WO2023209925A1 - Antenna control device, antenna control method, and antenna device - Google Patents

Antenna control device, antenna control method, and antenna device Download PDF

Info

Publication number
WO2023209925A1
WO2023209925A1 PCT/JP2022/019215 JP2022019215W WO2023209925A1 WO 2023209925 A1 WO2023209925 A1 WO 2023209925A1 JP 2022019215 W JP2022019215 W JP 2022019215W WO 2023209925 A1 WO2023209925 A1 WO 2023209925A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
amplitude
antenna
phase error
pattern
Prior art date
Application number
PCT/JP2022/019215
Other languages
French (fr)
Japanese (ja)
Inventor
一成 紀平
徹 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/019215 priority Critical patent/WO2023209925A1/en
Priority to JP2022569002A priority patent/JP7353515B1/en
Publication of WO2023209925A1 publication Critical patent/WO2023209925A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present disclosure relates to an antenna control device, an antenna control method, and an antenna device.
  • an antenna device that includes a first array antenna that transmits radio waves toward a communication target device and a second array antenna that receives radio waves transmitted from the communication target device (for example, see Patent Document 1).
  • the antenna device calculates a weighting coefficient (( It is provided with a coefficient determining means for determining the excitation coefficient (hereinafter referred to as "excitation coefficient"). Further, the coefficient determining means determines an excitation coefficient by which a signal received by each of the plurality of antenna elements included in the second array antenna is multiplied according to the relative position.
  • the antenna device may deteriorate over time.
  • the environment in which the antenna device is used may change. Examples of changes in the usage environment of the antenna device include changes in external noise from outside the antenna device, changes in thermal noise generated from the receiver connected to the second array antenna, or changes in the first array antenna. There are changes in thermal noise resulting from the connected transmitter. For example, age-related deterioration of the antenna device or changes in the environment in which the antenna device is used may cause the excitation coefficient of the antenna element to deviate from the appropriate excitation coefficient.
  • the antenna device disclosed in Patent Document 1 has a problem in that the excitation coefficient of each antenna element determined by the coefficient determining means may deviate from an appropriate excitation coefficient.
  • the present disclosure has been made to solve the above-mentioned problems, and aims to provide an antenna control device and an antenna control method that can suppress deviations in excitation coefficients of respective antenna elements.
  • An antenna control device acquires an amplitude pattern of an array antenna having a plurality of antenna elements, and includes an excitation amplitude error of each antenna element and an excitation phase error of each antenna element based on the amplitude pattern.
  • the antenna includes an error estimation section that estimates an excitation amplitude phase error, and an excitation coefficient control section that controls an excitation coefficient of each antenna element based on the excitation amplitude phase error estimated by the error estimation section.
  • FIG. 1 is a configuration diagram showing an antenna device including an antenna control device 10 according to Embodiment 1.
  • FIG. 1 is a hardware configuration diagram showing hardware of an antenna control device 10 according to Embodiment 1.
  • FIG. 1 is a hardware configuration diagram of a computer when the antenna control device 10 is realized by software, firmware, or the like.
  • 3 is a flowchart showing an antenna control method that is a processing procedure of the antenna control device 10.
  • FIG. FIG. 2 is an explanatory diagram showing a neural network that realizes a learning model.
  • FIG. 6A is an explanatory diagram showing an example of the amplitude pattern P 1 of the array antenna 1 or the amplitude pattern P 2 of the array antenna 2.
  • FIG. 1 is a configuration diagram showing an antenna device including an antenna control device 10 according to Embodiment 1.
  • FIG. 1 is a hardware configuration diagram showing hardware of an antenna control device 10 according to Embodiment 1.
  • FIG. 1 is a hardware configuration diagram of a computer when the antenna control device 10 is realized by software
  • FIG. 3 is an explanatory diagram showing a simulation result of an amplitude pattern P 1 of the array antenna 1 or a simulation result of the amplitude pattern P 2 of the array antenna 2.
  • FIG. 2 is an explanatory diagram showing an amplitude pattern P 1 of the array antenna 1 included in the learning data D 1 or an amplitude pattern P 2 of the array antenna 2 included in the learning data D 2 .
  • FIG. 11A is an explanatory diagram showing the amplitude pattern of the horizontal cut surface among the two cut surfaces.
  • FIG. 11B is an explanatory diagram showing the amplitude pattern of the vertical cut surface among the two cut surfaces.
  • FIG. 1 is a configuration diagram showing an antenna device including an antenna control device 10 according to the first embodiment.
  • FIG. 2 is a hardware configuration diagram showing the hardware of the antenna control device 10 according to the first embodiment.
  • an array antenna 1 which is a first array antenna, has K antenna elements 1-1 to 1-K as a plurality of transmitting antenna elements. K is an integer of 2 or more.
  • the antenna device shown in FIG. 1 includes an array antenna 1 for transmission and an array antenna 2 for reception.
  • the antenna device may include only either the array antenna 1 for transmission or the array antenna 2 for reception.
  • the array antenna 1 or the array antenna 2 may be a transmitting/receiving antenna that serves both for transmitting and receiving.
  • the transmission signal generation section 3 generates a transmission signal Tx, and outputs the transmission signal Tx to the transmission beam forming section 4.
  • the transmission beam forming section 4 distributes the transmission signal Tx generated by the transmission signal generation section 3 into K transmission signals Tx 1 to Tx K.
  • each transmitted signal Tx k ' after the excitation coefficient multiplication. is output to the transmitter 5.
  • the transmission beam forming unit 4 distributes the transmission signal Tx generated by the transmission signal generation unit 3 into K transmission signals Tx 1 to Tx K , and each of the distributed transmission signals Tx k is multiplied by an excitation coefficient EC 1,k .
  • the transmission signal generation unit 3 generates K transmission signals Tx 1 to Tx K
  • the transmission beam forming unit 4 generates each transmission signal generated by the transmission signal generation unit 3.
  • Tx k may be multiplied by an excitation coefficient EC 1,k .
  • the transmitter 5 converts the frequency of each transmission signal Tx k ' from a frequency in an IF (Intermediate Frequency) band to a frequency in an RF (Radio Frequency) band.
  • the receiving section 6 amplifies each frequency-converted received signal and outputs each amplified received signal Rx g ' to the receiving beam forming section 7.
  • the reception beam forming unit 7 multiplies each reception signal Rx g ' by an excitation coefficient EC 2,g .
  • the reception beam forming unit 7 combines the G reception signals Rx 1 to Rx G after excitation coefficient multiplication, and outputs a composite signal S of the G reception signals Rx 1 to Rx G to a reception device (not shown).
  • the antenna control device 10 includes a learning device 11, a learning model storage section 14, an error estimation section 15, and an excitation coefficient control section 16.
  • the learning device 11 includes a learning data acquisition section 12 and a learning processing section 13.
  • the learning device 11 generates a learning model GM 1 for the array antenna 1 and stores the learning model GM 1 in the learning model storage unit 14 .
  • the learning device 11 generates a learning model GM 2 for the array antenna 2, and stores the learning model GM 2 in the learning model storage unit 14.
  • a learning device 11 generates a learning model GM 1 for the array antenna 1 and a learning model GM 2 for the array antenna 2.
  • the learning data acquisition unit 12 is realized, for example, by the learning data acquisition circuit 21 shown in FIG.
  • the excitation amplitude phase error E 1,k includes the excitation amplitude error of the antenna element 1-k and the excitation phase error of the antenna element 1-k.
  • the excitation amplitude phase error E 2,g includes the excitation amplitude error of the antenna element 2-g and the excitation phase error of the antenna element 2-g.
  • the learning processing section 13 is realized, for example, by the learning processing circuit 22 shown in FIG.
  • the learning processing unit 13 provides the learning data D 1 acquired by the learning data acquisition unit 12 to the learning model GM 1 , and calculates the excitation amplitude phase error E 1,k corresponding to the amplitude pattern P 1 of the array antenna 1 into the learning model. Have GM 1 learn. Further, the learning processing unit 13 provides the learning data D 2 acquired by the learning data acquisition unit 12 to the learning model GM 2 and calculates the excitation amplitude phase error E 2,g corresponding to the amplitude pattern P 2 of the array antenna 2. Let learning model GM 2 learn.
  • the learning data D1 corresponds to the amplitude pattern P1 of the array antenna 1 when used in each area and the amplitude pattern P1 . It includes an excitation amplitude phase error E 1,k .
  • the learning data D 1 may include, for example, when the usage environment of the array antenna 1 changes, the amplitude pattern P 1 of the array antenna 1 when used in each of a plurality of mutually different usage environments, and the amplitude pattern P The excitation amplitude phase error E 1,k corresponding to 1 is included.
  • the learning data D2 corresponds to the amplitude pattern P2 of the array antenna 2 when used in each area and the amplitude pattern P2 .
  • the learning data D2 may include, for example, when the usage environment of the array antenna 2 changes, the amplitude pattern P2 of the array antenna 2 when used in each of a plurality of mutually different usage environments, and the amplitude pattern P2 of the array antenna 2 when used in each of a plurality of mutually different usage environments. 2 , an excitation amplitude phase error E2,g corresponding to E2,g .
  • the learning processing unit 13 causes the learning model storage unit 14 to store each of the learned learning model GM 1 and the learned learning model GM 2 .
  • the learning model storage unit 14 is realized, for example, by the learning model storage circuit 23 shown in FIG. 2.
  • the learning model storage unit 14 stores each of the learned learning model GM 1 and the learned learning model GM 2 .
  • the error estimation unit 15 is realized, for example, by the error estimation circuit 24 shown in FIG.
  • the error estimation unit 15 obtains each of the amplitude pattern P 1 of the array antenna 1 and the amplitude pattern P 2 of the array antenna 2.
  • the error estimation unit 15 provides the amplitude pattern P 1 of the array antenna 1 to the trained learning model GM 1 and obtains the excitation amplitude phase error E 1,k from the learning model GM 1 .
  • the error estimation unit 15 provides the amplitude pattern P 2 of the array antenna 2 to the trained learning model GM 2 and obtains the excitation amplitude phase error E 2,g from the learning model GM 2 .
  • the error estimation unit 15 outputs each of the excitation amplitude phase error E 1,k and the excitation amplitude phase error E 2,g to the excitation coefficient control unit 16.
  • the error estimation unit 15 gives the amplitude pattern P 1 to the learning model GM 1, obtains the excitation amplitude phase error E 1,k from the learning model GM 1, and obtains the excitation amplitude phase error E 1,k from the learning model GM 1. is given to the learning model GM 2 , and the excitation amplitude phase error E 1,k is obtained from the learning model GM 2 .
  • the error estimation unit 15 estimates the excitation amplitude phase error E 1, k from the amplitude pattern P 1 according to the rule base, and estimates the excitation amplitude phase error E 1,k from the amplitude pattern P 2 according to the rule base.
  • the error E 2,g may be estimated.
  • the excitation coefficient control section 16 is realized, for example, by an excitation coefficient control circuit 25 shown in FIG. 2.
  • each of the learning data acquisition unit 12, learning processing unit 13, learning model storage unit 14, error estimation unit 15, and excitation coefficient control unit 16, which are the components of the antenna control device 10, is configured as shown in FIG. It is assumed that this will be realized using dedicated hardware. That is, it is assumed that the antenna control device 10 is realized by a learning data acquisition circuit 21, a learning processing circuit 22, a learning model storage circuit 23, an error estimation circuit 24, and an excitation coefficient control circuit 25.
  • the learning model storage circuit 23 includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (Electric Memory).
  • Non-volatile memory such as (Erasable, Programmable, Read Only Memory) This includes a flexible or volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc). Further, each of the learning data acquisition circuit 21, the learning processing circuit 22, the error estimation circuit 24, and the excitation coefficient control circuit 25 is configured using, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the components of the antenna control device 10 are not limited to those realized by dedicated hardware, but the antenna control device 10 may be realized by software, firmware, or a combination of software and firmware. Good too.
  • Software or firmware is stored in a computer's memory as a program.
  • a computer means hardware that executes a program, and includes, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
  • FIG. 3 is a hardware configuration diagram of a computer when the antenna control device 10 is realized by software, firmware, or the like.
  • the learning model storage unit 14 is configured on the memory 31 of the computer.
  • a program for causing a computer to execute each processing procedure in the learning data acquisition section 12, the learning processing section 13, the error estimation section 15, and the excitation coefficient control section 16 is stored in the memory 31.
  • the processor 32 of the computer executes the program stored in the memory 31.
  • FIG. 2 shows an example in which each of the components of the antenna control device 10 is realized by dedicated hardware
  • FIG. 3 shows an example in which the antenna control device 10 is realized by software, firmware, etc.
  • this is just an example, and some of the components in the antenna control device 10 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • FIG. 4 is a flowchart showing an antenna control method which is a processing procedure of the antenna control device 10.
  • the learning model GM 1 for the array antenna 1 and the learning model GM 2 for the array antenna 2, which are generated by the learning device 11, are realized by, for example, a neural network as shown in FIG. 5.
  • FIG. 5 is an explanatory diagram showing a neural network that realizes a learning model.
  • the neural network shown in FIG. 5 has an input layer, a middle layer, and an output layer.
  • input layers are X1, X2, and X3, intermediate layers are Y1 and Y2, and output layers are Z1, Z2, and Z3.
  • the neural network shown in FIG. 5 has one intermediate layer. However, this is just an example, and there may be two or more intermediate layers.
  • Learning algorithms used by the learning processing unit 13 of the learning device 11 include known algorithms such as supervised learning, semi-supervised learning, unsupervised learning, deep learning, and reinforcement learning.
  • Deep learning is a learning algorithm that learns to extract the feature values themselves.
  • Reinforcement learning is a learning algorithm that follows, for example, genetic programming, functional logic programming, or support vector machines.
  • the learning processing unit 13 uses supervised learning as the learning algorithm.
  • FIG. 6A is an explanatory diagram showing an example of the amplitude pattern P 1 of the array antenna 1 or the amplitude pattern P 2 of the array antenna 2.
  • the horizontal axis represents the angle [deg. ]
  • the vertical axis is the normalized amplitude [dB].
  • a plurality of amplitude patterns P 1 for array antenna 1 or a plurality of amplitude patterns P 2 for array antenna 2 are shown.
  • FIG. 6A a plurality of amplitude patterns P 1 for array antenna 1 or a plurality of amplitude patterns P 2 for array antenna 2 are shown.
  • the vertical axis represents the excitation amplitude error and excitation phase error included in the excitation amplitude phase error E 1,k , or the excitation amplitude error and excitation phase error included in the excitation amplitude phase error E 2,g. Each is shown.
  • the excitation amplitude error occurring in the antenna element 1-k (or 2-g) is determined by the excitation amplitude of the antenna element 1-k (or 2-g) corresponding to the reference amplitude pattern P std and the amplitude pattern P 1 (or P 2 ) is the error with the excitation amplitude of the antenna element 1-k (or 2-g) corresponding to the antenna element 1-k (or 2-g).
  • the reference amplitude pattern P std is an ideal amplitude pattern in which neither an excitation amplitude error nor an excitation phase error occurs.
  • the excitation phase error occurring in the antenna element 1-k (or 2-g) is the excitation phase error of the antenna element 1-k (or 2-g) corresponding to the reference amplitude pattern P std and the amplitude pattern P 1 ( or P 2 ) with the excitation phase of the antenna element 1-k (or 2-g).
  • the angle of the main beam is 0 [deg. ]
  • a plurality of amplitude patterns P1 are shown.
  • the angle of the main beam is 0 [deg. ]
  • the learning data D 1 may include a plurality of amplitude patterns P 1 having angles other than .
  • the learning data D1 acquired by the learning data acquisition unit 12 has a main beam angle of 0 [deg. ], and the main beam angle is 0[deg.]. ] may include an amplitude pattern P1 having an angle other than .
  • the learning data acquisition section 12 outputs one or more learning data D1 to the learning processing section 13.
  • the excitation amplitude phase error E 1,k corresponds to the amplitude pattern P 1 of the array antenna 1. That is, the excitation amplitude phase error E 1,k is the correct value of the excitation amplitude phase error with respect to the amplitude pattern P 1 of the array antenna 1.
  • the learning processing unit 13 acquires one or more learning data D 1 from the learning data acquisition unit 12 .
  • the learning processing unit 13 supplies each learning data D 1 to the input layer of the learning model GM 1 and calculates the excitation amplitude phase error E 1 ,k corresponding to the amplitude pattern P 1 included in each learning data D 1. is trained by learning model GM 1 . That is, when the amplitude pattern P 1 of the array antenna 1 is given to the input layer of the learning model GM 1 , the learning processing unit 13 generates a signal corresponding to the amplitude pattern P 1 of the array antenna 1 from the output layer of the learning model GM 1.
  • the learning data D2 acquired by the learning data acquisition unit 12 has a main beam angle of 0 [deg. ], and the main beam angle is 0[deg.]. ] may include an amplitude pattern P2 having an angle other than .
  • the learning data acquisition section 12 outputs one or more learning data D2 to the learning processing section 13.
  • the excitation amplitude phase error E 2,g corresponds to the amplitude pattern P 2 of the array antenna 2.
  • the excitation amplitude phase error E 2,g of the antenna element 2-g is the correct value of the excitation amplitude phase error with respect to the amplitude pattern P 2 of the array antenna 2.
  • the learning processing unit 13 acquires one or more learning data D 2 from the learning data acquisition unit 12 .
  • the learning processing unit 13 supplies the respective learning data D2 to the input layer of the learning model GM2 , and calculates the excitation amplitude phase error E2 ,g corresponding to the amplitude pattern P2 included in the respective learning data D2.
  • the learning model GM 2 is made to learn. That is, when the amplitude pattern P 2 of the array antenna 2 is given to the input layer of the learning model GM 2 , the learning processing unit 13 generates a signal corresponding to the amplitude pattern P 2 of the array antenna 2 from the output layer of the learning model GM 2.
  • the learning processing unit 13 causes the learning model storage unit 14 to store each of the learned learning model GM 1 and the learned learning model GM 2 .
  • error estimating unit 15 acquires each of the amplitude pattern P 1 of array antenna 1 and the amplitude pattern P 2 of array antenna 2 (steps in FIG. 4). ST1).
  • Each of the amplitude pattern P 1 of the array antenna 1 and the amplitude pattern P 2 of the array antenna 2 is an amplitude pattern measured by a measuring device (not shown), for example.
  • the error estimation unit 15 provides the amplitude pattern P 1 of the array antenna 1 to the input layer of the trained learning model GM 1 stored in the learning model storage unit 14 .
  • the error estimation unit 15 acquires the excitation amplitude phase error E 1,k from the output layer of the learning model GM 1 (step ST2 in FIG. 4).
  • the error estimation unit 15 provides the amplitude pattern P 2 of the array antenna 2 to the input layer of the trained learning model GM 2 stored in the learning model storage unit 14 .
  • the error estimation unit 15 acquires the excitation amplitude phase error E 2,g output from the output layer of the learning model GM 2 (step ST2 in FIG. 4).
  • the error estimation unit 15 outputs each of the excitation amplitude phase error E 1,k and the excitation amplitude phase error E 2,g to the excitation coefficient control unit 16.
  • the process of calculating the excitation coefficient EC 1,k such that the excitation amplitude phase error E 1, k becomes zero is a well-known technique, so a detailed explanation thereof will be omitted.
  • the excitation coefficient EC 1,k at which the excitation amplitude phase error E 1,k becomes zero is not limited to one at which the excitation amplitude phase error E 1,k becomes completely zero, but within a range that causes no practical problems. , the concept includes those in which the excitation amplitude phase error E 1,k is approximately zero.
  • the process of calculating the excitation coefficient EC 2,g such that the excitation amplitude phase error E 2,g becomes zero is a well-known technique, so a detailed explanation will be omitted.
  • the excitation coefficient EC 2,g at which the excitation amplitude phase error E 2,g becomes zero is not limited to one at which the excitation amplitude phase error E 2,g becomes completely zero, but within a range that causes no practical problems. , the excitation amplitude phase error E 2,g is approximately zero.
  • the transmission signal generation section 3 generates a transmission signal Tx, and outputs the transmission signal Tx to the transmission beam forming section 4.
  • the transmission beam forming unit 4 distributes the transmission signal Tx into K transmission signals Tx 1 to Tx K.
  • the transmitter 5 converts the frequency of each transmission signal Tx k ' from an IF band frequency to an RF band frequency.
  • the antenna element 1-k of the array antenna 1 radiates the transmission signal Tx k '' into space as a radio wave.
  • the receiving unit 6 converts the frequency of the received signal Rx g '' from the RF band frequency to the IF band frequency.
  • the receiving section 6 amplifies each frequency-converted received signal and outputs each amplified received signal Rx g ' to the receiving beam forming section 7.
  • the reception beam forming unit 7 multiplies each reception signal Rx g ' by an excitation coefficient EC 2,g .
  • the reception beam forming unit 7 combines the G reception signals Rx 1 to Rx G after excitation coefficient multiplication, and outputs a composite signal S of the G reception signals Rx 1 to Rx G to a reception device (not shown).
  • FIG. 7 is an explanatory diagram showing the simulation results of the amplitude pattern P 1 of the array antenna 1 or the simulation result of the amplitude pattern P 2 of the array antenna 2.
  • the horizontal axis represents the angle [deg. ]
  • the vertical axis is the normalized amplitude [dB].
  • FIG. 7 shows simulation results of the amplitude pattern P1 of the array antenna 1 in which 16 antenna elements 1-1 to 1-16 are arranged in a straight line, or 16 antenna elements 2-1 to 2-16. shows the simulation result of the amplitude pattern P2 of the array antenna 2 arranged on a straight line.
  • the solid line indicates the amplitude pattern P 1 of the array antenna 1 when multiplied by the excitation coefficient EC 1,k by the transmitting beam forming unit 4, or the amplitude pattern P 1 when multiplied by the excitation coefficient EC 2,g by the receiving beam forming unit 7.
