WO2023209879A1 - Plant operation support system - Google Patents

Plant operation support system Download PDF

Info

Publication number
WO2023209879A1
WO2023209879A1 PCT/JP2022/019117 JP2022019117W WO2023209879A1 WO 2023209879 A1 WO2023209879 A1 WO 2023209879A1 JP 2022019117 W JP2022019117 W JP 2022019117W WO 2023209879 A1 WO2023209879 A1 WO 2023209879A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
plant
replacement
temporary
temporary treatment
Prior art date
Application number
PCT/JP2022/019117
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 前田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2022/019117 priority Critical patent/WO2023209879A1/en
Priority to JP2024517708A priority patent/JPWO2023209879A1/ja
Priority to CN202280037669.0A priority patent/CN117377918A/en
Priority to TW112114241A priority patent/TW202349150A/en
Publication of WO2023209879A1 publication Critical patent/WO2023209879A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a plant operation support system.
  • an operation support system that displays on a screen operational measures to be taken in response to an abnormality when an abnormality occurs in a plant.
  • an abnormal condition such as equipment failure occurs
  • the system notifies the operator of the danger avoidance method and treatment method according to the operating status of the plant.
  • Support stable operations The operator collected further judgment information and decided whether to continue operation or not.
  • the present invention was made in order to solve the above-mentioned problems, and it compares the amount of drop in production for each possible operational action when equipment failure occurs, and determines the optimal operational action from the viewpoint of productivity.
  • the purpose of the present invention is to provide a plant operation support device that can minimize the drop in production by providing guidance display.
  • the first aspect relates to a plant operation support system.
  • the plant operation support system includes sensors installed in a plant and used for operation, at least one processor, and a memory.
  • the memory stores temporary treatment information for continuing operation of the plant in a state where the sensor is out of order.
  • the processor is configured such that, in a state where the sensor is out of order, the production amount after provisional treatment when continuing operation by performing temporary treatment on the plant according to the temporary treatment information is such that the production amount after the temporary treatment is such that the failed sensor is replaced with a normal sensor. If the production amount is equal to or greater than the production amount after replacement when restarting operation after the work, a signal is output to display the temporary treatment information.
  • the plant operation support system automatically determines the optimal measure by comparing the drop in production due to temporary measures and sensor replacement, and takes temporary measures. If necessary, registered temporary treatment information is displayed. This helps the operator and minimizes the amount of drop in production.
  • the second aspect further has the following features.
  • the processor outputs a signal for displaying replacement information instructing replacement work of the sensor when the production amount after temporary treatment is less than the production amount after replacement in a state where the sensor is out of order. do.
  • the third aspect further has the following characteristics in addition to the first or second aspect.
  • the memory stores a temporary treatment production rate in operation after temporary treatment according to the failed sensor, and a replacement time required for replacing the failed sensor with the normal sensor.
  • the production amount after temporary treatment is a value obtained by multiplying the temporary treatment production rate by the remaining operating time from the current time to the regular repair time.
  • the post-replacement production amount is a value obtained by multiplying the production rate of normal operation using the normal sensor by the time obtained by subtracting the replacement time from the remaining operating time.
  • the amount of drop in production volume for each possible operational action is compared, and guidance is displayed to support the optimal operation action from the viewpoint of productivity, thereby minimizing the amount of drop in production volume. can be kept to a minimum.
  • FIG. 1 is a diagram for explaining an example of the overall configuration of a plant according to an embodiment of the present invention. It is a flowchart for explaining the operation return processing flow when a device failure occurs according to the embodiment of the present invention. It is a flow chart for explaining an operation treatment judgment algorithm concerning an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining specific examples of various tables according to an embodiment of the present invention. 1 is a block diagram showing an example of a hardware configuration of a plant operation support system according to an embodiment of the present invention.
  • FIG. 1 is a diagram for explaining the overall configuration of a plant according to an embodiment. Although the plant 1 shown in FIG. 1 further includes configurations not shown, descriptions of the other configurations will be omitted to simplify the explanation.
  • Plant 1 is an industrial plant that produces products.
  • Industrial plants include, for example, steel plants, paper plants, petrochemical plants, food plants, power plants, and the like.
  • the plant 1 shown in FIG. 1 includes a field device 2, a programmable logic controller (hereinafter referred to as PLC) 3, a server 10, and a human machine interface (hereinafter referred to as HMI) 20.
  • PLC programmable logic controller
  • HMI human machine interface
  • the PLC 3 and the server 10 are connected via a dedicated control LAN 4 that interfaces data.
  • the PLC 3, server 10, and HMI 20 are connected via a general-purpose control LAN 5 that interfaces data.
  • the field devices 2 are sensors and actuators for monitoring and controlling the operation of the plant 1.
  • the actuator operates according to a control signal from PLC3.
  • the sensor detects the state of the object.
  • Equipment status signals of actuators and sensors are taken into the PLC 3 via the I/O card.
  • PLC3 is a controller for plant control. PLC3 transmits a control signal to field device 2. The PLC 3 outputs the device status signal received from the field device 2 to the dedicated control LAN 4. Further, the PLC 3 receives a PLC setting signal from a PLC software engineering tool provided in the HMI 20, and can change the control program or recombine the circuit.
  • the server 10 is a data collection server for equipment failure monitoring.
  • the server 10 monitors device status signals of sensors and actuators flowing through the dedicated control LAN 4.
  • the server 10 detects a device failure state from a sensor, which is one of the device state signals, it executes the operation return processing flow shown in FIG. 2, which will be described later.
  • operation shall be resumed after equipment replacement.
  • the server 10 includes a database 11 that includes various setting tables 12.
  • the various setting tables 12 include a sensor type table A41, a temporary treatment production rate table B42, an inventory table C43, and a replacement time table D44 shown in FIG. 4, which will be described later.
  • the various setting tables 12 include temporary treatment information for continuing the operation of the plant in a state where a sensor is out of order. In the temporary treatment information, a temporary treatment method using PLC software is registered in advance for each sensor.
  • the HMI 20 is an HMI & PLC software engineering tool.
  • the HMI 20 has a function of displaying a temporary treatment guidance screen 21 according to a display signal (including temporary treatment information) received from the server 10 (FIG. 1 shows an example of a table display of the temporary treatment guidance screen 21. ).
  • the HMI 20 has a function as an engineering tool including a PLC software editor 22 that allows the settings of the PLC 3 to be edited by an operator (FIG. 1 shows a display example of the PLC software editor 22).
  • the HMI 20 transmits a PLC setting signal from the PLC software engineering tool to the PLC 3 via the general-purpose control LAN 5.
  • Plant Operation Support System Next, a plant operation support system including the server 10 and the HMI 20 will be described with reference to FIGS. 1 to 4.
  • FIG. 2 is a diagram for explaining the process flow for returning to operation when a device failure occurs in the plant operation support system according to the embodiment.
  • the operation return processing flow shown in FIG. 2 is implemented as software within the server 10 of FIG. 1.
  • step S100 it is determined whether the current plant operating state is in operation or under regular repair. If it is determined that the system is in operation, the process of step S110 is executed. If it is determined that regular repair is being performed, the process of step S140, which will be described later, is executed.
  • step S110 an operation treatment determination algorithm shown in FIG. 3, which will be described later, is executed, and one of steps S120 to S140 is executed depending on the determination result.
  • Step S120 is selected, the plant continues normal operation. Step S120 is selected when a device that does not affect the production volume breaks down, for example, when a dedicated monitoring sensor breaks down.
  • step S130 the plant is operated with the operator performing temporary treatment on the PLC 3 according to the temporary treatment guidance screen 21 (FIG. 1).
  • Step S130 is selected when automatic operation is changed to manual operation and the production volume decreases, but considering the time required to repair the equipment, it is better to continue operation with temporary measures to suppress the impact on production volume. If temporary measures are taken, the main measures (equipment replacement, etc.) will be carried out at the next regular repair.
