WO2023207182A1 - 对角耙地路径规划方法、电子设备和计算机可读存储介质 - Google Patents
对角耙地路径规划方法、电子设备和计算机可读存储介质 Download PDFInfo
- Publication number
- WO2023207182A1 WO2023207182A1 PCT/CN2022/142399 CN2022142399W WO2023207182A1 WO 2023207182 A1 WO2023207182 A1 WO 2023207182A1 CN 2022142399 W CN2022142399 W CN 2022142399W WO 2023207182 A1 WO2023207182 A1 WO 2023207182A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diagonal
- operating
- path
- baseline
- boundary
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000003860 storage Methods 0.000 title claims abstract description 17
- 230000007704 transition Effects 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000002689 soil Substances 0.000 description 5
- 230000001788 irregular Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0253—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting relative motion information from a plurality of images taken successively, e.g. visual odometry, optical flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0285—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using signals transmitted via a public communication network, e.g. GSM network
Definitions
- the invention relates to the technical field of path planning, and in particular to a diagonal rake path planning method, electronic equipment and computer-readable storage media.
- Rake operation is a common type of operation in agricultural production activities. It generally refers to the full coverage of the field by mounting a rake behind the tractor to make the topsoil of the field loose and flat to facilitate subsequent sowing, moisture conservation and other operations. .
- raking operations include straight raking, diagonal raking, etc.
- straight-line harrowing is a harrowing method similar to traditional cattle plowing. It starts from one end of the field, works along the edge or furrow to the other end of the field, and then turns around to start the next line of work, back and forth until Homework completed.
- the diagonal rake operation path is more complicated.
- the purpose of the present invention is to propose a diagonal rake path planning method, electronic equipment and computer-readable storage medium, which can automatically plan the optimal diagonal rake path and significantly improve the rake operation coverage and operation efficiency.
- an embodiment of the present invention proposes a diagonal rake path planning method, which includes:
- the plurality of operating reference lines are connected according to a preset operating sequence, thereby obtaining a diagonal rake path of the agricultural machine.
- adjusting the boundary of the closed area to obtain the inner boundary of the path includes the following steps:
- the outer boundary of the path is shrunk inward by a second distance to obtain the inner boundary of the path.
- the diagonal rake path is located within the outer boundary of the path.
- connecting multiple said operating baselines according to a preset operating sequence includes the following steps:
- next searched operation baseline as the current operation baseline, continue to search for the next operation baseline that satisfies the constraint conditions, and combine the two operation baselines through the transition curve. Make a connection;
- constraints on the job sequence include:
- the current operating baseline and the next operating baseline are not parallel;
- the distance between the endpoint of the current working baseline and the endpoint of the next working baseline is greater than the turning radius of the agricultural machine and smaller than the set maximum search range;
- the radius of the transition curve is not less than the turning radius of the agricultural machine
- the transition curve is located within the outer boundary of the path
- the length of the transition curve is the shortest.
- generating multiple operating baselines includes the following steps:
- the second operating reference line is horizontally translated according to a second set step, thereby obtaining a plurality of second operating reference lines.
- the first generated second operating reference line passes through the center of the closed area.
- first setting step size and the second setting step size are both equal to the working width of the agricultural machine.
- generating a closed area according to the field includes the following steps:
- the closed area formed by connecting the plurality of boundary points is generated in a plane coordinate system.
- An embodiment of the present invention also provides an electronic device.
- the electronic device includes a processor and a memory.
- the memory is used to store multiple program instructions.
- the processor calls the program instructions, the diagonal configuration as described above is implemented. Harrow path planning method.
- Embodiments of the present invention also provide a computer-readable storage medium that stores a plurality of program instructions, and the plurality of program instructions are suitable for being loaded by a processor and executing the diagonal rake path as described above. planning methods.
- the diagonal rake path planning method of the present invention can automatically plan a feasible diagonal rake path for the field.
- the agricultural machinery can operate along the diagonal rake path throughout the entire process without manual intervention, so it can effectively improve the operating efficiency of the agricultural machinery. , and also facilitates unmanned diagonal raking operations.
- the method of the present invention performs path planning according to the preset operation sequence.
- the diagonal rake path thus obtained can achieve the highest field coverage and the shortest agricultural machinery driving path. Therefore, it can maximize the utilization of the field and reduce The occurrence of missing rake can also improve the efficiency of diagonal rake operations.
- the method of the present invention is based on various relevant information of agricultural machinery in terms of driving, operation, safety, etc., and plans an optimal diagonal rake path for the field while ensuring the safety of the operation, so it can improve the efficiency of diagonal rake. feasibility and safety of operations.
- the method of the present invention is not limited by usage scenarios and is not only applicable to regular-shaped fields, but also to irregular-shaped fields, so it can meet the requirements of actual raking operations.
- the intersecting first operating baseline and the second operating baseline are first generated in the inner boundary of the path, and then the first operating baseline and the second operating baseline are connected through a transition curve located in the outer boundary of the path.
- the lines are connected in sequence, so that not only can the diagonal rake path be quickly generated, but also the path of the agricultural machinery can always be located within the outer boundary of the path, ensuring the safety of the operation of the agricultural machinery.
- the method of the present invention obtains multiple first operating baselines and second operating baselines through translation, so that the distance between the first operating baselines is the same, and the distance between the second operating baselines is the same. The distance between them is the same, which can make the distribution of the working baseline even and facilitate the connection of the working baseline.
- Figure 1 is a schematic diagram of the connection between electronic equipment and agricultural machinery provided by an embodiment of the present invention.
- Figure 2 is a flow chart of a diagonal rake path planning method provided by an embodiment of the present invention.
- Figure 3 is a flow chart for generating closed areas in Figure 2.
- Figure 4 is a flow chart for obtaining the inner boundary of the path in Figure 2.
- Figure 5 is a flow chart for generating multiple job baselines in Figure 2.
- FIG. 6 is a flowchart of connecting the work baseline according to the preset work sequence in FIG. 2 .
- Figure 7 is a schematic diagram of the boundary points in the plane coordinate system in the method according to the embodiment of the present invention.
- Figure 8 is a schematic diagram of the boundary of the closed area, the outer boundary of the path and the inner boundary of the path in the method of the embodiment of the present invention.
- FIG. 9 is a schematic diagram of the operating reference line within the inner boundary of the path shown in FIG. 8 .
- Figure 10 is a schematic diagram of the two operating reference lines in Figure 9 being connected through a transition curve.
- Figure 11 is a schematic diagram of a diagonal rake path formed by connecting the working reference lines in Figure 9.
- Figure 12 is a schematic diagram of a diagonal rake path planning device provided by an embodiment of the present invention.
- connection should be understood in a broad sense.
- connection or integral connection; it can be mechanical connection, electrical connection or mutual communication; it can be direct connection, or indirect connection through an intermediary, it can be internal connection of two elements or interaction of two elements relation.
- the unmanned diagonal rake operation method can automatically plan the path and automatically perform diagonal operations according to the planned path, so the operation can be more efficient and safer, and it is easier to improve the field coverage.
- the unmanned diagonal raking operation generally requires path planning in regular square fields (such as square fields, rectangular fields), and actual fields have different shapes.
- the usual method is to cut out rectangular areas in irregular fields. , abandon the non-rectangular area, and only perform path planning and operations within the rectangular area. Since the field cannot be fully utilized, the coverage rate of harrowing operations is reduced, so the best harrowing operation results cannot be achieved.
- the embodiment of the present invention proposes a diagonal rake path planning method, which solves the problem that the automatic diagonal rake operation of agricultural machinery is limited by the actual field and affects the rake operation effect, and can be used for fields of various shapes. Plan the optimal diagonal harrowing path to significantly improve harrowing coverage.
- the diagonal rake path planning method provided by the embodiment of the present invention can be applied to the electronic device 100 .
