for estimating cultivation work performed by the user in the past on the target crop (P) based on the cultivation parameters; Cultivation work storage means (14) for storing cultivation work record data that is a record of cultivation work performed on the target crop (P); Work record updating means (15) for updating the cultivation work record data based on the cultivation work information estimated by the estimation means (13);
  • a cultivation support system (1) comprising:
  • a cultivation support method having
  • Cultivation support system 2 Cultivation environment control system 3: User terminal 21: Soil moisture sensor 22: Image sensor 23: Temperature and humidity sensor 24: Irrigation device 25: Air conditioning equipment 26: Switch MS: Cultivation management system P: Target crop

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Husbandry (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

This cultivation assistance system comprises: a cultivation parameter acquisition means for acquiring a cultivation parameter, which is an index relating to cultivation of a target crop; an estimation means for estimating, on the basis of the cultivation parameter, cultivation work performed by a user in the past with respect to the target crop; a cultivation work storage means for storing cultivation work record data, which is a record of cultivation work performed with respect to the target crop; and a work record updating means for updating the cultivation work record data on the basis of information about the cultivation work estimated by the estimation means.

Description

栽培支援システムCultivation support system
 本発明は、栽培支援システムに関する。 The present invention relates to a cultivation support system.
 ロボット、ICT(Information and Communication Technology)、AI(人工知能)、IoT(Internet of Things)などの先端技術を活用して作物の栽培作業を支援し、農業の自動化・省人化や高品質生産などを可能にする取り組みが注目を集めている。このような技術は、スマート農業、スマートアグリ(Smart Agri)、アグテック(AgTech)、アグリオートメーション(Agri Automation)などと呼ばれる。 Utilizing cutting-edge technologies such as robots, ICT (Information and Communication Technology), AI (Artificial Intelligence), and IoT (Internet of Things), we support crop cultivation work and promote agricultural automation, labor savings, and high-quality production. Efforts to make this possible are attracting attention. Such technologies are called smart agriculture, smart agri, agtech, agri automation, etc.
 特許文献1には、アスパラガスなどの作物を栽培する圃場において、実施した作業(農薬散布、収穫など)の位置と結果の情報をデータベースに記録し、その作業記録を将来の作業の予測や消費者への情報提供などに利用するシステムが提案されている。 Patent Document 1 discloses that in a field where crops such as asparagus are cultivated, information on the location and results of work performed (spraying pesticides, harvesting, etc.) is recorded in a database, and the work records are used to predict future work and consumption. A system has been proposed that can be used to provide information to people.
国際公開第2018/211621号International Publication No. 2018/211621
 特許文献1のシステムのように、過去に実施された作業の情報を活用するシステムにおいては、過去の作業内容が漏れなく且つ正しく記録されていることが極めて重要である。例えば、過去の潅水記録に基づいて次回の作業計画(実施日、潅水量など)を決定しようとしたときに、もしも直近に実施した潅水作業が記録されていなかったり、記録の内容に間違いがあったりすると、誤った作業計画をたててしまい、潅水の過剰又は不足が発生する可能性がある。 In a system that utilizes information on work performed in the past, such as the system in Patent Document 1, it is extremely important that the contents of past work are completely and correctly recorded. For example, when trying to determine the next work plan (implementation date, amount of water, etc.) based on past irrigation records, if the most recently performed irrigation work is not recorded or there is an error in the contents of the record. Doing so may lead to incorrect work planning, which may result in over- or under-irrigation.
 ロボットなどにより自動化されている作業については過去の作業内容も自動で記録することができるため、上記のような作業記録の漏れや間違いを防止することは技術的に可能ではある。しかしながら、現実の農場においてはヒトが行う作業も多く存在し、システム上で都度、ヒトが作業記録を入力する必要があるのが実情である。そのようなヒト依存の部分が残っていることから、作業記録の漏れ、記録内容の間違いなどの問題はなくならない。また、作業実施後にすみやかに作業記録を入力することが理想であるが、作業者によっては数日分や数週間分をまとめて入力するなど、入力の遅延も問題となる。 For work that is automated by robots, etc., past work details can be automatically recorded, so it is technically possible to prevent omissions and mistakes in work records as described above. However, in actual farms, many tasks are performed by humans, and the reality is that humans need to input work records into the system each time. Because such human-dependent aspects remain, problems such as omissions in work records and errors in recorded contents persist. In addition, although it is ideal to input work records promptly after performing a task, delays in input can also be a problem, as some workers input data for several days or weeks at once.
 本発明は上記実情に鑑みてなされたものであり、過去に実施した栽培作業の記録を支援するための技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to provide a technology for supporting the recording of cultivation operations performed in the past.
 本開示は、対象作物の栽培に関連する指標である栽培パラメータを取得する栽培パラメータ取得手段と、前記栽培パラメータに基づいて、前記対象作物に対して過去にユーザにより実施された栽培作業を推定する推定手段と、前記対象作物に対して実施された栽培作業の記録である栽培作業記録データを記憶する栽培作業記憶手段と、前記推定手段により推定された栽培作業の情報に基づいて、前記栽培作業記録データを更新する作業記録更新手段と、を備える栽培支援システムを含む。 The present disclosure includes a cultivation parameter acquisition unit that acquires cultivation parameters that are indicators related to cultivation of a target crop, and estimates cultivation operations performed by a user on the target crop in the past based on the cultivation parameters. an estimation means; a cultivation work storage means for storing cultivation work record data that is a record of cultivation work performed on the target crop; The cultivation support system includes a work record updating means for updating record data.
 前記栽培パラメータ取得手段は、センサによって測定された情報、又は、外部装置から入力される情報に基づいて、前記栽培パラメータを取得してもよい。 The cultivation parameter acquisition means may acquire the cultivation parameters based on information measured by a sensor or information input from an external device.
 前記栽培パラメータは、前記対象作物の外形に関する指標、前記対象作物の生育状態に関する指標、又は、前記対象作物の栽培環境に関する指標を含んでもよい。 The cultivation parameters may include an index regarding the external shape of the target crop, an index regarding the growth state of the target crop, or an index regarding the cultivation environment of the target crop.
 前記推定手段は、所定の期間に蓄積された前記栽培パラメータの時系列データを分析することによって、前記対象作物に対して過去にユーザにより実施された栽培作業を推定してもよい。 The estimating means may estimate the cultivation work performed by the user on the target crop in the past by analyzing time-series data of the cultivation parameters accumulated over a predetermined period.
 前記栽培作業記録データは、少なくとも栽培作業の実施タイミングと実施量の情報を含んでいてもよい。 The cultivation work record data may include at least information on the implementation timing and amount of cultivation work.
 前記栽培支援システムは、前記栽培作業記録データに基づいて、前記対象作物に対する今後の作業計画を作成し、前記今後の作業計画をユーザに提案する作業提案手段をさらに備えてもよい。 The cultivation support system may further include a work proposal unit that creates a future work plan for the target crop based on the cultivation work record data and proposes the future work plan to the user.
 前記栽培作業記録データは、ユーザによって入力された栽培作業の情報であるユーザ入力作業記録と、前記推定手段により推定された栽培作業の情報である推定作業記録と、を含んでもよい。前記作業記録更新手段は、前記推定作業記録に対応するユーザ入力作業記録が前記栽培作業記録データに存在するか否かを判定し、対応するユーザ入力作業記録が存在しない場合に、前記推定作業記録を前記栽培作業記録データに追加してもよい。 The cultivation work record data may include a user input work record that is information on the cultivation work input by the user, and an estimated work record that is information on the cultivation work estimated by the estimation means. The work record updating means determines whether or not a user input work record corresponding to the estimated work record exists in the cultivation work record data, and when the corresponding user input work record does not exist, the estimated work record is updated. may be added to the cultivation work record data.
 前記栽培作業記録データは、ユーザによって入力された栽培作業の情報であるユーザ入力作業記録と、前記推定手段により推定された栽培作業の情報である推定作業記録と、を含んでもよい。前記作業記録更新手段は、前記推定作業記録に対応するユーザ入力作業記録が前記栽培作業記録データに存在するか否かを判定し、対応するユーザ入力作業記録が存在するが、対応するユーザ入力作業記録と前記推定作業記録との間に相違がある場合に、前記推定作業記録により前記栽培作業記録データを修正するか、又は、ユーザ入力作業記録と推定作業記録との間に相違がある旨を出力してもよい。 The cultivation work record data may include a user input work record that is information on the cultivation work input by the user, and an estimated work record that is information on the cultivation work estimated by the estimation means. The work record updating means determines whether or not a user input work record corresponding to the estimated work record exists in the cultivation work record data, and determines whether or not a corresponding user input work record exists, but the corresponding user input work record does not exist. If there is a discrepancy between the record and the estimated work record, the cultivation work record data is corrected by the estimated work record, or the user is informed that there is a discrepancy between the user input work record and the estimated work record. You can also output it.
 前記栽培支援システムは、前記栽培作業記録データに基づいて、前記対象作物に対して実施された栽培作業の履歴を表す作業履歴画面を生成し表示する作業履歴表示手段をさらに備えてもよい。 The cultivation support system may further include a work history display unit that generates and displays a work history screen representing a history of cultivation work performed on the target crop based on the cultivation work record data.
 前記作業履歴表示手段は、ユーザ入力作業記録と推定作業記録とが区別可能となるように前記作業履歴画面を生成してもよい。 The work history display means may generate the work history screen so that user input work records and estimated work records can be distinguished.
 前記作業履歴表示手段は、前記作業履歴画面上で栽培作業の入力又は修正を可能とするユーザインターフェイスを提供してもよい。 The work history display means may provide a user interface that allows cultivation work to be input or modified on the work history screen.
 本開示は、コンピュータが、対象作物の栽培に関連する指標である栽培パラメータを取得するステップと、コンピュータが、前記栽培パラメータに基づいて、前記対象作物に対して過去にユーザにより実施された栽培作業を推定するステップと、コンピュータが、推定された栽培作業の情報に基づいて、前記対象作物に対して実施された栽培作業の記録である栽培作業記録データを更新するステップと、を有する栽培支援方法を含む。 The present disclosure includes a step in which a computer acquires a cultivation parameter that is an index related to cultivation of a target crop, and a step in which the computer acquires a cultivation operation performed by a user on the target crop in the past based on the cultivation parameter. A cultivation support method comprising the steps of: estimating the estimated cultivation operation information; and updating cultivation operation record data, which is a record of cultivation operations carried out on the target crop, based on the estimated cultivation operation information. including.
 本開示は、上記栽培支援方法の各ステップをコンピュータに実行させるためのプログラムを含む。 The present disclosure includes a program for causing a computer to execute each step of the cultivation support method described above.
