WO2023208101A1 - 一种小区波束指示方法及其相关设备 - Google Patents
一种小区波束指示方法及其相关设备 Download PDFInfo
- Publication number
- WO2023208101A1 WO2023208101A1 PCT/CN2023/091105 CN2023091105W WO2023208101A1 WO 2023208101 A1 WO2023208101 A1 WO 2023208101A1 CN 2023091105 W CN2023091105 W CN 2023091105W WO 2023208101 A1 WO2023208101 A1 WO 2023208101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- beams
- cell group
- group
- belongs
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 131
- 238000004891 communication Methods 0.000 claims description 119
- 238000012545 processing Methods 0.000 claims description 37
- 230000015654 memory Effects 0.000 claims description 36
- 238000004590 computer program Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- 210000004027 cell Anatomy 0.000 description 2009
- 230000005540 biological transmission Effects 0.000 description 58
- 210000004460 N cell Anatomy 0.000 description 53
- 230000011664 signaling Effects 0.000 description 47
- 238000013461 design Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 11
- 230000009471 action Effects 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/232—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
Definitions
- the present application relates to the field of wireless communication technology, and in particular, to a cell beam indication method and related equipment.
- the fifth generation mobile communication system can use high-frequency communication, that is, ultra-high frequency band (>6GHz) signals are used to transmit data.
- High-frequency communication uses analog beam technology to form a signal similar to a beam (called an analog beam, or beam for short), thereby increasing the transmission distance.
- Network equipment and terminal equipment must use beams for transmission.
- the beams used by each channel or reference signal are independent, and independent signaling is required to indicate the corresponding beams for each channel and reference signal.
- multiple channels and reference signals can use a unified beam to indicate a beam through one signaling.
- the beam is used for multiple channels and reference signals, thereby saving the overhead of beam indication signaling.
- the beam used by multiple channels and reference signals is called a common beam.
- the common beam is indicated through Downlink Control Information (DCI) signaling.
- DCI Downlink Control Information
- the common beam indicated by DCI signaling can be used for a single cell. Can also be used for multiple cells, depending on whether the network equipment configures multiple cells in a cell group for beam sharing.
- the network device can configure multiple cells in a cell group, and all cells in the cell group can use the same common beam. In this way, the network device only needs to indicate a common beam in one of the cells in the cell group, and the common beam can be used in all cells in the cell group.
- the cell that indicates the common beam that is, the cell that sends the above-mentioned DCI signaling, is called a reference cell. Through such grouping, the overhead of beam indication signaling can be further saved.
- a cell can be deployed on one base station or on multiple base stations.
- a cell deployed on multiple base stations can use multiple base stations to transmit data for terminal devices.
- Each base station can use a common beam. Therefore, a cell deployed on multiple base stations needs to use multiple common beams.
- a cell deployed on a single base station is referred to as a single-beam cell, and a cell deployed on multiple base stations is referred to as a multi-beam cell.
- a single-beam cell when the common beam is indicated in the form of a cell group, a single-beam cell can only be configured into a cell group.
- For multi-beam cells how to perform unified indication of the common beam in the form of a cell group? Related Technology is not involved. Therefore, for multi-beam cells, how to indicate common beams in the form of cell groups still needs to be solved.
- Embodiments of the present application provide a cell beam indication method and related equipment for performing common beam indication on multi-beam cells in the form of cell groups.
- embodiments of the present application provide a cell beam indication method, including:
- the terminal device receives configuration information sent by the network device, where the configuration information is used to configure at least one cell group, and each cell group includes a first cell and a second cell.
- the first cell can be defined as the reference cell
- the second cell are other cells in the cell group.
- the terminal device receives the first beam indicated by the network device through signaling in a first cell in a first cell group, wherein the first cell group includes at least one multi-beam cell.
- the network device sends DCI signaling to the terminal device through the reference cell in the cell group, indicating the common beam of the reference cell.
- the reference cell is a multi-beam cell, there are multiple beams in the first beam sent; when the reference cell is a single beam
- beaming a cell there is only one beam in the first beam.
- the terminal device determines the second beam according to the first beam, where the first beam is the beam indicated by the first cell in the first cell group, and the second beam is the beam corresponding to the first cell group. Since the reference cell is in the first cell group, the beams in the second beam corresponding to the first cell group are one or more beams in the first beam.
- the terminal device determines the third beam according to the second beam, where the third beam is the beam corresponding to the second cell in the first cell group. Since the second cell is located in the first cell group, the second cell can determine the common beams available to the cell based on the second beams, and these available common beams constitute the third beam.
- the terminal device first receives the configuration information sent by the network device to obtain the cell grouping information, and the cell group set in the cell grouping information includes at least one multi-beam cell in the cell group; then the terminal device receives the information from the network device.
- the common beam indication sent by the reference cell is used to determine the common beam used by the reference cell; secondly, the terminal device determines the common beam of the cell group where the reference cell is located based on the common beam used by the reference cell; finally, the terminal device determines the common beam of the cell group where the reference cell is located based on the common beam used by the reference cell. , determine the common beams of other cells in the group.
- the reference cell and/or other cells in the cell group can be multi-beam cells, and the reference cell and/or other cells in the cell group can adopt at least two common cells according to their cell types. Beams are used for data transmission, which saves the overhead of beam indication signaling and solves the problem that multi-beam cells cannot perform common beam indication in the form of cell groups.
- the second cell is a multi-beam cell, and the second cell only belongs to the first cell group;
- the first beam includes only one beam.
- the second beam is then the first beam, and the third beam is the second beam.
- the first cell when the first cell is a single-beam cell, the first cell as a reference cell can only indicate one beam, so the first beam only includes one beam. Since the first beam includes only one beam, the second beam, as a common beam of the first cell group, also includes only one beam. In the case where the second beam only includes one beam, and the second cell only belongs to the first cell group, the third beam is the second beam, that is, the third beam also includes only one beam, that is, the first beam and the second beam. It is the same beam as the third beam.
- the first cell is a single-beam cell and the second cell is a multi-beam cell
- the first cell and the second cell only belong to the first cell group
- the indication solution solves the problem in the related art of how common beam indication cannot be performed in the form of a cell group in this situation.
- the second cell also belongs to at least one other cell group, and the other cell groups to which the second cell belongs correspond to one beam;
- the first beam includes only one beam.
- the second beam is the first beam.
- the third beam consists of the second beam and a beam corresponding to each other cell group.
- the first cell When the first cell is a single-beam cell, the first cell as a reference cell can only indicate one beam, so the first beam only includes one beam. Since the first beam only includes one beam, the second beam serves as the common beam of the first cell group. At this time, the second beam is the first beam, that is, it also includes only one beam. Since the second cell also belongs to other cell groups, and the other cell groups to which the second cell belongs correspond to one beam, the third beam corresponding to the second cell consists of the second beam and the beams corresponding to each other cell group, that is, The second cell uses the common beams of multiple cell groups as the common beams of the cell.
- the third beam is composed of the second beam and beams corresponding to each other cell group, specifically including:
- the beam corresponding to the i-th cell group in the first cell group and other cell groups is used as the i-th beam of the third beam, where i is an integer greater than 0.
- the network device sends configuration signaling to the terminal device.
- the i-th cell group may specifically refer to the i-th cell group in the configuration sequence, or may specifically refer to the i-th cell group with cell group indexes arranged from small to large.
- the i-th cell group may be determined in the reverse order of the above, that is, the i-th cell group may be determined in reverse order of configuration order or in descending order of cell group index.
- the first cell is a single-beam cell
- the second cell is a multi-beam cell
- the first cell only belongs to the first cell group
- the second cell also belongs to at least one other cell group
- other cells to which the second cell belongs
- a solution is proposed to indicate the common beam of the second cell, which solves the problem in the related art that the common beam indication cannot be performed in the form of a cell group in this case.
- the first cell is a multi-beam cell and the second cell is a single-beam cell or a multi-beam cell
- the first cell belongs to N cell groups and the second cell only belongs to the first cell group, where N is an integer greater than 1;
- the first beam includes N beams
- the second beam is one of the N beams
- the third beam is the second beam.
- the first cell belongs to N cell groups
- the number of beams indicated in the reference cell is equal to the number of cell groups to which the reference cell belongs, that is, the first cell is a multi-beam cell, and the first cell can be used as a reference cell.
- N beams are indicated, so the first beam includes N beams. Since the first cell indicates N beams and belongs to N cell groups, each cell group to which the first cell belongs is allocated one of the N beams, and the second beam is one of the N beams.
- the third beam is the second beam, that is, the third beam It also includes only one beam, that is, the second cell uses one of the N beams indicated by the first cell as the common beam of the second cell.
- the second beam is one of the N beams.
- the beam specifically includes: the second beam is the i-th beam among the N beams.
- the multiple beams indicated in the reference cell correspond one-to-one to the multiple cell groups to which the reference cell belongs, then the first beam among the N beams corresponds to the first cell group among the N cell groups. , the second common beam among N beams corresponds to the second cell group among N cell groups,..., the Nth beam among N beams corresponds to N cells The Nth cell group in the group.
- the second cell is a single-beam cell or a multi-beam cell
- the first cell belongs to multiple cell groups
- the second cell only belongs to the first cell group
- the first cell is a multi-beam cell and the second cell is a multi-beam cell
- the first cell belongs to N cell groups
- the second cell also belongs to at least one other cell group
- the other cell groups to which the second cell belongs correspond to one beam.
- N is an integer greater than 1;
- the first beam includes N beams
- the second beam is one of the N beams
- the third beam consists of the second beam and a beam corresponding to each other cell group.
- each cell group to which the first cell belongs is allocated one of the N beams, and the second beam is one beam among N beams.
- the third beam corresponding to the second cell is composed of the second beam and
- Each other cell group corresponds to a beam composition, that is, the second cell uses the common beams of multiple cell groups as the common beam of the cell.
- the second beam is one of the N beams.
- the beam specifically includes: the second beam is the i-th beam among the N beams.
- the third beam is composed of the second beam and beams corresponding to each other cell group, specifically including:
- the beam corresponding to the i-th cell group in the first cell group and other cell groups is used as the i-th beam of the third beam, where i is an integer greater than 0.
- the network device sends configuration signaling to the terminal device.
- the i-th cell group may specifically refer to the i-th cell group in the configuration sequence, or may specifically refer to the i-th cell group with cell group indexes arranged from small to large.
- the i-th cell group may be determined in the reverse order of the above, that is, the i-th cell group may be determined in reverse order of configuration order or in descending order of cell group index.
- the first cell is a multi-beam cell
- the second cell is a multi-beam cell
- the first cell belongs to N cell groups
- the second cell also belongs to at least one other cell group
- other cells to which the second cell belongs
- a solution is proposed to indicate the common beam of the second cell, which solves the problem in the related art of how the common beam indication cannot be performed in the form of a cell group in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam is one of the second beams.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams. Since the first cell only belongs to the first cell group, the second beam serves as the common beam of the first cell group. At this time, the second beam is the first beam, that is, it also includes N beams. Since the second cell only belongs to the first cell group, the second cell selects one of the N beams as the common beam of the cell, that is, the third beam is one of the second beams.
- the first cell is a multi-beam cell
- both the first cell and the second cell only belong to the first cell group
- a solution is proposed to indicate the common beam of the second cell, solving the related problem.
- the technical problem is how common beam indication cannot be performed in the form of cell groups in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam is the second beam.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams. Since the first cell only belongs to the first cell group, the second beam serves as the common beam of the first cell group. At this time, the second beam is the first beam, that is, it also includes N beams. Since the second cell only belongs to the first cell group, the second cell selects the above-mentioned N beams as the common beams of the cell, that is, the third beam is the second beam.
- the first cell is a multi-beam cell
- both the first cell and the second cell only belong to the first cell group
- a solution is proposed to indicate the common beam of the second cell, solving the related problem.
- the technical problem is how common beam indication cannot be performed in the form of cell groups in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam is one of the second beams
- the third beam is the second beam.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams. Since the first cell only belongs to the first cell group, the second beam serves as the common beam of the first cell group. At this time, the second beam is the first beam, that is, it also includes N beams. Since the second cell only belongs to the first cell group, when the second cell is a single-beam cell, one of the N beams serves as the common beam of the cell, that is, the third beam is one of the second beams; When the second cell is a multi-beam cell, the above-mentioned N beams are selected as the common beams of the cell, that is, the third beam is the second beam.
- the first cell is a multi-beam cell
- both the first cell and the second cell only belong to the first cell group
- a solution is proposed to indicate the common beam of the second cell, solving the related problem.
- the technical problem is how common beam indication cannot be performed in the form of cell groups in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is one of N beams
- the third beam is the second beam.
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams.
- the first condition is met, one of the multiple beams indicated in the reference cell is used for the cell group to which the reference cell belongs, that is, the second beam is one of the N beams.
- the first condition may be one or a combination of the following: the first cell group contains a single-beam cell; there is a certain cell in the first cell group that simultaneously belongs to multiple cell groups.
- the third beam is the second beam, that is, the third beam It also includes only one beam, that is, the second cell uses one of the N beams indicated by the first cell as the common beam of the second cell.
- the second beam is the first beam, that is, the second beam includes N beams.
- the selection logic of the third beam is based on the type of the second cell, which matches the fifth to eighth implementation methods mentioned above, and will not be described again here.
- the second beam is one of the N beams and specifically includes:
- the second beam is the first beam among the N beams.
- the network device indicates the N beams of the reference cell to the terminal device through DCI signaling, and the N beams are transmitted through the N transmission configuration indication (transmission configuration indication) in the DCI. TCI) field value, then the first beam refers to the beam indicated by the first TCI field, and the second beam refers to the beam indicated by the second TCI field; 2.
- the network device sends configuration signaling to the terminal device.
- the device configures information related to common beams. Each beam is arranged in ascending order according to the configuration order. The beam with the smallest or largest index number is regarded as the first beam.
- the first cell is a multi-beam cell
- both the first cell and the second cell belong only to the first cell group, and the first cell group meets the first condition
- a common method for the second cell is proposed.
- the scheme of beam indication solves the problem in the related art of why common beam indication cannot be carried out in the form of a cell group in this situation.
- the first cell is a multi-beam cell
- the first cell only belongs to the first cell group, and the second cell also belongs to at least one other cell group, and each other cell group corresponds to one beam;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is one of N beams
- the third beam consists of the second beam and beams corresponding to each other cell group;
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams.
- the first condition is met, one of the multiple beams indicated in the reference cell is used for the cell group to which the reference cell belongs, that is, the second beam is one of the N beams.
- the first condition may be one or a combination of the following: the first cell group contains a single-beam cell; there is a certain cell in the first cell group that simultaneously belongs to multiple cell groups.
- the third beam corresponding to the second cell is composed of the second beam and Each other cell group corresponds to a beam composition, that is, the second cell uses the common beams of multiple cell groups as the common beam of the cell.
- the second beam is the first beam, that is, the second beam includes N beams.
- the selection logic of the third beam is based on the type of the second cell, which matches the fifth to eighth implementation methods mentioned above, and will not be described again here.
- the second beam is one of the N beams and specifically includes:
- the second beam is the first beam among the N beams.
- the selection of the first beam is consistent with the eighth implementation method mentioned above and will not be described again here.
- the third beam is composed of the second beam and beams corresponding to each other cell group, specifically including:
- the beam corresponding to the i-th cell group in the first cell group and other cell groups is used as the i-th beam of the third beam, where i is an integer greater than 0.
- the network device sends configuration signaling to the terminal device.
- the i-th cell group may specifically refer to the i-th cell group in the configuration sequence, or may specifically refer to the i-th cell group with cell group indexes arranged from small to large.
- the i-th cell group may be determined in the reverse order of the above, that is, the i-th cell group may be determined in reverse order of configuration order or in descending order of cell group index.
- the first cell is a multi-beam cell, the first cell only belongs to the first cell group, the first cell group satisfies the first condition, the second cell also belongs to at least one other cell group, and each other cell group
- each beam corresponds to one beam
- a solution for indicating the common beam of the second cell is proposed, which solves the problem in the related art that the common beam indication cannot be performed in the form of a cell group in this case.
- the configuration information is also used to configure the cell or cell group to satisfy one of the constraint rules.
- the constraint rules include:
- each cell group only belong to a single cell group
- the first cell is a cell belonging to multiple cell groups
- the multiple cells belonging to multiple cell groups all belong to the same cell group
- Multiple cells belonging to multiple cell groups belong to completely different cell groups.
- a cell cannot belong to multiple cell groups at the same time
- the cell cannot be used as a reference cell, that is, only cells belonging to a single cell group can be used as the reference cell;
- the reference cell can only be a cell belonging to multiple cell groups
- the cell groups to which they belong are either exactly the same or completely different, that is, they cannot be partially the same.
- the multi-beam cell When a multi-beam cell belongs to a single cell group, the multi-beam cell cannot be used as a reference cell;
- a multi-beam cell belongs to a single cell group, if the first condition is met, the multi-beam cell cannot be used as a reference cell.
- the method further includes:
- the terminal equipment determines the target beam according to the third beam
- the terminal equipment uses the target beam to transmit data to the network equipment.
- the network device After the network device indicates the common beam to the terminal device through the reference cell, it determines how the common beam is applied to all cells in the cell group to which the reference cell belongs based on the above implementation methods.
- the terminal device processes the common beam indication information through its processor, determines the common beam corresponding to each cell according to the cell grouping situation, and then records the common beam information corresponding to each cell through its memory for subsequent transmission.
- embodiments of the present application provide a cell beam indication method, including:
- the network device sends configuration information to the terminal device, where the configuration information is used to configure at least one cell group, and each cell group includes a first cell and a second cell;
- the network device indicates the first beam to the terminal device through the first cell in the first cell group, where the first beam is used by the terminal device to determine the second beam corresponding to the first cell group, and the second beam is used by the terminal device to determine the first beam.
- the network device determines the second beam based on the first beam
- the network device determines the third beam based on the second beam.
- the terminal device first receives the configuration information sent by the network device to obtain the cell grouping information, and the cell group set in the cell grouping information includes at least one multi-beam cell in the cell group; then the terminal device receives the information from the network device.
- the common beam indication sent by the reference cell is used to determine the common beam adopted by the reference cell;
- the secondary terminal equipment and network equipment determine the common beam of the cell group where the reference cell is located based on the common beam adopted by the reference cell; finally, the terminal equipment and network equipment determine the common beam of other cells in the group based on the common beam of the cell group.
- the reference cell and/or other cells in the cell group can be multi-beam cells, and the reference cell and/or other cells in the cell group can adopt at least two common cells according to their cell types. Beams are used for data transmission, which saves the overhead of beam indication signaling and solves the problem that multi-beam cells cannot perform common beam indication in the form of cell groups.
- the second cell is a multi-beam cell, and the second cell only belongs to the first cell group;
- the first beam includes only one beam.
- the second beam is then the first beam, and the third beam is the second beam.
- the first cell is a single-beam cell and the second cell is a multi-beam cell
- the first cell and the second cell only belong to the first cell group
- the indication solution solves the problem in the related art of how common beam indication cannot be performed in the form of a cell group in this situation.
- the second cell also belongs to at least one other cell group, and the other cell groups to which the second cell belongs correspond to one beam;
- the first beam includes only one beam.
- the second beam is the first beam.
- the third beam consists of the second beam and a beam corresponding to each other cell group.
- the third beam is composed of the second beam and beams corresponding to each other cell group, specifically including:
- the beam corresponding to the i-th cell group in the first cell group and other cell groups is used as the i-th beam of the third beam, where i is an integer greater than 0.
- the first cell is a single-beam cell
- the second cell is a multi-beam cell
- the first cell only belongs to the first cell group
- the second cell also belongs to at least one other cell group
- other cells to which the second cell belongs
- a solution is proposed to indicate the common beam of the second cell, which solves the problem in the related art that the common beam indication cannot be performed in the form of a cell group in this case.
- the first cell is a multi-beam cell and the second cell is a single-beam cell or a multi-beam cell
- the first cell belongs to N cell groups and the second cell only belongs to the first cell group, where N is an integer greater than 1;
- the first beam includes N beams
- the second beam is one of the N beams
- the third beam is the second beam.
- the second beam is one of the N beams.
- the beam specifically includes: the second beam is the i-th beam among the N beams.
- the second cell is a single-beam cell or a multi-beam cell
- the first cell belongs to multiple cell groups
- the second cell only belongs to the first cell group
- the first cell is a multi-beam cell and the second cell is a multi-beam cell
- the first cell belongs to N cell groups
- the second cell also belongs to at least one other cell group
- the other cell groups to which the second cell belongs correspond to one beam.
- N is an integer greater than 1;
- the first beam includes N beams
- the second beam is one of the N beams
- the third beam consists of the second beam and a beam corresponding to each other cell group.
- the second beam is one of the N beams.
- the beam specifically includes: the second beam is the i-th beam among the N beams.
- the third beam is composed of the second beam and beams corresponding to each other cell group, specifically including:
- the beam corresponding to the i-th cell group in the first cell group and other cell groups is used as the i-th beam of the third beam, where i is an integer greater than 0.
- the first cell is a multi-beam cell
- the second cell is a multi-beam cell
- the first cell belongs to N cell groups
- the second cell also belongs to at least one other cell group
- other cells to which the second cell belongs
- a solution is proposed to indicate the common beam of the second cell, which solves the problem in the related art of how the common beam indication cannot be performed in the form of a cell group in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam is one of the second beams.
- the first cell is a multi-beam cell
- both the first cell and the second cell only belong to the first cell group
- a solution is proposed to indicate the common beam of the second cell, solving the related problem.
- the technical problem is how common beam indication cannot be performed in the form of cell groups in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam is the second beam.
- the first cell is a multi-beam cell
- both the first cell and the second cell only belong to the first cell group
- a solution is proposed to indicate the common beam of the second cell, solving the related problem.
- the technical problem is how common beam indication cannot be performed in the form of cell groups in this situation.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam is one of the second beams
- the third beam is the second beam.
- the first cell is a multi-beam cell
- both the first cell and the second cell only belong to the first cell group
- a solution is proposed to indicate the common beam of the second cell, solving the related problem.
- the technical problem is how common beam indication cannot be performed in the form of cell groups in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is one of N beams
- the third beam is the second beam.
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- the second beam is one of the N beams and specifically includes:
- the second beam is the first beam among the N beams.
- the first cell is a multi-beam cell
- both the first cell and the second cell belong only to the first cell group, and the first cell group meets the first condition
- a common method for the second cell is proposed.
- the scheme of beam indication solves the problem in the related art of why common beam indication cannot be carried out in the form of a cell group in this situation.
- the first cell is a multi-beam cell
- the first cell only belongs to the first cell group, and the second cell also belongs to at least one other cell group, and each other cell group corresponds to one beam;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is one of N beams
- the third beam consists of the second beam and beams corresponding to each other cell group;
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- the second beam is one of the N beams and specifically includes:
- the second beam is the first beam among the N beams.
- the third beam is composed of the second beam and beams corresponding to each other cell group, specifically including:
- the beam corresponding to the i-th cell group in the first cell group and other cell groups is used as the i-th beam of the third beam, where i is greater than 0 integer.
- the first cell is a multi-beam cell, the first cell only belongs to the first cell group, the first cell group satisfies the first condition, the second cell also belongs to at least one other cell group, and each other cell group
- each beam corresponds to one beam
- a solution for indicating the common beam of the second cell is proposed, which solves the problem in the related art that the common beam indication cannot be performed in the form of a cell group in this case.
- the configuration information is also used to configure the cell or cell group to satisfy one of the constraint rules.
- the constraint rules include:
- each cell group only belong to a single cell group
- the first cell is a cell belonging to multiple cell groups
- the multiple cells belonging to multiple cell groups all belong to the same cell group
- Multiple cells belonging to multiple cell groups belong to completely different cell groups.
- a terminal device which includes:
- a transceiver module configured to receive configuration information sent by the network device, where the configuration information is used to configure at least one cell group, and each cell group includes a first cell and a second cell;
- a processing module configured to determine the second beam corresponding to the first cell group according to the first beam indicated by the first cell in the first cell group, wherein the first cell group includes at least one multi-beam cell; and further configured to determine the second beam corresponding to the first cell group according to the first beam.
- the second beam determines the third beam of the second cell in the first cell group.
- the transceiver module of the terminal device is also used to use the target beam to transmit data with the network device after determining the target beam based on the third beam.
- inventions of the present application provide a network device.
- the network device includes:
- a transceiver module configured to send configuration information to the terminal device, where the configuration information is used to configure at least one cell group, and each cell group includes a first cell and a second cell;
- a processing module configured to indicate the first beam to the terminal device through the first cell in the first cell group, wherein the first beam is used by the terminal device to determine the second beam corresponding to the first cell group, and the second beam is used by the terminal device Determine the third beam of the second cell in the first cell group, wherein the first cell group includes at least one multi-beam cell; further used to determine the second beam according to the first beam; and further used to determine the third beam according to the second beam. Three beams.
- inventions of the present application provide a communication device.
- the communication device includes a processor.
- the processor is used to call and run the computer program stored in the memory, so that the processor implements any one of the implementation methods from the first aspect to the second aspect.
- the communication device further includes a transceiver; the processor is also used to control the transceiver to send and receive signals.
- the communication device includes a memory, and a computer program is stored in the memory.