- the electronic device 100 can communicate with the agricultural machine 200 and thereby control the working status of the agricultural machine 200 .
- the electronic device 100 can automatically plan a diagonal rake path for the agricultural machine 200 through the diagonal rake path planning method of the embodiment of the present invention, and control the agricultural machine 200 to perform diagonal rake operations along the planned diagonal rake path. .
- the electronic device 100 can be a device with information processing, storage and communication functions, such as a computer, tablet or other terminal.
- the electronic device 100 can be combined with the agricultural machinery to form an agricultural machinery device.
- the present invention does not limit the installation location of the electronic device 100 .
- the electronic device 100 can be installed on the agricultural machine 200 and connected to the agricultural machine 200 through wired or wireless connections.
- the electronic device 100 can also be set at a remote end and connected to the agricultural machine 200 wirelessly.
- the agricultural machine 200 in the embodiment of the present invention refers to an agricultural rake that can rake the ground. It can be understood that the present invention does not limit the type of agricultural rake, for example, it may be a fuel tractor, an electric tractor or a hybrid tractor.
- the agricultural machine 200 is equipped with a rake 201 .
- the present invention does not limit the type of the rake 201.
- the rake 201 may be a disc harrow, a paddy rake and/or a nail rake.
- the present invention does not limit the configuration of the rake 201.
- the agricultural machine 200 can be assembled with a rake in a configuration such as single row rake, double row rake, offset rake and/or opposing rake.
- the appropriate rake 201 and the number of operations for the agricultural machine 200 can be selected according to the planting requirements of the crops (such as the required rake depth) and the soil conditions of the field (such as soil moisture and soil resistance).
- the agricultural machine 200 is also equipped with a positioner 202 .
- the locator 202 may be a vehicle-mounted positioning device, such as a RTK (Real-Time Kinematic) positioning device, a GPS positioning device or other types of positioning devices.
- the locator 202 can be used to set points at the boundary points of the field before actual operations, and can also locate the position of the agricultural machine 200 in the field in real time during actual diagonal raking operations.
- FIG. 2 shows a flow chart of a diagonal rake path planning method according to an embodiment of the present invention.
- the method includes the following steps:
- Step S21 Generate a closed area based on field information.
- the present invention is not limited to the shape of the field, and the field may be a regular quadrilateral, such as a square or a rectangle.
- the closed area is also a regular quadrilateral.
- fields can also be irregular polygons.
- the generated closed area is an irregular polygon.
- the field information may be latitude and longitude coordinate information of field boundary points.
- Step S21 may include the following steps:
- Step S31 Obtain the latitude and longitude coordinate information of multiple boundary points of the field.
- the boundary point of the field refers to the turning point on the boundary of the field.
- the field boundaries may be understood to be the boundaries of the diagonal raking areas of the field.
- the present invention does not limit the acquisition method of latitude and longitude coordinate information.
- the positioning device before path planning, can be moved around the boundary of the field. Whenever the positioning device passes a boundary point of the field, a point operation is performed, that is, the positioning device obtains the boundary. The latitude and longitude coordinate information of the point. This can avoid missing the corners of the field and obtain the longitude and latitude coordinate information of the field accurately and comprehensively.
- the positioning device can send the obtained longitude and latitude coordinate information to the electronic device 100 to facilitate the electronic device 100 to perform path planning for the agricultural machine 200.
- the positioning device can be a device with positioning and data transmission functions, such as an RTK positioning device or other positioning device that can obtain field information.
- the positioning device can be installed on the agricultural machine 200 to serve as the locator 202 of the agricultural machine 200 and drive the agricultural machine 200 to move by driving it.
- the agricultural machine 200 can rake the ground while plowing, to avoid missing plowing at the edges of the fields and improve the harrowing coverage and operating efficiency of the fields.
- the positioning device can also be installed on a drone, and the positioning device can be moved by flying the drone. In some other embodiments, the positioning device can also be moved by a person walking along the field while carrying the positioning device. The present invention is not limited to this.
- Step S32 Coordinate conversion is performed on the longitude and latitude coordinate information of each boundary point, so that the longitude and latitude coordinate system is converted into a plane coordinate system, thereby obtaining the plane coordinate information of each boundary point.
- the plane coordinate system may be the NEH plane coordinate system.
- the abscissa is the N direction, which is the north direction, corresponding to the positive direction of the X axis in the O-XYZ coordinate system
- the ordinate is the E direction, which is the east direction, corresponding to the O-XYZ coordinate system.
- Step S33 Mark multiple boundary points in the plane coordinate system according to the plane coordinate information of the boundary points (refer to Figure 7), and then connect the multiple boundary points in sequence to generate a closed area corresponding to the field (refer to Figure 7) 8).
- connection between the boundary points in the closed area is the boundary of the closed area, which can be equivalent to the boundary of the field.
- Two lines connected to the same boundary point form the interior corners of an enclosed area, making the shape of the enclosed area essentially consistent with the shape of the field. Therefore, the enclosed area represents the diagonal raking operation and size of the field.
- boundary points at a certain point in the plane coordinate system when the distribution of boundary points at a certain point in the plane coordinate system is too dense, the boundary points can also be appropriately deleted to simplify the shape of the closed area and improve the efficiency of generating the closed area.
- the field information may also include other information used to generate closed areas, such as high-definition satellite image information, to assist in generating more accurate closed areas.
- the present invention is not limited to this.
- Step S22 Adjust the boundary of the closed area to obtain the inner boundary of the path.
- step S22 may include the following steps:
- Step S41 Shrink the boundary of the closed area inward by a first distance to obtain the outer boundary of the path. See Figure 8 .
- Step S42 Shrink the outer boundary of the path inward by a second distance to obtain the inner boundary of the path. See Figure 8 .
- the diagonal harrowing path can be planned based on the outer boundary and the inner boundary of the path, so that the planned diagonal harrowing path does not exceed the outer boundary of the path. This prevents the planned diagonal harrowing path from exceeding the field.
- the boundaries make the planned diagonal harrowing path safer and more reasonable.
- the center of the agricultural machine 200 is usually used to represent the entire agricultural machine 200 .
- the agricultural machine 200 has a certain length and width, and is also loaded with a rake 201.
- the rake 201 also has a certain length and width.
- the agricultural machine 200 also has a certain turning radius when turning. Therefore, in order to ensure the feasibility and safety of the diagonal rake path, these relevant information of the agricultural machine 200 need to be considered when planning the path.
- L1 is the first distance
- a is the first distance factor
- W is the working width of the agricultural machine 200
- S is the set safety distance.
- L2 is the second distance
- b is the second distance factor
- R is the turning radius of the agricultural machine 200.
- the center of the agricultural machine 200 is usually aligned with the midpoint of the working width, and when planning the path, the center of the agricultural machine 200 is aligned with the midpoint of the working width.
- the center of represents the entire agricultural machine 200. Therefore, a margin of half the working width needs to be reserved when adjusting the boundary of the closed area. This can avoid that although the center of the agricultural machine 200 does not exceed the field boundary during path planning, nearly half of the agricultural machine's body exceeds the field boundary during actual operation. Not only does this situation present a safety risk, but a rake located outside the field boundary cannot operate effectively. Therefore, in the embodiment of the present invention, a*W is reserved for the first distance, where a can be set to 0.5.
- the working width W can be adaptively set according to the length and width of the actual agricultural machine 200, the length and width of the rake 201, the distance from the rake 201 to the rear of the vehicle, the offset distance of the rake 201, etc.
- S is reserved for the first distance in the embodiment of the present invention to prevent the body of the agricultural machine 200 or the rake 201 from exceeding the field boundary.
- the size of S can be set according to the actual situation, for example, it can be set to 0.5m.
- the turning trajectory of the agricultural machine 200 is an arc trajectory with a certain turning radius
- the arc trajectory requires more space than the straight trajectory.