 本発明は、上記手段の少なくとも一部を有する栽培支援システム、栽培作業記録システム、栽培作業推定システムなどとして捉えてもよいし、そのようなシステムの一部を構成する情報処理装置や、そのようなシステムと組み合わせて用いられる情報処理装置として捉えてもよい。また、本発明は、かかるシステムを有する栽培管理システム、栽培設備、栽培施設、圃場などと捉えてもよい。また、本発明は、上記処理の少なくとも一部を含む栽培支援方法、栽培支援システムの制御方法、栽培作業記録方法、栽培推定方法、栽培方法などとして捉えてもよい。また、本発明は、かかる方法を実現するためのプログラムやそのプログラムを非一時的に記録した記録媒体(記憶媒体)として捉えることもできる。なお、上記手段および処理の各々は可能な限り互いに組み合せて本発明を構成することができる。 The present invention may be understood as a cultivation support system, a cultivation work recording system, a cultivation work estimation system, etc., which have at least a part of the above means, or an information processing device that constitutes a part of such a system. It may also be viewed as an information processing device used in combination with other systems. Furthermore, the present invention may also be understood as a cultivation management system, cultivation equipment, cultivation facility, field, etc. that include such a system. Further, the present invention may be understood as a cultivation support method, a cultivation support system control method, a cultivation work recording method, a cultivation estimation method, a cultivation method, etc., including at least a part of the above processing. Further, the present invention can also be understood as a program for realizing such a method and a recording medium (storage medium) on which the program is recorded non-temporarily. Note that each of the above means and processes can be combined to the extent possible to constitute the present invention.
 本発明によれば、過去に実施した栽培作業の記録を支援することが可能となる。 According to the present invention, it is possible to support recording of cultivation operations performed in the past.
図1は、栽培管理システムの全体像を示す図である。FIG. 1 is a diagram showing the overall picture of the cultivation management system. 図2は、栽培支援システムの構成を示す図である。FIG. 2 is a diagram showing the configuration of the cultivation support system. 図3は、栽培パラメータの収集処理のフローチャートである。FIG. 3 is a flowchart of cultivation parameter collection processing. 図4Aは、栽培パラメータ(土壌水分量)の時系列データの一例である。図4Bは、栽培パラメータの変化量の一例である。図4Cは、作業推定テーブルの一例である。FIG. 4A is an example of time series data of cultivation parameters (soil moisture content). FIG. 4B is an example of the amount of change in cultivation parameters. FIG. 4C is an example of a work estimation table. 図5は、栽培作業の推定処理のフローチャートである。FIG. 5 is a flowchart of the cultivation work estimation process. 図6Aは、栽培パラメータ(LAI)の時系列データの一例である。図6Bは、栽培パラメータの変化量の一例である。図6Cは、作業推定テーブルの一例である。FIG. 6A is an example of time-series data of cultivation parameters (LAI). FIG. 6B is an example of the amount of change in cultivation parameters. FIG. 6C is an example of a work estimation table. 図7Aは、栽培パラメータ(EC値)の時系列データの一例である。図7Bは、栽培パラメータの変化量の一例である。図7Cは、作業推定テーブルの一例である。FIG. 7A is an example of time-series data of cultivation parameters (EC values). FIG. 7B is an example of the amount of change in cultivation parameters. FIG. 7C is an example of a work estimation table. 図8Aは、栽培パラメータ(屋内外温度、屋内外湿度)の時系列データの一例である。図8Bは、栽培パラメータの変化量の一例である。図8Cは、作業推定テーブルの一例である。FIG. 8A is an example of time-series data of cultivation parameters (indoor/outdoor temperature, indoor/outdoor humidity). FIG. 8B is an example of the amount of change in cultivation parameters. FIG. 8C is an example of a work estimation table. 図9Aは、栽培パラメータ(屋内外温度)の時系列データの一例である。図9Bは、栽培パラメータの変化量の一例である。図9Cは、作業推定テーブルの一例である。FIG. 9A is an example of time-series data of cultivation parameters (indoor and outdoor temperatures). FIG. 9B is an example of the amount of change in cultivation parameters. FIG. 9C is an example of a work estimation table. 図10Aは、栽培パラメータ(屋内外日射量)の時系列データの一例である。図10Bは、栽培パラメータの変化量の一例である。図10Cは、作業推定テーブルの一例である。FIG. 10A is an example of time-series data of cultivation parameters (indoor and outdoor solar radiation). FIG. 10B is an example of the amount of change in cultivation parameters. FIG. 10C is an example of a work estimation table. 図11Aは、栽培パラメータ(風速)の時系列データの一例である。図11Bは、作業推定テーブルの一例である。FIG. 11A is an example of time series data of cultivation parameters (wind speed). FIG. 11B is an example of a work estimation table. 図12A及び図12Bは、作業履歴画面の一例である。12A and 12B are examples of work history screens. 図13A~図13Cは、作業記録の詳細情報画面の一例である。13A to 13C are examples of detailed information screens for work records. 図14Aは、作業決定テーブルの一例である。図14Bは、作業アドバイスの一例である。FIG. 14A is an example of a work determination table. FIG. 14B is an example of work advice.
 <適用例>
 図1は、栽培管理システムの全体像を模式的に示している。栽培管理システムMSは、栽培の対象となる作物(以下、対象作物Pと記す。)の栽培作業の管理及び支援を行うためのシステムであり、主な構成として、栽培環境制御システム2と栽培支援システム1とユーザ端末3を備える。
<Application example>
FIG. 1 schematically shows the overall picture of the cultivation management system. The cultivation management system MS is a system for managing and supporting the cultivation work of crops to be cultivated (hereinafter referred to as target crops P), and its main components include a cultivation environment control system 2 and cultivation support. It includes a system 1 and a user terminal 3.
 栽培環境制御システム2は、対象作物Pの圃場20(ハウスなど)に設置された複数の環境センサを用いて対象作物Pの栽培環境に関わる各種の情報を取得する機能(環境モニタリング機能)と、圃場20に設置された栽培設備を制御する機能(環境コントロール機能)とを有している。環境センサには、例えば、対象作物Pの畝に埋設された土壌水分センサ21、対象作物Pを撮影する画像センサ(カメラ)22、圃場20内の温度や湿度を測定する温湿度センサ23などがある。その他にも、環境センサとしては、EC(電気伝導度)センサ、照度センサ、風速センサ、pHセンサ、CO2センサ、LAIセンサなどを用いてもよい。制御対象となる栽培設備には、潅水装置24、空調設備25、窓や遮光カーテンの開閉器26などがある。その他にも、栽培設備としては、施肥装置、照明装置、農薬散布装置、循環扇、加温機などを用いてもよい。栽培設備の制御の方法には、栽培環境制御システム2が環境モニタリングの結果に応じて最適な環境条件となるよう自動的・適応的に栽培設備を制御する完全自動制御と、ユーザからの指示に従って栽培設備を制御する半自動制御とがある。例えば、温湿度センサ23で測定された温度が最適範囲から外れた場合に自動で窓の開閉や空調の温度設定を変更するような制御は前者に該当し、ユーザが潅水の実施タイミングと潅水量の指示を栽培環境制御システム2に与え、栽培環境制御システム2がその指示に従って潅水装置24を作動させるような制御は後者に該当する。 The cultivation environment control system 2 has a function (environment monitoring function) of acquiring various information related to the cultivation environment of the target crop P using a plurality of environmental sensors installed in the field 20 (house etc.) of the target crop P, It has a function to control the cultivation equipment installed in the field 20 (environmental control function). The environmental sensors include, for example, a soil moisture sensor 21 buried in a ridge of the target crop P, an image sensor (camera) 22 that photographs the target crop P, a temperature and humidity sensor 23 that measures the temperature and humidity in the field 20, and the like. be. In addition, as the environmental sensor, an EC (electrical conductivity) sensor, an illuminance sensor, a wind speed sensor, a pH sensor, a CO2 sensor, an LAI sensor, etc. may be used. Cultivation equipment to be controlled includes an irrigation system 24, an air conditioning system 25, a switch 26 for windows and blackout curtains, and the like. In addition, as cultivation equipment, a fertilizing device, a lighting device, a pesticide spraying device, a circulation fan, a warming machine, etc. may be used. The method of controlling the cultivation equipment includes fully automatic control in which the cultivation environment control system 2 automatically and adaptively controls the cultivation equipment to achieve the optimal environmental conditions according to the results of environmental monitoring, and a method in which the cultivation environment control system 2 automatically and adaptively controls the cultivation equipment according to instructions from the user. There is semi-automatic control that controls cultivation equipment. For example, a control that automatically opens/closes a window or changes the temperature setting of an air conditioner when the temperature measured by the temperature/humidity sensor 23 deviates from the optimal range falls under the former category, and the user can control the timing and amount of watering. Control in which an instruction is given to the cultivation environment control system 2 and the cultivation environment control system 2 operates the irrigation device 24 in accordance with the instruction corresponds to the latter.
 栽培環境制御システム2は、定期的もしくは必要なタイミングで、環境データを栽培支援システム1に送信する。環境データは、例えば、環境センサによって測定された環境情報、栽培設備の制御のログなどを含むとよい。 The cultivation environment control system 2 transmits environmental data to the cultivation support system 1 periodically or at necessary timing. The environmental data may include, for example, environmental information measured by an environmental sensor, control logs of cultivation equipment, and the like.
 栽培支援システム1は、対象作物Pの栽培に関わる情報を収集・管理し、ユーザに対して様々な支援サービスを提供するシステムである。栽培支援システム1は、対象作物Pに対して実施された栽培作業の記録である栽培作業記録データを記憶する栽培作業データベース(以下「栽培作業DB」と記す。)を有している。栽培作業には、例えば、潅水、施肥(追肥)、誘引、摘葉、摘芽、摘花、摘果、農薬散布、窓開閉、加温機操作、遮光カーテン開閉、循環扇操作、照明操作など様々な作業がある。対象作物Pの種類や栽培管理システムMSの構成などに依存して実施する栽培作業が異なり得るため、記録の対象とする栽培作業の種類は、システムの構成や適用範囲に応じて適宜設計すればよい。 The cultivation support system 1 is a system that collects and manages information related to the cultivation of target crops P, and provides various support services to users. The cultivation support system 1 has a cultivation operation database (hereinafter referred to as "cultivation operation DB") that stores cultivation operation record data that is a record of cultivation operations performed on the target crop P. Cultivation operations include various tasks such as irrigation, fertilization (additional fertilization), attraction, leaf removal, bud removal, flower thinning, fruit thinning, pesticide spraying, window opening/closing, warming machine operation, blackout curtain opening/closing, circulation fan operation, lighting operation, etc. be. Since the cultivation operations to be performed may differ depending on the type of target crop P and the configuration of the cultivation management system MS, the types of cultivation operations to be recorded should be designed as appropriate depending on the system configuration and scope of application. good.
 ユーザが対象作物Pに対して何らかの栽培作業を実施したら、原則として、ユーザ自らユーザ端末3を操作し、実施した栽培作業の情報(実施タイミング、実施量など)を入力する。ユーザによって入力された作業記録(「ユーザ入力作業記録」と呼ぶ。)は、栽培支援システム1に送信され栽培作業DBに保存される。ユーザは、ユーザ端末3から栽培支援システム1にアクセスすることで、栽培作業DBに蓄積された過去の作業履歴を閲覧したり、栽培支援システム1により生成された作業アドバイス(次に実施すべき栽培作業のレコメンドなど)の提供を受けることができる。これらの支援情報は、ユーザが今後の作業計画を立てる際の参考となる。 When the user performs some kind of cultivation work on the target crop P, in principle, the user himself/herself operates the user terminal 3 and inputs information about the performed cultivation work (implementation timing, amount of work, etc.). A work record input by the user (referred to as a "user input work record") is transmitted to the cultivation support system 1 and stored in the cultivation work DB. By accessing the cultivation support system 1 from the user terminal 3, the user can view the past work history accumulated in the cultivation work DB, or receive work advice generated by the cultivation support system 1 (cultivation to be performed next). (recommendations for work, etc.). This support information serves as a reference when the user plans future work.