  • An amplitude pattern P2 of the array antenna 2 is shown. That is, the amplitude pattern P 1 of the array antenna 1 when the excitation coefficient EC 1 ,k is controlled based on the excitation amplitude phase error E 1 ,k output from the learned learning model GM 1 or the learned model GM 1 It shows the amplitude pattern P 2 of the array antenna 2 when the excitation coefficient EC 2,g is controlled based on the excitation amplitude phase error E 2,g output from the learning model GM 2 .
  • the dotted line is the correct amplitude pattern P 1 in which the excitation amplitude phase error E 1 ,k is considered, or the correct amplitude pattern P 2 in which the excitation amplitude phase error E 2,g is considered.
  • the broken line is the nominal of the amplitude pattern P1 without error or the nominal of the amplitude pattern P2 without error. It can be seen that the amplitude pattern P 1 or P 2 indicated by the solid line corresponds well to the amplitude pattern P 1 or P 2 indicated by the broken line.
  • the amplitude pattern of the array antenna 1 (or 2) having a plurality of antenna elements 1-1 to 1-K (or 2-1 to 2-G) is acquired, and based on the amplitude pattern, , an error estimation unit 15 that estimates an excitation amplitude phase error including an excitation amplitude error of each antenna element 1-k (or 2-g) and an excitation phase error of each antenna element 1-k (or 2-g). and an excitation coefficient control unit 16 that controls the excitation coefficient of each antenna element 1-k (or 2-g) based on the excitation amplitude phase error estimated by the error estimation unit 15.
  • the apparatus 10 was configured. Therefore, the antenna control device 10 can suppress deviations in the excitation coefficients of the respective antenna elements 1-k (or 2-g).
  • the array antenna 1 By suppressing the deviation in the excitation coefficient of each antenna element 1-k (or 2-g), for example, even if the antenna device deteriorates over time or the usage environment of the antenna device changes, the array antenna 1 ( Alternatively, deviation of the pointing direction (2) from the desired pointing direction can be suppressed.
  • learning data D1 including an excitation amplitude phase error E1 ,k corresponding to the amplitude pattern P1 of the array antenna 1 is provided to the input layer of the learning model GM1 .
  • learning data D 2 including an excitation amplitude phase error E 2 ,g corresponding to the amplitude pattern P 2 of the array antenna 2 is provided to the input layer of the learning model GM 2 .
  • the distribution of the excitation amplitude phase error E 1 ,k included in the learning data D 1 and the distribution of the excitation amplitude phase error E 2 ,g included in the learning data D 2 are normal distributions. It's okay.
  • each of the excitation amplitude phase error E 1,k and the excitation amplitude phase error E 2,g may be obtained from a function modeled based on measurement data.
  • a learning device 11 In the antenna control device 10 shown in FIG. 1, a learning device 11 generates a learning model GM 1 for the array antenna 1 and a learning model GM 2 for the array antenna 2. However, this is only an example, and the learning device 11 may generate a learning model GM shared by the array antenna 1 and the array antenna 2.
  • the learning device 11 When the learning device 11 generates a learning model GM shared by array antenna 1 and array antenna 2, the learning data given to the input layer of the learning model GM is the learning data of array antenna 1 when array antenna 1 is used. It includes an amplitude pattern and an excitation amplitude phase error corresponding to the amplitude pattern.
  • the learning data given to the input layer of the learning model GM includes an amplitude pattern of the array antenna 2 when the array antenna 2 is used and an excitation amplitude phase error corresponding to the amplitude pattern.
  • the area where array antenna 1 is used and the area where array antenna 2 is used may be the same area or may be different areas.
  • the learning data given to the input layer of the learning model GM includes the amplitude pattern of the array antenna when an array antenna other than array antennas 1 and 2 is used, and the excitation amplitude phase error corresponding to the amplitude pattern. It may include.
  • the antenna device shown in FIG. 1 includes an antenna control device 10.
  • the antenna device may not include the antenna control device 10 and the antenna control device 10 may exist on, for example, a cloud server.
  • the learning data acquisition unit 12 uses amplitude patterns P 1 and P 2 of the array antennas 1 and 2 included in the learning data D 1 and D 2 to correspond to the angles of the array antennas 1 and 2.
  • An antenna control device 10 that acquires an amplitude pattern whose amplitude includes amplitude errors ⁇ P 1 and ⁇ P 2 due to the influence of thermal noise will be described.
  • the configuration of the antenna device according to Embodiment 2 is similar to the configuration of the antenna device according to Embodiment 1, and the configuration diagram showing the antenna device according to Embodiment 2 is FIG. 1.
  • Each of the amplitude pattern P 1 of the array antenna 1 and the amplitude pattern P 2 of the array antenna 2 acquired by the error estimation unit 15 is, for example, an amplitude pattern measured by a measuring device (not shown).
  • the amplitude pattern may be affected by thermal noise of a receiver connected to the array antenna 2, for example.
  • the learning data acquisition unit 12 acquires learning data D 1 and D 2 as shown below, and sets the learning data D 1 to The learning data D2 is supplied to the input layer of the learning model GM1 , and the learning data D2 is supplied to the input layer of the learning model GM2 .
  • FIG. 8 is an explanatory diagram showing the amplitude pattern P 1 of the array antenna 1 included in the learning data D 1 or the amplitude pattern P 2 of the array antenna 2 included in the learning data D 2 .
  • the horizontal axis represents the angle [deg. ]
  • the vertical axis is the normalized amplitude [dB].
  • the broken line indicates the amplitude pattern P 1 of the array antenna 1 under ideal conditions without thermal noise, or the amplitude pattern P 2 of the array antenna 2 under ideal conditions without thermal noise.
  • the solid line indicates an amplitude pattern P 1 ′ containing an amplitude error ⁇ P 1 at each angle obtained from the noise model, or an amplitude pattern P 2 ′ containing an amplitude error ⁇ P 2 at each angle obtained from the noise model.
  • the noise model is a model that outputs an amplitude error ⁇ P 1 due to the influence of thermal noise corresponding to the angle of the array antenna 1, or a model that outputs an amplitude error ⁇ P 2 due to the influence of thermal noise corresponding to the angle of the array antenna 2. This is the model to output. Since the noise model itself is a well-known model, detailed explanation will be omitted.
  • the distribution of thermal noise may be any distribution, and for example, a normal distribution may be considered.
  • the learning processing unit 13 acquires learning data D 1 from the learning data acquisition unit 12 .
  • the amplitude pattern P 1 of the array antenna 1 included in the learning data D 1 includes an amplitude error ⁇ P 1 due to the influence of thermal noise.
  • the learning processing unit 13 supplies the learning data D 1 to the input layer of the learning model GM 1 and causes the learning model GM 1 to learn the excitation amplitude phase error E 1,k corresponding to the amplitude pattern P 1 of the array antenna 1.
  • the learning processing unit 13 acquires learning data D 2 from the learning data acquisition unit 12 .
  • the amplitude pattern P 2 of the array antenna 2 included in the learning data D 2 includes an amplitude error ⁇ P 2 due to the influence of thermal noise.
  • the learning processing unit 13 supplies the learning data D 2 to the input layer of the learning model GM 2 and causes the learning model GM 2 to learn the excitation amplitude phase error E 2,g corresponding to the amplitude pattern P 2 of the array antenna 2.
  • the learning processing unit 13 causes the learning model storage unit 14 to store each of the learned learning model GM 1 and the learned learning model GM 2 .
  • the learning data acquisition unit 12 adds heat to the amplitude corresponding to the angle of the array antenna 1 (or 2) as the amplitude pattern of the array antenna 1 (or 2) included in the learning data.
  • the antenna control device 10 was configured to obtain an amplitude pattern that includes an amplitude error due to the influence of noise. Therefore, like the antenna control device 10 according to the first embodiment, the antenna control device 10 according to the second embodiment is capable of suppressing the deviation in the excitation coefficient of each antenna element 1-k (or 2-g). In addition, the influence of thermal noise can be further suppressed than the antenna control device 10 according to the first embodiment.
  • the learning processing unit 13 provides the learning model with an amplitude pattern in the angular range corresponding to the main beam and an excitation amplitude phase error corresponding to the amplitude pattern in the angular range corresponding to the main beam.
  • the control device 10 will be explained.
  • the configuration of the antenna device according to Embodiment 3 is similar to the configuration of the antenna device according to Embodiment 1, and the configuration diagram showing the antenna device according to Embodiment 3 is FIG. 1.
  • the learning processing unit 13 selects an angular range corresponding to the main beam from among the amplitude patterns P1 included in the learning data D1 acquired by the learning data acquisition unit 12. and the excitation amplitude phase error E 1,k corresponding to the amplitude pattern in the angular range corresponding to the main beam are given to the input layer of the learning model GM 1 . Then, the learning processing unit 13 causes the learning model GM 1 to learn the excitation amplitude phase error corresponding to the amplitude pattern given to the input layer.
  • the learning processing unit 13 selects an amplitude pattern in an angular range corresponding to the main beam and an amplitude pattern corresponding to the main beam among the amplitude patterns P2 included in the learning data D2 acquired by the learning data acquisition unit 12.
  • the excitation amplitude phase error E 2,g corresponding to the amplitude pattern in the angular range is given to the input layer of the learning model GM 2 .
  • the learning processing unit 13 causes the learning model GM 2 to learn the excitation amplitude phase error corresponding to the amplitude pattern given to the input layer.
  • FIG. 9 shows the amplitude pattern in the angle range corresponding to the main beam out of the amplitude pattern P1 included in the learning data D1 , or the main beam in the amplitude pattern P2 included in the learning data D2 .
  • FIG. 3 is an explanatory diagram showing an amplitude pattern in an angular range corresponding to a beam.
  • the horizontal axis represents the angle [deg. ]
  • the vertical axis is the normalized amplitude [dB].
  • the amplitude pattern in the angular range corresponding to the main beam is about ⁇ 8 to about +8 [deg. ] is the amplitude pattern of the angle in the range.
  • the amplitude patterns given to the respective input layers of the trained learning model GM 1 and the trained learning model GM 2 are limited to the amplitude patterns in the angular range corresponding to the main beam, thereby reducing the influence of thermal noise. Deterioration of communication performance of array antenna 1 (or 2) can be further suppressed.
  • Each of the amplitude pattern P 1 of the array antenna 1 and the amplitude pattern P 2 of the array antenna 2 may be a two-dimensional pattern in which the respective amplitude patterns on the two cut planes are combined.
  • FIG. 10 is an explanatory diagram showing a two-dimensional pattern in which respective amplitude patterns on two cut surfaces are combined.
  • the horizontal axis represents the angle [deg. ]
  • the vertical axis represents the angle in the elevation direction [deg. ].
  • FIG. 11A is an explanatory diagram showing the amplitude pattern of the horizontal cut surface among the two cut surfaces.
  • the amplitude pattern of the horizontal cut plane is a one-dimensional pattern.
  • FIG. 11B is an explanatory diagram showing the amplitude pattern of the vertical cut surface among the two cut surfaces.
  • the amplitude pattern of the vertical cut plane is a one-dimensional pattern.
  • the example of FIG. 11A shows the amplitude pattern of the horizontal cut surface of the two cut surfaces
  • the example of FIG. 11B shows the amplitude pattern of the vertical cut surface of the two cut surfaces.
  • this is just an example; for example, among two cut surfaces, one cut surface is an oblique cut surface that is inclined from the horizontal cut surface, and the other cut surface is an oblique cut surface that is inclined from the vertical cut surface. It may be a cut surface.
  • the configuration of the antenna device according to Embodiment 4 is similar to the configuration of the antenna device according to Embodiment 1, and the configuration diagram showing the antenna device according to Embodiment 4 is FIG. 1.
  • the learning data acquisition unit 12 acquires, as learning data D1 , a one-dimensional amplitude pattern of one cut surface , a one-dimensional amplitude pattern of the other cut surface, and one of the amplitude patterns P1 of the array antenna 1.
  • Learning data D1 including an excitation amplitude phase error corresponding to the one-dimensional amplitude pattern of the cut surface and an excitation amplitude phase error corresponding to the one-dimensional amplitude pattern of the other cut surface is acquired.
  • the learning data acquisition unit 12 acquires, as learning data D 2 , a one-dimensional amplitude pattern of one cut surface and a one-dimensional amplitude pattern of the other cut surface among the amplitude patterns P 2 of the array antenna 2 .
  • the learning data acquisition unit 12 obtains, as the learning data D1 , a one-dimensional amplitude pattern on the horizontal cut plane and a one-dimensional amplitude pattern on the vertical cut plane among the amplitude patterns P1 of the array antenna 1.
  • Learning data D1 is obtained, which includes an excitation amplitude phase error corresponding to the amplitude pattern of the horizontal cut plane, and an excitation amplitude phase error corresponding to the amplitude pattern of the vertical cut plane.
  • the learning data acquisition unit 12 acquires, as learning data D2 , a one-dimensional amplitude pattern on the horizontal cut plane, a one-dimensional amplitude pattern on the vertical cut plane, and a horizontal cut out of the amplitude pattern P2 of the array antenna 2.
  • Learning data D2 including the excitation amplitude phase error of the antenna element 2-g corresponding to the amplitude pattern of the plane and the excitation amplitude phase error of the antenna element 2-g corresponding to the amplitude pattern of the vertical cut plane. get.
  • the learning processing unit 13 acquires, for example, one or more pieces of learning data D1 as shown in FIG. 11 from the learning data acquisition unit 12.
  • the learning processing unit 13 supplies each learning data D 1 to the input layer of the learning model GM 1 and causes the learning model GM 1 to learn an excitation amplitude phase error corresponding to a one-dimensional amplitude pattern on the horizontal cut plane. Further, the learning processing unit 13 causes the learning model GM 1 to learn the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane.
  • the learning processing unit 13 when the one-dimensional amplitude pattern on the horizontal cut plane is given to the input layer of the learning model GM 1 , the learning processing unit 13 generates a signal corresponding to the one-dimensional amplitude pattern on the horizontal cut plane from the output layer of the learning model GM 1 .
  • the weights w11-w16 and w21-w26 of the neural network are adjusted so that the excitation amplitude phase error is output.
  • the learning processing unit 13 corresponds to the one-dimensional amplitude pattern on the vertical cut plane from the output layer of the learning model GM 1 .
  • the weights w11-w16 and w21-w26 of the neural network are adjusted so that the excitation amplitude phase error is output.
  • the learning processing unit 13 acquires, for example, one or more learning data D2 as shown in FIG. 11 from the learning data acquisition unit 12.
  • the learning processing unit 13 supplies each learning data D 2 to the input layer of the learning model GM 2 and causes the learning model GM 2 to learn the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the horizontal cut plane. Further, the learning processing unit 13 causes the learning model GM 2 to learn the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane.
  • the learning processing unit 13 when the one-dimensional amplitude pattern on the horizontal cut plane is given to the input layer of the learning model GM 2 , the learning processing unit 13 generates a signal corresponding to the one-dimensional amplitude pattern on the horizontal cut plane from the output layer of the learning model GM 2 .
  • the weights w11-w16 and w21-w26 of the neural network are adjusted so that the excitation amplitude phase error is output.
  • the learning processing unit 13 corresponds to the one-dimensional amplitude pattern on the vertical cut plane from the output layer of the learning model GM 2 .
  • the weights w11-w16 and w21-w26 of the neural network are adjusted so that the excitation amplitude phase error is output.
  • error estimating unit 15 calculates, for example, a one-dimensional amplitude pattern on the horizontal cut plane and a one-dimensional amplitude pattern on the vertical cut plane as the amplitude pattern P 1 of array antenna 1. Obtain the dimensional amplitude pattern. Further, the error estimation unit 15 obtains, for example, a one-dimensional amplitude pattern on the horizontal cut plane and a one-dimensional amplitude pattern on the vertical cut plane as the amplitude pattern P2 of the array antenna 2.
  • the error estimation unit 15 supplies, as the amplitude pattern P 1 of the array antenna 1, for example, a one-dimensional amplitude pattern on a horizontal cut plane to the input layer of the learned learning model GM 1 , and from the output layer of the learning model GM 1 , An excitation amplitude phase error corresponding to a one-dimensional amplitude pattern on the horizontal cut plane is obtained.
  • the error estimating unit 15 supplies, as the amplitude pattern P 1 of the array antenna 1, a one-dimensional amplitude pattern in the vertical cut plane to the input layer of the learned model GM 1, and outputs the amplitude pattern P 1 of the array antenna 1 to the input layer of the learned model GM 1 From this, the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane is obtained.
  • the error estimation unit 15 outputs each of the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the horizontal cut plane and the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane to the excitation coefficient control unit 16. .
  • the error estimation unit 15 supplies, for example, a one-dimensional amplitude pattern on a horizontal cut plane to the input layer of the learned learning model GM 2 as the amplitude pattern P 2 of the array antenna 2, and from the output layer of the learning model GM 2 , An excitation amplitude phase error corresponding to a one-dimensional amplitude pattern on the horizontal cut plane is obtained. Further, the error estimating unit 15 supplies, for example, a one-dimensional amplitude pattern in a vertical cut plane to the input layer of the learned learning model GM 2 as the amplitude pattern P 2 of the array antenna 2, and provides the output layer of the learning model GM 2 with From this, the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane is obtained.
  • the error estimation unit 15 outputs each of the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the horizontal cut plane and the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane to the excitation coefficient control unit 16. .
  • the excitation coefficient control unit 16 acquires, for example, each of the excitation amplitude phase error related to the horizontal cut plane and the excitation amplitude phase error related to the vertical cut plane with respect to the array antenna 1 from the error estimation unit 15.
  • the excitation coefficients EC 1, H, k at which the excitation amplitude phase error becomes zero are not limited to those at which the excitation amplitude phase error becomes completely zero, but are those where the excitation amplitude phase error is within a range that does not cause any practical problems. This is a concept that includes things that are approximately zero.
  • the excitation coefficient EC 1, V, k at which the excitation amplitude phase error becomes zero is not limited to the one at which the excitation amplitude phase error becomes completely zero, but the excitation amplitude phase error within a range that does not cause any practical problems. This is a concept that includes things that are approximately zero.
  • the excitation coefficient control unit 16 calculates the excitation coefficient EC 1,k by multiplying the excitation distribution indicated by the excitation coefficient EC 1,H,k and the excitation distribution indicated by the excitation coefficient EC 1 ,V ,k .
  • the process of calculating the product of the excitation distribution indicated by the excitation coefficient EC 1, H, k and the excitation distribution indicated by the excitation coefficient EC 1, V, k is a well-known technique, so detailed explanation will be omitted.
  • the excitation coefficient control section 16 outputs the excitation coefficient EC 1,k to the transmission beam forming section 4 .
  • the excitation coefficient control unit 16 acquires, for example, each of the excitation amplitude phase error related to the horizontal cut plane and the excitation amplitude phase error related to the vertical cut plane for the array antenna 2 from the error estimation unit 15.
  • the excitation coefficients EC 2, H, k at which the excitation amplitude phase error becomes zero are not limited to those at which the excitation amplitude phase error becomes completely zero, but are those where the excitation amplitude phase error is within a range that does not cause any practical problems. This is a concept that includes things that are approximately zero.
  • the excitation coefficient EC 2, V, k at which the excitation amplitude phase error becomes zero is not limited to one at which the excitation amplitude phase error becomes completely zero, but is one in which the excitation amplitude phase error is within a range that does not cause any practical problems. This is a concept that includes things that are approximately zero.
  • the excitation coefficient control unit 16 calculates the excitation coefficient EC 2,g by multiplying the excitation distribution indicated by the excitation coefficient EC 2,H,g and the excitation distribution indicated by the excitation coefficient EC 2 ,V ,g .
  • the excitation coefficient control section 16 outputs the excitation coefficient EC 2,g to the reception beam forming section 7 .
  • the amplitude pattern of the array antenna 1 is a two-dimensional pattern in which the respective amplitude patterns on the two cut planes are combined, and the learning data acquisition unit 12 uses the amplitude pattern as the learning data.
  • the antenna control device 10 is configured to acquire learning data including the amplitude pattern of each cut surface and the excitation amplitude phase error corresponding to the amplitude pattern of each cut surface. Therefore, like the antenna control device 10 according to the first embodiment, the antenna control device 10 according to the fourth embodiment is capable of suppressing the deviation in the excitation coefficient of each antenna element 1-k (or 2-g). can. Furthermore, the antenna control device 10 according to the fourth embodiment can reduce the processing load of the learning process in the learning processing section 13 more than the antenna control device 10 according to the first embodiment.
  • the present disclosure is suitable for an antenna control device, an antenna control method, and an antenna device.
  • 1 Array antenna (first array antenna), 1-1 to 1-K antenna elements, 2 Array antenna (second array antenna), 2-1 to 2-G antenna elements, 3 Transmission signal generation section, 4 Transmission Beam forming unit, 5 transmitting unit, 6 receiving unit, 7 receiving beam forming unit, 10 antenna control device, 11 learning device, 12 learning data acquisition unit, 13 learning processing unit, 14 learning model storage unit, 15 error estimation unit, 16 Excitation coefficient control unit, 21 Learning data acquisition circuit, 22 Learning processing circuit, 23 Learning model storage circuit, 24 Error estimation circuit, 25 Excitation coefficient control circuit, 31 Memory, 32 Processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Provided is an antenna control device (10) configured so as to comprise: an error estimation unit (15) that acquires an amplitude pattern of an array antenna (1 or 2) including a plurality of antenna elements (1-k or 2-g), and that estimates, on the basis of the amplitude pattern, an excitation amplitude/phase error which includes an excitation amplitude error of each of the antenna elements (1-k or 2-g) and an excitation phase error of each of the antenna elements (1-k or 2-g); and an excitation coefficient control unit (16) that controls, on the basis of the excitation amplitude/phase error estimated by the error estimation unit (15), an excitation coefficient of each of the antenna elements (1-k or 2-g).