- the distance from the center of the agricultural machine 200 to the arc trajectory is about 0.3 times longer than the distance from the center of the agricultural machine 200 to the straight trajectory. radius. Therefore, when adjusting the boundary of the closed area, a certain margin needs to be reserved for the turning operation to prevent the agricultural machine 200 from exceeding the boundary of the field when the agricultural machine 200 performs a turning operation. Therefore, in the embodiment of the present invention, b*R is reserved for the second distance, where b can be set to 0.3.
- the first distance refers to information related to the body size, operation and driving safety of the agricultural machine 200
- the second distance refers to information related to the turning operation of the agricultural machine 200
- Step S23 Generate multiple operating baselines. Please refer to Figure 9. Multiple operating baselines are located within the inner boundary of the path and are distributed in a diagonal grid pattern.
- step S23 specifically includes:
- Step S51 Taking the position of the agricultural machine 200 as the starting point, the agricultural machine 200 is located at an inner corner of the closed area, and then generates a first operating reference line within the inner boundary of the path along the angular bisector of the inner corner.
- Step S52 Within the inner boundary of the path, horizontally translate the first operating baseline according to the first set step, so that multiple first operating baselines can be quickly obtained.
- step S51 the direction of the angular bisector of the inner angle where the agricultural machine 200 is located is used as the generation direction of the first generated first working reference line in order to obtain the maximum number of first working reference lines through translation in step S52, so that Maximize work coverage in enclosed areas.
- Step S53 Generate a second operating reference line, which is perpendicular to the first generated first operating reference line.
- Step S54 Within the inner boundary of the path, horizontally translate the second operating baseline according to the second set step, so that multiple second operating baselines can be quickly obtained.
- the second operating reference line is not parallel to the first operating reference line, the second operating reference line can intersect with the first operating reference line, and the plurality of second operating reference lines and the plurality of first operating reference lines jointly form Diagonal grid.
- the first generated second operating baseline passes through the center of the enclosed area. This can ensure that the distribution of the second operating reference line generated in step S54 is more uniform and symmetrical, which facilitates the connection of subsequent operating reference lines and the formation of a more beautiful diagonal rake path.
- the first setting step size and the second setting step size are set equal to the working width of the agricultural machine 200 . This not only ensures that diagonal harrowing paths are achievable, but also avoids missed plowing due to excessive distance between the working baselines.
- the first setting step size and the second setting step size may also be set to several times the working width.
- Step S24 Connect multiple operating reference lines according to a preset operating sequence to obtain the diagonal rake path of the agricultural machine 200.
- the preset operation sequence is an optimal operation sequence.
- the preset operation sequence can maximize the operation coverage of the field and the shortest overall path.
- step S24 specifically includes:
- Step S61 Set constraints on the job sequence.
- Step S62 Use the operating baseline where the agricultural machine 200 is located as the current operating baseline, search for the next operating baseline that satisfies the constraint conditions, and connect the current operating baseline and the searched next operating baseline through a transition curve.
- Figure 10 other unconnected operating reference lines are omitted in Figure 10).
- Step S63 Use the searched next operating baseline as the current operating baseline, continue to search for the next operating baseline that satisfies the constraint conditions, and connect the two operating baselines through a transition curve.
- Step S64 By analogy, the remaining operating reference lines are connected in sequence, thereby obtaining a continuous diagonal rake path, please refer to Figure 11.
- the transition curve can be generated using Dubins algorithm. As shown in Figure 10, the transition curve can be regarded as consisting of two arc segments and a straight line segment. One of the arc segments is connected to the current operating baseline, and the other arc segment is connected to the next operating baseline. The two arc segments are connected by a straight line segment, so that the two operating baselines can be connected into one.
- the initial position of the agricultural machine 200 may be located at one of the end points of the first generated first operating reference line, as shown by the black triangle in FIGS. 9 to 11 .
- the end point is the starting point of the first operating reference line.
- the other end point of the first operating reference line is the end point of the first operating reference line.
- job order constraints may include:
- the current operating baseline and the next operating baseline are not parallel. That is, one of the current working baseline and the next working baseline is the first working baseline, and the other is the second working baseline.
- the maximum search range can be adaptively set according to the computing power and data storage space of the agricultural machine 200, which is not limited by the present invention.
- the radius of the transition curve is not less than the turning radius of the agricultural machine 200.
- the radii of the two arc segments in the transition curve are not less than the turning radius. This ensures that the agricultural machine 200 can travel smoothly along the transition curve and ensures that the actual path corresponding to the transition curve is achievable.
- the transition curve is located within the outer boundary of the path.
- the operation baseline is already located within the inner boundary of the path. Therefore, in order to prevent the generated path from exceeding the outer boundary of the path, the transition curve should also be located within the outer boundary of the path.
- the length of the transition curve is the shortest.
- an optimal operating baseline can be selected based on constraint (5).
- This operating baseline can minimize the connected path and minimize the distance between two connected operating baselines. This can not only improve the work efficiency, but also help increase the number of connections of the work baseline, that is, increase the density of connected work baselines in the field, thus helping to increase the diagonal harrow coverage.
- connection sequence of the operating reference lines determined according to the above constraints (1) to (5) is the optimal operating sequence, and the diagonal rake path formed by connecting all the operating reference lines in sequence is the one that can obtain the highest alignment.
- the diagonal rake path planning method of the present invention can automatically plan a feasible diagonal rake path in the field.
- the planned diagonal rake path can realize field operations.
- the coverage rate is the highest, and at the same time, the driving path of the agricultural machinery 200 can be the shortest. In this way, the safety, rationality and efficiency of diagonal harrowing path planning can be achieved.
- the method of the present invention is not limited by usage scenarios and can be applied to all types of fields.
- the agricultural machine 200 can be driven manually or automatically to the starting point of the diagonal rake path, and then drive along the diagonal rake path while performing rake operations until the agricultural machine 200 drives to the end of the diagonal rake path.
- the end point is the completion of a diagonal rake operation.
- the next operation can still be performed in the same manner. This can effectively improve the efficiency and coverage of diagonal raking and maximize the utilization of the field.
- FIG. 12 is a schematic structural diagram of a diagonal rake path planning device 10 disclosed in an embodiment of the present invention.
- the diagonal rake path planning device 10 may include a closed area generation module 11, a boundary adjustment module 12, an operation baseline generation module 13, and an operation baseline connection module 14.
- the closed area generation module 11 is used to generate a closed area based on field information.
- the boundary adjustment module 12 is used to adjust the boundary of the closed area to obtain the inner boundary of the path.
- the operation baseline generation module 13 is used to generate multiple operation baselines, and the multiple operation baselines are distributed in a diagonal grid shape within the inner boundary of the path.
- the work reference line connection module 14 is used to connect multiple work reference lines according to a preset work order, thereby obtaining the diagonal rake path of the agricultural machine 200 .
- the boundary adjustment module 12 may further include a first boundary adjustment module and a second boundary adjustment module.
- the first boundary adjustment module is used to shrink the boundary of the closed area inward by a first distance, thereby obtaining the outer boundary of the path.
- the first distance may be set to the working width of the agricultural machine 200 or several other times of the working width.
- the second boundary adjustment module is used to shrink the outer boundary of the path inward by a second distance, thereby obtaining the inner boundary of the path.
- the second distance may be set to the working width of the agricultural machine 200 or several other times of the working width.
- the operation baseline generation module 13 may further include a first operation baseline generation module and a second operation baseline generation module.
- the first operating baseline generation module is used to take the location of the agricultural machine 200 as a starting point.
- the agricultural machinery is located at an internal corner of the closed area, and then generates a first operating baseline in the direction of the angle bisector of the internal corner, and then generates a first operating baseline within the path.
