WO2023208217A1 - 一种供电控制系统和供电控制方法 - Google Patents

一种供电控制系统和供电控制方法 Download PDF

Info

Publication number
WO2023208217A1
WO2023208217A1 PCT/CN2023/091753 CN2023091753W WO2023208217A1 WO 2023208217 A1 WO2023208217 A1 WO 2023208217A1 CN 2023091753 W CN2023091753 W CN 2023091753W WO 2023208217 A1 WO2023208217 A1 WO 2023208217A1
Authority
WO
WIPO (PCT)
Prior art keywords
sharing
time
live
power supply
conductor
Prior art date
Application number
PCT/CN2023/091753
Other languages
English (en)
French (fr)
Inventor
吴启洪
Original Assignee
广东思万奇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221025273.8U external-priority patent/CN217427773U/zh
Priority claimed from CN202210468911.1A external-priority patent/CN114678961A/zh
Application filed by 广东思万奇科技有限公司 filed Critical 广东思万奇科技有限公司
Publication of WO2023208217A1 publication Critical patent/WO2023208217A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network

Definitions

  • the present invention relates to the technical field of intelligent switches, and in particular to a power supply control system and a power supply control method.
  • Smart switches are representative products of the Internet of Things. Simply replace the currently used wall switches, especially standard wall switches. Simply replace the old mechanical switches at home with smart switches to give the corresponding electrical equipment computing, memory and networking functions. Coupled with the widespread popularity of smart devices, especially smartphones, it has become easy to use mobile phones to control electrical equipment at home. And it can easily realize intelligent control. For example, you can use your mobile phone to remotely turn on room lights while watching TV, remotely turn on home appliances at work, set timer switch functions for appliances, and install smart switches with voice control to achieve voice control.
  • FIG. 1 is a schematic diagram of the application of smart switches in related technologies.
  • the first terminal of the smart switch is connected to the live wire of the wall switch bottom box
  • the second terminal of the smart switch is connected to the neutral wire of the wall switch bottom box
  • the third terminal of the smart switch is connected to the neutral wire in series with the lamp.
  • smart switches in related technologies generally have backlights, capacitive touch buttons, automatically turn on the backlight when approaching, can be remotely controlled by mobile phones, have timing control, scene modes, etc., and require zero-line power supply to provide sufficient working power.
  • the light switches in ordinary residents' homes are mechanical switches
  • the wall bottom box where the general mechanical switch is installed has only one live wire and several control wires to the lights. If the mechanical switch is replaced by an intelligent switch, another neutral line must be added.
  • adding this neutral line can be said to be difficult and costly. It requires hiring wall cutters, electricians, wall repairers, and decoration masters. The lack of this neutral line has become a stumbling block for smart switches to enter thousands of households. Therefore, how to solve the power supply problem of smart switches that require neutral wire access when installing neutral-wire socket boxes is a technical problem that needs to be solved.
  • the present invention proposes a power supply control system and a power supply control method that do not require the installation of a neutral line in the socket box to solve the power supply problem of the smart switch, are easy to install and have a wide range of applications.
  • inventions of the present invention provide a power supply control system.
  • the power supply control system includes an intelligent switch with an internal electronic switch, a live line time-sharing conductor, a neutral line time-sharing generator and a load device prepared;
  • the internal electronic switch is disconnected to control the direct conduction of the neutral line time-sharing generator, and the neutral line is conducted through the neutral line time-sharing generator to the zero line end of the smart switch to realize the control of the smart switch.
  • Zero live wire power supply the internal electronic switch closed loop controls the live wire time-sharing conductor to conduct time-sharing power supply to the load equipment, and cuts off the response once or multiple times according to the zero-crossing point of the AC sine wave.
  • the live wire end of the smart switch is connected to the live wire, and the live wire output end of the smart switch is connected to the input end of the live wire time-sharing conductor;
  • the neutral terminal of the smart switch is respectively connected to the output terminal of the live wire time-sharing conductor, the output terminal of the neutral wire time-sharing generator and the first terminal of the load device;
  • the input end of the neutral line time-sharing generator is connected to the neutral line and the second end of the load device respectively; the neutral line time-sharing generator is arranged in parallel with the load device.
  • the live wire time-sharing conductor includes a live wire time-sharing control generating circuit and a live wire electronic switch,
  • the live wire time-sharing control generation circuit is used to generate a live wire switch control signal; the live wire switch control signal uses the zero-crossing point of the alternating current sine wave as a reference to perform time-sharing control of the live wire function to achieve periodic control of the load equipment. power outage;
  • the first end of the live electronic switch serves as the input end of the live time-sharing conductor and is connected to the first end of the live time-sharing control generating circuit;
  • the second end of the live electronic switch serves as the output end of the live time-sharing conductor and is connected to the second end of the live time-sharing control generating circuit;
  • the output end of the live line time-sharing control generating circuit is connected to the control end of the live line electronic switch.
  • the live line time-sharing conductor further includes a temperature protection circuit, which is used to turn off the live line electronic switch when the internal temperature exceeds a preset threshold.
  • the neutral line time-sharing generator includes a neutral line time-sharing control generation circuit, a neutral line electronic switch, a fast current monitoring circuit and an AND logic device,
  • the neutral line time-sharing control generating circuit is used to generate a neutral line switch control signal; the neutral line switch control signal is generated to detect the output end status of the live line time-sharing conductor and start a preset second conductor when the conduction is cut off.
  • the first end of the neutral electronic switch serves as the input end of the neutral time-sharing conductor and is connected to the neutral time-sharing control the first terminal of the generating circuit;
  • the second terminal of the neutral electronic switch is connected to the second terminal of the fast current monitoring circuit
  • the first end of the fast current monitoring circuit serves as the input end of the neutral line time-sharing conductor and is connected to the second end of the neutral line time-sharing control generating circuit;
  • the output end of the neutral line time-sharing control generating circuit is connected to the first end of the AND logic device, and the output end of the fast current monitoring circuit is connected to the second end of the AND logic device;
  • the output terminal of the AND logic device is connected to the control terminal of the neutral electronic switch.
  • the neutral line time-sharing conductor further includes an overvoltage and overcurrent protection circuit, and the overvoltage and overcurrent protection circuit is used to turn off the neutral line electronic switch when overvoltage and overcurrent are input.