  • step S130 the operation after temporary treatment (step S130) is selected as the optimal operation, the database 11 in which software temporary treatment methods for the failure of equipment in the plant are registered in advance is searched, and the software temporary treatment method for the target failed equipment is searched.
  • This is displayed on the temporary treatment guidance screen 21 of the HMI 20 in FIG.
  • the operator implements a temporary treatment using the PLC software editor 22 of the HMI 20 according to the temporary treatment guidance screen 21 .
  • the provisional treatment performed by the PLC software editor 22 is reflected in the PLC software in the PLC 3.
  • the provisional treatment guidance screen 21 provides guidance to jumper the contact A on the MS 10 because the sensor A is currently out of order. Following the guidance, the operator performs a temporary measure to jumper the sensor signal contact A using the PLC software editor 22.
  • step S140 the plant resumes operation after repairing the failed equipment to normal equipment.
  • Step S140 is selected when the malfunctioning equipment cannot be operated unless it is repaired. There are cases in which stopping operations and repairing (replacing) malfunctioning equipment can reduce the impact on production volume rather than continuing operations with temporary measures.
  • step S200 the server 10 executes sensor type determination using the sensor type table A41.
  • Sensors are classified into three types.
  • Type 1 is a sensor that does not affect the continuation of operation at all in the event of a sensor failure.
  • Type 2 is a sensor that affects operations in the event of a sensor failure, but can continue operations with temporary measures.
  • Type 3 is a sensor that affects operations when a sensor malfunctions, and it is impossible to continue operations with temporary measures.
  • sensor A is defined as type 2, sensor B as type 1, sensor C as type 2, and sensor D as type 3.
  • step S200 it is determined whether the failed sensor is of type 1.
  • the failed sensor is a device that does not affect the production amount, for example, a monitoring-only sensor. Therefore, the plant continues normal operation (step S210).
  • Step S210 corresponds to step S120 in FIG. After that, it is up to the operator to decide whether to continue operation or not.
  • step S200 determines whether the failed sensor is not of type 1
  • the process of step S220 is executed.
  • step S220 the server 10 uses the sensor type table A41 to determine whether the failed sensor is type 2 or type 3. If it is determined to be type 2, the processes from step S230 onwards are executed to determine whether temporary treatment operation (manual operation using temporary treatment) is possible. On the other hand, if it is determined to be type 3, provisional treatment operation is not possible, so the processes from step S270 onwards are executed.
  • step S230 the server 10 uses the inventory table C43 to determine whether spare parts are in stock.
  • the inventory table C43 shown in FIG. 4 the inventory status for each sensor is determined. If there is a spare part for the sensor (type 2), the process of step S240 is executed. If there is no spare part for the sensor (type 2), the process of step S250 is executed.
  • step S240 the server 10 uses the temporary treatment production rate table B42 and the replacement time table D44 to compare the amount of production decrease due to the temporary treatment operation and the amount of production decrease due to repair of the faulty sensor (type 2).
  • the server 10 determines that the production amount after provisional treatment when the plant continues operation by performing temporary treatment according to the temporary treatment information, and the production amount after replacement when operation is resumed after replacing the failed sensor with a normal sensor. It is determined whether or not the value is greater than or equal to the value. Specifically, the production amount after temporary treatment is the value obtained by multiplying the temporary treatment production rate by the remaining operating time from the current time to the regular repair time. The production volume after replacement is the value obtained by multiplying the production rate of normal operation using a normal sensor by the remaining operating time minus the replacement time (the time required to replace a faulty sensor with a normal sensor). It is.
  • the temporary treatment production rate table B42 shown in FIG. 4 defines the production rate by manual operation after temporary treatment with respect to the production rate (100%) by automatic operation when the target sensor is normal.
  • sensor A is set to have a temporary treatment production rate of 70%
  • sensor C is set to have a temporary treatment production rate of 40%.
  • the replacement time table D44 shown in FIG. 4 the replacement time for sensor A is 8 hours, and the replacement time for sensor C is 4 hours.
  • step S240 if it is determined that implementing the (a) provisional treatment operation results in less decrease in production, the process of step S250, which will be described later, is executed.
  • step S240 if it is determined that (b) returning to normal operation after sensor replacement will reduce the decrease in production, the process of step S290, which will be described later, is executed.
  • step S240 if it is determined that implementing (a) temporary treatment operation will reduce the decrease in production, or if it is determined in step S230 that there is no spare parts in stock, the process of step S250 is performed. executed.
  • step S250 the server 10 outputs a signal to display temporary treatment information when the production amount after temporary treatment is equal to or greater than the production amount after replacement.
  • the HMI 20 that has received the signal displays a temporary treatment guidance screen 21 according to the temporary treatment information.
  • the operator implements temporary treatment using the PLC software using the PLC software editor 22 of the HMI 20 in accordance with the temporary treatment method shown on the temporary treatment guidance screen 21.
  • the plant is operated after the temporary treatment (step S260). Step S250 and step S260 correspond to step S130 described above.
  • step S220 if it is determined that the failed sensor is of type 3, then the process of step S270 is executed next because operation cannot be performed unless the failed device is repaired.
  • step S270 the server 10 uses the inventory table C43 to determine whether spare parts are in stock. If there is a spare part for the sensor (type 3), the process of step S290 is executed. If there is no spare part for the sensor (type 3), the sensor is procured in step S280, and then the process in step S290 is executed.
  • step S290 is performed after the process of step S280, or if it is determined in step S270 that there is no spare parts in stock, or if it is determined in step S240 that the production volume after temporary treatment is less than the production volume after replacement. is executed if In step S290, the server 10 outputs a signal to display replacement information instructing sensor replacement work.
  • the HMI 20 displays replacement information on the screen. The operator takes measures such as replacing the faulty sensor with a spare part. Thereafter, the plant resumes normal operation in step S300. Step S290 and step S300 correspond to step S140 described above.
  • the plant operation support system of the embodiment described above includes the server 10 and the HMI 20 separately, it is also possible to include a single device having the functions of both the server 10 and the HMI 20. good. Alternatively, three or more devices may be provided.
  • FIG. 5 is a block diagram showing a hardware configuration example of the server 10 and the HMI 20.
  • Each process of the server 10 described above is realized by a processing circuit.
  • the processing circuit is configured by connecting a processor 10a, a memory 10b, and a network interface 10c.
  • the processor 10a implements each function of the server 10 by executing various programs stored in the memory 10b.
  • Memory 10b includes a main storage device and an auxiliary storage device.
  • the memory 10b stores the above-mentioned temporary treatment information and various setting tables 12 in advance.
  • the network interface 10c is a device that is connected to the PLC 3 and the HMI 20 via a computer network and is capable of transmitting and receiving signals.
  • Each process of the HMI 20 described above is realized by a processing circuit.
  • the processing circuit is configured by connecting a processor 20a, a memory 20b, a network interface 20c, an input interface 20d, and at least one monitor 20e.
  • the processor 20a implements each function of the HMI 20 by executing various programs stored in the memory 20b.
  • Memory 10b includes a main storage device and an auxiliary storage device.
  • the network interface 20c is a device that connects to the server 10 via a computer network and is capable of transmitting and receiving signals.
  • the input interface 20d is an input device such as a keyboard, mouse, or touch panel. A plurality of monitors 20e may be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The purpose of the present invention is to: when a sensor failure occurs during plant operations, provide support by comparing amounts of decrease in production quantity for various possible operational actions and performing guidance display of operation actions which are optimal from the perspective of productivity; and minimize the amount of decrease in production quantity. To accomplish this, this plant operation support system performs a guidance display of provisional action information in a case in which, in a state in which a sensor has failed, the post-provisional action production quantity, for when a provisional action is implemented on the plant and operations are continued in accordance with provisional action information for continuing operations of the plant, is greater than or equal to the post-replacement production quantity, for when restarting operations after work for replacing the failed sensor with a normal sensor is performed.