- the first operating baseline is horizontally translated according to the first set step, thereby obtaining multiple first operating baselines.
- the second operating baseline generation module is used to generate a second operating baseline that is perpendicular to the first generated first operating baseline and passes through the center of the closed area, and then within the inner boundary of the path, generate the second operating baseline according to The second set step size performs horizontal translation, thereby obtaining multiple second operating baselines.
- the job baseline connection module 14 may further include a constraint setting module, a search module and a sequence connection module.
- the constraint setting module is used to set the constraints of the job sequence.
- the constraints on the operation sequence can be found in the above diagonal rake path planning method, and will not be repeated here.
- the search module is used to use the operating baseline where the agricultural machine 200 is located as the current operating baseline, search for the next operating baseline that satisfies the constraint conditions, and then use the searched next operating baseline as the current operating baseline to continue the search that satisfies the constraints.
- the next operation baseline according to the condition, and so on, to find the order of the remaining operation baselines.
- the sequential connection module is used to connect the current operation baseline and the searched next operation baseline through the transition curve after each search module searches for the next operation baseline that satisfies the constraint conditions, thereby obtaining a continuous pair. Corner rake path.
- the sequential connection module is used to generate transition curves using Dubins algorithm.
- the above-mentioned division of various modules in the diagonal harrowing path planning device 10 is only for illustration. In other embodiments, the diagonal harrowing path planning device 10 can be divided into different modules as needed. , to complete all or part of the functions of the above-mentioned diagonal rake path planning device 10.
- each module in the embodiment of the present invention may also correspond to the corresponding descriptions of the method embodiments shown in FIGS. 2 to 6 .
- the diagonal rake path planning device 10 described in Figure 12 can automatically plan the optimal diagonal rake path for the field to be operated where the agricultural machine 200 is located.
- the diagonal rake path planning device 10 described in Figure 12 can automatically plan the optimal diagonal rake path for the field to be operated where the agricultural machine 200 is located.
- FIG. 1 is a schematic structural diagram of an electronic device 100 according to an embodiment of the present invention.
- An embodiment of the present invention provides an electronic device 100.
- the electronic device 100 may include the above-mentioned diagonal rake path planning device 10.
- the diagonal rake path planning device 10 please refer to the embodiments shown in Figures 2 to 6. The specific description will not be repeated here.
- the electronic device 100 may include a processor 101 , a communication interface 102 and a memory 103 .
- the processor 101, the communication interface 102 and the memory 103 can be connected through a communication bus and communicate with each other.
- the processor 101 may be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program above.
- CPU central processing unit
- ASIC application-specific integrated circuit
- the communication interface 102 is used to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc.
- the communication interface 102 can communicate with the agricultural machine 200, for example, can receive the latitude and longitude coordinate information obtained by the locator 202 from the agricultural machine 200, and send control instructions to the agricultural machine to control the diagonal raking operation of the agricultural machine.