Description

アンテナ制御装置、アンテナ制御方法及びアンテナ装置Antenna control device, antenna control method, and antenna device
 本開示は、アンテナ制御装置、アンテナ制御方法及びアンテナ装置に関するものである。 The present disclosure relates to an antenna control device, an antenna control method, and an antenna device.
 電波を通信対象機器に向けて送信する第1のアレーアンテナと、通信対象機器から送信された電波を受信する第2のアレーアンテナとを備えるアンテナ装置がある(例えば、特許文献1を参照)。
 当該アンテナ装置は、自己の位置と通信対象機器の位置との相対位置に応じて、第1のアレーアンテナに含まれている複数のアンテナ素子のそれぞれに送信される信号に乗算される重み係数(以下「励振係数」という)を決定する係数決定手段を備えている。また、当該係数決定手段は、当該相対位置に応じて、第2のアレーアンテナに含まれている複数のアンテナ素子のそれぞれに受信された信号に乗算される励振係数を決定する。
There is an antenna device that includes a first array antenna that transmits radio waves toward a communication target device and a second array antenna that receives radio waves transmitted from the communication target device (for example, see Patent Document 1).
The antenna device calculates a weighting coefficient (( It is provided with a coefficient determining means for determining the excitation coefficient (hereinafter referred to as "excitation coefficient"). Further, the coefficient determining means determines an excitation coefficient by which a signal received by each of the plurality of antenna elements included in the second array antenna is multiplied according to the relative position.
特開2001-326525号公報Japanese Patent Application Publication No. 2001-326525
 アンテナ装置には、経年劣化が生じ得る。アンテナ装置の使用環境は、変化することがある。アンテナ装置の使用環境の変化としては、例えば、アンテナ装置の外部からの外来ノイズの変化、第2のアレーアンテナに接続されている受信機から生じる熱雑音の変化、又は、第1のアレーアンテナに接続されている送信機から生じる熱雑音の変化がある。例えば、アンテナ装置の経年劣化、又は、アンテナ装置の使用環境の変化は、アンテナ素子の励振係数が適正な励振係数からずれる原因になることがある。
 特許文献1に開示されているアンテナ装置では、係数決定手段により決定されたそれぞれのアンテナ素子の励振係数が、適正な励振係数からずれてしまうことがあるという課題があった。
The antenna device may deteriorate over time. The environment in which the antenna device is used may change. Examples of changes in the usage environment of the antenna device include changes in external noise from outside the antenna device, changes in thermal noise generated from the receiver connected to the second array antenna, or changes in the first array antenna. There are changes in thermal noise resulting from the connected transmitter. For example, age-related deterioration of the antenna device or changes in the environment in which the antenna device is used may cause the excitation coefficient of the antenna element to deviate from the appropriate excitation coefficient.
The antenna device disclosed in Patent Document 1 has a problem in that the excitation coefficient of each antenna element determined by the coefficient determining means may deviate from an appropriate excitation coefficient.
 本開示は、上記のような課題を解決するためになされたもので、それぞれのアンテナ素子の励振係数のずれを抑えることができるアンテナ制御装置及びアンテナ制御方法を得ることを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and aims to provide an antenna control device and an antenna control method that can suppress deviations in excitation coefficients of respective antenna elements.
 本開示に係るアンテナ制御装置は、複数のアンテナ素子を有するアレーアンテナの振幅パターンを取得し、振幅パターンに基づいて、それぞれのアンテナ素子の励振振幅誤差とそれぞれのアンテナ素子の励振位相誤差とを含む励振振幅位相誤差を推定する誤差推定部と、誤差推定部により推定された励振振幅位相誤差に基づいて、それぞれのアンテナ素子の励振係数を制御する励振係数制御部とを備えている。 An antenna control device according to the present disclosure acquires an amplitude pattern of an array antenna having a plurality of antenna elements, and includes an excitation amplitude error of each antenna element and an excitation phase error of each antenna element based on the amplitude pattern. The antenna includes an error estimation section that estimates an excitation amplitude phase error, and an excitation coefficient control section that controls an excitation coefficient of each antenna element based on the excitation amplitude phase error estimated by the error estimation section.
 本開示によれば、それぞれのアンテナ素子の励振係数のずれを抑えることができる。 According to the present disclosure, it is possible to suppress deviations in the excitation coefficients of each antenna element.
実施の形態1に係るアンテナ制御装置10を含むアンテナ装置を示す構成図である。1 is a configuration diagram showing an antenna device including an antenna control device 10 according to Embodiment 1. FIG. 実施の形態1に係るアンテナ制御装置10のハードウェアを示すハードウェア構成図である。1 is a hardware configuration diagram showing hardware of an antenna control device 10 according to Embodiment 1. FIG. アンテナ制御装置10が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。FIG. 1 is a hardware configuration diagram of a computer when the antenna control device 10 is realized by software, firmware, or the like. アンテナ制御装置10の処理手順であるアンテナ制御方法を示すフローチャートである。3 is a flowchart showing an antenna control method that is a processing procedure of the antenna control device 10. FIG. 学習モデルを実現するニューラルネットワークを示す説明図である。FIG. 2 is an explanatory diagram showing a neural network that realizes a learning model. 図6Aは、アレーアンテナ1の振幅パターンP、又は、アレーアンテナ2の振幅パターンPの一例を示す説明図である。図6Bは、励振振幅位相誤差E1,k(k=1,・・・,K)、又は、励振振幅位相誤差E2,g(g=1,・・・,G)の一例を示す説明図である。FIG. 6A is an explanatory diagram showing an example of the amplitude pattern P 1 of the array antenna 1 or the amplitude pattern P 2 of the array antenna 2. FIG. 6B is an explanation showing an example of the excitation amplitude phase error E 1,k (k=1,...,K) or the excitation amplitude phase error E2 ,g (g=1,...,G). It is a diagram. アレーアンテナ1の振幅パターンPのシミュレーション結果、又は、アレーアンテナ2の振幅パターンPのシミュレーション結果を示す説明図である。FIG. 3 is an explanatory diagram showing a simulation result of an amplitude pattern P 1 of the array antenna 1 or a simulation result of the amplitude pattern P 2 of the array antenna 2. FIG. 学習データDに含まれているアレーアンテナ1の振幅パターンP、又は、学習データDに含まれているアレーアンテナ2の振幅パターンPを示す説明図である。FIG. 2 is an explanatory diagram showing an amplitude pattern P 1 of the array antenna 1 included in the learning data D 1 or an amplitude pattern P 2 of the array antenna 2 included in the learning data D 2 . 学習データDに含まれている振幅パターンPのうち、主ビームに対応する角度範囲の振幅パターン、又は、学習データDに含まれている振幅パターンPのうち、主ビームに対応する角度範囲の振幅パターンを示す説明図である。Among the amplitude patterns P 1 included in the learning data D 1 , the amplitude patterns in the angular range corresponding to the main beam, or among the amplitude patterns P 2 included in the learning data D 2 , corresponding to the main beam. It is an explanatory view showing an amplitude pattern of an angular range. 2つのカット面におけるそれぞれの振幅パターンが組み合わされている2次元パターンを示す説明図である。It is an explanatory view showing a two-dimensional pattern in which respective amplitude patterns on two cut surfaces are combined. 図11Aは、2つのカット面のうち、水平カット面の振幅パターンを示す説明図である。図11Bは、2つのカット面のうち、垂直カット面の振幅パターンを示す説明図である。FIG. 11A is an explanatory diagram showing the amplitude pattern of the horizontal cut surface among the two cut surfaces. FIG. 11B is an explanatory diagram showing the amplitude pattern of the vertical cut surface among the two cut surfaces.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present disclosure in more detail, embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係るアンテナ制御装置10を含むアンテナ装置を示す構成図である。
 図2は、実施の形態1に係るアンテナ制御装置10のハードウェアを示すハードウェア構成図である。
 図1において、第1のアレーアンテナであるアレーアンテナ1は、複数の送信用アンテナ素子として、K個のアンテナ素子1-1~1-Kを有している。Kは、2以上の整数である。
 第2のアレーアンテナであるアレーアンテナ2は、複数の受信用アンテナ素子として、G個のアンテナ素子2-1~2-Gを有している。Gは、2以上の整数である。K=Gであってもよいし、K≠Gであってもよい。
 図1に示すアンテナ装置は、送信用のアレーアンテナ1と受信用のアレーアンテナ2とを備えている。しかし、これは一例に過ぎず、アンテナ装置は、送信用のアレーアンテナ1、又は、受信用のアレーアンテナ2のいずれか一方だけを備えるものであってもよい。このとき、アレーアンテナ1、又は、アレーアンテナ2が、送信用と受信用とを兼ねる送受兼用のアンテナであってもよい。
Embodiment 1.
FIG. 1 is a configuration diagram showing an antenna device including an antenna control device 10 according to the first embodiment.
FIG. 2 is a hardware configuration diagram showing the hardware of the antenna control device 10 according to the first embodiment.
In FIG. 1, an array antenna 1, which is a first array antenna, has K antenna elements 1-1 to 1-K as a plurality of transmitting antenna elements. K is an integer of 2 or more.
The array antenna 2, which is the second array antenna, has G antenna elements 2-1 to 2-G as a plurality of reception antenna elements. G is an integer of 2 or more. K=G or K≠G may be satisfied.
The antenna device shown in FIG. 1 includes an array antenna 1 for transmission and an array antenna 2 for reception. However, this is just an example, and the antenna device may include only either the array antenna 1 for transmission or the array antenna 2 for reception. At this time, the array antenna 1 or the array antenna 2 may be a transmitting/receiving antenna that serves both for transmitting and receiving.
 送信信号生成部3は、送信信号Txを生成し、送信信号Txを送信ビーム形成部4に出力する。
 送信ビーム形成部4は、送信信号生成部3により生成された送信信号TxをK個の送信信号Tx~Txに分配する。
 送信ビーム形成部4は、分配後のそれぞれの送信信号Tx(k=1,・・・,K)に励振係数EC1,kを乗算し、励振係数乗算後のそれぞれの送信信号Tx’を送信部5に出力する。
 図1に示すアンテナ装置では、送信ビーム形成部4が、送信信号生成部3により生成された送信信号TxをK個の送信信号Tx~Txに分配し、分配後のそれぞれの送信信号Txに励振係数EC1,kを乗算している。しかし、これは一例に過ぎず、送信信号生成部3が、K個の送信信号Tx~Txを生成し、送信ビーム形成部4が、送信信号生成部3により生成されたそれぞれの送信信号Txに励振係数EC1,kを乗算するようにしてもよい。
The transmission signal generation section 3 generates a transmission signal Tx, and outputs the transmission signal Tx to the transmission beam forming section 4.
The transmission beam forming section 4 distributes the transmission signal Tx generated by the transmission signal generation section 3 into K transmission signals Tx 1 to Tx K.
The transmission beam forming unit 4 multiplies each transmitted signal Tx k (k=1,...,K) after distribution by an excitation coefficient EC 1,k , and each transmitted signal Tx k ' after the excitation coefficient multiplication. is output to the transmitter 5.
In the antenna device shown in FIG. 1, the transmission beam forming unit 4 distributes the transmission signal Tx generated by the transmission signal generation unit 3 into K transmission signals Tx 1 to Tx K , and each of the distributed transmission signals Tx k is multiplied by an excitation coefficient EC 1,k . However, this is just an example; the transmission signal generation unit 3 generates K transmission signals Tx 1 to Tx K , and the transmission beam forming unit 4 generates each transmission signal generated by the transmission signal generation unit 3. Tx k may be multiplied by an excitation coefficient EC 1,k .
 送信部5は、送信ビーム形成部4から、励振係数乗算後のそれぞれの送信信号Tx’(k=1,・・・,K)を取得する。
 送信部5は、それぞれの送信信号Tx’の周波数をIF(Intermediate Frequency)帯の周波数からRF(Radio Frequency)帯の周波数に変換する。
 送信部5は、周波数変換後のそれぞれの送信信号Tx’を増幅し、増幅後のそれぞれの送信信号Tx”をアンテナ素子1-k(k=1,・・・,K)に出力する。
The transmitting unit 5 acquires each transmitting signal Tx k ′ (k=1, . . . , K) after being multiplied by the excitation coefficient from the transmitting beam forming unit 4 .
The transmitter 5 converts the frequency of each transmission signal Tx k ' from a frequency in an IF (Intermediate Frequency) band to a frequency in an RF (Radio Frequency) band.
The transmitter 5 amplifies each frequency-converted transmission signal Tx k ′ and outputs each amplified transmission signal Tx k ” to the antenna element 1-k (k=1, . . . , K). .
 受信部6は、アレーアンテナ2のアンテナ素子2-g(g=1,・・・,G)により受信された電波の受信信号Rx”の周波数をRF帯の周波数からIF帯の周波数に変換する。
 受信部6は、周波数変換後のそれぞれの受信信号を増幅し、増幅後のそれぞれの受信信号Rx’を受信ビーム形成部7に出力する。
The receiving unit 6 converts the frequency of the received radio signal Rx g '' received by the antenna element 2-g (g=1,...,G) of the array antenna 2 from the RF band frequency to the IF band frequency. do.
The receiving section 6 amplifies each frequency-converted received signal and outputs each amplified received signal Rx g ' to the receiving beam forming section 7.
 受信ビーム形成部7は、受信部6から、増幅後のそれぞれの受信信号Rx’(g=1,・・・,G)を取得する。
 受信ビーム形成部7は、それぞれの受信信号Rx’に励振係数EC2,gを乗算する。
 受信ビーム形成部7は、励振係数乗算後のG個の受信信号Rx~Rxを合成し、G個の受信信号Rx~Rxの合成信号Sを図示せぬ受信装置に出力する。
The reception beam forming section 7 acquires each amplified reception signal Rx g ' (g=1, . . . , G) from the reception section 6.
The reception beam forming unit 7 multiplies each reception signal Rx g ' by an excitation coefficient EC 2,g .
The reception beam forming unit 7 combines the G reception signals Rx 1 to Rx G after excitation coefficient multiplication, and outputs a composite signal S of the G reception signals Rx 1 to Rx G to a reception device (not shown).
 アンテナ制御装置10は、学習装置11、学習モデル記憶部14、誤差推定部15及び励振係数制御部16を備えている。
 学習装置11は、学習データ取得部12及び学習処理部13を備えている。
 学習装置11は、アレーアンテナ1用の学習モデルGMを生成し、学習モデルGMを学習モデル記憶部14に記憶させる。
 また、学習装置11は、アレーアンテナ2用の学習モデルGMを生成し、学習モデルGMを学習モデル記憶部14に記憶させる。
 図1に示すアンテナ装置では、学習装置11が、アレーアンテナ1用の学習モデルGMとアレーアンテナ2用の学習モデルGMとを生成している。しかし、これは一例に過ぎず、学習装置11が、アレーアンテナ1とアレーアンテナ2との共用の学習モデルGMを生成するようにしてもよい。
The antenna control device 10 includes a learning device 11, a learning model storage section 14, an error estimation section 15, and an excitation coefficient control section 16.
The learning device 11 includes a learning data acquisition section 12 and a learning processing section 13.
The learning device 11 generates a learning model GM 1 for the array antenna 1 and stores the learning model GM 1 in the learning model storage unit 14 .
Further, the learning device 11 generates a learning model GM 2 for the array antenna 2, and stores the learning model GM 2 in the learning model storage unit 14.
In the antenna device shown in FIG. 1, a learning device 11 generates a learning model GM 1 for the array antenna 1 and a learning model GM 2 for the array antenna 2. However, this is only an example, and the learning device 11 may generate a learning model GM shared by the array antenna 1 and the array antenna 2.
 学習データ取得部12は、例えば、図2に示す学習データ取得回路21によって実現される。
 学習データ取得部12は、アレーアンテナ1の振幅パターンPと、アレーアンテナ1の振幅パターンPに対応している励振振幅位相誤差E1,k(k=1,・・・,K)とを含む学習データDを取得する。励振振幅位相誤差E1,kは、アンテナ素子1-kの励振振幅誤差とアンテナ素子1-kの励振位相誤差とを含んでいる。
 また、学習データ取得部12は、アレーアンテナ2の振幅パターンPと、アレーアンテナ2の振幅パターンPに対応している励振振幅位相誤差E2,g(g=1,・・・,G)とを含む学習データDを取得する。励振振幅位相誤差E2,gは、アンテナ素子2-gの励振振幅誤差とアンテナ素子2-gの励振位相誤差とを含んでいる。
The learning data acquisition unit 12 is realized, for example, by the learning data acquisition circuit 21 shown in FIG.
The learning data acquisition unit 12 obtains an amplitude pattern P 1 of the array antenna 1 and an excitation amplitude phase error E 1,k (k=1,...,K) corresponding to the amplitude pattern P 1 of the array antenna 1. Obtain learning data D1 including the following. The excitation amplitude phase error E 1,k includes the excitation amplitude error of the antenna element 1-k and the excitation phase error of the antenna element 1-k.
Further, the learning data acquisition unit 12 acquires an amplitude pattern P 2 of the array antenna 2 and an excitation amplitude phase error E 2,g (g=1, ... ,G ) is obtained . The excitation amplitude phase error E 2,g includes the excitation amplitude error of the antenna element 2-g and the excitation phase error of the antenna element 2-g.
 学習処理部13は、例えば、図2に示す学習処理回路22によって実現される。
 学習処理部13は、学習データ取得部12により取得された学習データDを学習モデルGMに与えて、アレーアンテナ1の振幅パターンPに対応する励振振幅位相誤差E1,kを学習モデルGMに学習させる。
 また、学習処理部13は、学習データ取得部12により取得された学習データDを学習モデルGMに与えて、アレーアンテナ2の振幅パターンPに対応する励振振幅位相誤差E2,gを学習モデルGMに学習させる。
 学習データDは、例えば、互いに異なる複数のエリアでアレーアンテナ1が使用される場合に、それぞれのエリアで使用されたときのアレーアンテナ1の振幅パターンPと、当該振幅パターンPに対応する励振振幅位相誤差E1,kとを含むものである。また、学習データDは、例えば、アレーアンテナ1の使用環境が変化する場合に、互いに異なる複数の使用環境のそれぞれで使用されたときのアレーアンテナ1の振幅パターンPと、当該振幅パターンPに対応する励振振幅位相誤差E1,kとを含むものである。
 学習データDは、例えば、互いに異なる複数のエリアでアレーアンテナ2が使用される場合に、それぞれのエリアで使用されたときのアレーアンテナ2の振幅パターンPと、当該振幅パターンPに対応する励振振幅位相誤差E2,gとを含むものである。また、学習データDは、例えば、アレーアンテナ2の使用環境が変化する場合に、互いに異なる複数の使用環境のそれぞれで使用されたときのアレーアンテナ2の振幅パターンPと、当該振幅パターンPに対応する励振振幅位相誤差E2,gとを含むものである。
 学習処理部13は、学習済みの学習モデルGM及び学習済みの学習モデルGMのそれぞれを学習モデル記憶部14に記憶させる。
The learning processing section 13 is realized, for example, by the learning processing circuit 22 shown in FIG.
The learning processing unit 13 provides the learning data D 1 acquired by the learning data acquisition unit 12 to the learning model GM 1 , and calculates the excitation amplitude phase error E 1,k corresponding to the amplitude pattern P 1 of the array antenna 1 into the learning model. Have GM 1 learn.
Further, the learning processing unit 13 provides the learning data D 2 acquired by the learning data acquisition unit 12 to the learning model GM 2 and calculates the excitation amplitude phase error E 2,g corresponding to the amplitude pattern P 2 of the array antenna 2. Let learning model GM 2 learn.
For example, when the array antenna 1 is used in a plurality of different areas, the learning data D1 corresponds to the amplitude pattern P1 of the array antenna 1 when used in each area and the amplitude pattern P1 . It includes an excitation amplitude phase error E 1,k . Further, the learning data D 1 may include, for example, when the usage environment of the array antenna 1 changes, the amplitude pattern P 1 of the array antenna 1 when used in each of a plurality of mutually different usage environments, and the amplitude pattern P The excitation amplitude phase error E 1,k corresponding to 1 is included.
For example, when the array antenna 2 is used in a plurality of different areas, the learning data D2 corresponds to the amplitude pattern P2 of the array antenna 2 when used in each area and the amplitude pattern P2 . This includes an excitation amplitude phase error E2 ,g . Further, the learning data D2 may include, for example, when the usage environment of the array antenna 2 changes, the amplitude pattern P2 of the array antenna 2 when used in each of a plurality of mutually different usage environments, and the amplitude pattern P2 of the array antenna 2 when used in each of a plurality of mutually different usage environments. 2 , an excitation amplitude phase error E2,g corresponding to E2,g .
The learning processing unit 13 causes the learning model storage unit 14 to store each of the learned learning model GM 1 and the learned learning model GM 2 .
 学習モデル記憶部14は、例えば、図2に示す学習モデル記憶回路23によって実現される。
 学習モデル記憶部14は、学習済みの学習モデルGM及び学習済みの学習モデルGMのそれぞれを記憶する。
The learning model storage unit 14 is realized, for example, by the learning model storage circuit 23 shown in FIG. 2.
The learning model storage unit 14 stores each of the learned learning model GM 1 and the learned learning model GM 2 .
 誤差推定部15は、例えば、図2に示す誤差推定回路24によって実現される。
 誤差推定部15は、アレーアンテナ1の振幅パターンP及びアレーアンテナ2の振幅パターンPのそれぞれを取得する。
 誤差推定部15は、アレーアンテナ1の振幅パターンPに基づいて、励振振幅位相誤差E1,k(k=1,・・・,K)を推定する。
 具体的には、誤差推定部15は、アレーアンテナ1の振幅パターンPを学習済みの学習モデルGMに与えて、学習モデルGMから、励振振幅位相誤差E1,kを取得する。
 また、誤差推定部15は、アレーアンテナ2の振幅パターンPに基づいて、励振振幅位相誤差E2,g(g=1,・・・,G)を推定する。
 具体的には、誤差推定部15は、アレーアンテナ2の振幅パターンPを学習済みの学習モデルGMに与えて、学習モデルGMから、励振振幅位相誤差E2,gを取得する。
 誤差推定部15は、励振振幅位相誤差E1,k及び励振振幅位相誤差E2,gのそれぞれを励振係数制御部16に出力する。
The error estimation unit 15 is realized, for example, by the error estimation circuit 24 shown in FIG.
The error estimation unit 15 obtains each of the amplitude pattern P 1 of the array antenna 1 and the amplitude pattern P 2 of the array antenna 2.
The error estimation unit 15 estimates the excitation amplitude phase error E 1,k (k=1, . . . , K) based on the amplitude pattern P 1 of the array antenna 1.
Specifically, the error estimation unit 15 provides the amplitude pattern P 1 of the array antenna 1 to the trained learning model GM 1 and obtains the excitation amplitude phase error E 1,k from the learning model GM 1 .
Furthermore, the error estimation unit 15 estimates the excitation amplitude phase error E 2,g (g=1, . . . , G) based on the amplitude pattern P 2 of the array antenna 2.
Specifically, the error estimation unit 15 provides the amplitude pattern P 2 of the array antenna 2 to the trained learning model GM 2 and obtains the excitation amplitude phase error E 2,g from the learning model GM 2 .
The error estimation unit 15 outputs each of the excitation amplitude phase error E 1,k and the excitation amplitude phase error E 2,g to the excitation coefficient control unit 16.
 図1に示すアンテナ制御装置10では、誤差推定部15が、振幅パターンPを学習モデルGMに与えて、学習モデルGMから励振振幅位相誤差E1,kを取得し、振幅パターンPを学習モデルGMに与えて、学習モデルGMから励振振幅位相誤差E1,kを取得している。しかし、これは一例に過ぎず、誤差推定部15が、例えば、ルールベースに従って、振幅パターンPから励振振幅位相誤差E1,kを推定し、ルールベースに従って、振幅パターンPから励振振幅位相誤差E2,gを推定するようにしてもよい。 In the antenna control device 10 shown in FIG. 1, the error estimation unit 15 gives the amplitude pattern P 1 to the learning model GM 1, obtains the excitation amplitude phase error E 1,k from the learning model GM 1, and obtains the excitation amplitude phase error E 1,k from the learning model GM 1. is given to the learning model GM 2 , and the excitation amplitude phase error E 1,k is obtained from the learning model GM 2 . However, this is just an example, and the error estimation unit 15 estimates the excitation amplitude phase error E 1, k from the amplitude pattern P 1 according to the rule base, and estimates the excitation amplitude phase error E 1,k from the amplitude pattern P 2 according to the rule base. The error E 2,g may be estimated.
 励振係数制御部16は、例えば、図2に示す励振係数制御回路25によって実現される。
 励振係数制御部16は、誤差推定部15から、励振振幅位相誤差E1,k(k=1,・・・,K)及び励振振幅位相誤差E2,(g=1,・・・,G)のそれぞれを取得する。
 励振係数制御部16は、励振振幅位相誤差E1,kに基づいて、アンテナ素子1-k(k=1,・・・,K)の励振係数EC1,kを制御する。即ち、励振係数制御部16は、励振振幅位相誤差E1,kに基づいて、送信ビーム形成部4によって送信信号に乗算される励振係数EC1,kを制御する。
 また、励振係数制御部16は、励振振幅位相誤差E2,gに基づいて、アンテナ素子2-g(g=1,・・・,G)の励振係数EC2,gを制御する。即ち、励振係数制御部16は、励振振幅位相誤差E2,gに基づいて、受信ビーム形成部7によって受信信号に乗算される励振係数EC2,gを制御する。