  • the internal electronic switch includes multiple internal electronic switches, the output end of one of the internal electronic switches is connected to the input end of the live wire time-sharing conductor, and the other internal electronic switch is connected to the corresponding one of the internal electronic switches. load equipment.
  • the live line time-sharing conductor is used to provide live line power supply for a preset first conduction time to the load device; the neutral line time-sharing generator is turned on when the live line time-sharing conductor is turned off.
  • the conduction state of the preset second conduction time is activated; the ratio of the first conduction time to the second conduction time is 1:10 or 0.5:10.
  • the first conduction time and the second conduction time together form a conduction period, and the conduction period is an adjustable parameter.
  • the load device is a lighting lamp.
  • embodiments of the present invention also provide a power supply control method.
  • the power supply control method is applied to the above-mentioned power supply control system provided by the embodiment of the present invention.
  • the method has the following steps:
  • Step S1 The neutral line time-sharing generator determines whether the internal electronic switch is closed by detecting the output end state of the live line time-sharing conductor: if not, the neutral line time-sharing generator is turned on, and the The neutral end of the smart switch is connected to the neutral line through the neutral time-sharing generator; if so, enter step S2;
  • Step S2 The live line time-sharing conductor is turned on during the first conduction time, and the neutral line time-sharing generator is turned off;
  • Step S3 The live line time-sharing conductor is turned off, and the neutral line time-sharing generator is turned on within the second conduction time and then enters step S1.
  • inventions of the present invention provide a power supply control system and a power supply control method.
  • the power supply control system is provided with a load device, an intelligent switch, a live line time-sharing conductor and a neutral line time-sharing generator; the neutral line time-sharing generator
  • the generator is connected in parallel with the load equipment, and the power supply control system enters two working states under the control of the smart switch.
  • One working state is: when the internal electronic switch of the smart switch is disconnected, the input end of the live wire time-sharing conductor is cut off.
  • the neutral line time-sharing generator detects the conduction state of the live line time-sharing conductor, and the live line time-sharing conductor cuts off conduction, thereby causing the neutral line to jump directly
  • the overload device is connected to the smart switch to completely shut down the load device; another working state is: when the internal electronic switch of the smart switch is closed, the neutral line time-sharing generator detects the conduction of the live line time-sharing conductor.
  • the neutral line time-sharing generator and the live line time-sharing conductor are turned on in a time-sharing manner, so that the power supply control system of the present invention allocates respective conduction times periodically to the neutral line and live line function switching to meet the requirements of intelligent switch power supply. , while not affecting the normal operation of the load equipment. Therefore, the power supply control system and power supply control method provided by the embodiments of the present invention solve the problem of zero live wire power supply of smart switches when the switch bottom box does not have a neutral wire, and are easy to install and have a wide range of applications.
  • Figure 1 is a schematic diagram of the application of smart switches in related technologies
  • Figure 2 is a schematic structural diagram of the power supply control system of the present invention.
  • FIG. 3 is a schematic diagram of the application of the power supply control system of the present invention.
  • FIG. 4 is a schematic diagram of the module structure of the live wire time-sharing conductor of the present invention.
  • Figure 5 is a circuit schematic diagram of an embodiment of the live wire time-sharing conductor of the present invention.
  • Figure 6 is a circuit schematic diagram of another embodiment of the live wire time-sharing conductor of the present invention.
  • Figure 7 is a schematic diagram of the module structure of the zero line time-sharing generator of the present invention.
  • Figure 8 is a circuit schematic diagram of an embodiment of the neutral line time-sharing generator of the present invention.
  • Figure 9 is a circuit schematic diagram of another embodiment of the neutral line time-sharing generator of the present invention.
  • Figure 10 is a signal waveform diagram of the power supply control system of the present invention.
  • Figure 11 is a time-sharing control waveform diagram of signals of the power supply control system of the present invention.
  • Figure 12 is a schematic diagram of another application of the power supply control system of the present invention.
  • Figure 13 is a flow chart of the power supply control method of the present invention.
  • the present invention provides a power supply control system 100.
  • Figure 2 is a schematic structural diagram of the power supply control system 100 of the present invention
  • Figure 3 is a schematic diagram of the application of the power supply control system of the present invention.
  • the power supply control system 100 includes an intelligent switch 1 with an internal electronic switch K1, a live line time-sharing conductor 2, a neutral line time-sharing generator 5 and a load device 4.
  • the smart switch 1 is used to provide neutral line and live wire power supply to the load device 4. Opening or closing the internal electronic switch K1 can control the input end of the live wire time-sharing conductor 2 to cut off the output or connect the live wire power supply. .
  • the live wire time-sharing conductor 2 is used to provide live wire power supply for a preset first conduction time to the load device 4 .
  • the neutral line time-sharing generator 5 is used to detect the conduction state of the live line time-sharing conductor 2. When the live line time-sharing conductor 2 is cut off, the preset second conduction time is started. conduction state, and is turned off when the live line time-sharing conductor 2 is turned on.
  • the circuit connection relationship of the power supply control system 100 is:
  • the live wire end of the smart switch 1 is connected to the live wire, and the live wire output end of the smart switch 1 is connected to the input end of the live wire time-sharing conductor 2 .
  • the neutral terminal of the smart switch 1 is respectively connected to the output terminal of the live wire time-sharing conductor 2 , the output terminal of the neutral wire time-sharing generator 5 , and the first terminal of the load device 4 .
  • the input end of the neutral line time-sharing generator 5 is connected to the neutral line and the second end of the load device 4 respectively; the neutral line time-sharing generator 5 and the load device 4 are arranged in parallel.
  • the live wire time-sharing conductor 2 also includes a temperature protection circuit (not shown), which is used to turn off the live wire electronic switch 22 when the internal temperature exceeds a preset threshold.
  • the temperature protection circuit can prevent the load device 4 from excessive heating.
  • the load device 4 is a lighting lamp.
  • the connection line is the control line 6.
  • the power supply control system 100 uses time-sharing conduction technology to use one line as a neutral line and a live line respectively.
  • the control line 6 can be turned on in a certain period to supply power to the load device 4. It can also occur that the neutral line supplies power to the smart switch 1 in a certain period.
