WO2023210121A1 - Power supplying management device, power supplying management method, and power supplying management system - Google Patents

Power supplying management device, power supplying management method, and power supplying management system Download PDF

Info

Publication number
WO2023210121A1
WO2023210121A1 PCT/JP2023/005667 JP2023005667W WO2023210121A1 WO 2023210121 A1 WO2023210121 A1 WO 2023210121A1 JP 2023005667 W JP2023005667 W JP 2023005667W WO 2023210121 A1 WO2023210121 A1 WO 2023210121A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
area
power
target area
zoning
Prior art date
Application number
PCT/JP2023/005667
Other languages
French (fr)
Japanese (ja)
Inventor
ロバート エリス
祐太 土屋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023210121A1 publication Critical patent/WO2023210121A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a power supply management device, a power supply management method, and a power supply management system.
  • the supply of electricity used by load equipment such as buildings, factories, social infrastructure, and homes is mainly handled by power supply systems that include large-scale power plants, substations, and power transmission and distribution equipment.
  • large-scale events such as natural disasters caused by environmental changes may damage the power supply system, making it impossible to supply sufficient power and causing power outages.
  • a power outage occurs, depending on the scale of the damage, it may take several weeks for power to be restored, resulting in significant losses for power companies during the period when power cannot be supplied.
  • Patent Document 1 states, "In the power information processing system 100, the charger/discharger management server SV2 acquires information on the power grid network from the power system management server SV1, and Information on electric vehicles is acquired from the EV management server SV3, and based on the comparison between the demand power required in the power grid during a power outage and the supply power that can be supplied from multiple electric vehicles, Determine the allocation of the electric vehicles that discharge power to the power grid, and guide each of the plurality of electric vehicles to a charger/discharger for discharging power to the power grid based on the allocation.''The technology is disclosed. has been done.
  • Patent Document 1 describes means for allocating and guiding electric vehicles, which are the supply side, to the demand side of the power grid that requires electric power.
  • the present disclosure determines the priority of areas where power supply is expected to be affected by an event such as a disaster, and installs equipment that supplies power based on the determined priority in a situation where power is insufficient.
  • the purpose is to provide a power supply management means that can be efficiently deployed before power generation occurs.
  • one of the typical power supply management devices of the present invention includes an event detection unit that detects an event that may affect the power supply to a predetermined target area; a map information management unit that acquires map information indicating the location of substations in the target area and the distribution of structures in the target area; a population estimation unit that estimates the population of the target area; and a population estimation unit that estimates the population of the target area; a demand determination unit that determines demand; and supplying power to each small area centered on each substation in the target area based on the demand for electricity, the population, and the map information.
  • a priority determination unit that generates a power supply priority evaluation indicating the priority of the event
  • a backup power generation unit that deploys, for each of the small areas, to the small area in order to alleviate the impact of the event, based on the power supply priority evaluation.
  • a plan generation unit that generates a backup power supply plan that specifies the scale of the equipment.
  • the priority of an area where power supply is expected to be affected by an event such as a disaster is determined, and based on the determined priority, equipment that supplies power is adjusted to prevent a situation where power is insufficient. It is possible to provide a power supply management means that can be efficiently deployed before power generation occurs. Problems, configurations, and effects other than those described above will be made clear by the description in the detailed description below.
  • FIG. 1 is a diagram illustrating a computer system for implementing embodiments of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a power supply network according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a configuration of a power supply management system according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of the flow of the power supply management method according to the embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of the flow of backup power supply plan presentation processing according to the embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating an example of a configuration of a priority calculation table illustrating an example of priority calculation according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a computer system for implementing embodiments of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a power supply network according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of
  • FIG. 7 is a diagram illustrating an example of a priority table according to an embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating an example of an equipment deployment management table according to an embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating an example of a backup power supply plan according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating an example of the flow of plan learning processing according to the embodiment of the present disclosure.
  • the main components of computer system 100 include one or more processors 102 , memory 104 , terminal interface 112 , storage interface 113 , I/O (input/output) device interface 114 , and network interface 115 . These components may be interconnected via memory bus 106, I/O bus 108, bus interface unit 109, and I/O bus interface unit 110.
  • Computer system 100 may include one or more general purpose programmable central processing units (CPUs) 102A and 102B, collectively referred to as processors 102. In some embodiments, computer system 100 may include multiple processors, and in other embodiments, computer system 100 may be a single CPU system. Each processor 102 executes instructions stored in memory 104 and may include onboard cache.
  • CPUs general purpose programmable central processing units
  • processors 102 may include multiple processors, and in other embodiments, computer system 100 may be a single CPU system.
  • Each processor 102 executes instructions stored in memory 104 and may include onboard cache.
  • memory 104 may include random access semiconductor memory, storage devices, or storage media (either volatile or nonvolatile) for storing data and programs. Memory 104 may store all or a portion of programs, modules, and data structures that perform the functions described herein. For example, memory 104 may store power supply management application 150. In some embodiments, power supply management application 150 may include instructions or writing to perform functions described below on processor 102.
  • the power supply management application 150 may be implemented on semiconductor devices, chips, logic gates, circuits, circuit cards, and/or other physical hardware instead of or in addition to processor-based systems. It may also be implemented in hardware via a device. In some embodiments, power supply management application 150 may include data other than instructions or descriptions. In some embodiments, cameras, sensors, or other data input devices (not shown) may be provided to communicate directly with bus interface unit 109, processor 102, or other hardware of computer system 100. .
  • Computer system 100 may include a bus interface unit 109 that provides communication between processor 102 , memory 104 , display system 124 , and I/O bus interface unit 110 .
  • I/O bus interface unit 110 may be coupled to I/O bus 108 for transferring data to and from various I/O units.
  • I/O bus interface unit 110 connects via I/O bus 108 to a plurality of I/O interface units 112, 113, 114, also known as I/O processors (IOPs) or I/O adapters (IOAs). and 115.
  • IOPs I/O processors
  • IOAs I/O adapters
  • Display system 124 may include a display controller, display memory, or both.
  • a display controller may provide video, audio, or both data to display device 126.
  • Computer system 100 may also include devices, such as one or more sensors, configured to collect data and provide the data to processor 102.
  • the computer system 100 may include a biometric sensor that collects heart rate data, stress level data, etc., an environmental sensor that collects humidity data, temperature data, pressure data, etc., and a motion sensor that collects acceleration data, exercise data, etc. May include. Other types of sensors can also be used.
  • Display system 124 may be connected to a display device 126, such as a standalone display screen, a television, a tablet, or a handheld device.
  • the I/O interface unit has the ability to communicate with various storage or I/O devices.
  • the terminal interface unit 112 may include a user output device such as a video display device, a speaker television, or a user input device such as a keyboard, mouse, keypad, touchpad, trackball, buttons, light pen, or other pointing device.
  • user I/O devices 116 such as: Using the user interface, a user operates user input devices to input input data and instructions to user I/O device 116 and computer system 100, and to receive output data from computer system 100. Good too.
  • the user interface may be displayed on a display device, played through a speaker, or printed through a printer, for example, via the user I/O device 116.
  • Storage interface 113 may include one or more disk drives or direct access storage devices 117 (typically magnetic disk drive storage devices, but also an array of disk drives or other storage devices configured to appear as a single disk drive). ) can be installed. In some embodiments, storage device 117 may be implemented as any secondary storage device. The contents of memory 104 are stored in storage device 117 and may be read from storage device 117 as needed. I/O device interface 114 may provide an interface to other I/O devices such as printers, fax machines, etc. Network interface 115 may provide a communication path so that computer system 100 and other devices can communicate with each other. This communication path may be, for example, network 130.
  • computer system 100 is a device that receives requests from other computer systems (clients) that do not have a direct user interface, such as a multi-user mainframe computer system, a single-user system, or a server computer. There may be. In other embodiments, computer system 100 may be a desktop computer, a portable computer, a laptop, a tablet computer, a pocket computer, a telephone, a smart phone, or any other suitable electronic device.
  • FIG. 2 is a diagram illustrating an example of a power supply network 200 according to an embodiment of the present disclosure.
  • the power supply network 200 is a power system for supplying power to a predetermined target area, and as shown in FIG. It consists of a power distribution network 235 that distributes power from the power station 220 to the consumers. More specifically, the power generated by power station 210 is transmitted to substation 220 via power transmission line 215. Thereafter, at the substation 220, the high voltage power transmitted from the power plant 210 is transformed to a lower voltage, and is transformed to each area in the target area, such as a residential use area 242, a commercial use area 240, and a social infrastructure use area 244. Power is distributed to a residential use area 242, a commercial use area 240, and a social infrastructure use area 244. Power is distributed to a residential use area 242, a commercial use area 240, and a social infrastructure use area 244. Power is distributed to a residential use area 242, a commercial use area 240, and a social infrastructure use area
  • the power supply network 200 when the power supply network 200 is damaged by a large-scale event such as a natural disaster, the power transmission lines may be disconnected, making it impossible to supply sufficient power to the target area, resulting in a power outage. .
  • a power outage occurs, depending on the scale of the damage, it may take several weeks for power to be restored, resulting in significant losses for power companies during the period when power cannot be supplied. Therefore, in such a situation where there is a power shortage, the electric power company deploys backup power supply equipment, such as a power supply vehicle, to the area where the power is out, until the normal power supply network 200 is restored. It is desirable to limit the impact of power outages.
  • the need for electricity may vary depending on the amount of electricity required, the use of electricity, etc. in the area that requires the supply of electricity. Therefore, from the power company's perspective, in order to minimize the impact of power outages and provide efficient power supply, it is important to prioritize the regions to be supplied with electricity according to the power needs of each region. It is desirable to determine and deploy backup power supply equipment based on the determined priority. This priority determination may be performed, for example, based on zoning areas, etc., which are divided into areas based on the amount of electricity demanded, the population, the main use of electricity, etc. of the area requiring the supply of electricity.
  • the social infrastructure use area 244 shown in FIG. 2 has a higher demand for electricity than the commercial use area 240 and the residential use area 242, and includes many facilities that support human life, such as hospitals. Therefore, electric power companies give higher priority to this social infrastructure use area 244, and in the event that a natural disaster such as a typhoon is predicted, power companies will provide backup power supply equipment such as power supply vehicles to this social infrastructure use area 244 for commercial A larger number may be provided than in the usage area 240 and the residential usage area 242.
  • the priority of areas where the supply of electricity is expected to be affected by an event such as a disaster is determined, and the equipment that supplies electricity is set based on the determined priority, so that a situation where power is insufficient occurs.
  • FIG. 3 is a diagram illustrating an example of a configuration of a power supply management system 300 according to an embodiment of the present disclosure.
  • the power supply management system 300 includes the above-described power supply network 200 and a power supply management device 350.
  • the power supply network 200 and the power supply management device 350 may be connected to each other via a communication network 330.
  • Communication network 330 may include, for example, a local area network (LAN), wide area network (WAN), satellite network, cable network, WiFi network, or any combination thereof. More specifically, the power supply management device 350 manages a plurality of devices in the power supply network 200 (a client terminal of a power company that manages the power plant 210, a sensor installed in a substation, a commercial use area 240, a residence) (sensors installed in each region such as the usage area 242 and the social infrastructure usage area 244), and is configured to perform data communication via the communication network 330 as necessary.
  • LAN local area network
  • WAN wide area network
  • satellite network cable network
  • WiFi network wireless local area network
  • the power supply management device 350 manages a plurality of devices in the power supply network 200 (a client terminal of a power company that manages the power plant 210, a sensor installed in a substation, a commercial use area 240, a residence) (sensors installed in each region such as the usage area 242 and the social infrastructure usage area 244), and
  • the power supply network 200 is a system that integrates power generation, substation, power transmission, and distribution in order to supply power generated by the power plant 210 to power receiving equipment of consumers in a predetermined target area. It consists of a power transmission network 205 that transmits power to the substation 220, and a power distribution network 235 that distributes power from the substation 220 to consumers. Note that the configuration of the power supply network 200 has been described above with reference to FIG. 2, so a description thereof will be omitted here.
  • the power supply management device 350 determines the priority of power supply for each small region included in the target region where power supply is expected to be affected by a large-scale event such as a natural disaster, and determines the priority of power supply. This is a device for generating and outputting a backup power supply plan for efficiently deploying equipment that supplies power, such as power supply vehicles, before an event occurs, based on the following.
  • the power supply management device 350 may be implemented as a server device or multiple server devices in a distributed computing environment such as a cloud.
  • the target area in the present disclosure means, for example, an area where the power plant 210 supplies power.
  • one target area is composed of a plurality of small areas. These small areas may be, for example, areas within a predetermined distance from each substation in the target area.
  • one small area may be provided with different zoning areas such as a residential area, a commercial area, an industrial area, and a social infrastructure area. As described below, the priority for supplying power may be determined for each zoning area in a small area.
  • the power supply management device 350 includes an event detection unit 352, a map information management unit 353, a population estimation unit 354, a demand determination unit 356, a priority determination unit 358, and a plan generation unit 360. , a presentation section 362 , and a plan learning section 364 .
  • These functional units may be software modules that constitute the power supply management application 150 shown in FIG. 1, or may be independent dedicated hardware devices. Additionally, the functional units described above may be implemented in the same computing environment or in distributed computing environments.
  • the event detection unit 352 is a functional unit that detects an event that may affect the power supply to a predetermined target area.
  • the event here may be any event that may affect the power supply, such as a natural disaster such as a typhoon, tsunami, or earthquake, a conflict, or maintenance or failure of a power plant.
  • the event detection unit 352 may use a machine learning method or the like configured to predict an event by acquiring and analyzing external information such as weather information or seismic activity information.
  • the map information management unit 353 is a functional unit that acquires and processes map information indicating at least the location of substations in the target area and the distribution of structures in the target area.
  • the map information here may be obtained, for example, from individuals or organizations that distribute open source map data, may be obtained from providers who distribute map data for a fee, or may be obtained from artificial satellites, aerial photographs, etc. It may also be map information created independently based on.
  • the map information management unit 353 may generate a zoning map in which small areas in the target area are classified into zoning areas by processing the acquired map information.
  • a "zoning area" is an area divided based on regional characteristics or the use of structures in a small area. In this disclosure, embodiments will be described using four zoning areas: residential use area, commercial use area, industrial use area, and social infrastructure use area, but this disclosure is not limited to this, and different zoning areas Alternatively, categories created by the user may be used.
  • the population estimation unit 354 is a functional unit for estimating the population of the target area.
  • the population estimation unit 354 may estimate the population data of the target area based on historical population data such as the national census, or real-time data such as traffic volume, the number of terminals connected to the Internet, and images from surveillance cameras. good.
  • the demand determination unit 356 is a functional unit that determines the demand for electricity in the target area.
  • the demand determination unit 356 determines the power demand in the target area based on, for example, the past power consumption in the target area or the real-time power consumption measured based on information from sensors arranged in the power supply network 200. may be determined.
  • the priority determination unit 358 is a functional unit that generates a power supply priority evaluation indicating the priority of supplying power to each small area centered around each substation in the target area.
  • This power supply priority evaluation is generated based on, for example, the ratio and weighting of zoning areas in the zoning map generated by the map information management unit, the population of the target area estimated by the population estimation unit 354, and the demand determination unit 356. This may be done based on the determined power demand of the target area.
  • the plan generation unit 360 generates a backup power generation system that specifies the scale (for example, the number) of backup power generation equipment to be deployed for each small area in the target area in order to alleviate the influence of the event detected by the event detection unit 352 described above.
  • This is a functional unit that generates supply plans.
  • the backup power supply plan here may be generated based on the power supply priority evaluation generated by the priority determination unit 358 described above.
  • plan generator 360 may be implemented as a machine learning technique trained to generate backup power supply plans.
  • the standby power generation equipment here may include any power generation/power supply device, such as a power supply vehicle, an electric vehicle, or a generator. Note that the backup power supply plan generated by the plan generation unit 360 is generated before the event detected by the event detection unit 352 occurs.
  • the electric power company may deploy backup power generating equipment such as power supply vehicles to substations in each sub-region according to the backup power supply plan, and then dispatch them to each customer according to the progress of an event.
  • the presentation unit 362 is a functional unit that visualizes the backup power supply plan created by the plan generation unit 360, presents it to the user, and receives user input for changing the backup power supply plan.
  • the presentation unit 362 may accept user input to adjust the weighting of the zoning areas.
  • the plan learning unit 364 is a functional unit trained to generate a backup power supply plan based on the state of the power system using the backup power supply plan created by the plan generation unit 360 as learning data.
  • the plan learning unit 364 here may be a reinforcement learning model, for example.
  • the priority is determined for each small area in the area where the power supply is expected to be affected by an event such as a disaster, and the determined priority is Based on this, it is possible to efficiently deploy equipment that supplies power before a power shortage situation occurs, to minimize the impact of power outages, and to suppress losses to power companies.
  • FIG. 4 is a diagram illustrating an example of the flow of a power supply management method 400 according to an embodiment of the present disclosure.
  • the power supply management method 400 shown in FIG. 4 determines a priority for each small area in an area where power supply is expected to be affected by an event such as a disaster, and supplies equipment based on the priority. This is a method for generating a backup power supply plan that efficiently deploys power.