- embodiments of the present application provide a computer-readable storage medium that stores a computer program or instructions, which when executed by one or more computers, causes one or more A computer implements any possible implementation of the method in any of the above aspects.
- embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the method in any one of the above aspects.
- An eighth aspect of the present application provides a chip device, including a processor, connected to a memory, and calling a program stored in the memory, so that the processor executes any one of the above-mentioned implementations of the first to second aspects. .
- embodiments of the present application provide a communication system, which includes the terminal equipment and network equipment of the above aspects.
- the terminal device first receives the configuration information sent by the network device to obtain the cell grouping information, and the cell group set in the cell grouping information includes at least one multi-beam cell in the cell group; then the terminal device receives the network The common beam indication sent by the device through the reference cell is used to determine the common beam used by the reference cell; secondly, the terminal device and the network device determine the common beam of the cell group where the reference cell is located based on the common beam used by the reference cell; finally, the terminal device and the network The device determines the common beams of other cells in the group based on the common beams of the cell group.
- the solution of this application includes various possible cell grouping methods of multi-beam cells, as well as a variety of common beam group indication schemes under various grouping methods.
- the form of a cell group realizes the common beam indication of multi-beam cells, saving beams.
- the overhead of indication signaling solves the problem that multi-beam cells cannot perform common beam indication in the form of cell groups.
- FIG. 1 is a schematic structural diagram of TCI-state
- Figure 2 is a schematic diagram of the MAC-CE structure used to activate TCI
- Figure 3 is a schematic diagram of cell grouping of a single-beam cell
- Figure 4a is a grouping diagram of the first multi-beam cell provided by the embodiment of the present application.
- Figure 4b is a grouping diagram of the second multi-beam cell provided by the embodiment of the present application.
- Figure 5 is a schematic structural diagram of the communication system provided by the embodiment of the present application.
- Figure 6 is a schematic structural diagram of each network device and each terminal device in the communication system
- Figure 7 is a schematic flowchart of the cell beam indication method provided by the embodiment of the present application.
- Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- Figure 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
- Figure 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
- FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
- the naming or numbering of steps in this application does not mean that the steps in the method flow must be executed in the time/logical sequence indicated by the naming or numbering.
- the process steps that have been named or numbered can be implemented according to the purpose to be achieved. The order of execution can be changed for technical purposes, as long as the same or similar technical effect can be achieved.
- the division of units presented in this application is a logical division. In actual applications, there may be other divisions. For example, multiple units may be combined or integrated into another system, or some features may be ignored. , or not executed.
- the coupling or direct coupling or communication connection between the units shown or discussed may be through some interfaces, and the indirect coupling or communication connection between units may be electrical or other similar forms. There are no restrictions in the application.
- the units or subunits described as separate components may or may not be physically separated, may or may not be physical units, or may be distributed into multiple circuit units, and some or all of them may be selected according to actual needs. unit to achieve the purpose of this application plan.
- the first embodiment of the present application provides a cell beam indication method and related equipment.
- Network equipment and terminal equipment can determine the common beam corresponding to each cell in each cell group according to the cell grouping situation.
- the cells in the cell group can be multi-beam cells, that is, the cells can use at least two common beams for data transmission according to their cell types, which saves beam indication signaling overhead and solves the problem that multi-beam cells cannot use the same method as the cell group. form of public beam indication.
- the embodiment of the beam in the new radio (NR) protocol can be a spatial domain filter, or a spatial filter, or a spatial domain parameter, or a spatial parameter. ), spatial domain setting, spatial setting, or quasi-co-location (QCL) information, QCL assumptions, QCL instructions, etc.
- Beams can be indicated by a transmission configuration indication (TCI) state (TCI-state) parameter, or by a spatial relationship parameter. Therefore, in this application, the beam can be replaced by spatial filter, spatial filter, spatial parameter, spatial parameter, spatial setting, spatial setting, QCL information, QCL assumption, QCL indication, TCI-state (including downlink (download, DL) TCI-state or uplink (UL, Upload)TCI-state), spatial relationship, etc.
- TCI-state including downlink (download, DL) TCI-state or uplink (UL, Upload)TCI-state
- Beam can also be replaced by other terms indicating beam, which is not limited in this application.
- the beam used to transmit signals can be called a transmission beam (transmission beam, Tx beam), or a spatial domain transmission filter (spatial domain transmission filter), a spatial transmission filter (spatial transmission filter), and a spatial domain transmission parameter (spatial domain).
- transmission parameter or spatial transmission parameter (spatial transmission parameter), spatial domain transmission setting (spatial domain transmission setting) or spatial transmission setting (spatial transmission setting).
- the downlink transmit beam can be indicated by TCI-state.
- the beam used to receive signals can be called a reception beam (Rx beam), or a spatial domain reception filter (spatial domain reception filter), a spatial reception filter, or a spatial domain reception parameter (spatial domain). reception parameter) or spatial reception parameter (spatial reception parameter), spatial domainreceptionsetting or spatial receptionsetting.
- the uplink transmission beam may be indicated by a spatial relation, or an uplink TCI-state, or a sounding reference signal (sounding reference signal, SRS) resource (indicating the transmission beam using the SRS). Therefore, the uplink beam can also be replaced by SRS resources.
- the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is emitted by the antenna
- the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
- the beam may be a wide beam, a narrow beam, or other types of beams.
- the beam forming technology may be beam forming technology or other technologies.
- the beamforming technology can be digital beamforming technology, analog beamforming technology, or hybrid digital/analog beamforming technology.
- Beams generally correspond to resources. For example, when performing beam measurement, the network device measures different beams through different resources. The terminal device feeds back the measured resource quality, and the network device knows the quality of the corresponding beam. During data transmission, beam information is also indicated by its corresponding resources. For example, network equipment uses the TCI field in DCI to indicate the information of the physical downlink shared channel (PDSCH) beam of the terminal equipment.
- PDSCH physical downlink shared channel
- Different channel or reference signal resources can use independent beams.
- multiple channels and/or multiple reference signal resources may use a unified beam, and this unified beam may also be called a common beam.
- Multiple cells can also use the same common beam.
- Common beams can be divided into the following types. Uplink and downlink common beams, uplink common beams, and downlink common beams.
- the uplink and downlink common beams refer to the beams used by both uplink and downlink channels/reference signals.
- the uplink common beam refers to the beam used exclusively for the uplink channel/reference signal, and the uplink common beam refers to the beam used exclusively for the uplink channel/reference signal.
- the beam in this application may refer to a common beam or an independent beam (a beam used separately for each channel).
- the common beam in this application can also be replaced by a beam, that is, it refers to a beam in general, and it is not emphasized whether it is a common beam or an independent beam. Unless otherwise specified, the common beam in this application may specifically be any one of the above three types.
- One beam may include one or more antenna ports for transmitting data channels, control channels, detection signals, etc.
- One or more antenna ports forming a beam can also be viewed as a set of antenna ports.
- the beam refers to the transmission beam of the network device.
- each beam of the network device corresponds to a resource, so the index of the resource can be used to uniquely identify the beam corresponding to the resource.
- Both network equipment and end devices can communicate using specific beams.
- the network device uses a specific beam to send data to the terminal device, and the terminal device uses a specific beam to receive it.
- the network device needs to inform the terminal device of the transmit beam information it uses, so that the terminal device can use the receive beam corresponding to the transmit beam to receive the data sent by the network device.
- the terminal device uses a specific transmit beam to send data to the network device, and the network device uses a specific beam to receive. Which transmission beam the terminal device uses to transmit data to the network device is instructed by the network device.
- the network device indicates the uplink and/or downlink beam information to the terminal device by indicating TCI-state.
- the network device uses the transmission configuration indication (transmission configuration indication) in the downlink control information (DCI).
- configuration indication (TCI) field to indicate TCI-state to the terminal device.
- the TCI field length is 3 bits and can specifically represent 8 different field values (codepoints). Each value of the TCI field corresponds to a TCI-state index, and the TCI-state index can uniquely identify a TCI-state.
- TCI-state is configured by the network device to each terminal device.
- TCI-state includes multiple parameters. Through these parameters, the terminal device can determine the beam corresponding to the TCI-state.
- the structure of TCI-state is shown in Figure 1.
- Each TCI-state includes an own index TCI-StateId, and two QCL-Info.
- One QCL-Info is used to indicate time-frequency offset information, and the other QCL-Info is used to indicate beam information.
- QCL-Info includes a QCL-Type field to indicate the type of QCL-Info.
- the typeD QCL-Info includes a reference signal resource (referenceSignal), which is used to provide a beam direction reference for the channel or reference signal using this TCI-state.
- referenceSignal a reference signal resource
- the terminal device needs to use the beam of the reference signal resource in the typeD QCL-Info in the TCI-state as the channel or reference signal. beam.
- the beam of the reference signal resource has been determined by the terminal equipment in advance, generally through a beam measurement process performed in advance. Through the above method, the terminal device can determine the beam corresponding to the uplink or downlink transmission through the TCI-state corresponding to the uplink or downlink transmission.
- Each QCL-Info also includes a cell field and bwp-Id, which respectively indicate the cell and bandwidth part (BWP) to which the reference signal resource in the QCL-Info belongs.
- a network device based on the R15/R16 protocol indicates the receiving beam information of a data transmission beam to a terminal device through TCI-state, including the configuration, activation and indication of TCI-state:
- TCI-state configuration The network device configures multiple TCI-states to the terminal device through radio resource control (RRC) signaling. Each of these TCI-states includes a QCL-Info of type D. Network devices can also be configured with TCI-states that do not include QCL-info of type D. However, these TCI-states are not used to indicate data transmission beams, so they will not be further elaborated here.
- RRC radio resource control
- TCI-state activation After a network device is configured with multiple TCI-states, eight of the TCI-states need to be activated through the medium access control-control element (MAC-CE). These 8 TCI states are in one-to-one correspondence with the 8 values of the TCI field in DCI. That is, which eight TCI-states the eight values of the TCI field of DCI correspond to are determined through MAC-CE signaling.
- the MAC-CE structure used to activate TCI is shown in Figure 2.
- the fields T0 to T(N-2)x8+7 respectively correspond to the TCI-states whose indexes configured in the first step are 0 to (N-2)x8+7 respectively.
- the size of each field is 1 bit, and the value can be 0 or 1.
- a value of 1 indicates that the TCI-state is activated, and a value of 0 indicates that the TCI-state is not activated.
- Each MAC-CE can theoretically have 8 activation fields with a value of 1, and the rest are all 0.
- the TCI-states corresponding to these 8 fields with a value of 1 are the 8 TCI-states corresponding to the 8 values of the TCI field in DCI.
- the minimum value of the TCI field 000 corresponds to the TCI-state with the smallest index activated in the MAC-CE, and so on, one-to-one correspondence.
- the network device indicates a specific TCI-state through the TCI field in DCI.
- the value of the TCI field in the DCI sent by the network device to the terminal device is 000, indicating the TCI-state corresponding to 000 used in the data transmission beam.
- the referenceSignal contained in the QCL-Info of type D in the TCI-state is the channel state information-reference signal (Channel State Information-Reference Signal, CSI-RS) with index #1, which indicates the beam and data transmission used.
- CSI-RS Channel State Information-Reference Signal
- the receiving beams corresponding to the CSI-RS with index #1 are the same.
- the receiving beam corresponding to the CSI-RS with index #1 can be determined through the beam measurement process and is known to the terminal device. Therefore, through the specific value of the TCI field, the terminal device can determine the receiving beam corresponding to the data transmission beam, and thereby use the corresponding receiving beam to receive the data.
- network equipment configures multiple cells using the same beam in a cell group, and then indicates a common beam in a reference cell through DCI signaling.
- the common beam is directly applied to all cells in the cell group.
- the cells on each base station are configured into a cell group and share a common beam.
- the common beam is indicated by the reference cell (cell 1 and cell 4) respectively, and the indicated common beam is applied to all cells in the cell group where the reference cell is located.
- the above-mentioned beam indication method can only configure a single-beam cell into a cell group for unified indication of a common beam.
- a cell can be deployed on one base station (Cell 2 and Cell 3 in Figure 4a), or it can be deployed on multiple base stations (Cell 1 in Figure 4a). How to implement instructions for multiple common beams of cell 1 through cell grouping cannot be solved by related technologies.
- Figure 5 is a structural schematic diagram of the communication system provided by the embodiment of the present application, including several network devices and several terminal devices.
- a single network device can transmit data or control signaling to multiple terminal devices, and multiple network devices can also transmit data or control signaling to a single terminal device at the same time.
- GSM global system of mobile communication
- CDMA code division multiple access
- WCDMA broadband code division multiple access
- LTE long term evolution
- FDD frequency division duplex
- TDD time division duplex
- UPD universal mobile Communication system
- the network device is a device deployed in the wireless access network to provide wireless communication functions for terminal equipment.
- Network equipment can include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, etc.
- the network device may also refer to the device in the access network that communicates with the terminal device through the air interface, or the network device in a vehicle-to-everything (V2X) technology is a road side unit. RSU).
- V2X vehicle-to-everything
- the base station can be used to convert received air frames and Internet protocol (IP) packets to and from each other, and serve as a router between the terminal device and the rest of the access network, where the rest of the access network can include IP network.
- IP Internet protocol
- RSU can be a fixed infrastructure entity that supports V2X applications and exchanges messages with other entities that support V2X applications.
- the network device also coordinates attribute management of the air interface.
- the names of network devices may be different, such as global system for mobile communications.
- communication GSM or code division multiple access (code division multiple access, CDMA) network base transceiver station (BTS), wideband code division multiple access (wideband code division multiple access, WCDMA) base station ( nodeB, NB), eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
- GSM global system for mobile communications
- CDMA code division multiple access
- WCDMA wideband code division multiple access
- nodeB, NB nodeB
- eNB eNodeB
- eNodeB evolutional NodeB
- LTE long term evolution
- the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
- the network equipment may also be base station equipment in the future 5G network or network equipment in the future evolved public land mobile communication network (public land mobile network, PLMN) network.
- Network devices can also be wearable devices or vehicle-mounted devices.
- Network equipment can also transmit and receive points (transmission and reception points, TRP).
- the network equipment may also include core network equipment, and the core network equipment may include, for example, access and mobility management function (AMF) and the like.
- RSU it should be noted that it can be a network RSU or a terminal device RSU. When used as a network-type RSU, it performs the functions of a network-type device; when used as a terminal device-type RSU, it performs the functions of a terminal device.
- the terminal devices involved include devices that provide voice to users, devices that provide data connectivity to users, and devices that provide voice and data connectivity to users.
- the terminal device may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to the wireless modem.
- the device can communicate with the core network via the radio access network (RAN), exchange voice or data with the RAN, or interact with the RAN for voice and data.
- RAN radio access network
- the terminal device can be presented in a variety of ways.
- the terminal device can include user equipment (UE), wireless terminal, mobile terminal, device-to-device communication (device-to-device, D2D) terminal.
- UE user equipment
- D2D device-to-device communication
- V2X vehicle to everything
- vehicle terminal such as on-board unit (OBU), etc.
- road side unit road side unit, RSU
- machine to machine/machine type communication machine-to-machine/machine-type communications
- M2M/MTC Internet of things
- IoT Internet of things
- subscriber unit subscriber unit
- subscriber station subscriber station
- mobile station mobile station
- Remote station remote station
- access point AP
- remote terminal remote terminal
- access terminal access terminal
- user terminal user terminal
- user agent user agent
- user equipment user device
- the terminal device may include a mobile phone (or "cellular" phone), a computer with a mobile terminal, a portable, pocket-sized, handheld, computer-built-in mobile device, etc.
- the terminal device may include a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, or a cellular phone.
- PCS personal communication service
- SIP session initiation protocol
- WLL wireless local loop
- cellular phone smart phone
- smart phone smart phone
- wireless data card personal digital assistant (personal digital assistant, pda), tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer)
- MTC machine type communication
- the terminal device may include a restricted device, a device with lower power consumption, a device with limited storage capability, or a device with limited computing capability, etc.
- the terminal device may include barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning systems (global positioning system, GPS), laser scanners and other information sensing devices.
- the terminal equipment may also include wearable devices, drones, unmanned ground vehicles, ship-borne terminals, etc. Among them, wearable devices can also Known as wearable smart devices or smart wearable devices, it is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
- a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
- Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
- Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Used, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
- the terminal device 10 includes a processor 101, a memory 102 and a transceiver 103.
- the transceiver 103 Includes transmitter 1031, receiver 1032 and antenna 1033.
- the network device 20 includes a processor 201, a memory 202, and a transceiver 203.
- the transceiver 203 includes a transmitter 2031, a receiver 2032, and an antenna 2033.
- the receiver 1032 may be configured to receive transmission control information through the antenna 1033, and the transmitter 1031 may be configured to send transmission feedback information to the network device 20 through the antenna 1033.
- the transmitter 2031 may be configured to send transmission control information to the terminal device 10 through the antenna 2033, and the receiver 2032 may be configured to receive transmission feedback information sent by the terminal device 10 through the antenna 2033.
- Figure 7 is a schematic flowchart of a cell beam indication method provided by an embodiment of the present application, including the following steps:
- the terminal device receives configuration information sent by the network device; wherein the configuration information is used to configure at least one cell group, and each cell group includes a first cell and a second cell.
- the network device After the network device is grouped according to the type of cells, it sends a radio resource control (RRC) configuration instruction to the terminal device to configure public beam-related information for the terminal device, such as cell grouping information, common beam set, Common beam types, etc.
- RRC radio resource control
- the configuration information specifically includes cell grouping information.
- the cell grouping information is used to configure at least one cell group. That is, the cell grouping information is used to notify the terminal device which cells are divided into a group, and unified beam indication can be performed.
- the following methods can be used to group communities:
- Cell 1 and Cell 2 are deployed on the same base station, so Cell 1 and Cell 2 are divided into one group; at the same time, Cell 1 and Cell 3 are also deployed on the same base station, so Cell 1 and Cell 3 Also divided into groups. That is, cell 1 belongs to both cell group #1 and cell group #2. In this division method, a cell can belong to multiple cell groups.
- the single-beam cells (cells 3 and 4) deployed only on the first base station are assigned to cell group #1; the single-beam cells (cells 5 and 4) deployed only on the second base station are Cell 6) is assigned to cell group #2; the multi-beam cells (cell 1 and cell 2) deployed on the first base station and the second base station at the same time are assigned to cell group #3.
- a cell only belongs to one cell group and cannot belong to multiple cell groups at the same time.
- a single-beam cell can only be grouped with a single-beam cell
- a multi-beam cell can only be grouped with a multi-beam cell.
- each cell group includes a reference cell and a non-reference cell.
- the first cell represents a reference cell
- the second cell represents a non-reference cell.
- there is only one reference cell that is, each cell group only includes one first cell; the number of non-reference cells is not limited, that is, each cell group includes Includes several second cells.
- the terminal device determines the second beam corresponding to the first cell group according to the first beam indicated by the first cell in the first cell group.
- the first cell group includes at least one multi-beam cell.
- the terminal device after receiving the configuration information, the terminal device also needs to receive the network device indicating the first beam through signaling in the first cell in the first cell group.
- the network equipment For a cell group, the network equipment only needs to indicate a common beam in one cell in the cell group, and then determine the common beam of the cell group based on the common beam. After determining the common beam of the cell group, The common beams of other cells are determined by the common beams of this cell group.
- the cell where the network device directly indicates the common beam is called the reference cell, that is, the first cell in the embodiment of this application.
- the first beam indicated by the first cell in the first cell group is the common beam corresponding to the reference cell. According to the first beam, a second beam corresponding to the first cell group is determined, where the second beam represents the corresponding common beam of the cell group.
- the configuration information also includes a common beam set and a common beam type.
- the network device sends DCI signaling to the terminal device through the reference cell in the cell group to indicate the common beam of the reference cell.
- the indicated common beam belongs to one of the common beam sets configured in the above configuration information.
- the public beam indication can also be indicated through MAC-CE (Medium access control-control element, media access control-control element) signaling + DCI signaling, that is, the network device first sends a MAC-CE signaling to the terminal device, Indicate a common beam subset (the common beam subset is a subset of the common beam set configured in the above configuration information), and then send a DCI signaling to the terminal device to indicate a common beam (the common beam is the above common beam subset). Concentrated common beam).
- MAC-CE Medium access control-control element, media access control-control element
- the network device sends the configuration information through its transmitter, and the terminal device receives the configuration information through its receiver.
- the network device sends beam indication information through its transmitter (transmitter 2031 in Figure 6), and the terminal device receives the beam indication information through its receiver (receiver 1032 in Figure 6).
- the joint uplink and downlink common beam refers to the beam used by both the uplink channel/reference signal and the downlink channel/reference signal.
- the network equipment indicates a joint uplink and downlink common beam to the terminal equipment.
- the terminal equipment can use the joint uplink and downlink common beam to transmit the uplink channel/reference signal, and can also use the joint uplink and downlink common beam to transmit the downlink channel/reference signal. take over.
- Joint uplink and downlink common beams are generally used in scenarios where the terminal equipment has beam reciprocity, that is, the downlink receiving beam and the uplink transmitting beam of the terminal equipment are oriented in the same direction.
- Uplink and downlink independent common beams refer to beams that can only be used for uplink channels/reference signals or downlink channels/reference signals.
- the network device needs to indicate two common beams to the terminal device, one uplink common beam for the transmission of the uplink channel/reference signal, and one downlink common beam for the transmission of the downlink channel/reference signal.
- Independent uplink and downlink common beams are generally used in scenarios where the terminal equipment does not have beam reciprocity, that is, the downlink receiving beam and the uplink transmitting beam of the terminal equipment are oriented in different directions.
- the public beam is referred to as the beam. Unless otherwise specified, the beams in this application refer to the public beam.
- a single common beam of the same type may specifically refer to a single joint uplink and downlink common beam, a single uplink common beam and/or a single downlink common beam.
- the first cell group includes at least one multi-beam cell, that is, the first cell and/or the second cell in the first cell group are multi-beam cells.
- the first cell and the second cell will be separated according to the cell types of the first cell and the second cell. have a discussion.
- a single-beam cell refers to a cell that uses a single common beam of the same type.
- the above types refer to the types of public beams, including joint uplink and downlink Common beam, uplink common beam, downlink common beam, etc.
- joint uplink and downlink common beam mode a cell that only uses a single joint uplink and downlink common beam is a single-beam cell.
- uplink and downlink independent common beam mode a cell using a single downlink common beam and a single uplink common beam is also a single-beam cell.
- a multi-beam cell refers to a cell that uses multiple common beams of the same type.
- a cell that uses multiple uplink and downlink joint common beams is a multi-beam cell.
- a cell that uses multiple downlink common beams and multiple uplink common beams is a multi-beam cell.
- the configuration information of a cell includes a parameter used to indicate whether the cell is a single-beam cell or a multi-beam cell. It can also be judged by the number of common beam sets of the same type configured in a cell. For example, if the configuration information of a cell includes a single common beam set of the same type, it means that the cell is a single-beam cell; if the configuration information of a cell includes multiple common beam sets of the same type, it means that the cell is a multi-beam cell. . It should be noted that the common beam in a cell either uses a joint uplink and downlink common beam, or uses an uplink and downlink independent common beam.
- Whether a cell is a single-beam cell or a multi-beam cell can also be indicated through MAC-CE or DCI signaling.
- the network device may send two MAC-CEs for common beam activation to the terminal device, including a first MAC-CE and a second MAC-CE.
- one TCI field value can correspond to one or more common beams, but the number of corresponding common beams of the same type is 1.
- a TCI field value may correspond to a joint uplink and downlink common beam, or correspond to an uplink common beam and/or a downlink common beam.
- the number of common beams of the same type corresponding to one TCI field value can be 1 or 2.
- one TCI field value may correspond to one or two joint uplink and downlink common beams, or correspond to one or two uplink common beams, and/or one or two downlink common beams.
- the network device may send the above-mentioned first MAC-CE or second MAC-CE in one cell.
- the type of the cell becomes a single-beam cell. If the network device sends the second MAC-CE in a cell, the type of the cell becomes a multi-beam cell.
- the network device sends the second MAC-CE in a cell. If the number of common beams of the same type corresponding to each TCI field value in the second MAC-CE is 1, the type of the cell becomes a single-beam cell. If the number of common beams of the same type corresponding to at least one TCI field value in the second MAC-CE is 2, the type of the cell becomes a multi-beam cell.
- step 702 is intended to determine how to determine the common beam of the cell group based on the common beam indicated in the reference cell. For example, when the reference cell is a multi-beam cell and multiple common beams of the same type are indicated (multiple uplink and downlink joint common beams, or multiple uplink common beams and downlink common beams combined), the multiple common beams are Whether they are all used in one cell group or used separately in multiple cell groups, the specific situations are divided into the following situations:
- a single common beam of the same type is indicated in the reference cell.
- a single joint uplink and downlink common beam is indicated, or a single uplink common beam and a single downlink common beam are indicated, that is, the reference cell is a single beam cell.
- the terminal equipment uses the single common beam as the common beam corresponding to the cell group to which the reference cell belongs. It can be stipulated that a single-beam cell can only belong to one cell group and cannot belong to multiple cell groups at the same time.
- Case 2 If the first cell is a multi-beam cell, that is, the first beam includes N beams, and N is an integer greater than 1.