 栽培支援システム1により有益な支援情報を適時に提供するためには、栽培作業DBに過去の栽培作業が漏れなく且つ正しい内容で記録されることが望まれる。しかしながら、作業記録の入力をユーザに委ねていると、作業記録の漏れ、記録内容の間違い、入力の遅延などの問題が少なからず発生してしまう。そこで、栽培支援システム1は、栽培環境制御システム2から収集した環境データ(特に、環境センサによって測定された環境情報)に基づいて、対象作物Pに対して過去に実施された栽培作業を推定し、その推定結果に基づいて栽培作業DBの栽培作業記録データを更新する機能をもつ。例えば、栽培支援システム1は、環境データから推定した栽培作業の情報(「推定作業記録」と呼ぶ。)と対応するユーザ入力作業記録が栽培作業DB内の栽培作業記録データに存在するか否かを判定し、対応するユーザ入力作業記録が存在しない場合に、推定作業記録を栽培作業記録データに追加してもよい。また、栽培支援システム1は、推定作業記録に対応するユーザ入力作業記録が存在するが、対応するユーザ入力作業記録と推定作業記録との間に相違がある場合に、推定作業記録により栽培作業記録データを修正するか、又は、ユーザ入力作業記録と推定作業記録との間に相違がある旨をユーザに通知してもよい。このような機能により、ユーザの記録漏れを補完したり、記録内容の間違いを是正することができるため、栽培作業の記録にかかるユーザの負荷を軽減できる。また、栽培作業記録データそのものの信頼性を高めることができ、より有益且つ高度な支援情報の提供が可能となるものと期待できる。 In order to provide useful support information in a timely manner by the cultivation support system 1, it is desirable that all past cultivation operations be recorded in the cultivation operation DB with correct contents. However, if the input of work records is left to the user, many problems such as omissions in work records, errors in recorded contents, and input delays occur. Therefore, the cultivation support system 1 estimates the cultivation operations performed in the past on the target crop P based on the environmental data (especially the environmental information measured by the environmental sensor) collected from the cultivation environment control system 2. , has a function of updating the cultivation work record data in the cultivation work DB based on the estimation results. For example, the cultivation support system 1 determines whether a user input work record corresponding to cultivation work information estimated from environmental data (referred to as "estimated work record") exists in the cultivation work record data in the cultivation work DB. , and if there is no corresponding user-input work record, the estimated work record may be added to the cultivation work record data. In addition, if there is a user input work record corresponding to the estimated work record, but there is a difference between the corresponding user input work record and the estimated work record, the cultivation support system 1 records the cultivation work using the estimated work record. The data may be modified or the user may be notified of a discrepancy between the user input work record and the estimated work record. With such a function, it is possible to compensate for omissions in the user's records and correct mistakes in the recorded contents, so the burden on the user in recording cultivation work can be reduced. Furthermore, it is possible to improve the reliability of the cultivation work record data itself, and it is expected that it will be possible to provide more useful and advanced support information.
 なお、上述した栽培支援システム1では、ユーザによる作業記録の入力と、栽培支援システム1による作業記録の推定を併用したが、栽培支援システム1の推定精度が十分高い場合には、ユーザによる作業記録の入力は原則不要としてもよい。実施した栽培作業の情報がすべて自動で記録されるようにすることで、栽培作業の記録にかかるユーザの負荷を実質的にゼロにでき、ユーザの利便性を向上することができる。 In addition, in the cultivation support system 1 described above, the input of the work record by the user and the estimation of the work record by the cultivation support system 1 are combined, but if the estimation accuracy of the cultivation support system 1 is sufficiently high, the work record by the user In principle, the input may not be necessary. By automatically recording all the information about the cultivation operations performed, the user's burden on recording the cultivation operations can be reduced to substantially zero, and the user's convenience can be improved.
 <栽培支援システムの構成>
 図2を参照して、栽培支援システム1の実施形態を説明する。
<Cultivation support system configuration>
An embodiment of the cultivation support system 1 will be described with reference to FIG. 2.
 栽培支援システム1は、栽培パラメータ取得部10、栽培パラメータ記憶部11、栽培作業推定ロジック記憶部12、栽培作業推定部13、栽培作業DB14、作業記録更新部15、作業提案部16、作業履歴表示部17を有する。 The cultivation support system 1 includes a cultivation parameter acquisition section 10, a cultivation parameter storage section 11, a cultivation work estimation logic storage section 12, a cultivation work estimation section 13, a cultivation work DB 14, a work record update section 15, a work proposal section 16, and a work history display. It has a section 17.
 栽培パラメータ取得部10は、対象作物Pの栽培に関連する指標(「栽培パラメータ」と称する。)を取得する栽培パラメータ取得手段としての機能を有する。栽培パラメータ記憶部11は、栽培パラメータ取得部10により収集された栽培パラメータの時系列データを記憶する機能を有する。栽培作業推定ロジック記憶部12は、栽培作業と栽培パラメータの因果関係を示す作業推定テーブルを記憶する機能を有する。栽培作業推定部13は、栽培パラメータに基づいて、対象作物Pに対して過去に実施された栽培作業を推定する推定手段としての機能を有する。栽培作業DB14は、対象作物Pに対して実施された栽培作業の記録である栽培作業記録データを記憶する栽培作業記憶手段としての機能を有する。作業記録更新部15は、栽培作業推定部13により推定された栽培作業の情報に基づいて、栽培作業DB14内の栽培作業記録データを更新する作業記録更新手段としての機能を有する。作業提案部16は、栽培作業DB14内の栽培作業記録データに基づいて、対象作物Pに対する今後の作業計画を作成し、作業アドバイスをユーザに提案する作業提案手段としての機能を有する。作業履歴表示部17は、栽培作業DB14内の栽培作業記録データに基づいて、対象作物Pに対して実施された栽培作業の履歴を表す作業履歴画面を生成し、ユーザ端末3に表示する作業履歴表示手段としての機能を有する。 The cultivation parameter acquisition unit 10 has a function as a cultivation parameter acquisition means that acquires indicators related to cultivation of the target crop P (referred to as "cultivation parameters"). The cultivation parameter storage unit 11 has a function of storing time-series data of cultivation parameters collected by the cultivation parameter acquisition unit 10. The cultivation work estimation logic storage unit 12 has a function of storing a work estimation table showing the causal relationship between cultivation work and cultivation parameters. The cultivation work estimating unit 13 has a function as an estimation means for estimating the cultivation work performed on the target crop P in the past based on the cultivation parameters. The cultivation work DB 14 has a function as a cultivation work storage means for storing cultivation work record data that is a record of cultivation work performed on the target crop P. The work record updating unit 15 has a function as a work record updating unit that updates the cultivation work record data in the cultivation work DB 14 based on the information on the cultivation work estimated by the cultivation work estimating unit 13. The work proposal unit 16 has a function as a work proposal means that creates a future work plan for the target crop P based on the cultivation work record data in the cultivation work DB 14 and proposes work advice to the user. The work history display unit 17 generates a work history screen representing the history of cultivation work performed on the target crop P based on the cultivation work record data in the cultivation work DB 14, and displays the work history screen on the user terminal 3. It has a function as a display means.
 栽培支援システム1は、例えば、プロセッサ(CPU、GPUなど)、メモリ(主記憶装置)、ストレージ(補助記憶装置)、通信I/Fなどのハードウェア資源を備えるコンピュータにより構成することができる。この場合、図2に示す機能は、ストレージに格納されたプログラムをメモリに展開し、プロセッサが当該プログラムを実行することにより、ソフトウェア的に実現される。栽培支援システム1は、一台のコンピュータで構成してもよいし、分散コンピューティングやクラウドコンピューティングなどの技術を利用して構成されてもよい。また、図2に示す機能の一部又は全部をASICやFPGAなどの回路で実現してもよい。あるいは、図2に示す機能の一部を栽培環境制御システム2又はユーザ端末3に持たせてもよい。 The cultivation support system 1 can be configured, for example, by a computer equipped with hardware resources such as a processor (CPU, GPU, etc.), memory (main storage), storage (auxiliary storage), and communication I/F. In this case, the functions shown in FIG. 2 are implemented in software by loading a program stored in storage into memory and causing a processor to execute the program. The cultivation support system 1 may be configured with one computer, or may be configured using techniques such as distributed computing and cloud computing. Further, part or all of the functions shown in FIG. 2 may be realized by a circuit such as an ASIC or an FPGA. Alternatively, some of the functions shown in FIG. 2 may be provided in the cultivation environment control system 2 or the user terminal 3.
 <栽培支援システムの動作>
 次に、栽培支援システム1の動作の一例を説明する。
<Operation of cultivation support system>
Next, an example of the operation of the cultivation support system 1 will be explained.
 (栽培パラメータの収集)
 図3は、栽培パラメータの収集処理のフローチャートである。図3の処理は、栽培パラメータ取得部10によって、定期的に、又は、栽培環境制御システム2から環境データを受信する度に実行される。
(Collection of cultivation parameters)
FIG. 3 is a flowchart of cultivation parameter collection processing. The process in FIG. 3 is executed by the cultivation parameter acquisition unit 10 periodically or every time environmental data is received from the cultivation environment control system 2.
 ステップS300において、栽培パラメータ取得部10は、栽培環境制御システム2から送られた環境データを受信する。環境データには、環境センサにより得られた測定情報(センサから出力されるセンシングデータ(生データ)でもよいし、センシングデータから加工ないし抽出された情報でもよい。)、栽培設備の制御のログなどが含まれる。受信した環境データは、メモリ又はストレージに一時的に記憶される。 In step S300, the cultivation parameter acquisition unit 10 receives the environmental data sent from the cultivation environment control system 2. Environmental data includes measurement information obtained by environmental sensors (sensing data (raw data) output from sensors, or information processed or extracted from sensing data), cultivation equipment control logs, etc. is included. The received environmental data is temporarily stored in memory or storage.
 ステップS301において、栽培パラメータ取得部10は、ステップS300で得られた環境センサの測定情報を基に、栽培パラメータを取得する。栽培パラメータとしては、対象作物Pの栽培に関連する指標であれば、どのような指標を用いてもよい。例えば、対象作物Pの外形に関する指標、対象作物Pの生育状態に関する指標、対象作物Pの栽培環境(土壌や対象作物Pを取り巻く空間(ハウス内外含む)の状態など)に関する指標などが、栽培パラメータに該当し得る。具体例として、土壌水分量、LAI(Leaf Area Index:葉面積指数)、花数、実数、EC値(電気伝導度)、屋外温度、屋内温度、屋外湿度、屋内湿度、屋外日射量、屋内日射量、風速、土壌pH、CO2濃度、照度などを栽培パラメータの例として挙げることができる。栽培パラメータは、人の手入力に依存せずに取得可能な情報であるとよい。環境センサの測定情報から直接的又は間接的に抽出される情報が好ましいが、他にも、環境データに含まれる栽培設備の制御のログのように、外部装置から入力される各種の情報から栽培パラメータを抽出してもよい。栽培パラメータ取得部10は、これら全ての指標を取得する必要はなく、対象作物Pの種類や栽培環境制御システム2及び圃場20の構成などに応じて、利用する栽培パラメータを適宜設計すればよい。 In step S301, the cultivation parameter acquisition unit 10 acquires cultivation parameters based on the measurement information of the environmental sensor obtained in step S300. Any index may be used as the cultivation parameter as long as it is related to cultivation of the target crop P. For example, indicators related to the external shape of the target crop P, indicators related to the growth condition of the target crop P, indicators related to the cultivation environment of the target crop P (conditions of the soil and the space surrounding the target crop P (including inside and outside the greenhouse), etc.) are used as cultivation parameters. may apply. Specific examples include soil moisture content, LAI (Leaf Area Index), number of flowers, real number, EC value (electrical conductivity), outdoor temperature, indoor temperature, outdoor humidity, indoor humidity, outdoor solar radiation, and indoor solar radiation. Examples of cultivation parameters include volume, wind speed, soil pH, CO2 concentration, and illuminance. The cultivation parameters are preferably information that can be obtained without relying on manual input by humans. Although information extracted directly or indirectly from the measurement information of environmental sensors is preferable, there are other ways to extract cultivation information from various types of information input from external devices, such as control logs of cultivation equipment included in environmental data. Parameters may also be extracted. The cultivation parameter acquisition unit 10 does not need to acquire all of these indicators, and may appropriately design the cultivation parameters to be used according to the type of target crop P, the configuration of the cultivation environment control system 2, the field 20, and the like.
 ステップS302において、栽培パラメータ取得部10は、ステップS301で取得した栽培パラメータの情報を栽培パラメータ記憶部11に格納する。 In step S302, the cultivation parameter acquisition unit 10 stores the cultivation parameter information acquired in step S301 in the cultivation parameter storage unit 11.