  • the power supply management method 400 shown in FIG. 4 may be implemented, for example, by each functional unit of the power supply management device 350 described above.
  • the event detection unit 352 of the power supply management device 350 detects an event that may affect the power supply to a predetermined target area.
  • the event detection unit 352 detects an event by using a machine learning method or the like configured to predict an event by acquiring and analyzing external information such as weather information or seismic activity information. You may.
  • the event detection unit 352 may detect a typhoon that is predicted to approach the target area as an event based on weather information.
  • the map information management unit 353 acquires map information indicating at least the location of the substation in the target area and the distribution of structures in the target area.
  • the map information management unit 353 may acquire map information of a target area that may be affected by the event detected in step S410.
  • the map information management unit 353 may acquire map information from individuals or organizations that distribute open source map data (for example, Openstreetmaps), or may acquire map information from providers who distribute map data for a fee. , map information of the target area may be created independently based on artificial satellites, aerial photographs, etc.
  • the map information management unit 353 determines the zoning area of each structure in the target area based on the acquired map information, and divides the small area into each zoning area based on the distribution of the determined zoning area of each structure. Generate a zoning map with classification.
  • the map information management unit 353 By performing a search method such as a string search on this metadata, the zoning area of each structure in the target area may be determined and totaled. Further, if the metadata indicating the zoning area of the structure is not associated with the acquired map information, the map information management unit 353 uses an OCR (Optical Character Recognition) method to identify the structure in the image serving as the map information. The zoning area may be determined and tabulated based on the appearance, dimensions, etc. of the area.
  • OCR Optical Character Recognition
  • the map information management unit 353 generates a zoning map in which the small areas are classified into zoning areas based on the determined distribution of zoning areas for each structure.
  • the zoning map here refers to a map with labels indicating zoning areas such as residential use area, commercial use area, industrial use area, social infrastructure use area, etc. for each small area included in the target area. means information.
  • This zoning map also shows the proportion of zoning areas in specific small areas (residential use area: 31%, commercial use area: 27%, industrial use area: 23%, social infrastructure use area: 19%). good.
  • This percentage may be the ratio of the number of structures that fall within a particular zoning district to the total number of structures in the sub-region, or the ratio of the area occupied by structures that fall within a particular zoning district to the total area of the sub-region. It may be a percentage.
  • the map information management unit 353 assigns weights to the created zoning map for each zoning area. This weighting is a factor representing the relative importance of providing power to a particular zoning area.
  • the map information management unit 353 may assign weights to the zoning areas based on weighting setting criteria created in advance, and may assign weights to the zoning areas based on criteria obtained in advance from a user representing the interests of the electric power company. You may also add an attachment. These weights may be expressed as numerical values ranging from "0" to "1", for example. As an example, in some embodiments, higher weighting (0.7, 0.8, etc.) is given to areas for uses that support human life, such as "residential use areas" and "social infrastructure use areas.” can do. In this way, by generating a zoning map in which small areas are classified into zoning areas and assigning weights to the maps, it is possible to determine priorities that take into account the use of electric power in each region.
  • the population estimation unit 354 estimates the population of the target area.
  • the population estimation unit 354 uses, for example, historical population data such as the national census, traffic volume, the number of terminals connected to the Internet (for example, smartphones that share location data), surveillance camera images, etc.
  • the population data of the target area may be estimated based on real-time data.
  • the population estimating unit 354 analyzes images of surveillance cameras installed in public places (plazas, stations, airports, shops) using YOLO (You Only Look Once), for example, to estimate the location of the place.
  • the number of people may be estimated, and the population of the entire area may be estimated from this number estimate.
  • the population estimating unit 354 may estimate the population for each residential area, commercial area, industrial area, and social infrastructure area in the small area of the zoning map generated in step S420. . In one embodiment, the population estimating unit 354 compares the estimated population with a predetermined threshold value to determine the residential use zone, commercial use zone, industrial use zone, and social infrastructure use zone in each small area. A population index qualitatively indicating the population, such as "1" (high population), "2" (medium population), or "3" (low population), may be determined.
  • the demand determination unit 356 determines the power demand of the target area.
  • the demand determination unit 356 uses, for example, the past power consumption of the target area acquired from the electric power company, and sensors (smart meters in residences and SCADA; Supervisory Control and Data Acquisition data) installed in the power supply network 200. )
  • the power demand in the target area may be determined based on the real-time power consumption measured based on the information.
  • the demand determination unit 356 may determine the power demand for each residential use area, commercial use area, industrial use area, and social infrastructure use area in the small area of the zoning map generated in step S420. good.
  • the demand determination unit 356 compares the determined power demand with a predetermined threshold value, and determines the residential use area, commercial use area, industrial use area, and social infrastructure use area in each small area. For a region, a power demand index qualitatively indicating power demand such as “1" (high demand), “2" (medium demand), “3” (low demand), etc. may be determined.
  • the priority determination unit 358 generates a power supply priority evaluation indicating the priority of power supply for each small region centered on each substation in the target region. More specifically, the priority determination unit 358 uses the weighting of the zoning area created in step S420 given to each zoning area, the proportion of the zoning area in the small area, and the population index estimated in step S430. , and the power demand index determined in step S440, power is supplied to each zoning area (residential use area, commercial use area, industrial use area, social infrastructure use area, etc.) in the small area of the zoning map. Generate a power supply priority rating indicating priority.
  • the priority here may be calculated by multiplying the sum of the proportion of the zoning area, the estimated population index, and the determined power demand index by the weighting assigned to each zoning area. Thereafter, the priority determination unit 358 selects a value that satisfies a predetermined standard (for example, the highest value) from among the priority values calculated for each zoning area of a specific small area as the overall priority of the specific small area. , the overall priority calculated for each small area may be aggregated as the power supply priority evaluation.
  • a predetermined standard for example, the highest value
  • step S460 the plan generation unit 360 determines the backup power generation equipment to be deployed for each zoning area in a small area centered on each substation in the target area, based on the power supply priority evaluation determined in step S450.
  • the backup power supply plan generated in step S460 may be presented to a user such as an electric power company by the presentation unit 362 in order to respond to an event such as a disaster, as described with reference to FIG. 11, it may be used as learning data for the plan learning section 364.
  • the priority is determined for each small area in an area where the power supply is expected to be affected by an event such as a disaster, and power is supplied based on the determined priority.
  • FIG. 5 is a diagram illustrating an example of the flow of a power supply plan presentation process 500 for presenting a backup power supply plan to a user according to an embodiment of the present disclosure.
  • This power supply plan presentation process 500 may be executed by the presentation unit 362 described above.
  • a more accurate backup power supply plan can be generated. can do.
  • the presentation unit 362 visualizes the backup power supply plan created by the plan generation unit 360.
  • the expression “visualize” means that the backup power supply plan (that is, information indicating the number of backup power generation facilities to be deployed for each small area) created by the plan generation unit 360 can be visualized using images, graphs, It means to express it in the form of a table, etc.
  • the presenting unit 362 may visualize the backup power supply plan as a bar graph as shown in FIG. 9 .
  • the presenting unit 362 presents the backup power supply plan visualized in step S510 to the administrator.
  • the administrator here may be, for example, a user such as an administrator representing the interests of the electric power company.
  • the presenting unit 362 may transmit the backup power supply plan visualized in step S510 to a terminal such as a personal computer or a smartphone of the administrator via a communication network, and may present the plan by displaying the plan.
  • users who have confirmed the backup power supply plan can set up backup power generation facilities in each area of the target area according to the backup power supply plan in preparation for the detected event. They may be deployed in small areas, and the backup power supply plan may be modified, as described below.
  • the presenting unit 362 may receive user input for modifying the weighting of the zoning area from the administrator who presented the backup power supply plan in step S515.
  • the presentation unit 362 may receive a user input that changes the weighting of the zoning area with "residential use area" from "0.5" to "0.7".
  • step S525 the presentation unit 362 transmits a request to the plan generation unit 360 to modify the backup power supply plan based on the user input received in step S515.
  • the process may return to step S510 and re-present the modified backup power supply plan to the user in step S515.
  • the priority of supplying power to a small area included in a target area is based on a predetermined weighting for the zoning area of the small area, the ratio of the zoning area in the small area, It is calculated based on a population index indicating the population of the small area and a power demand index indicating the demand for electricity in the small area.
  • FIG. 6 is a diagram showing an example of a configuration of a priority calculation table 600 showing an example of priority calculation according to an embodiment of the present disclosure.
  • the priority calculation table 600 includes a residential use area 620, a commercial use area 630, and an industrial use area in a specific small area (for example, an area within a predetermined distance from a specific substation) 610.
  • a specific small area for example, an area within a predetermined distance from a specific substation
  • 640 and social infrastructure use area 650, weighting 660, proportion of the zoning area 670, power demand index 680, population index 690, and priority 695 are shown.
  • the weighting 660 is a coefficient representing the relative importance of supplying power to a specific zoning area, and may be specified in advance by the power company for each zoning area. As an example, in some embodiments, higher weighting may be set for areas with uses that support human life, such as "residential use area 620" and "social infrastructure use area 650.”
  • the zoning area ratio 670 is information indicating the zoning area ratio in the small area.
  • This zoning area ratio may be the ratio of the number of structures that fall under a specific zoning area to the total number of structures in a sub-area, or the ratio of the area occupied by structures that fall under a specific zoning area to the total number of structures in a sub-area. It may be a percentage of the total area.
  • the power demand index 680 is information indicating the characteristics of power demand for each zoning area of a specific small area, and may be expressed in a scale of 1 to 3, for example.
  • the population index 690 is information indicating the characteristics of the population for each zoning area of a specific small area, and may be expressed in a scale of, for example, 1 to 3, similarly to the power demand index 680.
  • the priority of the zoning district can be calculated.
  • the priority of the zoning area in a particular small area may be calculated using Equation 1 below.
  • K represents weighting 660
  • B represents zoning area percentage 670
  • P represents population index 690
  • D represents power demand index 680.
  • the method of calculating the priority is not limited to this, and for example, the priority 695 may be the product of the weighting 660, the zoning area ratio 670, the power demand index 680, and the population index 690. Further, after calculating the priority of each zoning area in the small area, the highest priority value in the small area may be set as the overall priority of the small area. Thereafter, the backup power generation equipment to be deployed in the small area may be determined based on the determined overall priority. Note that the overall priority is not limited to this determination method, and in an embodiment, the average of the priorities calculated for each zoning area may be calculated to determine the overall priority of the small area.
  • FIG. 7 is a diagram illustrating an example of a priority table 700 according to an embodiment of the present disclosure.
  • the priority table 700 is a diagram showing priorities calculated for each zoning area in a small area of the target area.
  • the priority table 700 includes an identification ID 710 for identifying a specific small area, a residential use area 720, a commercial use area 730, an industrial use area 740, a social infrastructure use area 750, and an overall priority level 760. May include.
  • the overall priority 760 here is the highest of the priorities calculated for each zoning area of the residential use area 720, the commercial use area 730, the industrial use area 740, and the social infrastructure use area 750. This value represents the priority of the entire small area. In this way, according to the priority table 700, it is possible to manage the priority calculated for each zoning area for each small area in the target area.
  • FIG. 8 is a diagram illustrating an example of an equipment deployment management table 800 according to an embodiment of the present disclosure.
  • the equipment deployment management table 800 is a table that specifies the number of standby power generation facilities to be deployed in a small area based on the overall priority calculated for each small area.
  • the equipment deployment management table 800 includes an identification ID 810 that identifies a specific small area, an overall priority 820 of the small area, a ratio 830 to the total priority, and a number 840 of standby power generation equipment. May include.
  • the standby power generation equipment here may include any power generation/power supply device, such as a power supply vehicle, an electric vehicle, or a generator.
  • the power supply vehicle may be an automobile or a railway vehicle equipped with a generator for supplying electric power.
  • the number of power supply vehicles specified in the equipment deployment management table 800 may be deployed to the substations of each sub-region before the event occurs.
  • the overall priority 820 may be the highest priority among the priorities calculated for each zoning area in the small area, and is a value representing the priority of the entire small area.
  • the ratio 830 to the total priority is a value indicating the ratio of the total priority of a specific small area to the total priority of all small areas. As an example, if the overall priority of "Small Area 1" is "5.67” and the sum of the total priorities of all small areas is "55.56", then the sum of all the small areas of "Small Area 1" The ratio 830 to the priority is approximately "10%".
  • the number 840 of standby power generation facilities is a value calculated as the product of the ratio 830 of the overall priority of a specific small area to the total priority of all small areas and the number of standby power generation facilities that can be deployed. For example, if the ratio 830 of "Small Area 1" to the total priority of all small areas is "10%" and the number of standby power generation facilities that can be deployed is "200", then the standby power generation equipment to be deployed in Small Area 1 is The number of equipment 840 is "20".
  • the equipment deployment management table 800 it is possible to determine the number of standby power generation facilities to be deployed in a small area based on the overall priority calculated for each small area.
  • FIG. 9 is a diagram illustrating an example of a backup power supply plan 900 according to an embodiment of the present disclosure.
  • the standby power supply plan 900 is information that specifies, for each small area, the number of standby power generation facilities to be deployed in that small area in order to alleviate the effects of an event.
  • the backup power supply plan 900 according to the embodiment of the present disclosure may be expressed, for example, as a bar graph. More specifically, as shown in FIG. 9, in the backup power supply plan 900, the small area ID may be represented on the horizontal axis, and the number of standby power generation facilities for each small area may be represented on the vertical axis.
  • this backup power supply plan 900 may be presented to a user such as an electric power company by the presentation unit 362 in order to respond to an event such as a disaster, and as shown in FIG. Additionally, it may be used as learning data for the plan learning section 364.
  • FIG. 10 is a diagram illustrating an example of the flow of plan learning processing 1000 according to the embodiment of the present disclosure.
  • the plan learning process shown in FIG. 10 is a process for training a machine learning model capable of generating a backup power supply plan, and may be executed by, for example, the plan learning unit 364 described above.
  • a backup power supply plan 1020 that specifies the scale (for example, number, etc.) of backup power generation equipment to be deployed is generated by the plan generation unit 360. As will be described later, this backup power supply plan 1020 is used as learning data for training the plan learning section 364. Note that as the learning data here, the backup power supply plan 1020 generated for an actual past event may be used, or the ground truth created by an administrator such as a user for the learning data may be used.
  • the plan learning unit 364 creates a model representing the state of the power system, for example, as shown in the following formula.
  • the state of the power system includes, for example, the state of the power plant, the probability of the risk of an abnormality (such as a disconnection of a power transmission line) occurring in the power system, the range of influence of the event (weather map, etc.), and the state of the power transmission lines in the power system. It may be created based on information 1025.
  • gen t represents the state of the power plant
  • p t+1 represents the probability of the risk that an abnormality (such as a disconnection of a power transmission line) will occur in the power system at time t
  • t represents the probability of the risk that an abnormality (such as a disconnection of a power transmission line) will occur in the power system at time t.
  • the status of the power plant represents, for example, the power output of the power plant, and may be set by the user representing the interests of the utility company, using different machine learning models trained to determine the optimal power plant status. may be obtained from.
  • p t+1 may be the priority of a small region according to embodiments of the present disclosure.
  • the state of the power transmission line in the power system lt can be determined from the following formula.
  • p t line represents the probability that the power transmission line will be disconnected at time t
  • r t line is a random number within the range of 0 to 1.
  • the plan learning unit 364 calculates the state of the power system at each time t up to a predetermined end time t max based on the risk probabilities p t+1 and l t predicted based on the power plant state gen t , influence range, etc. Create a model. Thereafter, the plan learning unit 364 generates a second backup power supply plan 1030 that indicates the number of backup power generation facilities to be deployed to each sub-region of the target area affected by the event, based on the state of the power system shown in this model. generate. More specifically, the plan learning unit 364 calculates the state deviation when a predetermined number of backup power generation facilities are deployed with respect to the power system state s t at a predetermined time t into a second backup power supply plan.
  • plan learning unit 364 selects the state shift almost randomly, but as described later, the plan learning unit 364 uses the backup power supply plan 1020 generated by the plan generating unit 360 as learning data. can be trained to generate more appropriate state deviations (i.e., a more effective distribution of standby generation facilities to reduce the impact of an event).
  • the plan learning unit 364 compares the backup power supply plan 1020 generated by the plan generation unit 360 and the second backup power supply plan 1030 generated by the plan learning unit 364, and compares the degree of similarity (for example, Euclidean distance, etc.). The higher the degree of similarity of the second backup power supply plan 1030 to the backup power supply plan 1020, the higher the reward given to the plan learning unit 364. In this way, by training the plan learning unit 364 to reduce the loss of the second backup power supply plan 1030 with respect to the backup power supply plan 1020, the plan learning unit 364 can prepare an appropriate reserve for various events. It becomes possible to generate a power supply plan.
  • the degree of similarity for example, Euclidean distance, etc.
  • a backup power supply plan can be generated without collecting population information, map information, power demand information, etc.
  • the target area when an event (natural disaster, etc.) that may affect the power supply to a predetermined target area is detected, the target area
  • the priority for supplying power can be calculated for each small area centered on the location of each substation. As mentioned above, this priority is calculated based on, for example, the proportion and weighting of each zoning area in a small area, the population, and the demand for electricity. It is a multifaceted index that reflects various aspects such as Then, based on this determined priority, backup power supply equipment such as a power supply vehicle can be provided for each small area in preparation for an event.
  • 200 Power supply network
  • 205 Power transmission network
  • 210 Power plant
  • 215 Power transmission line
  • 220 Substation
  • 235 Power distribution network
  • 240 Commercial use area
  • 242 Residential use area
  • 244 Social infrastructure use area
  • 330 communication network
  • 350 power supply management device
  • 362 Presentation section
  • 364 Planning learning section