  • the internal electronic switch K1 is turned off to control the direct conduction of the neutral line time-sharing generator 5, and the neutral line is passed through the neutral line time-sharing generator 5 to the neutral end of the smart switch to realize the zero live wire power supply to the smart switch 1; internal The electronic switch K1 close-loop controls the live line time-sharing conductor 2 to conduct time-sharing power supply to the load equipment, and cuts off the corresponding time once or multiple times according to the zero-crossing point of the alternating current sine wave, so that the neutral line time-sharing The generator automatically cuts off when it detects that the live line time-sharing conductor 2 is turned on, and when the neutral line time-sharing generator 5 detects that the live line time-sharing conductor 2 is turned off, it automatically turns on and turns the neutral line on to the smart switch for 1 minute. hour Power supply to realize zero live wire power supply to smart switch 1.
  • the smart switch 1, the live line time-sharing conductor 2 and the neutral line time-sharing generator 5 are all commonly used modules or chips in this field. The specific models and indicators are selected according to actual design needs. Details will not be given here. Repeat.
  • Figure 4 is a schematic diagram of the module structure of the live wire time-sharing conductor 2 of the present invention.
  • the live wire time-sharing conductor 2 includes a live wire time-sharing control generating circuit 21 and a live wire electronic switch 22 .
  • the live wire time-sharing control generating circuit 21 is used to generate the live wire switch control signal.
  • the live wire switch control signal uses the zero-crossing point of the alternating current sine wave as a reference to perform time-sharing control of the live wire function, so as to realize periodic power supply and interruption to the load equipment 4 .
  • the module connection relationship of the live wire time-sharing conductor 2 is:
  • the first end of the live electronic switch 22 serves as the input end of the live time-sharing conductor 2 and is connected to the first end of the live time-sharing control generating circuit 21 .
  • the second end of the live electronic switch 22 serves as the output end of the live time-sharing conductor 2 and is connected to the second end of the live time-sharing control generating circuit 21 .
  • the output end of the live line time-sharing control generating circuit 21 is connected to the control end of the live line electronic switch 22 .
  • FIG. 5 is a schematic circuit diagram of an embodiment of the live wire time-sharing conductor 2 of the present invention.
  • the live wire time-sharing conductor 2 of the present invention is implemented using a microcontroller.
  • the microcontroller model is the microcontroller FT61F020-URT.
  • R1 and R2 in Figure 5 and pin 3 of the microcontroller U1 (pin 3 is the interrupt and analog-to-digital conversion pin) form a zero-crossing detection and voltage detection circuit.
  • the 4 pins of R4, RT1 and U1 in Figure 5 pin 4 is the analog-to-digital conversion pin) form the temperature detection and high temperature protection functions.
  • Pin 6 of the microcontroller U1 in Figure 5 controls the on-off of the electronic switch.
  • the electronic switch is turned on in a time-sharing manner. When it is disconnected, it supplies power to the smart switch and itself, and when it is connected, it supplies power to the lighting lamp.
  • FIG. 6 is a schematic circuit diagram of another embodiment of the live wire time-sharing conductor 2 of the present invention.
  • the live line time-sharing conductor 2 is implemented by a thyristor control circuit.
  • D1, R1, and C2 in Figure 6 adjust the voltage at which the thyristor BT1 turns on. When it is disconnected, it supplies power to the smart switch, and when it is connected, it supplies power to the lamp.
  • K1 in Figure 6 is a temperature switch and an overheating protection circuit.
  • the value of R4 in Figure 6 determines the magnitude of the voltage output reduction of the thyristor after overheating protection. If it is not connected, it will be disconnected directly.
  • Figure 7 is a schematic diagram of the module structure of the zero line time-sharing generator of the present invention.
  • the neutral line time sharing generator 5 includes a neutral line time sharing control generation circuit 51 , a neutral line electronic switch 52 , a fast current monitoring circuit 53 and an AND logic device 54 .
  • the neutral line time-sharing control generating circuit 51 is used to generate a neutral line switch control signal.
  • the neutral line switch control signal is to detect the state of the output end of the live line time-sharing conductor 2 to generate a conduction state that starts the preset second conduction time when the conduction is cut off, And the signal is cut off when the live line time-sharing conductor 2 is turned on.
  • connection relationship of the neutral line time-sharing generator 5 is:
  • the first end of the neutral line electronic switch 52 serves as the input end of the neutral line time-sharing conductor and is connected to the first end of the neutral line time-sharing control generating circuit 51 .
  • the second terminal of the neutral electronic switch 52 is connected to the second terminal of the fast current monitoring circuit 53 .
  • the first terminal of the fast current monitoring circuit 53 serves as the input terminal of the neutral line time-sharing conductor and is connected to the second terminal of the neutral line time-sharing control generating circuit 51 .
  • the output terminal of the neutral line time-sharing control generating circuit 51 is connected to the first terminal of the AND logic device 54 , and the output terminal of the fast current monitoring circuit 53 is connected to the second terminal of the AND logic device 54 .
  • the output terminal of the AND logic device 54 is connected to the control terminal of the neutral electronic switch 52 .
  • the neutral line time-sharing conductor 4 also includes an overvoltage and overcurrent protection circuit, which is used to turn off the neutral line electronic switch 52 when overvoltage and overcurrent are input.
  • the fast current monitoring circuit 53 of the neutral line time-sharing generator 5 detects the disconnection, and will immediately turn on the electronic switch in the neutral line time-sharing generator 5 to directly connect the neutral line.
  • N neutral input
  • the neutral line time-sharing generator 5 will be directly turned on.
  • the neutral line will be connected to the neutral line interface of the smart switch 1 to realize the zero-fire power supply to the smart switch 1.
  • the power supply to the smart switch 1 is realized, and the power supply to the load device 4 is completely turned off. No current flows from the load device 4, which avoids the micro-brightness or flickering phenomenon and energy loss caused by the load device 4 not being completely turned off. Effectively Reduce the impact on the life of load equipment 4.
  • FIG. 8 is a circuit schematic diagram of an embodiment of the zero line time-sharing generator of the present invention.
  • the zero line time-sharing generator 5 of the present invention is implemented using a microcontroller.
  • the microcontroller model is the microcontroller FT61F020-URT.
  • R1, R2 in Figure 8 and pin 3 (interruption and analog-to-digital conversion) of the microcontroller U1 form a zero-crossing detection and voltage detection circuit.
  • Pin 6 of the single-chip microcomputer U1 in Figure 8 controls the on-off of the electronic switch, which is turned on in a time-sharing manner. When it is on, it provides a ground wire for the smart switch, and when it is off, it supplies power to the lamp and itself.
  • FIG. 9 is a schematic circuit diagram of another embodiment of the neutral line time-sharing generator 5 of the present invention.
  • D1/D2/D3/D4 in Figure 9 form a rectifier circuit to convert alternating current into direct current.