- the reference cell is a multi-beam cell. This situation can be further divided into the following situations:
- Case 2.1 The first cell belongs to N cell groups, then the second beam corresponding to each of the N cell groups only includes a single beam, and the single beam is one of the N beams. That is to say, if a cell belongs to N cell groups at the same time, or a cell serves as a reference cell in N cell groups at the same time, and N common beams of the same type are indicated in the cell, the N common beams of the same type will be The common beams are respectively used as beams corresponding to N cell groups.
- cell 1 in Figure 4a belongs to both cell group #1 and cell group #2.
- these two common beams will be used as the common beams corresponding to the two cell groups to which the reference cell belongs.
- the number of common beams of the same type indicated in the cell is equal to the number of cell groups to which the cell simultaneously belongs. That is to say, the number of common beams of the same type indicated in the reference cell is equal to the number of cell groups to which the reference cell belongs.
- Multiple common beams of the same type indicated in the reference cell correspond one-to-one to multiple cell groups to which the reference cell belongs.
- the second beam is one of the N beams.
- the beam specifically includes: the second beam is the i-th beam among the N beams.
- N is an integer greater than 1
- public beams of the same type are indicated in the reference cell, and the reference cell simultaneously belongs to N cell groups
- the first public beam among the N public beams of the same type The beam corresponds to the first cell group among the N cell groups
- the second common beam among the N common beams of the same type corresponds to the second cell group among the N cell groups
- N common beams of the same type The Nth common beam in corresponds to the Nth cell group among the N cell groups.
- the above-mentioned first to N-th common beams may specifically refer to the first to N-th common beams among the N common beams of the same type indicated in the reference cell.
- the network device indicates to the terminal device N common beams of the same type in the reference cell through DCI signaling.
- the N common beams of the same type are indicated by N TCI field values in the DCI.
- the first common beam refers to The common beam indicated by the first TCI field
- the second common beam refers to the second TCI field
- ... and the Nth common beam refers to the common beam indicated by the Nth TCI field.
- there is only one TCI field in the DCI which can only indicate one common beam of the same type.
- the DCI is associated with N control resource set group identifiers.
- the common beam indicated by the DCI with the associated control resource set identifier equal to 0 is the first one mentioned above.
- Common beam the common beam indicated by the DCI with the associated control resource set identifier equal to 1 is the above-mentioned second common beam, and so on.
- there is only one TCI field in DCI but one field value of the TCI field can be used to indicate N common beams of the same type.
- the first common beam refers to N common beams of the same type indicated by one TCI field value.
- the first and second common beams in the beam refer to the second of N common beams of the same type indicated by a TCI field value,..., the Nth common beam refers to the N indicated by a TCI field value.
- the Nth of the common beams of the same type is the first one mentioned above.
- the common beam indicated by the DCI with the associated control resource set identifier equal to 1 is the above-mentioned second common beam, and so on.
- there is only one TCI field in DCI
- the above-mentioned first to Nth cell groups specifically refer to the first to Nth cell groups among the N cell groups to which the reference cell belongs.
- the first cell group to the Nth cell group may specifically refer to the first cell group to the Nth cell group in the configuration sequence, that is, the first cell group in the configuration sequence is the first cell group, the cell group located at the second position in the configuration order is the second cell group,..., the cell group located at the Nth position in the configuration order is the Nth cell group.
- the first cell group to the Nth cell group may also specifically refer to the first cell group to the Nth cell group in ascending order of cell group indexes, that is, the cell group with the smallest index is the first cell group.
- the cell group with the second smallest index is the second cell group,..., the cell group with the Nth smallest index is the Nth cell group.
- the reverse order of the above can also be used to determine the first to Nth cell group, that is, the Nth cell group obtained by arranging the Nth cell group in the reverse order of the configuration order or by the cell group index from large to small.
- the type of the first cell changes from a multi-beam cell to a single-beam cell
- only a single common beam of the same type can be indicated in the first cell, such as a single joint uplink and downlink common beam, a single uplink common beam and/or a single downlink common beam.
- the single common beam of the same type can be used as the second beam corresponding to each of the N cell groups in which the first cell is located.
- the reference cell only belongs to a single cell group. In this case, any of the following methods can be used.
- the second beam is the first beam, that is, the second beam includes N beams.
- Multiple common beams of the same type indicated in the reference cell are used for a single cell group to which the reference cell belongs, that is, the cell group uses multiple common beams of the same type indicated in the reference cell.
- the second beam is one of N beams; when the first condition is not met, the second beam is the first beam, that is, the second beam includes N beams.
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- the single cell group adopts multiple common beams of the same type indicated in the reference cell is determined according to the first condition. Specifically, when the first condition is met, one common beam among multiple common beams of the same type indicated in the reference cell is used for the single cell group to which the reference cell belongs. Further, the single cell group adopts the first common beam among multiple common beams of the same type indicated in the reference cell.
- the first common beam may refer to the common beam indicated by the first TCI field; it may also refer to the field or part of the bits used to refer to the common beam sequence number in DCI.
- the value of is a specific value
- the common beam indicated by the DCI For details, please refer to the specific definitions of the first common beam to the Nth common beam in case 2.1.
- the first condition is not met, multiple common beams of the same type indicated in the reference cell are used for a single cell group to which the reference cell belongs, that is, the cell group uses multiple common beams of the same type indicated in the reference cell. public beam.
- the first condition can be one or a combination of the following:
- the single cell group contains single-beam cells
- the above is a method for determining the common beam corresponding to the cell group to which the reference cell belongs based on the common beam indicated in the reference cell under two different situations. That is, different methods are used to determine the cell group to which the reference cell belongs in different situations. Corresponding public beam.
- one of the above situations can be restricted from occurring. For example, it can be stipulated that multi-beam cells cannot be used as reference cells, and only single-beam cells can be used as reference cells. That is, the reference cell cannot indicate multiple common beams of the same type, but can only indicate one common beam of the same type. Extendedly, any one or more of the following constraints can be adopted to reduce possible situations, thereby simplifying the logic of beam indication:
- the single-beam cell cannot be used as the reference cell
- the multi-beam cell cannot be used as the reference cell
- a cell cannot belong to multiple cell groups at the same time
- the cell cannot be used as a reference cell, that is, only cells belonging to a single cell group can be used as the reference cell;
- the reference cell can only be a cell belonging to multiple cell groups. If there are multiple such cells, one of them can be selected as the reference cell. Which one of them can be used? There are many implementations, such as using the cell with the smallest cell index, or the cell with the largest cell index, or the first or last cell in the configuration order, etc.;
- cell 1 belongs to cell group 1 and cell group 2
- cell 2 belongs to cell group 3 and cell group 4.
- cell 1 belongs to cell group 1 and cell group 2
- cell 2 belongs to cell group 1 and cell group 2.
- cell 1 belongs to cell group 1 and cell group 2
- cell 2 belongs to cell group 1 and cell group 3.
- This situation is not allowed because the cell groups to which cell 1 and cell 2 belong partially overlap;
- the multi-beam cell When a multi-beam cell belongs to a single cell group, the multi-beam cell cannot be used as a reference cell;
- a multi-beam cell belongs to a single cell group, if the first condition is met, the multi-beam cell cannot be used as a reference cell.
- the first of the plurality of common beams of the same type may be used as the second beam corresponding to the single cell group in which the first cell is located.
- the plurality of common beams of the same type are used as the second beam corresponding to a single cell group in which the first cell is located.
- the terminal device determines the third beam of the second cell in the first cell group based on the second beam of the first cell group.
- the third beam of the second cell can be determined according to the number of the second beam and the type of the second cell. It can be understood that the third beam is determined by the second cell according to the first cell group. Beams that can be used for common beam indication in a cell group.
- the common beam used by each cell in the cell group can be determined based on the common beam corresponding to the cell group. For example, some cells belong to multiple cell groups, and the common beam of the cell can be determined through the common beams corresponding to the multiple cell groups. For any cell in the cell group (except the reference cell), the common beam of the cell is determined in the following situations:
- the cell only belongs to a single cell group. In this case, there are further two situations:
- the third beam shall be the second beam.
- the second beam only includes one beam, that is, the cell group corresponds to a single common beam of the same type. That is, through the method of step 702, a single common beam of the same type is determined for the cell group, such as a single joint uplink and downlink common beam, or a single uplink Common beam and/or single downlink common beam. In this case, the single common beam of the same type is used as the common beam of the cell.
- the second beam includes N beams, where N is an integer greater than 1.
- the cell group corresponds to multiple common beams of the same type, that is, through the method of step 702, multiple common beams of the same type are determined for the cell group.
- any of the following methods can be used:
- the third beam is one of the second beams.
- One of the plurality of common beams of the same type (such as the first, the last or any middle one) is used as the common beam of the cell.
- the third beam is the second beam.
- the plurality of common beams of the same type are used as the common beams of the cell, that is, all of them are used.
- the third beam is one of the second beams; when the second cell is a multi-beam cell, the third beam is the second beam.
- the cell uses one or more of the multiple common beams of the same type in the cell group:
- the cell is a single-beam cell
- one of multiple common beams of the same type in the cell group is used as the common beam of the cell.
- the cell is a multi-beam cell
- multiple common beams of the same type in the cell group are used as the public beam of the cell. common beam.
- Case 2 In addition to belonging to the first cell group, the second cell also belongs to at least one other cell group.
- the second cell belongs to N cell groups, and N is an integer greater than 1.
- the N cell groups include the above-mentioned first cell group. In this case, there are further two situations:
- Each of the N cell groups corresponds to a single common beam of the same type
- the third beam is composed of a single common beam of the same type corresponding to each of the N cell groups. That is to say, a single common beam of the same type corresponding to each of the N cell groups is used as the N common beams of the same type in the second cell.
- the second cell uses the common beam instead of using N repeated common beams.
- a single common beam of the same type corresponding to each of the N cell groups is used as the N common beams of the same type in the second cell:
- a single common beam of the same type corresponding to the i-th cell group among the N cell groups is used as the i-th public beam of the N common beams of the type in the second cell, where i is an integer greater than 0.
- the above-mentioned i-th cell group specifically refers to the i-th cell group corresponding to the above-mentioned N cell groups in the configuration order.
- the above-mentioned i-th cell group may also refer to the i-th cell group of the above-mentioned N cell groups arranged from small to large or from large to small by index.
- Case 2.2 There is at least one cell group among the N cell groups corresponding to multiple common beams of the same type.
- one of the multiple common beams is used as one of the common beams of the second cell. That is to say, one common beam of the same type is determined from the above-mentioned N cell groups as N common beams of the second cell. If there is a cell group corresponding to multiple common beams of the same type, you need to select one of them. Specifically, you can select the first or last one, or the one with the largest or smallest index.
- the common beams of each cell in the cell group can be determined based on the common beams of the same type corresponding to each cell group. 704.
- the terminal device determines the target beam based on the third beam, it uses the target beam to transmit data with the network device.
- the target beam is one or more beams in the third beam (when the third beam includes multiple beams), the third beam is the common beam corresponding to the second cell, and the target beam is the terminal device performing network operation.
- the network device After the network device indicates the common beam to the terminal device through the reference cell, it determines how the common beam is applied to all cells in the cell group to which the reference cell belongs based on the above situations.
- the terminal device processes the common beam indication information through its processor (processor 101 in Figure 6), determines the common beam corresponding to each cell according to the cell grouping situation, and then records each cell through its memory (memory 102 in Figure 6). Common beam information corresponding to each cell for subsequent transmission.
- Public beam validation means that after the terminal equipment receives the public beam indication information (such as DCI signaling) in the reference cell, it takes a specific period of time before the indicated public beam can be officially used for all cells in the cell group to which the reference cell belongs. transmission.
- the specific time is agreed upon between the network device and the terminal device. For example, it is configured by the network device to the terminal device. After the specific time passes, the network device and the terminal device simultaneously use the new beam indicated in the reference cell. Only by sending and receiving can we ensure that there will be no errors in the adoption of new beams, that is, we can avoid the problem that network equipment adopts new beams while terminal equipment is still using old beams.
- the solution of the embodiment of this application includes various possible cell grouping methods of multi-beam cells, as well as a variety of common beam group indication solutions under various grouping methods, and realizes multi-beam cells in the form of cell groups.
- Common beam indication saves the overhead of beam indication signaling and solves the problem that multi-beam cells cannot perform common beam indication in the form of cell groups.
- the second cell is a multi-beam cell, and the second cell only belongs to the first cell group;
- the first beam includes only one beam.
- the second beam is then the first beam, and the third beam is the second beam.
- the first cell when the first cell is a single-beam cell, the first cell as a reference cell can only indicate one beam, so the first beam only includes one beam. Since the first beam includes only one beam, the second beam, as a common beam of the first cell group, also includes only one beam. In the case where the second beam only includes one beam, and the second cell only belongs to the first cell group, the third beam is the second beam, that is, the third beam also includes only one beam, that is, the first beam and the second beam. It is the same beam as the third beam.
- the first cell is a single-beam cell and the second cell is a multi-beam cell
- the first cell and the second cell only belong to the first cell group
- the indication solution solves the problem in the related art of how common beam indication cannot be performed in the form of a cell group in this situation.
- the second cell also belongs to at least one other cell group, and the other cell groups to which the second cell belongs correspond to one beam;
- the first beam includes only one beam.
- the second beam is the first beam.
- the third beam consists of the second beam and a beam corresponding to each other cell group.
- the first cell When the first cell is a single-beam cell, the first cell as a reference cell can only indicate one beam, so the first beam only includes one beam. Since the first beam only includes one beam, the second beam serves as the common beam of the first cell group. At this time, the second beam is the first beam, that is, it also includes only one beam. Since the second cell also belongs to other cell groups, and the other cell groups to which the second cell belongs correspond to one beam, the third beam corresponding to the second cell consists of the second beam and the beams corresponding to each other cell group, that is, The second cell uses the common beams of multiple cell groups as the common beams of the cell.
- the third beam is composed of the second beam and beams corresponding to each other cell group, specifically including:
- the beam corresponding to the i-th cell group in the first cell group and other cell groups is used as the i-th beam of the third beam, where i is an integer greater than 0.
- the network device sends configuration signaling to the terminal device.
- the i-th cell group may specifically refer to the i-th cell group in the configuration sequence, or may specifically refer to the i-th cell group with cell group indexes arranged from small to large.
- the i-th cell group may be determined in the reverse order of the above, that is, the i-th cell group may be determined in reverse order of configuration order or in descending order of cell group index.
- the first cell is a single-beam cell
- the second cell is a multi-beam cell
- the first cell only belongs to the first cell group
- the second cell also belongs to at least one other cell group
- other cells to which the second cell belongs
- a solution is proposed to indicate the common beam of the second cell, which solves the problem in the related art that the common beam indication cannot be performed in the form of a cell group in this case.
- the first cell is a multi-beam cell and the second cell is a single-beam cell or a multi-beam cell
- the first cell belongs to N cell groups and the second cell only belongs to the first cell group, where N is an integer greater than 1;
- the first beam includes N beams
- the second beam is one of the N beams
- the third beam is the second beam.
- the first cell belongs to N cell groups
- the number of beams indicated in the reference cell is equal to the number of cell groups to which the reference cell belongs, that is, the first cell is a multi-beam cell, and the first cell can be used as a reference cell.
- N beams are indicated, so the first beam includes N beams. Since the first cell indicates N beams and belongs to N cell groups, each cell group to which the first cell belongs is allocated one of the N beams, and the second beam is one of the N beams.
- the third beam is the second beam, that is, the third beam It also includes only one beam, that is, the second cell uses one of the N beams indicated by the first cell as the common beam of the second cell.
- the second beam is one of the N beams.
- the beam specifically includes: the second beam is the i-th beam among the N beams.
- the multiple beams indicated in the reference cell correspond one-to-one to the multiple cell groups to which the reference cell belongs, then the first beam among the N beams corresponds to the first cell group among the N cell groups. , the second common beam among the N beams corresponds to the second cell group among the N cell groups,..., the Nth beam among the N beams corresponds to the Nth cell group among the N cell groups.
- the second cell is a single-beam cell or a multi-beam cell
- the first cell belongs to multiple cell groups
- the second cell only belongs to the first cell group
- the second cell is a multi-beam cell, and the first cell belongs to N cell groups, the The second cell also belongs to at least one other cell group, and the other cell groups to which the second cell belongs correspond to one beam; where N is an integer greater than 1;
- the first beam includes N beams
- the second beam is one of the N beams
- the third beam consists of the second beam and a beam corresponding to each other cell group.
- each cell group to which the first cell belongs is allocated one of the N beams, and the second beam is one beam among N beams.
- the third beam corresponding to the second cell is composed of the second beam and
- Each other cell group corresponds to a beam composition, that is, the second cell uses the common beams of multiple cell groups as the common beam of the cell.
- the second beam is one of the N beams.
- the beam specifically includes: the second beam is the i-th beam among the N beams.
- the third beam is composed of the second beam and beams corresponding to each other cell group, specifically including:
- the beam corresponding to the i-th cell group in the first cell group and other cell groups is used as the i-th beam of the third beam, where i is an integer greater than 0.
- the network device sends configuration signaling to the terminal device.
- the i-th cell group may specifically refer to the i-th cell group in the configuration sequence, or may specifically refer to the i-th cell group with cell group indexes arranged from small to large.
- the i-th cell group may be determined in the reverse order of the above, that is, the i-th cell group may be determined in reverse order of configuration order or in descending order of cell group index.
- the first cell is a multi-beam cell
- the second cell is a multi-beam cell
- the first cell belongs to N cell groups
- the second cell also belongs to at least one other cell group
- other cells to which the second cell belongs
- a solution is proposed to indicate the common beam of the second cell, which solves the problem in the related art of how the common beam indication cannot be performed in the form of a cell group in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam is one of the second beams.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams. Since the first cell only belongs to the first cell group, the second beam serves as the common beam of the first cell group. At this time, the second beam is the first beam, that is, it also includes N beams. Since the second cell only belongs to the first cell group, the second cell selects one of the N beams as the common beam of the cell, that is, the third beam is one of the second beams.
- the first cell is a multi-beam cell
- both the first cell and the second cell only belong to the first cell group
- a solution is proposed to indicate the common beam of the second cell, solving the related problem.
- the technical problem is how common beam indication cannot be performed in the form of cell groups in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam is the second beam.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams. Since the first cell only belongs to the first cell group, the second beam serves as the common beam of the first cell group. At this time, the second beam is the first beam, that is, it also includes N beams. Since the second cell only belongs to the first cell group, the second cell selects the above-mentioned N beams as the common beams of the cell, that is, the third beam is the second beam.
- the first cell is a multi-beam cell
- both the first cell and the second cell only belong to the first cell group
- a solution is proposed to indicate the common beam of the second cell, solving the related problem.
- the technical problem is how common beam indication cannot be performed in the form of cell groups in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam is one of the second beams
- the third beam is the second beam.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams. Since the first cell only belongs to the first cell group, the second beam serves as the common beam of the first cell group. At this time, the second beam is the first beam, that is, it also includes N beams. Since the second cell only belongs to the first cell group, when the second cell is a single-beam cell, one of the N beams serves as the common beam of the cell, that is, the third beam is one of the second beams; When the second cell is a multi-beam cell, the above-mentioned N beams are selected as the common beams of the cell, that is, the third beam is the second beam.
- the first cell is a multi-beam cell
- both the first cell and the second cell only belong to the first cell group
- a solution is proposed to indicate the common beam of the second cell, solving the related problem.
- the technical problem is how common beam indication cannot be performed in the form of cell groups in this case.
- the first cell is a multi-beam cell, and both the first cell and the second cell only belong to the first cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is one of N beams
- the third beam is the second beam.
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams.
- the first condition is met, one of the multiple beams indicated in the reference cell is used for the cell group to which the reference cell belongs, that is, the second beam is one of the N beams.
- the first condition may be one or a combination of the following: the first cell group contains a single-beam cell; there is a certain cell in the first cell group that simultaneously belongs to multiple cell groups.
- the third beam is the second beam, that is, the third beam It also includes only one beam, that is, the second cell uses one of the N beams indicated by the first cell as the common beam of the second cell.
- the second beam is the first beam, that is, the second beam includes N beams.
- the selection logic of the third beam is based on the type of the second cell, which matches the fifth to eighth implementation methods mentioned above, and will not be described again here.
- the second beam is one of the N beams and specifically includes:
- the second beam is the first beam among the N beams.
- the network device indicates the N beams of the reference cell to the terminal device through DCI signaling.
- the N beams are indicated by the N TCI field values in the DCI, then the One beam refers to the beam indicated by the first TCI field, and the second beam refers to the beam indicated by the second TCI field;
- the network device sends configuration signaling to the terminal device to configure public beam-related information for the terminal device.
- the beams are arranged in ascending order according to the configuration order, and the beam with the smallest or largest index number is regarded as the first beam.
- the first cell is a multi-beam cell
- both the first cell and the second cell belong only to the first cell group, and the first cell group meets the first condition
- a common method for the second cell is proposed.
- the scheme of beam indication solves the problem in the related art of why common beam indication cannot be carried out in the form of a cell group in this case.
- the first cell is a multi-beam cell
- the first cell only belongs to the first cell group, and the second cell also belongs to at least one other cell group, and each other cell group corresponds to one beam;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is one of N beams
- the third beam consists of the second beam and beams corresponding to each other cell group;
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams.
- the first condition is met, one of the multiple beams indicated in the reference cell is used for the cell group to which the reference cell belongs, that is, the second beam is one of the N beams.
- the first condition may be one or a combination of the following: the first cell group contains a single-beam cell; there is a cell in the first cell group that simultaneously belongs to multiple beams. community group.
- the third beam corresponding to the second cell is composed of the second beam and Each other cell group corresponds to a beam composition, that is, the second cell uses the common beams of multiple cell groups as the common beam of the cell.
- the second beam is the first beam, that is, the second beam includes N beams.
- the selection logic of the third beam is based on the type of the second cell, which matches the fifth to eighth implementation methods mentioned above, and will not be described again here.
- the second beam is one of the N beams and specifically includes:
- the second beam is the first beam among the N beams.
- the selection of the first beam is consistent with the eighth implementation method mentioned above and will not be described again here.
- the third beam is composed of the second beam and beams corresponding to each other cell group, specifically including:
- the beam corresponding to the i-th cell group in the first cell group and other cell groups is used as the i-th beam of the third beam, where i is an integer greater than 0.
- the network device sends configuration signaling to the terminal device.
- the i-th cell group may specifically refer to the i-th cell group in the configuration sequence, or may specifically refer to the i-th cell group with cell group indexes arranged from small to large.
- the i-th cell group may be determined in the reverse order of the above, that is, the i-th cell group may be determined in reverse order of configuration order or in descending order of cell group index.
- the first cell is a multi-beam cell, the first cell only belongs to the first cell group, the first cell group satisfies the first condition, the second cell also belongs to at least one other cell group, and each other cell group
- each beam corresponds to one beam
- a solution for indicating the common beam of the second cell is proposed, which solves the problem in the related art that the common beam indication cannot be performed in the form of a cell group in this case.
- the first cell is a multi-beam cell and the second cell is a multi-beam cell, the first cell only belongs to the first cell group, and the second cell also belongs to at least one other cell group;
- the first beam includes N beams, where N is an integer greater than 1;
- the second beam is the first beam
- the third beam then consists of one beam in the second beam and one beam in the beams corresponding to each other cell group.
- the first cell as a reference cell may indicate N beams, so the first beam includes N beams. Since the first cell only belongs to the first cell group, the second beam serves as the common beam of the first cell group. At this time, the second beam is the first beam, that is, it also includes N beams. Since the second cell also belongs to other cell groups, only one beam in the second beam is taken as a component of the third beam. In the same way, if a single other cell group to which the second cell belongs corresponds to multiple beams, only one of the beams will be taken as a component of the third beam. If a single other cell group only corresponds to one beam, then the beam will be taken directly. beam as part of the third beam.
- the third beam includes M beams, where M is an integer greater than 0.
- the second embodiment of the present application provides a cell beam indication method and related equipment.
- Network equipment and terminal equipment can determine the common beam corresponding to each cell in each cell group according to the cell grouping situation.
- the cells in the cell group can be multi-beam cells, that is, the cells can use at least two common beams for data transmission according to their cell types, which saves beam indication signaling overhead and solves the problem that multi-beam cells cannot use the same method as the cell group. form of public beam indication.
- Figure 7 is a schematic flowchart of a cell beam indication method provided by an embodiment of the present application, including the following steps:
- the network device sends configuration information to the terminal device, where the configuration information is used to configure at least one cell group, and each cell group includes a first cell and a second cell.
- the network device After the network device is grouped according to the type of cells, it sends a radio resource control (RRC) configuration instruction to the terminal device to configure public beam-related information for the terminal device, such as cell grouping information, common beam set, Common beam types, etc.
- RRC radio resource control
- the network device indicates the first beam to the terminal device through signaling in the first cell in the first cell group, where the first beam is used by the terminal device to determine the second beam corresponding to the first cell group, and the second beam is used to determine the second beam corresponding to the first cell group.
- the terminal equipment determines a third beam of the second cell in the first cell group, where the first cell group includes at least one multi-beam cell.
- the network equipment only needs to indicate a common beam in one cell in the cell group, and then determine the common beam of the cell group based on the common beam. After determining the common beam of the cell group , the common beams of other cells in the cell group are determined by the common beams of the cell group.