The excitation coefficient control section 16 is realized, for example, by an excitation coefficient control circuit 25 shown in FIG. 2.
The excitation coefficient control unit 16 receives the excitation amplitude phase error E 1,k (k=1,...,K) and the excitation amplitude phase error E2, (g=1,...,G) from the error estimation unit 15. ) obtain each of g .
The excitation coefficient control unit 16 controls the excitation coefficient EC 1,k of the antenna element 1-k (k=1, . . . , K) based on the excitation amplitude phase error E 1,k . That is, the excitation coefficient control unit 16 controls the excitation coefficient EC 1,k multiplied by the transmission signal by the transmission beam forming unit 4 based on the excitation amplitude phase error E 1,k .
Further, the excitation coefficient control unit 16 controls the excitation coefficient EC 2,g of the antenna element 2-g (g=1, . . . , G) based on the excitation amplitude phase error E 2,g . That is, the excitation coefficient control unit 16 controls the excitation coefficient EC 2,g multiplied by the reception signal by the reception beam forming unit 7 based on the excitation amplitude phase error E 2,g .
 図1では、アンテナ制御装置10の構成要素である学習データ取得部12、学習処理部13、学習モデル記憶部14、誤差推定部15及び励振係数制御部16のそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、アンテナ制御装置10が、学習データ取得回路21、学習処理回路22、学習モデル記憶回路23、誤差推定回路24及び励振係数制御回路25によって実現されるものを想定している。
 ここで、学習モデル記憶回路23は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいは、DVD(Digital Versatile Disc)が該当する。
 また、学習データ取得回路21、学習処理回路22、誤差推定回路24及び励振係数制御回路25のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 1, each of the learning data acquisition unit 12, learning processing unit 13, learning model storage unit 14, error estimation unit 15, and excitation coefficient control unit 16, which are the components of the antenna control device 10, is configured as shown in FIG. It is assumed that this will be realized using dedicated hardware. That is, it is assumed that the antenna control device 10 is realized by a learning data acquisition circuit 21, a learning processing circuit 22, a learning model storage circuit 23, an error estimation circuit 24, and an excitation coefficient control circuit 25.
Here, the learning model storage circuit 23 includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (Electric Memory). Non-volatile memory such as (Erasable, Programmable, Read Only Memory) This includes a flexible or volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
Further, each of the learning data acquisition circuit 21, the learning processing circuit 22, the error estimation circuit 24, and the excitation coefficient control circuit 25 is configured using, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
 アンテナ制御装置10の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、アンテナ制御装置10が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
The components of the antenna control device 10 are not limited to those realized by dedicated hardware, but the antenna control device 10 may be realized by software, firmware, or a combination of software and firmware. Good too.
Software or firmware is stored in a computer's memory as a program. A computer means hardware that executes a program, and includes, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
 図3は、アンテナ制御装置10が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 アンテナ制御装置10が、ソフトウェア又はファームウェア等によって実現される場合、学習モデル記憶部14がコンピュータのメモリ31上に構成される。学習データ取得部12、学習処理部13、誤差推定部15及び励振係数制御部16におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ31に格納される。そして、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行する。
FIG. 3 is a hardware configuration diagram of a computer when the antenna control device 10 is realized by software, firmware, or the like.
When the antenna control device 10 is realized by software, firmware, etc., the learning model storage unit 14 is configured on the memory 31 of the computer. A program for causing a computer to execute each processing procedure in the learning data acquisition section 12, the learning processing section 13, the error estimation section 15, and the excitation coefficient control section 16 is stored in the memory 31. Then, the processor 32 of the computer executes the program stored in the memory 31.
 また、図2では、アンテナ制御装置10の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、アンテナ制御装置10がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、アンテナ制御装置10における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 Further, FIG. 2 shows an example in which each of the components of the antenna control device 10 is realized by dedicated hardware, and FIG. 3 shows an example in which the antenna control device 10 is realized by software, firmware, etc. . However, this is just an example, and some of the components in the antenna control device 10 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
 次に、図1に示すアンテナ装置の動作について説明する。
 図4は、アンテナ制御装置10の処理手順であるアンテナ制御方法を示すフローチャートである。
Next, the operation of the antenna device shown in FIG. 1 will be explained.
FIG. 4 is a flowchart showing an antenna control method which is a processing procedure of the antenna control device 10.
 学習装置11により生成される、アレーアンテナ1用の学習モデルGMとアレーアンテナ2用の学習モデルGMとは、例えば、図5に示すようなニューラルネットワークによって実現される。
 図5は、学習モデルを実現するニューラルネットワークを示す説明図である。
 図5に示すニューラルネットワークは、入力層、中間層及び出力層を有している。
 図5に示すニューラルネットワークでは、入力層がX1,X2,X3であり、中間層がY1,Y2であり、出力層がZ1,Z2,Z3である。
 図5に示すニューラルネットワークでは、中間層が1層である。しかし、これは一例に過ぎず、中間層が2層以上あってもよい。
 学習装置11の学習処理部13が用いる学習アルゴリズムとしては、教師あり学習、半教師あり学習、教師なし学習、深層学習(Deep Learning)、又は、強化学習等の公知のアルゴリズムがある。深層学習は、特徴量そのものの抽出を学習する学習アルゴリズムである。強化学習は、例えば、遺伝的プログラミング、機能論理プログラミング、又は、サポートベクターマシンに従う学習アルゴリズムである。
 ここでは、学習処理部13が、学習アルゴリズムとして、教師あり学習を用いる例を説明する。
The learning model GM 1 for the array antenna 1 and the learning model GM 2 for the array antenna 2, which are generated by the learning device 11, are realized by, for example, a neural network as shown in FIG. 5.
FIG. 5 is an explanatory diagram showing a neural network that realizes a learning model.
The neural network shown in FIG. 5 has an input layer, a middle layer, and an output layer.
In the neural network shown in FIG. 5, input layers are X1, X2, and X3, intermediate layers are Y1 and Y2, and output layers are Z1, Z2, and Z3.
The neural network shown in FIG. 5 has one intermediate layer. However, this is just an example, and there may be two or more intermediate layers.
Learning algorithms used by the learning processing unit 13 of the learning device 11 include known algorithms such as supervised learning, semi-supervised learning, unsupervised learning, deep learning, and reinforcement learning. Deep learning is a learning algorithm that learns to extract the feature values themselves. Reinforcement learning is a learning algorithm that follows, for example, genetic programming, functional logic programming, or support vector machines.
Here, an example will be described in which the learning processing unit 13 uses supervised learning as the learning algorithm.
 図6Aは、アレーアンテナ1の振幅パターンP、又は、アレーアンテナ2の振幅パターンPの一例を示す説明図である。
 図6Bは、励振振幅位相誤差E1,k(k=1,・・・,K)、又は、励振振幅位相誤差E2,g(g=1,・・・,G)の一例を示す説明図である。
 図6Aにおいて、横軸は、アレーアンテナ1,2の角度[deg.]、縦軸は、正規化された振幅[dB]である。
 図6Aの例では、アレーアンテナ1についての複数の振幅パターンP、又は、アレーアンテナ2についての複数の振幅パターンPが示されている。
 図6Bにおいて、横軸は、アンテナ素子1-k(k=1,・・・,K)の素子番号、又は、アンテナ素子2-g(g=1,・・・,G)の素子番号である。
 縦軸は、励振振幅位相誤差E1,kに含まれている励振振幅誤差及び励振位相誤差のそれぞれ、又は、励振振幅位相誤差E2,gに含まれている励振振幅誤差及び励振位相誤差のそれぞれが示されている。
FIG. 6A is an explanatory diagram showing an example of the amplitude pattern P 1 of the array antenna 1 or the amplitude pattern P 2 of the array antenna 2.
FIG. 6B is an explanation showing an example of the excitation amplitude phase error E 1,k (k=1,...,K) or the excitation amplitude phase error E2 ,g (g=1,...,G). It is a diagram.
In FIG. 6A, the horizontal axis represents the angle [deg. ], the vertical axis is the normalized amplitude [dB].
In the example of FIG. 6A, a plurality of amplitude patterns P 1 for array antenna 1 or a plurality of amplitude patterns P 2 for array antenna 2 are shown.
In FIG. 6B, the horizontal axis is the element number of antenna element 1-k (k=1,...,K) or the element number of antenna element 2-g (g=1,...,G). be.
The vertical axis represents the excitation amplitude error and excitation phase error included in the excitation amplitude phase error E 1,k , or the excitation amplitude error and excitation phase error included in the excitation amplitude phase error E 2,g. Each is shown.
 アンテナ素子1-k(または2-g)で生じる励振振幅誤差は、基準の振幅パターンPstdに対応するアンテナ素子1-k(または2-g)の励振振幅と、振幅パターンP(またはP)に対応するアンテナ素子1-k(または2-g)の励振振幅との誤差である。基準の振幅パターンPstdは、励振振幅誤差及び励振位相誤差のそれぞれが生じない理想の振幅パターンである。
 また、アンテナ素子1-k(または2-g)で生じる励振位相誤差は、基準の振幅パターンPstdに対応するアンテナ素子1-k(または2-g)の励振位相と、振幅パターンP(またはP)に対応するアンテナ素子1-k(または2-g)の励振位相との誤差である。
 図6Aの例では、主ビームの角度が0[deg.]である複数の振幅パターンPを示している。しかし、これは一例に過ぎず、主ビームの角度が0[deg.]以外の角度である複数の振幅パターンPが学習データDに含まれていてもよい。
The excitation amplitude error occurring in the antenna element 1-k (or 2-g) is determined by the excitation amplitude of the antenna element 1-k (or 2-g) corresponding to the reference amplitude pattern P std and the amplitude pattern P 1 (or P 2 ) is the error with the excitation amplitude of the antenna element 1-k (or 2-g) corresponding to the antenna element 1-k (or 2-g). The reference amplitude pattern P std is an ideal amplitude pattern in which neither an excitation amplitude error nor an excitation phase error occurs.
Furthermore, the excitation phase error occurring in the antenna element 1-k (or 2-g) is the excitation phase error of the antenna element 1-k (or 2-g) corresponding to the reference amplitude pattern P std and the amplitude pattern P 1 ( or P 2 ) with the excitation phase of the antenna element 1-k (or 2-g).
In the example of FIG. 6A, the angle of the main beam is 0 [deg. ] A plurality of amplitude patterns P1 are shown. However, this is just an example, and the angle of the main beam is 0 [deg. ] The learning data D 1 may include a plurality of amplitude patterns P 1 having angles other than .
 学習装置11の学習データ取得部12は、図6Aに示すようなアレーアンテナ1の振幅パターンPと、図6Bに示すような励振振幅位相誤差E1,k(k=1,・・・,K)とを含む学習データDを1つ以上取得する。
 学習データ取得部12により取得される学習データDは、主ビームの角度が0[deg.]である振幅パターンPを含むものに限るものではなく、主ビームの角度が0[deg.]以外の角度である振幅パターンPを含むものであってもよい。
 学習データ取得部12は、1つ以上の学習データDを学習処理部13に出力する。
 励振振幅位相誤差E1,kは、アレーアンテナ1の振幅パターンPに対応している。つまり、励振振幅位相誤差E1,kは、アレーアンテナ1の振幅パターンPに対する励振振幅位相誤差の正解値である。
The learning data acquisition unit 12 of the learning device 11 acquires the amplitude pattern P 1 of the array antenna 1 as shown in FIG. 6A and the excitation amplitude phase error E 1,k (k=1,..., as shown in FIG. 6B). Acquire one or more pieces of learning data D1 including K).
The learning data D1 acquired by the learning data acquisition unit 12 has a main beam angle of 0 [deg. ], and the main beam angle is 0[deg.]. ] may include an amplitude pattern P1 having an angle other than .
The learning data acquisition section 12 outputs one or more learning data D1 to the learning processing section 13.
The excitation amplitude phase error E 1,k corresponds to the amplitude pattern P 1 of the array antenna 1. That is, the excitation amplitude phase error E 1,k is the correct value of the excitation amplitude phase error with respect to the amplitude pattern P 1 of the array antenna 1.
 学習処理部13は、学習データ取得部12から、1つ以上の学習データDを取得する。
 学習処理部13は、それぞれの学習データDを学習モデルGMの入力層に与えて、それぞれの学習データDに含まれている振幅パターンPに対応する励振振幅位相誤差E1,kを学習モデルGMに学習させる。
 即ち、学習処理部13は、アレーアンテナ1の振幅パターンPが学習モデルGMの入力層に与えられると、学習モデルGMの出力層から、アレーアンテナ1の振幅パターンPに対応している励振振幅位相誤差E1,k(k=1,・・・,K)が出力されるように、ニューラルネットワークの重みw11‐w16,w21‐w26を調整する。
The learning processing unit 13 acquires one or more learning data D 1 from the learning data acquisition unit 12 .
The learning processing unit 13 supplies each learning data D 1 to the input layer of the learning model GM 1 and calculates the excitation amplitude phase error E 1 ,k corresponding to the amplitude pattern P 1 included in each learning data D 1. is trained by learning model GM 1 .
That is, when the amplitude pattern P 1 of the array antenna 1 is given to the input layer of the learning model GM 1 , the learning processing unit 13 generates a signal corresponding to the amplitude pattern P 1 of the array antenna 1 from the output layer of the learning model GM 1. The weights w11-w16, w21-w26 of the neural network are adjusted so that the excitation amplitude phase error E 1,k (k=1, . . . , K) is output.
 また、学習データ取得部12は、図6Aに示すようなアレーアンテナ2の振幅パターンPと、図6Bに示すような励振振幅位相誤差E2,g(g=1,・・・,G)とを含む学習データDを1つ以上取得する。
 学習データ取得部12により取得される学習データDは、主ビームの角度が0[deg.]である振幅パターンPを含むものに限るものではなく、主ビームの角度が0[deg.]以外の角度である振幅パターンPを含むものであってもよい。
 学習データ取得部12は、1つ以上の学習データDを学習処理部13に出力する。
 励振振幅位相誤差E2,gは、アレーアンテナ2の振幅パターンPに対応している。つまり、アンテナ素子2-gの励振振幅位相誤差E2,gは、アレーアンテナ2の振幅パターンPに対する励振振幅位相誤差の正解値である。
Further, the learning data acquisition unit 12 obtains an amplitude pattern P 2 of the array antenna 2 as shown in FIG. 6A and an excitation amplitude phase error E 2,g (g=1,...,G) as shown in FIG. 6B. Acquire one or more pieces of learning data D2 including the following.
The learning data D2 acquired by the learning data acquisition unit 12 has a main beam angle of 0 [deg. ], and the main beam angle is 0[deg.]. ] may include an amplitude pattern P2 having an angle other than .
The learning data acquisition section 12 outputs one or more learning data D2 to the learning processing section 13.
The excitation amplitude phase error E 2,g corresponds to the amplitude pattern P 2 of the array antenna 2. In other words, the excitation amplitude phase error E 2,g of the antenna element 2-g is the correct value of the excitation amplitude phase error with respect to the amplitude pattern P 2 of the array antenna 2.
 学習処理部13は、学習データ取得部12から、1つ以上の学習データDを取得する。
 学習処理部13は、それぞれの学習データDを学習モデルGMの入力層に与えて、それぞれの学習データDに含まれている振幅パターンPに対応する励振振幅位相誤差E2,gを学習モデルGMに学習させる。
 即ち、学習処理部13は、アレーアンテナ2の振幅パターンPが学習モデルGMの入力層に与えられると、学習モデルGMの出力層から、アレーアンテナ2の振幅パターンPに対応している励振振幅位相誤差E2,g(g=1,・・・,G)が出力されるように、ニューラルネットワークの重みw11‐w16,w21‐w26を調整する。
 学習処理部13は、学習済みの学習モデルGM及び学習済みの学習モデルGMのそれぞれを学習モデル記憶部14に記憶させる。
The learning processing unit 13 acquires one or more learning data D 2 from the learning data acquisition unit 12 .
The learning processing unit 13 supplies the respective learning data D2 to the input layer of the learning model GM2 , and calculates the excitation amplitude phase error E2 ,g corresponding to the amplitude pattern P2 included in the respective learning data D2. The learning model GM 2 is made to learn.
That is, when the amplitude pattern P 2 of the array antenna 2 is given to the input layer of the learning model GM 2 , the learning processing unit 13 generates a signal corresponding to the amplitude pattern P 2 of the array antenna 2 from the output layer of the learning model GM 2. The weights w11-w16, w21-w26 of the neural network are adjusted so that the excitation amplitude phase error E 2,g (g=1, . . . , G) is output.
The learning processing unit 13 causes the learning model storage unit 14 to store each of the learned learning model GM 1 and the learned learning model GM 2 .
 アレーアンテナ1及びアレーアンテナ2におけるそれぞれの運用が開始されると、誤差推定部15は、アレーアンテナ1の振幅パターンP及びアレーアンテナ2の振幅パターンPのそれぞれを取得する(図4のステップST1)。
 アレーアンテナ1の振幅パターンP及びアレーアンテナ2の振幅パターンPのそれぞれは、例えば、図示せぬ測定装置によって測定された振幅パターンである。
 誤差推定部15は、アレーアンテナ1の振幅パターンPを、学習モデル記憶部14に記憶されている学習済みの学習モデルGMの入力層に与える。学習モデルGMは、アレーアンテナ1の振幅パターンPが入力層に与えると、出力層から、励振振幅位相誤差E1,k(k=1,・・・,K)を出力する。
 誤差推定部15は、学習モデルGMの出力層から、励振振幅位相誤差E1,kを取得する(図4のステップST2)。
When the respective operations of array antenna 1 and array antenna 2 are started, error estimating unit 15 acquires each of the amplitude pattern P 1 of array antenna 1 and the amplitude pattern P 2 of array antenna 2 (steps in FIG. 4). ST1).
Each of the amplitude pattern P 1 of the array antenna 1 and the amplitude pattern P 2 of the array antenna 2 is an amplitude pattern measured by a measuring device (not shown), for example.
The error estimation unit 15 provides the amplitude pattern P 1 of the array antenna 1 to the input layer of the trained learning model GM 1 stored in the learning model storage unit 14 . When the amplitude pattern P 1 of the array antenna 1 is applied to the input layer, the learning model GM 1 outputs an excitation amplitude phase error E 1,k (k=1, . . . , K) from the output layer.
The error estimation unit 15 acquires the excitation amplitude phase error E 1,k from the output layer of the learning model GM 1 (step ST2 in FIG. 4).
 また、誤差推定部15は、アレーアンテナ2の振幅パターンPを、学習モデル記憶部14に記憶されている学習済みの学習モデルGMの入力層に与える。学習モデルGMは、アレーアンテナ2の振幅パターンPが入力層に与えると、出力層から、励振振幅位相誤差E2,g(g=1,・・・,G)を出力する。
 誤差推定部15は、学習モデルGMの出力層から出力された励振振幅位相誤差E2,gを取得する(図4のステップST2)。
 誤差推定部15は、励振振幅位相誤差E1,k及び励振振幅位相誤差E2,gのそれぞれを励振係数制御部16に出力する。
Furthermore, the error estimation unit 15 provides the amplitude pattern P 2 of the array antenna 2 to the input layer of the trained learning model GM 2 stored in the learning model storage unit 14 . When the amplitude pattern P 2 of the array antenna 2 is applied to the input layer, the learning model GM 2 outputs an excitation amplitude phase error E 2,g (g=1, . . . , G) from the output layer.
The error estimation unit 15 acquires the excitation amplitude phase error E 2,g output from the output layer of the learning model GM 2 (step ST2 in FIG. 4).
The error estimation unit 15 outputs each of the excitation amplitude phase error E 1,k and the excitation amplitude phase error E 2,g to the excitation coefficient control unit 16.
 励振係数制御部16は、誤差推定部15から、励振振幅位相誤差E1,k(k=1,・・・,K)及び励振振幅位相誤差E2,g(g=1,・・・,G)のそれぞれを取得する。
 励振係数制御部16は、励振振幅位相誤差E1,kに基づいて、送信ビーム形成部4によって送信信号Txに乗算される励振係数EC1,kを制御する(図4のステップST3)。
 即ち、励振係数制御部16は、励振振幅位相誤差E1,k(k=1,・・・,K)が零になる励振係数EC1,kを算出する。励振振幅位相誤差E1,kが零になる励振係数EC1,kを算出する処理自体は、公知の技術であるため詳細な説明を省略する。励振振幅位相誤差E1,kが零になる励振係数EC1,kとは、励振振幅位相誤差E1,kが完全に零になるものに限るものではなく、実用上問題のない範囲内で、励振振幅位相誤差E1,kが概ね零になるものを含む概念である。
 励振係数制御部16は、励振係数EC1,k(k=1,・・・,K)を送信ビーム形成部4に出力する。
The excitation coefficient control unit 16 receives the excitation amplitude phase error E 1,k (k=1,...,K) and the excitation amplitude phase error E2 ,g (g=1,..., G).
The excitation coefficient control unit 16 controls the excitation coefficient EC 1,k by which the transmission signal Tx k is multiplied by the transmission beam forming unit 4 based on the excitation amplitude phase error E 1,k (step ST3 in FIG. 4).
That is, the excitation coefficient control unit 16 calculates an excitation coefficient EC 1, k at which the excitation amplitude phase error E 1,k (k=1, . . . , K) becomes zero. The process of calculating the excitation coefficient EC 1,k such that the excitation amplitude phase error E 1, k becomes zero is a well-known technique, so a detailed explanation thereof will be omitted. The excitation coefficient EC 1,k at which the excitation amplitude phase error E 1,k becomes zero is not limited to one at which the excitation amplitude phase error E 1,k becomes completely zero, but within a range that causes no practical problems. , the concept includes those in which the excitation amplitude phase error E 1,k is approximately zero.
The excitation coefficient control unit 16 outputs the excitation coefficient EC 1,k (k=1, . . . , K) to the transmission beam forming unit 4.
 また、励振係数制御部16は、励振振幅位相誤差E2,g(g=1,・・・,G)に基づいて、受信ビーム形成部7によって受信信号Rxに乗算される励振係数EC2,gを制御する(図4のステップST4)。
 即ち、励振係数制御部16は、励振振幅位相誤差E2,g(g=1,・・・,G)が零になる励振係数EC2,gを算出する。励振振幅位相誤差E2,gが零になる励振係数EC2,gを算出する処理自体は、公知の技術であるため詳細な説明を省略する。励振振幅位相誤差E2,gが零になる励振係数EC2,gとは、励振振幅位相誤差E2,gが完全に零になるものに限るものではなく、実用上問題のない範囲内で、励振振幅位相誤差E2,gが概ね零になるものを含む概念である。
 励振係数制御部16は、励振係数EC2,g(g=1,・・・,G)を受信ビーム形成部7に出力する。
Further, the excitation coefficient control unit 16 controls the excitation coefficient EC 2 to be multiplied by the reception signal Rx g by the reception beam forming unit 7 based on the excitation amplitude phase error E 2,g (g=1,...,G). , g (step ST4 in FIG. 4).
That is, the excitation coefficient control unit 16 calculates the excitation coefficient EC 2 ,g such that the excitation amplitude phase error E 2,g (g=1, . . . , G) becomes zero. The process of calculating the excitation coefficient EC 2,g such that the excitation amplitude phase error E 2,g becomes zero is a well-known technique, so a detailed explanation will be omitted. The excitation coefficient EC 2,g at which the excitation amplitude phase error E 2,g becomes zero is not limited to one at which the excitation amplitude phase error E 2,g becomes completely zero, but within a range that causes no practical problems. , the excitation amplitude phase error E 2,g is approximately zero.
The excitation coefficient control unit 16 outputs the excitation coefficient EC 2,g (g=1, . . . , G) to the reception beam forming unit 7 .
 送信信号生成部3は、送信信号Txを生成し、送信信号Txを送信ビーム形成部4に出力する。
 送信ビーム形成部4は、送信信号生成部3から送信信号Txを取得し、励振係数制御部16から励振係数EC1,k(k=1,・・・,K)を取得する。
 送信ビーム形成部4は、送信信号TxをK個の送信信号Tx~Txに分配する。
 送信ビーム形成部4は、分配後のそれぞれの送信信号Tx(k=1,・・・,K)に励振係数EC1,kを乗算し、励振係数乗算後のそれぞれの送信信号Tx’を送信部5に出力する。