  • R4 and Q1 in Figure 8 form an electronic switch.
  • R3 and R2 in Figure 8 form a voltage detection circuit. The voltage begins to rise after crossing the zero point. When it reaches the set voltage value, Q2 in Figure 8 is turned on and Q1 is turned off to achieve time sharing of the zero line.
  • the addition of R5 and D5 in Figure 8 constitutes the overcurrent limit.
  • FS1 and RV1 in Figure 8 are current and voltage protection components.
  • circuits, capacitors, thyristors, and chips mentioned in this embodiment are all commonly used components and chips in this field.
  • the specific models and indicators are selected according to actual design needs. Here, no Elaborate.
  • the electrical control system 100 of the present invention is based on the alternating positive and negative voltage changes of the alternating current to achieve perfect synchronous operation of the live line time-sharing conductor 2 and the neutral line time-sharing generator 5.
  • the following uses the Chinese standard 220VAC/50Hz single-phase alternating current for detailed analysis and explanation:
  • Figure 10 is a signal waveform diagram of the power supply control system 100 of the present invention.
  • FIG. 11 is a time-sharing control waveform diagram of signals of the power supply control system 100 of the present invention.
  • the shaded part in Figure 10 is the conduction time t N of the neutral line time-sharing generator 5, which is the conduction time for powering the smart switch 1;
  • the blank waveform part is the conduction time t L of the live line time-sharing conductor 2 , is the conduction time for supplying power to the load device 4.
  • the live line time-sharing conductor 2 stops working.
  • the internal voltage detection circuit of the neutral line time-sharing generator 5 can quickly and accurately detect this state.
  • the neutral line time-sharing generator 5 directly conducts the neutral line. Go to smart switch 1 and implement smart switch 1 to work in its normal zero live wire mode to supply power.
  • Switch K1 is closed, when the live line time-sharing conductor 2 is disconnected, the neutral line time-sharing generator 5 is automatically turned on, and the conduction time is t N ; when the live line time-sharing conductor 2 is turned on, the conduction time is t L , the neutral line time-sharing generator 5 is automatically disconnected.
  • the neutral line time-sharing generator 5 and the live line time-sharing conductor 2 use the zero-crossing point of the alternating current sine wave as a reference to implement time-sharing control.
  • the on-time ratio and period of the zero-fire time can even be dynamically assigned.
  • the ratio of the first conduction time to the second conduction time is 1:10 or 0.5:10.
  • the first conduction time and the second conduction time together form a conduction period, and the conduction period is an adjustable parameter.
  • the working methods of the neutral line time-sharing generator and the live line time-sharing conductor are flexible and diverse without affecting the lamp responsibility. For example, one cycle or half cycle of the control line can be allocated every 10 cycles to conduct the neutral line to power the smart switch 1, and at other times the control line can conduct the live wire to power the lamp.
  • the flexible combination of the live line time-sharing conductor 2 and the neutral line time-sharing generator 5 enables the supported smart switch Class 1 products to have power ranging from ultra-low power consumption products at the microwatt level to products with power consumption of tens of watts. It realizes the single fire line function and ensures extremely high efficiency and green environmental protection. At the same time, it paves the way for the popularization and promotion of the power supply control system 100 of the present invention.
  • Flexible power supply voltage adaptability Taking the zero-crossing point of the AC sine wave as the basis for synchronous control, the zero-fire time-sharing ratio can be flexibly allocated according to the current power supply voltage. This enables the power supply control system 100 of the present invention to stably transmit power under most working conditions, allowing the smart switch to maintain long-term stable operation.
  • the neutral line time-sharing generator 5 and the live line time-sharing conductor 2 are time-shared and will not be turned on at the same time.
  • the neutral line time-sharing generator 5 When the live line time-sharing conductor 2 is turned off, the neutral line time-sharing generator 5 is turned on to directly supply power to the smart switch 1.
  • the conduction impedance is very small and stable, which is better than the neutral line conduction through the load device 4 with uncertain impedance. More efficient and stable (if the power of the series connected bulbs is too small, the smart switch may not work properly).
  • the live line time-sharing conductor 2 when the live line time-sharing conductor 2 is turned on, it supplies power to the load device 4, and at the same time, the neutral line time-sharing generator 5 is turned off. Even if the load device 4 is damaged, the neutral time-sharing generator 5 will still work normally and will not affect the power supply of the smart switch 1.
  • FIG. 12 is a schematic diagram of another application of the power supply control system 100 of the present invention.
  • the internal electronic switch K1 includes multiple internal electronic switches K1.
  • the output terminal of one internal electronic switch K1 is connected to the input terminal of the live wire time-sharing conductor 2, and the other internal electronic switch K1 is connected to the corresponding one.
  • the load equipment 4. This application can make the power supply control system 100 of the present invention more widely used.
  • FIG. 13 is a flow chart of the power supply control method of the present invention.
  • the power supply control method is applied to the power supply control system 100 .
  • the power supply control method includes the following steps:
  • Step S1 The neutral line time-sharing generator 5 determines whether the internal electronic switch K1 is closed by detecting the output state of the live line time-sharing conductor 2: if not, the neutral line time-sharing generator 5 conducts Pass, the neutral line terminal of the smart switch 1 is connected to the neutral line through the neutral line time-sharing generator 5. If yes, proceed to step S2.
  • Step S2 The live line time-sharing conductor 2 is turned on during the first conduction time, and the neutral line time-sharing generator 5 is turned off.
  • Step S3 The live line time-sharing conductor 2 is turned off, and the neutral line time-sharing generator 5 is turned on during the second conduction time. After passing, enter the step S1.
  • inventions of the present invention provide a power supply control system and a power supply control method.
  • the power supply control system is provided with a load device, an intelligent switch, a live line time-sharing conductor and a neutral line time-sharing generator; the neutral line time-sharing generator
  • the generator is connected in parallel with the load equipment, and the power supply control system enters two working states under the control of the smart switch.
  • One working state is: when the internal electronic switch of the smart switch is disconnected, the input end of the live wire time-sharing conductor is cut off.
  • the neutral line time-sharing generator detects the conduction state of the live line time-sharing conductor, and when the live line time-sharing conductor is turned off, the neutral line directly skips the load device and is connected to the smart switch.
  • the power supply control system and power supply control method solve the problem of zero live wire power supply of smart switches when the switch bottom box does not have a neutral wire, and are easy to install and have a wide range of applications.