- the cell where the network device directly indicates the common beam is called the reference cell, that is, the first cell in the embodiment of this application.
- the network device determines the second beam based on the first beam.
- the first beam indicated by the first cell in the first cell group is the common beam corresponding to the reference cell.
- a second beam corresponding to the first cell group is determined, where the second beam represents the indicated common beam of the cell group.
- the network device sends DCI signaling to the terminal device through the reference cell in the cell group to indicate the common beam of the reference cell.
- the indicated common beam belongs to one of the common beam sets configured in the above configuration information.
- the public beam indication can also be indicated through MAC-CE (Medium access control-control element, media access control-control element) signaling + DCI signaling, that is, the network device first sends a MAC-CE signaling to the terminal device, Indicate a common beam subset (the common beam subset is a subset of the common beam set configured in the above configuration information), and then send a DCI signaling to the terminal device to indicate a common beam (the common beam is the above common beam subset). Concentrated common beam).
- the network device sends the configuration information through its transmitter, and the terminal device receives the configuration information through its receiver.
- the network device sends beam indication information through its transmitter (transmitter 2031 in Figure 6), and the terminal device receives the beam indication information through its receiver (receiver 1032 in Figure 6).
- the second beam is a first beam.
- a single common beam of the same type is indicated in the reference cell.
- a single joint uplink and downlink common beam is indicated, or a single uplink common beam and a single downlink common beam are indicated, that is, the reference cell is a single beam cell.
- the terminal equipment uses the single common beam as the cell group to which the reference cell belongs.
- Case 2 If the first cell is a multi-beam cell, that is, the first beam includes N beams, and N is an integer greater than 1.
- the reference cell is a multi-beam cell. This situation can be further divided into the following situations:
- the first cell belongs to N cell groups, then the second beam is one of the N beams.
- the reference cell belongs to multiple cell groups at the same time.
- multiple common beams of the same type indicated in the reference cell are respectively used as common beams of the multiple cell groups to which the reference cell belongs.
- the first cell only belongs to the first cell group.
- the reference cell only belongs to a single cell group.
- any of the following methods can be used:
- the second beam is the first beam, that is, the second beam includes N beams.
- Multiple common beams of the same type indicated in the reference cell are used for a single cell group to which the reference cell belongs, that is, the cell group uses multiple common beams of the same type indicated in the reference cell.
- the second beam is one of N beams; when the first condition is not met, the second beam is the first beam, that is, the second beam includes N beams.
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- How the single cell group adopts multiple common beams of the same type indicated in the reference cell is determined according to the first condition. Specifically, when the first condition is met, one common beam among multiple common beams of the same type indicated in the reference cell is used for the single cell group to which the reference cell belongs.
- the first condition can be one or a combination of the following:
- the single cell group contains single-beam cells
- the network device determines the third beam based on the second beam.
- the third beam of the second cell can be determined according to the number of the second beam and the type of the second cell. It can be understood that the third beam is determined by the second cell according to the first cell group. Beams that can be used for common beam indication in a cell group.
- the common beam used by each cell in the cell group can be determined based on the common beam corresponding to the cell group. For example, some cells belong to multiple cell groups, and the common beam of the cell can be determined through the common beams corresponding to the multiple cell groups. For any cell in the cell group (except the reference cell), the common beam of the cell is determined in the following situations:
- the cell only belongs to a single cell group. In this case, there are further two situations:
- the second beam includes only one beam, then the third beam is the second beam.
- the cell group corresponds to a single common beam of the same type.
- the single common beam of the same type is used as the common beam of the cell.
- the second beam includes N beams, where N is an integer greater than 1.
- This cell group corresponds to multiple common beams of the same type.
- any of the following methods can be used A sort of:
- the third beam is one of the second beams.
- One of the plurality of common beams of the same type (such as the first, the last or any middle one) is used as the common beam of the cell.
- the third beam is the second beam.
- the plurality of common beams of the same type are used as the common beams of the cell, that is, all of them are used.
- the third beam is one of the second beams; when the second cell is a multi-beam cell, the third beam is the second beam.
- the cell uses one or more of the multiple common beams of the same type in the cell group:
- the cell is a single-beam cell
- one of multiple common beams of the same type in the cell group is used as the common beam of the cell.
- the cell is a multi-beam cell
- multiple common beams of the same type in the cell group are used as the common beams of the cell.
- the second cell also belongs to at least one other cell group.
- the cell belongs to multiple cell groups. In this case, there are further two situations:
- the third beam consists of the second beam and each other beam corresponding to the other cell group.
- the multiple cell groups all correspond to a single common beam of the same type.
- the same type of common beams of the multiple cell groups are used as multiple common beams of the cell.
- the second beam includes N beams, then the third beam consists of one beam in the second beam and one beam in the beams corresponding to each other cell group.
- the common beams of each cell in the cell group can be determined based on the common beams of the same type corresponding to each cell group.
- FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
- the communication device can be used to perform the steps performed by the terminal device in the embodiment shown in Figure 7.
- FIG. 8 please refer to the relevant introduction in the above method embodiment.
- the communication device 800 includes a transceiver module 801 and a processing module 802.
- the transceiver module 801 can implement corresponding communication functions, and the transceiver module 801 can also be called a communication interface or a communication unit.
- Processing module 802 is used to perform processing operations.
- the communication device 800 can also include a storage module, which can be used to store instructions and/or data, and the processing module 802 can read the instructions and/or data in the storage module, so that the communication device can implement the previous FIG. 7 Method embodiment shown.
- a storage module which can be used to store instructions and/or data
- the processing module 802 can read the instructions and/or data in the storage module, so that the communication device can implement the previous FIG. 7 Method embodiment shown.
- the communication device 800 can be used to perform the actions performed by the terminal device in the above method embodiment.
- the communication device 800 may be a terminal device or a component that can be configured in the terminal device.
- the transceiver module 801 is used to perform reception-related operations on the terminal device side in the above method embodiment, and the processing module 802 is used to perform processing-related operations on the terminal device side in the above method embodiment.
- the transceiver module 801 may include a sending module and a receiving module.
- the sending module is used to perform the sending operation of the terminal device in the method embodiment shown in Figure 7 above.
- the receiving module is used to perform the receiving operation of the terminal device in the method embodiment shown in Figure 7 above.
- the communication device 800 may include a sending module but not a receiving module.
- communication device 800 may include a receiving module but not a transmitting module. Specifically, it may depend on whether the above solution executed by the communication device 800 includes a sending action and a receiving action.
- the communication device 800 is used to perform the following solution:
- the transceiver module 801 is configured to receive configuration information sent by the network device, where the configuration information is used to configure at least one cell group, and each cell group includes a first cell and a second cell.
- the processing module 802 is configured to determine the second beam corresponding to the first cell group according to the first beam indicated by the first cell in the first cell group, wherein the first cell group includes at least one multi-beam cell; The second beam determines a third beam of a second cell in the first group of cells.
- determining the second beam based on the first beam specifically includes one or more of the following:
- the communication device 800 determines that the second beam is the first beam
- the communication device 800 determines that the second beam is one of the M beams, where M is an integer greater than 1;
- the communication device 800 determines that the second beam is the first beam
- the communication device 800 determines that the second beam is one of the N beams
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- the communication device 800 determines that the second beam is one of the M beams, specifically including:
- the communication device 800 determines that the second beam is The i-th beam among M beams, where i is an integer greater than 0 and not greater than N.
- the communication device 800 determines that the second beam is one of the N beams.
- Beams specifically include:
- the communication device 800 determines that the second beam is the first beam among the N beams.
- the communication device 800 determines the third beam based on the second beam, which specifically includes one or more of the following:
- the communication device 800 determines that the third beam is the second beam
- the communication device 800 determines that the third beam is one of the second beams, or, the communication device 800 determines that the third beam is the second beam, or when the second cell is a single-beam cell, the communication device 800 determines that the third beam is one of the second beams; when the second cell is a multi-beam cell, the communication device 800 determines that the third beam is the second beam;
- the communication device 800 determines that the third beam is composed of the second beam and each other cell group.
- the groups are composed of corresponding beams respectively.
- the communication device 800 determines that the third beam is formed by The beam composition corresponding to the second beam and each other cell group specifically includes:
- the communication device 800 determines the i-th beam in the third beam by taking the beam corresponding to the first cell group and the i-th cell group in other cell groups, where i is an integer greater than 0.
- the configuration information is also used to configure the cell or cell group to satisfy one of the constraint rules.
- the constraint rules include:
- each cell group only belong to a single cell group
- the first cell is a cell belonging to multiple cell groups
- the multiple cells belonging to multiple cell groups all belong to the same cell group
- Multiple cells belonging to multiple cell groups belong to completely different cell groups.
- the transceiver module 801 is also configured to use the target beam to transmit data with the network device after determining the target beam based on the third beam.
- the communication device first receives the configuration information sent by the network device to obtain the cell grouping information, and the cell group set in the cell grouping information includes at least one multi-beam cell in the cell group; then the communication device receives the information from the network device.
- the common beam indication sent by the reference cell is used to determine the common beam used by the reference cell; secondly, the communication device determines the common beam of the cell group where the reference cell is located based on the common beam used by the reference cell; finally, the communication device determines the common beam of the cell group where the reference cell is located based on the common beam used by the reference cell. , determine the common beams of other cells in the group.
- the reference cell and/or other cells in the cell group can be multi-beam cells, and the reference cell and/or other cells in the cell group can adopt at least two common cells according to their cell types. Beams are used for data transmission, which saves the overhead of beam indication signaling and solves the problem that multi-beam cells cannot perform common beam indication in the form of cell groups.
- FIG 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
- the communication device can be used to perform the steps performed by the network device in the embodiment shown in Figure 7.
- the relevant introduction in the above method embodiment please refer to the relevant introduction in the above method embodiment.
- the communication device 900 includes a transceiver module 901 and a processing module 902.
- the transceiver module 901 can implement corresponding communication functions, and the transceiver module 901 can also be called a communication interface or a communication unit.
- Processing module 902 is used to perform processing operations.
- the communication device 900 may also include a storage module, which may be used to store instructions and/or data, and the processing module 902 may read the instructions and/or data in the storage module, so that the communication device implements the preceding figure.
- a storage module which may be used to store instructions and/or data
- the processing module 902 may read the instructions and/or data in the storage module, so that the communication device implements the preceding figure. The method embodiment shown in 6.
- the communication device 900 can be used to perform the actions performed by the network device in the above method embodiment.
- the communication device 900 may be a network device or a component configurable in the network device.
- the transceiver module 901 is configured to perform reception-related operations on the network device side in the above method embodiment, and the processing module 902 is used to perform processing-related operations on the network device side in the above method embodiment.
- the transceiver module 901 may include a sending module and a receiving module.
- the sending module is used to perform the sending operation of the network device in the method embodiment shown in Figure 6.
- the receiving module is used to perform the receiving operation of the network device in the method embodiment shown in Figure 6.
- the communication device 900 may include a sending module but not a receiving module.
- communication device 900 may include a receiving module but not a transmitting module. Specifically, it may depend on whether the above solution executed by the communication device 900 includes a sending action and a receiving action.
- the communication device 900 can be used to perform the following solutions:
- the transceiver module 901 is used to send configuration information to the terminal device, where the configuration information is used to configure at least one cell group, and each cell group includes a first cell and a second cell;
- the processing module 902 is configured to indicate the first beam to the terminal device through the first cell in the first cell group, where the first beam is used by the terminal device to determine the second beam corresponding to the first cell group, and the second beam is used by the terminal
- the device determines the third beam of the second cell in the first cell group, wherein the first cell group includes at least one multi-beam cell; is further configured to determine the second beam based on the first beam; and is further configured to determine the second beam based on the second beam.
- the third beam is configured to indicate the first beam to the terminal device through the first cell in the first cell group, where the first beam is used by the terminal device to determine the second beam corresponding to the first cell group, and the second beam is used by the terminal
- the device determines the third beam of the second cell in the first cell group, wherein the first cell group includes at least one multi-beam cell; is further configured to determine the second beam based on the first beam; and is further configured to determine the second beam based on the second beam.
- the third beam is
- the communication device 900 sends configuration information to the terminal device, where the configuration information is used to configure at least one cell group, and each cell group includes a first cell and a second cell;
- the communication device 900 indicates the first beam to the terminal device through the first cell in the first cell group, where the first beam is used by the terminal device to determine the second beam corresponding to the first cell group, and the second beam is used by the terminal device to determine the second beam.
- the communication device 900 determines the second beam according to the first beam
- the communication device 900 determines the third beam based on the second beam.
- the communication device 900 determines the second beam based on the first beam, which specifically includes one or more of the following:
- the communication device 900 determines that the second beam is a first beam
- the communication device 900 determines that the second beam is one of the M beams;
- the communication device 900 determines that the second beam is the first beam
- the communication device 900 determines that the second beam is one of the N beams;
- the first condition includes:
- the first cell group includes at least one single-beam cell
- the first cell group includes cells that also belong to other cell groups.
- the communication device 900 determines that the second beam is one of the M beams, specifically including:
- the communication device 900 determines that the second beam is The i-th beam among M beams, where i is an integer greater than 0 and not greater than N.
- the communication device 900 determines that the second beam is one of the N beams.
- Beams specifically include:
- the communication device 900 determines that the second beam is the first beam among the N beams.
- the communication device 900 determines the third beam based on the second beam, which specifically includes one or more of the following:
- the communication device 900 determines that the third beam is the second beam
- the communication device 900 determines that the third beam is one of the second beams, or, the communication device 900 determines that the third beam is the second beam, or when the second cell is a single-beam cell, the communication device 900 determines that the third beam is one of the second beams; when the second cell is a multi-beam cell, the communication device 900 determines that the third beam is the second beam;
- the communication device 900 determines that the third beam is composed of the second beam and each other cell group.
- the groups are composed of corresponding beams respectively.
- the communication device 900 determines that the third beam is formed by The beam composition corresponding to the second beam and each other cell group specifically includes:
- the communication device 900 determines the i-th beam in the third beam by taking the beam corresponding to the first cell group and the i-th cell group in other cell groups, where i is an integer greater than 0.
- the configuration information is also used to configure the cell or cell group to satisfy one of the constraint rules.
- the constraint rules include:
- each cell group only belong to a single cell group
- the first cell is a cell belonging to multiple cell groups
- the multiple cells belonging to multiple cell groups all belong to the same cell group
- Multiple cells belonging to multiple cell groups belong to completely different cell groups.
- FIG. 10 A possible structural diagram of a terminal device is shown below in FIG. 10 .
- Figure 10 shows a simplified structural diagram of a terminal device.
- a mobile phone is used as an example of the terminal device.
- the terminal equipment includes a processor, memory, radio frequency circuit, antenna and input and output device.
- the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, process data of software programs, etc.
- Memory is mainly used to store software programs and data.
- Radio frequency circuits are mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
- Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
- terminal equipment may not have input and output devices.
- the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and then outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
- the processor converts the baseband signal into data and processes the data.
- FIG. 10 For ease of illustration, only one memory and processor are shown in Figure 10. In an actual terminal device product, there may be one or more processors and one or more memories. Memory can also be called storage media or storage devices. The memory may be provided independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
- the antenna and the radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
- the terminal device includes a transceiver unit 1010 and a processing unit 1020.
- the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, etc.
- the processing unit can also be called a processor, a processing board, a processing module, a processing device, etc.
- the devices used to implement the receiving function in the transceiving unit 1010 can be regarded as receiving units, and the devices used in the transceiving unit 1010 used to implement the transmitting function can be regarded as sending units. That is, the transceiving unit 1010 includes a receiving unit and a transmitting unit.
- the transceiver unit may sometimes also be called a transceiver, transceiver, or transceiver circuit.
- the receiving unit may also be called a receiver, receiver, or receiving circuit.
- the sending unit may sometimes be called a transmitter, transmitter or transmitting circuit.
- transceiving unit 1010 is used to perform sending operations and receiving operations of the terminal device in the above method embodiment
- processing unit 1020 is used to perform other operations on the terminal device in addition to the sending and receiving operations in the above method embodiment.
- the chip When the terminal device is a chip, the chip includes a transceiver unit and a processing unit.
- the transceiver unit may be an input-output circuit or a communication interface;
- the processing unit may be a processor or microprocessor, integrated circuit or logic circuit integrated on the chip.
- the present application also provides a communication device.
- FIG. 11 is another schematic structural diagram of a communication device according to an embodiment of the present application.
- the communication device may be used to perform the steps performed by the network device in the embodiment shown in Figure 7. Reference may be made to the relevant descriptions in the above method embodiments.
- the communication device includes a processor 1101.
- the communication device also includes a memory 1102 and a transceiver 1103.
- the processor 1101, the memory 1102, and the transceiver 1103 are respectively connected through a bus, and computer instructions are stored in the memory.
- the processing module 902 in the foregoing embodiment may specifically be the processor 1101 in this embodiment, so the specific implementation of the processor 1101 will not be described again.
- the transceiver module 901 in the foregoing embodiment may specifically be the transceiver 1103 in this embodiment, so the specific implementation of the transceiver 1103 will not be described again.
- An embodiment of the present application also provides a communication system, which includes a terminal device and a network device.
- the terminal device is used to perform all or part of the steps performed by the terminal device in the embodiment shown in FIG. 7 .
- the network device is used to perform all or part of the steps performed by the network device in the embodiment shown in FIG. 7 .
- An embodiment of the present application also provides a computer program product including instructions that, when run on a computer, cause the computer to execute the communication method of the embodiment shown in FIG. 7 above.
- Embodiments of the present application also relate to a computer-readable storage medium, including a computer-readable storage medium storing computer programs or instructions. When executed by one or more computers, the computer programs or instructions implement the embodiment shown in Figure 7 Method steps.
- Embodiments of the present application also relate to a computer program product containing instructions that, when run on a computer, cause the computer to execute the method steps of the embodiment shown in FIG. 7 .
- Embodiments of the present application also relate to a chip device, including a processor, configured to be connected to a memory and call a program stored in the memory, so that the processor executes the method of the embodiment shown in FIG. 7 .
- the embodiment of the present application also relates to a communication system, which includes terminal equipment and network equipment in the above aspects.
- the steps of the method or algorithm described in connection with the disclosure of this application can be implemented in hardware or by a processor executing software instructions.
- Software instructions can be composed of corresponding software modules.
- the software modules can be stored in random access memory (random access memory, RAM) memory, flash memory, read-only memory (read-only memory, ROM) memory, erasable and programmable read-only memory.
- Memory erasable programmable read-only memory, EPROM
- EEPROM electrically erasable programmable read-only memory
- register hard disk, mobile hard disk, compact disc read-only memory, CD-ROM
- An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
- the storage medium can also be an integral part of the processor.
- the processor and storage medium may be located in an Application Specific Integrated Circuit (ASIC). Additionally, the ASIC can be located in the terminal.
- the processor and the storage medium may also exist as discrete components in the first communication device.
- the disclosed systems, devices and methods can be achieved through other means.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
- the above integrated units can be implemented in the form of hardware or software functional units.