The transmission signal generation section 3 generates a transmission signal Tx, and outputs the transmission signal Tx to the transmission beam forming section 4.
The transmission beam forming unit 4 acquires the transmission signal Tx from the transmission signal generation unit 3 and acquires the excitation coefficient EC 1,k (k=1, . . . , K) from the excitation coefficient control unit 16.
The transmission beam forming unit 4 distributes the transmission signal Tx into K transmission signals Tx 1 to Tx K.
The transmission beam forming unit 4 multiplies each transmitted signal Tx k (k=1,...,K) after distribution by an excitation coefficient EC 1,k , and each transmitted signal Tx k ' after the excitation coefficient multiplication. is output to the transmitter 5.
 送信部5は、送信ビーム形成部4から、励振係数乗算後のそれぞれの送信信号Tx’ (k=1,・・・,K)を取得する。
 送信部5は、それぞれの送信信号Tx’の周波数をIF帯の周波数からRF帯の周波数に変換する。
 送信部5は、周波数変換後のそれぞれの送信信号Tx’を増幅し、増幅後のそれぞれの送信信号Tx”をアンテナ素子1-k(k=1,・・・,K)に出力する。
 アレーアンテナ1のアンテナ素子1-kは、送信信号Tx”を電波として空間に放射する。
The transmitting unit 5 acquires each transmitting signal Tx k ′ (k=1, . . . , K) after being multiplied by the excitation coefficient from the transmitting beam forming unit 4 .
The transmitter 5 converts the frequency of each transmission signal Tx k ' from an IF band frequency to an RF band frequency.
The transmitter 5 amplifies each frequency-converted transmission signal Tx k ′ and outputs each amplified transmission signal Tx k ” to the antenna element 1-k (k=1, . . . , K). .
The antenna element 1-k of the array antenna 1 radiates the transmission signal Tx k '' into space as a radio wave.
 アレーアンテナ2のアンテナ素子2-g(g=1,・・・,G)は、電波を受信して、電波の受信信号Rx”を受信部6に出力する。
 受信部6は、アンテナ素子2-g(g=1,・・・,G)から、受信信号Rx”を取得する。
 受信部6は、受信信号Rx”の周波数をRF帯の周波数からIF帯の周波数に変換する。
 受信部6は、周波数変換後のそれぞれの受信信号を増幅し、増幅後のそれぞれの受信信号Rx’を受信ビーム形成部7に出力する。
Antenna element 2-g (g=1, . . . , G) of array antenna 2 receives radio waves and outputs a radio wave reception signal Rx g ” to receiving section 6.
The receiving unit 6 acquires the received signal Rx g '' from the antenna element 2-g (g=1, . . . , G).
The receiving unit 6 converts the frequency of the received signal Rx g '' from the RF band frequency to the IF band frequency.
The receiving section 6 amplifies each frequency-converted received signal and outputs each amplified received signal Rx g ' to the receiving beam forming section 7.
 受信ビーム形成部7は、受信部6から、増幅後のそれぞれの受信信号Rx’(g=1,・・・,G)を取得し、励振係数制御部16から励振係数EC2,gを取得する。
 受信ビーム形成部7は、それぞれの受信信号Rx’に励振係数EC2,gを乗算する。
 受信ビーム形成部7は、励振係数乗算後のG個の受信信号Rx~Rxを合成し、G個の受信信号Rx~Rxの合成信号Sを図示せぬ受信装置に出力する。
The reception beam forming section 7 acquires each amplified reception signal Rx g ' (g=1,...,G) from the reception section 6, and obtains the excitation coefficient EC2 ,g from the excitation coefficient control section 16. get.
The reception beam forming unit 7 multiplies each reception signal Rx g ' by an excitation coefficient EC 2,g .
The reception beam forming unit 7 combines the G reception signals Rx 1 to Rx G after excitation coefficient multiplication, and outputs a composite signal S of the G reception signals Rx 1 to Rx G to a reception device (not shown).
 図7は、アレーアンテナ1の振幅パターンPのシミュレーション結果、又は、アレーアンテナ2の振幅パターンPのシミュレーション結果を示す説明図である。
 図7において、横軸は、アレーアンテナ1,2の角度[deg.]、縦軸は、正規化された振幅[dB]である。
 図7は、16本のアンテナ素子1-1~1-16が直線上に配列されているアレーアンテナ1の振幅パターンPのシミュレーション結果、又は、16本のアンテナ素子2-1~2-16が直線上に配列されているアレーアンテナ2の振幅パターンPのシミュレーション結果を示している。
FIG. 7 is an explanatory diagram showing the simulation results of the amplitude pattern P 1 of the array antenna 1 or the simulation result of the amplitude pattern P 2 of the array antenna 2.
In FIG. 7, the horizontal axis represents the angle [deg. ], the vertical axis is the normalized amplitude [dB].
FIG. 7 shows simulation results of the amplitude pattern P1 of the array antenna 1 in which 16 antenna elements 1-1 to 1-16 are arranged in a straight line, or 16 antenna elements 2-1 to 2-16. shows the simulation result of the amplitude pattern P2 of the array antenna 2 arranged on a straight line.
 実線は、送信ビーム形成部4により励振係数EC1,kが乗算されたときのアレーアンテナ1の振幅パターンP、又は、受信ビーム形成部7により励振係数EC2,gが乗算されたときのアレーアンテナ2の振幅パターンPを示している。即ち、学習済みの学習モデルGMから出力された励振振幅位相誤差E1,kに基づいて励振係数EC1,kが制御されたときのアレーアンテナ1の振幅パターンP、又は、学習済みの学習モデルGMから出力された励振振幅位相誤差E2,gに基づいて励振係数EC2,gが制御されたときのアレーアンテナ2の振幅パターンPを示している。
 点線は、励振振幅位相誤差E1,kが考慮されている正解の振幅パターンP、又は、励振振幅位相誤差E2,gが考慮されている正解の振幅パターンPである。
 破線は、誤差のない振幅パターンPのノミナル、又は、誤差のない振幅パターンPのノミナルである。実線が示す振幅パターンP又は振幅パターンPと、破線が示す振幅パターンP又は振幅パターンPとは、よく対応していることが分かる。
The solid line indicates the amplitude pattern P 1 of the array antenna 1 when multiplied by the excitation coefficient EC 1,k by the transmitting beam forming unit 4, or the amplitude pattern P 1 when multiplied by the excitation coefficient EC 2,g by the receiving beam forming unit 7. An amplitude pattern P2 of the array antenna 2 is shown. That is, the amplitude pattern P 1 of the array antenna 1 when the excitation coefficient EC 1 ,k is controlled based on the excitation amplitude phase error E 1 ,k output from the learned learning model GM 1 or the learned model GM 1 It shows the amplitude pattern P 2 of the array antenna 2 when the excitation coefficient EC 2,g is controlled based on the excitation amplitude phase error E 2,g output from the learning model GM 2 .
The dotted line is the correct amplitude pattern P 1 in which the excitation amplitude phase error E 1 ,k is considered, or the correct amplitude pattern P 2 in which the excitation amplitude phase error E 2,g is considered.
The broken line is the nominal of the amplitude pattern P1 without error or the nominal of the amplitude pattern P2 without error. It can be seen that the amplitude pattern P 1 or P 2 indicated by the solid line corresponds well to the amplitude pattern P 1 or P 2 indicated by the broken line.
 以上の実施の形態1では、複数のアンテナ素子1-1~1-K(または2-1~2-G)を有するアレーアンテナ1(または2)の振幅パターンを取得し、振幅パターンに基づいて、それぞれのアンテナ素子1-k(または2-g)の励振振幅誤差とそれぞれのアンテナ素子1-k(または2-g)の励振位相誤差とを含む励振振幅位相誤差を推定する誤差推定部15と、誤差推定部15により推定された励振振幅位相誤差に基づいて、それぞれのアンテナ素子1-k(または2-g)の励振係数を制御する励振係数制御部16とを備えるように、アンテナ制御装置10を構成した。したがって、アンテナ制御装置10は、それぞれのアンテナ素子1-k(または2-g)の励振係数のずれを抑えることができる。
 それぞれのアンテナ素子1-k(または2-g)の励振係数のずれが抑えられることで、例えば、アンテナ装置の経年劣化、又は、アンテナ装置の使用環境の変化が生じても、アレーアンテナ1(または2)の指向方向が所望の指向方向からずれることが抑えられる。
In the first embodiment described above, the amplitude pattern of the array antenna 1 (or 2) having a plurality of antenna elements 1-1 to 1-K (or 2-1 to 2-G) is acquired, and based on the amplitude pattern, , an error estimation unit 15 that estimates an excitation amplitude phase error including an excitation amplitude error of each antenna element 1-k (or 2-g) and an excitation phase error of each antenna element 1-k (or 2-g). and an excitation coefficient control unit 16 that controls the excitation coefficient of each antenna element 1-k (or 2-g) based on the excitation amplitude phase error estimated by the error estimation unit 15. The apparatus 10 was configured. Therefore, the antenna control device 10 can suppress deviations in the excitation coefficients of the respective antenna elements 1-k (or 2-g).
By suppressing the deviation in the excitation coefficient of each antenna element 1-k (or 2-g), for example, even if the antenna device deteriorates over time or the usage environment of the antenna device changes, the array antenna 1 ( Alternatively, deviation of the pointing direction (2) from the desired pointing direction can be suppressed.
 図1に示すアンテナ制御装置10では、アレーアンテナ1の振幅パターンPに対応している励振振幅位相誤差E1,kを含む学習データDが学習モデルGMの入力層に与えられている。また、アレーアンテナ2の振幅パターンPに対応している励振振幅位相誤差E2,gを含む学習データDが学習モデルGMの入力層に与えられている。
 学習データDに含まれている励振振幅位相誤差E1,kの分布及び学習データDに含まれている励振振幅位相誤差E2,gの分布のそれぞれは、正規分布であるものであってもよい。また、励振振幅位相誤差E1,k及び励振振幅位相誤差E2,gのそれぞれは、測定データを基にモデル化された関数から取得されたものであってもよい。
In the antenna control device 10 shown in FIG. 1, learning data D1 including an excitation amplitude phase error E1 ,k corresponding to the amplitude pattern P1 of the array antenna 1 is provided to the input layer of the learning model GM1 . . Further, learning data D 2 including an excitation amplitude phase error E 2 ,g corresponding to the amplitude pattern P 2 of the array antenna 2 is provided to the input layer of the learning model GM 2 .
The distribution of the excitation amplitude phase error E 1 ,k included in the learning data D 1 and the distribution of the excitation amplitude phase error E 2 ,g included in the learning data D 2 are normal distributions. It's okay. Furthermore, each of the excitation amplitude phase error E 1,k and the excitation amplitude phase error E 2,g may be obtained from a function modeled based on measurement data.
 図1に示すアンテナ制御装置10では、学習装置11が、アレーアンテナ1用の学習モデルGMとアレーアンテナ2用の学習モデルGMとを生成している。しかし、これは一例に過ぎず、学習装置11が、アレーアンテナ1とアレーアンテナ2との共用の学習モデルGMを生成するようにしてもよい。
 学習装置11が、アレーアンテナ1とアレーアンテナ2との共用の学習モデルGMを生成する場合、学習モデルGMの入力層に与えられる学習データは、アレーアンテナ1が使用されたときのアレーアンテナ1の振幅パターンと、当該振幅パターンに対応する励振振幅位相誤差とを含むものである。また、学習モデルGMの入力層に与えられる学習データは、アレーアンテナ2が使用されたときのアレーアンテナ2の振幅パターンと、当該振幅パターンに対応する励振振幅位相誤差とを含むものである。
 このとき、アレーアンテナ1が使用されるエリアとアレーアンテナ2が使用されるエリアとは、同一エリアであってもよいし、異なるエリアであってもよい。
 また、学習モデルGMの入力層に与えられる学習データは、アレーアンテナ1,2以外のアレーアンテナが使用されたときの当該アレーアンテナの振幅パターンと、当該振幅パターンに対応する励振振幅位相誤差とを含むものであってもよい。
In the antenna control device 10 shown in FIG. 1, a learning device 11 generates a learning model GM 1 for the array antenna 1 and a learning model GM 2 for the array antenna 2. However, this is only an example, and the learning device 11 may generate a learning model GM shared by the array antenna 1 and the array antenna 2.
When the learning device 11 generates a learning model GM shared by array antenna 1 and array antenna 2, the learning data given to the input layer of the learning model GM is the learning data of array antenna 1 when array antenna 1 is used. It includes an amplitude pattern and an excitation amplitude phase error corresponding to the amplitude pattern. Further, the learning data given to the input layer of the learning model GM includes an amplitude pattern of the array antenna 2 when the array antenna 2 is used and an excitation amplitude phase error corresponding to the amplitude pattern.
At this time, the area where array antenna 1 is used and the area where array antenna 2 is used may be the same area or may be different areas.
In addition, the learning data given to the input layer of the learning model GM includes the amplitude pattern of the array antenna when an array antenna other than array antennas 1 and 2 is used, and the excitation amplitude phase error corresponding to the amplitude pattern. It may include.
 図1に示すアンテナ装置は、アンテナ制御装置10を備えている。しかし、これは一例に過ぎず、例えば、アンテナ装置がアンテナ制御装置10を備えずに、アンテナ制御装置10が、例えば、クラウドサーバ上に存在しているものであってもよい。 The antenna device shown in FIG. 1 includes an antenna control device 10. However, this is just an example, and for example, the antenna device may not include the antenna control device 10 and the antenna control device 10 may exist on, for example, a cloud server.
実施の形態2.
 実施の形態2では、学習データ取得部12が、学習データD,Dに含まれているアレーアンテナ1,2の振幅パターンP,Pとして、アレーアンテナ1,2の角度に対応する振幅に、熱雑音の影響に伴う振幅誤差ΔP,ΔPを含んでいる振幅パターンを取得するアンテナ制御装置10について説明する。
 実施の形態2に係るアンテナ装置の構成は、実施の形態1に係るアンテナ装置の構成と同様であり、実施の形態2に係るアンテナ装置を示す構成図は、図1である。
Embodiment 2.
In the second embodiment, the learning data acquisition unit 12 uses amplitude patterns P 1 and P 2 of the array antennas 1 and 2 included in the learning data D 1 and D 2 to correspond to the angles of the array antennas 1 and 2. An antenna control device 10 that acquires an amplitude pattern whose amplitude includes amplitude errors ΔP 1 and ΔP 2 due to the influence of thermal noise will be described.
The configuration of the antenna device according to Embodiment 2 is similar to the configuration of the antenna device according to Embodiment 1, and the configuration diagram showing the antenna device according to Embodiment 2 is FIG. 1.
 誤差推定部15により取得される、アレーアンテナ1の振幅パターンP及びアレーアンテナ2の振幅パターンPのそれぞれは、例えば、図示せぬ測定装置によって測定された振幅パターンである。
 測定装置によって測定された振幅パターンの信号電力が低い場合、当該振幅パターンは、例えば、アレーアンテナ2に接続されている受信機の熱雑音の影響を受けることがある。
 実施の形態2に係るアンテナ制御装置10では、熱雑音の影響を低減するために、学習データ取得部12が、以下の示すような学習データD,Dを取得し、学習データDを学習モデルGMの入力層に与えて、学習データDを学習モデルGMの入力層に与えるようにする。
Each of the amplitude pattern P 1 of the array antenna 1 and the amplitude pattern P 2 of the array antenna 2 acquired by the error estimation unit 15 is, for example, an amplitude pattern measured by a measuring device (not shown).
When the signal power of the amplitude pattern measured by the measurement device is low, the amplitude pattern may be affected by thermal noise of a receiver connected to the array antenna 2, for example.
In the antenna control device 10 according to the second embodiment, in order to reduce the influence of thermal noise, the learning data acquisition unit 12 acquires learning data D 1 and D 2 as shown below, and sets the learning data D 1 to The learning data D2 is supplied to the input layer of the learning model GM1 , and the learning data D2 is supplied to the input layer of the learning model GM2 .
 図8は、学習データDに含まれているアレーアンテナ1の振幅パターンP、又は、学習データDに含まれているアレーアンテナ2の振幅パターンPを示す説明図である。
 図8において、横軸は、アレーアンテナ1,2の角度[deg.]、縦軸は、正規化された振幅[dB]である。
 破線は、熱雑音がない理想的な条件におけるアレーアンテナ1の振幅パターンP、又は、熱雑音がない理想的な条件におけるアレーアンテナ2の振幅パターンPを示している。
 実線は、雑音モデルから得られる、それぞれの角度において振幅誤差ΔPを含む振幅パターンP’、又は、雑音モデルから得られる、それぞれの角度において振幅誤差ΔPを含む振幅パターンP’を示している。雑音モデルは、アレーアンテナ1の角度に対応する、熱雑音の影響に伴う振幅誤差ΔPを出力するモデル、又は、アレーアンテナ2の角度に対応する、熱雑音の影響に伴う振幅誤差ΔPを出力するモデルである。雑音モデル自体は、公知のモデルであるため、詳細な説明を省略する。熱雑音の分布は、どのような分布であってもよいが、例えば、正規分布が考えられる。
FIG. 8 is an explanatory diagram showing the amplitude pattern P 1 of the array antenna 1 included in the learning data D 1 or the amplitude pattern P 2 of the array antenna 2 included in the learning data D 2 .
In FIG. 8, the horizontal axis represents the angle [deg. ], the vertical axis is the normalized amplitude [dB].
The broken line indicates the amplitude pattern P 1 of the array antenna 1 under ideal conditions without thermal noise, or the amplitude pattern P 2 of the array antenna 2 under ideal conditions without thermal noise.
The solid line indicates an amplitude pattern P 1 ′ containing an amplitude error ΔP 1 at each angle obtained from the noise model, or an amplitude pattern P 2 ′ containing an amplitude error ΔP 2 at each angle obtained from the noise model. ing. The noise model is a model that outputs an amplitude error ΔP 1 due to the influence of thermal noise corresponding to the angle of the array antenna 1, or a model that outputs an amplitude error ΔP 2 due to the influence of thermal noise corresponding to the angle of the array antenna 2. This is the model to output. Since the noise model itself is a well-known model, detailed explanation will be omitted. The distribution of thermal noise may be any distribution, and for example, a normal distribution may be considered.
 学習処理部13は、学習データ取得部12から、学習データDを取得する。学習データDに含まれているアレーアンテナ1の振幅パターンPは、熱雑音の影響に伴う振幅誤差ΔPを含んでいる。
 学習処理部13は、学習データDを学習モデルGMの入力層に与えて、アレーアンテナ1の振幅パターンPに対応する励振振幅位相誤差E1,kを学習モデルGMに学習させる。
The learning processing unit 13 acquires learning data D 1 from the learning data acquisition unit 12 . The amplitude pattern P 1 of the array antenna 1 included in the learning data D 1 includes an amplitude error ΔP 1 due to the influence of thermal noise.
The learning processing unit 13 supplies the learning data D 1 to the input layer of the learning model GM 1 and causes the learning model GM 1 to learn the excitation amplitude phase error E 1,k corresponding to the amplitude pattern P 1 of the array antenna 1.
 学習処理部13は、学習データ取得部12から、学習データDを取得する。学習データDに含まれているアレーアンテナ2の振幅パターンPは、熱雑音の影響に伴う振幅誤差ΔPを含んでいる。
 学習処理部13は、学習データDを学習モデルGMの入力層に与えて、アレーアンテナ2の振幅パターンPに対応する励振振幅位相誤差E2,gを学習モデルGMに学習させる。
 学習処理部13は、学習済みの学習モデルGM及び学習済みの学習モデルGMのそれぞれを学習モデル記憶部14に記憶させる。
The learning processing unit 13 acquires learning data D 2 from the learning data acquisition unit 12 . The amplitude pattern P 2 of the array antenna 2 included in the learning data D 2 includes an amplitude error ΔP 2 due to the influence of thermal noise.
The learning processing unit 13 supplies the learning data D 2 to the input layer of the learning model GM 2 and causes the learning model GM 2 to learn the excitation amplitude phase error E 2,g corresponding to the amplitude pattern P 2 of the array antenna 2.
The learning processing unit 13 causes the learning model storage unit 14 to store each of the learned learning model GM 1 and the learned learning model GM 2 .
 以上の実施の形態2では、学習データ取得部12が、学習データに含まれているアレーアンテナ1(または2)の振幅パターンとして、アレーアンテナ1(または2)の角度に対応する振幅に、熱雑音の影響に伴う振幅誤差を含んでいる振幅パターンを取得するように、アンテナ制御装置10を構成した。したがって、実施の形態2に係るアンテナ制御装置10は、実施の形態1に係るアンテナ制御装置10と同様に、それぞれのアンテナ素子1-k(または2-g)の励振係数のずれを抑えることができるほか、実施の形態1に係るアンテナ制御装置10よりも更に熱雑音の影響を抑えることができる。 In the second embodiment described above, the learning data acquisition unit 12 adds heat to the amplitude corresponding to the angle of the array antenna 1 (or 2) as the amplitude pattern of the array antenna 1 (or 2) included in the learning data. The antenna control device 10 was configured to obtain an amplitude pattern that includes an amplitude error due to the influence of noise. Therefore, like the antenna control device 10 according to the first embodiment, the antenna control device 10 according to the second embodiment is capable of suppressing the deviation in the excitation coefficient of each antenna element 1-k (or 2-g). In addition, the influence of thermal noise can be further suppressed than the antenna control device 10 according to the first embodiment.
実施の形態3.
 実施の形態3では、学習処理部13が、主ビームに対応する角度範囲の振幅パターンと、主ビームに対応する角度範囲の振幅パターンに対応している励振振幅位相誤差とを学習モデルに与えるアンテナ制御装置10について説明する。
 実施の形態3に係るアンテナ装置の構成は、実施の形態1に係るアンテナ装置の構成と同様であり、実施の形態3に係るアンテナ装置を示す構成図は、図1である。
Embodiment 3.
In the third embodiment, the learning processing unit 13 provides the learning model with an amplitude pattern in the angular range corresponding to the main beam and an excitation amplitude phase error corresponding to the amplitude pattern in the angular range corresponding to the main beam. The control device 10 will be explained.
The configuration of the antenna device according to Embodiment 3 is similar to the configuration of the antenna device according to Embodiment 1, and the configuration diagram showing the antenna device according to Embodiment 3 is FIG. 1.
 実施の形態3に係るアンテナ制御装置10では、学習処理部13は、学習データ取得部12により取得された学習データDに含まれている振幅パターンPのうち、主ビームに対応する角度範囲の振幅パターンと、主ビームに対応する角度範囲の振幅パターンに対応している励振振幅位相誤差E1,kとを学習モデルGMの入力層に与える。そして、学習処理部13は、入力層に与えた振幅パターンに対応する励振振幅位相誤差を学習モデルGMに学習させる。
 また、学習処理部13は、学習データ取得部12により取得された学習データDに含まれている振幅パターンPのうち、主ビームに対応する角度範囲の振幅パターンと、主ビームに対応する角度範囲の振幅パターンに対応している励振振幅位相誤差E2,gとを学習モデルGMの入力層に与える。そして、学習処理部13は、入力層に与えた振幅パターンに対応する励振振幅位相誤差を学習モデルGMに学習させる。
In the antenna control device 10 according to the third embodiment, the learning processing unit 13 selects an angular range corresponding to the main beam from among the amplitude patterns P1 included in the learning data D1 acquired by the learning data acquisition unit 12. and the excitation amplitude phase error E 1,k corresponding to the amplitude pattern in the angular range corresponding to the main beam are given to the input layer of the learning model GM 1 . Then, the learning processing unit 13 causes the learning model GM 1 to learn the excitation amplitude phase error corresponding to the amplitude pattern given to the input layer.
Further, the learning processing unit 13 selects an amplitude pattern in an angular range corresponding to the main beam and an amplitude pattern corresponding to the main beam among the amplitude patterns P2 included in the learning data D2 acquired by the learning data acquisition unit 12. The excitation amplitude phase error E 2,g corresponding to the amplitude pattern in the angular range is given to the input layer of the learning model GM 2 . Then, the learning processing unit 13 causes the learning model GM 2 to learn the excitation amplitude phase error corresponding to the amplitude pattern given to the input layer.
 図9は、学習データDに含まれている振幅パターンPのうち、主ビームに対応する角度範囲の振幅パターン、又は、学習データDに含まれている振幅パターンPのうち、主ビームに対応する角度範囲の振幅パターンを示す説明図である。
 図9において、横軸は、アレーアンテナ1,2の角度[deg.]、縦軸は、正規化された振幅[dB]である。
 図9の例では、主ビームに対応する角度範囲の振幅パターンは、約-8~約+8[deg.]の範囲の角度の振幅パターンである。
 学習済みの学習モデルGM及び学習済みの学習モデルGMにおけるそれぞれの入力層に与えられる振幅パターンが、主ビームに対応する角度範囲の振幅パターンに制限されることで、熱雑音の影響に伴うアレーアンテナ1(または2)の通信性能の劣化を更に抑えることができる。
FIG. 9 shows the amplitude pattern in the angle range corresponding to the main beam out of the amplitude pattern P1 included in the learning data D1 , or the main beam in the amplitude pattern P2 included in the learning data D2 . FIG. 3 is an explanatory diagram showing an amplitude pattern in an angular range corresponding to a beam.
In FIG. 9, the horizontal axis represents the angle [deg. ], the vertical axis is the normalized amplitude [dB].
In the example of FIG. 9, the amplitude pattern in the angular range corresponding to the main beam is about −8 to about +8 [deg. ] is the amplitude pattern of the angle in the range.