Description

プラント操業支援システムPlant operation support system
 本発明は、プラント操業支援システムに関する。 The present invention relates to a plant operation support system.
 例えば特許文献1に開示されるように、プラントに異常が発生した場合にその異常ケースに対応すべき操作処置を画面に表示する操業支援システムが知られている。従来の操業支援システムでは、操業安定性の観点で、機器故障等の異常な状態になった際に、プラントの操業状態に応じた危険の回避操作方法や、処置方法をオペレータに知らせることで、安定的な操業を支援する。オペレータは、さらに判断情報を集めて操業を継続するか否かを判断していた。 For example, as disclosed in Patent Document 1, an operation support system is known that displays on a screen operational measures to be taken in response to an abnormality when an abnormality occurs in a plant. In conventional operation support systems, from the perspective of operational stability, when an abnormal condition such as equipment failure occurs, the system notifies the operator of the danger avoidance method and treatment method according to the operating status of the plant. Support stable operations. The operator collected further judgment information and decided whether to continue operation or not.
特開2003-140742号公報Japanese Patent Application Publication No. 2003-140742
 しかしながら、操業安定性の観点に基づく従来の操業支援システムは、生産性の観点で、定量的に最適な処置方法、操業方法を判断し自動的に知らせるものではなかった。そのため、直接的に生産量の落ち込みを最小限に抑える仕組みではなかった。 However, conventional operation support systems based on the perspective of operational stability do not quantitatively determine and automatically notify the optimal treatment method and operation method from the perspective of productivity. Therefore, there was no mechanism to directly minimize the decline in production.
 また、操業安定性の観点に基づく従来の操業支援システムは、機器故障発生時の操業処置方法の一つである仮処置による操業継続については、ソフトウェア上での仮処置を安全上の観点から自動的に処置実施することをさけていた。そのため、対象機器に応じた仮処置方法が予め確立されておらず、処置するまでに時間を要し、操業再開までに時間を要するなどの問題があった。 In addition, conventional operation support systems based on the perspective of operational stability do not automatically perform temporary measures on software from a safety perspective to continue operation by taking temporary measures, which is one of the operational measures when equipment failure occurs. I avoided taking any necessary measures. Therefore, there are problems in that a temporary treatment method corresponding to the target equipment has not been established in advance, and it takes time to perform treatment and time to restart operations.
 本発明は、上述のような課題を解決するためになされたもので、機器故障発生時に、取り得る操業処置ごとの生産量の落ち込み量を比較して、生産性の観点から最適な操業処置をガイダンス表示により支援し、生産量の落ち込み量を最小限に抑えることができるプラント操業支援装置を提供することを目的とする。 The present invention was made in order to solve the above-mentioned problems, and it compares the amount of drop in production for each possible operational action when equipment failure occurs, and determines the optimal operational action from the viewpoint of productivity. The purpose of the present invention is to provide a plant operation support device that can minimize the drop in production by providing guidance display.
 第1の観点は、プラント操業支援システムに関連する。
 プラント操業支援システムは、プラントに設置され操業に用いられるセンサーと、少なくとも1つのプロセッサとメモリとを備える。
 前記メモリは、前記センサーが故障している状態で前記プラントの操業を継続するための仮処置情報を格納する。
 前記プロセッサは、前記センサーが故障している状態において、前記仮処置情報に従って前記プラントに仮処置を施して操業を継続する場合の仮処置後生産量が、故障した前記センサーを正常なセンサーに取り替える作業後に操業を再開する場合の取替後生産量以上である場合に、前記仮処置情報を表示させる信号を出力する。
The first aspect relates to a plant operation support system.
The plant operation support system includes sensors installed in a plant and used for operation, at least one processor, and a memory.
The memory stores temporary treatment information for continuing operation of the plant in a state where the sensor is out of order.
The processor is configured such that, in a state where the sensor is out of order, the production amount after provisional treatment when continuing operation by performing temporary treatment on the plant according to the temporary treatment information is such that the production amount after the temporary treatment is such that the failed sensor is replaced with a normal sensor. If the production amount is equal to or greater than the production amount after replacement when restarting operation after the work, a signal is output to display the temporary treatment information.
 これによれば、プラント操業支援システムは、操業に影響するセンサーが故障した場合に、仮処置とセンサー取り替えによる生産量の落ち込み量を比較して、最適な処置を自動的に判断し、仮処置を実施すべき場合には登録されている仮処置情報を表示する。これにより、オペレータを支援し、生産量の落ち込み量を最小限に抑えることができる。 According to this, when a sensor that affects operations breaks down, the plant operation support system automatically determines the optimal measure by comparing the drop in production due to temporary measures and sensor replacement, and takes temporary measures. If necessary, registered temporary treatment information is displayed. This helps the operator and minimizes the amount of drop in production.
 第2の観点は、第1の観点に加えて、次の特徴を更に有する。
 前記プロセッサは、前記センサーが故障している状態において、前記仮処置後生産量が前記取替後生産量未満である場合に、前記センサーの取り替え作業を指示する取替情報を表示させる信号を出力する。
In addition to the first aspect, the second aspect further has the following features.
The processor outputs a signal for displaying replacement information instructing replacement work of the sensor when the production amount after temporary treatment is less than the production amount after replacement in a state where the sensor is out of order. do.
 第3の観点は、第1又は2の観点に加えて、次の特徴を更に有する。
 前記メモリは、故障した前記センサーに応じた仮処置後の操業における仮処置生産率と、故障した前記センサーを前記正常なセンサーに取り替える作業に要する取替時間と、を格納する。
 前記仮処置後生産量は、前記仮処置生産率に現在から定期修理時刻までの残操業時間を乗じた値である。
 前記取替後生産量は、前記正常なセンサーを用いた通常操業の生産率に前記残操業時間から前記取替時間を引いた時間を乗じた値である。
The third aspect further has the following characteristics in addition to the first or second aspect.
The memory stores a temporary treatment production rate in operation after temporary treatment according to the failed sensor, and a replacement time required for replacing the failed sensor with the normal sensor.
The production amount after temporary treatment is a value obtained by multiplying the temporary treatment production rate by the remaining operating time from the current time to the regular repair time.
The post-replacement production amount is a value obtained by multiplying the production rate of normal operation using the normal sensor by the time obtained by subtracting the replacement time from the remaining operating time.
 本発明によれば、機器故障発生時に、取り得る操業処置ごとの生産量の落ち込み量を比較して、生産性の観点から最適な操業処置をガイダンス表示により支援し、生産量の落ち込み量を最小限に抑えることができる。 According to the present invention, when an equipment failure occurs, the amount of drop in production volume for each possible operational action is compared, and guidance is displayed to support the optimal operation action from the viewpoint of productivity, thereby minimizing the amount of drop in production volume. can be kept to a minimum.
本発明の実施の形態に係るプラントの全体構成例を説明するための図である。1 is a diagram for explaining an example of the overall configuration of a plant according to an embodiment of the present invention. 本発明の実施の形態に係る機器故障発生時の操業復帰処理フローについて説明するためのフローチャートである。It is a flowchart for explaining the operation return processing flow when a device failure occurs according to the embodiment of the present invention. 本発明の実施の形態に係る操業処置判断アルゴリズムについて説明するためのフローチャートである。It is a flow chart for explaining an operation treatment judgment algorithm concerning an embodiment of the present invention. 本発明の実施の形態に係る各種テーブルの具体例を説明するための図である。FIG. 3 is a diagram for explaining specific examples of various tables according to an embodiment of the present invention. 本発明の実施の形態に係るプラント操業支援システムのハードウェア構成例を示すブロック図である。1 is a block diagram showing an example of a hardware configuration of a plant operation support system according to an embodiment of the present invention.
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that common elements in each figure are given the same reference numerals and redundant explanations will be omitted.
実施の形態.
1.全体構成
 図1は、実施の形態に係るプラントの全体構成を説明するための図である。図1に示すプラント1は、図示しない構成をさらに備えているが、説明を簡単にするために他の構成については説明を省略する。
Embodiment.
1. Overall Configuration FIG. 1 is a diagram for explaining the overall configuration of a plant according to an embodiment. Although the plant 1 shown in FIG. 1 further includes configurations not shown, descriptions of the other configurations will be omitted to simplify the explanation.
 プラント1は、製品を生産する産業プラントである。産業プラントは、例えば、鉄鋼プラント、製紙プラント、石油化学プラント、食品プラント、発電プラントなどである。図1に示すプラント1は、フィールド機器2、プログラマブルロジックコントローラ(以下、PLC)3、サーバー10、ヒューマンマシンインタフェース(以下、HMI)20を備える。 Plant 1 is an industrial plant that produces products. Industrial plants include, for example, steel plants, paper plants, petrochemical plants, food plants, power plants, and the like. The plant 1 shown in FIG. 1 includes a field device 2, a programmable logic controller (hereinafter referred to as PLC) 3, a server 10, and a human machine interface (hereinafter referred to as HMI) 20.