Abstract

本发明提供一种供电控制系统,其内部电子开关断开控制零线分时发生器直接导通,零线经过零线分时发生器导通到智能开关的零线端,以实现对智能开关的零火线供电;内部电子开关闭环控制火线分时导通器导通给负载设备分时供电,并根据设定在交流电正弦波的过零点一次或者多次截止相应的时间,以使零线分时发生器检测到火线分时导通器导通时自动截止,以及当零线分时发生器检测到火线分时导通器截止时自动导通把零线导通给智能开关分时供电,以实现对智能开关的零火线供电。本发明提供一种供电控制方法。采用本发明的技术方案在开关底盒没有零线的情况下解决智能开关的零火线供电,易于安装且应用范围广。

Description

一种供电控制系统和供电控制方法 技术领域
本发明涉及智能开关技术领域,尤其涉及一种供电控制系统和供电控制方法。
背景技术
目前,随着科技的发展,物联网技术越来越普及。智能开关就是物联网的代表产物。简单的替换目前使用的墙壁开关,特别是标准的墙壁开关,家里老旧的机械开关简单替换成智能开关就赋予了对应的用电设备运算、记忆和联网功能。加上智能设备特别是智能手机的大范围普及,用手机控制家里的用电设备变得轻而易举。而且可以很方便的实现智能控制。比如在看电视时用手机遥控打开房间灯、在公司远程打开家里的电器、为电器设置定时开关功能,安装带语音控制的智能开关实现语音控制。
相关技术的智能开关包括电子开关。请参考图1,图1为相关技术的智能开关的应用示意图。智能开关的第一端连接至墙壁开关底盒的火线,智能开关的第二端连接至墙壁开关底盒的零线,智能开关的第三端通过串联至灯具后连接至零线。
然而,相关技术的智能开关一般带背光,电容式触摸按键,靠近自动亮背光灯,可远程手机操控,带定时控制,场景模式等,需要零线供电,才能提供足够的工作功率。由于平常居民家中的灯具开关为机械开关,一般的机械开关安装的墙壁底盒内部只有1根火线和若干根到电灯的控制线。如果将机械开关替换为智能开关必须要再增加一条零线。但对于绝大部分家庭为美观而埋墙走线的开关来说增加这条零线可以说是困难重重,成本高,需要聘请凿墙、电工、补墙、装修师傅。这条零线的缺失成了智能开关进入千家万户的拦路虎。因此,如何解决无零线插座盒安装需要零线接入的智能开关的供电问题是一个需要解决的技术问题。
因此,实有必要提供一种新的技术方案解决上述问题。
发明内容
针对以上现有技术的不足,本发明提出一种无需在插座盒安装零线解决智能开关的供电,易于安装且应用范围广的供电控制系统和供电控制方法。
为了解决上述技术问题,第一方面,本发明实施例提供了一种供电控制系统,所述供电控制系统包括具有内部电子开关的智能开关、火线分时导通器、零线分时发生器以及负载设 备;
所述内部电子开关断开控制所述零线分时发生器直接导通,零线经过所述零线分时发生器导通到所述智能开关的零线端,以实现对所述智能开关的零火线供电;所述内部电子开关闭环控制所述火线分时导通器导通给所述负载设备分时供电,并根据设定在交流电正弦波的过零点一次或者多次截止相应的时间,以使所述零线分时发生器检测到所述火线分时导通器导通时自动截止,以及当所述零线分时发生器检测到所述火线分时导通器截止时自动导通把零线导通给所述智能开关分时供电,以实现对智能开关的零火线供电;
所述智能开关的火线端连接至火线,所述智能开关的火线输出端连接至所述火线分时导通器的输入端;
所述智能开关的零线端分别连接至所述火线分时导通器的输出端、所述零线分时发生器的输出端以及所述负载设备的第一端;
所述零线分时发生器的输入端分别连接至零线和所述负载设备的第二端;所述零线分时发生器与所述负载设备并联设置。
优选的,所述火线分时导通器包括火线分时控制产生电路和火线电子开关,
所述火线分时控制产生电路用于产生火线开关控制信号;所述火线开关控制信号为通过交流电正弦波的过零点作为基准进行火线功能的分时控制,以实现对所述负载设备进行周期性供断电;
所述火线电子开关的第一端作为所述火线分时导通器的输入端,且连接至所述火线分时控制产生电路的第一端;
所述火线电子开关的第二端作为所述火线分时导通器的输出端,且连接至所述火线分时控制产生电路的第二端;
所述火线分时控制产生电路的输出端连接至所述火线电子开关的控制端。
优选的,所述火线分时导通器还包括温度保护电路,所述温度保护电路用于在内部温度超过预设阈值时将所述火线电子开关关断。
优选的,所述零线分时发生器包括零线分时控制产生电路、零线电子开关、快速电流监控电路以及与逻辑器件,
所述零线分时控制产生电路用于产生零线开关控制信号;所述零线开关控制信号为检测所述火线分时导通器输出端状态产生在截止导通时启动预设第二导通时间的导通状态,并在所述火线分时导通器导通时截止的信号;
所述零线电子开关的第一端作为所述零线分时导通器的输入端,且连接至所述零线分时 控制产生电路的第一端;
所述零线电子开关的第二端连接至所述快速电流监控电路的第二端;
所述快速电流监控电路的第一端作为所述零线分时导通器的输入端,且连接至所述零线分时控制产生电路的第二端;
所述零线分时控制产生电路的输出端连接至所述与逻辑器件的第一端,所述快速电流监控电路的输出端连接至所述与逻辑器件的第二端;
所述与逻辑器件的输出端连接至所述零线电子开关的控制端。
优选的,所述零线分时导通器还包括过压过流保护电路,所述过压过流保护电路用于在输入过压过流时将所述零线电子开关关断。
优选的,所述内部电子开关包括多个,其中一个所述内部电子开关的输出端连接至所述火线分时导通器的输入端,另外的所述内部电子开关连接相对应的一个所述负载设备。
优选的,所述火线分时导通器用于给所述负载设备提供预设的第一导通时间的火线供电;所述零线分时发生器在所述火线分时导通器截止导通时启动预设的第二导通时间的导通状态;所述第一导通时间与所述第二导通时间的比例为1:10或者0.5:10。
优选的,所述第一导通时间与所述第二导通时间共同形成导通周期,所述导通周期为可调参数。
优选的,所述负载设备为照明灯。
第二方面,本发明实施例还提供了一种供电控制方法,所述供电控制方法应用于如本发明实施例提供上述的供电控制系统,该方法如下步骤:
步骤S1、所述零线分时发生器通过检测所述火线分时导通器输出端状态,判断所述内部电子开关是否闭合:若否,所述零线分时发生器导通,所述智能开关的零线端通过所述零线分时发生器与零线连接;若是,则进入步骤S2;
步骤S2、所述火线分时导通器在所述第一导通时间内导通,所述零线分时发生器断开;
步骤S3、所述火线分时导通器断开,所述零线分时发生器在所述第二导通时间内导通后进入所述步骤S1。
与相关技术相比,本发明实施例提供了供电控制系统和供电控制方法,供电控制系统设置了负载设备、智能开关、火线分时导通器以及零线分时发生器;将零线分时发生器与负载设备并联,供电控制系统在智能开关控制下进入两种工作状态,一种工作状态是:在智能开关的内部电子开关断开时,所述火线分时导通器的输入端截止输出,所述零线分时发生器检测所述火线分时导通器的导通状态,在所述火线分时导通器截止导通,从而使得零线直接跳 过负载设备连接到智能开关,实现彻底关闭负载设备;另一种工作状态是:在智能开关的内部电子开关闭合时,所述零线分时发生器检测所述火线分时导通器的导通状态,所述零线分时发生器和所述火线分时导通器分时导通,从而使得本发明供电控制系统对零线火线功能切换按周期分配各自导通时间来满足智能开关供电,同时不影响负载设备的正常工作。因此,本发明实施例提供的供电控制系统和供电控制方法在开关底盒没有零线的情况下解决智能开关的零火线供电,易于安装且应用范围广。