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The present invention is to provide a power supplying management means which makes it possible to determine the priority of an area in which power supplying is predicted to be affected by an event such as a disaster, and, before a power shortage situation occurs, to efficiently deploy a facility that supplies the power on the basis of the determined priority. The power supplying management device comprises: an event detection unit which detects an event which may affect power supplying to a prescribed subject area; a map information management unit which acquires map information pertaining to the subject area; a population estimation unit which estimates the population in the subject area; a demand determination unit which determines the demand of the power of the subject area; a priority determination unit which generates power supplying priority evaluation that indicates the priority of supplying the power for each small area in the subject area on the basis of the power demand information, the population information, and the map information; and a plan generation unit which generates a preliminary power supplying plan that designates the size of a preliminary power generation facility to be deployed in each of the small areas.

Description

電力供給管理装置、電力供給管理方法及び電力供給管理システムPower supply management device, power supply management method, and power supply management system
 本発明は、電力供給管理装置、電力供給管理方法及び電力供給管理システムに関する。 The present invention relates to a power supply management device, a power supply management method, and a power supply management system.
 ビル、工場、社会インフラ、家庭などの負荷設備等で使用される電力の供給は、主として、大規模発電所、変電所及び送配電設備による電力供給システムが担っている。しかし、環境変化に起因する自然災害等の大規模イベントにより、電力供給システムが被害を受け、十分な電力を供給できなくなり、停電が発生することがある。停電が発生すると、被害の規模によっては、復旧までは数週間を要することもあり、電力を供給できない期間は電力会社にとって大きな損失となる。 The supply of electricity used by load equipment such as buildings, factories, social infrastructure, and homes is mainly handled by power supply systems that include large-scale power plants, substations, and power transmission and distribution equipment. However, large-scale events such as natural disasters caused by environmental changes may damage the power supply system, making it impossible to supply sufficient power and causing power outages. When a power outage occurs, depending on the scale of the damage, it may take several weeks for power to be restored, resulting in significant losses for power companies during the period when power cannot be supplied.
 従来から、停電による被害を抑制する手段として、給電電力が不足する非常時において、複数の電動車両(Electric Vehicles)の蓄電池を充放電装置に接続し、非常用エネルギーを放電する手段が知られている。
 例えば、特開2021-158837号公報(特許文献1)には、「電力情報処理システム100において、充放電器管理サーバーSV2は、電力系統網の情報を電力系統管理サーバーSV1から取得し、複数の電動車両の情報をEV管理サーバーSV3から取得し、停電状態の電力系統網において必要とされる需要電力と、複数の電動車両から供給可能な供給電力との比較に基づいて、複数の電動車両のうち電力系統網に電力を放電する電動車両の配分を決定し、配分に基づいて、電力を電力系統網に放電するための充放電器に複数の電動車両の夫々を誘導する。」技術が開示されている。
Conventionally, as a means of suppressing damage caused by power outages, there has been known a method of connecting the storage batteries of multiple electric vehicles to a charging/discharging device and discharging emergency energy during an emergency when power supply is insufficient. There is.
For example, Japanese Patent Application Publication No. 2021-158837 (Patent Document 1) states, "In the power information processing system 100, the charger/discharger management server SV2 acquires information on the power grid network from the power system management server SV1, and Information on electric vehicles is acquired from the EV management server SV3, and based on the comparison between the demand power required in the power grid during a power outage and the supply power that can be supplied from multiple electric vehicles, Determine the allocation of the electric vehicles that discharge power to the power grid, and guide each of the plurality of electric vehicles to a charger/discharger for discharging power to the power grid based on the allocation.''The technology is disclosed. has been done.
特開2021-158837号公報Japanese Patent Application Publication No. 2021-158837
 上記の特許文献1には、電力を必要としている電力系統網の需要側に供給側である電動車両を配分し、誘導する手段が記載されている。 The above-mentioned Patent Document 1 describes means for allocating and guiding electric vehicles, which are the supply side, to the demand side of the power grid that requires electric power.
 しかし、特許文献1に記載の電力情報処理手段では、電動車両を配分し、電力を供給する活動は、既に災害が起こり、停電が発生した後に、電力を必要としている電力系統網からの電力要求に基づいて行われる。このため、電動車両の電力系統網までの移動時間により供給が遅れる上、電力の必要性が最も高い需要者(必要な電力量が多い需要者や、病院等の人間の命を支える施設)に早急に電力が供給される保証はないという課題がある。 However, in the power information processing means described in Patent Document 1, the activity of distributing electric vehicles and supplying power is performed after a disaster has already occurred and a power outage has occurred, and the power request from the power grid network that requires power is It is carried out based on. As a result, supply is delayed due to the travel time of electric vehicles to the power grid, and the supply is delayed to the customers with the highest need for electricity (customers who require large amounts of electricity, facilities that support human life such as hospitals) The problem is that there is no guarantee that electricity will be supplied immediately.
 そこで、本開示は、災害等のイベントにより電力の供給が影響されると予想される領域の優先度を判定し、判定した優先度に基づいて電力を供給する設備を、電力が不足する状況が発生する前に効率よく配備することが可能な電力供給管理手段を提供することを目的とする。 Therefore, the present disclosure determines the priority of areas where power supply is expected to be affected by an event such as a disaster, and installs equipment that supplies power based on the determined priority in a situation where power is insufficient. The purpose is to provide a power supply management means that can be efficiently deployed before power generation occurs.
 上記の課題を解決するために、代表的な本発明の電力供給管理装置の一つは、所定の対象領域への電力供給に影響を及ぼす可能性があるイベントを検出するイベント検出部と、前記対象領域における変電所の位置と、前記対象領域における構造物の分布とを示す地図情報を取得する地図情報管理部と、前記対象領域の人口を推定する人口推定部と、前記対象領域の電力の需要を判定する需要判定部と、前記電力の需要と、前記人口と、前記地図情報とに基づいて、前記対象領域における各変電所を中心とした小領域毎に、当該小領域へ電力を供給する優先度を示す電力供給優先評価を生成する優先度判定部と、前記電力供給優先評価に基づいて、前記小領域毎に、前記イベントの影響を緩和するために当該小領域へ配備する予備発電設備の規模を指定する予備電力供給計画を生成する計画生成部とを含む。 In order to solve the above problems, one of the typical power supply management devices of the present invention includes an event detection unit that detects an event that may affect the power supply to a predetermined target area; a map information management unit that acquires map information indicating the location of substations in the target area and the distribution of structures in the target area; a population estimation unit that estimates the population of the target area; and a population estimation unit that estimates the population of the target area; a demand determination unit that determines demand; and supplying power to each small area centered on each substation in the target area based on the demand for electricity, the population, and the map information. a priority determination unit that generates a power supply priority evaluation indicating the priority of the event; and a backup power generation unit that deploys, for each of the small areas, to the small area in order to alleviate the impact of the event, based on the power supply priority evaluation. and a plan generation unit that generates a backup power supply plan that specifies the scale of the equipment.
 本開示によれば、災害等のイベントにより電力の供給が影響されると予想される領域の優先度を判定し、判定した優先度に基づいて電力を供給する設備を、電力が不足する状況が発生する前に効率よく配備することが可能な電力供給管理手段を提供することができる。
 上記以外の課題、構成及び効果は、以下の発明を実施するための形態における説明により明らかにされる。
According to the present disclosure, the priority of an area where power supply is expected to be affected by an event such as a disaster is determined, and based on the determined priority, equipment that supplies power is adjusted to prevent a situation where power is insufficient. It is possible to provide a power supply management means that can be efficiently deployed before power generation occurs.
Problems, configurations, and effects other than those described above will be made clear by the description in the detailed description below.
図1は、本開示の実施形態を実施するためのコンピュータシステムを示す図である。FIG. 1 is a diagram illustrating a computer system for implementing embodiments of the present disclosure. 図2は、本開示の実施形態に係る電力供給網の一例を示す図である。FIG. 2 is a diagram illustrating an example of a power supply network according to an embodiment of the present disclosure. 図3は、本開示の実施形態に係る電力供給管理システムの構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of a configuration of a power supply management system according to an embodiment of the present disclosure. 図4は、本開示の実施形態に係る電力供給管理方法の流れの一例を示す図である。FIG. 4 is a diagram illustrating an example of the flow of the power supply management method according to the embodiment of the present disclosure. 図5は、本開示の実施形態に係る予備電力供給計画提示処理の流れの一例を示す図である。FIG. 5 is a diagram illustrating an example of the flow of backup power supply plan presentation processing according to the embodiment of the present disclosure. 図6は、本開示の実施形態に係る優先度の計算の一例を示す優先度計算表の構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of a configuration of a priority calculation table illustrating an example of priority calculation according to an embodiment of the present disclosure. 図7は、本開示の実施形態に係る優先度表の一例を示す図である。FIG. 7 is a diagram illustrating an example of a priority table according to an embodiment of the present disclosure. 図8は、本開示の実施形態に係る設備配備管理表の一例を示す図である。FIG. 8 is a diagram illustrating an example of an equipment deployment management table according to an embodiment of the present disclosure. 図9は、本開示の実施形態に係る予備電力供給計画の一例を示す図である。FIG. 9 is a diagram illustrating an example of a backup power supply plan according to an embodiment of the present disclosure. 図10は、本開示の実施形態に係る計画学習処理の流れの一例を示す図である。FIG. 10 is a diagram illustrating an example of the flow of plan learning processing according to the embodiment of the present disclosure.
 以下、図面を参照して、本発明の実施形態について説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to this embodiment. In addition, in the description of the drawings, the same parts are denoted by the same reference numerals.
 次に、図1を参照して、本開示の実施形態を実施するためのコンピュータシステム100について説明する。本明細書で開示される様々な実施形態の機構及び装置は、任意の適切なコンピューティングシステムに適用されてもよい。コンピュータシステム100の主要コンポーネントは、1つ以上のプロセッサ102、メモリ104、端末インターフェース112、ストレージインタフェース113、I/O(入出力)デバイスインタフェース114、及びネットワークインターフェース115を含む。これらのコンポーネントは、メモリバス106、I/Oバス108、バスインターフェースユニット109、及びI/Oバスインターフェースユニット110を介して、相互的に接続されてもよい。 Next, with reference to FIG. 1, a computer system 100 for implementing an embodiment of the present disclosure will be described. The mechanisms and apparatus of the various embodiments disclosed herein may be applied to any suitable computing system. The main components of computer system 100 include one or more processors 102 , memory 104 , terminal interface 112 , storage interface 113 , I/O (input/output) device interface 114 , and network interface 115 . These components may be interconnected via memory bus 106, I/O bus 108, bus interface unit 109, and I/O bus interface unit 110.
 コンピュータシステム100は、プロセッサ102と総称される1つ又は複数の汎用プログラマブル中央処理装置(CPU)102A及び102Bを含んでもよい。ある実施形態では、コンピュータシステム100は複数のプロセッサを備えてもよく、また別の実施形態では、コンピュータシステム100は単一のCPUシステムであってもよい。各プロセッサ102は、メモリ104に格納された命令を実行し、オンボードキャッシュを含んでもよい。 Computer system 100 may include one or more general purpose programmable central processing units (CPUs) 102A and 102B, collectively referred to as processors 102. In some embodiments, computer system 100 may include multiple processors, and in other embodiments, computer system 100 may be a single CPU system. Each processor 102 executes instructions stored in memory 104 and may include onboard cache.
 ある実施形態では、メモリ104は、データ及びプログラムを記憶するためのランダムアクセス半導体メモリ、記憶装置、又は記憶媒体(揮発性又は不揮発性のいずれか)を含んでもよい。メモリ104は、本明細書で説明する機能を実施するプログラム、モジュール、及びデータ構造のすべて又は一部を格納してもよい。例えば、メモリ104は、電力供給管理アプリケーション150を格納していてもよい。ある実施形態では、電力供給管理アプリケーション150は、後述する機能をプロセッサ102上で実行する命令又は記述を含んでもよい。 In some embodiments, memory 104 may include random access semiconductor memory, storage devices, or storage media (either volatile or nonvolatile) for storing data and programs. Memory 104 may store all or a portion of programs, modules, and data structures that perform the functions described herein. For example, memory 104 may store power supply management application 150. In some embodiments, power supply management application 150 may include instructions or writing to perform functions described below on processor 102.
 ある実施形態では、電力供給管理アプリケーション150は、プロセッサベースのシステムの代わりに、またはプロセッサベースのシステムに加えて、半導体デバイス、チップ、論理ゲート、回路、回路カード、および/または他の物理ハードウェアデバイスを介してハードウェアで実施されてもよい。ある実施形態では、電力供給管理アプリケーション150は、命令又は記述以外のデータを含んでもよい。ある実施形態では、カメラ、センサ、または他のデータ入力デバイス(図示せず)が、バスインターフェースユニット109、プロセッサ102、またはコンピュータシステム100の他のハードウェアと直接通信するように提供されてもよい。 In some embodiments, the power supply management application 150 may be implemented on semiconductor devices, chips, logic gates, circuits, circuit cards, and/or other physical hardware instead of or in addition to processor-based systems. It may also be implemented in hardware via a device. In some embodiments, power supply management application 150 may include data other than instructions or descriptions. In some embodiments, cameras, sensors, or other data input devices (not shown) may be provided to communicate directly with bus interface unit 109, processor 102, or other hardware of computer system 100. .
 コンピュータシステム100は、プロセッサ102、メモリ104、表示システム124、及びI/Oバスインターフェースユニット110間の通信を行うバスインターフェースユニット109を含んでもよい。I/Oバスインターフェースユニット110は、様々なI/Oユニットとの間でデータを転送するためのI/Oバス108と連結していてもよい。I/Oバスインターフェースユニット110は、I/Oバス108を介して、I/Oプロセッサ(IOP)又はI/Oアダプタ(IOA)としても知られる複数のI/Oインタフェースユニット112,113,114、及び115と通信してもよい。 Computer system 100 may include a bus interface unit 109 that provides communication between processor 102 , memory 104 , display system 124 , and I/O bus interface unit 110 . I/O bus interface unit 110 may be coupled to I/O bus 108 for transferring data to and from various I/O units. I/O bus interface unit 110 connects via I/O bus 108 to a plurality of I/ O interface units 112, 113, 114, also known as I/O processors (IOPs) or I/O adapters (IOAs). and 115.
 表示システム124は、表示コントローラ、表示メモリ、又はその両方を含んでもよい。表示コントローラは、ビデオ、オーディオ、又はその両方のデータを表示装置126に提供することができる。また、コンピュータシステム100は、データを収集し、プロセッサ102に当該データを提供するように構成された1つまたは複数のセンサ等のデバイスを含んでもよい。 Display system 124 may include a display controller, display memory, or both. A display controller may provide video, audio, or both data to display device 126. Computer system 100 may also include devices, such as one or more sensors, configured to collect data and provide the data to processor 102.
 例えば、コンピュータシステム100は、心拍数データやストレスレベルデータ等を収集するバイオメトリックセンサ、湿度データ、温度データ、圧力データ等を収集する環境センサ、及び加速度データ、運動データ等を収集するモーションセンサ等を含んでもよい。これ以外のタイプのセンサも使用可能である。表示システム124は、単独のディスプレイ画面、テレビ、タブレット、又は携帯型デバイスなどの表示装置126に接続されてもよい。 For example, the computer system 100 may include a biometric sensor that collects heart rate data, stress level data, etc., an environmental sensor that collects humidity data, temperature data, pressure data, etc., and a motion sensor that collects acceleration data, exercise data, etc. May include. Other types of sensors can also be used. Display system 124 may be connected to a display device 126, such as a standalone display screen, a television, a tablet, or a handheld device.
 I/Oインタフェースユニットは、様々なストレージ又はI/Oデバイスと通信する機能を備える。例えば、端末インタフェースユニット112は、ビデオ表示装置、スピーカテレビ等のユーザ出力デバイスや、キーボード、マウス、キーパッド、タッチパッド、トラックボール、ボタン、ライトペン、又は他のポインティングデバイス等のユーザ入力デバイスのようなユーザI/Oデバイス116の取り付けが可能である。ユーザは、ユーザインターフェースを使用して、ユーザ入力デバイスを操作することで、ユーザI/Oデバイス116及びコンピュータシステム100に対して入力データや指示を入力し、コンピュータシステム100からの出力データを受け取ってもよい。ユーザインターフェースは例えば、ユーザI/Oデバイス116を介して、表示装置に表示されたり、スピーカによって再生されたり、プリンタを介して印刷されたりしてもよい。 The I/O interface unit has the ability to communicate with various storage or I/O devices. For example, the terminal interface unit 112 may include a user output device such as a video display device, a speaker television, or a user input device such as a keyboard, mouse, keypad, touchpad, trackball, buttons, light pen, or other pointing device. It is possible to attach user I/O devices 116 such as: Using the user interface, a user operates user input devices to input input data and instructions to user I/O device 116 and computer system 100, and to receive output data from computer system 100. Good too. The user interface may be displayed on a display device, played through a speaker, or printed through a printer, for example, via the user I/O device 116.
 ストレージインタフェース113は、1つ又は複数のディスクドライブや直接アクセスストレージ装置117(通常は磁気ディスクドライブストレージ装置であるが、単一のディスクドライブとして見えるように構成されたディスクドライブのアレイ又は他のストレージ装置であってもよい)の取り付けが可能である。ある実施形態では、ストレージ装置117は、任意の二次記憶装置として実装されてもよい。メモリ104の内容は、ストレージ装置117に記憶され、必要に応じてストレージ装置117から読み出されてもよい。I/Oデバイスインタフェース114は、プリンタ、ファックスマシン等の他のI/Oデバイスに対するインターフェースを提供してもよい。ネットワークインターフェース115は、コンピュータシステム100と他のデバイスが相互的に通信できるように、通信経路を提供してもよい。この通信経路は、例えば、ネットワーク130であってもよい。 Storage interface 113 may include one or more disk drives or direct access storage devices 117 (typically magnetic disk drive storage devices, but also an array of disk drives or other storage devices configured to appear as a single disk drive). ) can be installed. In some embodiments, storage device 117 may be implemented as any secondary storage device. The contents of memory 104 are stored in storage device 117 and may be read from storage device 117 as needed. I/O device interface 114 may provide an interface to other I/O devices such as printers, fax machines, etc. Network interface 115 may provide a communication path so that computer system 100 and other devices can communicate with each other. This communication path may be, for example, network 130.
 ある実施形態では、コンピュータシステム100は、マルチユーザメインフレームコンピュータシステム、シングルユーザシステム、又はサーバコンピュータ等の、直接的ユーザインターフェースを有しない、他のコンピュータシステム(クライアント)からの要求を受信するデバイスであってもよい。他の実施形態では、コンピュータシステム100は、デスクトップコンピュータ、携帯型コンピューター、ノートパソコン、タブレットコンピュータ、ポケットコンピュータ、電話、スマートフォン、又は任意の他の適切な電子機器であってもよい。 In some embodiments, computer system 100 is a device that receives requests from other computer systems (clients) that do not have a direct user interface, such as a multi-user mainframe computer system, a single-user system, or a server computer. There may be. In other embodiments, computer system 100 may be a desktop computer, a portable computer, a laptop, a tablet computer, a pocket computer, a telephone, a smart phone, or any other suitable electronic device.
 次に、図2を参照して、本開示の概要について説明する。 Next, an overview of the present disclosure will be described with reference to FIG. 2.
 図2は、本開示の実施形態に係る電力供給網200の一例を示す図である。電力供給網200は、所定の対象領域に電力を供給するための電力系統であり、図2に示すように、発電所210からの電力を変電所220まで送電する送電網205と、電力を変電所220から需要者に配電する配電網235とからなる。より具体的には、発電所210によって発電された電力は、送電線215を介して、変電所220に送電される。その後、変電所220では、発電所210から送電された高電圧の電力はより低い電圧に変圧され、住居用途地域242、商業系用途地域240、社会インフラ用途地域244等の、対象領域における各地域に配電される。 FIG. 2 is a diagram illustrating an example of a power supply network 200 according to an embodiment of the present disclosure. The power supply network 200 is a power system for supplying power to a predetermined target area, and as shown in FIG. It consists of a power distribution network 235 that distributes power from the power station 220 to the consumers. More specifically, the power generated by power station 210 is transmitted to substation 220 via power transmission line 215. Thereafter, at the substation 220, the high voltage power transmitted from the power plant 210 is transformed to a lower voltage, and is transformed to each area in the target area, such as a residential use area 242, a commercial use area 240, and a social infrastructure use area 244. Power is distributed to