 PLC3とサーバー10は、データをインタフェースする専用制御LAN4で接続している。PLC3とサーバー10とHMI20は、データをインタフェースする汎用制御LAN5で接続している。 The PLC 3 and the server 10 are connected via a dedicated control LAN 4 that interfaces data. The PLC 3, server 10, and HMI 20 are connected via a general-purpose control LAN 5 that interfaces data.
 フィールド機器2は、プラント1の操業を監視・制御するためのセンサーおよびアクチュエータである。アクチュエータはPLC3からの制御信号に応じて動作する。センサーは対象の状態を検出する。アクチュエータおよびセンサーの機器状態信号はI/Oカードを介してPLC3へ取り込まれる。 The field devices 2 are sensors and actuators for monitoring and controlling the operation of the plant 1. The actuator operates according to a control signal from PLC3. The sensor detects the state of the object. Equipment status signals of actuators and sensors are taken into the PLC 3 via the I/O card.
 PLC3は、プラント制御用コントローラである。PLC3は、フィールド機器2へ制御信号を送信する。PLC3は、フィールド機器2から受信した機器状態信号を専用制御LAN4へ出力する。また、PLC3は、HMI20に設けられたPLCソフトウェアエンジニアリングツールからPLC設定信号を受信し、制御プログラムの変更や回路の組み換えを実施できる。 PLC3 is a controller for plant control. PLC3 transmits a control signal to field device 2. The PLC 3 outputs the device status signal received from the field device 2 to the dedicated control LAN 4. Further, the PLC 3 receives a PLC setting signal from a PLC software engineering tool provided in the HMI 20, and can change the control program or recombine the circuit.
 サーバー10は、機器故障監視用データ収集サーバーである。サーバー10は、専用制御LAN4に流れているセンサーやアクチュエータの機器状態信号を監視する。サーバー10は、機器状態信号の1つであるセンサーの機器故障状態を検知すると、後述する図2の操業復帰処理フローを実行する。なお、アクチュエータの機器故障状態を検知した場合は、機器取替後に操業を復帰するものとする。 The server 10 is a data collection server for equipment failure monitoring. The server 10 monitors device status signals of sensors and actuators flowing through the dedicated control LAN 4. When the server 10 detects a device failure state from a sensor, which is one of the device state signals, it executes the operation return processing flow shown in FIG. 2, which will be described later. In addition, if an equipment failure state of an actuator is detected, operation shall be resumed after equipment replacement.
 サーバー10は、各種設定テーブル12を含むデータベース11を備える。各種設定テーブル12は、後述する図4に示すセンサー種別テーブルA41、仮処置生産率テーブルB42、在庫テーブルC43、取替所要時間テーブルD44を含む。また、各種設定テーブル12は、センサーが故障している状態でプラントの操業を継続するための仮処置情報を含む。仮処置情報には、センサー毎にPLCソフトウェアによる仮処置方法が予め登録されている。 The server 10 includes a database 11 that includes various setting tables 12. The various setting tables 12 include a sensor type table A41, a temporary treatment production rate table B42, an inventory table C43, and a replacement time table D44 shown in FIG. 4, which will be described later. Further, the various setting tables 12 include temporary treatment information for continuing the operation of the plant in a state where a sensor is out of order. In the temporary treatment information, a temporary treatment method using PLC software is registered in advance for each sensor.
 HMI20は、HMI&PLCソフトウェアエンジニアリングツールである。HMI20は、サーバー10から受信した表示信号(仮処置情報を含む)に応じて仮処置ガイダンス画面21を表示する機能を備える(図1には仮処置ガイダンス画面21のテーブル表示例が描かれている)。加えて、HMI20は、オペレータの操作によりPLC3の設定を編集可能なPLCソフトウェアエディタ22を有するエンジニアリングツールとしての機能とを備える(図1にはPLCソフトウェアエディタ22の表示例が描かれている)。HMI20は、PLCソフトウェアエンジニアリングツールによるPLC設定信号を、汎用制御LAN5を介してPLC3へ送信する。 HMI20 is an HMI & PLC software engineering tool. The HMI 20 has a function of displaying a temporary treatment guidance screen 21 according to a display signal (including temporary treatment information) received from the server 10 (FIG. 1 shows an example of a table display of the temporary treatment guidance screen 21. ). In addition, the HMI 20 has a function as an engineering tool including a PLC software editor 22 that allows the settings of the PLC 3 to be edited by an operator (FIG. 1 shows a display example of the PLC software editor 22). The HMI 20 transmits a PLC setting signal from the PLC software engineering tool to the PLC 3 via the general-purpose control LAN 5.
2.プラント操業支援システム
 次に、図1~図4を参照して、サーバー10およびHMI20を含むプラント操業支援システムについて説明する。
2. Plant Operation Support System Next, a plant operation support system including the server 10 and the HMI 20 will be described with reference to FIGS. 1 to 4.
 図2は、実施の形態に係るプラント操業支援システムにおける機器故障発生時の操業復帰処理フローについて説明するための図である。図2に示す操業復帰処理フローは、図1のサーバー10内ソフトウェアとして実装されている。 FIG. 2 is a diagram for explaining the process flow for returning to operation when a device failure occurs in the plant operation support system according to the embodiment. The operation return processing flow shown in FIG. 2 is implemented as software within the server 10 of FIG. 1.
2-1.操業復帰処理フローの概要
 サーバー10は、機器故障状態を検知すると、図2に示す操業復帰処理フローを実行する。ここで機器故障はセンサー故障であるとする。
2-1. Outline of operation return processing flow When the server 10 detects a device failure state, it executes the operation return processing flow shown in FIG. 2 . Here, it is assumed that the equipment failure is a sensor failure.
 最初にステップS100において、現状のプラント操業状態が操業中であるか定期修理中であるかが判定される。操業中と判定された場合、ステップS110の処理が実行される。定期修理中と判定された場合、後述するステップS140の処理が実行される。 First, in step S100, it is determined whether the current plant operating state is in operation or under regular repair. If it is determined that the system is in operation, the process of step S110 is executed. If it is determined that regular repair is being performed, the process of step S140, which will be described later, is executed.
 ステップS110において、後述する図3の操業処置判断アルゴリズムが実行され、判断結果に応じてステップS120~ステップS140のいずれか1つの処理が実行される。 In step S110, an operation treatment determination algorithm shown in FIG. 3, which will be described later, is executed, and one of steps S120 to S140 is executed depending on the determination result.
 ステップS120が選択された場合、プラントは通常操業を継続する。ステップS120が選択されるのは、生産量に影響を及ぼさない機器が故障した場合であり、例えば監視専用センサーが故障した場合である。 If step S120 is selected, the plant continues normal operation. Step S120 is selected when a device that does not affect the production volume breaks down, for example, when a dedicated monitoring sensor breaks down.
 ステップS130が選択された場合、オペレータが仮処置ガイダンス画面21(図1)に従ってPLC3に仮処置を施した状態で、プラントは操業される。ステップS130が選択されるのは、自動操業から手動操業となり、生産量は落ちるが、機器改修する時間を考慮すると仮処置にて操業継続したほうが、生産量への影響を抑えられる場合である。仮処置を実施した場合、次回定期修理時に本処置(機器交換など)が実施される。 If step S130 is selected, the plant is operated with the operator performing temporary treatment on the PLC 3 according to the temporary treatment guidance screen 21 (FIG. 1). Step S130 is selected when automatic operation is changed to manual operation and the production volume decreases, but considering the time required to repair the equipment, it is better to continue operation with temporary measures to suppress the impact on production volume. If temporary measures are taken, the main measures (equipment replacement, etc.) will be carried out at the next regular repair.
 図1を参照して具体例を説明する。仮処置後の操業(ステップS130)が最適な操業として選択された場合、プラント内機器故障時のソフトウェア仮処置方法があらかじめ登録されたデータベース11が検索され、対象故障機器のソフトウェア仮処置方法が、図1のHMI20の仮処置ガイダンス画面21に表示される。オペレータは、仮処置ガイダンス画面21に従って、HMI20のPLCソフトウェアエディタ22で仮処置を実施する。PLCソフトウェアエディタ22で実施された仮処置は、PLC3内のPLCソフトウェアに反映される。図1に示す例では、仮処置ガイダンス画面21に、現在センサーAが故障しているため、MS10にある接点Aをジャンパーすることがガイダンスされている。オペレータは、ガイダンスに従って、PLCソフトウェアエディタ22でセンサー信号接点Aをジャンパーする仮処置を実施する。 A specific example will be explained with reference to FIG. If the operation after temporary treatment (step S130) is selected as the optimal operation, the database 11 in which software temporary treatment methods for the failure of equipment in the plant are registered in advance is searched, and the software temporary treatment method for the target failed equipment is searched. This is displayed on the temporary treatment guidance screen 21 of the HMI 20 in FIG. The operator implements a temporary treatment using the PLC software editor 22 of the HMI 20 according to the temporary treatment guidance screen 21 . The provisional treatment performed by the PLC software editor 22 is reflected in the PLC software in the PLC 3. In the example shown in FIG. 1, the provisional treatment guidance screen 21 provides guidance to jumper the contact A on the MS 10 because the sensor A is currently out of order. Following the guidance, the operator performs a temporary measure to jumper the sensor signal contact A using the PLC software editor 22.