The amplitude patterns given to the respective input layers of the trained learning model GM 1 and the trained learning model GM 2 are limited to the amplitude patterns in the angular range corresponding to the main beam, thereby reducing the influence of thermal noise. Deterioration of communication performance of array antenna 1 (or 2) can be further suppressed.
実施の形態4.
 アレーアンテナ1の振幅パターンP及びアレーアンテナ2の振幅パターンPのそれぞれは、2つのカット面におけるそれぞれの振幅パターンが組み合わされている2次元パターンであることがある。
 図10は、2つのカット面におけるそれぞれの振幅パターンが組み合わされている2次元パターンを示す説明図である。
 図10において、横軸は、アジマス方向の角度[deg.]、縦軸は、エレベーション方向の角度[deg.]である。
 図11Aは、2つのカット面のうち、水平カット面の振幅パターンを示す説明図である。水平カット面の振幅パターンは、1次元パターンである。
 図11Bは、2つのカット面のうち、垂直カット面の振幅パターンを示す説明図である。垂直カット面の振幅パターンは、1次元パターンである。
 図11Aの例では、2つのカット面のうち、水平カット面の振幅パターンを示し、図11Bの例では、2つのカット面のうち、垂直カット面の振幅パターンを示している。しかし、これは一例に過ぎず、例えば、2つのカット面のうち、一方のカット面が水平カット面から傾いている斜めのカット面であり、他方のカット面が垂直カット面から傾いている斜めのカット面であってもよい。
Embodiment 4.
Each of the amplitude pattern P 1 of the array antenna 1 and the amplitude pattern P 2 of the array antenna 2 may be a two-dimensional pattern in which the respective amplitude patterns on the two cut planes are combined.
FIG. 10 is an explanatory diagram showing a two-dimensional pattern in which respective amplitude patterns on two cut surfaces are combined.
In FIG. 10, the horizontal axis represents the angle [deg. ], the vertical axis represents the angle in the elevation direction [deg. ].
FIG. 11A is an explanatory diagram showing the amplitude pattern of the horizontal cut surface among the two cut surfaces. The amplitude pattern of the horizontal cut plane is a one-dimensional pattern.
FIG. 11B is an explanatory diagram showing the amplitude pattern of the vertical cut surface among the two cut surfaces. The amplitude pattern of the vertical cut plane is a one-dimensional pattern.
The example of FIG. 11A shows the amplitude pattern of the horizontal cut surface of the two cut surfaces, and the example of FIG. 11B shows the amplitude pattern of the vertical cut surface of the two cut surfaces. However, this is just an example; for example, among two cut surfaces, one cut surface is an oblique cut surface that is inclined from the horizontal cut surface, and the other cut surface is an oblique cut surface that is inclined from the vertical cut surface. It may be a cut surface.
 実施の形態4に係るアンテナ装置の構成は、実施の形態1に係るアンテナ装置の構成と同様であり、実施の形態4に係るアンテナ装置を示す構成図は、図1である。
 学習データ取得部12は、学習データDとして、アレーアンテナ1の振幅パターンPのうち、一方のカット面の1次元の振幅パターンと、他方のカット面の1次元の振幅パターンと、一方のカット面の1次元の振幅パターンに対応している励振振幅位相誤差と、他方のカット面の1次元の振幅パターンに対応している励振振幅位相誤差とを含む学習データDを取得する。
 また、学習データ取得部12は、学習データDとして、アレーアンテナ2の振幅パターンPのうち、一方のカット面の1次元の振幅パターンと、他方のカット面の1次元の振幅パターンと、一方のカット面の1次元の振幅パターンに対応している励振振幅位相誤差と、他方のカット面の1次元の振幅パターンに対応している励振振幅位相誤差とを含む学習データDを取得する。
The configuration of the antenna device according to Embodiment 4 is similar to the configuration of the antenna device according to Embodiment 1, and the configuration diagram showing the antenna device according to Embodiment 4 is FIG. 1.
The learning data acquisition unit 12 acquires, as learning data D1 , a one-dimensional amplitude pattern of one cut surface , a one-dimensional amplitude pattern of the other cut surface, and one of the amplitude patterns P1 of the array antenna 1. Learning data D1 including an excitation amplitude phase error corresponding to the one-dimensional amplitude pattern of the cut surface and an excitation amplitude phase error corresponding to the one-dimensional amplitude pattern of the other cut surface is acquired.
Further, the learning data acquisition unit 12 acquires, as learning data D 2 , a one-dimensional amplitude pattern of one cut surface and a one-dimensional amplitude pattern of the other cut surface among the amplitude patterns P 2 of the array antenna 2 . Obtain learning data D2 including an excitation amplitude phase error corresponding to a one-dimensional amplitude pattern of one cut surface and an excitation amplitude phase error corresponding to a one-dimensional amplitude pattern of the other cut surface. .
 図11の例では、学習データ取得部12が、学習データDとして、アレーアンテナ1の振幅パターンPのうち、水平カット面における1次元の振幅パターンと、垂直カット面における1次元の振幅パターンと、水平カット面の振幅パターンに対応している励振振幅位相誤差と、垂直カット面の振幅パターンに対応している励振振幅位相誤差とを含む学習データDを取得する。
 また、学習データ取得部12が、学習データDとして、アレーアンテナ2の振幅パターンPのうち、水平カット面における1次元の振幅パターンと、垂直カット面における1次元の振幅パターンと、水平カット面の振幅パターンに対応しているアンテナ素子2-gの励振振幅位相誤差と、垂直カット面の振幅パターンに対応しているアンテナ素子2-gの励振振幅位相誤差とを含む学習データDを取得する。
In the example of FIG. 11, the learning data acquisition unit 12 obtains, as the learning data D1 , a one-dimensional amplitude pattern on the horizontal cut plane and a one-dimensional amplitude pattern on the vertical cut plane among the amplitude patterns P1 of the array antenna 1. Learning data D1 is obtained, which includes an excitation amplitude phase error corresponding to the amplitude pattern of the horizontal cut plane, and an excitation amplitude phase error corresponding to the amplitude pattern of the vertical cut plane.
In addition, the learning data acquisition unit 12 acquires, as learning data D2 , a one-dimensional amplitude pattern on the horizontal cut plane, a one-dimensional amplitude pattern on the vertical cut plane, and a horizontal cut out of the amplitude pattern P2 of the array antenna 2. Learning data D2 including the excitation amplitude phase error of the antenna element 2-g corresponding to the amplitude pattern of the plane and the excitation amplitude phase error of the antenna element 2-g corresponding to the amplitude pattern of the vertical cut plane. get.
 学習処理部13は、学習データ取得部12から、例えば、図11に示すような学習データDを1つ以上取得する。
 学習処理部13は、それぞれの学習データDを学習モデルGMの入力層に与えて、水平カット面における1次元の振幅パターンに対応する励振振幅位相誤差を学習モデルGMに学習させる。また、学習処理部13は、垂直カット面における1次元の振幅パターンに対応する励振振幅位相誤差を学習モデルGMに学習させる。
 即ち、学習処理部13は、水平カット面における1次元の振幅パターンが学習モデルGMの入力層に与えられると、学習モデルGMの出力層から、水平カット面における1次元の振幅パターンに対応する励振振幅位相誤差が出力されるように、ニューラルネットワークの重みw11‐w16,w21‐w26を調整する。また、学習処理部13は、垂直カット面における1次元の振幅パターンが学習モデルGMの入力層に与えられると、学習モデルGMの出力層から、垂直カット面における1次元の振幅パターンに対応する励振振幅位相誤差が出力されるように、ニューラルネットワークの重みw11‐w16,w21‐w26を調整する。
The learning processing unit 13 acquires, for example, one or more pieces of learning data D1 as shown in FIG. 11 from the learning data acquisition unit 12.
The learning processing unit 13 supplies each learning data D 1 to the input layer of the learning model GM 1 and causes the learning model GM 1 to learn an excitation amplitude phase error corresponding to a one-dimensional amplitude pattern on the horizontal cut plane. Further, the learning processing unit 13 causes the learning model GM 1 to learn the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane.
That is, when the one-dimensional amplitude pattern on the horizontal cut plane is given to the input layer of the learning model GM 1 , the learning processing unit 13 generates a signal corresponding to the one-dimensional amplitude pattern on the horizontal cut plane from the output layer of the learning model GM 1 . The weights w11-w16 and w21-w26 of the neural network are adjusted so that the excitation amplitude phase error is output. Furthermore, when the one-dimensional amplitude pattern on the vertical cut plane is given to the input layer of the learning model GM 1 , the learning processing unit 13 corresponds to the one-dimensional amplitude pattern on the vertical cut plane from the output layer of the learning model GM 1 . The weights w11-w16 and w21-w26 of the neural network are adjusted so that the excitation amplitude phase error is output.
 学習処理部13は、学習データ取得部12から、例えば、図11に示すような学習データDを1つ以上取得する。
 学習処理部13は、それぞれの学習データDを学習モデルGMの入力層に与えて、水平カット面における1次元の振幅パターンに対応する励振振幅位相誤差を学習モデルGMに学習させる。また、学習処理部13は、垂直カット面における1次元の振幅パターンに対応する励振振幅位相誤差を学習モデルGMに学習させる。
 即ち、学習処理部13は、水平カット面における1次元の振幅パターンが学習モデルGMの入力層に与えられると、学習モデルGMの出力層から、水平カット面における1次元の振幅パターンに対応する励振振幅位相誤差が出力されるように、ニューラルネットワークの重みw11‐w16,w21‐w26を調整する。また、学習処理部13は、垂直カット面における1次元の振幅パターンが学習モデルGMの入力層に与えられると、学習モデルGMの出力層から、垂直カット面における1次元の振幅パターンに対応する励振振幅位相誤差が出力されるように、ニューラルネットワークの重みw11‐w16,w21‐w26を調整する。
The learning processing unit 13 acquires, for example, one or more learning data D2 as shown in FIG. 11 from the learning data acquisition unit 12.
The learning processing unit 13 supplies each learning data D 2 to the input layer of the learning model GM 2 and causes the learning model GM 2 to learn the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the horizontal cut plane. Further, the learning processing unit 13 causes the learning model GM 2 to learn the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane.
That is, when the one-dimensional amplitude pattern on the horizontal cut plane is given to the input layer of the learning model GM 2 , the learning processing unit 13 generates a signal corresponding to the one-dimensional amplitude pattern on the horizontal cut plane from the output layer of the learning model GM 2 . The weights w11-w16 and w21-w26 of the neural network are adjusted so that the excitation amplitude phase error is output. Furthermore, when the one-dimensional amplitude pattern on the vertical cut plane is given to the input layer of the learning model GM 2 , the learning processing unit 13 corresponds to the one-dimensional amplitude pattern on the vertical cut plane from the output layer of the learning model GM 2 . The weights w11-w16 and w21-w26 of the neural network are adjusted so that the excitation amplitude phase error is output.
 アレーアンテナ1及びアレーアンテナ2におけるそれぞれの運用が開始されると、誤差推定部15は、アレーアンテナ1の振幅パターンPとして、例えば、水平カット面における1次元の振幅パターンと垂直カット面における1次元の振幅パターンとを取得する。
 また、誤差推定部15は、アレーアンテナ2の振幅パターンPとして、例えば、水平カット面における1次元の振幅パターンと垂直カット面における1次元の振幅パターンとを取得する。
When the respective operations of array antenna 1 and array antenna 2 are started, error estimating unit 15 calculates, for example, a one-dimensional amplitude pattern on the horizontal cut plane and a one-dimensional amplitude pattern on the vertical cut plane as the amplitude pattern P 1 of array antenna 1. Obtain the dimensional amplitude pattern.
Further, the error estimation unit 15 obtains, for example, a one-dimensional amplitude pattern on the horizontal cut plane and a one-dimensional amplitude pattern on the vertical cut plane as the amplitude pattern P2 of the array antenna 2.
 誤差推定部15は、アレーアンテナ1の振幅パターンPとして、例えば、水平カット面における1次元の振幅パターンを学習済みの学習モデルGMの入力層に与え、学習モデルGMの出力層から、水平カット面における1次元の振幅パターンに対応する励振振幅位相誤差を取得する。
 また、誤差推定部15は、アレーアンテナ1の振幅パターンPとして、例えば、垂直カット面における1次元の振幅パターンを学習済みの学習モデルGMの入力層に与え、学習モデルGMの出力層から、垂直カット面における1次元の振幅パターンに対応する励振振幅位相誤差を取得する。
 誤差推定部15は、水平カット面における1次元の振幅パターンに対応する励振振幅位相誤差及び垂直カット面における1次元の振幅パターンに対応する励振振幅位相誤差のそれぞれを励振係数制御部16に出力する。
The error estimation unit 15 supplies, as the amplitude pattern P 1 of the array antenna 1, for example, a one-dimensional amplitude pattern on a horizontal cut plane to the input layer of the learned learning model GM 1 , and from the output layer of the learning model GM 1 , An excitation amplitude phase error corresponding to a one-dimensional amplitude pattern on the horizontal cut plane is obtained.
Further, the error estimating unit 15 supplies, as the amplitude pattern P 1 of the array antenna 1, a one-dimensional amplitude pattern in the vertical cut plane to the input layer of the learned model GM 1, and outputs the amplitude pattern P 1 of the array antenna 1 to the input layer of the learned model GM 1 From this, the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane is obtained.
The error estimation unit 15 outputs each of the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the horizontal cut plane and the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane to the excitation coefficient control unit 16. .
 誤差推定部15は、アレーアンテナ2の振幅パターンPとして、例えば、水平カット面における1次元の振幅パターンを学習済みの学習モデルGMの入力層に与え、学習モデルGMの出力層から、水平カット面における1次元の振幅パターンに対応する励振振幅位相誤差を取得する。
 また、誤差推定部15は、アレーアンテナ2の振幅パターンPとして、例えば、垂直カット面における1次元の振幅パターンを学習済みの学習モデルGMの入力層に与え、学習モデルGMの出力層から、垂直カット面における1次元の振幅パターンに対応する励振振幅位相誤差を取得する。
 誤差推定部15は、水平カット面における1次元の振幅パターンに対応する励振振幅位相誤差及び垂直カット面における1次元の振幅パターンに対応する励振振幅位相誤差のそれぞれを励振係数制御部16に出力する。
The error estimation unit 15 supplies, for example, a one-dimensional amplitude pattern on a horizontal cut plane to the input layer of the learned learning model GM 2 as the amplitude pattern P 2 of the array antenna 2, and from the output layer of the learning model GM 2 , An excitation amplitude phase error corresponding to a one-dimensional amplitude pattern on the horizontal cut plane is obtained.
Further, the error estimating unit 15 supplies, for example, a one-dimensional amplitude pattern in a vertical cut plane to the input layer of the learned learning model GM 2 as the amplitude pattern P 2 of the array antenna 2, and provides the output layer of the learning model GM 2 with From this, the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane is obtained.
The error estimation unit 15 outputs each of the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the horizontal cut plane and the excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on the vertical cut plane to the excitation coefficient control unit 16. .
 励振係数制御部16は、誤差推定部15から、アレーアンテナ1についての、例えば、水平カット面に係る励振振幅位相誤差及び垂直カット面に係る励振振幅位相誤差のそれぞれを取得する。
 励振係数制御部16は、水平カット面に係る励振振幅位相誤差が零になる励振係数EC1,H,k(k=1,・・・,K)を算出する。励振振幅位相誤差が零になる励振係数EC1,H,kとは、励振振幅位相誤差が完全に零になるものに限るものではなく、実用上問題のない範囲内で、励振振幅位相誤差が概ね零になるものを含む概念である。
 励振係数制御部16は、垂直カット面に係る励振振幅位相誤差が零になる励振係数EC1,V,k(k=1,・・・,K)を算出する。励振振幅位相誤差が零になる励振係数EC1,V,kとは、励振振幅位相誤差が完全に零になるものに限るものではなく、実用上問題のない範囲内で、励振振幅位相誤差が概ね零になるものを含む概念である。
 励振係数制御部16は、励振係数EC1,H,kが示す励振分布と励振係数EC1,V,kが示す励振分布との積をとることで、励振係数EC1,kを算出する。励振係数EC1,H,kが示す励振分布と励振係数EC1,V,kが示す励振分布との積をとる処理自体は、公知の技術であるため詳細な説明を省略する。
 励振係数制御部16は、励振係数EC1,kを送信ビーム形成部4に出力する。
The excitation coefficient control unit 16 acquires, for example, each of the excitation amplitude phase error related to the horizontal cut plane and the excitation amplitude phase error related to the vertical cut plane with respect to the array antenna 1 from the error estimation unit 15.
The excitation coefficient control unit 16 calculates an excitation coefficient EC 1,H,k (k=1, . . . , K) that makes the excitation amplitude phase error related to the horizontal cut plane zero. The excitation coefficients EC 1, H, k at which the excitation amplitude phase error becomes zero are not limited to those at which the excitation amplitude phase error becomes completely zero, but are those where the excitation amplitude phase error is within a range that does not cause any practical problems. This is a concept that includes things that are approximately zero.
The excitation coefficient control unit 16 calculates an excitation coefficient EC 1,V,k (k=1, . . . , K) that makes the excitation amplitude phase error related to the vertical cut plane zero. The excitation coefficient EC 1, V, k at which the excitation amplitude phase error becomes zero is not limited to the one at which the excitation amplitude phase error becomes completely zero, but the excitation amplitude phase error within a range that does not cause any practical problems. This is a concept that includes things that are approximately zero.
The excitation coefficient control unit 16 calculates the excitation coefficient EC 1,k by multiplying the excitation distribution indicated by the excitation coefficient EC 1,H,k and the excitation distribution indicated by the excitation coefficient EC 1 ,V ,k . The process of calculating the product of the excitation distribution indicated by the excitation coefficient EC 1, H, k and the excitation distribution indicated by the excitation coefficient EC 1, V, k is a well-known technique, so detailed explanation will be omitted.
The excitation coefficient control section 16 outputs the excitation coefficient EC 1,k to the transmission beam forming section 4 .
 励振係数制御部16は、誤差推定部15から、アレーアンテナ2についての、例えば、水平カット面に係る励振振幅位相誤差及び垂直カット面に係る励振振幅位相誤差のそれぞれを取得する。
 励振係数制御部16は、水平カット面に係る励振振幅位相誤差が零になる励振係数EC2,H,g(g=1,・・・,G)を算出する。励振振幅位相誤差が零になる励振係数EC2,H,kとは、励振振幅位相誤差が完全に零になるものに限るものではなく、実用上問題のない範囲内で、励振振幅位相誤差が概ね零になるものを含む概念である。
 励振係数制御部16は、垂直カット面に係る励振振幅位相誤差が零になる励振係数EC2,V,g(g=1,・・・,G)を算出する。励振振幅位相誤差が零になる励振係数EC2,V,kとは、励振振幅位相誤差が完全に零になるものに限るものではなく、実用上問題のない範囲内で、励振振幅位相誤差が概ね零になるものを含む概念である。
 励振係数制御部16は、励振係数EC2,H,gが示す励振分布と励振係数EC2,V,gが示す励振分布との積をとることで、励振係数EC2,gを算出する。
 励振係数制御部16は、励振係数EC2,gを受信ビーム形成部7に出力する。
The excitation coefficient control unit 16 acquires, for example, each of the excitation amplitude phase error related to the horizontal cut plane and the excitation amplitude phase error related to the vertical cut plane for the array antenna 2 from the error estimation unit 15.
The excitation coefficient control unit 16 calculates an excitation coefficient EC 2,H,g (g=1, . . . , G) that makes the excitation amplitude phase error related to the horizontal cut plane zero. The excitation coefficients EC 2, H, k at which the excitation amplitude phase error becomes zero are not limited to those at which the excitation amplitude phase error becomes completely zero, but are those where the excitation amplitude phase error is within a range that does not cause any practical problems. This is a concept that includes things that are approximately zero.
The excitation coefficient control unit 16 calculates an excitation coefficient EC 2,V,g (g=1, . . . , G) that makes the excitation amplitude phase error related to the vertical cut plane zero. The excitation coefficient EC 2, V, k at which the excitation amplitude phase error becomes zero is not limited to one at which the excitation amplitude phase error becomes completely zero, but is one in which the excitation amplitude phase error is within a range that does not cause any practical problems. This is a concept that includes things that are approximately zero.
The excitation coefficient control unit 16 calculates the excitation coefficient EC 2,g by multiplying the excitation distribution indicated by the excitation coefficient EC 2,H,g and the excitation distribution indicated by the excitation coefficient EC 2 ,V ,g .
The excitation coefficient control section 16 outputs the excitation coefficient EC 2,g to the reception beam forming section 7 .
 以上の実施の形態4では、アレーアンテナ1(または2)の振幅パターンが、2つのカット面におけるそれぞれの振幅パターンが組み合わされている2次元パターンであり、学習データ取得部12が、学習データとして、それぞれのカット面の振幅パターンと、それぞれのカット面の振幅パターンに対応している励振振幅位相誤差とを含む学習データを取得するように、アンテナ制御装置10を構成した。したがって、実施の形態4に係るアンテナ制御装置10は、実施の形態1に係るアンテナ制御装置10と同様に、それぞれのアンテナ素子1-k(または2-g)の励振係数のずれを抑えることができる。また、実施の形態4に係るアンテナ制御装置10は、実施の形態1に係るアンテナ制御装置10よりも、学習処理部13における学習処理の処理負荷を軽減することができる。 In the above-described fourth embodiment, the amplitude pattern of the array antenna 1 (or 2) is a two-dimensional pattern in which the respective amplitude patterns on the two cut planes are combined, and the learning data acquisition unit 12 uses the amplitude pattern as the learning data. , the antenna control device 10 is configured to acquire learning data including the amplitude pattern of each cut surface and the excitation amplitude phase error corresponding to the amplitude pattern of each cut surface. Therefore, like the antenna control device 10 according to the first embodiment, the antenna control device 10 according to the fourth embodiment is capable of suppressing the deviation in the excitation coefficient of each antenna element 1-k (or 2-g). can. Furthermore, the antenna control device 10 according to the fourth embodiment can reduce the processing load of the learning process in the learning processing section 13 more than the antenna control device 10 according to the first embodiment.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Note that in the present disclosure, it is possible to freely combine the embodiments, to modify any component of each embodiment, or to omit any component in each embodiment.
 本開示は、アンテナ制御装置、アンテナ制御方法及びアンテナ装置に適している。 The present disclosure is suitable for an antenna control device, an antenna control method, and an antenna device.
 1 アレーアンテナ(第1のアレーアンテナ)、1-1~1-K アンテナ素子、2 アレーアンテナ(第2のアレーアンテナ)、2-1~2-G アンテナ素子、3 送信信号生成部、4 送信ビーム形成部、5 送信部、6 受信部、7 受信ビーム形成部、10 アンテナ制御装置、11 学習装置、12 学習データ取得部、13 学習処理部、14 学習モデル記憶部、15 誤差推定部、16 励振係数制御部、21 学習データ取得回路、22 学習処理回路、23 学習モデル記憶回路、24 誤差推定回路、25 励振係数制御回路、31 メモリ、32 プロセッサ。 1 Array antenna (first array antenna), 1-1 to 1-K antenna elements, 2 Array antenna (second array antenna), 2-1 to 2-G antenna elements, 3 Transmission signal generation section, 4 Transmission Beam forming unit, 5 transmitting unit, 6 receiving unit, 7 receiving beam forming unit, 10 antenna control device, 11 learning device, 12 learning data acquisition unit, 13 learning processing unit, 14 learning model storage unit, 15 error estimation unit, 16 Excitation coefficient control unit, 21 Learning data acquisition circuit, 22 Learning processing circuit, 23 Learning model storage circuit, 24 Error estimation circuit, 25 Excitation coefficient control circuit, 31 Memory, 32 Processor.