 ところで、上述したように、電力供給網200は、自然災害等の大規模イベントによって被害を受ける場合、送電線が断線し、十分な電力を対象領域に供給できなくなり、停電が発生することがある。停電が発生すると、被害の規模によっては、復旧までは数週間を要することもあり、電力を供給できない期間は電力会社にとって大きな損失となる。従って、このような電力が不足する状況において、電力会社は、通常の電力供給網200による供給が復旧するまでの間、例えば電源車等の予備の給電設備を停電している地域に配備し、停電の影響を抑えることが望ましい。 By the way, as described above, when the power supply network 200 is damaged by a large-scale event such as a natural disaster, the power transmission lines may be disconnected, making it impossible to supply sufficient power to the target area, resulting in a power outage. . When a power outage occurs, depending on the scale of the damage, it may take several weeks for power to be restored, resulting in significant losses for power companies during the period when power cannot be supplied. Therefore, in such a situation where there is a power shortage, the electric power company deploys backup power supply equipment, such as a power supply vehicle, to the area where the power is out, until the normal power supply network 200 is restored. It is desirable to limit the impact of power outages.
 ただし、電力の供給を必要としている地域は、必要な電力量や、電力の用途等に応じて、電力の必要性が異なることがある。従って、電力会社の観点からは、停電の影響を最小限に抑え、電力の効率的な供給を行うためには、各地域の電力の必要性に応じて、電力を供給する地域の優先度を判定し、判定した優先度に基づいて予備の給電設備を配備することが望ましい。この優先度の判定は、例えば、電力の供給を必要としている地域の電力の需要量、人口、電力の主な用途などから地域を区分したゾーニング区域等に基づいて行われてもよい。 However, the need for electricity may vary depending on the amount of electricity required, the use of electricity, etc. in the area that requires the supply of electricity. Therefore, from the power company's perspective, in order to minimize the impact of power outages and provide efficient power supply, it is important to prioritize the regions to be supplied with electricity according to the power needs of each region. It is desirable to determine and deploy backup power supply equipment based on the determined priority. This priority determination may be performed, for example, based on zoning areas, etc., which are divided into areas based on the amount of electricity demanded, the population, the main use of electricity, etc. of the area requiring the supply of electricity.
 一例として、図2に示す社会インフラ用途地域244は、商業系用途地域240及び住居用途地域242に比べて、電力の需要が高く、且つ、病院等の人間の命を支える施設を多く含んでいるため、電力会社は、この社会インフラ用途地域244により高い優先度を与え、台風等の自然災害が予想された場合、この社会インフラ用途地域244に対して電源車等の予備の給電設備を商業系用途地域240及び住居用途地域242に比べてより多く配備してもよい。 As an example, the social infrastructure use area 244 shown in FIG. 2 has a higher demand for electricity than the commercial use area 240 and the residential use area 242, and includes many facilities that support human life, such as hospitals. Therefore, electric power companies give higher priority to this social infrastructure use area 244, and in the event that a natural disaster such as a typhoon is predicted, power companies will provide backup power supply equipment such as power supply vehicles to this social infrastructure use area 244 for commercial A larger number may be provided than in the usage area 240 and the residential usage area 242.
 このように、災害等のイベントにより電力の供給が影響を受けると予想される領域の優先度を判定し、判定した優先度に基づいて電力を供給する設備を、電力が不足する状況が発生する前に効率よく配備することで、停電の影響を最小限に抑えると共に、電力会社の損失を抑制することができる。 In this way, the priority of areas where the supply of electricity is expected to be affected by an event such as a disaster is determined, and the equipment that supplies electricity is set based on the determined priority, so that a situation where power is insufficient occurs. By deploying them efficiently in advance, it is possible to minimize the impact of power outages and reduce losses for power companies.
 次に、図3を参照して、本開示の実施形態に係る電力供給管理システムについて説明する。 Next, with reference to FIG. 3, a power supply management system according to an embodiment of the present disclosure will be described.
 図3は、本開示の実施形態に係る電力供給管理システム300の構成の一例を示す図である。図3に示すように、電力供給管理システム300は、上述した電力供給網200と、電力供給管理装置350とを含む。電力供給管理システム300において、電力供給網200と、電力供給管理装置350とは、通信ネットワーク330を介して互いに接続されてもよい。 FIG. 3 is a diagram illustrating an example of a configuration of a power supply management system 300 according to an embodiment of the present disclosure. As shown in FIG. 3, the power supply management system 300 includes the above-described power supply network 200 and a power supply management device 350. In the power supply management system 300, the power supply network 200 and the power supply management device 350 may be connected to each other via a communication network 330.
 通信ネットワーク330は、例えばローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、衛星ネットワーク、ケーブルネットワーク、WiFiネットワーク、またはそれらの任意の組み合わせを含むものであってもよい。より具体的には、電力供給管理装置350は、電力供給網200における複数のデバイス(発電所210を管理する電力会社のクライアント端末、変電所に設置されているセンサ、商業系用途地域240、住居用途地域242、社会インフラ用途地域244等の各地域に設置されているセンサ等)に接続されており、必要に応じてデータの通信を通信ネットワーク330を介して行うように構成されている。 Communication network 330 may include, for example, a local area network (LAN), wide area network (WAN), satellite network, cable network, WiFi network, or any combination thereof. More specifically, the power supply management device 350 manages a plurality of devices in the power supply network 200 (a client terminal of a power company that manages the power plant 210, a sensor installed in a substation, a commercial use area 240, a residence) (sensors installed in each region such as the usage area 242 and the social infrastructure usage area 244), and is configured to perform data communication via the communication network 330 as necessary.
 電力供給網200は、発電所210によって発電された電力を所定の対象領域における需要者の受電設備に供給するための、発電・変電・送電・配電を統合したシステムであり、発電所210からの電力を変電所220まで送電する送電網205と、電力を変電所220から需要者に配電する配電網235とからなる。
 なお、電力供給網200の構成については、図2を参照して上述したため、ここでの説明を省略する。
The power supply network 200 is a system that integrates power generation, substation, power transmission, and distribution in order to supply power generated by the power plant 210 to power receiving equipment of consumers in a predetermined target area. It consists of a power transmission network 205 that transmits power to the substation 220, and a power distribution network 235 that distributes power from the substation 220 to consumers.
Note that the configuration of the power supply network 200 has been described above with reference to FIG. 2, so a description thereof will be omitted here.
 電力供給管理装置350は、自然災害等の大規模イベントによって電力の供給が影響を受けると予想される対象領域に含まれる小領域毎に、電力を供給する優先度を判定し、判定した優先度に基づいて電源車等の電力を供給する設備を、イベントが発生する前に効率よく配備するための予備電力供給計画を生成し、出力するための装置である。電力供給管理装置350は、例えばクラウド等の分散コンピューティング環境におけるサーバ装置又は複数のサーバ装置として実装されてもよい。 The power supply management device 350 determines the priority of power supply for each small region included in the target region where power supply is expected to be affected by a large-scale event such as a natural disaster, and determines the priority of power supply. This is a device for generating and outputting a backup power supply plan for efficiently deploying equipment that supplies power, such as power supply vehicles, before an event occurs, based on the following. The power supply management device 350 may be implemented as a server device or multiple server devices in a distributed computing environment such as a cloud.
 本開示における対象領域は、例えば発電所210が電力を供給する領域を意味する。また、1つの対象領域は、複数の小領域から構成される。これらの小領域は、例えば対象領域における各変電所から所定の距離以内のエリアとしてもよい。更に、1つの小領域には、住居用途地域、商業系用途地域、工業系用途地域、社会インフラ用途地域等の異なるゾーニング区域が設けられていることがある。後述するように、電力を供給する優先度は、小領域におけるゾーニング区域毎に判定されてもよい。 The target area in the present disclosure means, for example, an area where the power plant 210 supplies power. Moreover, one target area is composed of a plurality of small areas. These small areas may be, for example, areas within a predetermined distance from each substation in the target area. Furthermore, one small area may be provided with different zoning areas such as a residential area, a commercial area, an industrial area, and a social infrastructure area. As described below, the priority for supplying power may be determined for each zoning area in a small area.
 図3に示すように、電力供給管理装置350は、イベント検出部352と、地図情報管理部353と、人口推定部354と、需要判定部356と、優先度判定部358と、計画生成部360と、提示部362と、計画学習部364との機能部を含む。これらの機能部は、図1に示す電力供給管理アプリケーション150を構成するソフトウエアモジュールであってもよく、独立した専用ハードウェアデバイスであってもよい。また、上記の機能部は、同一のコンピューティング環境に実施されてもよく、分散されたコンピューティング環境に実施されてもよい。 As shown in FIG. 3, the power supply management device 350 includes an event detection unit 352, a map information management unit 353, a population estimation unit 354, a demand determination unit 356, a priority determination unit 358, and a plan generation unit 360. , a presentation section 362 , and a plan learning section 364 . These functional units may be software modules that constitute the power supply management application 150 shown in FIG. 1, or may be independent dedicated hardware devices. Additionally, the functional units described above may be implemented in the same computing environment or in distributed computing environments.
 イベント検出部352は、所定の対象領域への電力供給に影響を及ぼす可能性があるイベントを検出する機能部である。ここでのイベントとは、例えば台風、津波、地震等の自然災害、紛争、発電所のメインテナンスや故障等、電力供給に影響を及ぼす可能性がある任意の事象であってもよい。また、イベント検出部352は、例えば気象情報や地震活動情報等の外部からの情報を取得し、解析することでイベントを予測するように構成された機械学習手法等を用いてもよい。 The event detection unit 352 is a functional unit that detects an event that may affect the power supply to a predetermined target area. The event here may be any event that may affect the power supply, such as a natural disaster such as a typhoon, tsunami, or earthquake, a conflict, or maintenance or failure of a power plant. Further, the event detection unit 352 may use a machine learning method or the like configured to predict an event by acquiring and analyzing external information such as weather information or seismic activity information.
 地図情報管理部353は、対象領域における変電所の位置と、対象領域における構造物の分布とを少なくとも示す地図情報を取得し、処理するための機能部である。ここでの地図情報は、例えばオープンソースの地図データを配布する個人や団体から取得されてもよく、有料で地図データを配布する提供者から取得されてもよく、人口衛星や航空撮影の写真等に基づいて独自で作成した地図情報であってもよい。地図情報管理部353は、取得した地図情報を処理することで、対象領域における小領域をゾーニング区域毎に分類したゾーニングマップを生成してもよい。
 本開示において、「ゾーニング区域」とは、小領域における地域の特性又は構造物の用途などに基づいて区分した区域である。本開示において、住居用途地域、商業系用途地域、工業系用途地域、社会インフラ用途地域との4つのゾーニング区域を用いて実施形態について説明するが、本開示はこれに限定されず、異なるゾーニング区域やユーザが独自で作成したカテゴリーを用いてもよい。
The map information management unit 353 is a functional unit that acquires and processes map information indicating at least the location of substations in the target area and the distribution of structures in the target area. The map information here may be obtained, for example, from individuals or organizations that distribute open source map data, may be obtained from providers who distribute map data for a fee, or may be obtained from artificial satellites, aerial photographs, etc. It may also be map information created independently based on. The map information management unit 353 may generate a zoning map in which small areas in the target area are classified into zoning areas by processing the acquired map information.
In the present disclosure, a "zoning area" is an area divided based on regional characteristics or the use of structures in a small area. In this disclosure, embodiments will be described using four zoning areas: residential use area, commercial use area, industrial use area, and social infrastructure use area, but this disclosure is not limited to this, and different zoning areas Alternatively, categories created by the user may be used.
 人口推定部354は、対象領域の人口を推定するための機能部である。人口推定部354は、例えば国勢調査等の歴史的人口データ、あるいは交通量、インターネットに接続されている端末数、監視カメラの映像等のリアルタイムデータに基づいて対象領域の人口データを推定してもよい。 The population estimation unit 354 is a functional unit for estimating the population of the target area. The population estimation unit 354 may estimate the population data of the target area based on historical population data such as the national census, or real-time data such as traffic volume, the number of terminals connected to the Internet, and images from surveillance cameras. good.
 需要判定部356は、対象領域の電力の需要を判定する機能部である。需要判定部356は、例えば対象領域の過去の電力消費量や、電力供給網200に配置されているセンサの情報に基づいて計測されたリアルタイムの電力消費量に基づいて、対象領域の電力の需要を判定してもよい。 The demand determination unit 356 is a functional unit that determines the demand for electricity in the target area. The demand determination unit 356 determines the power demand in the target area based on, for example, the past power consumption in the target area or the real-time power consumption measured based on information from sensors arranged in the power supply network 200. may be determined.
 優先度判定部358は、対象領域における各変電所を中心とした小領域毎に、当該小領域へ電力を供給する優先度を示す電力供給優先評価を生成する機能部である。この電力供給優先評価の生成は、例えば上述した地図情報管理部によって生成されたゾーニングマップにおけるゾーニング区域の割合や重み付、人口推定部354によって推定される対象領域の人口、及び需要判定部356によって判定される対象領域の電力需要に基づいて行われてもよい。 The priority determination unit 358 is a functional unit that generates a power supply priority evaluation indicating the priority of supplying power to each small area centered around each substation in the target area. This power supply priority evaluation is generated based on, for example, the ratio and weighting of zoning areas in the zoning map generated by the map information management unit, the population of the target area estimated by the population estimation unit 354, and the demand determination unit 356. This may be done based on the determined power demand of the target area.
 計画生成部360は、上述したイベント検出部352によって検出されるイベントの影響を緩和するために、対象領域における小領域毎に、配備する予備発電設備の規模(例えば数等)を指定する予備電力供給計画を生成する機能部である。ここでの予備電力供給計画は、上述した優先度判定部358によって生成される電力供給優先評価に基づいて生成されてもよい。ある実施形態では、計画生成部360は、予備電力供給計画を生成するように訓練された機械学習手法として実装されてもよい。また、ここでの予備発電設備は、例えば電源車、電気自動車、発電機等、任意の発電・給電装置を含んでもよい。
 なお、計画生成部360によって生成される予備電力供給計画は、イベント検出部352によって検出されるイベントが発生する前に生成される。このように、予備電力供給計画に従って、対象領域における各小領域の優先度に応じて予備発電設備を、電力が不足する状況が発生する前に配備することで、イベントに備えることが可能となる。一例として、電力会社は、予備電力供給計画に従って、電源車等の予備発電設備を各小領域の変電所に配備した後、イベントの進行等に応じて各需要者に出動させてもよい。
The plan generation unit 360 generates a backup power generation system that specifies the scale (for example, the number) of backup power generation equipment to be deployed for each small area in the target area in order to alleviate the influence of the event detected by the event detection unit 352 described above. This is a functional unit that generates supply plans. The backup power supply plan here may be generated based on the power supply priority evaluation generated by the priority determination unit 358 described above. In some embodiments, plan generator 360 may be implemented as a machine learning technique trained to generate backup power supply plans. Further, the standby power generation equipment here may include any power generation/power supply device, such as a power supply vehicle, an electric vehicle, or a generator.
Note that the backup power supply plan generated by the plan generation unit 360 is generated before the event detected by the event detection unit 352 occurs. In this way, it is possible to prepare for an event by deploying backup power generation equipment according to the priority of each sub-region in the target area according to the backup power supply plan before a power shortage situation occurs. . As an example, the electric power company may deploy backup power generating equipment such as power supply vehicles to substations in each sub-region according to the backup power supply plan, and then dispatch them to each customer according to the progress of an event.
 提示部362は、計画生成部360によって作成される予備電力供給計画を可視化し、ユーザに提示し、当該予備電力供給計画を変更するユーザ入力を受け付けるための機能部である。一例として、提示部362は、ゾーニング区域の重み付を調整するユーザ入力を受け付けてもよい。 The presentation unit 362 is a functional unit that visualizes the backup power supply plan created by the plan generation unit 360, presents it to the user, and receives user input for changing the backup power supply plan. As an example, the presentation unit 362 may accept user input to adjust the weighting of the zoning areas.
 計画学習部364は、計画生成部360によって作成される予備電力供給計画を学習データとして用い、電力系統の状態に基づいて予備電力供給計画を生成するように訓練される機能部である。ここでの計画学習部364は、例えば強化学習モデルであってもよい。 The plan learning unit 364 is a functional unit trained to generate a backup power supply plan based on the state of the power system using the backup power supply plan created by the plan generation unit 360 as learning data. The plan learning unit 364 here may be a reinforcement learning model, for example.
 以上説明したような構成を有する電力供給管理システム300によれば、災害等のイベントにより電力の供給が影響を受けると予想される領域における小領域毎に優先度を判定し、判定した優先度に基づいて、電力を供給する設備を、電力が不足する状況が発生する前に効率よく配備すること、停電の影響を最小限に抑えると共に、電力会社の損失を抑制することができる。 According to the power supply management system 300 having the configuration described above, the priority is determined for each small area in the area where the power supply is expected to be affected by an event such as a disaster, and the determined priority is Based on this, it is possible to efficiently deploy equipment that supplies power before a power shortage situation occurs, to minimize the impact of power outages, and to suppress losses to power companies.
 次に、図4を参照して、本開示の実施形態に係る電力供給管理方法について説明する。 Next, with reference to FIG. 4, a power supply management method according to an embodiment of the present disclosure will be described.
 図4は、本開示の実施形態に係る電力供給管理方法400の流れの一例を示す図である。図4に示す電力供給管理方法400は、災害等のイベントにより電力の供給が影響を受けると予想される領域における小領域毎に優先度を判定し、当該優先度に基づいて電力を供給する設備を効率よく配備する予備電力供給計画を生成するための方法である。図4に示す電力供給管理方法400は、例えば上述した電力供給管理装置350の各機能部によって実施されてもよい。 FIG. 4 is a diagram illustrating an example of the flow of a power supply management method 400 according to an embodiment of the present disclosure. The power supply management method 400 shown in FIG. 4 determines a priority for each small area in an area where power supply is expected to be affected by an event such as a disaster, and supplies equipment based on the priority. This is a method for generating a backup power supply plan that efficiently deploys power. The power supply management method 400 shown in FIG. 4 may be implemented, for example, by each functional unit of the power supply management device 350 described above.
 まず、ステップS410では、電力供給管理装置350のイベント検出部352は、所定の対象領域への電力供給に影響を及ぼす可能性があるイベントを検出する。ここで、イベント検出部352は、例えば気象情報や地震活動情報等の外部からの情報を取得し、解析することでイベントを予測するように構成された機械学習手法等を用いることでイベントを検出してもよい。一例として、イベント検出部352は、気象情報に基づいて、対象領域に接近すると予測されている台風をイベントとして検出してもよい。 First, in step S410, the event detection unit 352 of the power supply management device 350 detects an event that may affect the power supply to a predetermined target area. Here, the event detection unit 352 detects an event by using a machine learning method or the like configured to predict an event by acquiring and analyzing external information such as weather information or seismic activity information. You may. As an example, the event detection unit 352 may detect a typhoon that is predicted to approach the target area as an event based on weather information.
 次に、ステップS420では、地図情報管理部353は、対象領域における変電所の位置と、対象領域における構造物の分布とを少なくとも示す地図情報を取得する。ここで、地図情報管理部353は、ステップS410で検出したイベントの影響を受ける可能性がある対象領域の地図情報を取得してもよい。地図情報管理部353は、オープンソースの地図データを配布する個人や団体(例えばOpenstreetmaps)から地図情報を取得してもよく、有料で地図データを配布する提供者から地図情報を取得してもよく、人口衛星や航空撮影の写真等に基づいて独自で対象領域の地図情報を作成してもよい。その後、地図情報管理部353は、取得した地図情報に基づいて、対象領域における各構造物のゾーニング区域を判定し、判定した各構造物のゾーニング区域の分布に基づいて、小領域をゾーニング区域毎に分類したゾーニングマップを生成する。 Next, in step S420, the map information management unit 353 acquires map information indicating at least the location of the substation in the target area and the distribution of structures in the target area. Here, the map information management unit 353 may acquire map information of a target area that may be affected by the event detected in step S410. The map information management unit 353 may acquire map information from individuals or organizations that distribute open source map data (for example, Openstreetmaps), or may acquire map information from providers who distribute map data for a fee. , map information of the target area may be created independently based on artificial satellites, aerial photographs, etc. Thereafter, the map information management unit 353 determines the zoning area of each structure in the target area based on the acquired map information, and divides the small area into each zoning area based on the distribution of the determined zoning area of each structure. Generate a zoning map with classification.