 図4Aは、栽培パラメータ記憶部11に蓄積された栽培パラメータの時系列データの一例を示している。図4Aの例は、土壌水分センサ21の測定情報を基に、対象作物Pの畝の土壌水分量(含水率)を記録したデータである。1月26日の午前9時と午前9時10分の測定では20%であり、午前9時20分と午前9時30分の測定では25%であったことがわかる。土壌水分量以外の栽培パラメータについても同じように時系列データが収集し蓄積される。 FIG. 4A shows an example of time-series data of cultivation parameters accumulated in the cultivation parameter storage unit 11. The example in FIG. 4A is data in which the amount of soil moisture (water content) in the ridges of the target crop P is recorded based on the measurement information of the soil moisture sensor 21. It can be seen that the measurements taken at 9:00 a.m. and 9:10 a.m. on January 26th were 20%, and the measurements taken at 9:20 a.m. and 9:30 a.m. were 25%. Time-series data is similarly collected and accumulated for cultivation parameters other than soil moisture content.
 (栽培作業の推定)
 図5は、栽培作業の推定処理のフローチャートである。図5の処理は、栽培作業推定部13及び作業記録更新部15によって、定期的に、又は、栽培パラメータの更新がある度に実行される。
(Estimation of cultivation work)
FIG. 5 is a flowchart of the cultivation work estimation process. The process in FIG. 5 is executed by the cultivation work estimating section 13 and the work record updating section 15 periodically or every time the cultivation parameters are updated.
 ステップS500において、栽培作業推定部13は、栽培パラメータ記憶部11から栽培パラメータの時系列データを読み込む。このとき、後段の推定処理に必要な期間分の時系列データが取り込まれる。例えば、土壌水分量の変化量に基づいて直近に行われた潅水作業を検知する目的であれば、直近の数日間分の時系列データを用いればよい。また、摘葉や農薬散布のように頻度の低い作業を検知する目的であれば、数週間から数カ月分の時系列データ、あるいは、定植から現時点までの全ての時系列データを用いてもよい。逆に、窓や空調設備の操作のように一日のなかで何度も実施される作業を検知する目的であれば、1日分や数時間分の時系列データを用いるだけで足りる場合もある。 In step S500, the cultivation work estimation unit 13 reads time-series data of cultivation parameters from the cultivation parameter storage unit 11. At this time, time-series data for a period necessary for subsequent estimation processing is captured. For example, if the purpose is to detect recently performed irrigation work based on the amount of change in soil moisture content, time-series data for the most recent several days may be used. Furthermore, if the purpose is to detect infrequent operations such as leaf pruning and pesticide spraying, time-series data from several weeks to several months, or all time-series data from planting to the present time may be used. On the other hand, if the purpose is to detect tasks that are performed many times during the day, such as operating windows or air conditioning equipment, it may be sufficient to use time-series data for one day or several hours. be.
 ステップS501において、栽培作業推定部13は、栽培パラメータの時系列データを基に、栽培パラメータの変化量(時間微分)を計算する。図4Bは、図4Aの時系列データから計算された土壌水分量の変化量の例である。このような変化量のデータを参照することで、1月26日の午前9時20分に土壌水分量に有意な増加があったことがわかる。 In step S501, the cultivation work estimation unit 13 calculates the amount of change (time differential) of the cultivation parameters based on the time series data of the cultivation parameters. FIG. 4B is an example of the amount of change in soil water content calculated from the time series data of FIG. 4A. By referring to the data on the amount of change, it can be seen that there was a significant increase in the soil moisture content at 9:20 am on January 26th.
 ステップS502において、栽培作業推定部13は、栽培作業推定ロジック記憶部12から作業推定テーブルを読み出し、作業推定テーブルを用いて栽培パラメータの変化量から過去に実施された栽培作業を推定する。 In step S502, the cultivation work estimating unit 13 reads the work estimation table from the cultivation work estimation logic storage unit 12, and uses the work estimation table to estimate the cultivation work performed in the past from the amount of change in the cultivation parameter.
 作業推定テーブルは、「栽培作業」と「栽培パラメータの変化量(又は値)」との因果関係を示すテーブルである。図4Cは、栽培作業「潅水」と栽培パラメータ「土壌水分量」の変化量との関係を示す作業推定テーブルの例である。例えば、圃場20での実験データ、過去に観測されたデータ、経験則などを基礎にして、潅水を実施していないとき、自然降雨のとき、3[L/m2]の潅水を実施したとき、6[L/m2]の潅水を実施したとき、の4つのケースにおける土壌水分量の平均的な変化量を定義することにより、図4Cのような作業推定テーブルを作成することができる。栽培作業推定部13は、作業推定テーブルを逆引き辞書のように利用することによって、「栽培パラメータの変化量」という結果事象から「栽培作業」という原因事象を推定する。例えば、図4Bのような土壌水分量の変化が観測された場合には、栽培作業推定部13は、「1月26日の午前9時10分から午前9時20分の間に3[L/m2]の潅水が実施された。」と推定することができる。 The work estimation table is a table that shows the causal relationship between "cultivation work" and "amount of change (or value) of cultivation parameters." FIG. 4C is an example of a work estimation table showing the relationship between the cultivation work "irrigation" and the amount of change in the cultivation parameter "soil moisture content". For example, based on experimental data in field 20, past observed data, empirical rules, etc., when no irrigation is performed, when there is natural rainfall, when irrigation is applied at 3 [L/m2], By defining the average amount of change in soil water content in the four cases when 6 [L/m2] of irrigation is performed, a work estimation table like the one shown in FIG. 4C can be created. The cultivation work estimating unit 13 estimates the causal event "cultivation work" from the resultant event "amount of change in cultivation parameters" by using the work estimation table like a reverse dictionary. For example, when a change in soil moisture content as shown in FIG. m2] of irrigation was carried out.
 以上のように栽培パラメータの時系列データを分析することによって、対象作物Pに対して実施された栽培作業の有り/無しが検知され、栽培作業有りの場合はさらに実施タイミングと実施量が推定結果として得られる。なお、実施タイミングは、例えば、栽培作業が実施された日時であり、典型的には、栽培パラメータの値に変化が現れた日時に等しい。実施量は、栽培作業の程度を表し、図4Cの例では潅水量が該当する。このような推定結果が得られることで、ユーザが、いつ、どのような栽培作業を、どの程度実施したか、を把握することが可能となる。 By analyzing the time-series data of cultivation parameters as described above, the presence/absence of cultivation work performed on the target crop P is detected, and if there is cultivation work, the implementation timing and amount are estimated as the results. obtained as. Note that the implementation timing is, for example, the date and time when the cultivation work was performed, and is typically equal to the date and time when a change appears in the value of the cultivation parameter. The amount of implementation represents the degree of cultivation work, and in the example of FIG. 4C, corresponds to the amount of watering. Obtaining such an estimation result makes it possible for the user to understand when, what kind of cultivation work, and to what extent.
 ステップS502において栽培作業有りという推定結果が得られた場合には(ステップS503のYES)、作業記録更新部15が、推定された栽培作業の情報に基づいて栽培作業DB14内の栽培作業記録データを更新する(ステップS504)。具体的には、栽培作業の種類、実施タイミング(日時)、実施量などの情報を含む作業記録が、栽培作業記録データに新たに追加される。このとき、ユーザ入力作業記録か推定作業記録かを識別するためのフラグが、作業記録に付されるとよい。 If the estimation result that cultivation work is present is obtained in step S502 (YES in step S503), the work record updating unit 15 updates the cultivation work record data in the cultivation work DB 14 based on the information on the estimated cultivation work. Update (step S504). Specifically, a work record including information such as the type of cultivation work, implementation timing (date and time), and amount of work performed is newly added to the cultivation work record data. At this time, it is preferable that a flag be attached to the work record to identify whether it is a user input work record or an estimated work record.
 なお、図4Cは、作業推定テーブルの一例を示したにすぎない。変化量と作業内容の定義は、圃場20の設備や条件、対象作物Pの種類などに応じて適宜設計すればよい。また、テーブルの代わりに、関数を用いて作業を推定してもよい。例えば、土壌水分量の変化量をx、潅水量をyとしたときに、y=F(x)の関係を表す関数Fを定義することで、土壌水分量の変化量から潅水の実施の有無や潅水量を求めることができる。あるいは、ディープラーニングなどの機械学習により作成した作業推定モデルを利用してもよい。例えば、圃場20での実験データや過去に観測されたデータを教師データとする教師あり学習を行うことにより、「栽培パラメータの変化量」が入力として与えられたときに、「実施された栽培作業」が推定結果として出力される作業推定モデルを作成することができる。 Note that FIG. 4C merely shows an example of the work estimation table. The definition of the amount of change and the work content may be designed as appropriate depending on the equipment and conditions of the field 20, the type of target crop P, etc. Further, instead of a table, a function may be used to estimate the work. For example, when the amount of change in soil moisture content is x and the amount of irrigation is y, by defining a function F that represents the relationship y = F (x), it is possible to determine whether or not to perform irrigation based on the amount of change in soil moisture content. It is possible to calculate the amount of irrigation water. Alternatively, a work estimation model created by machine learning such as deep learning may be used. For example, by performing supervised learning using experimental data in the field 20 or data observed in the past as teacher data, when the "amount of change in cultivation parameters" is given as input, "the amount of change in the cultivation ” can be created as an estimation result.
 (推定処理の他の例)
 図6A~図6Cを参照して、栽培パラメータ「LAI」の変化量から栽培作業「誘引」と「摘葉」を推定する例を説明する。図6Aは、対象作物PのLAIを記録したデータの例である。LAIは、画像センサ22で撮影した対象作物Pの画像から算出してもよいし、LAIセンサなどを利用して測定してもよい。図6Bは、図6AのLAIの時系列データから計算されたLAIの変化量の例である。作物の成長に伴い葉の数及び大きさは増加するので、LAIは単調増加するのが通常である。したがって、LAIが減少した場合には、「誘引」や「摘葉」などの栽培作業が実施されたとみなすことができる。「誘引」は、植物の茎や枝を支柱などに固定し、植物を意図した方向へと誘導したり、植物の高さや形を整えたりする作業である。誘引を行うことで葉の密集が緩和されるため、誘引の前後でLAIがやや減少する。「摘葉」は、不要な葉を摘み取り、日当たりや風通しを改善する作業である。摘葉の前後ではLAIが大きく減少する。このような傾向を定義したものが、図6Cの作業推定テーブルである。図6BのLAIの変化量を図6Cの作業推定テーブルに当てはめることにより、「1月9日から1月16日の間に誘引作業が実施された。」、「1月23日から1月30日の間に1株当たり3枚以上の摘葉作業が実施された。」という推定結果を得ることができる。
(Other examples of estimation processing)
With reference to FIGS. 6A to 6C, an example of estimating the cultivation operations "induction" and "defoliation" from the amount of change in the cultivation parameter "LAI" will be described. FIG. 6A is an example of data recording the LAI of the target crop P. The LAI may be calculated from an image of the target crop P captured by the image sensor 22, or may be measured using an LAI sensor or the like. FIG. 6B is an example of the amount of change in LAI calculated from the LAI time series data in FIG. 6A. As the crop grows, the number and size of leaves increase, so LAI typically increases monotonically. Therefore, when the LAI decreases, it can be considered that cultivation operations such as "attraction" and "defoliation" have been carried out. "Attracting" is the process of fixing the stems and branches of plants to supports, guiding the plants in the intended direction, and adjusting the height and shape of the plants. Because the attraction reduces leaf crowding, the LAI decreases slightly before and after the attraction. "Defoliation" is the process of removing unnecessary leaves to improve sunlight and ventilation. LAI decreases significantly before and after defoliation. The work estimation table shown in FIG. 6C defines such a tendency. By applying the amount of change in LAI in Figure 6B to the work estimation table in Figure 6C, it is possible to determine whether "the induced work was carried out between January 9th and January 16th" or "from January 23rd to January 30th." It is possible to obtain the estimated result that 3 or more leaves per plant were removed during the day.