- the communication interface 102 can also communicate with the terminal, for example, it can receive relevant information about the agricultural machine 200, crops and soil from the terminal, and transmit the longitude and latitude coordinate information to the terminal, and/or transmit the plane coordinate information generated by processing by the processor 101, and/or Corner rake path.
- the terminal can be a mobile phone, a tablet, a computer, a drone and/or a remote control device, etc.
- the relevant information of the agricultural machine 200 may include the actual length and width of the agricultural machine 200, working width, turning radius, length and width of the rake 201, the distance from the rake 201 to the rear of the vehicle, and the offset distance of the rake 201.
- Crop-related information may include crop cultivation requirements.
- Information about the field may include soil conditions of the field.
- the memory 103 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions. Dynamic storage device, it can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disk storage, optical disk storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
- the memory 103 may exist independently and be connected to the processor 101 through a bus.
- the memory 103 may also be integrated with the processor 101.
- the memory 103 can be used to store information received from the agricultural machine 200 and the terminal and information generated by the processor 101.
- the memory 103 can also be used to store program instructions for executing the above solutions, and the execution is controlled by the processor 101.
- the processor 101 is used to execute program instructions stored in the memory 103 .
- the program instructions stored in the memory 103 can execute part or all of the steps of the diagonal rake path planning method described in FIGS. 2 to 6 .
- An embodiment of the present invention also provides a computer-readable storage medium.
- Program instructions are stored in the computer-readable storage medium.
- the computing device executes the diagonal rake path planning method provided by the foregoing embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Soil Working Implements (AREA)
Abstract
一种对角耙地路径规划方法、电子设备和计算机可读存储介质,其中对角耙地规划方法包括先根据田地信息生成封闭区域(S21),然后调整封闭区域的边界、以获得路径内边界(S22),接着在路径内边界内生成呈斜线网格状分布的多条作业基准线(S23),最后将多条作业基准线按照预设的作业顺序进行连接,从而得到农机的对角耙地路径(S24)。对角耙地路径规划方法可以为田地自动规划最优的对角耙地路径,使耙地作业覆盖率和作业效率显著提高。
Description
本申请要求于2022年04月29日提交中国专利局、申请号为202210475977.3、发明名称为“对角耙地路径规划方法、电子设备和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及路径规划技术领域,具体涉及一种对角耙地路径规划方法、电子设备和计算机可读存储介质。
耙地作业是农业生产活动中的一种常见作业类型,一般指的是通过在拖拉机后挂载耙具,对田地进行全覆盖作业,使田地表土疏松、平整,方便后续的播种、保墒等作业。按作业路径的类型划分,耙地作业有直线耙地、对角耙地等。其中,直线耙地是与传统牛耕式作业类似的耙地方式,从田地的一端开始,沿着田边或犁沟作业至田地的另一端,之后再掉头进行下一行的作业,来回往复直至作业完成。对角耙地作业路径较为复杂,通常是从田的一角开始,沿着对角线作业到田地边界,然后再转弯90度继续作业,直至整个田地的所有区域都有一组交叉的作业路径经过。因为对角耙地作业不需要掉头,所以对角耙地作业方式更加高效,同时作业效果更好。
随着智慧农业的发展,目前已出现了无人驾驶对角耙地作业方式。其中,自动规划农机的作业路径是实现无人驾驶对角耙地作业的关键技术。但目前的对角耙地路径规划是在规则四边形田地上进行规划,而实际的田地又多是不规则形状,因此,这样的对角耙地路径规划方式容易受到实际田块的限制,难以达到理想的耙地作业效果。
发明内容
本发明的目的在于提出一种对角耙地路径规划方法、电子设备和计算机可 读存储介质,可自动规划最优的对角耙地路径,使耙地作业覆盖率和作业效率显著提高。
为实现上述目的,本发明实施例提出一种对角耙地路径规划方法,包括:
根据田地信息生成封闭区域;
调整所述封闭区域的边界,以获得路径内边界;
生成多条作业基准线,其中,所述多条作业基准线在所述路径内边界内呈斜线网格状分布;
将所述多条作业基准线按照预设的作业顺序进行连接,从而得到农机的对角耙地路径。
优选地,调整所述封闭区域的边界,以获得路径内边界,包括以下步骤:
将所述封闭区域的边界向内收缩第一距离,从而获得路径外边界;
将所述路径外边界向内收缩第二距离,从而获得所述路径内边界。
更进一步地,所述对角耙地路径位于所述路径外边界内。
更进一步地,所述第一距离为L1=a*W+S,其中,L1为所述第一距离,a为第一距离因子,W为所述农机的作业宽度,S为设定的安全距离;
所述第二距离为L2=b*R,其中,L2为所述第二距离,b为第二距离因子,R为所述农机的转弯半径。
更进一步地,a=0.5,b=0.3。
更进一步地,将多条所述作业基准线按照预设的作业顺序进行连接,包括以下步骤:
设定所述作业顺序的约束条件;
以所述农机所在的所述作业基准线作为当前所述作业基准线,搜索满足所述约束条件的下一所述作业基准线,并通过过渡曲线将当前所述作业基准线和搜索到的下一所述作业基准线进行连接;
以搜索到的下一所述作业基准线作为当前所述作业基准线,继续搜索满足所述约束条件的再下一条所述作业基准线,并通过所述过渡曲线将两条所述作业基准线进行连接;
以此类推,依次将剩余的所述作业基准线进行连接。
更进一步地,所述作业顺序的约束条件包括:
当前所述作业基准线和下一所述作业基准线不平行;
当前所述作业基准线的端点和下一所述作业基准线的端点之间的距离大于所述农机的转弯半径,且小于设定的最大搜索范围;
所述过渡曲线的半径不小于所述农机的转弯半径;
所述过渡曲线位于所述路径外边界内;
所述过渡曲线长度最短。
优选地,生成多条作业基准线,包括如下步骤:
以所述农机位置为起点,其中,所述农机位于所述封闭区域的一内角处,然后沿着所述内角的角平分线方向生成一第一作业基准线;
在所述路径内边界内,将所述第一作业基准线按照第一设定步长进行水平平移,从而得到多条所述第一作业基准线;
生成一第二作业基准线,所述第二作业基准线与最先生成的所述第一作业基准线相垂直;
在所述路径内边界内,将所述第二作业基准线按照第二设定步长进行水平平移,从而得到多条所述第二作业基准线。
更进一步地,最先生成的所述第二作业基准线经过所述封闭区域的中心。
更进一步地,所述第一设定步长和所述第二设定步长均等于所述农机的作业宽度。
优选地,根据田地生成封闭区域,包括以下步骤:
获得所述田地的多个边界点的经纬度坐标信息;
将每个所述边界点的所述经纬度坐标信息进行坐标转换,从而获得每个所述边界点的平面坐标信息;
根据多个所述边界点的所述平面坐标信息,在平面坐标系中生成由多个所述边界点相连而成的所述封闭区域。