 より具体的には、構造物のゾーニング区域を示すテキスト形式のメタデータ(例えば構造物のゾーニング区域を示すメタデータタグ)が取得した地図情報に対応付けられている場合、地図情報管理部353は、このメタデータに対してストリングサーチ等の検索手法を実施することで、対象領域における各構造物のゾーニング区域を判定して集計してもよい。また、構造物のゾーニング区域を示すメタデータが取得した地図情報に対応付けられていない場合、地図情報管理部353は、OCR(Optical Character Recognition)手法を用いて、地図情報となる画像における構造物の外観や寸法等に基づいてゾーニング区域を判定して集計してもよい。 More specifically, if text-format metadata indicating the zoning area of the structure (for example, a metadata tag indicating the zoning area of the structure) is associated with the acquired map information, the map information management unit 353 By performing a search method such as a string search on this metadata, the zoning area of each structure in the target area may be determined and totaled. Further, if the metadata indicating the zoning area of the structure is not associated with the acquired map information, the map information management unit 353 uses an OCR (Optical Character Recognition) method to identify the structure in the image serving as the map information. The zoning area may be determined and tabulated based on the appearance, dimensions, etc. of the area.
 次に、地図情報管理部353は、判定した各構造物のゾーニング区域の分布に基づいて、小領域をゾーニング区域毎に分類したゾーニングマップを生成する。ここでのゾーニングマップとは、対象領域に含まれる各小領域に対して、住居用途地域、商業系用途地域、工業系用途地域、社会インフラ用途地域等のゾーニング区域を示すラベルが付与された地図情報を意味する。このゾーニングマップは、特定の小領域におけるゾーニング区域の割合(住居用途地域:31%、商業系用途地域:27%、工業系用途地域:23%、社会インフラ用途地域:19%)を示してもよい。この割合は、特定のゾーニング区域に該当する構造物の数の、小領域における構造物の総数に対する割合であってもよく、特定のゾーニング区域に該当する構造物が占める面積の、小領域の全面積に対する割合であってもよい。 Next, the map information management unit 353 generates a zoning map in which the small areas are classified into zoning areas based on the determined distribution of zoning areas for each structure. The zoning map here refers to a map with labels indicating zoning areas such as residential use area, commercial use area, industrial use area, social infrastructure use area, etc. for each small area included in the target area. means information. This zoning map also shows the proportion of zoning areas in specific small areas (residential use area: 31%, commercial use area: 27%, industrial use area: 23%, social infrastructure use area: 19%). good. This percentage may be the ratio of the number of structures that fall within a particular zoning district to the total number of structures in the sub-region, or the ratio of the area occupied by structures that fall within a particular zoning district to the total area of the sub-region. It may be a percentage.
 次に、地図情報管理部353は、作成したゾーニングマップに対して、ゾーニング区域毎に重み付を付与する。この重み付は、特定のゾーニング区域に電力を供給する相対的な重要性を表す係数である。地図情報管理部353は、予め作成された重み付設定基準に基づいてゾーニング区域の重み付を付与してもよく、電力会社の利益を代表するユーザから予め取得した基準に基づいてゾーニング区域の重み付を付与してもよい。これらの重み付は、例えば「0」から「1」までの範囲の間の数値として表現してもよい。一例として、ある実施形態では、「住居用途地域」や「社会インフラ用途地域」等の、人間の生活を支える用途の地域に対してより高い重み付(0.7、0.8等)を付与することができる。
 このように、小領域をゾーニング区域毎に分類したゾーニングマップを生成し、重み付を付与することで、各地域での電力の用途を考慮した優先度を判定することができる。
Next, the map information management unit 353 assigns weights to the created zoning map for each zoning area. This weighting is a factor representing the relative importance of providing power to a particular zoning area. The map information management unit 353 may assign weights to the zoning areas based on weighting setting criteria created in advance, and may assign weights to the zoning areas based on criteria obtained in advance from a user representing the interests of the electric power company. You may also add an attachment. These weights may be expressed as numerical values ranging from "0" to "1", for example. As an example, in some embodiments, higher weighting (0.7, 0.8, etc.) is given to areas for uses that support human life, such as "residential use areas" and "social infrastructure use areas." can do.
In this way, by generating a zoning map in which small areas are classified into zoning areas and assigning weights to the maps, it is possible to determine priorities that take into account the use of electric power in each region.
 次に、ステップS430では、人口推定部354は、対象領域の人口を推定する。ここで、人口推定部354は、例えば国勢調査等の歴史的人口データ、あるいは交通量、インターネットに接続されている端末数(例えば、位置データを共有しているスマートフォン等)、監視カメラの映像等のリアルタイムデータに基づいて対象領域の人口データを推定してもよい。ある実施形態では、人口推定部354は、例えば公の場所(広場、駅、空港、お店)に設置されている監視カメラの映像をYOLO(You Only Look Once)で解析することで当該場所の人数を推定し、この人数推定から地域全体の人口を推定してもよい。ある実施形態では、人口推定部354は、ステップS420で生成したゾーニングマップの小領域における住居用途地域、商業系用途地域、工業系用途地域、及び社会インフラ用途地域毎に人口を推定してもよい。
 また、ある実施形態では、人口推定部354は、推定した人口を予め定まった閾値に比較することで、各小領域における住居用途地域、商業系用途地域、工業系用途地域、及び社会インフラ用途地域について、「1」(高い人口)、「2」(中程度の人口)、「3」(低い人口)等の定性的に人口を示す人口指標を判定してもよい。
Next, in step S430, the population estimation unit 354 estimates the population of the target area. Here, the population estimation unit 354 uses, for example, historical population data such as the national census, traffic volume, the number of terminals connected to the Internet (for example, smartphones that share location data), surveillance camera images, etc. The population data of the target area may be estimated based on real-time data. In one embodiment, the population estimating unit 354 analyzes images of surveillance cameras installed in public places (plazas, stations, airports, shops) using YOLO (You Only Look Once), for example, to estimate the location of the place. The number of people may be estimated, and the population of the entire area may be estimated from this number estimate. In an embodiment, the population estimating unit 354 may estimate the population for each residential area, commercial area, industrial area, and social infrastructure area in the small area of the zoning map generated in step S420. .
In one embodiment, the population estimating unit 354 compares the estimated population with a predetermined threshold value to determine the residential use zone, commercial use zone, industrial use zone, and social infrastructure use zone in each small area. A population index qualitatively indicating the population, such as "1" (high population), "2" (medium population), or "3" (low population), may be determined.
 次に、ステップS440では、需要判定部356は、対象領域の電力需要を判定する。ここで、需要判定部356は、例えば電力会社から取得した、対象領域の過去の電力消費量や、電力供給網200に配置されているセンサ(住宅のスマートメーターやSCADA;Supervisory Control And Data Acquisitionデータ)の情報に基づいて計測されたリアルタイムの電力消費量に基づいて、対象領域の電力の需要を判定してもよい。ある実施形態では、需要判定部356は、ステップS420で生成したゾーニングマップの小領域における住居用途地域、商業系用途地域、工業系用途地域、及び社会インフラ用途地域毎に電力需要を判定してもよい。 Next, in step S440, the demand determination unit 356 determines the power demand of the target area. Here, the demand determination unit 356 uses, for example, the past power consumption of the target area acquired from the electric power company, and sensors (smart meters in residences and SCADA; Supervisory Control and Data Acquisition data) installed in the power supply network 200. ) The power demand in the target area may be determined based on the real-time power consumption measured based on the information. In an embodiment, the demand determination unit 356 may determine the power demand for each residential use area, commercial use area, industrial use area, and social infrastructure use area in the small area of the zoning map generated in step S420. good.
 また、ある実施形態では、需要判定部356は、判定した電力需要を予め定まった閾値に比較することで、各小領域における住居用途地域、商業系用途地域、工業系用途地域、及び社会インフラ用途地域について、「1」(高い需要)、「2」(中程度の需要)、「3」(低い需要)等の定性的に電力需要を示す電力需要指標を判定してもよい。 Further, in an embodiment, the demand determination unit 356 compares the determined power demand with a predetermined threshold value, and determines the residential use area, commercial use area, industrial use area, and social infrastructure use area in each small area. For a region, a power demand index qualitatively indicating power demand such as "1" (high demand), "2" (medium demand), "3" (low demand), etc. may be determined.
 次に、ステップS450では、優先度判定部358は、対象領域における各変電所を中心とした小領域毎に、電力を供給する優先度を示す電力供給優先評価を生成する。より具体的には、優先度判定部358は、ステップS420で作成した、ゾーニング区域毎に付与されたゾーニング区域の重み付と、小領域におけるゾーニング区域の割合と、ステップS430で推定した人口指標と、ステップS440で判定した電力需要指標とに基づいて、ゾーニングマップの小領域におけるゾーニング区域(住居用途地域、商業系用途地域、工業系用途地域、及び社会インフラ用途地域等)毎に電力を供給する優先度を示す電力供給優先評価を生成する。
 ここでの優先度は、ゾーニング区域の割合と、推定した人口指標と、判定した電力需要指標との和をゾーニング区域毎に付与された重み付と乗算することで計算されてもよい。その後、優先度判定部358は、特定の小領域の各ゾーニング区域について計算した優先度の値の中から、所定の基準を満たす値(例えば、最も高い値)を当該小領域の総合優先度とし、各小領域について計算した総合優先度を電力供給優先評価として集計してもよい。
Next, in step S450, the priority determination unit 358 generates a power supply priority evaluation indicating the priority of power supply for each small region centered on each substation in the target region. More specifically, the priority determination unit 358 uses the weighting of the zoning area created in step S420 given to each zoning area, the proportion of the zoning area in the small area, and the population index estimated in step S430. , and the power demand index determined in step S440, power is supplied to each zoning area (residential use area, commercial use area, industrial use area, social infrastructure use area, etc.) in the small area of the zoning map. Generate a power supply priority rating indicating priority.
The priority here may be calculated by multiplying the sum of the proportion of the zoning area, the estimated population index, and the determined power demand index by the weighting assigned to each zoning area. Thereafter, the priority determination unit 358 selects a value that satisfies a predetermined standard (for example, the highest value) from among the priority values calculated for each zoning area of a specific small area as the overall priority of the specific small area. , the overall priority calculated for each small area may be aggregated as the power supply priority evaluation.
 次に、ステップS460では、計画生成部360は、ステップS450で判定した電力供給優先評価に基づいて、対象領域における各変電所を中心とした小領域にゾーニング区域毎に、配備する予備発電設備の規模(例えば数等)を指定する予備電力供給計画を生成する。より具体的には、計画生成部360は、特定の小領域について計算した優先度(総合優先度)の、全ての小領域の合計優先度に対する割合を計算し、計算した割合に応じて、配備可能な予備発電設備の中から、当該ゾーニング区域に割り当てる予備発電設備を判定する。その後、計画生成部360は、各小領域に対して配備する予備発電設備の数を予備電力供給計画として集計する。
 ステップS460で生成された予備電力供給計画は、図5を参照して説明するように、災害等のイベントへの対応のために提示部362によって電力会社等のユーザに提示されてもよく、図11に示すように、計画学習部364の学習データとして用いられてもよい。
Next, in step S460, the plan generation unit 360 determines the backup power generation equipment to be deployed for each zoning area in a small area centered on each substation in the target area, based on the power supply priority evaluation determined in step S450. Generate a backup power supply plan specifying the scale (eg, number, etc.). More specifically, the plan generation unit 360 calculates the ratio of the priority calculated for a specific small area (total priority) to the total priority of all the small areas, and deploys according to the calculated ratio. Determine the backup power generation facility to be allocated to the zoning area from among the possible backup power generation facilities. After that, the plan generation unit 360 totals the number of backup power generation facilities to be deployed for each small area as a backup power supply plan.
The backup power supply plan generated in step S460 may be presented to a user such as an electric power company by the presentation unit 362 in order to respond to an event such as a disaster, as described with reference to FIG. 11, it may be used as learning data for the plan learning section 364.
 以上説明した電力供給管理方法400によれば、災害等のイベントにより電力の供給が影響されると予想される領域における小領域毎に優先度を判定し、判定した優先度に基づいて電力を供給する設備を、電力が不足する状況が発生する前に効率よく配備することで、停電の影響を最小限に抑えると共に、電力会社の損失を抑制することができる。 According to the power supply management method 400 described above, the priority is determined for each small area in an area where the power supply is expected to be affected by an event such as a disaster, and power is supplied based on the determined priority. By efficiently deploying such equipment before power shortages occur, it is possible to minimize the impact of power outages and reduce losses for power companies.
 次に、図5を参照して、本開示の実施形態に係る電力供給計画提示処理について説明する。 Next, with reference to FIG. 5, the power supply plan presentation process according to the embodiment of the present disclosure will be described.
 図5は、本開示の実施形態に係る予備電力供給計画をユーザに提示するための電力供給計画提示処理500の流れの一例を示す図である。この電力供給計画提示処理500は、上述した提示部362によって実行されてもよい。上述したように、本開示の実施形態に係る予備電力供給計画を管理者等のユーザに提示し、当該管理者からのフィードバックに基づいて修正することで、更に精度の高い予備電力供給計画を生成することができる。 FIG. 5 is a diagram illustrating an example of the flow of a power supply plan presentation process 500 for presenting a backup power supply plan to a user according to an embodiment of the present disclosure. This power supply plan presentation process 500 may be executed by the presentation unit 362 described above. As described above, by presenting the backup power supply plan according to the embodiment of the present disclosure to a user such as an administrator and modifying it based on feedback from the administrator, a more accurate backup power supply plan can be generated. can do.
 まず、ステップS510では、提示部362は、計画生成部360によって作成された予備電力供給計画を可視化する。ここで、「可視化する」との表現は、計画生成部360によって作成された予備電力供給計画(つまり、各小領域に対して配備する予備発電設備の数を示す情報)を、映像、グラフ、表等の形態で表現することを意味する。一例として、提示部362は、予備電力供給計画を図9に示すような棒グラフとして可視化してもよい。 First, in step S510, the presentation unit 362 visualizes the backup power supply plan created by the plan generation unit 360. Here, the expression "visualize" means that the backup power supply plan (that is, information indicating the number of backup power generation facilities to be deployed for each small area) created by the plan generation unit 360 can be visualized using images, graphs, It means to express it in the form of a table, etc. As an example, the presenting unit 362 may visualize the backup power supply plan as a bar graph as shown in FIG. 9 .
 次に、ステップS515では、提示部362は、ステップS510で可視化した予備電力供給計画を管理者に提示する。ここでの管理者とは、例えば、電力会社の利益を代表する管理者等のユーザであってもよい。提示部362は、ステップS510で可視化した予備電力供給計画を例えば通信ネットワークを介して、管理者のパソコンやスマートフォン等の端末に送信し、表示させることで提示してもよい。このように、予備電力供給計画電力会社等のユーザに提示することで、予備電力供給計画を確認したユーザは、検出されたイベントに備えて、予備発電設備を予備電力供給計画に従って対象領域の各小領域に配備してもよく、後述するように、予備電力供給計画を修正してもよい。 Next, in step S515, the presenting unit 362 presents the backup power supply plan visualized in step S510 to the administrator. The administrator here may be, for example, a user such as an administrator representing the interests of the electric power company. The presenting unit 362 may transmit the backup power supply plan visualized in step S510 to a terminal such as a personal computer or a smartphone of the administrator via a communication network, and may present the plan by displaying the plan. In this way, by presenting the backup power supply plan to users such as electric power companies, users who have confirmed the backup power supply plan can set up backup power generation facilities in each area of the target area according to the backup power supply plan in preparation for the detected event. They may be deployed in small areas, and the backup power supply plan may be modified, as described below.
 次に、ステップS520では、提示部362は、ステップS515で予備電力供給計画を提示した管理者から、ゾーニング区域の重み付を修正するユーザ入力を受信してもよい。一例として、提示部362は、「住居用途地域」とのゾーニング区域の重み付を「0.5」から「0.7」に変更するユーザ入力を受信してもよい。 Next, in step S520, the presenting unit 362 may receive user input for modifying the weighting of the zoning area from the administrator who presented the backup power supply plan in step S515. As an example, the presentation unit 362 may receive a user input that changes the weighting of the zoning area with "residential use area" from "0.5" to "0.7".
 次に、ステップS525では、提示部362は、ステップS515で受信したユーザ入力に基づいて予備電力供給計画を修正する要求を計画生成部360に送信する。予備電力供給計画がステップS515で受信したユーザ入力に基づいて修正された後、本処理は改めてステップS510に戻り、修正した予備電力供給計画をステップS515でユーザに再提示してもよい。 Next, in step S525, the presentation unit 362 transmits a request to the plan generation unit 360 to modify the backup power supply plan based on the user input received in step S515. After the backup power supply plan is modified based on the user input received in step S515, the process may return to step S510 and re-present the modified backup power supply plan to the user in step S515.
 このように、電力会社等の管理者からのフィードバックに基づいて予備電力供給計画を修正することで、地域の主な用途や、イベントの現状等に応じた適切な予備電力供給計画を作成することができる。 In this way, by modifying the reserve power supply plan based on feedback from managers of power companies, etc., it is possible to create an appropriate reserve power supply plan according to the main uses of the area, the current status of events, etc. I can do it.
 次に、図6を参照して、本開示の実施形態に係る優先度計算表について説明する。 Next, a priority calculation table according to an embodiment of the present disclosure will be described with reference to FIG. 6.
 上述したように、本開示では、対象領域に含まれる小領域へ電力を供給する優先度は、当該小領域のゾーニング区域について予め定められた重み付と、当該小領域におけるゾーニング区域の割合と、当該小領域の人口を示す人口指標と、当該小領域の電力の需要を示す電力需要指標とに基づいて計算される。図6は、本開示の実施形態に係る優先度の計算の一例を示す優先度計算表600の構成の一例を示す図である。 As described above, in the present disclosure, the priority of supplying power to a small area included in a target area is based on a predetermined weighting for the zoning area of the small area, the ratio of the zoning area in the small area, It is calculated based on a population index indicating the population of the small area and a power demand index indicating the demand for electricity in the small area. FIG. 6 is a diagram showing an example of a configuration of a priority calculation table 600 showing an example of priority calculation according to an embodiment of the present disclosure.
 図6に示すように、優先度計算表600は、特定の小領域(例えば、特定の変電所から所定の距離以内の領域)610における住居用途地域620、商業系用途地域630、工業系用途地域640、及び社会インフラ用途地域650について、重み付660、当該ゾーニング区域の割合670、電力需要指標680、人口指標690及び優先度695を示す。 As shown in FIG. 6, the priority calculation table 600 includes a residential use area 620, a commercial use area 630, and an industrial use area in a specific small area (for example, an area within a predetermined distance from a specific substation) 610. 640 and social infrastructure use area 650, weighting 660, proportion of the zoning area 670, power demand index 680, population index 690, and priority 695 are shown.
 重み付660は、特定のゾーニング区域に電力を供給する相対的な重要性を表す係数であり、ゾーニング区域毎に電力会社によって予め指定されてもよい。一例として、ある実施形態では、「住居用途地域620」や「社会インフラ用途地域650」等の、人間の生活を支える用途の地域に対してより高い重み付を設定することができる。 The weighting 660 is a coefficient representing the relative importance of supplying power to a specific zoning area, and may be specified in advance by the power company for each zoning area. As an example, in some embodiments, higher weighting may be set for areas with uses that support human life, such as "residential use area 620" and "social infrastructure use area 650."
 ゾーニング区域の割合670は、当該小領域におけるゾーニング区域の割合を示す情報である。このゾーニング区域の割合は、特定のゾーニング区域に該当する構造物の数の、小領域における構造物の総数に対する割合であってもよく、特定のゾーニング区域に該当する構造物が占める面積の、小領域の全面積に対する割合であってもよい。 The zoning area ratio 670 is information indicating the zoning area ratio in the small area. This zoning area ratio may be the ratio of the number of structures that fall under a specific zoning area to the total number of structures in a sub-area, or the ratio of the area occupied by structures that fall under a specific zoning area to the total number of structures in a sub-area. It may be a percentage of the total area.