 ステップS140が選択された場合、故障機器を正常な機器に改修後に、プラントは操業を再開する。ステップS140が選択されるのは、故障機器を改修しないと操業ができない場合である。操業を停止して故障機器を改修(交換)したほうが、仮処置にて操業継続するよりも生産量への影響を抑えられる場合である。 If step S140 is selected, the plant resumes operation after repairing the failed equipment to normal equipment. Step S140 is selected when the malfunctioning equipment cannot be operated unless it is repaired. There are cases in which stopping operations and repairing (replacing) malfunctioning equipment can reduce the impact on production volume rather than continuing operations with temporary measures.
2-2.操業処置判断アルゴリズム
 図3を参照して、図2のステップS100で実行される操業処置判断アルゴリズムの詳細について説明する。
2-2. Operation Treatment Determination Algorithm The details of the operation treatment determination algorithm executed in step S100 in FIG. 2 will be described with reference to FIG.
 まず、ステップS200において、サーバー10は、センサー種別テーブルA41を用いて、センサー種別判定を実行する。センサーは3種類に分類される。種別1は、センサー故障時に操業継続に全く影響しないセンサーである。種別2は、センサー故障時に操業に影響するが仮処置にて操業継続可能なセンサーである。種別3は、センサー故障時に操業に影響があり、かつ仮処置による操業継続が不可能なセンサーである。図4に示すセンサー種別テーブルA41の一例では、センサーAは種別2、センサーBは種別1、センサーCは種別2、センサーDは種別3と定められている。 First, in step S200, the server 10 executes sensor type determination using the sensor type table A41. Sensors are classified into three types. Type 1 is a sensor that does not affect the continuation of operation at all in the event of a sensor failure. Type 2 is a sensor that affects operations in the event of a sensor failure, but can continue operations with temporary measures. Type 3 is a sensor that affects operations when a sensor malfunctions, and it is impossible to continue operations with temporary measures. In an example of the sensor type table A41 shown in FIG. 4, sensor A is defined as type 2, sensor B as type 1, sensor C as type 2, and sensor D as type 3.
 ステップS200では、故障したセンサーが種別1であるか否かが判定される。故障したセンサーが種別1であると判定される場合、故障したセンサーは、生産量に影響を及ぼさない機器、例えば監視専用センサーである。そのため、プラントは通常操業を継続する(ステップS210)。ステップS210は、図2のステップS120に対応する。その後、操業継続するか否かはオペレータの判断に委ねる。 In step S200, it is determined whether the failed sensor is of type 1. When it is determined that the failed sensor is of type 1, the failed sensor is a device that does not affect the production amount, for example, a monitoring-only sensor. Therefore, the plant continues normal operation (step S210). Step S210 corresponds to step S120 in FIG. After that, it is up to the operator to decide whether to continue operation or not.
 一方、ステップS200において、故障したセンサーが種別1ではないと判定された場合、ステップS220の処理が実行される。 On the other hand, if it is determined in step S200 that the failed sensor is not of type 1, the process of step S220 is executed.
 ステップS220において、サーバー10は、センサー種別テーブルA41を用いて、故障したセンサーが種別2であるか種別3であるかを判定する。種別2と判定された場合、仮処置操業(仮処置による手動操業)の可否を判断するためステップS230以降の処理が実行される。一方、種別3と判定された場合、仮処置操業が不可能であるためステップS270以降の処理が実行される。 In step S220, the server 10 uses the sensor type table A41 to determine whether the failed sensor is type 2 or type 3. If it is determined to be type 2, the processes from step S230 onwards are executed to determine whether temporary treatment operation (manual operation using temporary treatment) is possible. On the other hand, if it is determined to be type 3, provisional treatment operation is not possible, so the processes from step S270 onwards are executed.
 ステップS230において、サーバー10は、在庫テーブルC43を用いて予備品在庫の有無を判定する。図4に示す在庫テーブルC43には、センサー毎の在庫有無状況が定められている。センサー(種別2)の予備品がある場合は、ステップS240の処理が実行される。センサー(種別2)の予備品がない場合は、ステップS250の処理が実行される。 In step S230, the server 10 uses the inventory table C43 to determine whether spare parts are in stock. In the inventory table C43 shown in FIG. 4, the inventory status for each sensor is determined. If there is a spare part for the sensor (type 2), the process of step S240 is executed. If there is no spare part for the sensor (type 2), the process of step S250 is executed.
 ステップS240において、サーバー10は、仮処置生産率テーブルB42と取替所要時間テーブルD44を用いて、仮処置操業による生産低下量と故障センサー(種別2)改修による生産低下量とを比較する。 In step S240, the server 10 uses the temporary treatment production rate table B42 and the replacement time table D44 to compare the amount of production decrease due to the temporary treatment operation and the amount of production decrease due to repair of the faulty sensor (type 2).
 サーバー10は、仮処置情報に従ってプラントに仮処置を施して操業を継続する場合の仮処置後生産量が、故障したセンサーを正常なセンサーに取り替える作業後に操業を再開する場合の取替後生産量以上であるか否かを判定する。詳細には、仮処置後生産量は、仮処置生産率に現在から定期修理時刻までの残操業時間を乗じた値である。取替後生産量は、正常なセンサーを用いた通常操業の生産率に、残操業時間から取替時間(故障したセンサーを正常なセンサーに取り替える作業に要する時間)を引いた時間を乗じた値である。 The server 10 determines that the production amount after provisional treatment when the plant continues operation by performing temporary treatment according to the temporary treatment information, and the production amount after replacement when operation is resumed after replacing the failed sensor with a normal sensor. It is determined whether or not the value is greater than or equal to the value. Specifically, the production amount after temporary treatment is the value obtained by multiplying the temporary treatment production rate by the remaining operating time from the current time to the regular repair time. The production volume after replacement is the value obtained by multiplying the production rate of normal operation using a normal sensor by the remaining operating time minus the replacement time (the time required to replace a faulty sensor with a normal sensor). It is.
 具体例を説明する。図4に示す仮処置生産率テーブルB42は、対象センサー正常時の自動操業による生産率(100%)に対する、仮処置後の手動操業による生産率を定めている。図4に示す例では、センサーAは仮処置生産率70%、センサーCは仮処置生産率40%と定められている。また、図4に示す取替所要時間テーブルD44の一例では、センサーAは取替所要時間8時間、センサーCは取替所要時間4時間と定められている。 A specific example will be explained. The temporary treatment production rate table B42 shown in FIG. 4 defines the production rate by manual operation after temporary treatment with respect to the production rate (100%) by automatic operation when the target sensor is normal. In the example shown in FIG. 4, sensor A is set to have a temporary treatment production rate of 70%, and sensor C is set to have a temporary treatment production rate of 40%. Further, in an example of the replacement time table D44 shown in FIG. 4, the replacement time for sensor A is 8 hours, and the replacement time for sensor C is 4 hours.
 第1の例として、故障したセンサーがセンサーAであり、次の定期修理までの時間が10時間である場合について説明する。
 仮処置操業をする場合の生産量は、生産率100%で1時間操業した場合の生産量を100とすると、これに仮処置生産率70%と次の定期修理までの残操業時間(10時間)を乗じて計算され、700である。
 一方、故障したセンサーAを取り替える場合には、取替作業に8時間を要し(取替所要時間テーブルD44)その間の生産率は0%である。残り2時間を生産率100%で通常操業をしても生産量は200である。
 すなわち、第1の例では、仮処置操業を実施したほうが生産量の低下が少ない。ステップS240において、(a)仮処置操業を実施したほうが生産量の低下が少ないと判定された場合は、後述するステップS250の処理が実行される。
As a first example, a case will be described in which the failed sensor is sensor A and the time until the next regular repair is 10 hours.
The production volume when performing temporary repair operations is 100 if the production rate is 100% for 1 hour, plus the temporary production rate of 70% and the remaining operating time until the next regular repair (10 hours). ), which is 700.
On the other hand, when replacing the failed sensor A, the replacement work requires 8 hours (replacement time table D44), and the production rate during that time is 0%. Even if normal operation is performed at 100% production rate for the remaining 2 hours, the production amount will be 200.
That is, in the first example, the decrease in production is smaller if the temporary treatment operation is implemented. In step S240, if it is determined that implementing the (a) provisional treatment operation results in less decrease in production, the process of step S250, which will be described later, is executed.
 第2の例として、故障したセンサーがセンサーCであり、次の定期修理までの時間が10時間である場合について説明する。
 仮処置操業をする場合の生産量は、生産率100%で1時間操業した場合の生産量を100とすると、これに仮処置生産率40%と次の定期修理までの残作業時間(10時間)を乗じて計算され、400である。
 一方、故障したセンサーCを取り替える場合には、取替作業に4時間を要し(取替所要時間テーブルD44)その間の生産率は0%である。残り6時間を生産率100%で通常操業すると生産量は600である。
 すなわち、第2の例では、センサー取替後に通常操業に復帰したほうが生産量の低下が少ない。ステップS240において、(b)センサー取替後に通常操業に復帰したほうが生産量の低下が少ないと判定された場合は、後述するステップS290の処理が実行される。
As a second example, a case will be described in which the failed sensor is sensor C and the time until the next regular repair is 10 hours.
The production volume when performing temporary repair operations is 100 if the production rate is 100% for one hour, plus the temporary production rate of 40% and the remaining work time until the next regular repair (10 hours). ), which is 400.
On the other hand, when replacing the failed sensor C, the replacement work requires 4 hours (replacement time table D44), and the production rate during that time is 0%. If normal operation is performed at 100% production rate for the remaining 6 hours, the production amount will be 600.