本发明实施例还提出一种电子设备,所述电子设备包括处理器和存储器,所述存储器用于存储多条程序指令,所述处理器调用所述程序指令时,实现如上所述的对角耙地路径规划方法。
本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质存储多条程序指令,所述多条程序指令适于由处理器加载并执行如上所述的对角耙地路径规划方法。
本发明实施例至少具有以下有益效果:
1、本发明对角耙地路径规划方法可为田地自动规划出一条可行的对角耙地路径,农机全程可沿着对角耙地路径作业,无需人工干预,因此可以有效提高农机的作业效率,而且也便于实现无人驾驶对角耙地作业。
2、本发明方法是按照预设的作业顺序进行路径规划,由此获得的对角耙地路径可使田块作业覆盖率最高且农机行驶路径最短,因此既可实现田地的最大化利用,减少漏耙的发生,又可以提高对角耙地作业的效率。
3、本发明方法是基于农机在行驶、作业、安全等方面的多种相关信息,在确保作业安全的前提下为田地规划出一条最优的对角耙地路径,因此可以提高对角耙地作业的可行性和安全性。
4、本发明方法可以不受使用场景的限制,不仅适用于规则形状的田地,而且也适用于不规则形状的田地,因此可以满足实际耙地作业的要求。
5、本发明方法中是先在路径内边界中生成相交的第一作业基准线和第二作业基准线,然后再通过位于路径外边界内的过渡曲线将第一作业基准线和第二作业基准线依序连接,如此不仅可以快速生成对角耙地路径,而且也可以使得农机的路径始终位于路径外边界内,保障农机的作业安全。
6、本发明方法在生成作业基准线时,是通过平移的方式获得多条第一作业基准线和第二作业基准线,使得第一作业基准线之间的距离相同,第二作业基准线之间的距离相同,如此可使作业基准线的分布均匀,便于作业基准线的连线。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的电子设备与农机的连接示意图。
图2为本发明实施例提供的对角耙地路径规划方法的流程图。
图3为图2中生成封闭区域的流程图。
图4为图2中获得路径内边界的流程图。
图5为图2中生成多条作业基准线的流程图。
图6为图2中按照预设的作业顺序连接作业基准线的流程图。
图7为本发明实施例方法中的在平面坐标系下的边界点的示意图。
图8为本发明实施例方法中的封闭区域的边界、路径外边界和路径内边界的示意图。
图9为图8所示路径内边界内的作业基准线的示意图。
图10为图9中的两条作业基准线通过过渡曲线连接的示意图。
图11为由图9中的作业基准线连接而成的对角耙地路径的示意图。
图12为本发明实施例提供的对角耙地路径规划装置的示意图。
主要元件符号说明
电子设备 100
处理器 101
通信接口 102
存储器 103
对角耙地路径规划装置 10
封闭区域生成模块 11
边界调整模块 12
作业基准线生成模块 13
作业基准线连接模块 14
农机 200
耙具 201
定位器 202
如下具体实施方式将结合上述附图进一步说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例,都应当属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“第一”和“第二”等是用于区别不同对象,而非用于描述特定顺序。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤或模块,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
传统的对角耙地作业需要驾驶员手动驾驶农机来完成对角线作业,作业路径的规划依赖于驾驶员驾驶经验,因此容易受到人为因素的影响,难以保证作业路径的合理性、作业效率和作业安全性。
无人对角耙地作业方式由于可以自动规划路径并自动按照规划的路径进行对角线作业,因此作业可以更高效安全,也更易提高田地的作业覆盖率。然而,无人对角耙地作业方式一般要求在规则四方形田地(例如正方形田地、长方形田地)进行路径规划,而实际的田地的形状各异,通常做法是在不规则田地内截取出矩形区域,舍弃非矩形区域,仅在矩形区域内进行路径规划和作业。由于无法充分利用田地,导致耙地作业覆盖率降低,故无法达到最佳的耙地作业效果。
为此,本发明实施例提出了一种对角耙地路径规划方法,解决了农机自动对角耙地作业受限于实际田地而影响到耙地作业效果的问题,能够为各种形状的田地规划最优的对角耙地路径,使耙地作业覆盖率显著提高。
可以理解,本发明实施例提供的对角耙地路径规划方法可应用于电子设备100。请参照图1,该电子设备100可以与农机200进行通信,进而可以控制农机200的工作状态。示例的,该电子设备100可以通过本发明实施例对角耙地路径规划方法为农机200自动规划对角耙地路径,并控制农机200沿着规划的 对角耙地路径进行对角耙地作业。
可以理解,电子设备100可采用具有信息处理、存储及通信功能的设备,例如电脑、平板或其他终端。电子设备100可以与农机组成一套农机装置。
可以理解,本发明并不限制电子设备100的安装位置。示例的,电子设备100可以安装在农机200上,并与农机200进行有线连接或无线连接。当然,电子设备100也可以设置在远端,并与农机200无线连接。
可以理解,本发明实施例中的农机200是指可实现耙地的农用耙地机。可以理解,本发明并没有限制农用耙地机的类型,例如可以是燃油拖拉机、电动拖拉机或混动拖拉机。
可以理解,如图1所示,该农机200装配有耙具201。本发明并没有限制耙具201的类型,例如耙具201可以是圆盘耙、水田耙和/或钉齿耙。可以理解,本发明也没有限制耙具201的配置方式,例如农机200可采用单列耙、双列耙、偏置耙和/或对置耙等配置方式装配耙具。在实际作业时,可根据农作物的种植要求(例如所需的耙深)及田地的土壤情况(例如土壤湿度及土壤阻力)为农机200选择合适的耙具201以及作业次数。
可以理解,如图1所示,该农机200还装配有定位器202。定位器202可为车载定位设备,例如可以采用RTK(Real-Time Kinematic)定位设备、GPS定位设备或其他类型定位设备。定位器202可用于在实际作业之前,在田地的边界点处进行打点,还可以在实际对角耙地作业时,实时地定位农机200在田地中的位置。
请参照图2,图2示出了本发明实施例对角耙地路径规划方法的流程图。该方法包括如下步骤:
步骤S21:根据田地信息生成封闭区域。
可以理解,本发明并不限制田地的形状,田地可以是规则四边形,例如正方形或长方形。封闭区域也相应为规则四边形。当然,田地也可以是不规则多边形。对应地,生成的封闭区域为不规则多边形。
在一些实施例中,田地信息可以是田地边界点的经纬度坐标信息。
具体地,请参照图3,步骤S21可以包括如下步骤:
步骤S31:获得田地的多个边界点的经纬度坐标信息。
其中,田地的边界点是指田地边界上的转折点。在一些实施例中,田地边 界可理解为田地的对角耙地作业区域的边界。
可以理解,本发明并没有对经纬度坐标信息的获取方式加以限制。
示例的,在一些实施方式中,在路径规划之前,可以令定位设备绕着田地的边界移动,每当定位设备经过田地的一个边界点时,即进行一次打点操作,也即定位设备获取该边界点的经纬度坐标信息。如此可以避免遗漏田地的边角,精确、全面地获得田地的经纬度坐标信息。定位设备可以将获取的经纬度坐标信息发送给电子设备100,方便电子设备100为农机200进行路径规划。
可以理解,定位设备可采用具有定位和数据传输功能的设备,例如RTK定位设备或其他可获得田地信息的定位设备。在一些情况下,定位设备可以安装在农机200上,作为农机200的定位器202,并通过农机200行驶来带动其移动。并且,农机200可以一边打点一边耙地作业,以避免田块边缘处漏耕,提高田地的耙地覆盖率和作业效率。
在另一些实施方式中,定位设备也可以安装在无人机上,通过无人机飞行来带动定位设备移动。在其他一些实施方式中,还可以是人员边携带定位设备边沿着田地行走来实现定位设备的移动。本发明对此并不加以限制。
步骤S32:将每个边界点的经纬度坐标信息进行坐标转换,使经纬度坐标系转换成平面坐标系,从而获得每个边界点的平面坐标信息。
示例的,平面坐标系可以是NEH平面坐标系。如图7至图11所示,横坐标为N方向,也即北向,对应O-XYZ坐标系中X轴的正方向,纵坐标为E方向,也即东向,对应O-XYZ坐标系中Y轴的正方向。
步骤S33:根据边界点的平面坐标信息在平面坐标系中标出多个边界点(可参照图7),然后将多个边界点依次连线,从而生成与田地相对应的封闭区域(可参照图8中)。
可以理解,封闭区域中的边界点之间的连线即为封闭区域的边界,可相当于田地的边界。连接于同一边界点的两条连线可形成一个封闭区域的内角,使得封闭区域的形状与田地的形状基本一致。因此,封闭区域可体现出田地的对角耙地作业范围和面积大小。
可以理解,当平面坐标系中某一处的边界点分布过于密集时,还可以适当地删除边界点,以简化封闭区域的形状和提高生成封闭区域的效率。
当然,在其他实施例中,田地信息还可以包括用于生成封闭区域的其他信 息,例如高清卫星图像信息,以辅助生成更精准的封闭区域。本发明对此并不加以限制。
步骤S22:调整封闭区域的边界,以获得路径内边界。
在一些实施例中,请参照图4,步骤S22可以包括如下步骤:
步骤S41:将封闭区域的边界向内收缩第一距离,从而获得路径外边界,可参照图8。
步骤S42:将路径外边界向内收缩第二距离,从而获得路径内边界,可参照图8。
如此,对角耙地路径即可在路径外边界和路径内边界的基础上进行规划,使规划的对角耙地路径最大不超过路径外边界,如此可防止规划的对角耙地路径超出田地的边界,使规划的对角耙地路径更加安全合理。
可以理解,在进行路径规划时,通常情况下是以农机200的中心代表整个农机200。但是在实际场景中,农机200由于具有一定的车长和车宽,并且还装载有耙具201,耙具201也具有一定的长度和宽度,另外农机200在转弯时也有一定的转弯半径,因此,为确保对角耙地路径的可实现性和安全性,在进行路径规划时需要对农机200的这些相关信息加以考虑。