Claims (13)

  1.  複数のアンテナ素子を有するアレーアンテナの振幅パターンを取得し、前記振幅パターンに基づいて、それぞれのアンテナ素子の励振振幅誤差とそれぞれのアンテナ素子の励振位相誤差とを含む励振振幅位相誤差を推定する誤差推定部と、
     前記誤差推定部により推定された励振振幅位相誤差に基づいて、それぞれのアンテナ素子の励振係数を制御する励振係数制御部と
     を備えたアンテナ制御装置。
    An error in which an amplitude pattern of an array antenna having a plurality of antenna elements is obtained, and an excitation amplitude phase error including an excitation amplitude error of each antenna element and an excitation phase error of each antenna element is estimated based on the amplitude pattern. Estimating section;
    An antenna control device comprising: an excitation coefficient control section that controls an excitation coefficient of each antenna element based on the excitation amplitude phase error estimated by the error estimation section.
  2.  前記励振係数制御部は、
     前記誤差推定部により推定された励振振幅位相誤差に基づいて、それぞれのアンテナ素子により送信される信号に乗算される励振係数、又は、それぞれのアンテナ素子により受信された信号に乗算される励振係数を制御することを特徴とする請求項1記載のアンテナ制御装置。
    The excitation coefficient control section includes:
    Based on the excitation amplitude phase error estimated by the error estimator, an excitation coefficient to be multiplied by the signal transmitted by each antenna element or an excitation coefficient to be multiplied by the signal received by each antenna element is calculated. The antenna control device according to claim 1, wherein the antenna control device controls the antenna.
  3.  前記誤差推定部は、
     前記振幅パターンを学習モデルに与えて、前記学習モデルから、前記励振振幅位相誤差を取得することを特徴とする請求項1記載のアンテナ制御装置。
    The error estimator includes:
    The antenna control device according to claim 1, wherein the amplitude pattern is given to a learning model and the excitation amplitude phase error is obtained from the learning model.
  4.  前記学習モデルを生成する学習装置を備え、
     前記学習装置は、
     前記アレーアンテナの振幅パターンと、前記振幅パターンに対応している励振振幅位相誤差とを含む学習データを取得する学習データ取得部と、
     前記学習データ取得部により取得された学習データを学習モデルに与えて、前記振幅パターンに対応する励振振幅位相誤差を当該学習モデルに学習させる学習処理部とを備えていることを特徴とする請求項3記載のアンテナ制御装置。
    comprising a learning device that generates the learning model,
    The learning device includes:
    a learning data acquisition unit that acquires learning data including an amplitude pattern of the array antenna and an excitation amplitude phase error corresponding to the amplitude pattern;
    2. A learning processing unit that provides the learning data acquired by the learning data acquisition unit to a learning model and causes the learning model to learn an excitation amplitude phase error corresponding to the amplitude pattern. 3. The antenna control device according to 3.
  5.  前記学習データ取得部は、
     前記学習データに含まれている前記励振振幅位相誤差として、それぞれのアンテナ素子の励振振幅誤差の分布が正規分布である励振振幅誤差と、それぞれのアンテナ素子の励振位相誤差の分布が正規分布である励振位相誤差とを取得することを特徴とする請求項4記載のアンテナ制御装置。
    The learning data acquisition unit includes:
    As the excitation amplitude phase error included in the learning data, the excitation amplitude error of each antenna element has a normal distribution, and the excitation phase error of each antenna element has a normal distribution. 5. The antenna control device according to claim 4, wherein the antenna control device obtains an excitation phase error.
  6.  前記学習データ取得部は、
     前記学習データに含まれている前記アレーアンテナの振幅パターンとして、前記アレーアンテナの角度に対応する振幅に、熱雑音の影響に伴う振幅誤差を含んでいる振幅パターンを取得することを特徴とする請求項4記載のアンテナ制御装置。
    The learning data acquisition unit includes:
    A claim characterized in that, as the amplitude pattern of the array antenna included in the learning data, an amplitude pattern is obtained in which the amplitude corresponding to the angle of the array antenna includes an amplitude error due to the influence of thermal noise. Item 4. Antenna control device according to item 4.
  7.  前記学習処理部は、
     前記学習データ取得部により取得された学習データに含まれている振幅パターンのうち、主ビームに対応する角度範囲の振幅パターンと、前記主ビームに対応する角度範囲の振幅パターンに対応している励振振幅位相誤差とを前記学習モデルに与えることを特徴とする請求項4記載のアンテナ制御装置。
    The learning processing unit is
    Among the amplitude patterns included in the learning data acquired by the learning data acquisition unit, the amplitude pattern in the angular range corresponding to the main beam and the excitation corresponding to the amplitude pattern in the angular range corresponding to the main beam. 5. The antenna control device according to claim 4, wherein an amplitude phase error is given to the learning model.
  8.  前記アレーアンテナの振幅パターンは、2つのカット面におけるそれぞれの振幅パターンが組み合わされている2次元パターンであり、
     前記学習データ取得部は、
     前記学習データとして、それぞれのカット面の振幅パターンと、それぞれのカット面の振幅パターンに対応している励振振幅位相誤差とを含む学習データを取得することを特徴とする請求項4記載のアンテナ制御装置。
    The amplitude pattern of the array antenna is a two-dimensional pattern in which respective amplitude patterns on two cut planes are combined,
    The learning data acquisition unit includes:
    Antenna control according to claim 4, characterized in that learning data including an amplitude pattern of each cut surface and an excitation amplitude phase error corresponding to the amplitude pattern of each cut surface is acquired as the learning data. Device.
  9.  それぞれのカット面の振幅パターンは、1次元パターンであり、
     前記学習データ取得部は、
     前記学習データとして、それぞれのカット面における1次元の振幅パターンと、それぞれのカット面における1次元の振幅パターンに対応している励振振幅位相誤差とを含む学習データを取得することを特徴とする請求項8記載のアンテナ制御装置。
    The amplitude pattern of each cut surface is a one-dimensional pattern,
    The learning data acquisition unit includes:
    A claim characterized in that learning data including a one-dimensional amplitude pattern on each cut plane and an excitation amplitude phase error corresponding to the one-dimensional amplitude pattern on each cut plane is acquired as the learning data. Item 8. Antenna control device according to item 8.
  10.  誤差推定部が、複数のアンテナ素子を有するアレーアンテナの振幅パターンを取得し、前記振幅パターンに基づいて、それぞれのアンテナ素子の励振振幅誤差とそれぞれのアンテナ素子の励振位相誤差とを含む励振振幅位相誤差を推定し、
     励振係数制御部が、前記誤差推定部により推定された励振振幅位相誤差に基づいて、それぞれのアンテナ素子の励振係数を制御する
     アンテナ制御方法。
    An error estimation unit acquires an amplitude pattern of an array antenna having a plurality of antenna elements, and calculates an excitation amplitude phase including an excitation amplitude error of each antenna element and an excitation phase error of each antenna element based on the amplitude pattern. Estimate the error,
    An antenna control method, wherein an excitation coefficient control section controls an excitation coefficient of each antenna element based on the excitation amplitude phase error estimated by the error estimation section.
  11.  複数のアンテナ素子を有するアレーアンテナと、
     請求項1から請求項9のうちのいずれか1項記載のアンテナ制御装置と、
     複数の送信信号のそれぞれに励振係数を乗算し、励振係数乗算後のそれぞれの送信信号をそれぞれのアンテナ素子に出力する送信ビーム形成部とを備え、
     前記励振係数制御部は、前記誤差推定部により推定された励振振幅位相誤差に基づいて、前記送信ビーム形成部によって、それぞれの送信信号に乗算される励振係数を制御することを特徴とするアンテナ装置。
    an array antenna having a plurality of antenna elements;
    An antenna control device according to any one of claims 1 to 9,
    a transmission beam forming unit that multiplies each of the plurality of transmission signals by an excitation coefficient and outputs each transmission signal after the excitation coefficient multiplication to each antenna element;
    The antenna device is characterized in that the excitation coefficient control unit controls an excitation coefficient by which each transmission signal is multiplied by the transmission beam forming unit, based on the excitation amplitude phase error estimated by the error estimation unit. .
  12.  複数のアンテナ素子を有するアレーアンテナと、
     請求項1から請求項9のうちのいずれか1項記載のアンテナ制御装置と、
     それぞれのアンテナ素子により受信された信号である受信信号に励振係数を乗算し、励振係数乗算後の複数の受信信号を合成する受信ビーム形成部とを備え、
     前記励振係数制御部は、前記誤差推定部により推定された励振振幅位相誤差に基づいて、前記受信ビーム形成部によって、それぞれの受信信号に乗算される励振係数を制御することを特徴とするアンテナ装置。
    an array antenna having a plurality of antenna elements;
    An antenna control device according to any one of claims 1 to 9,
    a reception beam forming unit that multiplies a reception signal, which is a signal received by each antenna element, by an excitation coefficient and combines the plurality of reception signals after the excitation coefficient multiplication,
    The antenna device is characterized in that the excitation coefficient control unit controls an excitation coefficient by which each received signal is multiplied by the reception beam forming unit, based on the excitation amplitude phase error estimated by the error estimation unit. .
  13.  複数の送信用アンテナ素子を有する第1のアレーアンテナと、
     複数の受信用アンテナ素子を有する第2のアレーアンテナと、
     請求項1から請求項9のうちのいずれか1項記載のアンテナ制御装置と、
     複数の送信信号のそれぞれに励振係数を乗算し、励振係数乗算後のそれぞれの送信信号をそれぞれの送信用アンテナ素子に出力する送信ビーム形成部と、
     それぞれの受信用アンテナ素子により受信された信号である受信信号に励振係数を乗算し、励振係数乗算後の複数の受信信号を合成する受信ビーム形成部とを備え、
     前記励振係数制御部は、前記誤差推定部により推定された励振振幅位相誤差に基づいて、前記送信ビーム形成部によって、それぞれの送信信号に乗算される励振係数を制御し、かつ、前記受信ビーム形成部によって、それぞれの受信信号に乗算される励振係数を制御することを特徴とするアンテナ装置。
    a first array antenna having a plurality of transmitting antenna elements;
    a second array antenna having a plurality of receiving antenna elements;
    An antenna control device according to any one of claims 1 to 9,
    a transmission beam forming unit that multiplies each of the plurality of transmission signals by an excitation coefficient and outputs each transmission signal after the excitation coefficient multiplication to each transmission antenna element;
    a reception beam forming unit that multiplies a reception signal, which is a signal received by each reception antenna element, by an excitation coefficient and combines the plurality of reception signals after the excitation coefficient multiplication;
    The excitation coefficient control section controls an excitation coefficient by which each transmission signal is multiplied by the transmission beam forming section based on the excitation amplitude phase error estimated by the error estimating section, and controls the excitation coefficient by which each transmission signal is multiplied by the transmission beam forming section. An antenna device characterized in that an excitation coefficient by which each received signal is multiplied is controlled by a section.
PCT/JP2022/019215 2022-04-28 2022-04-28 Antenna control device, antenna control method, and antenna device WO2023209925A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/019215 WO2023209925A1 (en) 2022-04-28 2022-04-28 Antenna control device, antenna control method, and antenna device
JP2022569002A JP7353515B1 (en) 2022-04-28 2022-04-28 Antenna control device, antenna control method, and antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019215 WO2023209925A1 (en) 2022-04-28 2022-04-28 Antenna control device, antenna control method, and antenna device