附图说明
下面结合附图详细说明本发明。通过结合以下附图所作的详细描述,本发明的上述或其他方面的内容将变得更清楚和更容易理解。附图中:
图1为相关技术的智能开关的应用示意图;
图2为本发明供电控制系统的结构示意图;
图3为本发明供电控制系统的应用示意图;
图4为本发明火线分时导通器的模块结构示意图;
图5为本发明火线分时导通器的一种实施例的电路原理图;
图6为本发明火线分时导通器的另一种实施例的电路原理图;
图7为本发明零线分时发生器的模块结构示意图;
图8为本发明零线分时发生器的一种实施例的电路原理图;
图9为本发明零线分时发生器的另一种实施例的电路原理图;
图10为本发明供电控制系统的信号波形图;
图11为本发明供电控制系统的信号的分时控制波形图;
图12为本发明供电控制系统的其他一种应用示意图;
图13为本发明供电控制方法的流程框图。
具体实施方式
下面结合附图详细说明本发明的具体实施方式。
在此记载的具体实施方式/实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的 替换和修改的技术方案,都在本发明的保护范围之内。
本发明提供了一种供电控制系统100。
同时请参考图2-3所示,图2为本发明供电控制系统100的结构示意图;图3为本发明供电控制系统的应用示意图。
所述供电控制系统100包括具有内部电子开关K1的智能开关1、火线分时导通器2、零线分时发生器5以及负载设备4。
所述智能开关1用于给所述负载设备4提供零线和火线供电,所述内部电子开关K1断开或闭合可控制所述火线分时导通器2的输入端截止输出或连接火线供电。
所述火线分时导通器2用于给所述负载设备4提供预设的第一导通时间的火线供电。
所述零线分时发生器5用于检测所述火线分时导通器2的导通状态,在所述火线分时导通器2截止导通时,启动预设的第二导通时间的导通状态,并在所述火线分时导通器2导通时截止。
所述供电控制系统100的电路连接关系为:
所述智能开关1的火线端连接至火线,所述智能开关1的火线输出端连接至所述火线分时导通器2的输入端。
所述智能开关1的零线端分别连接至所述火线分时导通器2的输出端、所述零线分时发生器5的输出端,以及所述负载设备4的第一端。
所述零线分时发生器5的输入端分别连接至零线和所述负载设备4的第二端;所述零线分时发生器5与所述负载设备4并联设置。
所述火线分时导通器2还包括温度保护电路(图未示),所述温度保护电路用于在内部温度超过预设阈值时将所述火线电子开关22关断。所述温度保护电路可防止所述负载设备4过大发热。
本实施例中,所述负载设备4为照明灯。其中,连接线为控制线6,供电控制系统100通过分时导通技术把一线分别作零线和火线两用,控制线6可以在一定周期里导通为火线对负载设备4供电。也可以在一定周期里发生零线对智能开关1供电。
内部电子开关K1断开控制零线分时发生器5直接导通,零线经过零线分时发生器5导通到智能开关的零线端,以实现对智能开关1的零火线供电;内部电子开关K1闭环控制火线分时导通器2导通给负载设备4分时供电,并根据设定在交流电正弦波的过零点一次或者多次截止相应的时间,以使零线分时发生器检测到火线分时导通器2导通时自动截止,以及当零线分时发生器5检测到火线分时导通器2截止时自动导通把零线导通给智能开关1分时 供电,以实现对智能开关1的零火线供电。
所述智能开关1、火线分时导通器2以及零线分时发生器5均为本领域常用的模块或芯片,具体型号和指标选择,根据实际设计需要进行选择,在此,不做详细赘述。
请参考图4所示,图4为本发明火线分时导通器2的模块结构示意图。
所述火线分时导通器2包括火线分时控制产生电路21和火线电子开关22。
所述火线分时控制产生电路21用于产生火线开关控制信号。所述火线开关控制信号为通过交流电正弦波的过零点作为基准进行火线功能的分时控制,以实现对所述负载设备4进行周期性供断电。
所述火线分时导通器2的模块连接关系为:
所述火线电子开关22的第一端作为所述火线分时导通器2的输入端,且连接至所述火线分时控制产生电路21的第一端。
所述火线电子开关22的第二端作为所述火线分时导通器2的输出端,且连接至所述火线分时控制产生电路21的第二端。
所述火线分时控制产生电路21的输出端连接至所述火线电子开关22的控制端。
请参考图5所示,图5为本发明火线分时导通器2的一种实施例的电路原理图。本实施例中,本发明火线分时导通器2采用微控器实现。具体的,微控器型号为单片机FT61F020-URT,图5中的R1、R2和单片机U1的3脚(3脚为中断和模拟数字转换管脚)组成过零检测和电压检测电路。图5中的R4、RT1和U1的4脚(4脚为模拟数字转换管脚)组成温度检测和高温保护功能。图5中的单片机U1的6脚控制电子开关通断,如上文所述电子开关是分时导通的。断开时为智能开关和自身供电,导通时为照明灯供电。
当然,不限于此,火线分时导通器2还可以采样分立元器件实现。请参考图6所示,图6为本发明火线分时导通器2的另一种实施例的电路原理图。在另一种实施例中,火线分时导通器2通过可控硅控制电路实现。具体的,图6中的D1、R1、C2调整可控硅BT1导通的电压。断开时为智能开关供电,导通时为灯供电。图6中的K1是温度开关,是过热保护电路。图6中的R4的取值决定过热保护后可控硅的电压输出降低的幅度,不接则直接断开。
请参考图7所示,图7为本发明零线分时发生器的模块结构示意图;
所述零线分时发生器5包括零线分时控制产生电路51、零线电子开关52、快速电流监控电路53以及与逻辑器件54。
所述零线分时控制产生电路51用于产生零线开关控制信号。所述零线开关控制信号为检测所述火线分时导通器2输出端状态产生在截止导通时启动预设第二导通时间的导通状态, 并在所述火线分时导通器2导通时截止的信号。
所述零线分时发生器5的连接关系为:
所述零线电子开关52的第一端作为所述零线分时导通器的输入端,且连接至所述零线分时控制产生电路51的第一端。
所述零线电子开关52的第二端连接至所述快速电流监控电路53的第二端。
所述快速电流监控电路53的第一端作为所述零线分时导通器的输入端,且连接至所述零线分时控制产生电路51的第二端。
所述零线分时控制产生电路51的输出端连接至所述与逻辑器件54的第一端,所述快速电流监控电路53的输出端连接至所述与逻辑器件54的第二端。
所述与逻辑器件54的输出端连接至所述零线电子开关52的控制端。
所述零线分时导通器4还包括过压过流保护电路,所述过压过流保护电路用于在输入过压过流时将所述零线电子开关52关断。
相关技术中的普通的单火线智能开关供电时,总会有电流流过其控制的外部负载。当用电设备功率太小时,其等效内阻太大。无法提供足够的电能给智能开关,致使智能开关无法正常工作。或者智能开关工作了,但即使在开关关闭状态下负载依然在工作(如某些小功率LED等,小电流下就会微亮或者闪亮)!又或者当负载损坏时,智能开关就不能正常工作了,此时智能开关上控制的其他设备也无法工作了。而且这时不好判断是智能开关损坏还是负载损坏。