 図7A~図7Cを参照して、栽培パラメータ「EC値」の変化量から栽培作業「追肥」を推定する例を説明する。図7Aは、対象作物Pの土壌のEC値を記録したデータの例である。EC値は、土壌に埋設したECセンサにより測定することができる。図7Bは、図7AのEC値の時系列データから計算されたEC値の変化量の例である。EC値は、土壌中の水溶性塩類の総量を示しており、土壌中の窒素肥料の含量と正の相関をもつ。したがって、EC値が有意に増加した場合には、追肥が実施されたとみなすことができる。図7BのEC値の変化量を図7Cの作業推定テーブルに当てはめることにより、「1月19日の午前10時から午前11時の間に4[g/m2]の窒素肥料の追肥が実施された。」という推定結果を得ることができる。 An example of estimating the cultivation operation "top dressing" from the amount of change in the cultivation parameter "EC value" will be described with reference to FIGS. 7A to 7C. FIG. 7A is an example of data recording the EC value of the soil of the target crop P. The EC value can be measured with an EC sensor buried in the soil. FIG. 7B is an example of the amount of change in the EC value calculated from the time series data of the EC value in FIG. 7A. The EC value indicates the total amount of water-soluble salts in the soil, and has a positive correlation with the content of nitrogen fertilizer in the soil. Therefore, when the EC value increases significantly, it can be considered that additional fertilization has been performed. By applying the amount of change in the EC value in Figure 7B to the work estimation table in Figure 7C, we can see that ``Additional fertilization with 4 [g/m2] of nitrogen fertilizer was carried out between 10:00 a.m. and 11:00 a.m. on January 19th. ” can be obtained.
 図8A~図8Cを参照して、栽培パラメータ「屋内外温度差」と「屋内外湿度差」の変化量から栽培作業「窓開閉」を推定する例を説明する。図8Aは、対象作物Pのハウスにおける屋外温度、屋内温度、屋外湿度、屋内湿度を記録したデータの例である。これらのデータは、圃場20の外側と内側にそれぞれ設置した温湿度センサにより測定することができる。図8Bは、図8Aの時系列データから計算された屋内外温度差及び屋内外湿度差の変化量の例である。屋内外温度差は屋内温度と屋外温度の差分であり、屋内外湿度差は屋内湿度と屋外湿度の差分である。ハウスの内部は常に対象作物Pの栽培に適した温度・湿度に維持することが好ましいため、外気の温度や湿度が不適な場合はハウスの窓を閉めて空調設備や加温機によって最適な温度・湿度に制御し、外気の温度・湿度が栽培に適した温度・湿度に近い場合は窓を開けて外気を取り込むことが行われる。したがって、屋内外温度差と屋内外湿度差がともに小さい場合には窓が開放されているとみなすことができ、屋内外温度差と屋内外湿度差の少なくともいずれかが大きい場合には窓が閉じられているとみなすことができる。したがって、屋内外温度差と屋内外湿度差の変化をモニタすることで、窓の開閉作業を検知することができる。例えば、図8Bのデータを図8Cの作業推定テーブルに当てはめることにより、「3月6日の午前9時10分に窓を50%開けた。」という推定結果を得ることができる。 An example of estimating the cultivation operation "window opening/closing" from the amount of change in the cultivation parameters "indoor/outdoor temperature difference" and "indoor/outdoor humidity difference" will be described with reference to FIGS. 8A to 8C. FIG. 8A is an example of data recording outdoor temperature, indoor temperature, outdoor humidity, and indoor humidity in a greenhouse for the target crop P. These data can be measured by temperature and humidity sensors installed outside and inside the field 20, respectively. FIG. 8B is an example of the amount of change in the indoor-outdoor temperature difference and the indoor-outdoor humidity difference calculated from the time-series data in FIG. 8A. The indoor-outdoor temperature difference is the difference between indoor temperature and outdoor temperature, and the indoor-outdoor humidity difference is the difference between indoor humidity and outdoor humidity. It is preferable to maintain the inside of the greenhouse at a temperature and humidity suitable for cultivating the target crop P at all times, so if the temperature or humidity of the outside air is inappropriate, close the windows of the greenhouse and use air conditioning equipment or a heating device to maintain the optimal temperature. - Humidity is controlled, and if the temperature and humidity of the outside air are close to those suitable for cultivation, windows are opened to let in outside air. Therefore, if both the indoor-outdoor temperature difference and the indoor-outdoor humidity difference are small, the window can be considered open, and if at least either the indoor-outdoor temperature difference or the indoor-outdoor humidity difference is large, the window is closed. It can be considered that the Therefore, by monitoring changes in the indoor/outdoor temperature difference and the indoor/outdoor humidity difference, it is possible to detect window opening/closing operations. For example, by applying the data in FIG. 8B to the work estimation table in FIG. 8C, it is possible to obtain the estimation result "The window was opened 50% at 9:10 a.m. on March 6."
 図9A~図9Cを参照して、栽培パラメータ「屋内外温度差」の変化量から栽培作業「加温機操作」を推定する例を説明する。図9Aは、対象作物Pのハウスにおける屋外温度と屋内温度を記録したデータの例である。これらのデータは、圃場20の外側と内側にそれぞれ設置した温湿度センサにより測定することができる。図9Bは、図9Aの時系列データから計算された屋内外温度差の変化量の例である。屋内外温度差は屋内温度と屋外温度の差分である。ハウスの内部は常に対象作物Pの栽培に適した温度に維持することが好ましいため、外気の温度が低すぎる場合には加温機を作動させてハウス内の温度を上げることが行われる。したがって、屋内外温度差が有意に大きくなった場合には加温機が操作されたとみなすことができる。例えば、図9Bのデータを図9Cの作業推定テーブルに当てはめることにより、「1月19日の19時10分から19時20分の間に加温機を作動させた。」という推定結果を得ることができる。 An example of estimating the cultivation operation "warming machine operation" from the amount of change in the cultivation parameter "indoor/outdoor temperature difference" will be described with reference to FIGS. 9A to 9C. FIG. 9A is an example of data recording outdoor temperature and indoor temperature in a greenhouse for target crop P. These data can be measured by temperature and humidity sensors installed outside and inside the field 20, respectively. FIG. 9B is an example of the amount of change in the indoor-outdoor temperature difference calculated from the time series data of FIG. 9A. The indoor-outdoor temperature difference is the difference between the indoor temperature and the outdoor temperature. Since it is preferable that the temperature inside the greenhouse is always maintained at a temperature suitable for cultivating the target crop P, if the temperature of the outside air is too low, a warming machine is operated to raise the temperature inside the greenhouse. Therefore, if the temperature difference between indoor and outdoor becomes significantly large, it can be assumed that the warming machine has been operated. For example, by applying the data in FIG. 9B to the work estimation table in FIG. 9C, an estimated result such as "The warming machine was operated between 7:10 and 7:20 p.m. on January 19th" can be obtained. I can do it.
 図10A~図10Cを参照して、栽培パラメータ「屋内外日射量」の変化量から栽培作業「遮光カーテン操作」を推定する例を説明する。図10Aは、対象作物Pのハウスにおける屋外日射量と屋内日射量を記録したデータの例である。これらのデータは、圃場20の外側と内側にそれぞれ設置した照度センサにより測定することができる。図10Bは、図10Aの時系列データから計算された屋内外日射量の差の変化量の例である。屋内外日射量の差は屋内日射量と屋外日射量の差分である。ハウスの屋根や外壁は透光性の部材で形成されることが一般的であり、遮光カーテンなどで日光を遮らない限りは屋内日射量と屋外日射量の差は比較的小さい。それに対し、遮光カーテンを展開する(閉める)と、屋外日射量に比べて屋内日射量の値が非常に小さくなるため、屋内外日射量の差が大きくなる。したがって、屋内外日射量の差が有意に大きくなった場合には遮光カーテンが展開されたとみなすことができる。例えば、図10Bのデータを図10Cの作業推定テーブルに当てはめることにより、「7月10日の午前12時から午前12時10分の間に遮光カーテンを100%展開した。」という推定結果を得ることができる。 An example of estimating the cultivation operation "shading curtain operation" from the amount of change in the cultivation parameter "indoor/outdoor solar radiation" will be described with reference to FIGS. 10A to 10C. FIG. 10A is an example of data recording the amount of outdoor solar radiation and the amount of indoor solar radiation in a greenhouse for the target crop P. These data can be measured by illuminance sensors installed outside and inside the field 20, respectively. FIG. 10B is an example of the amount of change in the difference between indoor and outdoor solar radiation calculated from the time series data of FIG. 10A. The difference between indoor and outdoor solar radiation is the difference between indoor and outdoor solar radiation. The roof and outer walls of a house are generally made of translucent materials, and unless sunlight is blocked by a blackout curtain or the like, the difference between indoor and outdoor solar radiation is relatively small. On the other hand, when the light-blocking curtains are unfolded (closed), the value of the indoor solar radiation becomes much smaller than the outdoor solar radiation, so the difference between the indoor and outdoor solar radiation becomes large. Therefore, when the difference between indoor and outdoor solar radiation becomes significantly large, it can be considered that the light-blocking curtain has been deployed. For example, by applying the data in FIG. 10B to the work estimation table in FIG. 10C, an estimated result of "100% of the blackout curtains were deployed between 12:00 a.m. and 12:10 a.m. on July 10th" is obtained. be able to.
 図11A~図11Bを参照して、栽培パラメータ「風速」の値から栽培作業「循環扇の操作」を推定する例を説明する。図11Aは、対象作物Pのハウス内の風速を記録したデータの例である。これらのデータは、ハウスの内部に設置した風速センサにより測定することができる。なお、ここまでに挙げた例では、栽培パラメータの変化量を基に栽培作業を推定したのに対し、図11A及び図11Bの例では、栽培パラメータの値そのものから栽培作業の推定を行う。ハウスの内部は閉じた空間であるため何もなければ空気の流れは生じない。そこで、積極的に空気を循環させたい場合には、循環扇が利用される。したがって、風速が閾値よりも大きい場合には循環扇が作動したとみなすことができる。例えば、図11Aのデータを図11Bの作業推定テーブルに当てはめることにより、「1月19日の午前9時から午前9時10分の間に循環扇を作動させた。」という推定結果を得ることができる。 An example of estimating the cultivation work "operation of circulation fan" from the value of the cultivation parameter "wind speed" will be described with reference to FIGS. 11A and 11B. FIG. 11A is an example of data recording the wind speed in the greenhouse of the target crop P. These data can be measured by a wind speed sensor installed inside the house. Note that in the examples cited so far, the cultivation work was estimated based on the amount of change in the cultivation parameters, whereas in the examples of FIGS. 11A and 11B, the cultivation work is estimated from the values of the cultivation parameters themselves. The inside of a house is a closed space, so if there is nothing, there will be no air flow. Therefore, if you want to actively circulate air, a circulation fan is used. Therefore, when the wind speed is greater than the threshold value, it can be considered that the circulation fan is activated. For example, by applying the data in FIG. 11A to the work estimation table in FIG. 11B, it is possible to obtain the estimated result "The circulation fan was operated between 9:00 a.m. and 9:10 a.m. on January 19th." I can do it.
 以上、栽培パラメータの値や変化量から栽培作業を推定する方法を複数例示したが、ここで挙げたものは一例にすぎない。他にも、湿度センサで測定されるハウス内の湿度や、pHセンサで測定される対象作物Pの土壌のpHなどに基づいて、農薬散布が行われたタイミングやその散布量を推定してもよい。あるいは、CO2センサで測定されるハウス内のCO2濃度に基づいて、CO2施肥機によるCO2施肥が行われたタイミングやその施肥量を推定してもよい。あるいは、照度センサで測定される圃場の照度に基づいて、人工照明装置の点灯タイミングやその光量を推定してもよい。 Although multiple examples of methods for estimating cultivation work from the values and changes in cultivation parameters have been given above, the methods listed here are just one example. In addition, the timing and amount of pesticide spraying can be estimated based on the humidity inside the greenhouse measured by a humidity sensor, the pH of the soil of the target crop P measured by a pH sensor, etc. good. Alternatively, the timing of CO2 fertilization by a CO2 fertilizer and the amount of fertilization may be estimated based on the CO2 concentration in the house measured by a CO2 sensor. Alternatively, the lighting timing and amount of light of the artificial lighting device may be estimated based on the illuminance of the field measured by the illuminance sensor.
 (作業履歴の表示)
 図12Aは、作業履歴表示部17によりユーザ端末3に表示される作業履歴画面の一例である。縦軸は栽培作業の項目であり、図12Aの例では、潅水、施肥、誘引、摘葉、摘芽、摘花、摘果、農薬の8種類の栽培作業が示されている。横軸は日付であり、図12Aの例では、2022年1月1日から1月31日までの履歴が示されている。この作業履歴画面において矩形アイコンが表示されているセルが、作業が実施された日である。例えば、潅水作業は、1月5日、11日、20日、26日の4回実施されており、そのうち11日、20日、26日には施肥も実施されていることがわかる。
(Display work history)
FIG. 12A is an example of a work history screen displayed on the user terminal 3 by the work history display unit 17. The vertical axis indicates cultivation work items, and in the example of FIG. 12A, eight types of cultivation work are shown: irrigation, fertilization, attraction, leaf thinning, bud thinning, flower thinning, fruit thinning, and pesticide. The horizontal axis is the date, and in the example of FIG. 12A, the history from January 1, 2022 to January 31, 2022 is shown. The cell in which a rectangular icon is displayed on this work history screen is the date on which the work was performed. For example, it can be seen that irrigation work was carried out four times on January 5th, 11th, 20th, and 26th, and fertilization was also carried out on January 11th, 20th, and 26th.