Publications (1)

Publication Number Publication Date
WO2023209925A1 true WO2023209925A1 (en) 2023-11-02

Family

ID=88143982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019215 WO2023209925A1 (en) 2022-04-28 2022-04-28 Antenna control device, antenna control method, and antenna device

Country Status (2)

Country Link
JP (1) JP7353515B1 (en)
WO (1) WO2023209925A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198508A (en) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd Adaptive array radio equipment
JP2005130323A (en) * 2003-10-27 2005-05-19 Hitachi Kokusai Electric Inc Wireless communication apparatus
US20180337738A1 (en) * 2017-05-22 2018-11-22 Keysight Technologies, Inc. System and method for performing over-the-air tests for massive multi-input/multi-output wireless system
US11115136B1 (en) * 2020-07-10 2021-09-07 Lg Electronics Inc. Method for calibrating an array antenna in a wireless communication system and apparatus thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363229B2 (en) 2014-02-05 2018-07-25 ベラソン インコーポレイテッドVerathon Inc. Ultrasonic data collection
JP6644296B2 (en) 2014-12-19 2020-02-12 国立大学法人 名古屋工業大学 Communication system and communication terminal using waveform selection filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198508A (en) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd Adaptive array radio equipment
JP2005130323A (en) * 2003-10-27 2005-05-19 Hitachi Kokusai Electric Inc Wireless communication apparatus
US20180337738A1 (en) * 2017-05-22 2018-11-22 Keysight Technologies, Inc. System and method for performing over-the-air tests for massive multi-input/multi-output wireless system
US11115136B1 (en) * 2020-07-10 2021-09-07 Lg Electronics Inc. Method for calibrating an array antenna in a wireless communication system and apparatus thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIHIRA KAZUNARI; FUKASAWA TORU; YONEDA NAOFUMI: "Time-Modulated Array Using Phase Shifter for Amplitude-Phase Error Compensation", 2019 IEEE INTERNATIONAL SYMPOSIUM ON PHASED ARRAY SYSTEM & TECHNOLOGY (PAST), IEEE, 15 October 2019 (2019-10-15), pages 1 - 4, XP033732149, DOI: 10.1109/PAST43306.2019.9020733 *
RAMASAMY SAVITHA ; SUNDARAM SURESH ; NARASIMHAN SUNDARARAJAN: "Projection-Based Fast Learning Fully Complex-Valued Relaxation Neural Network", IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, IEEE, USA, vol. 24, no. 4, 1 April 2013 (2013-04-01), USA, pages 529 - 541, XP011494125, ISSN: 2162-237X, DOI: 10.1109/TNNLS.2012.2235460 *

Also Published As

Publication number Publication date
JPWO2023209925A1 (en) 2023-11-02
JP7353515B1 (en) 2023-09-29

Similar Documents

Publication Publication Date Title
US10103431B2 (en) Phased array antenna calibration
US7969358B2 (en) Compensation of beamforming errors in a communications system having widely spaced antenna elements
US9912074B2 (en) Congruent non-uniform antenna arrays
US8354960B2 (en) Method for low sidelobe operation of a phased array antenna having failed antenna elements
JP6693681B2 (en) Radar equipment
WO2006009601A2 (en) Communications system including phased array antenna providing nulling and related methods
CN108196239B (en) Unambiguous parameter estimation method for frequency diversity MIMO radar
TW201926924A (en) Beamforming calibration system and method
JP2017215208A (en) Pulse radar
JP2021158451A (en) Antenna device and antenna calibration method
WO2023209925A1 (en) Antenna control device, antenna control method, and antenna device
JP2011102708A (en) Method of antenna measurement and method of antenna calibration
JP6573745B2 (en) Adaptive array antenna device
WO2021115599A1 (en) Over the air calibration of an advanced antenna system
Yang et al. Robust beamformer using manifold separation technique for semispherical conformal array
JP2020139876A (en) Radar device and correction value calculation method
WO2022034842A1 (en) Estimation method and estimation device
JP5452326B2 (en) Phase shift value calculation device, phase shifter control device, and program
WO2006126247A1 (en) Array antenna directivity control apparatus and directivity control method
Xiong et al. Robust elliptic localization using worst-case formulation and convex approximation
JP2022096802A (en) Radar device
JP2017112570A (en) Array antenna device and wireless device
KR20220098933A (en) Adaptive beamforming method and active sonar using the same
CN113820653A (en) Meter-wave radar low elevation angle target DOA estimation method based on dynamic sum and difference beams
KR102144004B1 (en) Target Location Estimation Method for Distributed MIMO Radar using Ellipsoids Fitting

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022569002

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940202

Country of ref document: EP

Kind code of ref document: A1