因此,在一些实施例中,第一距离设定为L1=a*W+S。其中,L1为第一距离;a为第一距离因子;W为农机200的作业宽度;S为设定的安全距离。
第二距离设定为L2=b*R。其中,L2为第二距离;b为第二距离因子;R为农机200的转弯半径。
其中,可以理解,若以农机200的车身长度方向作为前后方向(例如车头位于车尾前方),农机200的中心通常是与作业宽度的中点前后对齐,而在路径规划时又是以农机200的中心代表整个农机200,因此,在调整封闭区域的边界时需要预留半个作业宽度的余量。如此可以避免在路径规划时虽然农机200的中心没有超出田地边界,然而在实际作业时农机近半个车身超出了田地边界。这种情况不仅存在安全风险,而且位于田地边界外的耙具也无法有效作业。因此,本发明的实施例中第一距离预留了a*W,其中可设定a为0.5。
可以理解,作业宽度W可根据实际农机200的车长和车宽、耙具201的长度和宽度、耙具201到车尾的距离、耙具201的偏移距离等适应性地设置。
可以理解,为进一步提高作业的安全性,本发明的实施例中第一距离还预 留了S,以防止农机200的车身或耙具201超出田地边界。S的大小可根据实际情况设置,例如可设置为0.5m。
可以理解,考虑到农机200的转弯轨迹是圆弧轨迹,具有一定的转弯半径,相较于直线轨迹,圆弧轨迹所需要的空间更大。例如,当农机200从一个位置出发,做直线行驶或弯道行驶到达另一个位置时,农机200的中心到圆弧轨迹的距离比农机200的中心到直线轨迹的距离可多了大约0.3倍转弯半径,因此,在调整封闭区域的边界时还需要为转弯操作预留一定的余量,避免农机200进行转弯操作时农机超出田地的边界。因此,本发明的实施例中第二距离预留了b*R,其中可设定b为0.3。
可以理解,由于第一距离有参考农机200的车身尺寸、作业和行驶安全方面上的相关信息,第二距离有参考农机200的转弯操作的相关信息,因此,当在路径外边界和路径内边界的基础上进行路径规划,所规划出的对角耙地路径具有可实现性,可确保农机200能够进行安全、顺利地作业。
步骤S23:生成多条作业基准线。请参照图9,多条作业基准线位于路径内边界内且呈斜线网格状分布。
在一些实施例中,请参照图5,步骤S23具体包括:
步骤S51:以农机200的位置为起点,农机200位于封闭区域的一内角处,然后在路径内边界内,沿着该内角的角平分线方向生成一第一作业基准线。
步骤S52:在路径内边界内,将第一作业基准线按照第一设定步长进行水平平移,从而可以快速得到多条第一作业基准线。
其中,在步骤S51中以农机200所在的内角的角平分线方向作为最先生成的第一作业基准线的生成方向,是为了在步骤S52中可以平移获得最多数量的第一作业基准线,以便实现封闭区域的作业覆盖率最大化。
步骤S53:生成一第二作业基准线,该第二作业基准线与最先生成的第一作业基准线相垂直。
步骤S54:在路径内边界内,将第二作业基准线按照第二设定步长进行水平平移,从而可以快速得到多条第二作业基准线。
可以理解,由于第二作业基准线与第一作业基准线不平行,因此第二作业基准线可以与第一作业基准线相交,多条第二作业基准线与多条第一作业基准线共同形成斜线网格。
在一些实施例中,最先生成的第二作业基准线经过封闭区域的中心。如此可以确保步骤S54中生成的第二作业基准线的分布更均匀对称,便于后续作业基准线的连线和形成更美观的对角耙地路径。
在一些实施例中,设定第一设定步长和第二设定步长均等于农机200的作业宽度。如此不仅可以确保对角耙地路径具有可实现性,而且也可以避免因为作业基准线之间的距离过大而导致漏耕。
当然,在其他实施例中,也可以设定第一设定步长和第二设定步长为若干倍作业宽度。
步骤S24:将多条作业基准线按照预设的作业顺序进行连接,从而得到农机200的对角耙地路径。
可以理解,预设的作业顺序为一种最优的作业顺序。在本发明的一些实施例中,预设的作业顺序可使田地的作业覆盖率最高,同时整体路径最短。
在一些实施例中,请参照图6,步骤S24具体包括:
步骤S61:设定作业顺序的约束条件。
步骤S62:以农机200所在的作业基准线作为当前作业基准线,搜索满足约束条件的下一作业基准线,并通过过渡曲线将当前作业基准线和搜索到的下一作业基准线进行连接,可参照图10(图10中省略了其他未连接的作业基准线)。
步骤S63:以搜索到的下一作业基准线作为当前作业基准线,继续搜索满足约束条件的再下一条作业基准线,并通过过渡曲线将两条作业基准线进行连接。
步骤S64:以此类推,依次将剩余的作业基准线进行连接,由此得到一条连续的对角耙地路径,可参照图11。
在一些实施例中,过渡曲线可采用Dubins算法生成。如图10所示,过渡曲线可视为由两个圆弧段和一个直线段组成。其中一个圆弧段连接当前作业基准线,另一圆弧段连接下一作业基准线,两个圆弧段之间通过直线段相连接,如此可将两个作业基准线连成一体。
可以理解,农机200的初始位置作为对角耙地路径的起始点,可位于最先生成的第一作业基准线的其中一个端点上,如图9至图11中的黑色三角形所示。可以理解,按照行驶顺序,该端点即为该第一作业基准线的起点。该第一作业基准线的另一端点即为该第一作业基准线的终点。以此类推,在连接两条作业基准线时,当前作业基准线是通过终点连接过渡曲线的其中一个圆弧段,下一 作业基准线是通过起点连接另一圆弧段。当连接至最后一个作业基准线,最后一个作业基准线的终点即为对角耙地路径的终结点,可参照图11中的黑色四方形。
在一些实施例中,作业顺序的约束条件可包括:
(1)当前作业基准线和下一作业基准线不平行。也即,当前作业基准线和下一作业基准线中的其中一个是第一作业基准线,另一个是第二作业基准线。
(2)当前作业基准线的端点和下一作业基准线的端点之间的距离大于农机200的转弯半径,且小于设定的最大搜索范围。
其中,最大搜索范围可根据农机200的计算能力和数据存储空间进行适应性地设置,本发明对此并不加以限制。
(3)过渡曲线的半径不小于农机200的转弯半径。
可以理解,这里是指过渡曲线中的两个圆弧段的半径不小于转弯半径。如此可确保农机200能够沿着过渡曲线顺利行驶,确保过渡曲线所对应的实际路径具有可实现性。
(4)过渡曲线位于路径外边界内。
可以理解,如前述,作业基准线已位于路径内边界内,因此,为防止生成的路径超出路径外边界,过渡曲线也应位于路径外边界内。
(5)过渡曲线长度最短。
可以理解,在搜索时,满足约束条件(1)至(4)的作业基准线可能不止一个,因此可再根据约束条件(5)选出一个最佳的作业基准线。该作业基准线可使连成的路径最短,相连接的两条作业基准线之间的距离最小。如此既可以提高作业效率,又有利于增多作业基准线的连接数量,也即增大田地中的相连接的作业基准线的密度,因此有助于提高对角耙地覆盖率。
因此,按照上述约束条件(1)至(5)确定出来的作业基准线连接顺序即为最优的作业顺序,由全部作业基准线依序连接而成的对角耙地路径为可取得最高对角耙地覆盖率的最优对角耙地路径。
综上,本发明对角耙地路径规划方法可以在田地内自动规划出一条可行的对角耙地路径,在确保作业安全的前提下,所规划出的对角耙地路径可实现田地的作业覆盖率最高,同时也可使农机200行驶路径最短。如此可实现对角耙地路径规划的安全性、合理性和高效性。并且,本发明方法并不受到使用场景 的限制,可适用于各类田地。
在实际作业时,农机200可以人为驾驶或自动行驶到对角耙地路径的起始点,然后沿着对角耙地路径行驶,同时进行耙地作业,直至农机200行驶至对角耙地路径的终结点,即完成一次对角耙地作业。当农机200需要进行多次对角耙地作业时,仍可以按照同样的方式进行下一次作业。如此可以有效提高对角耙地的作业效率和作业覆盖率,实现田地的最大化利用。
需要说明的是,对于前述的方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。
请参照图12,图12为本发明实施例公开的一种对角耙地路径规划装置10的结构示意图。
本发明实施例提供的对角耙地路径规划装置10可以包括封闭区域生成模块11、边界调整模块12、作业基准线生成模块13和作业基准线连接模块14。
其中,封闭区域生成模块11用于根据田地信息生成封闭区域。
边界调整模块12用于调整封闭区域的边界,以获得路径内边界。
作业基准线生成模块13用于生成多条作业基准线,多条作业基准线在路径内边界内呈斜线网格状分布。
作业基准线连接模块14用于将多条作业基准线按照预设的作业顺序进行连接,从而得到农机200的对角耙地路径。
在一些实施例中,边界调整模块12还可以进一步包括第一边界调整模块和第二边界调整模块。
其中,第一边界调整模块用于将封闭区域的边界向内收缩第一距离,从而获得路径外边界。第一距离可设定为农机200的作业宽度或其他若干倍作业宽度。
第二边界调整模块用于将路径外边界向内收缩第二距离,从而获得路径内边界。第二距离可设定为农机200的作业宽度或其他若干倍作业宽度。
在一些实施例中,作业基准线生成模块13还可以进一步包括第一作业基准线生成模块和第二作业基准线生成模块。
其中,第一作业基准线生成模块用于以农机200所在位置为起点,该农机位置位于封闭区域的一内角处,然后该内角的角平分线方向生成一第一作业基 准线,然后在路径内边界内,将第一作业基准线按照第一设定步长进行水平平移,从而得到多条第一作业基准线。
第二作业基准线生成模块用于生成与最先生成的第一作业基准线相垂直且经过封闭区域的中心的一第二作业基准线,然后在路径内边界内,将第二作业基准线按照第二设定步长进行水平平移,从而得到多条第二作业基准线。
在一些实施例中,作业基准线连接模块14还可以进一步包括约束条件设定模块、搜索模块和顺序连接模块。
其中,约束条件设定模块用于设定作业顺序的约束条件。作业顺序的约束条件可参见上述对角耙地路径规划方法中的内容,此处不再赘述。