 上述したように、電力需要指標680は、特定の小領域のゾーニング区域毎の電力の需要の特徴を示す情報であり、例えば1~3等の段階で表現されてもよい。また、人口指標690は、特定の小領域のゾーニング区域毎の人口の特徴を示す情報であり、電力需要指標680と同様に、例えば1~3等の段階で表現されてもよい。 As described above, the power demand index 680 is information indicating the characteristics of power demand for each zoning area of a specific small area, and may be expressed in a scale of 1 to 3, for example. Further, the population index 690 is information indicating the characteristics of the population for each zoning area of a specific small area, and may be expressed in a scale of, for example, 1 to 3, similarly to the power demand index 680.
 特定の小領域のゾーニング区域毎の重み付660、電力需要指標680及び人口指標690に基づいて、当該ゾーニング区域の優先度を計算することができる。このように、小領域の主な用途を示すゾーニング区域の重み付や割合、電力需要、及び人口に基づいて優先度695を計算することで、例えば住居や社会インフラ等の、人間の命を支える基盤となる地域への電力供給を優先的に行うことができる。一例として、特定の小領域におけるゾーニング区域の優先度を以下の数式1によって計算してもよい。
Figure JPOXMLDOC01-appb-M000001
 ここで、Kは、重み付660を表し、Bは、ゾーニング区域の割合670を表し、Pは、人口指標690を表し、Dは、電力需要指標680を表す。ただし、優先度の計算方法はこれに限定されず、例えば重み付660と、ゾーニング区域の割合670と、電力需要指標680と、人口指標690との積を優先度695としてもよい。また、小領域における各ゾーニング区域の優先度を計算した後、当該小領域における最も高い優先度の値を、当該小領域の総合優先度としてもよい。その後、判定した総合優先度に基づいて当該小領域に配備する予備発電設備を判定してもよい。
 なお、総合優先度は、この決定方法に限定されず、ある実施形態では、各ゾーニング区域毎に計算した優先度の平均等を計算し、当該小領域の総合優先度としてもよい。
Based on the weighting 660, the power demand index 680, and the population index 690 for each zoning district of a particular sub-region, the priority of the zoning district can be calculated. In this way, by calculating the priority 695 based on the weighting and ratio of zoning areas that indicate the main uses of a small area, electricity demand, and population, we can calculate It is possible to prioritize power supply to the base area. As an example, the priority of the zoning area in a particular small area may be calculated using Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
Here, K represents weighting 660, B represents zoning area percentage 670, P represents population index 690, and D represents power demand index 680. However, the method of calculating the priority is not limited to this, and for example, the priority 695 may be the product of the weighting 660, the zoning area ratio 670, the power demand index 680, and the population index 690. Further, after calculating the priority of each zoning area in the small area, the highest priority value in the small area may be set as the overall priority of the small area. Thereafter, the backup power generation equipment to be deployed in the small area may be determined based on the determined overall priority.
Note that the overall priority is not limited to this determination method, and in an embodiment, the average of the priorities calculated for each zoning area may be calculated to determine the overall priority of the small area.
 次に、図7を参照して、本開示の実施形態に係る優先度表について説明する。 Next, with reference to FIG. 7, a priority table according to an embodiment of the present disclosure will be described.
 図7は、本開示の実施形態に係る優先度表700一例を示す図である。優先度表700は、対象領域の小領域におけるゾーニング区域毎に計算した優先度を示す図である。図7に示すように、優先度表700は、特定の小領域を識別する識別ID710、住居用途地域720、商業系用途地域730、工業系用途地域740、社会インフラ用途地域750及び総合優先度760を含んでもよい。ここでの総合優先度760は、上述したように、住居用途地域720、商業系用途地域730、工業系用途地域740及び社会インフラ用途地域750の各ゾーニング区域について計算した優先度の内の最も高い値であり、当該小領域全体の優先度を表す値である。
 このように、優先度表700によれば、対象領域における各小領域について、ゾーニング区域毎に計算した優先度を管理することができる。
FIG. 7 is a diagram illustrating an example of a priority table 700 according to an embodiment of the present disclosure. The priority table 700 is a diagram showing priorities calculated for each zoning area in a small area of the target area. As shown in FIG. 7, the priority table 700 includes an identification ID 710 for identifying a specific small area, a residential use area 720, a commercial use area 730, an industrial use area 740, a social infrastructure use area 750, and an overall priority level 760. May include. As mentioned above, the overall priority 760 here is the highest of the priorities calculated for each zoning area of the residential use area 720, the commercial use area 730, the industrial use area 740, and the social infrastructure use area 750. This value represents the priority of the entire small area.
In this way, according to the priority table 700, it is possible to manage the priority calculated for each zoning area for each small area in the target area.
 次に、図8を参照して、本開示の実施形態に係る設備配備管理表について説明する。 Next, with reference to FIG. 8, the equipment deployment management table according to the embodiment of the present disclosure will be described.
 図8は、本開示の実施形態に係る設備配備管理表800の一例を示す図である。設備配備管理表800は、小領域毎に計算した総合優先度に基づいて、当該小領域に配備する予備発電設備の数を指定する表である。図8に示すように、設備配備管理表800は、特定の小領域を識別する識別ID810と、小領域の総合優先度820と、合計優先度に対する割合830と、予備発電設備の数840とを含んでもよい。
 上述したように、ここでの予備発電設備は、例えば電源車、電気自動車、発電機等、任意の発電・給電装置を含んでもよい。電源車は、電力を供給するための発電機を搭載した自動車や鉄道車両であってもよい。ある実施形態では、設備配備管理表800に指定される数の電源車は、イベントの発生前に、各小領域の変電所へ配備されてもよい。
FIG. 8 is a diagram illustrating an example of an equipment deployment management table 800 according to an embodiment of the present disclosure. The equipment deployment management table 800 is a table that specifies the number of standby power generation facilities to be deployed in a small area based on the overall priority calculated for each small area. As shown in FIG. 8, the equipment deployment management table 800 includes an identification ID 810 that identifies a specific small area, an overall priority 820 of the small area, a ratio 830 to the total priority, and a number 840 of standby power generation equipment. May include.
As mentioned above, the standby power generation equipment here may include any power generation/power supply device, such as a power supply vehicle, an electric vehicle, or a generator. The power supply vehicle may be an automobile or a railway vehicle equipped with a generator for supplying electric power. In some embodiments, the number of power supply vehicles specified in the equipment deployment management table 800 may be deployed to the substations of each sub-region before the event occurs.
 総合優先度820は、上述したように、小領域における各ゾーニング区域について計算した優先度の中で最も高い値の優先度であってもよく、当該小領域全体の優先度を表す値である。 As described above, the overall priority 820 may be the highest priority among the priorities calculated for each zoning area in the small area, and is a value representing the priority of the entire small area.
 合計優先度に対する割合830は、特定の小領域の総合優先度の、全小領域の合計優先度に対する割合を示す値である。一例として、「小領域1」の総合優先度が「5.67」であり、全小領域の合計優先度の合計が「55.56」の場合、「小領域1」の全小領域の合計優先度に対する割合830が約「10%」となる。 The ratio 830 to the total priority is a value indicating the ratio of the total priority of a specific small area to the total priority of all small areas. As an example, if the overall priority of "Small Area 1" is "5.67" and the sum of the total priorities of all small areas is "55.56", then the sum of all the small areas of "Small Area 1" The ratio 830 to the priority is approximately "10%".
 予備発電設備の数840は、特定の小領域の総合優先度の全小領域の合計優先度に対する割合830と、配備可能な予備発電設備の台数の積として計算された値である。例えば、「小領域1」の全小領域の合計優先度に対する割合830が「10%」であり、配備可能な予備発電設備の台数が「200台」の場合、小領域1に配備する予備発電設備の数840は「20台」となる。 The number 840 of standby power generation facilities is a value calculated as the product of the ratio 830 of the overall priority of a specific small area to the total priority of all small areas and the number of standby power generation facilities that can be deployed. For example, if the ratio 830 of "Small Area 1" to the total priority of all small areas is "10%" and the number of standby power generation facilities that can be deployed is "200", then the standby power generation equipment to be deployed in Small Area 1 is The number of equipment 840 is "20".
 このように、設備配備管理表800によれば、小領域毎に計算した総合優先度に基づいて、当該小領域に配備する予備発電設備の数を判定することができる。 In this way, according to the equipment deployment management table 800, it is possible to determine the number of standby power generation facilities to be deployed in a small area based on the overall priority calculated for each small area.
 次に、図9を参照して、本開示の実施形態に係る予備電力供給計画の一例について説明する。 Next, with reference to FIG. 9, an example of a backup power supply plan according to an embodiment of the present disclosure will be described.
 図9は、本開示の実施形態に係る予備電力供給計画900の一例を示す図である。上述したように、予備電力供給計画900は、小領域毎に、イベントの影響を緩和するために当該小領域へ配備する予備発電設備の数を指定する情報である。図9に示すように、本開示の実施形態に係る予備電力供給計画900は、例えば棒グラフで表現してもよい。より具体的には、図9に示すように、予備電力供給計画900では、小領域IDを横軸に表し、小領域毎の予備発電設備の数を縦軸に表してもよい。
 この予備電力供給計画900は、図5を参照して説明したように、災害等のイベントへの対応のために提示部362によって電力会社等のユーザに提示されてもよく、図11に示すように、計画学習部364の学習データとして用いられてもよい。
FIG. 9 is a diagram illustrating an example of a backup power supply plan 900 according to an embodiment of the present disclosure. As described above, the standby power supply plan 900 is information that specifies, for each small area, the number of standby power generation facilities to be deployed in that small area in order to alleviate the effects of an event. As shown in FIG. 9, the backup power supply plan 900 according to the embodiment of the present disclosure may be expressed, for example, as a bar graph. More specifically, as shown in FIG. 9, in the backup power supply plan 900, the small area ID may be represented on the horizontal axis, and the number of standby power generation facilities for each small area may be represented on the vertical axis.
As described with reference to FIG. 5, this backup power supply plan 900 may be presented to a user such as an electric power company by the presentation unit 362 in order to respond to an event such as a disaster, and as shown in FIG. Additionally, it may be used as learning data for the plan learning section 364.
 次に、図10を参照して、本開示の実施形態に係る計画学習処理について説明する。 Next, with reference to FIG. 10, the planned learning process according to the embodiment of the present disclosure will be described.
 図10は、本開示の実施形態に係る計画学習処理1000の流れの一例を示す図である。図10に示す計画学習処理は、予備電力供給計画を生成することができる機械学習モデルを訓練する処理であり、例えば上述した係る計画学習部364によって実行されてもよい。 FIG. 10 is a diagram illustrating an example of the flow of plan learning processing 1000 according to the embodiment of the present disclosure. The plan learning process shown in FIG. 10 is a process for training a machine learning model capable of generating a backup power supply plan, and may be executed by, for example, the plan learning unit 364 described above.
 上述したように、台風のような災害等のイベント1010が検出されると、本開示の実施形態に係る電力供給管理方法400により、当該イベントの影響を緩和するために対象領域の各小領域へ配備する予備発電設備の規模(例えば数等)を指定する予備電力供給計画1020が計画生成部360によって生成される。後述するように、この予備電力供給計画1020は、計画学習部364を訓練するための学習データとして用いられる。
 なお、ここでの学習データとして、実際の過去のイベントについて生成された予備電力供給計画1020を用いてもよく、学習データ用にユーザ等の管理者によって作成されたグラウンドトゥルースを用いてもよい。
As described above, when an event 1010 such as a disaster such as a typhoon is detected, the power supply management method 400 according to the embodiment of the present disclosure applies power to each small area of the target area in order to alleviate the impact of the event. A backup power supply plan 1020 that specifies the scale (for example, number, etc.) of backup power generation equipment to be deployed is generated by the plan generation unit 360. As will be described later, this backup power supply plan 1020 is used as learning data for training the plan learning section 364.
Note that as the learning data here, the backup power supply plan 1020 generated for an actual past event may be used, or the ground truth created by an administrator such as a user for the learning data may be used.
 計画学習部364は、電力系統の状態を示すモデルを、例えば以下の数式のように作成する。この電力系統の状態は、例えば発電所の状態、電力系統に異常(送電線の断線等)が発生するリスクの確率、イベントの影響範囲(天気図等)、及び電力系統における送電線の状態に関する情報1025に基づいて作成されてもよい。
Figure JPOXMLDOC01-appb-M000002
 ここで、gentは、発電所の状態を表し、pt+1は、時間tにおいて電力系統に異常(送電線の断線等)が発生するリスクの確率を表し、lは、電力系統における送電線の状態を表す。発電所の状態は、例えば発電所の電力の出力等を表し、電力会社の利益を代表するユーザに設定されてもよく、最適な発電所の状態を判定するように訓練された異なる機械学習モデルから得られてもよい。ある実施形態では、pt+1は、本開示に実施形態に係る小領域の優先度であってもよい。
The plan learning unit 364 creates a model representing the state of the power system, for example, as shown in the following formula. The state of the power system includes, for example, the state of the power plant, the probability of the risk of an abnormality (such as a disconnection of a power transmission line) occurring in the power system, the range of influence of the event (weather map, etc.), and the state of the power transmission lines in the power system. It may be created based on information 1025.
Figure JPOXMLDOC01-appb-M000002
Here, gen t represents the state of the power plant, p t+1 represents the probability of the risk that an abnormality (such as a disconnection of a power transmission line) will occur in the power system at time t, and t represents the probability of the risk that an abnormality (such as a disconnection of a power transmission line) will occur in the power system at time t. represents the state of The status of the power plant represents, for example, the power output of the power plant, and may be set by the user representing the interests of the utility company, using different machine learning models trained to determine the optimal power plant status. may be obtained from. In some embodiments, p t+1 may be the priority of a small region according to embodiments of the present disclosure.
 また、電力系統における送電線の状態lは、以下の数式から求めることができる。
Figure JPOXMLDOC01-appb-M000003
 pt lineは、時間tにおいて送電線が断線する確率を表し、rt lineは、0~1の範囲内の乱数である。
Further, the state of the power transmission line in the power system lt can be determined from the following formula.
Figure JPOXMLDOC01-appb-M000003
p t line represents the probability that the power transmission line will be disconnected at time t, and r t line is a random number within the range of 0 to 1.
 計画学習部364は、発電所の状態gentや影響範囲等に基づいて予測されるリスク確率pt+1及びlに基づいて、所定の終了時間tmaxまでの各時間tにおける電力系統の状態のモデルを作成する。その後、計画学習部364は、このモデルに示される電力系統の状態に基づいて、イベントの影響を受ける対象領域の各小領域へ配備する予備発電設備の数を示す第2の予備電力供給計画1030を生成する。
 より具体的には、計画学習部364は、所定の時間tにおける電力系統の状態sに対して、所定の台数の予備発電設備を配備した場合の状態偏移を第2の予備電力供給計画1030としてもよい。未訓練の状態では、計画学習部364は、状態偏移の選択はほぼランダムであるが、後述するように、計画生成部360によって生成された予備電力供給計画1020を学習データとして計画学習部364を訓練することで、より適切な状態偏移(つまり、イベントの影響を抑えるためのより有効な予備発電設備の分布)を生成できるようになる。
The plan learning unit 364 calculates the state of the power system at each time t up to a predetermined end time t max based on the risk probabilities p t+1 and l t predicted based on the power plant state gen t , influence range, etc. Create a model. Thereafter, the plan learning unit 364 generates a second backup power supply plan 1030 that indicates the number of backup power generation facilities to be deployed to each sub-region of the target area affected by the event, based on the state of the power system shown in this model. generate.
More specifically, the plan learning unit 364 calculates the state deviation when a predetermined number of backup power generation facilities are deployed with respect to the power system state s t at a predetermined time t into a second backup power supply plan. It may be set to 1030. In the untrained state, the plan learning unit 364 selects the state shift almost randomly, but as described later, the plan learning unit 364 uses the backup power supply plan 1020 generated by the plan generating unit 360 as learning data. can be trained to generate more appropriate state deviations (i.e., a more effective distribution of standby generation facilities to reduce the impact of an event).
 次に、計画学習部364は、計画生成部360によって生成された予備電力供給計画1020と、計画学習部364によって生成された第2の予備電力供給計画1030とを比較し、類似度(例えばユークリッド距離等)を計算する。第2の予備電力供給計画1030の、予備電力供給計画1020に対する類似度が高ければ高い程、計画学習部364は高い報酬が与えられる。このように、第2の予備電力供給計画1030の、予備電力供給計画1020に対する損失を減らすように計画学習部364を訓練することで、計画学習部364は、様々なイベントに対して適切な予備電力供給計画を生成することが可能となる。 Next, the plan learning unit 364 compares the backup power supply plan 1020 generated by the plan generation unit 360 and the second backup power supply plan 1030 generated by the plan learning unit 364, and compares the degree of similarity (for example, Euclidean distance, etc.). The higher the degree of similarity of the second backup power supply plan 1030 to the backup power supply plan 1020, the higher the reward given to the plan learning unit 364. In this way, by training the plan learning unit 364 to reduce the loss of the second backup power supply plan 1030 with respect to the backup power supply plan 1020, the plan learning unit 364 can prepare an appropriate reserve for various events. It becomes possible to generate a power supply plan.
 また、計画学習部364の訓練が終了すると、例えば上述した電力供給管理方法400を行わなくても、電力系統の状態を示す情報(発電所の状態gentや影響範囲等に基づいて予測されるリスク確率pt+1及びl)を訓練済みの計画学習部364に入力することで、イベントの影響を抑えるための高精度の予備電力供給計画を生成することが可能となるため、対象領域からの人口情報、地図情報、電力の需要情報等を取集しなくとも、予備電力供給計画を生成することができる。 Furthermore, once the training of the plan learning unit 364 is completed, information indicating the state of the power system (predicted based on the state of the power plant, the range of influence, etc. By inputting the risk probabilities p t+1 and l t ) into the trained plan learning unit 364, it is possible to generate a highly accurate backup power supply plan to suppress the impact of the event. A backup power supply plan can be generated without collecting population information, map information, power demand information, etc.
 以上説明した、本開示の実施形態に係る電力供給管理手段によれば、所定の対象領域への電力供給に影響を与える可能性があるイベント(自然災害等)が検出された場合、当該対象領域の各変電所の位置を中心とした小領域毎に、電力を供給する優先度を計算することができる。上述したように、この優先度は、例えば小領域における各ゾーニング区域の割合や重み付、人口及び電力の需要等に基づいて計算されるため、電力の用途、電力を必要としている人数、需要量等の様々な側面を反映する多面的な指標となる。そして、この判定した優先度に基づいて、各小領域に対して、イベントに備えて、電源車等の予備の給電設備を配備することができる。このため、イベントによって電力系統が被害を受け、対象領域への電力供給に支障が生じた場合、各小領域に対して事前に配備した予備の給電設備を速やかに需要者に送り、停電の影響を抑えると共に、電力会社への損失を抑制することが可能となる。 According to the power supply management means according to the embodiment of the present disclosure described above, when an event (natural disaster, etc.) that may affect the power supply to a predetermined target area is detected, the target area The priority for supplying power can be calculated for each small area centered on the location of each substation. As mentioned above, this priority is calculated based on, for example, the proportion and weighting of each zoning area in a small area, the population, and the demand for electricity. It is a multifaceted index that reflects various aspects such as Then, based on this determined priority, backup power supply equipment such as a power supply vehicle can be provided for each small area in preparation for an event. Therefore, if the power system is damaged due to an event and the power supply to the target area is disrupted, the backup power supply equipment deployed in advance for each small area will be promptly sent to the customers and the impact of the power outage will be taken care of. This makes it possible to suppress losses to electric power companies.
 以上、本発明の実施の形態について説明したが、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the gist of the present invention.
200:電力供給網,205:送電網,210:発電所,215:送電線,220:変電所,235:配電網,240:商業系用途地域,242:住居用途地域,244:社会インフラ用途地域,330:通信ネットワーク,350:電力供給管理装置,352:イベント検出部,353:地図情報管理部,354:人口推定部,356:需要判定部,358:優先度判定部,360:計画生成部,362:提示部,364:計画学習部 200: Power supply network, 205: Power transmission network, 210: Power plant, 215: Power transmission line, 220: Substation, 235: Power distribution network, 240: Commercial use area, 242: Residential use area, 244: Social infrastructure use area , 330: communication network, 350: power supply management device, 352: event detection unit, 353: map information management unit, 354: population estimation unit, 356: demand determination unit, 358: priority determination unit, 360: plan generation unit , 362: Presentation section, 364: Planning learning section