That is, in the second example, the decrease in production is smaller if normal operation is resumed after the sensor is replaced. In step S240, if it is determined that (b) returning to normal operation after sensor replacement will reduce the decrease in production, the process of step S290, which will be described later, is executed.
 上述したステップS240において、(a)仮処置操業を実施したほうが生産量の低下が少ないと判定された場合、または、ステップS230において予備品在庫が無いと判定された場合は、ステップS250の処理が実行される。 In step S240 described above, if it is determined that implementing (a) temporary treatment operation will reduce the decrease in production, or if it is determined in step S230 that there is no spare parts in stock, the process of step S250 is performed. executed.
 ステップS250において、サーバー10は、仮処置後生産量が取替後生産量以上である場合に、仮処置情報を表示させる信号を出力する。信号を受信したHMI20は、仮処置情報に応じた仮処置ガイダンス画面21を表示する。オペレータは、仮処置ガイダンス画面21に示された仮処置方法に従って、HMI20のPLCソフトウェアエディタ22でPLCソフトウェアの仮処置を実施する。プラントは仮処置後に操業される(ステップS260)。ステップS250およびステップS260は、上述したステップS130に対応する。 In step S250, the server 10 outputs a signal to display temporary treatment information when the production amount after temporary treatment is equal to or greater than the production amount after replacement. The HMI 20 that has received the signal displays a temporary treatment guidance screen 21 according to the temporary treatment information. The operator implements temporary treatment using the PLC software using the PLC software editor 22 of the HMI 20 in accordance with the temporary treatment method shown on the temporary treatment guidance screen 21. The plant is operated after the temporary treatment (step S260). Step S250 and step S260 correspond to step S130 described above.
 一方、上述したステップS220において、故障したセンサーが種別3であると判定された場合、故障機器を改修しないと操業ができないため、次にステップS270の処理が実行される。 On the other hand, in step S220 described above, if it is determined that the failed sensor is of type 3, then the process of step S270 is executed next because operation cannot be performed unless the failed device is repaired.
 ステップS270において、サーバー10は、在庫テーブルC43を用いて予備品在庫の有無を判定する。センサー(種別3)の予備品がある場合は、ステップS290の処理が実行される。センサー(種別3)の予備品がない場合は、ステップS280においてセンサーが調達された後、ステップS290の処理が実行される。 In step S270, the server 10 uses the inventory table C43 to determine whether spare parts are in stock. If there is a spare part for the sensor (type 3), the process of step S290 is executed. If there is no spare part for the sensor (type 3), the sensor is procured in step S280, and then the process in step S290 is executed.
 ステップS290の処理は、ステップS280の処理後のほか、ステップS270において予備品在庫がないと判定された場合、または、ステップS240において仮処置後生産量が取替後生産量未満であると判定された場合に、実行される。ステップS290において、サーバー10は、センサーの取り替え作業を指示する取替情報を表示させる信号を出力する。HMI20は、取替情報を画面に表示する。オペレータは、故障センサーを予備品と取り替える等の処置を実施する。その後に、ステップS300においてプラントは通常操業を再開する。ステップS290およびステップS300は、上述したステップS140に対応する。 The process of step S290 is performed after the process of step S280, or if it is determined in step S270 that there is no spare parts in stock, or if it is determined in step S240 that the production volume after temporary treatment is less than the production volume after replacement. is executed if In step S290, the server 10 outputs a signal to display replacement information instructing sensor replacement work. The HMI 20 displays replacement information on the screen. The operator takes measures such as replacing the faulty sensor with a spare part. Thereafter, the plant resumes normal operation in step S300. Step S290 and step S300 correspond to step S140 described above.
3.効果
 以上説明したように、図2および図3に示すルーチンによれば、プラントの操業中に発生したセンサー故障時に、通常操業継続と、仮処置後の操業再開と、故障機器改修後の操業再開とのうち、生産性の観点から生産量の落ち込みを最小限に抑える操業方法を、自動的に選択できる。加えて、操業処置方法の一つであるソフトウェアの仮処置による操業については、対象機器ごとに仮処置方法をあらかじめ登録し、機器故障発生時に仮処置内容をガイダンス表示する。そのため、最短時間での操業再開を支援でき、生産性の向上を図ることができる。
3. Effects As explained above, according to the routines shown in Figures 2 and 3, when a sensor failure occurs during plant operation, normal operation can be continued, operation can be restarted after temporary measures have been taken, and operation can be resumed after repairing the failed equipment. The system can automatically select the operating method that minimizes the drop in production from a productivity standpoint. In addition, for operations using temporary software measures, which is one of the operational measures, the temporary measure method is registered in advance for each target device, and the content of temporary measures is displayed as guidance when a device failure occurs. Therefore, it is possible to support restarting operations in the shortest possible time and improve productivity.
4.変形例
 ところで、上述した実施の形態のプラント操業支援システムは、サーバー10とHMI20とを別々に備えることとしているが、サーバー10とHMI20の両方の機能を備えた単一の装置を備えることとしてもよい。また、3つ以上の装置を備えることとしてもよい。
4. Modification By the way, although the plant operation support system of the embodiment described above includes the server 10 and the HMI 20 separately, it is also possible to include a single device having the functions of both the server 10 and the HMI 20. good. Alternatively, three or more devices may be provided.
5.ハードウェア構成例
 図5は、サーバー10およびHMI20のハードウェア構成例を示すブロック図である。
5. Hardware Configuration Example FIG. 5 is a block diagram showing a hardware configuration example of the server 10 and the HMI 20.
 上述したサーバー10の各処理は、処理回路により実現される。処理回路は、プロセッサ10aと、メモリ10bと、ネットワークインタフェース10cとが接続して構成されている。プロセッサ10aは、メモリ10bに記憶された各種プログラムを実行することにより、サーバー10の各機能を実現する。メモリ10bは、主記憶装置および補助記憶装置を含む。メモリ10bは、上述した仮処置情報、各種設定テーブル12を予め記憶している。ネットワークインタフェース10cは、コンピュータネットワークを介してPLC3およびHMI20と接続し、信号を送受信可能なデバイスである。 Each process of the server 10 described above is realized by a processing circuit. The processing circuit is configured by connecting a processor 10a, a memory 10b, and a network interface 10c. The processor 10a implements each function of the server 10 by executing various programs stored in the memory 10b. Memory 10b includes a main storage device and an auxiliary storage device. The memory 10b stores the above-mentioned temporary treatment information and various setting tables 12 in advance. The network interface 10c is a device that is connected to the PLC 3 and the HMI 20 via a computer network and is capable of transmitting and receiving signals.
 上述したHMI20の各処理は、処理回路により実現される。処理回路は、プロセッサ20aと、メモリ20bと、ネットワークインタフェース20cと、入力インタフェース20dと、少なくとも一つのモニタ20eとが接続して構成されている。プロセッサ20aは、メモリ20bに記憶された各種プログラムを実行することにより、HMI20の各機能を実現する。メモリ10bは、主記憶装置および補助記憶装置を含む。ネットワークインタフェース20cは、コンピュータネットワークを介してサーバー10に接続し、信号を送受信可能なデバイスである。入力インタフェース20dは、キーボード、マウス、タッチパネル等の入力デバイスである。モニタ20eは複数台設けられてもよい。 Each process of the HMI 20 described above is realized by a processing circuit. The processing circuit is configured by connecting a processor 20a, a memory 20b, a network interface 20c, an input interface 20d, and at least one monitor 20e. The processor 20a implements each function of the HMI 20 by executing various programs stored in the memory 20b. Memory 10b includes a main storage device and an auxiliary storage device. The network interface 20c is a device that connects to the server 10 via a computer network and is capable of transmitting and receiving signals. The input interface 20d is an input device such as a keyboard, mouse, or touch panel. A plurality of monitors 20e may be provided.
 以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。上述した実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数にこの発明が限定されるものではない。また、上述した実施の形態において説明する構造等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented with various modifications without departing from the spirit of the present invention. In the embodiments described above, when the number, amount, amount, range, etc. of each element is referred to, unless it is specifically specified or it is clearly specified to the number in principle, the mentioned number does not apply. This invention is not limited. Furthermore, the structures described in the above-described embodiments are not necessarily essential to the present invention, unless explicitly stated or clearly specified in principle.
1 プラント
2 フィールド機器
3 PLC
4 専用制御LAN
5 汎用制御LAN
10 サーバー
10a プロセッサ
10b メモリ
10c ネットワークインタフェース
11 データベース
12 各種設定テーブル
20 HMI
20a プロセッサ
20b メモリ
20c ネットワークインタフェース
20d 入力インタフェース
20e モニタ
21 仮処置ガイダンス画面
A41 センサー種別テーブル
B42 仮処置生産率テーブル
C43 在庫テーブル
D44 取替所要時間テーブル
1 Plant 2 Field equipment 3 PLC
4 Dedicated control LAN
5 General-purpose control LAN
10 Server 10a Processor 10b Memory 10c Network interface 11 Database 12 Various setting tables 20 HMI
20a Processor 20b Memory 20c Network interface 20d Input interface 20e Monitor 21 Temporary treatment guidance screen A41 Sensor type table B42 Temporary treatment production rate table C43 Inventory table D44 Replacement time table