 ここで、黒色の矩形アイコンはユーザ入力作業記録を示し、ハッチングの矩形アイコンは推定作業記録を示している。このように表示形式を異ならせることにより、ユーザによって入力された作業記録と、栽培パラメータから推定された作業記録とを、作業履歴画面上で区別可能となる。 Here, a black rectangular icon indicates a user input work record, and a hatched rectangular icon indicates an estimated work record. By changing the display formats in this way, it becomes possible to distinguish between the work record input by the user and the work record estimated from the cultivation parameters on the work history screen.
 図12Aの画面では、ユーザ入力作業記録が存在するセルには黒色の矩形アイコンが表示され、ユーザ入力作業記録が存在しないセルにのみハッチングの矩形アイコンが表示されている。すなわち、ユーザ入力作業記録と推定作業記録の両方が存在する場合には、ユーザ入力作業記録を優先的に表示する仕様である。ユーザ入力の方が信頼性が高く、栽培支援システム1による推定結果を補助的な位置づけで(記録漏れの補完など)利用する場合には、図12Aのような表示が好ましい。 In the screen of FIG. 12A, a black rectangular icon is displayed in cells where a user input work record exists, and a hatched rectangular icon is displayed only in cells where no user input work record exists. That is, when both a user input work record and an estimated work record exist, the user input work record is displayed preferentially. User input is more reliable, and when the estimation results from the cultivation support system 1 are used in an auxiliary manner (for example, to supplement missing records), a display like that shown in FIG. 12A is preferable.
 図12Bは、作業履歴画面の他の例である。図12Bの画面は、ユーザ入力作業記録と推定作業記録の両方を表示する点が特徴である。セルの上段に表示されるハッチングの矩形アイコンが推定作業記録を示し、セルの下段に表示される黒色の矩形アイコンがユーザ入力作業記録を示している。このような画面表示によれば、ユーザが作業記録を入力し忘れている箇所(1月20日の潅水と施肥、1月13日の摘葉)を即座に認識することができる。 FIG. 12B is another example of the work history screen. The screen in FIG. 12B is characterized in that it displays both the user input work record and the estimated work record. A hatched rectangular icon displayed at the top of the cell indicates an estimated work record, and a black rectangular icon displayed at the bottom of the cell indicates a user input work record. According to such a screen display, it is possible to immediately recognize locations where the user has forgotten to input work records (watering and fertilization on January 20th, leaf removal on January 13th).
 図12A及び図12Bに示すような作業履歴画面を提供することにより、ユーザは、過去に実施した栽培作業の履歴を容易に確認することができる。しかも、ユーザが入力し忘れた作業についても、漏れなく記録を確認することができる。このような作業履歴の情報は、ユーザが今後の作業計画を立てる際に極めて有用である。 By providing work history screens as shown in FIGS. 12A and 12B, the user can easily check the history of cultivation work performed in the past. In addition, records of tasks that the user has forgotten to input can be checked without exception. Such work history information is extremely useful when the user plans future work.
 図13Aは、作業履歴画面上で矩形アイコンを選択したときに表示される作業記録の詳細情報画面の例である。詳細情報画面には、例えば、栽培作業の種別、作業の実施タイミング(日時)、作業の実施量、作業記録の入力を行ったユーザ名などが表示される。修正ボタンを押すと、この画面(ユーザインターフェイス)上で作業記録の内容(例えば、実施日や実施時刻、実施量など)を修正することができる。また、削除ボタンを押すと、この作業記録が栽培作業記録データから削除される。なお、推定作業記録の場合は、図13Bに示すように、ユーザ名の代わりに、「推定」ラベルが表示される。このような表示により、ユーザは、当該作業記録がユーザ入力によるものか推定されたものかを判別することができる。 FIG. 13A is an example of a work record detailed information screen that is displayed when a rectangular icon is selected on the work history screen. The detailed information screen displays, for example, the type of cultivation work, the timing (date and time) of performing the work, the amount of work performed, the name of the user who entered the work record, and the like. By pressing the modify button, the contents of the work record (for example, implementation date, implementation time, amount of work, etc.) can be modified on this screen (user interface). Moreover, when the delete button is pressed, this work record is deleted from the cultivation work record data. In addition, in the case of an estimated work record, as shown in FIG. 13B, the "estimated" label is displayed instead of the user name. Such a display allows the user to determine whether the work record is based on user input or estimated information.
 図13Cは、推定作業記録とそれに対応するユーザ入力作業記録との間で記録内容に相違がある場合に表示される画面の例である。ユーザは、この画面において、推定作業記録とユーザ入力作業記録とを見比べ、正しい方を選択することができる。また、修正ボタンを押すと、選択した作業記録の内容を修正することも可能である。 FIG. 13C is an example of a screen that is displayed when there is a difference in recorded content between the estimated work record and the corresponding user input work record. On this screen, the user can compare the estimated work record and the user input work record and select the correct one. Furthermore, by pressing the modify button, it is also possible to modify the contents of the selected work record.
 なお、栽培支援システム1は、推定作業記録とユーザ入力作業記録の間に相違があることを検知した場合に、ユーザ端末3にアラートを通知し、作業履歴画面の確認や作業記録の修正を促してもよい。 In addition, when the cultivation support system 1 detects that there is a discrepancy between the estimated work record and the user input work record, it notifies the user terminal 3 of an alert and prompts the user to check the work history screen and correct the work record. It's okay.
 (作業アドバイスの提供)
 作業提案部16による作業アドバイスの提供処理の一例を説明する。
(Providing work advice)
An example of the process of providing work advice by the work proposal unit 16 will be described.
 作業提案部16は、定期的に、又は、栽培作業DB14が更新されたタイミングで、栽培作業DB14から対象作物Pの栽培作業記録データを読み込む。そして、作業提案部16は、過去に実施された栽培作業に基づいて、対象作物Pに対する今後の作業計画(例えば、次回の作業の実施日と実施量など)を作成し、その情報をユーザに提案する。 The work proposal unit 16 reads the cultivation work record data of the target crop P from the cultivation work DB 14 periodically or at the timing when the cultivation work DB 14 is updated. Then, the work proposal unit 16 creates a future work plan for the target crop P (for example, the implementation date and amount of work for the next work, etc.) based on the cultivation work performed in the past, and provides the information to the user. suggest.
 図14Aは、作業提案部16が参照する作業決定テーブルの一例を示している。図14Aの作業決定テーブルは、直近の潅水量に基づいて次回の潅水作業の実施タイミングと実施量を決定するためのロジック(ルール)を定義している。例えば、1月26日に3L/m2の潅水を実施していた場合、次回の潅水作業は5日後の1月31日に3L/m2実施すればよい。図14Bは、ユーザ端末3に表示される作業アドバイスの一例である。 FIG. 14A shows an example of the work determination table referred to by the work proposal unit 16. The work determination table in FIG. 14A defines logic (rules) for determining the timing and amount of the next irrigation work based on the most recent amount of watering. For example, if 3L/m2 of irrigation was carried out on January 26th, the next irrigation work should be carried out at 3L/m2 on January 31st, five days later. FIG. 14B is an example of work advice displayed on the user terminal 3.
 <本システムの利点>
 本実施形態の栽培支援システム1は、環境センサの測定情報を基に栽培パラメータを取得し、栽培パラメータの時系列データを分析することによって、過去に実施された栽培作業を推定し、その推定結果に基づいて栽培作業記録データを更新することができる。これにより、実施した栽培作業を自動で記録することができるため、ユーザの負担を軽減することができる。また、作業記録の抜けや間違いを治癒ないし防止できるため、栽培作業記録データの信頼性を高めることができる。そして、信頼性の高い栽培作業記録データを活用して、作業履歴や作業アドバイスをユーザに提示することによって、有用且つ有益な支援情報を提供することが可能となる。
<Advantages of this system>
The cultivation support system 1 of the present embodiment acquires cultivation parameters based on measurement information of an environmental sensor, analyzes time-series data of cultivation parameters, estimates cultivation operations performed in the past, and obtains the estimated results. Cultivation work record data can be updated based on. This allows the cultivation work that has been performed to be automatically recorded, thereby reducing the burden on the user. Furthermore, since omissions and mistakes in work records can be cured or prevented, the reliability of cultivation work record data can be improved. By utilizing highly reliable cultivation work record data and presenting work history and work advice to the user, it becomes possible to provide useful and beneficial support information.
 <その他>
 上記実施形態は、本発明の構成例を例示的に説明するものに過ぎない。本発明は上記の具体的な形態には限定されることはなく、その技術的思想の範囲内で種々の変形が可能である。例えば、上記実施形態の栽培支援システム1は栽培環境制御システム2経由で環境センサの測定情報を収集しているが、栽培支援システム1が環境センサから直接に測定情報を収集してもよい。上記実施形態の栽培支援システム1では、ユーザによる入力と栽培パラメータに基づく推定の両方を行っているが、ユーザによる入力は必須ではない。例えば、栽培パラメータに基づく推定により、すべての作業記録を自動で記録していくように構成し、推定間違いが発生した場合や情報を追加・修正する場合のみユーザが入力を行うようにしてもよい。
<Others>
The above embodiments are merely illustrative examples of configurations of the present invention. The present invention is not limited to the above-described specific form, and various modifications can be made within the scope of the technical idea. For example, although the cultivation support system 1 of the embodiment described above collects the measurement information of the environmental sensor via the cultivation environment control system 2, the cultivation support system 1 may collect the measurement information directly from the environmental sensor. Although the cultivation support system 1 of the embodiment described above performs both user input and estimation based on cultivation parameters, the user input is not essential. For example, all work records may be automatically recorded by estimation based on cultivation parameters, and the user may input input only when an error in estimation occurs or when adding or correcting information. .
 <付記>
 1.対象作物(P)の栽培に関連する指標である栽培パラメータを取得する栽培パラメータ取得手段(10)と、
 前記栽培パラメータに基づいて、前記対象作物(P)に対して過去にユーザにより実施された栽培作業を推定する推定手段(13)と、
 前記対象作物(P)に対して実施された栽培作業の記録である栽培作業記録データを記憶する栽培作業記憶手段(14)と、
 前記推定手段(13)により推定された栽培作業の情報に基づいて、前記栽培作業記録データを更新する作業記録更新手段(15)と、
を備える栽培支援システム(1)。
<Additional notes>
1. Cultivation parameter acquisition means (10) for acquiring cultivation parameters that are indicators related to cultivation of the target crop (P);
Estimating means (13) for estimating cultivation work performed by the user in the past on the target crop (P) based on the cultivation parameters;
Cultivation work storage means (14) for storing cultivation work record data that is a record of cultivation work performed on the target crop (P);
Work record updating means (15) for updating the cultivation work record data based on the cultivation work information estimated by the estimation means (13);
A cultivation support system (1) comprising:
 2.コンピュータ(1)が、対象作物(P)の栽培に関連する指標である栽培パラメータを取得するステップ(S301)と、
 コンピュータ(1)が、前記栽培パラメータに基づいて、前記対象作物(P)に対して過去にユーザにより実施された栽培作業を推定するステップ(S502)と、
 コンピュータ(1)が、推定された栽培作業の情報に基づいて、前記対象作物(P)に対して実施された栽培作業の記録である栽培作業記録データを更新するステップ(S504)と、
を有する栽培支援方法。
2. A step (S301) in which the computer (1) acquires cultivation parameters that are indicators related to cultivation of the target crop (P);
a step (S502) in which the computer (1) estimates the cultivation work performed by the user on the target crop (P) in the past based on the cultivation parameters;
a step (S504) in which the computer (1) updates cultivation work record data, which is a record of the cultivation work performed on the target crop (P), based on the estimated cultivation work information;
A cultivation support method having
1:栽培支援システム
2:栽培環境制御システム
3:ユーザ端末
21:土壌水分センサ
22:画像センサ
23:温湿度センサ
24:潅水装置
25:空調設備
26:開閉器
MS:栽培管理システム
P:対象作物
1: Cultivation support system 2: Cultivation environment control system 3: User terminal 21: Soil moisture sensor 22: Image sensor 23: Temperature and humidity sensor 24: Irrigation device 25: Air conditioning equipment 26: Switch MS: Cultivation management system P: Target crop