这时给负载设备4并接零线分时发生器5就能完美解决此问题,即便负载设备4损坏都不会影响智能开关1的正常工作。而且在关闭负载设备4的时候还能把零线直接跳过负载连接到智能开关1。实现彻底关闭负载,不会导致灯负载微亮或者闪亮。
智能开关1的内部电子开关K1断开时,零线分时发生器5的快速电流监控电路53检测断开,就会马上导通零线分时发生器5中的电子开关,把零线直接导通到智能开关1的N(零线输入)上。也就是说,零线分时发生器5就会直接导通,这时候零线就会接通到智能开关1的零线接口,实现对智能开关1的零火供电。此时实现对智能开关1供电,也把负载设备4的供电完全关断,没有任何电流从负载设备4流过,避免造成负载设备4没有完全关闭的微亮或闪烁现象以及能量的损耗,有效降低对负载设备4寿命的影响。
请参考图8所示,图8为本发明零线分时发生器的一种实施例的电路原理图。本实施例中,本发明零线分时发生器5采用微控器实现。具体的,微控器型号为单片机FT61F020-URT,图8中的R1、R2和单片机U1的3脚(中断和模拟数字转换)组成过零检测和电压检测电路。 图8中的单片机U1的6脚控制电子开关通断,所述电子开关是分时导通的。导通时为智能开关提供地线,断开时为灯和自身供电。
当然,不限于此,零线分时发生器5还可以采样分立元器件实现。请参考图9所示,图9为本发明零线分时发生器5的另一种实施例的电路原理图。在另一种实施例中,具体的,图9中的D1/D2/D3/D4组成整流电路,把交流电变成直流电。图8中的R4和Q1组成电子开关。图8中的R3和R2组成电压检测电路,电压在过零点后开始升高,达到设定电压值时,图8中的Q2导通同时令Q1断开实现零线分时发生。而图8中的R5、D5的加入则组成过流限制。图8中的FS1、RV1是电流和电压保护元件。
需要指出的是,本实施例中提到的电路、电容、可控硅、以及芯片均为本领域常用的元器件和芯片,具体型号和指标选择,根据实际设计需要进行选择,在此,不做详细赘述。
绝大部分交流用电设备都是工作在100~240VAC电压,频率50~60Hz的正弦波交流电下。本发明电控制系统100就是基于交流电的电压正负交替变化,实现火线分时导通器2和零线分时发生器5的完美同步工作。为方便说明,下面统一以中国标准的220VAC/50Hz单相交流电进行具体分析说明:
请同时参考图10-11所示,图10为本发明供电控制系统100的信号波形图。图11为本发明供电控制系统100的信号的分时控制波形图。其中,图10中的阴影部分为零线分时发生器5的导通时间tN,是给智能开关1供电的导通时间;空白波形部分为火线分时导通器2导通时间tL,是给所述负载设备4供电的导通时间。
开关K1断开,火线分时导通器2停止工作,零线分时发生器5内部电压检测电路可以快速而准确地检测到这种状态,零线分时发生器5直接把零线导通到智能开关1,实行智能开关1工作在其正常的零火线方式下供电。
开关K1闭合,当火线分时导通器2断开时,零线分时发生器5自动导通,导通时间tN;当火线分时导通器2导通时,导通时间tL,零线分时发生器5自动断开。零线分时发生器5和火线分时导通器2以交流电正弦波的过零点为参考实现分时控制。
对于灯有特殊要求时,甚至可以动态分配零火分时的导通时间比例和周期。具体的,所述第一导通时间与所述第二导通时间的比例为1:10或者0.5:10。所述第一导通时间与所述第二导通时间共同形成导通周期,所述导通周期为可调参数。在不影响灯负责的前提下零线分时发生器和火线分时导通器的工作方式灵活多样。比如可以每10个周期分配1个周期或半个周期控制线导通零线给智能开关1供电,其他时间控制线导通火线给灯供电。而针对诸如电机类的感性负载,需要过零点的调光、调压设备等,我们可以通过调整火线导通时间tL和零 线导通时间tN分时比例及切入点等方式满足特殊负载的要求。还有基于微控器的高级版本,通过其自身软件调整控制,从频率,占空比,间隙都可以灵活地动态设定零火线分时导通的周期。
火线分时导通器2和零线分时发生器5的灵活组合,使得支持的智能开关1类的产品功率可以从微瓦级别的超低功耗的产品到数十瓦功耗的产品均实现单火线功能,而且保证了极高的效率,绿色环保。同时为本发明供电控制系统100的普及和推广铺平道路。灵活的电源电压适应能力。以交流电正弦波的过零点作为同步控制的基础,可以根据当前电源电压高低,灵活分配零火分时比例。使得本发明供电控制系统100在绝大部分工作条件下均能稳定的输送功率,使智能开关保持长期稳定工作。
本发明供电控制系统100的分时控制在零线分时发生器5和火线分时导通器2分时导通,不会同时导通分时。
火线分时导通器2关断时,零线分时发生器5导通直接给智能开关1供电,导通阻抗非常小而且稳定,比通过不确定阻抗的负载设备4导通过来的零线更高效和稳定(如果串联灯泡功率过小,可能就会出现智能开关不能正常工作)。另外,火线分时导通器2导通时给负载设备4供电,同时零线分时发生器5断开。即便是负载设备4损坏,零线分时发生器5仍然正常工作,也不会影响到智能开关1的供电。
为了更好的电控制系统100应用,零线分时发生器5和火线分时导通器2可同时为安装在同一位置的多个零火线智能开关供电。请参考图12所示,图12为本发明供电控制系统100的其他一种应用示意图。所述内部电子开关K1包括多个,其中一个所述内部电子开关K1的输出端连接至所述火线分时导通器2的输入端,另外的所述内部电子开关K1连接相对应的一个所述负载设备4。该应用可以使得本发明供电控制系统100应用更为广泛。
请参考图13所示,图13为本发明供电控制方法的流程框图。所述供电控制方法应用于所述供电控制系统100。
所述供电控制方法包括如下步骤:
步骤S1、所述零线分时发生器5通过检测所述火线分时导通器2输出端状态,判断所述内部电子开关K1是否闭合:若否,所述零线分时发生器5导通,所述智能开关1的零线端通过所述零线分时发生器5与零线连接。若是,则进入步骤S2。
步骤S2、所述火线分时导通器2在所述第一导通时间内导通,所述零线分时发生器5断开。
步骤S3、所述火线分时导通器2断开,所述零线分时发生器5在所述第二导通时间内导 通后进入所述步骤S1。
与相关技术相比,本发明实施例提供了供电控制系统和供电控制方法,供电控制系统设置了负载设备、智能开关、火线分时导通器以及零线分时发生器;将零线分时发生器与负载设备并联,供电控制系统在智能开关控制下进入两种工作状态,一种工作状态是:在智能开关的内部电子开关断开时,所述火线分时导通器的输入端截止输出,所述零线分时发生器检测所述火线分时导通器的导通状态,在所述火线分时导通器截止导通,从而使得零线直接跳过负载设备连接到智能开关,实现彻底关闭负载设备;另一种工作状态是:在智能开关的内部电子开关闭合时,所述零线分时发生器检测所述火线分时导通器的导通状态,所述零线分时发生器和所述火线分时导通器分时导通,从而使得本发明供电控制系统对零线火线功能切换按周期分配各自导通时间来满足智能开关供电,同时不影响负载设备的正常工作。因此,本发明实施例提供的供电控制系统和供电控制方法在开关底盒没有零线的情况下解决智能开关的零火线供电,易于安装且应用范围广。