- the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or contributes to the relevant technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, It includes several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例公开了一种小区波束指示方法及相关设备,其中方法包括:终端设备接收网络设备发送的配置信息,其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区;终端设备根据第一小区组中的第一小区指示的第一波束确定第一小区组对应的第二波束,其中,第一小区组里包括至少一个多波束小区;终端设备根据第二波束确定第一小区组中的第二小区的第三波束。本方法可以应用于多波束小区,解决了多波束小区无法以小区组的形式进行公共波束指示的问题。
Description
本申请要求于2022年04月28日提交中国专利局、申请号为202210463344.0、发明名称为“一种小区波束指示方法及其相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及无线通信技术领域,尤其涉及一种小区波束指示方法及其相关设备。
第五代移动通信系统(5th generation,5G)可以采用高频通信,即采用超高频段(>6GHz)信号传输数据。高频通信采用模拟波束技术,将信号形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。网络设备和终端设备都要采用波束进行传输。
在R15/16协议中,每个信道或参考信号采用的波束是独立的,需要通过独立的信令来为各个信道和参考信号指示对应的波束。在R17协议中,多个信道和参考信号可以采用一个统一的波束,通过一个信令来指示一个波束,该波束用于多个信道和参考信号,从而节省波束指示信令的开销。多个信道和参考信号采用的波束称为公共波束,在R17协议中,公共波束通过下行控制信息(Downlink Control Information,DCI)信令进行指示,DCI信令指示的公共波束可以用于单个小区,也可以用于多个小区,具体取决于网络设备是否将多个小区配置在一个小区组中进行波束共享。具体的,网络设备可以将多个小区配置在一个小区组中,该小区组中的所有小区可以采用相同的公共波束。这样,网络设备只需要在该小区组中的其中一个小区内指示一个公共波束,该公共波束就可以用于该小区组内的所有小区。其中,指示公共波束的那个小区,即发送上述DCI信令的那个小区,被称为参考小区。通过这样的分组,可以进一步节省波束指示信令的开销。
一个小区可以部署在一个基站上,也可以部署在多个基站上。部署在多个基站上的小区可以采用多个基站来为终端设备传输数据,每个基站可以采用一个公共波束,因此部署在多个基站上的小区需要采用多个公共波束。为了便于描述,将部署在单个基站上的小区简称为单波束小区,部署在多个基站上的小区称为多波束小区。在目前的R17协议中,以小区组的形式进行公共波束的指示时,只能将单波束小区配置成一个小区组,对于多波束小区,如何以小区组的形式进行公共波束的统一指示,相关技术并未涉及。因此对于多波束小区,如何以小区组的形式进行公共波束的指示还需要解决。
发明内容
本申请实施例提供了一种小区波束指示方法及其相关设备,用于对多波束小区以小区组的形式进行公共波束指示。
第一方面,本申请实施例提供了一种小区波束指示方法,包括:
终端设备接收网络设备发送的配置信息,其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区。其中,可以定义第一小区为参考小区,第二小区
为小区组内的其他小区。
终端设备接收网络设备通过第一小区组中的第一小区中的信令指示的第一波束,其中,第一小区组包括至少一个多波束小区。网络设备通过小区组中的参考小区向终端设备发送DCI信令,指示参考小区的公共波束,当参考小区为多波束小区时,发送的第一波束中就存在多个波束;当参考小区为单波束小区时,第一波束中就只有一个波束。
终端设备根据第一波束确定第二波束,其中,第一波束为第一小区组中的第一小区指示的波束,第二波束为第一小区组对应的波束。由于参考小区处于第一小区组内,因此第一小区组对应的第二波束内的波束为第一波束内的一个或多个波束。
终端设备根据第二波束确定第三波束,其中,第三波束为第一小区组中的第二小区对应波束。由于第二小区位于第一小区组内,因此第二小区可以根据第二波束确定该小区可用的公共波束,这些可用的公共波束组成了第三波束。
本实施例中,终端设备首先接收网络设备发送的配置信息,从而获取小区分组情况,且小区分组信息中的小区组集合中,至少包括一个小区组内有多波束小区;然后终端设备接收网络设备通过参考小区发送的公共波束指示,用于确定参考小区采用的公共波束;其次终端设备根据参考小区采用的公共波束,确定参考小区所在的小区组的公共波束;最后终端设备根据小区组的公共波束,确定组内其他小区的公共波束。由于小区组内有多波束小区,意味着参考小区和/或小区组内的其他小区可以为多波束小区,且参考小区和/或小区组内的其他小区可以根据其小区类型采用至少两个公共波束进行数据传输,节省了波束指示信令的开销,解决了多波束小区无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第一种实现方式中,
如果第一小区为单波束小区,第二小区为多波束小区,且第二小区仅属于第一小区组;
即,第一波束仅包括一个波束。
则第二波束为第一波束,且第三波束为第二波束。
当第一小区为单波束小区时,第一小区作为参考小区只能指示一个波束,因此第一波束仅包括一个波束。由于第一波束仅包括一个波束,因此第二波束作为第一小区组的公共波束,也仅包括一个波束。在第二波束仅包括一个波束的情况下,且第二小区仅属于第一小区组,因此第三波束为第二波束,即第三波束也仅包括一个波束,即第一波束、第二波束和第三波束为同一波束。
本实施例中,针对第一小区为单波束小区、第二小区为多波束小区,且第一小区和第二小区仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第二种实现方式中,
如果第一小区为单波束小区,第二小区为多波束小区,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束;
即,第一波束仅包括一个波束。
则第二波束为第一波束。
第三波束由第二波束和每个其他小区组分别对应的波束组成。
当第一小区为单波束小区时,第一小区作为参考小区只能指示一个波束,因此第一波束仅包括一个波束。由于第一波束仅包括一个波束,因此第二波束作为第一小区组的公共波束,此时第二波束就为第一波束,即也仅包括一个波束。由于第二小区还属于其他小区组,且第二小区所属的其他小区组均对应一个波束,因此第二小区对应的第三波束由第二波束和每个其他小区组分别对应的波束组成,即第二小区采用多个小区组的公共波束作为该小区的公共波束。
可选的,第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为第三波束的第i个波束,其中i为大于0的整数。
网络设备给终端设备发送配置信令,该第i个小区组,可以具体是指配置顺序上的第i个小区组,也可以具体是指小区组索引从小到大排列的第i个小区组。或者,也可以采用与上述相反的顺序来确定第i小区组,即按配置顺序的倒序或按小区组索引从大到小的顺序排列确定第i个小区组。
本实施例中,针对第一小区为单波束小区,第二小区为多波束小区,第一小区仅属于第一小区组,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第三种实现方式中,
如果第一小区为多波束小区,第二小区为单波束小区或多波束小区,第一小区属于N个小区组,第二小区仅属于第一小区组,其中N为大于1的整数;
第一波束包括N个波束;
则第二波束为N个波束中的一个波束,第三波束为第二波束。
当第一小区属于N个小区组时,可以规定,参考小区中指示的波束数量与参考小区所属的小区组的数量是相等的,即第一小区为多波束小区,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。由于第一小区指示N个波束且属于N个小区组,因此,第一小区所属的每个小区组分别分配N个波束中的一个,第二波束为N个波束中的一个波束。在第二波束仅包括一个波束的情况下,且第二小区仅属于第一小区组,因此无论第二小区为单波束小区还是多波束小区,第三波束均为第二波束,即第三波束也仅包括一个波束,即第二小区采用第一小区所指示的N个波束中的其中一个作为第二小区的公共波束。
可选的,如果第一小区组为第一小区所属的N个小区组中的第i个小区组,其中i为大于0且不大于N的整数,则第二波束为N个波束中的一个波束具体包括:第二波束为N个波束中的第i个波束。
可以理解的是,参考小区中指示的多个波束与该参考小区所属的多个小区组一一对应,那么该N个波束中的第一个波束对应N个小区组中的第一个小区组,N个波束中的第二个公共波束对应N个小区组中的第二个小区组,…,N个波束中的第N个波束对应N个小区
组中的第N小区组。
本实施例中,针对第一小区为多波束小区,第二小区为单波束小区或多波束小区,第一小区属于多个小区组,第二小区仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第四种实现方式中,
如果第一小区为多波束小区,第二小区为多波束小区,第一小区属于N个小区组,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束;其中N为大于1的整数;
第一波束包括N个波束;
则第二波束为N个波束中的一个波束;
第三波束由第二波束和每个其他小区组分别对应的波束组成。
当第一小区属于N个小区组时,且第一波束包括N个波束时,如上述第三种实现方式,第一小区所属的每个小区组分别分配N个波束中的一个,第二波束为N个波束中的一个波束。在第二波束仅包括一个波束的情况下,由于第二小区还属于其他小区组,且第二小区所属的其他小区组均对应一个波束,因此第二小区对应的第三波束由第二波束和每个其他小区组分别对应的波束组成,即第二小区采用多个小区组的公共波束作为该小区的公共波束。
可选的,如果第一小区组为第一小区所属的N个小区组中的第i个小区组,其中i为大于0且不大于N的整数,则第二波束为N个波束中的一个波束具体包括:第二波束为N个波束中的第i个波束。
可以理解的是,本步骤与上述第三种实现方式中的可选方案一致,此处不再赘述。
可选的,第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为第三波束的第i个波束,其中i为大于0的整数。
网络设备给终端设备发送配置信令,该第i个小区组,可以具体是指配置顺序上的第i个小区组,也可以具体是指小区组索引从小到大排列的第i个小区组。或者,也可以采用与上述相反的顺序来确定第i小区组,即按配置顺序的倒序或按小区组索引从大到小的顺序排列确定第i个小区组。
本实施例中,针对第一小区为多波束小区,第二小区为多波束小区,第一小区属于N个小区组,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第五种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则第二波束为第一波束;
第三波束为第二波束中的一个波束。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。由于第一小区仅属于第一小区组,因此第二波束作为第一小区组的公共波束,此时第二波束就为第一波束,即也包括N个波束。由于第二小区仅属于第一小区组,因此第二小区选择N个波束中的其中一个作为该小区的公共波束,即第三波束为第二波束中的一个波束。
本实施例中,针第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第六种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则第二波束为第一波束;
第三波束为第二波束。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。由于第一小区仅属于第一小区组,因此第二波束作为第一小区组的公共波束,此时第二波束就为第一波束,即也包括N个波束。由于第二小区仅属于第一小区组,因此第二小区选择上述N个波束作为该小区的公共波束,即第三波束为第二波束。
本实施例中,针第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第七种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则第二波束为第一波束;
当第二小区为单波束小区时,第三波束为第二波束中的一个波束;
当第二小区为多波束小区时,第三波束为第二波束。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。由于第一小区仅属于第一小区组,因此第二波束作为第一小区组的公共波束,此时第二波束就为第一波束,即也包括N个波束。由于第二小区仅属于第一小区组,因此当第二小区为单波束小区时,N个波束中的其中一个作为该小区的公共波束,即第三波束为第二波束中的一个波束;第二小区为多波束小区时,选择上述N个波束作为该小区的公共波束,即第三波束为第二波束。
本实施例中,针第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第八种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则当第一条件满足时,第二波束为N个波束中的一个波束;
第三波束为第二波束。
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。当第一条件满足时,将该参考小区中指示的多个波束中的一个波束用于该参考小区所属的该小区组,即第二波束为N个波束中的一个波束。第一条件可以是以下一项或多项的组合:第一小区组包含单波束小区;第一小区组中存在某个小区同时属于多个小区组。在第二波束仅包括一个波束的情况下,且第二小区仅属于第一小区组,因此无论第二小区为单波束小区还是多波束小区,第三波束均为第二波束,即第三波束也仅包括一个波束,即第二小区采用第一小区所指示的N个波束中的其中一个作为第二小区的公共波束。
可以理解的是,当第一条件不满足时,第二波束为第一波束,即第二波束包括N个波束。此时第三波束的选择逻辑依据第二小区的类型,与上述第五至第八种实现方式相匹配,此处不再进行赘述。
可选的,第二波束为N个波束中的一个波束具体包括:
第二波束为N个波束中的第一个波束。
第一个波束的选择可以有一下几种方法:1、网络设备通过DCI信令为终端设备指示参考小区的N个波束,该N个波束通过DCI中的N个传输配置指示(transmission configuration indication,TCI)字段值来指示,那么第一个波束指第一个TCI字段指示的波束,第二个波束指第二个TCI字段指示的波束;2、网络设备给终端设备发送配置信令,为终端设备配置公共波束相关的信息,每个波束根据配置顺序从小到大排列,索引号最小或最大的波束作为第一个波束。
本实施例中,针对第一小区为多波束小区,第一小区和第二小区均仅属于第一小区组,且第一小区组满足第一条件的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第九种实现方式中,
如果第一小区为多波束小区,第一小区仅属于第一小区组,第二小区还属于至少一个其他小区组,每个其他小区组均分别对应一个波束;
即,第一波束包括N个波束,其中N为大于1的整数;
则当第一条件满足时,第二波束为N个波束中的一个波束;
第三波束由第二波束和每个其他小区组分别对应的波束组成;
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。当第一条件满足时,将该参考小区中指示的多个波束中的一个波束用于该参考小区所属的该小区组,即第二波束为N个波束中的一个波束。第一条件可以是以下一项或多项的组合:第一小区组包含单波束小区;第一小区组中存在某个小区同时属于多个小区组。在第二波束仅包括一个波束的情况下,由于第二小区还属于其他小区组,且第二小区所属的其他小区组均对应一个波束,因此第二小区对应的第三波束由第二波束和每个其他小区组分别对应的波束组成,即第二小区采用多个小区组的公共波束作为该小区的公共波束。
可以理解的是,当第一条件不满足时,第二波束为第一波束,即第二波束包括N个波束。此时第三波束的选择逻辑依据第二小区的类型,与上述第五至第八种实现方式相匹配,此处不再进行赘述。
可选的,第二波束为N个波束中的一个波束具体包括:
第二波束为N个波束中的第一个波束。
第一个波束的选择与上述第八种实现方式一致,此处不再进行赘述。
可选的,第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为第三波束的第i个波束,其中i为大于0的整数。
网络设备给终端设备发送配置信令,该第i个小区组,可以具体是指配置顺序上的第i个小区组,也可以具体是指小区组索引从小到大排列的第i个小区组。或者,也可以采用与上述相反的顺序来确定第i小区组,即按配置顺序的倒序或按小区组索引从大到小的顺序排列确定第i个小区组。
本实施例中,针对第一小区为多波束小区,第一小区仅属于第一小区组,第一小区组满足第一条件,第二小区还属于至少一个其他小区组,每个其他小区组均分别对应一个波束的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第一方面的第一到九种实现方式中,
配置信息还用于配置小区或小区组满足约束规则中的一种,约束规则包括:
每个小区组中的小区仅属于单个小区组;
当小区组中存在多个属于多个小区组的小区,则第一小区为属于多个小区组的小区;
当小区组中存在多个属于多个小区组的小区,则多个属于多个小区组的小区均属于相同的小区组;
多个属于多个小区组的小区所属的小区组完全不同。
为了简化波束指示的逻辑,可以规定不能采用多波束小区作为参考小区,只能采用单波束小区作为参考小区,即参考小区中不能指示多个波束,只能指示一个同一类型的公共波束。扩展的,还可以采用以下约束中的任意一种或多种来减少可能的情况:
单波束小区和多波束小区不能属于同一个小区组;
如果单波束小区和多波束小区配置在同一个小区组,只能采用单波束小区作为参考小区;
如果单波束小区和多波束小区配置在同一个小区组,只能采用多波束小区作为参考小区;
一个小区不能同时属于多个小区组;
如果一个小区属于多个小区组,那么该小区不能作为参考小区,即只能采用只属于单个小区组的小区作为参考小区;
如果一个小区组中包括属于多个小区组的小区,那么参考小区只能是属于多个小区组的小区;
如果存在多个同时属于多个小区组的小区,对于任意两个这样的小区,他们所属的小区组要么完全相同,要么完全不同,即不能部分相同。
多波束小区属于单个小区组时,该多波束小区不能作为参考小区;
多波束小区属于单个小区组时,如果第一条件满足,则该多波束小区不能作为参考小区。
在一种可能的设计中,在本申请实施例的第一方面的第一到九种实现方式中,在终端设备根据第二波束确定第三波束之后,还包括:
终端设备根据第三波束确定目标波束;
终端设备采用目标波束与网络设备传输数据。
网络设备在通过参考小区向终端设备指示公共波束后,分以上几种实现方式确定该公共波束如何应用于该参考小区所属的小区组中的所有小区。终端设备通过其处理器处理公共波束指示信息,并根据小区分组情况,确定每个小区对应的公共波束,然后通过其存储器记录每个小区对应的公共波束信息,以便用于后续的传输。
第二方面,本申请实施例提供了一种小区波束指示方法,包括:
网络设备向终端设备发送配置信息,其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区;
网络设备通过第一小区组中的第一小区向终端设备指示第一波束,其中,第一波束用于终端设备确定第一小区组对应的第二波束,第二波束用于终端设备确定第一小区组中的第二小区的第三波束,其中,第一小区组里包括至少一个多波束小区;
网络设备根据第一波束确定第二波束;
网络设备根据第二波束确定第三波束。
本实施例中,终端设备首先接收网络设备发送的配置信息,从而获取小区分组情况,且小区分组信息中的小区组集合中,至少包括一个小区组内有多波束小区;然后终端设备接收网络设备通过参考小区发送的公共波束指示,用于确定参考小区采用的公共波束;其
次终端设备和网络设备根据参考小区采用的公共波束,确定参考小区所在的小区组的公共波束;最后终端设备和网络设备根据小区组的公共波束,确定组内其他小区的公共波束。由于小区组内有多波束小区,意味着参考小区和/或小区组内的其他小区可以为多波束小区,且参考小区和/或小区组内的其他小区可以根据其小区类型采用至少两个公共波束进行数据传输,节省了波束指示信令的开销,解决了多波束小区无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第一种实现方式中,
如果第一小区为单波束小区,第二小区为多波束小区,且第二小区仅属于第一小区组;
即,第一波束仅包括一个波束。
则第二波束为第一波束,且第三波束为第二波束。
本实施例中,针对第一小区为单波束小区、第二小区为多波束小区,且第一小区和第二小区仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第二种实现方式中,
如果第一小区为单波束小区,第二小区为多波束小区,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束;
即,第一波束仅包括一个波束。
则第二波束为第一波束。
第三波束由第二波束和每个其他小区组分别对应的波束组成。
可选的,第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为第三波束的第i个波束,其中i为大于0的整数。
本实施例中,针对第一小区为单波束小区,第二小区为多波束小区,第一小区仅属于第一小区组,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第三种实现方式中,
如果第一小区为多波束小区,第二小区为单波束小区或多波束小区,第一小区属于N个小区组,第二小区仅属于第一小区组,其中N为大于1的整数;
第一波束包括N个波束;
则第二波束为N个波束中的一个波束,第三波束为第二波束。
可选的,如果第一小区组为第一小区所属的N个小区组中的第i个小区组,其中i为大于0且不大于N的整数,则第二波束为N个波束中的一个波束具体包括:第二波束为N个波束中的第i个波束。
本实施例中,针对第一小区为多波束小区,第二小区为单波束小区或多波束小区,第一小区属于多个小区组,第二小区仅属于第一小区组的情况下,提出了对第二小区的公共
波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第四种实现方式中,
如果第一小区为多波束小区,第二小区为多波束小区,第一小区属于N个小区组,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束;其中N为大于1的整数;
第一波束包括N个波束;
则第二波束为N个波束中的一个波束;
第三波束由第二波束和每个其他小区组分别对应的波束组成。
可选的,如果第一小区组为第一小区所属的N个小区组中的第i个小区组,其中i为大于0且不大于N的整数,则第二波束为N个波束中的一个波束具体包括:第二波束为N个波束中的第i个波束。
可选的,第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为第三波束的第i个波束,其中i为大于0的整数。
本实施例中,针对第一小区为多波束小区,第二小区为多波束小区,第一小区属于N个小区组,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第五种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则第二波束为第一波束;
第三波束为第二波束中的一个波束。
本实施例中,针第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第六种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则第二波束为第一波束;
第三波束为第二波束。
本实施例中,针第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第七种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则第二波束为第一波束;
当第二小区为单波束小区时,第三波束为第二波束中的一个波束;
当第二小区为多波束小区时,第三波束为第二波束。
本实施例中,针第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第八种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则当第一条件满足时,第二波束为N个波束中的一个波束;
第三波束为第二波束。
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
可选的,第二波束为N个波束中的一个波束具体包括:
第二波束为N个波束中的第一个波束。
本实施例中,针对第一小区为多波束小区,第一小区和第二小区均仅属于第一小区组,且第一小区组满足第一条件的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第九种实现方式中,
如果第一小区为多波束小区,第一小区仅属于第一小区组,第二小区还属于至少一个其他小区组,每个其他小区组均分别对应一个波束;
即,第一波束包括N个波束,其中N为大于1的整数;
则当第一条件满足时,第二波束为N个波束中的一个波束;
第三波束由第二波束和每个其他小区组分别对应的波束组成;
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
可选的,第二波束为N个波束中的一个波束具体包括:
第二波束为N个波束中的第一个波束。
可选的,第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为第三波束的第i个波束,其中i为大于0的
整数。
本实施例中,针对第一小区为多波束小区,第一小区仅属于第一小区组,第一小区组满足第一条件,第二小区还属于至少一个其他小区组,每个其他小区组均分别对应一个波束的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
在一种可能的设计中,在本申请实施例的第二方面的第一到九种实现方式中,
配置信息还用于配置小区或小区组满足约束规则中的一种,约束规则包括:
每个小区组中的小区仅属于单个小区组;
当小区组中存在多个属于多个小区组的小区,则第一小区为属于多个小区组的小区;
当小区组中存在多个属于多个小区组的小区,则多个属于多个小区组的小区均属于相同的小区组;
多个属于多个小区组的小区所属的小区组完全不同。
第三方面,本申请实施例提供了一种终端设备,该终端设备包括:
收发模块,用于接收网络设备发送的配置信息,其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区;
处理模块,用于根据第一小区组中的第一小区指示的第一波束确定第一小区组对应的第二波束,其中,第一小区组里包括至少一个多波束小区;还用于根据第二波束确定第一小区组中的第二小区的第三波束。
在一种可能的设计中,该终端设备的收发模块,还用于根据第三波束确定目标波束后,采用目标波束与网络设备传输数据。
第四方面,本申请实施例提供了一种网路设备,该网络设备包括:
收发模块,用于向终端设备发送配置信息,其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区;
处理模块,用于通过第一小区组中的第一小区向终端设备指示第一波束,其中,第一波束用于终端设备确定第一小区组对应的第二波束,第二波束用于终端设备确定第一小区组中的第二小区的第三波束,其中,第一小区组里包括至少一个多波束小区;还用于根据第一波束确定第二波束;还用于根据第二波束确定第三波束。
第五方面,本申请实施例提供了一种通信装置,通信装置包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,使得处理器实现如第一方面至第二方面中任一方面中的任意一种实现方式。
可选的,该通信装置还包括收发器;该处理器还用于控制该收发器收发信号。
可选的,该通信装置包括存储器,该存储器中存储有计算机程序。
第六方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,该计算机程序或指令用于在由一个或多个计算机执行时使得一个或多个计算机实施上述各方面中任意一方面任意可能的实施方式该的方法。
第七方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面中任意一方面该的方法。
本申请第八方面提供一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述第一方面至第二方面中的任一种实现方式。
第九方面,本申请实施例提供一种通信系统,该系统包括上述各方面的终端设备和网络设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,终端设备首先接收网络设备发送的配置信息,从而获取小区分组情况,且小区分组信息中的小区组集合中,至少包括一个小区组内有多波束小区;然后终端设备接收网络设备通过参考小区发送的公共波束指示,用于确定参考小区采用的公共波束;其次终端设备和网络设备根据参考小区采用的公共波束,确定参考小区所在的小区组的公共波束;最后终端设备和网络设备根据小区组的公共波束,确定组内其他小区的公共波束。本申请方案包括多波束小区的各种可能的小区分组方法,以及各种分组方法下的多种公共波束按组指示的方案,小区组的形式实现对多波束小区的公共波束指示,节省了波束指示信令的开销,解决了多波束小区无法以小区组的形式进行公共波束指示的问题。
图1为TCI-state的结构示意图;
图2为用于激活TCI的MAC-CE结构示意图;
图3为单波束小区的小区分组示意图;
图4a为本申请实施例所提供的第一种多波束小区的分组示意图;
图4b为本申请实施例所提供的第二种多波束小区的分组示意图;
图5为本申请实施例所提供的通信系统的一个结构示意图;
图6为通信系统中每个网络设备和每个终端设备的结构示意图;
图7为本申请实施例所提供的小区波束指示方法的流程示意图;
图8为本申请实施例所提供的一种通信装置的结构示意图;
图9为本申请实施例所提供的另一种通信装置的结构示意图;
图10为本申请实施例所提供的一种终端设备的结构示意图;
图11为本申请实施例所提供的另一种通信装置的结构示意图。
为了使本申请的目的、技术方案及优点更加清楚明白,下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,