Claims (13)

  1.  対象作物の栽培に関連する指標である栽培パラメータを取得する栽培パラメータ取得手段と、
     前記栽培パラメータに基づいて、前記対象作物に対して過去にユーザにより実施された栽培作業を推定する推定手段と、
     前記対象作物に対して実施された栽培作業の記録である栽培作業記録データを記憶する栽培作業記憶手段と、
     前記推定手段により推定された栽培作業の情報に基づいて、前記栽培作業記録データを更新する作業記録更新手段と、
    を備える栽培支援システム。
    Cultivation parameter acquisition means for acquiring cultivation parameters that are indicators related to cultivation of the target crop;
    estimating means for estimating cultivation work performed by a user on the target crop in the past based on the cultivation parameters;
    Cultivation work storage means for storing cultivation work record data that is a record of cultivation work performed on the target crop;
    Work record updating means for updating the cultivation work record data based on the cultivation work information estimated by the estimation means;
    A cultivation support system equipped with
  2.  前記栽培パラメータ取得手段は、センサによって測定された情報、又は、外部装置から入力される情報に基づいて、前記栽培パラメータを取得する、
    請求項1に記載の栽培支援システム。
    The cultivation parameter acquisition means acquires the cultivation parameters based on information measured by a sensor or information input from an external device.
    The cultivation support system according to claim 1.
  3.  前記栽培パラメータは、前記対象作物の外形に関する指標、前記対象作物の生育状態に関する指標、又は、前記対象作物の栽培環境に関する指標を含む、
    請求項1又は2に記載の栽培支援システム。
    The cultivation parameters include an index regarding the external shape of the target crop, an index regarding the growth state of the target crop, or an index regarding the cultivation environment of the target crop.
    The cultivation support system according to claim 1 or 2.
  4.  前記推定手段は、所定の期間に蓄積された前記栽培パラメータの時系列データを分析することによって、前記対象作物に対して過去にユーザにより実施された栽培作業を推定する、
    請求項1~3のいずれかに記載の栽培支援システム。
    The estimating means estimates the cultivation work performed by the user on the target crop in the past by analyzing time-series data of the cultivation parameters accumulated over a predetermined period.
    The cultivation support system according to any one of claims 1 to 3.
  5.  前記栽培作業記録データは、少なくとも栽培作業の実施タイミングと実施量の情報を含んでいる、
    請求項1~4のいずれかに記載の栽培支援システム。
    The cultivation work record data includes at least information on the implementation timing and amount of cultivation work;
    The cultivation support system according to any one of claims 1 to 4.
  6.  前記栽培作業記録データに基づいて、前記対象作物に対する今後の作業計画を作成し、前記今後の作業計画をユーザに提案する作業提案手段をさらに備える、
    請求項1~5のいずれかに記載の栽培支援システム。
    further comprising a work proposal means for creating a future work plan for the target crop based on the cultivation work record data and suggesting the future work plan to the user;
    The cultivation support system according to any one of claims 1 to 5.
  7.  前記栽培作業記録データは、ユーザによって入力された栽培作業の情報であるユーザ入力作業記録と、前記推定手段により推定された栽培作業の情報である推定作業記録と、を含んでおり、
     前記作業記録更新手段は、
      前記推定作業記録に対応するユーザ入力作業記録が前記栽培作業記録データに存在するか否かを判定し、
      対応するユーザ入力作業記録が存在しない場合に、前記推定作業記録を前記栽培作業記録データに追加する、
    請求項1~6のいずれかに記載の栽培支援システム。
    The cultivation work record data includes a user input work record that is information on the cultivation work input by the user, and an estimated work record that is information on the cultivation work estimated by the estimation means,
    The work record updating means includes:
    Determining whether a user input work record corresponding to the estimated work record exists in the cultivation work record data,
    adding the estimated work record to the cultivation work record data when a corresponding user input work record does not exist;
    The cultivation support system according to any one of claims 1 to 6.
  8.  前記栽培作業記録データは、ユーザによって入力された栽培作業の情報であるユーザ入力作業記録と、前記推定手段により推定された栽培作業の情報である推定作業記録と、を含んでおり、
     前記作業記録更新手段は、
      前記推定作業記録に対応するユーザ入力作業記録が前記栽培作業記録データに存在するか否かを判定し、
      対応するユーザ入力作業記録が存在するが、対応するユーザ入力作業記録と前記推定作業記録との間に相違がある場合に、前記推定作業記録により前記栽培作業記録データを修正するか、又は、ユーザ入力作業記録と推定作業記録との間に相違がある旨を出力する、
    請求項1~7のいずれかに記載の栽培支援システム。
    The cultivation work record data includes a user input work record that is information on the cultivation work input by the user, and an estimated work record that is information on the cultivation work estimated by the estimation means,
    The work record updating means includes:
    Determining whether a user input work record corresponding to the estimated work record exists in the cultivation work record data,
    Although a corresponding user input work record exists, if there is a difference between the corresponding user input work record and the estimated work record, the cultivation work record data is corrected using the estimated work record, or the user Outputs that there is a discrepancy between the input work record and the estimated work record,
    The cultivation support system according to any one of claims 1 to 7.
  9.  前記栽培作業記録データに基づいて、前記対象作物に対して実施された栽培作業の履歴を表す作業履歴画面を生成し表示する作業履歴表示手段をさらに備える、
    請求項7又は8に記載の栽培支援システム。
    further comprising a work history display means for generating and displaying a work history screen representing a history of cultivation work performed on the target crop based on the cultivation work record data;
    The cultivation support system according to claim 7 or 8.
  10.  前記作業履歴表示手段は、ユーザ入力作業記録と推定作業記録とが区別可能となるように前記作業履歴画面を生成する、
    請求項9に記載の栽培支援システム。
    The work history display means generates the work history screen so that user input work records and estimated work records can be distinguished.
    The cultivation support system according to claim 9.
  11.  前記作業履歴表示手段は、前記作業履歴画面上で栽培作業の入力又は修正を可能とするユーザインターフェイスを提供する、
    請求項9又は10に記載の栽培支援システム。
    The work history display means provides a user interface that allows input or modification of cultivation work on the work history screen.
    The cultivation support system according to claim 9 or 10.
  12.  コンピュータが、対象作物の栽培に関連する指標である栽培パラメータを取得するステップと、
     コンピュータが、前記栽培パラメータに基づいて、前記対象作物に対して過去にユーザにより実施された栽培作業を推定するステップと、
     コンピュータが、推定された栽培作業の情報に基づいて、前記対象作物に対して実施された栽培作業の記録である栽培作業記録データを更新するステップと、
    を有する栽培支援方法。
    a step in which the computer obtains cultivation parameters that are indicators related to cultivation of the target crop;
    a step of the computer estimating cultivation work performed by the user in the past on the target crop based on the cultivation parameters;
    a step in which the computer updates cultivation work record data, which is a record of cultivation work performed on the target crop, based on the estimated cultivation work information;
    A cultivation support method having
  13.  請求項12に記載の栽培支援方法の各ステップをコンピュータに実行させるためのプログラム。 A program for causing a computer to execute each step of the cultivation support method according to claim 12.
PCT/JP2023/011291 2022-04-28 2023-03-22 Cultivation assistance system WO2023210215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-075026 2022-04-28
JP2022075026A JP2023163840A (en) 2022-04-28 2022-04-28 Cultivation support system