Claims (11)

  1.  電力供給管理装置であって、
     所定の対象領域への電力供給に影響を及ぼす可能性があるイベントを検出するイベント検出部と、
     前記対象領域における変電所の位置と、前記対象領域における構造物の分布とを示す地図情報を取得する地図情報管理部と、
     前記対象領域の人口を推定する人口推定部と、
     前記対象領域の電力の需要を判定する需要判定部と、
     前記電力の需要と、前記人口と、前記地図情報とに基づいて、前記対象領域における各変電所を中心とした小領域毎に、当該小領域へ電力を供給する優先度を示す電力供給優先評価を生成する優先度判定部と、
     前記電力供給優先評価に基づいて、前記小領域毎に、前記イベントの影響を緩和するために当該小領域へ配備する予備発電設備の規模を指定する予備電力供給計画を生成する計画生成部と、
     を含むことを特徴とする電力供給管理装置。
    A power supply management device,
    an event detection unit that detects an event that may affect power supply to a predetermined target area;
    a map information management unit that acquires map information indicating the location of a substation in the target area and the distribution of structures in the target area;
    a population estimation unit that estimates the population of the target area;
    a demand determination unit that determines the demand for electricity in the target area;
    Power supply priority evaluation indicating the priority of supplying power to each small area centered on each substation in the target area based on the electricity demand, the population, and the map information. a priority determination unit that generates
    a plan generation unit that generates, for each of the small areas, a standby power supply plan that specifies the scale of standby power generation equipment to be deployed to the small area in order to alleviate the impact of the event, based on the power supply priority evaluation;
    A power supply management device comprising:
  2.  前記地図情報管理部は、
     前記地図情報を解析することで、前記対象領域における各構造物の属するゾーニング区域を判定し、
     判定した前記各構造物の属するゾーニング区域の分布に基づいて、前記小領域を前記ゾーニング区域毎に分類したゾーニングマップを生成する、
     ことを特徴とする、請求項1に記載の電力供給管理装置。
    The map information management department is
    determining the zoning area to which each structure in the target area belongs by analyzing the map information;
    generating a zoning map in which the small area is classified into each zoning area based on the determined distribution of zoning areas to which each of the structures belongs;
    The power supply management device according to claim 1, characterized in that:
  3.  前記地図情報管理部は、
     前記ゾーニングマップの前記ゾーニング区域毎に、電力を供給する重要性を示す重み付を付与する、
     ことを特徴とする、請求項2に記載の電力供給管理装置。
    The map information management department is
    assigning a weight indicating the importance of supplying electricity to each of the zoning areas of the zoning map;
    The power supply management device according to claim 2, characterized in that:
  4.  前記ゾーニング区域は、
     住居用途地域、商業系用途地域、工業系用途地域及び社会インフラ用途地域を含む、
     ことを特徴とする、請求項3に記載の電力供給管理装置。
    The zoning area is
    Including residential use zone, commercial use zone, industrial use zone and social infrastructure use zone,
    The power supply management device according to claim 3, characterized in that:
  5.  前記優先度判定部は、
     前記小領域におけるゾーニング区域毎に、前記電力の需要の特徴を示す電力需要指標と、前記人口の特徴を示す人口指標と、当該ゾーニング区域の前記小領域における割合との和を、前記ゾーニングマップに対して付与された前記重み付と乗算した値を計算し、計算した値の内、所定の基準を満たす値を前記小領域の前記優先度とする、
     ことを特徴とする、請求項3に記載の電力供給管理装置。
    The priority determination unit includes:
    For each zoning area in the small area, the sum of the electricity demand index showing the characteristics of the electricity demand, the population index showing the characteristics of the population, and the proportion of the zoning area in the small area is added to the zoning map. calculating a value multiplied by the weighting given to the weight, and setting a value that satisfies a predetermined criterion among the calculated values as the priority of the small area;
    The power supply management device according to claim 3, characterized in that:
  6.  前記予備発電設備は、電源車であることを特徴とする、請求項1に記載の電力供給管理装置。 The power supply management device according to claim 1, wherein the standby power generation facility is a power supply vehicle.
  7.  前記人口推定部は、
     過去に前記対象領域について取得された人口情報、前記対象領域における交通量、前記対象領域において通信ネットワークに接続されている端末数及び前記対象領域に設置されている監視カメラの映像の少なくともいずれかに基づいて前記対象領域の人口を推定する、
     ことを特徴とする、請求項1に記載の電力供給管理装置。
    The population estimation department is
    At least one of population information acquired for the target area in the past, traffic volume in the target area, the number of terminals connected to a communication network in the target area, and images from surveillance cameras installed in the target area. estimating the population of the target area based on;
    The power supply management device according to claim 1, characterized in that:
  8.  前記需要判定部は、
     過去に前記対象領域について取得された電力消費量情報又はリアルタイムの電力消費量情報に基づいて、前記対象領域の電力の需要を判定する、
     ことを特徴とする、請求項1に記載の電力供給管理装置。
    The demand determination unit is
    determining the power demand of the target area based on power consumption information acquired for the target area in the past or real-time power consumption information;
    The power supply management device according to claim 1, characterized in that:
  9.  前記対象領域へ電力を供給する電力系統の状態モデルに基づいて、前記小領域毎に、前記イベントの影響を緩和するために当該小領域へ配備する予備発電設備の規模を指定する第2の予備電力供給計画を生成し、
     前記第2の予備電力供給計画の、前記計画生成部によって生成される前記予備電力供給計画に対する類似度を向上するように強化学習モデルを訓練する計画学習部を更に含む、
     ことを特徴とする、請求項1に記載の電力供給管理装置。
    a second reserve that specifies, for each of the small areas, the scale of standby power generation equipment to be deployed in the small areas to alleviate the effects of the event, based on a state model of a power system that supplies power to the target areas; Generate a power supply plan,
    further comprising a plan learning unit that trains a reinforcement learning model to improve the similarity of the second backup power supply plan to the backup power supply plan generated by the plan generation unit;
    The power supply management device according to claim 1, characterized in that:
  10.  電力供給管理方法であって、
     所定の対象領域への電力供給に影響を及ぼす可能性があるイベントを検出する工程と、
     前記対象領域における変電所の位置と、前記対象領域における構造物の分布とを示す地図情報を取得する工程と、
     前記地図情報を解析することで、前記対象領域における各構造物の属するゾーニング区域を判定する工程と、
     判定した前記各構造物の属するゾーニング区域の分布に基づいて、前記対象領域における各変電所を中心とした小領域を前記ゾーニング区域毎に分類したゾーニングマップを生成する工程と、
     前記ゾーニングマップの前記ゾーニング区域毎に、電力を供給する重要性を示す重み付を付与する工程と、
     過去に前記対象領域について取得された人口情報、前記対象領域における交通量、前記対象領域において通信ネットワークに接続されている端末数及び前記対象領域に設置されている監視カメラの映像の少なくともいずれかに基づいて前記対象領域の人口を推定する工程と、
     過去に前記対象領域について取得された電力消費量情報又はリアルタイムの電力消費量情報に基づいて、前記対象領域の電力の需要を判定する工程と、
     前記電力の需要と、前記人口と、前記地図情報とに基づいて、前記小領域毎に、当該小領域へ電力を供給する優先度を示す電力供給優先評価を生成する工程と、
     前記電力供給優先評価に基づいて、前記小領域毎に、前記イベントの影響を緩和するために当該小領域へ配備する予備発電設備の規模を指定する予備電力供給計画を生成する工程と、
     を含むことを特徴とする電力供給管理方法。
    A power supply management method, the method comprising:
    detecting an event that may affect power delivery to a predetermined target area;
    acquiring map information indicating the location of a substation in the target area and the distribution of structures in the target area;
    determining a zoning area to which each structure in the target area belongs by analyzing the map information;
    Based on the determined distribution of zoning areas to which each of the structures belongs, generating a zoning map in which small areas centered on each substation in the target area are classified for each zoning area;
    assigning a weight indicating the importance of supplying electricity to each of the zoning areas of the zoning map;
    At least one of population information acquired for the target area in the past, traffic volume in the target area, the number of terminals connected to a communication network in the target area, and images from surveillance cameras installed in the target area. estimating the population of the target area based on the
    determining the power demand of the target area based on power consumption information acquired for the target area in the past or real-time power consumption information;
    generating, for each of the small regions, a power supply priority evaluation indicating the priority of supplying power to the small region, based on the power demand, the population, and the map information;
    Generating, for each of the small areas, a standby power supply plan that specifies the scale of standby power generation equipment to be deployed to the small area in order to alleviate the impact of the event, based on the power supply priority evaluation;
    A power supply management method characterized by comprising:
  11.  電力供給管理システムであって、
     所定の対象領域に電力を供給する電力供給網と、
     前記電力供給網の前記対象領域への電力供給の管理を支援する電力供給管理装置とが通信ネットワークを介して接続されており、
     前記電力供給管理装置は、
     前記対象領域への電力供給に影響を及ぼす可能性があるイベントを検出するイベント検出部と、
     前記対象領域における変電所の位置と、前記対象領域における構造物の分布とを地図情報を取得する地図情報管理部と、
     前記対象領域の人口を推定する人口推定部と、
     前記対象領域の電力の需要を判定する需要判定部と、
     前記電力の需要と、前記人口と、前記地図情報とに基づいて、前記対象領域における各変電所を中心とした小領域毎に、当該小領域へ電力を供給する優先度を示す電力供給優先評価を生成する優先度判定部と、
     前記電力供給優先評価に基づいて、前記小領域毎に、前記イベントの影響を緩和するために当該小領域へ配備する予備発電設備の規模を指定する予備電力供給計画を生成し、前記通信ネットワークを介して前記電力供給網の管理者に送信する計画生成部と、
     を含むことを特徴とする電力供給管理システム。
    A power supply management system,
    a power supply network that supplies power to a predetermined target area;
    A power supply management device that supports management of power supply to the target area of the power supply network is connected via a communication network,
    The power supply management device includes:
    an event detection unit that detects an event that may affect power supply to the target area;
    a map information management unit that acquires map information about the location of substations in the target area and the distribution of structures in the target area;
    a population estimation unit that estimates the population of the target area;
    a demand determination unit that determines the demand for electricity in the target area;
    Power supply priority evaluation indicating the priority of supplying power to each small area centered on each substation in the target area based on the electricity demand, the population, and the map information. a priority determination unit that generates
    Based on the power supply priority evaluation, a backup power supply plan is generated for each of the small areas, specifying the scale of backup power generation equipment to be deployed in the small area to alleviate the impact of the event, and the communication network is a plan generator that transmits the plan to an administrator of the power supply network via the power supply network;
    A power supply management system comprising:
PCT/JP2023/005667 2022-04-28 2023-02-17 Power supplying management device, power supplying management method, and power supplying management system WO2023210121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073927 2022-04-28
JP2022073927A JP2023163194A (en) 2022-04-28 2022-04-28 Power supply management apparatus, power supply management method, and power supply management system