例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的单元的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个单元可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的单元或子单元可以是也可以不是物理上的分离,可以是也可以不是物理单元,或者可以分布到多个电路单元中,可以根据实际的需要选择其中的部分或全部单元来实现本申请方案的目的。
本申请第一方面实施例提供了一种小区波束指示方法及其相关设备,网络设备和终端设备可以根据小区分组情况,对每个小区组中每个小区对应的公共波束进行确定。该方法中,小区组里的小区可以为多波束小区,即小区可以根据其小区类型采用至少两个公共波束进行数据传输,节省了波束指示信令开销,解决了多波束小区无法以小区组的形式进行公共波束指示的问题。
波束在新空口(new radio,NR)协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter),或称空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),或准共址(quasi-co-location,QCL)信息,QCL假设,QCL指示等。波束可以通过传输配置指示(transmission configuration indication,TCI)状态(TCI-state)参数来指示,或通过空间关系(spatial relation)参数来指示。因此,本申请中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI-state(包括下行(download,DL)TCI-state或上行(UL,Upload)TCI-state),空间关系等。上述术语之间也相互等效。波束也可以替换为其他表示波束的术语,本申请不作限定。
用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),也可以称为空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter)或空间发送参数(spatial transmission parameter),空域发送设置(spatial domain transmission setting)或空间发送设置(spatial transmissionsetting)。下行发送波束可以通过TCI-state来指示。
用于接收信号的波束可以称为接收波束(reception beam,Rx beam),也可以称为空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter)或空间接收参数(spatial
reception parameter),空域接收设置(spatial domainreceptionsetting)或空间接收设置(spatial receptionsetting)。上行发送波束可以通过空间关系(spatial relation),或上行TCI-state,或探测参考信号(sounding reference signal,SRS)资源(表示采用该SRS的发送波束)来指示。因此上行波束还可以替换为SRS资源。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输是,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过DCI中的TCI字段,来指示终端设备物理下行共享信道(physical downlink shared channel,PDSCH)波束的信息。
不同的信道或参考信号资源可以采用独立的波束。或者,多个信道和/或多个参考信号资源可以采用一个统一的波束,这个统一的波束也可以称为公共波束。多个小区也可以统一采用同一个公共波束。公共波束可以分为以下几种类型。上下行公共波束,上行公共波束,下行公共波束。上下行公共波束是指上行和下行信道/参考信号都采用的波束。上行公共波束是指专门给上行信道/参考信号采用的波束,上行公共波束是指专门给上行信道/参考信号采用的波束。若无特别说明,本申请中的波束可以指公共波束,也可以指独立波束(每个信道单独采用的波束)。若无特别说明,本申请中的公共波束也可以替换为波束,即泛指波束,不强调是公共波束还是独立波束。若无特别说明,本申请中的公共波束可以具体是上述三种中的任意一种。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在本申请实施例中,若未做出特别说明,波束是指网络设备的发送波束。在波束测量中,网络设备的每一个波束对应一个资源,因此可以以资源的索引来唯一标识该资源对应的波束。
网络设备和终端设备都可以采用特定的波束进行通信。在下行数据传输中,网络设备在采用一个特定的波束向终端设备发送数据,终端设备采用一个特定的波束来进行接收。网络设备需要告知终端设备其采用的发送波束信息,这样终端设备才能采用与该发送波束相对应的接收波束来接收网络设备发送的数据。在上行传输中,终端设备采用一个特定的发送波束向网络设备发送数据,网络设备采用一个特定的波束来进行接收。终端设备采用什么发送波束向网络设备传输数据,是由网络设备指示的。在3GPP协议中,网络设备通过指示TCI-state来向终端设备指示上行和/或下行波束的信息。具体的,网络设备通过下行控制信息(downlink control information,DCI)中的传输配置指示(transmission
configuration indication,TCI)字段来向终端设备指示TCI-state。TCI字段长度为3bit,可以具体表示8个不同的字段值(codepoint)。TCI字段的每个值对应一个TCI-state的索引,该TCI-state索引可以唯一标识一个TCI-state。
TCI-state是由网络设备配置给各个终端设备的,TCI-state中包括多个参数,通过这些参数终端设备可以确定该TCI-state对应的波束。TCI-state的结构如图1所示。每个TCI-state包括一个自身的索引TCI-StateId,和两个QCL-Info。一个QCL-Info用于指示时频偏信息,另一个QCL-Info用于指示波束信息。QCL-Info中包括一个QCL-Type字段,用于指示该QCL-Info的类型。Qcl-Type共四种:{typeA,typeB,typeC,typeD}。其中,typeA,typeB,typeC用于指示时频偏信息,typeD用于指示波束信息。typeD类型的QCL-Info中包括一个参考信号资源(referenceSignal),用于向采用该TCI-state的信道或参考信号提供波束方向参考。具体的,如果一个信道或参考信号的传输采用一个TCI-state,那么终端设备需要通过采用该TCI-state中的typeD类型的QCL-Info中的参考信号资源的波束,来作为该信道或参考信号的波束。该参考信号资源的波束是终端设备提前已经确定好的,一般是通过提前进行的波束测量过程来确定的。通过上述方法,终端设备可以通过一个上行或下行传输对应的TCI-state,来确定该上行或下行传输对应的波束。对于上行传输,终端设备确定的是该上行传输对应的终端发送波束,即上行发送波束。对于下行传输,终端设备确定的是该下行传输对应的终端接收波束,即下行接收波束。每个QCL-Info还包括一个cell字段和bwp-Id,分别表示该QCL-Info中的参考信号资源所属的小区和带宽部分(bandwidth Part,BWP)。
下面以一个示例来具体阐述,基于R15/R16协议网络设备是如何通过TCI-state来向一个终端设备指示数据传输波束的接收波束信息的,包括TCI-state的配置,激活和指示:
TCI-state配置:网络设备通过资源控制(radio resource control,RRC)信令向终端设备配置多个TCI-state。这些TCI-state均包括一个类型为typeD的QCL-Info。网络设备也可以配置不包括类型为typeD的QCL-info的TCI-state,不过这些TCI-state不是用于数据传输波束的指示,故此处不进一步阐述。
TCI-state激活:网络设备配置多个TCI-state后,还需要通过介质接入控制-控制单元(medium access control-control element,MAC-CE)激活其中8个TCI-state。这8个TCI state与DCI中的TCI字段的8个值是一一对应的。即DCI的TCI字段的8个值对应的是哪8个TCI-state,是通过MAC-CE信令来确定的。用于激活TCI的MAC-CE结构如图2所示。其中字段T0至T(N-2)x8+7分别对应第一步配置的索引分别为0至(N-2)x8+7的各个TCI-state,每个字段的大小为1bit,值可以是0或1。取值为1表示激活该TCI-state,取值为0表示不激活该TCI-state。每个MAC-CE理论上可以有8个取值为1的激活字段,其余全为0。这8个取值为1的字段对应的TCI-state即为DCI中TCI字段的8个值对应的8个TCI-state。例如,TCI字段的最小值000对应MAC-CE中激活的索引最小的TCI-state,以此类推,一一对应。MAC-CE的类型有很多,除了用于TCI-state激活的MAC-CE,还有许多其他用途的MAC-CE。本申请只涉及用于TCI-state/TCI-state组合激活的MAC-CE。因此,若无特别说明,本申请所述的MAC-CE均指这类MAC-CE。
网络设备通过DCI中的TCI字段来指示一个具体的TCI-state。例如,网络设备发送给终端设备的DCI中的TCI字段的值为000,表示数据传输波束采用的000对应的那个TCI-state。该TCI-state内的类型为typeD的那个QCL-Info所包含的referenceSignal是索引为#1的信道状态信息-参考信号(Channel State Information–Reference Signal,CSI-RS),表示数据传输采用的波束与索引为#1的CSI-RS对应的接收波束是相同的。索引为#1的CSI-RS对应的接收波束可通过波束测量流程来确定,对终端设备来说是已知的。因此,通过TCI字段的具体取值,终端设备就可以确定数据传输波束对应的接收波束,从而采用相应的接收波束来接收数据。
在相关技术中,网络设备将多个采用相同波束的小区配置在一个小区组中,然后通过DCI信令在一个参考小区内指示一个公共波束,该公共波束直接应用于该小区组内的所有小区。如图3所示,每个基站上的小区分别被配置成一个小区组,共享一个公共波束。在小区组#1和小区组#2中,分别通过参考小区(小区1和小区4)指示公共波束,指示的公共波束分别应用于参考小区所在的小区组中的所有小区。
上述波束指示方法,只能将单波束小区配置成一个小区组进行公共波束的统一指示,而对于多波束小区,如何以小区组的形式进行公共波束的统一指示,相关技术并未涉及。例如,对于图4a所示的场景,一个小区可以部署在一个基站上(如图4a中的小区2和小区3),也可以部署在多个基站上(如图4a中的小区1)。如何通过小区分组的方式来实现对小区1的多个公共波束的指示,相关技术是无法解决的。
为了解决上述问题,本申请实施例提供了一种小区优选方法,该方法可通过如图5的系统实现(图5为本申请实施例提供的通信系统的一个结构示意图),包括若干个网络设备以及若干个终端设备。单个网络设备可以向多个终端设备传输数据或控制信令,多个网络设备也可以同时为单个终端设备传输数据或控制信令,下文将分别进行介绍:
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、5G通信系统、以及未来的无线通信系统等。
本申请实施例中,网络设备是一种部署在无线接入网中为终端设备提供无线通信功能的装置。网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。该网络设备也可以是指接入网中通过空中接口与终端设备通信的设备,或者一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。其中,基站可用于将收到的空中帧与互联网协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,与支持V2X应用的其他实体交换消息。该网络设备还可协调对空中接口的属性管理。在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同,例如全球移动通信系统(global system for mobile
communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(nodeB,NB),长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是未来5G网络中的基站设备或者未来演进的公共陆地移动通信网(public land mobile network,PLMN)网络中的网络设备。网络设备还可以是可穿戴设备或车载设备。网络设备还可以传输接收节点(transmission and reception point,TRP)。该网络设备还可以包括核心网设备,核心网设备例如包括访问和接入和移动性管理功能(access and mobility management function,AMF)等。对于RSU,需要说明的是,其可以是网络类RSU,也可以是终端设备类RSU。当作为网络类RSU时,其执行网络类设备的功能;当作为终端设备类RSU时,其执行终端设备的功能。
本申请实施例中,所涉及到的终端设备包括向用户提供语音的设备,向用户提供数据连通性的设备,向用户提供语音和数据连通性的设备。可以理解的是,该终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。该设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。值得注意的是,该终端设备有多种呈现方式,例如,该终端设备可以包括用户设备(user equipment,UE)、无线终端、移动终端、设备到设备通信(device-to-device,D2D)终端、车到一切(vehicle to everything,V2X)终端(车载终端,例如,车载单元(on-board unit,OBU)等等)、路侧单元(road side unit,RSU)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端、物联网(internet of things,IoT)终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。又如,该终端设备可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。又如,该终端设备可以包括个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,pda)、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等等。又如,该终端设备可包括受限设备,功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。又如,该终端设备可包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。又如,该终端设备还可以包括可穿戴设备、无人机、无人地面载具和船载终端等等。其中,可穿戴设备也可
以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
通信系统中每个网络设备和每个终端设备之间的通信还可以用另一种形式来表示,如图6所示,终端设备10包括处理器101、存储器102和收发器103,收发器103包括发射机1031、接收机1032和天线1033。网络设备20包括处理器201、存储器202和收发器203,收发器203包括发射机2031、接收机2032和天线2033。接收机1032可以用于通过天线1033接收传输控制信息,发射机1031可以用于通过天线1033向网络设备20发送传输反馈信息。发射机2031可以用于通过天线2033向终端设备10发送传输控制信息,接收机2032可以用于通过天线2033接收终端设备10发送的传输反馈信息。
以下对本申请实施例提供的小区切换方法进行详细说明。请参考图7,图7为本申请实施例提供的小区波束指示方法的流程示意图,包括如下步骤:
701,终端设备接收网络设备发送的配置信息;其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区。
可以理解的是,网络设备根据小区的类型进行分组之后,则向终端设备发送无线资源控制(radioresourcecontrol,RRC)配置指令,为终端设备配置公共波束相关的信息,如小区分组信息、公共波束集合、公共波束类型等。
其中,配置信息里具体包括小区分组信息,小区分组信息用于配置至少一个小区组,即小区分组信息用于通知终端设备哪些小区被分成一个组,可以进行统一的波束指示。小区的分组可以采用以下几种方法:
1)将同一基站对应的小区划分到一个小区组。
如图4a所示,小区1和小区2部署在同一个基站上,因此将小区1和小区2分为一组;同时小区1和小区3也部署在同一个基站上,因此小区1和小区3也分成一组。即,小区1同时属于小区组#1和小区组#2。在这种划分方式下,一个小区可以属于多个小区组。
2)将对应的基站完全相同的小区划分到一个小区组。
如图4b所示,将仅部署在第一个基站上的单波束小区(小区3和小区4)分到小区组#1;将仅部署在第二个基站上的单波束小区(小区5和小区6)分到小区组#2;将同时部署在第一个基站和第二个基站上的多波束小区(小区1和小区2)分到小区组#3。在这种划分方式下,一个小区只属于一个小区组,不能同时属于多个小区组,换句话说,单波束小区只能与单波束小区分成一组,多波束小区只能与多波束小区分成一组。
可以理解的是,每个小区组中包括参考小区和非参考小区,本申请实施例中,第一小区表示参考小区,第二小区表示非参考小区。在一个小区组中,参考小区的数量只有一个,即每个小区组中仅包括一个第一小区;而非参考小区的数量不做限制,即每个小区组中的
包括若干个第二小区。
702,终端设备根据第一小区组中的第一小区指示的第一波束确定第一小区组对应的第二波束,可选的,第一小区组里包括至少一个多波束小区。
需要说明的是,终端设备在接收配置信息之后,还需要接收网络设备通过第一小区组中的第一小区中的信令指示第一波束。对于一个小区组来说,网络设备只需要在该小区组中的一个小区指示公共波束,然后根据该公共波束,确定小区组的公共波束,在确定了小区组的公共波束之后,小区组内的其他小区的公共波束由该小区组的公共波束来确定。网络设备直接指示了公共波束的那个小区称为参考小区,即本申请实施例中的第一小区。
因此,第一小区组中的第一小区指示的第一波束,即为参考小区对应的公共波束。根据第一波束,确定第一小区组对应的第二波束,其中的第二波束即代表小区组的对应的公共波束。
进一步的,配置信息中还包括公共波束集合和公共波束类型。
网络设备通过小区组中的参考小区向终端设备发送DCI信令,指示参考小区的公共波束,指示的公共波束属于上述配置信息中配置的公共波束集合中的一个。公共波束的指示也可以通过MAC-CE(Medium access control-control element,媒体接入控制-控制单元)信令+DCI信令来指示,即网络设备先向终端设备发送一个MAC-CE信令,指示一个公共波束子集(该公共波束子集是上述配置信息中配置的公共波束集合的子集),再向终端设备发送一个DCI信令,指示一个公共波束(该公共波束是上述公共波束子集中的公共波束)。网络设备通过其发射机发送该配置信息,终端设备通过其接收机接收该配置信息。网络设备通过其发射机(图6中的发射机2031)发送波束指示信息,终端设备通过其接收机(图6中的接收机1032)接收波束指示信息。
需要说明的是,公共波束分为两种类型:上下行联合公共波束和上下行独立公共波束。上下行联合公共波束是指上行信道/参考信号和下行信道/参考信号都采用的波束。网络设备向终端设备指示一个上下行联合公共波束,终端设备可以采用该上下行联合公共波束来进行上行信道/参考信号的发送,也可以采用该上下行联合公共波束来进行下行信道/参考信号的接收。上下行联合公共波束一般用于终端设备具有波束互易性的场景,即终端设备的下行接收波束和上行发送波束的朝向相同的场景。上下行独立公共波束是指只能用于上行信道/参考信号或下行信道/参考信号的波束。网络设备需要为终端设备指示两个公共波束,一个上行公共波束,用于上行信道/参考信号的传输,一个下行公共波束,用于下行信道/参考信号的传输。上下行独立公共波束一般用于终端设备不具有波束互易性的场景,即终端设备的下行接收波束和上行发送波束的朝向不同的场景。公共波束简称波束,若无特别说明,本申请中的波束都指公共波束。本申请中,单个同一类型公共波束可以具体是指单个上下行联合公共波束,单个上行公共波束和/或单个下行公共波束。
第一小区组里包括至少一个多波束小区,即第一小区组中的第一小区和/或第二小区为多波束小区,后续实施例中会根据第一小区和第二小区的小区类型分别进行讨论。
为了便于描述,下面对单波束小区和多波束小区的概念进行扩展介绍。单波束小区是指采用单个同一类型的公共波束的小区。上述类型是指公共波束的类型,包括上下行联合
公共波束,上行公共波束,下行公共波束等。例如,在上下行联合公共波束模式下,只采用单个上下行联合公共波束的小区属于单波束小区。在上下行独立公共波束模式下,采用单个下行公共波束和单个上行公共波束的小区也属于单波束小区。多波束小区是指采用多个同一类型的公共波束的小区。例如,在上下行联合公共波束模式下,采用多个上下行联合公共波束的小区属于多波束小区。在上下行独立公共波束模式下,采用多个下行公共波束和多个上行公共波束的小区属于多波束小区。
单波束小区和多波束小区可以通过配置信息来区分。例如一个小区的配置信息中包括一个参数,用于指示该小区是单波束小区还是多波束小区。也可以通过一个小区中配置的同一类型的公共波束集合的数量来判断。例如:一个小区的配置信息中包括单个同一类型的公共波束集合,则说明该小区是单波束小区;一个小区的配置信息中包括多个同一类型的公共波束集合,则说明该小区是多波束小区。需要说明的是,在一个小区中的公共波束,要么采用的是上下行联合公共波束,要么采用的是上下行独立公共波束,通常情况下不存在同时采用上下行联合公共波束和上下行独立公共波束的情况,也就是一个小区中只会采用一个类型的公共波束,因此,下文的公共波束若无特别说明,则表示同一类型的公共波束。
也可以通过MAC-CE或DCI信令来指示一个小区是单波束小区还是多波束小区。
在一种实现方法中,网络设备可以向终端设备发送两种用于公共波束激活的MAC-CE,包括第一MAC-CE和第二MAC-CE。第一MAC-CE中,一个TCI字段值可以对应一种或多种公共波束,但对应的同一类型的公共波束数量为1。例如,一个TCI字段值可以对应一个上下行联合公共波束,或对应一个上行公共波束和/或一个下行公共波束。第二MAC-CE中,一个TCI字段值对应的同一类型的公共波束数量可以为1或2。例如,一个TCI字段值可以对应一个或两个上下行联合公共波束,或对应一个或两个上行公共波束,和/或一个或两个下行公共波束。
网络设备可以在一个小区中发送上述第一MAC-CE或第二MAC-CE。
在一种实现方式中,如果网络设备在一个小区中发送第一MAC-CE,则该小区的类型变成单波束小区。如果网络设备在一个小区中发送第二MAC-CE,则该小区的类型变成多波束小区。
在另一种实现方式中,网络设备在一个小区中发送第二MAC-CE。如果该第二MAC-CE中每个TCI字段值对应的同一类型的公共波束数量都为1,则该小区的类型变成单波束小区。如果该第二MAC-CE中至少存在一个TCI字段值对应的同一类型的公共波束数量为2,则该小区的类型变成多波束小区。
需要说明的是,步骤702旨在如何根据参考小区中指示的公共波束,确定小区组的公共波束。例如,当参考小区是多波束小区时,指示了多个同一类型的公共波束(多个上下行联合公共波束,或多个上行公共波束和下行公共波束组合)时,是将该多个公共波束全部用于一个小区组,还是分别用于多个小区组,具体分为以下几种情况:
情况1,如果第一小区为单波束小区,即第一波束仅包括一个波束,则第二波束为一个第一波束。
换句话说,参考小区中指示了单个同一类型的公共波束。例如,指示了单个上下行联合公共波束,或指示了单个上行公共波束和单个下行公共波束,即,该参考小区是一个单波束小区。在这种情况下,终端设备将该单个公共波束作为该参考小区所属的小区组对应的公共波束。可以规定,单波束小区只能属于一个小区组,不能同时属于多个小区组。
情况2,如果第一小区为多波束小区,即第一波束包括N个波束,N为大于1的整数。
参考小区中指示了多个同一类型的公共波束。换句话说,该参考小区是一个多波束小区。这种情况下,可进一步分为以下情况:
情况2.1第一小区属于N个小区组,则该N个小区组中的每个小区组对应的第二波束都只包括单个波束,该单个波束为该N个波束中的一个。也就是说,如果一个小区同时属于N个小区组,或者说一个小区同时作为N个小区组中的参考小区,且该小区中指示了N个同一类型的公共波束时,将该N个同一类型的公共波束分别作为N个小区组对应的波束。
例如,图4a中的小区1,同时属于小区组#1和小区组#2。这种情况下,如果该参考小区中指示的2个同一类型的公共波束,这两个公共波束将分别作为该参考小区所属的2个小区组对应的公共波束。
可以规定,一个小区同时属于N个小区组,或者说一个小区同时作为多个小区组的参考小区时,该小区中指示的同一类型的公共波束数量等于该小区同时所属的小区组数量。也就是说,参考小区中指示的同一类型的公共波束数与该参考小区所属的小区组的数量是相等的。参考小区中指示的多个同一类型的公共波束与该参考小区所属的多个小区组一一对应。
可选的,如果第一小区组为第一小区所属的N个小区组中的第i个小区组,其中i为大于0且不大于N的整数,则第二波束为N个波束中的一个波束具体包括:第二波束为N个波束中的第i个波束。
具体的,假设参考小区中指示了N个(N为大于1的整数)同一类型的公共波束,该参考小区同时属于N个小区组,那么该N个同一类型的公共波束中的第一个公共波束对应N个小区组中的第一个小区组,N个同一类型的公共波束中的第二个公共波束对应N个小区组中的第二个小区组,…,N个同一类型的公共波束中的第N个公共波束对应N个小区组中的第N个小区组。
上述第一个公共波束至第N个公共波束,可以具体指参考小区中指示的N个同一类型的公共波束中的第一个到第N个公共波束。例如,网络设备通过DCI信令为终端设备指示参考小区的N个同一类型公共波束,该N个同一类型的公共波束通过DCI中的N个TCI字段值来指示,那么第一个公共波束是指第一个TCI字段指示的公共波束,第二个公共波束是指第二个TCI字段,…,第N公共波束是指第N个TCI字段指示的公共波束。又例如,DCI中只有一个TCI字段,只能指示一个同一类型的公共波束,同时DCI中还存在一个字段或某个字段的部分比特,用于指示该DCI指示的公共波束是属于N个同一类型的公共波束中的哪个公共波束。例如,N=2时,DCI中存在一个字段或某个字段的部分比特,用于指示该DCI指示的公共波束是第一个公共波束还是第二个公共波束。该字段或该部分bit取值为0时,该DCI指示的是第一个公共波束,该字段或该部分bit的取值为1时,该DCI
指示的是第二个公共波束。又例如,DCI中只有一个TCI字段,只能指示一个同一类型的公共波束,该DCI关联N个控制资源集合分组标识,关联的控制资源集合标识等于0的DCI指示的公共波束为上述第一个公共波束,关联的控制资源集合标识等于1的DCI指示的公共波束为上述第二个公共波束,以此类推。又例如,DCI中只有一个TCI字段,但该TCI字段的一个字段值可以用于指示N个同一类型的公共波束,那么第一个公共波束是指一个TCI字段值指示的N个统一类型的公共波束中的第一个,第二个公共波束是指一个TCI字段值指示的N个统一类型的公共波束中的第二个,…,第N个公共波束是指一个TCI字段值指示的N个统一类型的公共波束中的第N个。
上述第一个小区组至第N个小区组,具体指参考小区所属的N个小区组中的第一个到第N个小区组。该第一个小区组至第N个小区组,可以具体是指配置顺序上的第一个小区组到第N个小区组,即在配置顺序上位于第一位的小区组是第一个小区组,配置顺序上位于第二位的小区组是第二个小区组,…,配置顺序上位于第N位的小区组是第N个小区组。该第一个小区组至第N个小区组,也可以具体是指小区组索引从小到大排列的第一个小区组到第N个小区组,即索引最小的小区组为第一个小区组,索引第二小的小区组为第二个小区组,…,索引第N小的小区组为第N个小区组。或者,也可以采用与上述相反的顺序来确定第一个小区组至第N个小区组,即按配置顺序的倒序或按小区组索引从大到小的顺序排列得到的N个小区组为第一个小区组至第N个小区组。
在上述情况2.1中,如果第一小区的类型从多波束小区变成单波束小区,这时第一小区中只能指示单个同一类型的公共波束,如单个上下行联合公共波束,单个上行公共波束和/或单个下行公共波束。在这种情况下,可以将该单个同一类型的公共波束用作第一小区所在的N个小区组中每个小区组对应的第二波束。
情况2.2第一小区仅属于第一小区组。
该参考小区只属于单个小区组。这种情况下,可以采用以下方法中的任意一种。
2.2.1第二波束为第一波束,即第二波束包括N个波束。
将该参考小区中指示的多个同一类型的公共波束,都用于该参考小区所属的单个小区组,即该小区组采用该参考小区中指示的多个同一类型的公共波束。
2.2.2则当第一条件满足时,第二波束为N个波束中的一个波束;当第一条件不满足时,第二波束为第一波束,即第二波束包括N个波束。
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
根据第一条件判断该单个小区组如何采用该参考小区中指示的多个同一类型的公共波束。具体的,当第一条件满足时,将该参考小区中指示的多个同一类型的公共波束中的一个公共波束用于该参考小区所属的该单个小区组。进一步的,该单个小区组采用该参考小区中指示的多个同一类型的公共波束中的第一个公共波束。其中,第一个公共波束可以是指第一个TCI字段指示的公共波束;也可以指DCI中用于指公共波束序号的字段或部分bit
的取值为特定值时的,DCI所指示的公共波束,具体请参考情况2.1中对第一个公共波束至第N个公共波束的具体定义。当第一条件不满足时,将该参考小区中指示的多个同一类型的公共波束,都用于该参考小区所属的单个小区组,即该小区组采用该参考小区中指示的多个同一类型的公共波束。
第一条件可以是以下一项或多项的组合:
该单个小区组包含单波束小区;
该单个小区组中存在某个小区同时属于多个小区组。
上述为针对两种不同情况下,如何根据参考小区中指示的公共波束确定该参考小区所属的小区组对应的公共波束的方法,即在不同的情况下采用不同的方法确定参考小区所属的小区组对应的公共波束。在另一种可以实现的方法中,可以约束上述某种情况不出现。例如,可以规定不能采用多波束小区作为参考小区,只能采用单波束小区作为参考小区,即参考小区中不能指示多个同一类型的公共波束,只能指示一个同一类型的公共波束。扩展的,还可以采用以下约束中的任意一种或多种来减少可能的情况,从而简化波束指示的逻辑:
单波束小区和多波束小区不能属于同一个小区组;
如果单波束小区和多波束小区配置在同一个小区组,只能采用单波束小区作为参考小区;
如果单波束小区和多波束小区配置在同一个小区组,不能采用单波束小区作为参考小区;
如果单波束小区和多波束小区配置在同一个小区组,只能采用多波束小区作为参考小区;
如果单波束小区和多波束小区配置在同一个小区组,不能采用多波束小区作为参考小区;
一个小区不能同时属于多个小区组;
如果一个小区属于多个小区组,那么该小区不能作为参考小区,即只能采用只属于单个小区组的小区作为参考小区;
如果一个小区组中包括属于多个小区组的小区,那么参考小区只能是属于多个小区组的小区,如果有多个这样的小区,可以选择其中一个作为参考小区,具体采用其中哪一个可以有多种实现,例如采用其中小区索引最小的小区,或其中小区索引最大的小区,或按配置顺序的第一个或最后一个小区等;
如果存在多个同时属于多个小区组的小区,对于任意两个这样的小区,他们所属的小区组要么完全相同,要么完全不同,即不能部分相同。例如,小区1属于小区组1和小区组2,小区2属于小区组3和小区组4,这种情况是允许的。又例如,小区1属于小区组1和小区组2,小区2属于小区组1和小区组2,这种情况也是允许的。又例如,小区1属于小区组1和小区组2,小区2属于小区组1和小区组3,这种情况是不允许的,因为小区1和小区2所属的小区组部分重叠;
多波束小区属于单个小区组时,该多波束小区不能作为参考小区;
多波束小区属于单个小区组时,如果第一条件满足,则该多波束小区不能作为参考小区。
在上述情况2.2中,如果第一小区的类型从单波束小区变成多波束小区,这时第一小区中指示了多个同一类型的公共波束,如多个上下行联合公共波束,多个上行公共波束和/或多个下行公共波束。在这种情况下,可以将该多个同一类型的公共波束中的第一个用作第一小区所在的单个小区组对应的第二波束。或者,将该多个同一类型的公共波束都用作第一小区所在的单个小区组对应的第二波束。
703,终端设备根据第一小区组的第二波束确定第一小区组中的第二小区的第三波束。
在确定了第二波束之后,根据第二波束的数量和第二小区的类型,可以确定第二小区的第三波束,可以理解的是,第三波束为第二小区根据第一小区组确定的可在小区组中用于公共波束指示的波束。
确定了一个小区组对应的公共波束后,可以根据小区组对应的公共波束,确定小区组中各个小区采用的公共波束。例如,有的小区属于多个小区组,可以通过多个小区组对应的公共波束,确定该小区的公共波束。对于小区组中的任一小区(除参考小区外),具体分为以下几种情况确定该小区的公共波束:
情况1,如果第二小区仅属于第一小区组。
该小区只属于单个小区组。在这种情况下,进一步分以下两种情况:
1.1第二波束仅包括单个同一类型公共波束,则第三波束为第二波束。
第二波束仅包括一个波束,即该小区组对应单个同一类型公共波束,即通过步骤702的方法,为该小区组确定了单个同一类型的公共波束,如单个上下行联合公共波束,或单个上行公共波束和/或单个下行公共波束。这种情况下,采用该单个同一类型的公共波束作为该小区的公共波束。
1.2第二波束包括N个波束,其中N为大于1的整数。
该小区组对应多个同一类型公共波束,即通过步骤702的方法,为该小区组确定了多个同一类型的公共波束。这种情况下,可以采用以下几种方法中的任意一种:
1.2.1第三波束为第二波束中的一个波束。
采用该多个同一类型的公共波束中的其中一个(如第一个、最后一个或中间任意一个)作为该小区的公共波束。
1.2.2第三波束为第二波束。
采用该多个同一类型的公共波束作为该小区的公共波束,即全部都采用。
1.2.3当第二小区为单波束小区时,第三波束为第二波束中的一个波束;当第二小区为多波束小区时,第三波束为第二波束。
根据该小区是单波束小区还是多波束小区,来确定该小区采用该小区组的多个同一类型的公共波束中的一个还是多个:
如果该小区是单波束小区,采用该小区组的多个同一类型的公共波束中的一个作为该小区的公共波束。
如果该小区是多波束小区,采用该小区组的多个同一类型的公共波束作为该小区的公
共波束。
具体的,可以通过RRC信令配置该小区是单波束小区还是多波束小区,或者通过RRC参数配置该小区采用上述N个波束中的哪一个。例如,N=2,通过RRC参数配置该小区采用上述N=2个波束中的第一个,第二个,还是两个都采用。
在情况1.1中,即第二波束仅包括一个波束时,上述配置参数没有实际作用,终端设备可以忽略。
情况2,第二小区除了属于第一小区组外,还属于至少一个其他小区组。
具体的,该第二小区属于N个小区组,N为大于1的整数。该N个小区组包括上述第一小区组。在这种情况下,进一步分以下两种情况:
情况2.1该N个小区组中的每个小区组对应单个同一类型的公共波束,第三波束由该N个小区组中的每个小区组对应的单个同一类型的公共波束组成。也就是说,采用该N个小区组中的每个小区组对应的单个同一类型的公共波束,作为该第二小区的N个该类型的公共波束。
可选的,如果N个小区组对应的公共波束都是同一个,那么该第二小区采用该公共波束,而不是采用N个重复的公共波束。
可选的,采用该N个小区组中的每个小区组对应的单个同一类型的公共波束,作为该第二小区的N个该类型的公共波束:
采用该N个小区组中的第i个小区组对应的单个同一类型的公共波束,作为该第二小区的N个该类型的公共波束中的第i个,其中i为大于0的整数。
上述第i个小区组具体指上述N个小区组按配置顺序对应的第i个小区组。上述第i个小区组也可以指上述N个小区组按索引从小到大或从大到小排列的第i个小区组。
情况2.2该N个小区组中存在至少一个小区组对应多个同一类型的公共波束,这时采用该多个公共波束中的一个作为该第二小区的其中一个公共波束。也就是说,从上述N个小区组中分别确定一个同一类型的公共波束,作为第二小区的N个公共波束。如果存在某个小区组对应多个同一类型的公共波束,那么需要选择其中一个,具体可以选择第一个或最后一个,或索引最大或最小的那一个。
通过上述方法,可以根据各个小区组对应的同一类型的公共波束,确定小区组中各个小区的公共波束。704,终端设备根据第三波束确定目标波束后,采用目标波束与网络设备传输数据。
需要说明的是,目标波束为第三波束中的一个或多个波束(当第三波束包括多个波束时),第三波束为第二小区对应的公共波束,目标波束为终端设备在进行网络传输时实际采用的公共波束。可以理解的是,针对不同的数据将采用不同的公共波束进行传输。网络设备在通过参考小区向终端设备指示公共波束后,分以上几种情况确定该公共波束如何应用于该参考小区所属的小区组中的所有小区。终端设备通过其处理器(图6中的处理器101)处理公共波束指示信息,并根据小区分组情况,确定每个小区对应的公共波束,然后通过其存储器(图6中的存储器102)记录每个小区对应的公共波束信息,以便用于后续的传输。
可以理解的是,该步骤为在确定了第二小区的公共波束后,公共波束在终端设备和网络设备中生效。公共波束生效是指终端设备在参考小区收到公共波束指示信息(如DCI信令后),需要经过一个特定的时间才能将指示的公共波束正式用于参考小区所属的小区组中的所有小区的传输。该特定的时间是网络设备和终端设备之间约定好的,例如是由网络设备配置给终端设备的,网络设备和终端设备在经过该特定的时间后,同时采用参考小区中指示的新波束进行发送和接收,才能保证新波束的采用不会出错,即避免网络设备采用了新波束,而终端设备还在采用旧波束的问题。
本申请实施例的方案中包括了多波束小区的各种可能的小区分组方法,以及各种分组方法下的多种公共波束按组指示的方案,以小区组的形式实现了对多波束小区的公共波束指示,节省了波束指示信令的开销,解决了多波束小区无法以小区组的形式进行公共波束指示的问题。
以下是本申请实施例的第一方面的在不同的情况下的几种具体实现方式:
第一种实现方式中,
如果第一小区为单波束小区,第二小区为多波束小区,且第二小区仅属于第一小区组;
即,第一波束仅包括一个波束。
则第二波束为第一波束,且第三波束为第二波束。
当第一小区为单波束小区时,第一小区作为参考小区只能指示一个波束,因此第一波束仅包括一个波束。由于第一波束仅包括一个波束,因此第二波束作为第一小区组的公共波束,也仅包括一个波束。在第二波束仅包括一个波束的情况下,且第二小区仅属于第一小区组,因此第三波束为第二波束,即第三波束也仅包括一个波束,即第一波束、第二波束和第三波束为同一波束。
本实施例中,针对第一小区为单波束小区、第二小区为多波束小区,且第一小区和第二小区仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
第二种实现方式中,
如果第一小区为单波束小区,第二小区为多波束小区,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束;
即,第一波束仅包括一个波束。
则第二波束为第一波束。
第三波束由第二波束和每个其他小区组分别对应的波束组成。
当第一小区为单波束小区时,第一小区作为参考小区只能指示一个波束,因此第一波束仅包括一个波束。由于第一波束仅包括一个波束,因此第二波束作为第一小区组的公共波束,此时第二波束就为第一波束,即也仅包括一个波束。由于第二小区还属于其他小区组,且第二小区所属的其他小区组均对应一个波束,因此第二小区对应的第三波束由第二波束和每个其他小区组分别对应的波束组成,即第二小区采用多个小区组的公共波束作为该小区的公共波束。
可选的,第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为第三波束的第i个波束,其中i为大于0的整数。
网络设备给终端设备发送配置信令,该第i个小区组,可以具体是指配置顺序上的第i个小区组,也可以具体是指小区组索引从小到大排列的第i个小区组。或者,也可以采用与上述相反的顺序来确定第i小区组,即按配置顺序的倒序或按小区组索引从大到小的顺序排列确定第i个小区组。
本实施例中,针对第一小区为单波束小区,第二小区为多波束小区,第一小区仅属于第一小区组,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
第三种实现方式中,
如果第一小区为多波束小区,第二小区为单波束小区或多波束小区,第一小区属于N个小区组,第二小区仅属于第一小区组,其中N为大于1的整数;
第一波束包括N个波束;
则第二波束为N个波束中的一个波束,第三波束为第二波束。
当第一小区属于N个小区组时,可以规定,参考小区中指示的波束数量与参考小区所属的小区组的数量是相等的,即第一小区为多波束小区,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。由于第一小区指示N个波束且属于N个小区组,因此,第一小区所属的每个小区组分别分配N个波束中的一个,第二波束为N个波束中的一个波束。在第二波束仅包括一个波束的情况下,且第二小区仅属于第一小区组,因此无论第二小区为单波束小区还是多波束小区,第三波束均为第二波束,即第三波束也仅包括一个波束,即第二小区采用第一小区所指示的N个波束中的其中一个作为第二小区的公共波束。
可选的,如果第一小区组为第一小区所属的N个小区组中的第i个小区组,其中i为大于0且不大于N的整数,则第二波束为N个波束中的一个波束具体包括:第二波束为N个波束中的第i个波束。
可以理解的是,参考小区中指示的多个波束与该参考小区所属的多个小区组一一对应,那么该N个波束中的第一个波束对应N个小区组中的第一个小区组,N个波束中的第二个公共波束对应N个小区组中的第二个小区组,…,N个波束中的第N个波束对应N个小区组中的第N小区组。
本实施例中,针对第一小区为多波束小区,第二小区为单波束小区或多波束小区,第一小区属于多个小区组,第二小区仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
第四种实现方式中,
如果第一小区为多波束小区,第二小区为多波束小区,第一小区属于N个小区组,第
二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束;其中N为大于1的整数;
第一波束包括N个波束;
则第二波束为N个波束中的一个波束;
第三波束由第二波束和每个其他小区组分别对应的波束组成。
当第一小区属于N个小区组时,且第一波束包括N个波束时,如上述第三种实现方式,第一小区所属的每个小区组分别分配N个波束中的一个,第二波束为N个波束中的一个波束。在第二波束仅包括一个波束的情况下,由于第二小区还属于其他小区组,且第二小区所属的其他小区组均对应一个波束,因此第二小区对应的第三波束由第二波束和每个其他小区组分别对应的波束组成,即第二小区采用多个小区组的公共波束作为该小区的公共波束。
可选的,如果第一小区组为第一小区所属的N个小区组中的第i个小区组,其中i为大于0且不大于N的整数,则第二波束为N个波束中的一个波束具体包括:第二波束为N个波束中的第i个波束。
可以理解的是,本步骤与上述第三种实现方式中的可选方案一致,此处不再赘述。
可选的,第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为第三波束的第i个波束,其中i为大于0的整数。
网络设备给终端设备发送配置信令,该第i个小区组,可以具体是指配置顺序上的第i个小区组,也可以具体是指小区组索引从小到大排列的第i个小区组。或者,也可以采用与上述相反的顺序来确定第i小区组,即按配置顺序的倒序或按小区组索引从大到小的顺序排列确定第i个小区组。
本实施例中,针对第一小区为多波束小区,第二小区为多波束小区,第一小区属于N个小区组,第二小区还属于至少一个其他小区组,且第二小区所属的其他小区组均对应一个波束的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
第五种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则第二波束为第一波束;
第三波束为第二波束中的一个波束。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。由于第一小区仅属于第一小区组,因此第二波束作为第一小区组的公共波束,此时第二波束就为第一波束,即也包括N个波束。由于第二小区仅属于第一小区组,因此第二小区选择N个波束中的其中一个作为该小区的公共波束,即第三波束为第二波束中的一个波束。
本实施例中,针第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
第六种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则第二波束为第一波束;
第三波束为第二波束。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。由于第一小区仅属于第一小区组,因此第二波束作为第一小区组的公共波束,此时第二波束就为第一波束,即也包括N个波束。由于第二小区仅属于第一小区组,因此第二小区选择上述N个波束作为该小区的公共波束,即第三波束为第二波束。
本实施例中,针第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
第七种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则第二波束为第一波束;
当第二小区为单波束小区时,第三波束为第二波束中的一个波束;
当第二小区为多波束小区时,第三波束为第二波束。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。由于第一小区仅属于第一小区组,因此第二波束作为第一小区组的公共波束,此时第二波束就为第一波束,即也包括N个波束。由于第二小区仅属于第一小区组,因此当第二小区为单波束小区时,N个波束中的其中一个作为该小区的公共波束,即第三波束为第二波束中的一个波束;第二小区为多波束小区时,选择上述N个波束作为该小区的公共波束,即第三波束为第二波束。
本实施例中,针第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
第八种实现方式中,
如果第一小区为多波束小区,且第一小区和第二小区均仅属于第一小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
则当第一条件满足时,第二波束为N个波束中的一个波束;
第三波束为第二波束。
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。当第一条件满足时,将该参考小区中指示的多个波束中的一个波束用于该参考小区所属的该小区组,即第二波束为N个波束中的一个波束。第一条件可以是以下一项或多项的组合:第一小区组包含单波束小区;第一小区组中存在某个小区同时属于多个小区组。在第二波束仅包括一个波束的情况下,且第二小区仅属于第一小区组,因此无论第二小区为单波束小区还是多波束小区,第三波束均为第二波束,即第三波束也仅包括一个波束,即第二小区采用第一小区所指示的N个波束中的其中一个作为第二小区的公共波束。
可以理解的是,当第一条件不满足时,第二波束为第一波束,即第二波束包括N个波束。此时第三波束的选择逻辑依据第二小区的类型,与上述第五至第八种实现方式相匹配,此处不再进行赘述。
可选的,第二波束为N个波束中的一个波束具体包括:
第二波束为N个波束中的第一个波束。
第一个波束的选择可以有一下几种方法:1、网络设备通过DCI信令为终端设备指示参考小区的N个波束,该N个波束通过DCI中的N个TCI字段值来指示,那么第一个波束指第一个TCI字段指示的波束,第二个波束指第二个TCI字段指示的波束;2、网络设备给终端设备发送配置信令,为终端设备配置公共波束相关的信息,每个波束根据配置顺序从小到大排列,索引号最小或最大的波束作为第一个波束。
本实施例中,针对第一小区为多波束小区,第一小区和第二小区均仅属于第一小区组,且第一小区组满足第一条件的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
第九种实现方式中,
如果第一小区为多波束小区,第一小区仅属于第一小区组,第二小区还属于至少一个其他小区组,每个其他小区组均分别对应一个波束;
即,第一波束包括N个波束,其中N为大于1的整数;
则当第一条件满足时,第二波束为N个波束中的一个波束;
第三波束由第二波束和每个其他小区组分别对应的波束组成;
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。当第一条件满足时,将该参考小区中指示的多个波束中的一个波束用于该参考小区所属的该小区组,即第二波束为N个波束中的一个波束。第一条件可以是以下一项或多项的组合:第一小区组包含单波束小区;第一小区组中存在某个小区同时属于多
个小区组。在第二波束仅包括一个波束的情况下,由于第二小区还属于其他小区组,且第二小区所属的其他小区组均对应一个波束,因此第二小区对应的第三波束由第二波束和每个其他小区组分别对应的波束组成,即第二小区采用多个小区组的公共波束作为该小区的公共波束。
可以理解的是,当第一条件不满足时,第二波束为第一波束,即第二波束包括N个波束。此时第三波束的选择逻辑依据第二小区的类型,与上述第五至第八种实现方式相匹配,此处不再进行赘述。
可选的,第二波束为N个波束中的一个波束具体包括:
第二波束为N个波束中的第一个波束。
第一个波束的选择与上述第八种实现方式一致,此处不再进行赘述。
可选的,第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为第三波束的第i个波束,其中i为大于0的整数。
网络设备给终端设备发送配置信令,该第i个小区组,可以具体是指配置顺序上的第i个小区组,也可以具体是指小区组索引从小到大排列的第i个小区组。或者,也可以采用与上述相反的顺序来确定第i小区组,即按配置顺序的倒序或按小区组索引从大到小的顺序排列确定第i个小区组。
本实施例中,针对第一小区为多波束小区,第一小区仅属于第一小区组,第一小区组满足第一条件,第二小区还属于至少一个其他小区组,每个其他小区组均分别对应一个波束的情况下,提出了对第二小区的公共波束进行指示的方案,解决了相关技术中在该情况下如何无法以小区组的形式进行公共波束指示的问题。
第十种实现方式中,
如果第一小区为多波束小区,第二小区为多波束小区,第一小区仅属于第一小区组,第二小区还属于至少一个其他小区组;
即,第一波束包括N个波束,其中N为大于1的整数;
第二波束为第一波束;
则第三波束由第二波束中的一个波束以及每个其他小区组对应的波束中的一个波束组成。
当第一小区为多波束小区时,第一小区作为参考小区可以指示N个波束,因此第一波束包括N个波束。由于第一小区仅属于第一小区组,因此第二波束作为第一小区组的公共波束,此时第二波束就为第一波束,即也包括N个波束。由于第二小区还属于其他小区组,因此只取第二波束中的一个波束作为第三波束的组成部分。同理,若当第二小区所属的单个其他小区组对应多个波束时,也只取其中一个波束作为第三波束的组成部分,而若单个其他小区组仅对应一个波束时,则直接取该波束作为第三波束的组成部分。可以理解的是,无论第二小区所属的单个小区组对应几个波束,均只取其中一个作为第二小区的公共波束,即当第二小区属于M个小区组,则第三波束中包括M个波束,其中M为大于0的整数。
本申请第二方面实施例提供了一种小区波束指示方法及其相关设备,网络设备和终端设备可以根据小区分组情况,对每个小区组中每个小区对应的公共波束进行确定。该方法中,小区组里的小区可以为多波束小区,即小区可以根据其小区类型采用至少两个公共波束进行数据传输,节省了波束指示信令开销,解决了多波束小区无法以小区组的形式进行公共波束指示的问题。
以下对本申请实施例提供的小区切换方法进行详细说明。请参考图7,图7为本申请实施例提供的小区波束指示方法的流程示意图,包括如下步骤:
701,网络设备向终端设备发送配置信息,其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区。
可以理解的是,网络设备根据小区的类型进行分组之后,则向终端设备发送无线资源控制(radioresourcecontrol,RRC)配置指令,为终端设备配置公共波束相关的信息,如小区分组信息、公共波束集合、公共波束类型等。
705,网络设备通过第一小区组中的第一小区中的信令向终端设备指示第一波束,其中,第一波束用于终端设备确定第一小区组对应的第二波束,第二波束用于终端设备确定第一小区组中的第二小区的第三波束,其中,第一小区组里包括至少一个多波束小区。
需要说明的是,对于一个小区组来说,网络设备只需要在该小区组中的一个小区指示公共波束,然后根据该公共波束,确定小区组的公共波束,在确定了小区组的公共波束之后,小区组内的其他小区的公共波束由该小区组的公共波束来确定。网络设备直接指示了公共波束的那个小区称为参考小区,即本申请实施例中的第一小区。
706,网络设备根据第一波束确定第二波束。
第一小区组中的第一小区指示的第一波束,即为参考小区对应的公共波束。根据第一波束,确定第一小区组对应的第二波束,其中的第二波束即代表小区组的所指示的公共波束。网络设备通过小区组中的参考小区向终端设备发送DCI信令,指示参考小区的公共波束,指示的公共波束属于上述配置信息中配置的公共波束集合中的一个。公共波束的指示也可以通过MAC-CE(Medium access control-control element,媒体接入控制-控制单元)信令+DCI信令来指示,即网络设备先向终端设备发送一个MAC-CE信令,指示一个公共波束子集(该公共波束子集是上述配置信息中配置的公共波束集合的子集),再向终端设备发送一个DCI信令,指示一个公共波束(该公共波束是上述公共波束子集中的公共波束)。网络设备通过其发射机发送该配置信息,终端设备通过其接收机接收该配置信息。网络设备通过其发射机(图6中的发射机2031)发送波束指示信息,终端设备通过其接收机(图6中的接收机1032)接收波束指示信息。
情况1,如果第一小区为单波束小区,即第一波束仅包括一个波束,且第一小区仅属于第一小区组,则第二波束为一个第一波束。
参考小区中指示了单个同一类型的公共波束。例如,指示了单个上下行联合公共波束,或指示了单个上行公共波束和单个下行公共波束,即,该参考小区是一个单波束小区。在这种情况下,终端设备将该单个公共波束作为该参考小区所属的小区组。
情况2,如果第一小区为多波束小区,即第一波束包括N个波束,N为大于1的整数。
参考小区中指示了多个同一类型的公共波束。换句话说,该参考小区是一个多波束小区。这种情况下,可进一步分为以下情况:
2.1第一小区属于N个小区组,则第二波束为N个波束中的一个波束。
该参考小区同时属于多个小区组,这种情况下,该参考小区中指示的多个同一类型的公共波束,分别作为该参考小区所属的多个小区组的公共波束。
2.2第一小区仅属于第一小区组。
该参考小区只属于单个小区组。这种情况下,可以采用以下方法中的任意一种:
2.2.1第二波束为第一波束,即第二波束包括N个波束。
将该参考小区中指示的多个同一类型的公共波束,都用于该参考小区所属的单个小区组,即该小区组采用该参考小区中指示的多个同一类型的公共波束。
2.2.2则当第一条件满足时,第二波束为N个波束中的一个波束;当第一条件不满足时,第二波束为第一波束,即第二波束包括N个波束。
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
根据第一条件判断该单个小区组如何采用该参考小区中指示的多个同一类型的公共波束。具体的,当第一条件满足时,将该参考小区中指示的多个同一类型的公共波束中的一个公共波束用于该参考小区所属的该单个小区组。
第一条件可以是以下一项或多项的组合:
该单个小区组包含单波束小区;
该单个小区组中存在某个小区同时属于多个小区组。
707,网络设备根据第二波束确定第三波束。
在确定了第二波束之后,根据第二波束的数量和第二小区的类型,可以确定第二小区的第三波束,可以理解的是,第三波束为第二小区根据第一小区组确定的可在小区组中用于公共波束指示的波束。
确定了一个小区组对应的公共波束后,可以根据小区组对应的公共波束,确定小区组中各个小区采用的公共波束。例如,有的小区属于多个小区组,可以通过多个小区组对应的公共波束,确定该小区的公共波束。对于小区组中的任一小区(除参考小区外),具体分为以下几种情况确定该小区的公共波束:
情况1,如果第二小区仅属于第一小区组。
该小区只属于单个小区组。在这种情况下,进一步分以下两种情况:
1.1第二波束仅包括一个波束,则第三波束为第二波束。
该小区组对应单个同一类型公共波束,这种情况下,采用该单个同一类型的公共波束作为该小区的公共波束。
1.2第二波束包括N个波束,其中N为大于1的整数。
该小区组对应多个同一类型公共波束,这种情况下,可以采用以下几种方法中的任意
一种:
1.2.1第三波束为第二波束中的一个波束。
采用该多个同一类型的公共波束中的其中一个(如第一个、最后一个或中间任意一个)作为该小区的公共波束。
1.2.2第三波束为第二波束。
采用该多个同一类型的公共波束作为该小区的公共波束,即全部都采用。
1.2.3当第二小区为单波束小区时,第三波束为第二波束中的一个波束;当第二小区为多波束小区时,第三波束为第二波束。
根据该小区是单波束小区还是多波束小区,来确定该小区采用该小区组的多个同一类型的公共波束中的一个还是多个:
如果该小区是单波束小区,采用该小区组的多个同一类型的公共波束中的一个作为该小区的公共波束。
如果该小区是多波束小区,采用该小区组的多个同一类型的公共波束作为该小区的公共波束。
情况2,第二小区还属于至少一个其他小区组。
该小区属于多个小区组。在这种情况下,进一步分以下两种情况:
2.1第二波束仅包括一个波束,且每个其他小区组均分别对应一个波束,则第三波束由第二波束和每个其他小区组分别对应的波束组成。
该多个小区组都对应单个同一类型的公共波束。这种情况下,采用该多个小区组的同一类型的公共波束,作为该小区的多个公共波束。
2.2第二波束包括N个波束,则第三波束由第二波束中的一个波束以及每个其他小区组对应的波束中的一个波束组成。
该多个小区组中存在至少一个小区组对应的同一类型的公共波束为多个。对于每个这种小区组,只取其多个同一类型的公共波束中的其中一个,与其他小区组对应的同一类型的公共波束一起,作为该小区的多个同一类型的公共波束。
通过上述方法,可以根据各个小区组对应的同一类型的公共波束,确定小区组中各个小区的公共波束。
以上是对本申请实施例提供的小区波束指示方法所进行的详细说明,以下将对本申请实施例提供的终端设备和网络设备进行介绍。
图8为本申请实施例提供的另一种通信装置的一个结构示意图。通信装置可以用于执行图7所示的实施例中终端设备执行的步骤,具体请参考上述方法实施例中的相关介绍。
通信装置800包括收发模块801和处理模块802。
收发模块801可以实现相应的通信功能,收发模块801还可以称为通信接口或通信单元。处理模块802用于执行处理操作。
可选的,通信装置800还可以包括存储模块,该存储模块可以用于存储指令和/或数据,处理模块802可以读取存储模块中的指令和/或数据,以使得通信装置实现前图7所示的方法实施例。
该通信装置800可以用于执行上文方法实施例中终端设备所执行的动作。该通信装置800可以为终端设备或者可配置于终端设备的部件。收发模块801用于执行上述方法实施例中终端设备侧的接收相关的操作,处理模块802用于执行上述方法实施例中终端设备侧的处理相关的操作。
可选的,收发模块801可以包括发送模块和接收模块。发送模块用于执行上述图7所示的方法实施例中终端设备的发送操作。接收模块用于执行上述图7所示的方法实施例中终端设备的接收操作。
需要说明的是,通信装置800可以包括发送模块,而不包括接收模块。或者,通信装置800可以包括接收模块,而不包括发送模块。具体可以视通信装置800执行的上述方案中是否包括发送动作和接收动作。
例如,通信装置800用于执行如下方案:
收发模块801,用于接收网络设备发送的配置信息,其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区。
处理模块802,用于根据第一小区组中的第一小区指示的第一波束确定第一小区组对应的第二波束,其中,第一小区组里包括至少一个多波束小区;还用于根据第二波束确定第一小区组中的第二小区的第三波束。
一种可能的实现方式中,根据第一波束确定第二波束,具体包括以下一项或多项:
如果第一波束仅包括一个波束,则通信装置800确定第二波束为第一波束;
如果第一小区属于M个小区组,且第一波束包括M个波束,则通信装置800确定第二波束为M个波束中的一个波束,其中M为大于1的整数;
如果第一小区仅属于第一小区组,且第一波束包括N个波束,其中N为大于1的整数,则通信装置800确定第二波束为第一波束;
如果第一小区仅属于第一小区组,且第一波束包括N个波束,则当第一条件满足时,通信装置800确定第二波束为N个波束中的一个波束;
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
一种可能的实现方式中,如果第一小区属于M个小区组,第一波束包括M个波束,则通信装置800确定第二波束为M个波束中的一个波束具体包括:
如果第一小区属于M个小区组,第一波束包括M个波束,且第一小区组为第一小区所属的M个小区组中的第i个小区组,则通信装置800确定第二波束为M个波束中的第i个波束,其中i为大于0且不大于N的整数。
一种可能的实现方式中,如果第一小区仅属于第一小区组,且第一波束包括N个波束,则当第一条件满足时,通信装置800确定第二波束为N个波束中的一个波束具体包括:
如果第一小区仅属于第一小区组,且第一波束包括N个波束,则当第一条件满足时,通信装置800确定第二波束为N个波束中的第一个波束。
一种可能的实现方式中,通信装置800根据第二波束确定第三波束,具体包括以下一项或多项:
如果第二小区仅属于第一小区组,且第二波束仅包括一个波束,则通信装置800确定第三波束为第二波束;
如果第二小区仅属于第一小区组,且第二波束包括N个波束,其中N为大于1的整数,则:通信装置800确定第三波束为第二波束中的一个波束,或,通信装置800确定第三波束为第二波束,或,当第二小区为单波束小区时,通信装置800确定第三波束为第二波束中的一个波束;当第二小区为多波束小区时,通信装置800确定第三波束为第二波束;
如果第二小区还属于至少一个其他小区组,且第二波束仅包括一个波束,且每个其他小区组均分别对应一个波束,则通信装置800确定第三波束由第二波束和每个其他小区组分别对应的波束组成。
一种可能的实现方式中,如果第二小区还属于至少一个其他小区组,且第二波束仅包括一个波束,且每个其他小区组均分别对应一个波束,则通信装置800确定第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
如果第二小区还属于至少一个其他小区组,且第二波束仅包括一个波束,且每个其他小区组均分别对应一个波束,则根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为通信装置800确定第三波束中的第i个波束,其中i为大于0的整数。
一种可能的实现方式中,配置信息还用于配置小区或小区组满足约束规则中的一种,约束规则包括:
每个小区组中的小区仅属于单个小区组;
当小区组中存在多个属于多个小区组的小区,则第一小区为属于多个小区组的小区;
当小区组中存在多个属于多个小区组的小区,则多个属于多个小区组的小区均属于相同的小区组;
多个属于多个小区组的小区所属的小区组完全不同。
一种可能的实现方式中,收发模块801,还用于根据第三波束确定目标波束后,采用目标波束与网络设备传输数据。
本实施例中,通信装置首先接收网络设备发送的配置信息,从而获取小区分组情况,且小区分组信息中的小区组集合中,至少包括一个小区组内有多波束小区;然后通信装置接收网络设备通过参考小区发送的公共波束指示,用于确定参考小区采用的公共波束;其次通信装置根据参考小区采用的公共波束,确定参考小区所在的小区组的公共波束;最后通信装置根据小区组的公共波束,确定组内其他小区的公共波束。由于小区组内有多波束小区,意味着参考小区和/或小区组内的其他小区可以为多波束小区,且参考小区和/或小区组内的其他小区可以根据其小区类型采用至少两个公共波束进行数据传输,节省了波束指示信令的开销,解决了多波束小区无法以小区组的形式进行公共波束指示的问题。
图9为本申请实施例提供的通信装置900的一个结构示意图,通信装置可以用于执行图7所示的实施例中网络设备执行的步骤,具体请参考上述方法实施例中的相关介绍。
通信装置900包括收发模块901和处理模块902。
收发模块901可以实现相应的通信功能,收发模块901还可以称为通信接口或通信单元。处理模块902用于执行处理操作。
可选地,该通信装置900还可以包括存储模块,该存储模块可以用于存储指令和/或数据,处理模块902可以读取存储模块中的指令和/或数据,以使得通信装置实现前图6所示的方法实施例。
该通信装置900可以用于执行上文方法实施例中网络设备所执行的动作。该通信装置900可以为网络设备或者可配置于网络设备的部件。收发模块901用于执行上述方法实施例中网络设备侧的接收相关的操作,处理模块902用于执行上述方法实施例中网络设备侧的处理相关的操作。
可选的,收发模块901可以包括发送模块和接收模块。发送模块用于执行上述图6所示的方法实施例中网络设备的发送操作。接收模块用于执行上述图6所示的方法实施例中网络设备的接收操作。
需要说明的是,通信装置900可以包括发送模块,而不包括接收模块。或者,通信装置900可以包括接收模块,而不包括发送模块。具体可以视通信装置900执行的上述方案中是否包括发送动作和接收动作。
例如,通信装置900可以用于执行如下方案:
收发模块901,用于向终端设备发送配置信息,其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区;
处理模块902,用于通过第一小区组中的第一小区向终端设备指示第一波束,其中,第一波束用于终端设备确定第一小区组对应的第二波束,第二波束用于终端设备确定第一小区组中的第二小区的第三波束,其中,第一小区组里包括至少一个多波束小区;还用于根据第一波束确定第二波束;还用于根据第二波束确定第三波束。
一种可能的实现方式中,通信装置900向终端设备发送配置信息,其中,配置信息用于配置至少一个小区组,每个小区组中包括第一小区和第二小区;
通信装置900通过第一小区组中的第一小区向终端设备指示第一波束,其中,第一波束用于终端设备确定第一小区组对应的第二波束,第二波束用于终端设备确定第一小区组中的第二小区对应的第三波束,其中,第一小区组里包括至少一个多波束小区;
通信装置900根据第一波束确定第二波束;
通信装置900根据第二波束确定第三波束。
一种可能的实现方式中,通信装置900根据第一波束确定第二波束,具体包括以下一项或多项:
如果第一波束仅包括一个波束,则通信装置900确定第二波束为一个第一波束;
如果第一小区属于M个小区组,且第一波束包括M个波束,其中M为大于1的整数,则通信装置900确定第二波束为M个波束中的一个波束;
如果第一小区仅属于第一小区组,且第一波束包括N个波束,则通信装置900确定第二波束为第一波束;
如果第一小区仅属于第一小区组,且第一波束包括N个波束,则当第一条件满足时,通信装置900确定第二波束为N个波束中的一个波束;
其中,第一条件包括:
第一小区组中包括至少一个单波束小区,
和/或,
第一小区组中包括还属于其他小区组的小区。
一种可能的实现方式中,如果第一小区属于M个小区组,第一波束包括M个波束,则通信装置900确定第二波束为M个波束中的一个波束具体包括:
如果第一小区属于M个小区组,第一波束包括M个波束,且第一小区组为第一小区所属的M个小区组中的第i个小区组,则通信装置900确定第二波束为M个波束中的第i个波束,其中i为大于0且不大于N的整数。
一种可能的实现方式中,如果第一小区仅属于第一小区组,且第一波束包括N个波束,则当第一条件满足时,通信装置900确定第二波束为N个波束中的一个波束具体包括:
如果第一小区仅属于第一小区组,且第一波束包括N个波束,则当第一条件满足时,通信装置900确定第二波束为N个波束中的第一个波束。
一种可能的实现方式中,通信装置900根据第二波束确定第三波束,具体包括以下一项或多项:
如果第二小区仅属于第一小区组,且第二波束仅包括一个波束,则通信装置900确定第三波束为第二波束;
如果第二小区仅属于第一小区组,且第二波束包括N个波束,其中N为大于1的整数,则:通信装置900确定第三波束为第二波束中的一个波束,或,通信装置900确定第三波束为第二波束,或,当第二小区为单波束小区时,通信装置900确定第三波束为第二波束中的一个波束;当第二小区为多波束小区时,通信装置900确定第三波束为第二波束;
如果第二小区还属于至少一个其他小区组,且第二波束仅包括一个波束,且每个其他小区组均分别对应一个波束,则通信装置900确定第三波束由第二波束和每个其他小区组分别对应的波束组成。
一种可能的实现方式中,如果第二小区还属于至少一个其他小区组,且第二波束仅包括一个波束,且每个其他小区组均分别对应一个波束,则通信装置900确定第三波束由第二波束和每个其他小区组分别对应的波束组成具体包括:
如果第二小区还属于至少一个其他小区组,且第二波束仅包括一个波束,且每个其他小区组均分别对应一个波束,则根据第一小区组和每个其他小区组在小区分组信息中的分组顺序,将第一小区组和其他小区组中的第i个小区组对应的波束,作为通信装置900确定第三波束中的第i个波束,其中i为大于0的整数。
一种可能的实现方式中,配置信息还用于配置小区或小区组满足约束规则中的一种,约束规则包括:
每个小区组中的小区仅属于单个小区组;
当小区组中存在多个属于多个小区组的小区,则第一小区为属于多个小区组的小区;
当小区组中存在多个属于多个小区组的小区,则多个属于多个小区组的小区均属于相同的小区组;
多个属于多个小区组的小区所属的小区组完全不同。
下面通过图10示出终端设备的一种可能的结构示意图。
图10示出了一种简化的终端设备的结构示意图。为了便于理解和图示方式,图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器、存储器、射频电路、天线及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。
存储器主要用于存储软件程序和数据。
射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。
天线主要用于收发电磁波形式的射频信号。
输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图10所示,终端设备包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1010用于执行上述方法实施例中终端设备的发送操作和接收操作,处理单元1020用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
当该终端设备为芯片时,该芯片包括收发单元和处理单元。其中,该收发单元可以是输入输出电路或通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路或者逻辑电路。
本申请还提供一种通信装置,请参阅图11,本申请实施例通信装置的另一个结构示意图。通信装置可以用于执行图7所示的实施例中网络设备执行的步骤,可以参考上述方法实施例中的相关描述。
通信装置包括处理器1101。可选的,通信装置还包括存储器1102和收发器1103。
一种可能的实现方式中,该处理器1101、存储器1102和收发器1103分别通过总线相连,该存储器中存储有计算机指令。
前述实施例中的处理模块902具体可以是本实施例中的处理器1101,因此该处理器1101的具体实现不再赘述。前述实施例中的收发模块901则具体可以是本实施例中的收发器1103,因此收发器1103的具体实现不再赘述。
本申请实施例还提供了一种通信系统,该通信系统包括终端设备和网络设备。终端设备用于执行上述图7所示的实施例中终端设备执行的全部或部分步骤。网络设备用于执行图7所示的实施例中网络设备执行的全部或部分步骤。
本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如上述图7所示的实施例的通信方法。
本申请实施例还涉及一种计算机可读存储介质,包括计算机可读存储介质存储有计算机程序或指令,计算机程序或指令在由一个或多个计算机执行时,实现如图7所示实施例的方法步骤。
本申请实施例还涉及一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如图7所示实施例的方法步骤。
本申请实施例还涉及一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述图7所示的实施例的方法。本申请实施例还涉及一种通信系统,该系统包括上述各方面的终端设备和网络设备。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)存储器、闪存、只读存储器(read-only memory,ROM)存储器、可擦可编程只读存储器(erasable programmable read-only memory,EPROM)存储器、电可擦编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)存储器、寄存器、硬盘、移动硬盘、只读光盘存储器(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuit,ASIC)中。另外,该ASIC可以位于终端中。当然,处理器和存储介质也可以作为分立组件存在于第一通信装置中。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通
过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
Claims (20)
- 一种小区波束指示方法,其特征在于,包括:终端设备接收网络设备发送的配置信息,其中,所述配置信息用于配置至少一个小区组,每个所述小区组中包括第一小区和第二小区;所述终端设备根据第一波束确定第二波束,其中,所述第一波束为第一小区组中的第一小区指示的波束,所述第二波束为第一小区组对应的波束,所述第一小区组里包括至少一个多波束小区;所述终端设备根据所述第二波束确定第三波束,其中,所述第三波束为所述第一小区组中的第二小区对应波束。
- 根据权利要求1所述的方法,其特征在于,所述终端设备根据第一波束确定第二波束,具体包括以下一项或多项:如果所述第一波束仅包括一个波束,则所述终端设备确定第二波束为所述第一波束;如果所述第一小区属于M个小区组,且所述第一波束包括M个波束,则所述终端设备确定第二波束为所述M个波束中的一个波束,其中M为大于1的整数;如果所述第一小区仅属于所述第一小区组,且所述第一波束包括N个波束,其中N为大于1的整数,则所述终端设备确定第二波束为所述第一波束;如果所述第一小区仅属于所述第一小区组,且所述第一波束包括N个波束,则当第一条件满足时,所述终端设备确定第二波束为所述N个波束中的一个波束;其中,所述第一条件包括:所述第一小区组中包括至少一个单波束小区,和/或,所述第一小区组中包括还属于其他小区组的小区。
- 根据权利要求2所述的方法,其特征在于,如果所述第一小区属于M个小区组,所述第一波束包括M个波束,则所述终端设备确定第二波束为所述M个波束中的一个波束具体包括:如果所述第一小区属于M个小区组,所述第一波束包括M个波束,且所述第一小区组为所述第一小区所属的M个小区组中的第i个小区组,则所述终端设备确定第二波束为所述M个波束中的第i个波束,其中i为大于0且不大于N的整数。
- 根据权利要求2所述的方法,其特征在于,如果所述第一小区仅属于所述第一小区组,且所述第一波束包括N个波束,则当第一条件满足时,所述终端设备确定第二波束为所述N个波束中的一个波束具体包括:如果所述第一小区仅属于所述第一小区组,且所述第一波束包括N个波束,则所述终端设备确定第二波束为所述N个波束中的第一个波束。
- 根据权利要求1至4中任意一项所述的方法,其特征在于,所述终端设备根据所述第二波束确定第三波束,具体包括以下一项或多项:如果所述第二小区仅属于所述第一小区组,且所述第二波束仅包括一个波束,则所述终端设备确定第三波束为所述第二波束;如果所述第二小区仅属于所述第一小区组,且所述第二波束包括N个波束,其中N为大于1的整数,则:所述终端设备确定第三波束为所述第二波束中的一个波束,或,所述终端设备确定第三波束为所述第二波束,或,当所述第二小区为单波束小区时,所述终端设备确定第三波束为所述第二波束中的一个波束;当所述第二小区为多波束小区时,所述终端设备确定第三波束为所述第二波束;如果所述第二小区还属于至少一个其他小区组,且所述第二波束仅包括一个波束,且每个所述其他小区组均分别对应一个波束,则所述终端设备确定第三波束由所述第二波束和每个所述其他小区组分别对应的波束组成。
- 根据权利要求5所述的方法,其特征在于,如果所述第二小区还属于至少一个其他小区组,且所述第二波束仅包括一个波束,且每个所述其他小区组均分别对应一个波束,则所述终端设备确定第三波束由所述第二波束和每个所述其他小区组分别对应的波束组成具体包括:如果所述第二小区还属于至少一个其他小区组,且所述第二波束仅包括一个波束,且每个所述其他小区组均分别对应一个波束,则根据所述第一小区组和每个所述其他小区组在所述小区分组信息中的分组顺序,将所述第一小区组和所述其他小区组中的第i个小区组对应的波束,作为所述终端设备确定第三波束中的第i个波束,其中i为大于0的整数。
- 根据权利要求1至6中任一项所述的方法,其特征在于,所述配置信息还用于配置所述小区或小区组满足约束规则中的一种,所述约束规则包括:每个所述小区组中的小区仅属于单个小区组;当所述小区组中存在多个属于多个小区组的小区,则所述第一小区为所述属于多个小区组的小区;当所述小区组中存在多个属于多个小区组的小区,则所述多个属于多个小区组的小区均属于相同的小区组;多个属于多个小区组的小区所属的小区组完全不同。
- 根据权利要求1至7中任一项所述的方法,其特征在于,在所述终端设备根据所述第二波束确定第三波束之后,还包括:所述终端设备根据所述第三波束确定目标波束;所述终端设备采用所述目标波束与所述网络设备传输数据。
- 一种小区波束指示方法,其特征在于,包括:网络设备向终端设备发送配置信息,其中,所述配置信息用于配置至少一个小区组,每个所述小区组中包括第一小区和第二小区;所述网络设备通过第一小区组中的第一小区向终端设备指示第一波束,其中,所述第一波束用于所述终端设备确定所述第一小区组对应的第二波束,所述第二波束用于所述终端设备确定所述第一小区组中的第二小区对应的第三波束,其中,所述第一小区组里包括至少一个多波束小区;所述网络设备根据所述第一波束确定所述第二波束;所述网络设备根据所述第二波束确定所述第三波束。
- 根据权利要求9所述的方法,其特征在于,所述网络设备根据所述第一波束确定所述第二波束,具体包括以下一项或多项:如果所述第一波束仅包括一个波束,则所述网络设备确定所述第二波束为所述一个第一波束;如果所述第一小区属于M个小区组,且所述第一波束包括M个波束,其中M为大于1的整数,则所述网络设备确定所述第二波束为所述M个波束中的一个波束;如果所述第一小区仅属于所述第一小区组,且所述第一波束包括N个波束,则所述网络设备确定所述第二波束为所述第一波束;如果所述第一小区仅属于所述第一小区组,且所述第一波束包括N个波束,则当第一条件满足时,所述网络设备确定所述第二波束为所述N个波束中的一个波束;其中,所述第一条件包括:所述第一小区组中包括至少一个单波束小区,和/或,所述第一小区组中包括还属于其他小区组的小区。
- 根据权利要求10所述的方法,其特征在于,如果所述第一小区属于M个小区组,所述第一波束包括M个波束,则所述网络设备确定所述第二波束为所述M个波束中的一个波束具体包括:如果所述第一小区属于M个小区组,所述第一波束包括M个波束,且所述第一小区组为所述第一小区所属的M个小区组中的第i个小区组,则所述网络设备确定所述第二波束为所述M个波束中的第i个波束,其中i为大于0且不大于N的整数。
- 根据权利要求10所述的方法,其特征在于,如果所述第一小区仅属于所述第一小区组,且所述第一波束包括N个波束,则当第一条件满足时,所述网络设备确定所述第二波束为所述N个波束中的一个波束具体包括:如果所述第一小区仅属于所述第一小区组,且所述第一波束包括N个波束,则当第一条件满足时,所述网络设备确定所述第二波束为所述N个波束中的第一个波束。
- 根据权利要求9至12中任意一项所述的方法,其特征在于,所述网络设备根据所述第二波束确定所述第三波束,具体包括以下一项或多项:如果所述第二小区仅属于所述第一小区组,且所述第二波束仅包括一个波束,则所述网络设备确定所述第三波束为所述第二波束;如果所述第二小区仅属于所述第一小区组,且所述第二波束包括N个波束,其中N为大于1的整数,则:所述网络设备确定所述第三波束为所述第二波束中的一个波束,或,所述网络设备确定所述第三波束为所述第二波束,或,当所述第二小区为单波束小区时,所述网络设备确定所述第三波束为所述第二波束中的一个波束;当所述第二小区为多波束小区时,所述网络设备确定所述第三波束为所述第二波束;如果所述第二小区还属于至少一个其他小区组,且所述第二波束仅包括一个波束,且每个所述其他小区组均分别对应一个波束,则所述网络设备确定所述第三波束由所述第二波束和每个所述其他小区组分别对应的波束组成。
- 根据权利要求13所述的方法,其特征在于,如果所述第二小区还属于至少一个其他小区组,且所述第二波束仅包括一个波束,且每个所述其他小区组均分别对应一个波束,则所述网络设备确定所述第三波束由所述第二波束和每个所述其他小区组分别对应的波束组成具体包括:如果所述第二小区还属于至少一个其他小区组,且所述第二波束仅包括一个波束,且每个所述其他小区组均分别对应一个波束,则根据所述第一小区组和每个所述其他小区组在所述小区分组信息中的分组顺序,将所述第一小区组和所述其他小区组中的第i个小区组对应的波束,作为所述网络设备确定第三波束中的第i个波束,其中i为大于0的整数。
- 根据权利要求9至14中任一项所述的方法,其特征在于,所述配置信息还用于配置所述小区或小区组满足约束规则中的一种,所述约束规则包括:每个所述小区组中的小区仅属于单个小区组;当所述小区组中存在多个属于多个小区组的小区,则所述第一小区为所述属于多个小区组的小区;当所述小区组中存在多个属于多个小区组的小区,则所述多个属于多个小区组的小区均属于相同的小区组;多个属于多个小区组的小区所属的小区组完全不同。
- 一种终端设备,其特征在于,包括:收发模块,用于接收网络设备发送的配置信息,其中,所述配置信息用于配置至少一个小区组,每个所述小区组中包括第一小区和第二小区;处理模块,用于根据第一波束确定第二波束,其中,所述第一波束为第一小区组中的第一小区指示的波束,所述第二波束为第一小区组对应的波束,所述第一小区组里包括至少一个多波束小区;还用于根据所述第二波束确定第三波束,其中,所述第三波束为所述第一小区组中的第二小区对应波束。
- 一种网路设备,其特征在于,包括:收发模块,用于向终端设备发送配置信息,其中,所述配置信息用于配置至少一个小区组,每个所述小区组中包括第一小区和第二小区;处理模块,用于通过第一小区组中的第一小区向终端设备指示第一波束,其中,所述第一波束用于所述终端设备确定所述第一小区组对应的第二波束,所述第二波束用于所述终端设备确定所述第一小区组中的第二小区对应的第三波束,其中,所述第一小区组里包括至少一个多波束小区;还用于根据所述第一波束确定所述第二波束;还用于根据所述第二波束确定所述第三波束。
- 一种通信装置,其特征在于,所述通信装置包括收发模块和处理模块;所述收发模块用于执行如权利要求1至8或9至15中任一项所述的收发操作,所述处理模块用于执行如权利要求1至8或9至15中任一项所述的处理操作。
- 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器用于执行存储器中的计算机程序或计算机指令,以实现如权利要求1至8或9至15中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,所述计算机程序或指令在由一个或多个计算机执行时使得所述一个或多个计算机实施权利要求1至8或9至15中任一所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210463344.0 | 2022-04-28 | ||
CN202210463344.0A CN117042132A (zh) | 2022-04-28 | 2022-04-28 | 一种小区波束指示方法及其相关设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023208101A1 true WO2023208101A1 (zh) | 2023-11-02 |
Family
ID=88517848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/091105 WO2023208101A1 (zh) | 2022-04-28 | 2023-04-27 | 一种小区波束指示方法及其相关设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117042132A (zh) |
WO (1) | WO2023208101A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3404845A1 (en) * | 2017-05-17 | 2018-11-21 | IPCom GmbH & Co. KG | Beam steering optimization |
CN114337755A (zh) * | 2020-09-30 | 2022-04-12 | 维沃移动通信有限公司 | 波束信息指示、获取方法、装置、终端及网络侧设备 |
CN114337757A (zh) * | 2020-09-30 | 2022-04-12 | 维沃移动通信有限公司 | 波束信息指示、获取方法、装置、终端及网络侧设备 |
WO2022077485A1 (en) * | 2020-10-16 | 2022-04-21 | JRD Communication (Shenzhen) Ltd. | User equipment, base station, and method of common beam determination |
-
2022
- 2022-04-28 CN CN202210463344.0A patent/CN117042132A/zh active Pending
-
2023
- 2023-04-27 WO PCT/CN2023/091105 patent/WO2023208101A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3404845A1 (en) * | 2017-05-17 | 2018-11-21 | IPCom GmbH & Co. KG | Beam steering optimization |
CN114337755A (zh) * | 2020-09-30 | 2022-04-12 | 维沃移动通信有限公司 | 波束信息指示、获取方法、装置、终端及网络侧设备 |
CN114337757A (zh) * | 2020-09-30 | 2022-04-12 | 维沃移动通信有限公司 | 波束信息指示、获取方法、装置、终端及网络侧设备 |
WO2022077485A1 (en) * | 2020-10-16 | 2022-04-21 | JRD Communication (Shenzhen) Ltd. | User equipment, base station, and method of common beam determination |
Non-Patent Citations (2)
Title |
---|
QUALCOMM INCORPORATED: "Discussion on L1/L2 Mobility", 3GPP DRAFT; R2-2103079, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052174591 * |
ZTE: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-2110948, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 6 November 2021 (2021-11-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052074681 * |
Also Published As
Publication number | Publication date |
---|---|
CN117042132A (zh) | 2023-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110036617B (zh) | 通信方法、装置、网络设备及终端 | |
US20200067663A1 (en) | Data transmission method, terminal device, and network device | |
WO2021062709A1 (zh) | 数据传输的方法和装置 | |
CN108024365A (zh) | 一种信息传输方法及设备 | |
WO2020143732A1 (zh) | 发送和接收反馈信道的方法以及装置 | |
WO2021027387A1 (zh) | 能力信息的上报方法及终端 | |
US20220286251A1 (en) | Method for transmitting srs and terminal therefor | |
CN113825229A (zh) | 传输配置指示状态TCI state切换的方法和装置 | |
WO2023011195A1 (zh) | 一种通信方法及通信装置 | |
WO2021000688A1 (zh) | 一种发送、接收能力信息的方法及设备 | |
WO2022227033A1 (zh) | 无线通信方法、终端设备和网络设备 | |
US20240007250A1 (en) | Wireless communication method, terminal device, and network device | |
US20230140502A1 (en) | Beam indication method and communications apparatus | |
US20220312441A1 (en) | Reference signal transmission method, apparatus, and system | |
WO2022268129A1 (zh) | 一种通信方法及装置 | |
JP2024537769A (ja) | 信号送信方法、信号受信方法及び通信機器 | |
WO2022116966A1 (zh) | 一种通信方法及装置 | |
WO2023208101A1 (zh) | 一种小区波束指示方法及其相关设备 | |
WO2022116967A1 (zh) | 一种通信方法及装置 | |
WO2021008422A1 (zh) | 一种通信方法、通信装置、终端设备及网络设备 | |
WO2020221215A1 (zh) | 一种发送、接收csi、配置资源的方法及设备 | |
WO2021088063A1 (zh) | 一种通信方法及装置 | |
CN116686340A (zh) | 一种通信方法和装置 | |
CN113382425B (zh) | 一种通信方法及装置 | |
US12137398B2 (en) | Feedback channel sending method and apparatus, and feedback channel receiving method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23795533 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023795533 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023795533 Country of ref document: EP Effective date: 20240923 |