Publications (1)

Publication Number Publication Date
WO2023210215A1 true WO2023210215A1 (en) 2023-11-02

Family

ID=88518670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011291 WO2023210215A1 (en) 2022-04-28 2023-03-22 Cultivation assistance system

Country Status (2)

Country Link
JP (1) JP2023163840A (en)
WO (1) WO2023210215A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220998A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 Farm work estimation method and computer program
KR20180082272A (en) * 2017-01-10 2018-07-18 박성환 Farming management system, terminal, server and computer-readable recording medium therefor
US20200302338A1 (en) * 2019-03-18 2020-09-24 Vivent Sárl Apparatus and Method for Assessing a Characteristic of a Plant
CN112560792A (en) * 2020-12-28 2021-03-26 浙江省农业科学院 Automatic recording method for orchard farming activities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220998A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 Farm work estimation method and computer program
KR20180082272A (en) * 2017-01-10 2018-07-18 박성환 Farming management system, terminal, server and computer-readable recording medium therefor
US20200302338A1 (en) * 2019-03-18 2020-09-24 Vivent Sárl Apparatus and Method for Assessing a Characteristic of a Plant
CN112560792A (en) * 2020-12-28 2021-03-26 浙江省农业科学院 Automatic recording method for orchard farming activities

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANAYAMA, RIKINARI: "Development of immune-regulatory methods using designer exosomes", ABSTRACTS OF THE 41ST ANNUAL MEETING OF THE JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH; SEPTEMBER 29 - OCTOBER 01, 2022, JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH, JP, vol. 117, no. 450, 7 September 2022 (2022-09-07) - 1 October 2022 (2022-10-01), JP, pages 77 - 180, XP009549883 *

Also Published As

Publication number Publication date
JP2023163840A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
JP6551943B2 (en) Growth management device, growth management method, and program
US11631475B2 (en) Real-time projections and estimated distributions of agricultural pests, diseases, and biocontrol agents
KR20190143680A (en) System for real-time monitoring groth state of crop in green house based on internet of things
KR102331141B1 (en) the improved smart farm management system
Suciu et al. Efficient IoT system for precision agriculture
KR20210063218A (en) SmartFarm Operating System To Store Operation History
JP2021128756A (en) Futures Trading Information Display Program
Costa et al. Greenhouses within the Agricultura 4.0 interface
Zaguia Smart greenhouse management system with cloud-based platform and IoT sensors
WO2023210215A1 (en) Cultivation assistance system
KR102604272B1 (en) Crop cultivation and diagnosis guide system based on environmental and growth data of smart greenhouse
Gurban et al. Greenhouse environment monitoring and control: state of the art and current trends.
Gunawan et al. Automatic Watering System for Smart Agriculture using ESP32 Platform
JP6785902B2 (en) Crop activity index-based facility Horticulture complex environmental control system and method
KR102377963B1 (en) System and method for managing raising seedling area
WO2021039465A1 (en) Disease prediction system, disease prediction method, and program
KR20210056213A (en) Farm operating information providing system
JP7472488B2 (en) Growth environment control system
JP7437061B2 (en) Growth environment prediction device, growth environment control system, and growth environment prediction method
EP4316236A1 (en) Greenhouse environment optimisation
JP7437062B2 (en) Growth facility control system
Bedi et al. Design of Intelligent Polyhouse with IOT
CH Smart Environmental Design for Greenhouse Farming: A Review
CN113554294A (en) Plant factory operation management method, device and system based on BIM technology
JP2023132624A (en) Information processor, information processing system, information processing method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795962

Country of ref document: EP

Kind code of ref document: A1