Claims (10)

  1. 一种供电控制系统,其用于实现在没有零线的情况下给智能开关零火线供电;其特征在于,所述供电控制系统包括具有内部电子开关的智能开关、火线分时导通器、零线分时发生器以及负载设备;
    所述内部电子开关断开控制所述零线分时发生器直接导通,零线经过所述零线分时发生器导通到所述智能开关的零线端,以实现对所述智能开关的零火线供电;所述内部电子开关闭环控制所述火线分时导通器导通给所述负载设备分时供电,并根据设定在交流电正弦波的过零点一次或者多次截止相应的时间,以使所述零线分时发生器检测到所述火线分时导通器导通时自动截止,以及当所述零线分时发生器检测到所述火线分时导通器截止时自动导通把零线导通给所述智能开关分时供电,以实现对智能开关的零火线供电;
    所述智能开关的火线端连接至火线,所述智能开关的火线输出端连接至所述火线分时导通器的输入端;
    所述智能开关的零线端分别连接至所述火线分时导通器的输出端、所述零线分时发生器的输出端,以及所述负载设备的第一端;
    所述零线分时发生器的输入端分别连接至零线和所述负载设备的第二端;所述零线分时发生器与所述负载设备并联设置。
  2. 根据权利要求1所述的供电控制系统,其特征在于,所述火线分时导通器包括火线分时控制产生电路和火线电子开关,
    所述火线分时控制产生电路用于产生火线开关控制信号;所述火线开关控制信号为通过交流电正弦波的过零点作为基准进行火线功能的分时控制,以实现对所述负载设备进行周期性供断电;
    所述火线电子开关的第一端作为所述火线分时导通器的输入端,且连接至所述火线分时控制产生电路的第一端;
    所述火线电子开关的第二端作为所述火线分时导通器的输出端,且连接至所述火线分时控制产生电路的第二端;
    所述火线分时控制产生电路的输出端连接至所述火线电子开关的控制端。
  3. 根据权利要求2所述的供电控制系统,其特征在于,所述火线分时导通器还包括温度保护电路,所述温度保护电路用于在内部温度超过预设阈值时将所述火线电子开关关断。
  4. 根据权利要求1所述的供电控制系统,其特征在于,所述零线分时发生器包括零线分时控制产生电路、零线电子开关、快速电流监控电路以及与逻辑器件,
    所述零线分时控制产生电路用于产生零线开关控制信号;所述零线开关控制信号为检测所述火线分时导通器输出端状态产生在截止导通时启动预设第二导通时间的导通状态,并在所述火线分时导通器导通时截止的信号;
    所述零线电子开关的第一端作为所述零线分时导通器的输入端,且连接至所述零线分时控制产生电路的第一端;
    所述零线电子开关的第二端连接至所述快速电流监控电路的第二端;
    所述快速电流监控电路的第一端作为所述零线分时导通器的输入端,且连接至所述零线分时控制产生电路的第二端;
    所述零线分时控制产生电路的输出端连接至所述与逻辑器件的第一端,所述快速电流监控电路的输出端连接至所述与逻辑器件的第二端;
    所述与逻辑器件的输出端连接至所述零线电子开关的控制端。
  5. 根据权利要求4所述的供电控制系统,其特征在于,所述零线分时导通器还包括过压过流保护电路,所述过压过流保护电路用于在输入过压过流时将所述零线电子开关关断。
  6. 根据权利要求1所述的供电控制系统,其特征在于,所述内部电子开关包括多个,其中一个所述内部电子开关的输出端连接至所述火线分时导通器的输入端,另外的所述内部电子开关连接相对应的一个所述负载设备。
  7. 根据权利要求1所述的供电控制系统,其特征在于,所述火线分时导通器用于给所述负载设备提供预设的第一导通时间的火线供电;所述零线分时发生器在所述火线分时导通器截止导通时启动预设的第二导通时间的导通状态;所述第一导通时间与所述第二导通时间的比例为1:10或者0.5:10。
  8. 根据权利要求7所述的供电控制系统,其特征在于,所述第一导通时间与所述第二导通时间共同形成导通周期,所述导通周期为可调参数。
  9. 根据权利要求1所述的供电控制系统,其特征在于,所述负载设备为照明灯。
  10. 一种供电控制方法,其特征在于,所述供电控制方法应用于如权利要求1-9中任意一个所述的供电控制系统,所述方法包括:
    步骤S1、所述零线分时发生器通过检测所述火线分时导通器输出端状态,判断所述内部电子开关是否闭合:若否,所述零线分时发生器导通,所述智能开关的零线端通过所述零线分时发生器与零线连接;若是,则进入步骤S2;
    步骤S2、所述火线分时导通器在所述第一导通时间内导通,所述零线分时发生器断开;
    步骤S3、所述火线分时导通器断开,所述零线分时发生器在所述第二导通时间内导通后 进入所述步骤S1。
PCT/CN2023/091753 2022-04-29 2023-04-28 一种供电控制系统和供电控制方法 WO2023208217A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221025273.8U CN217427773U (zh) 2022-04-29 2022-04-29 一种供电控制系统
CN202210468911.1A CN114678961A (zh) 2022-04-29 2022-04-29 一种供电控制系统和供电控制方法
CN202221025273.8 2022-04-29
CN202210468911.1 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023208217A1 true WO2023208217A1 (zh) 2023-11-02

Family

ID=88517906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091753 WO2023208217A1 (zh) 2022-04-29 2023-04-28 一种供电控制系统和供电控制方法

Country Status (1)

Country Link
WO (1) WO2023208217A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109041364A (zh) * 2018-06-21 2018-12-18 青岛海信智慧家居系统股份有限公司 单火线开关及智能开关系统
CN110277830A (zh) * 2018-03-16 2019-09-24 朱燕卫 一种仅需单火线的wifi智能电源开关
CN111538268A (zh) * 2020-04-27 2020-08-14 罗洁洁 单火取电智能开关、无线控制装置与供电控制系统
US20210037626A1 (en) * 2019-07-31 2021-02-04 Consumer Lighting (U.S.), Llc Dummy load circuit and electrical load for single live wire switch
CN114678961A (zh) * 2022-04-29 2022-06-28 广东思万奇科技有限公司 一种供电控制系统和供电控制方法
CN217427773U (zh) * 2022-04-29 2022-09-13 广东思万奇科技有限公司 一种供电控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277830A (zh) * 2018-03-16 2019-09-24 朱燕卫 一种仅需单火线的wifi智能电源开关
CN109041364A (zh) * 2018-06-21 2018-12-18 青岛海信智慧家居系统股份有限公司 单火线开关及智能开关系统
US20210037626A1 (en) * 2019-07-31 2021-02-04 Consumer Lighting (U.S.), Llc Dummy load circuit and electrical load for single live wire switch
CN111538268A (zh) * 2020-04-27 2020-08-14 罗洁洁 单火取电智能开关、无线控制装置与供电控制系统
CN114678961A (zh) * 2022-04-29 2022-06-28 广东思万奇科技有限公司 一种供电控制系统和供电控制方法
CN217427773U (zh) * 2022-04-29 2022-09-13 广东思万奇科技有限公司 一种供电控制系统

Similar Documents

Publication Publication Date Title
CN102695330B (zh) 发光元件电源供应电路、发光元件驱动电路及其控制方法
US7609007B1 (en) Dimmer adaptable to either two or three active wires
US11013081B1 (en) Continuous light dimming circuit
CN102685978B (zh) 照明装置
CN102984866A (zh) 一种基于电力载波带地址控制的led灯智能电源模块
CN211063817U (zh) 一种闪断检测控制装置、包括其的电子设备及系统
CN104883799A (zh) 用于led驱动的控制方法、控制电路、系统及led灯具
CN103825437A (zh) Ac-dc电力升压器及用于ac和dc照明的ac-dc电力控制模块
CN101464720B (zh) 电源供应器
CN217427773U (zh) 一种供电控制系统
CN111090016A (zh) 一种可控硅调光器检测装置、电路及其检测方法
TW201320526A (zh) 照明系統
CN108271299A (zh) 一种单火线取电装置及单火线开关
CN114678961A (zh) 一种供电控制系统和供电控制方法
WO2020037596A1 (zh) 电路控制系统和串联控制装置及其控制方法
EP2695491B1 (en) Trailing-edge-phase-controlled light modulating circuit
CN202634798U (zh) 单灯联网节能控制终端
WO2023208217A1 (zh) 一种供电控制系统和供电控制方法
CN103457634A (zh) 电力线通讯控制系统
CN202514151U (zh) 单火线取电装置
CN102883500A (zh) 调光器
CN109348569B (zh) 一种单火线上过零信号的产生方法
CN102665355A (zh) 安装墙面的led调光电源
US10805996B1 (en) Dial segmented dimming circuit
KR101091590B1 (ko) 스마트 조명 스위치에서의 전원 획득 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795649

Country of ref document: EP

Kind code of ref document: A1