Claims (3)

  1.  プラントに設置され操業に用いられるセンサーと、
     少なくとも1つのプロセッサとメモリとを備え、
     前記メモリは、
      前記センサーが故障している状態で前記プラントの操業を継続するための仮処置情報を格納し、
     前記プロセッサは、
      前記センサーが故障している状態において、前記仮処置情報に従って前記プラントに仮処置を施して操業を継続する場合の仮処置後生産量が、故障した前記センサーを正常なセンサーに取り替える作業後に操業を再開する場合の取替後生産量以上である場合に、前記仮処置情報を表示させる信号を出力すること、
     を特徴とするプラント操業支援システム。
    Sensors installed in the plant and used for operation,
    comprising at least one processor and memory;
    The memory is
    storing temporary treatment information for continuing operation of the plant in a state where the sensor is out of order;
    The processor includes:
    In a state where the sensor is out of order, the production amount after provisional treatment is the same as the production amount after temporary treatment is performed on the plant according to the temporary treatment information and the operation is continued after replacing the failed sensor with a normal sensor. outputting a signal for displaying the provisional treatment information when the production amount is equal to or higher than the post-replacement production amount when restarting;
    A plant operation support system featuring:
  2.  前記プロセッサは、
      前記センサーが故障している状態において、前記仮処置後生産量が前記取替後生産量未満である場合に、前記センサーの取り替え作業を指示する取替情報を表示させる信号を出力すること、
     を特徴とする請求項1に記載のプラント操業支援システム。
    The processor includes:
    outputting a signal for displaying replacement information instructing replacement work of the sensor when the production amount after temporary treatment is less than the production amount after replacement in a state where the sensor is out of order;
    The plant operation support system according to claim 1, characterized in that:
  3.  前記メモリは、
      故障した前記センサーに応じた仮処置後の操業における仮処置生産率と、
      故障した前記センサーを前記正常なセンサーに取り替える作業に要する取替時間と、を格納し、
     前記仮処置後生産量は、前記仮処置生産率に現在から定期修理時刻までの残操業時間を乗じた値であり、
     前記取替後生産量は、前記正常なセンサーを用いた通常操業の生産率に前記残操業時間から前記取替時間を引いた時間を乗じた値であること、
     を特徴とする請求項1又は2に記載のプラント操業支援システム。
    The memory is
    a temporary treatment production rate in the operation after temporary treatment according to the failed sensor;
    storing a replacement time required for replacing the failed sensor with the normal sensor;
    The production amount after temporary treatment is the value obtained by multiplying the temporary treatment production rate by the remaining operating time from the current time to the regular repair time,
    The production amount after replacement is a value obtained by multiplying the production rate of normal operation using the normal sensor by the time obtained by subtracting the replacement time from the remaining operation time,
    The plant operation support system according to claim 1 or 2, characterized by:
PCT/JP2022/019117 2022-04-27 2022-04-27 Plant operation support system WO2023209879A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2022/019117 WO2023209879A1 (en) 2022-04-27 2022-04-27 Plant operation support system
JP2024517708A JPWO2023209879A1 (en) 2022-04-27 2022-04-27
CN202280037669.0A CN117377918A (en) 2022-04-27 2022-04-27 Complete equipment operation support system
TW112114241A TW202349150A (en) 2022-04-27 2023-04-17 Plant operation support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019117 WO2023209879A1 (en) 2022-04-27 2022-04-27 Plant operation support system