Publications (1)

Publication Number Publication Date
WO2023210121A1 true WO2023210121A1 (en) 2023-11-02

Family

ID=88518478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005667 WO2023210121A1 (en) 2022-04-28 2023-02-17 Power supplying management device, power supplying management method, and power supplying management system

Country Status (2)

Country Link
JP (1) JP2023163194A (en)
WO (1) WO2023210121A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345944A (en) * 2002-05-24 2003-12-05 Mitsubishi Heavy Ind Ltd Disaster prevention management system
US20130262197A1 (en) * 2012-04-02 2013-10-03 Accenture Global Services Limited Community energy management system
JP2015177665A (en) * 2014-03-17 2015-10-05 中国電力株式会社 Disaster recovery supporting system and disaster recovery supporting program
WO2019003632A1 (en) * 2017-06-27 2019-01-03 ソニー株式会社 Power control apparatus, power control method, and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345944A (en) * 2002-05-24 2003-12-05 Mitsubishi Heavy Ind Ltd Disaster prevention management system
US20130262197A1 (en) * 2012-04-02 2013-10-03 Accenture Global Services Limited Community energy management system
JP2015177665A (en) * 2014-03-17 2015-10-05 中国電力株式会社 Disaster recovery supporting system and disaster recovery supporting program
WO2019003632A1 (en) * 2017-06-27 2019-01-03 ソニー株式会社 Power control apparatus, power control method, and computer program

Also Published As

Publication number Publication date
JP2023163194A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
JP6742894B2 (en) Data prediction system and data prediction method
EP3329456A1 (en) Methods and systems for determining economic viability of a microgrid
CN103325024A (en) Intelligent scheduling system
US20230024900A1 (en) System and method for real-time distributed micro-grid optimization using price signals
US11086380B2 (en) Management of battery runtime based upon power source activity
WO2017212880A1 (en) Data prediction system and data prediction method
KR20240017357A (en) Systems and methods for electric vehicle charging and distribution
JP2018163759A (en) Rechargeable battery management apparatus, method and program, and rechargeable battery management system
CN116780583B (en) Intelligent energy storage method, system, equipment and medium for photovoltaic power generation
US20130197706A1 (en) Systems and Methods for Dynamic Islanding to Minimize Load Shed During Restoration After a Fault
TW201843906A (en) Storage battery operation device and storage battery operation method
US20150032666A1 (en) Power management system and non-transitory computer readable medium
US20130197702A1 (en) Systems and Methods for Managing a Power Distribution System
de Assis et al. Optimal allocation of remote controlled switches in radial distribution systems
WO2023210121A1 (en) Power supplying management device, power supplying management method, and power supplying management system
CN111028020A (en) Yield management method, system, medium and electronic device for flight bag machine scene
CN115935201A (en) Monitoring method and device for key emergency equipment GPS and electric quantity data acquisition
CN116226293A (en) Method and system for generating and managing power customer portrait
US11010694B2 (en) Optimally deploying utility repair assets to minimize power outages during major weather events
Skoteinos et al. Methodology for assessing transmission investments in deregulated electricity markets
Kiran et al. Formation of bidding zones based on linear bottleneck games
CN117217920B (en) Energy storage transaction data processing method, device and storage medium
Garcia Sandia National Laboratories: Overview of Electricity Markets Projects.
Akbari et al. A scenario-based robust distribution expansion planning under ellipsoidal uncertainty set using second-order cone programming
Munir et al. Big data of home energy management in cloud computing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795869

Country of ref document: EP

Kind code of ref document: A1