Publications (1)

Publication Number Publication Date
WO2023209879A1 true WO2023209879A1 (en) 2023-11-02

Family

ID=88518353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019117 WO2023209879A1 (en) 2022-04-27 2022-04-27 Plant operation support system

Country Status (4)

Country Link
JP (1) JPWO2023209879A1 (en)
CN (1) CN117377918A (en)
TW (1) TW202349150A (en)
WO (1) WO2023209879A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284853A (en) * 1989-04-27 1990-11-22 Nissan Motor Co Ltd Control method for production line
WO2019043744A1 (en) * 2017-08-28 2019-03-07 株式会社日立製作所 System and method for assisting operation of solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284853A (en) * 1989-04-27 1990-11-22 Nissan Motor Co Ltd Control method for production line
WO2019043744A1 (en) * 2017-08-28 2019-03-07 株式会社日立製作所 System and method for assisting operation of solution

Also Published As

Publication number Publication date
CN117377918A (en) 2024-01-09
TW202349150A (en) 2023-12-16
JPWO2023209879A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US7389150B2 (en) Display system for controller
US6898542B2 (en) On-line device testing block integrated into a process control/safety system
US8132042B2 (en) Method and device for exchanging data on the basis of the OPC communications protocol between redundant process automation components
JP2007312043A (en) Remote i/o system
JP2003280707A (en) Abnormality diagnosis device, abnormality diagnosis method and abnormality diagnosis program of machine tool
GB2347234A (en) Diagnostic expert in a process control system
CN109254525A (en) For running the method and facility of the system of two redundancies
AU2023223006A1 (en) Self-healing process control system
EP1591851B1 (en) Synchronous control device
WO2023209879A1 (en) Plant operation support system
AU2007308270B2 (en) Method for carrying out online program changes on an automation system
CN110737256B (en) Method and device for controlling variable-frequency transmission system
US6701462B1 (en) Situational aware output configuration and execution
CN114624989A (en) Preventative controller switching
JPH11184507A (en) Controller system
EP3885853A1 (en) I/o mesh architecture for a safety instrumented system
JP2011154607A (en) Numerical control device with function of preventing malfunction
JPH11345003A (en) Plant control system
JP2017117095A (en) Plant control system, redundancy method and controller
JP2004206212A (en) Operation monitoring system
WO2024089821A1 (en) Programmable controller and manufacturing system
KR101021981B1 (en) Apparatus for processing alarm in semiconductor manufacturing equipments and method for setting alarm
JP4348485B2 (en) Process control device
JP2006003929A (en) Process controller and diagnosis method of control data of the same
JP2003271239A (en) Error diagnosis device, error foretaste diagnosis device, and unwanted event detecting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280037669.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024517708

Country of ref document: JP