搜索模块用于以农机200所在的作业基准线作为当前作业基准线,搜索满足约束条件的下一作业基准线,然后再以搜索到的下一作业基准线作为当前作业基准线,继续搜索满足约束条件的再下一条作业基准线,以此类推,依次找出剩余的作业基准线的顺序。
顺序连接模块用于在搜索模块每次搜索出满足约束条件的下一作业基准线后,通过过渡曲线将当前作业基准线和搜索到的下一作业基准线进行连接,由此得到一条连续的对角耙地路径。其中,顺序连接模块用于采用Dubins算法生成过渡曲线。
可以理解的是,上述的对角耙地路径规划装置10中各个模块的划分仅用于举例说明,在其他的实施例中,可将对角耙地路径规划装置10按照需要划分为不同的模块,以完成上述对角耙地路径规划装置10的全部或部分功能。
在本发明实施例中各个模块的具体实现还可以对应参照图2至图6所示的方法实施例的相应描述。
在图12所描述的对角耙地路径规划装置10,可以为农机200所在的待作业田地自动规划出最优的对角耙地路径,具体内容可以参见上述对角耙地路径规划方法的具体实施例,在此不再详述。
请参阅图1,图1为本发明实施例提供的电子设备100的结构示意图。
本发明实施例提供一种电子设备100,该电子设备100可以包括上述的对角耙地路径规划装置10,该对角耙地路径规划装置10具体请参见图2至图6示出的实施例的具体描述,在此不再赘述。
如图1所示,该电子设备100可以包括处理器101、通信接口102和存储器103。处理器101、通信接口102和存储器103可以通过通信总线连接并完成相互间的通信。
处理器101可以是通用中央处理器(CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC)、或一个或多个用于控制以上方案程序执行的集成电路。
通信接口102用于与其他设备或通信网络通信,例如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。例如,在一些实施例中,通信接口102可与农机200通信,例如可从农机200接收定位器202获取的经纬度坐标信息,以及向农机发送控制指令以控制农机的对角耙地作业。通信接口102还可与终端通信,例如可从终端接收农机200、农作物及土壤的相关信息,以及向终端传输经纬度坐标信息,和/或传输处理器101处理生成的平面坐标信息,和/或对角耙地路径。
其中,终端可以是手机、平板、电脑、无人机和/或遥控设备等。
农机200的相关信息可以包括实际农机200的车长和车宽、作业宽度、转弯半径、耙具201的长度和宽度、耙具201到车尾的距离和耙具201的偏移距离。农作物的相关信息可以包括农作物的种植要求。田地的相关信息可以包括田地的土壤情况。
存储器103可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器103可以是独立存在,通过总线与处理器101相连接。存储器103也可以和处理器101集成在一起。
其中,存储器103可用于存储从农机200及终端接收的信息和处理器101产生的信息。存储器103还可用于存储执行以上方案的程序指令,并由处理器 101来控制执行。处理器101用于执行存储器103中存储的程序指令。存储器103存储的程序指令可执行图2至图6中所描述的对角耙地路径规划方法的部分或全部步骤。
本发明实施例还提供了一种计算机可读存储介质。该计算机可读存储介质中存储有程序指令,程序指令在计算设备上运行时,使得计算设备执行前述实施例提供的对角耙地路径规划方法。
对于本领域的技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他具体形式实现本发明。因此,只要在本发明的实质精神范围之内,对以上实施例所作的适当改变和变化都应该落在本发明要求保护的范围之内。
Claims (10)
- 一种对角耙地路径规划方法,其特征在于,包括:根据田地信息生成封闭区域;调整所述封闭区域的边界,以获得路径内边界;生成多条作业基准线,其中,所述多条作业基准线在所述路径内边界内呈斜线网格状分布;将所述多条作业基准线按照预设的作业顺序进行连接,从而得到农机的对角耙地路径。
- 如权利要求1所述的对角耙地路径规划方法,其特征在于,调整所述封闭区域的边界,以获得路径内边界,包括以下步骤:将所述封闭区域的边界向内收缩第一距离,从而获得路径外边界;将所述路径外边界向内收缩第二距离,从而获得所述路径内边界。
- 如权利要求2所述的对角耙地路径规划方法,其特征在于,所述第一距离为L1=a*W+S,其中,L1为所述第一距离,a为第一距离因子,W为所述农机的作业宽度,S为设定的安全距离;所述第二距离为L2=b*R,其中,L2为所述第二距离,b为第二距离因子,R为所述农机的转弯半径。
- 如权利要求2所述的对角耙地路径规划方法,其特征在于,将多条所述作业基准线按照预设的作业顺序进行连接,包括以下步骤:设定所述作业顺序的约束条件;以所述农机所在的所述作业基准线作为当前所述作业基准线,搜索满足所述约束条件的下一所述作业基准线,并通过过渡曲线将当前所述作业基准线和搜索到的下一所述作业基准线进行连接;以搜索到的下一所述作业基准线作为当前所述作业基准线,继续搜索满足所述约束条件的再下一条所述作业基准线,并通过所述过渡曲线将两条所述作业基准线进行连接;以此类推,依次将剩余的所述作业基准线进行连接。
- 如权利要求4所述的对角耙地路径规划方法,其特征在于,所述作业顺序的约束条件包括:当前所述作业基准线和下一所述作业基准线不平行;当前所述作业基准线的端点和下一所述作业基准线的端点之间的距离大于所述农机的转弯半径,且小于设定的最大搜索范围;所述过渡曲线的半径不小于所述农机的转弯半径;所述过渡曲线位于所述路径外边界内;所述过渡曲线长度最短。
- 如权利要求1所述的对角耙地路径规划方法,其特征在于,生成多条作业基准线,包括如下步骤:以所述农机位置为起点,沿着所述农机位置所对应的所述封闭区域的内角角平分线方向生成一第一作业基准线;在所述路径内边界内,将所述第一作业基准线按照第一设定步长进行水平平移,从而得到多条所述第一作业基准线;生成一第二作业基准线,所述第二作业基准线与最先生成的所述第一作业基准线相垂直,并且所述第二作业基准线经过所述封闭区域的中心;在所述路径内边界内,将所述第二作业基准线按照第二设定步长进行水平平移,从而得到多条所述第二作业基准线。
- 如权利要求6所述的对角耙地路径规划方法,其特征在于,所述第一设定步长和所述第二设定步长均等于所述农机的作业宽度。
- 如权利要求1所述的对角耙地路径规划方法,其特征在于,根据田地生成封闭区域,包括以下步骤:获得所述田地的多个边界点的经纬度坐标信息;将每个所述边界点的所述经纬度坐标信息进行坐标转换,从而获得每个所述边界点的平面坐标信息;根据多个所述边界点的所述平面坐标信息,在平面坐标系中生成由多个所述边界点相连而成的所述封闭区域。
- 一种电子设备,其特征在于,所述电子设备包括处理器和存储器,所述存储器用于存储多条程序指令,所述处理器调用所述程序指令时,实现如权利要求1至8中任一项所述的对角耙地路径规划方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储多条程序指令,所述多条程序指令适于由处理器加载并执行如权利要求1至8中任一项所述的对角耙地路径规划方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210475977.3 | 2022-04-29 | ||
CN202210475977.3A CN115617030A (zh) | 2022-04-29 | 2022-04-29 | 对角耙地路径规划方法、电子设备和计算机可读存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023207182A1 true WO2023207182A1 (zh) | 2023-11-02 |
Family
ID=84857716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/142399 WO2023207182A1 (zh) | 2022-04-29 | 2022-12-27 | 对角耙地路径规划方法、电子设备和计算机可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115617030A (zh) |
WO (1) | WO2023207182A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116300976B (zh) * | 2023-05-22 | 2023-07-21 | 汇智机器人科技(深圳)有限公司 | 一种机器人多任务作业规划方法、系统及其应用 |
CN117629221B (zh) * | 2023-12-01 | 2024-06-25 | 上海联适导航技术股份有限公司 | 一种对角耙地路径规划方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101879247B1 (ko) * | 2017-10-31 | 2018-08-17 | 충남대학교산학협력단 | 자율주행 농업기계의 작업경로 설정방법 |
US20180359907A1 (en) * | 2017-06-19 | 2018-12-20 | Cnh Industrial America Llc | Path planning system for a work vehicle |
CN109240284A (zh) * | 2018-08-10 | 2019-01-18 | 江苏大学 | 一种无人驾驶农机的自主路径规划方法及装置 |
CN113448324A (zh) * | 2020-03-09 | 2021-09-28 | 北京合众思壮科技股份有限公司 | 路径规划方法、装置、电子设备和存储介质 |
CN113804212A (zh) * | 2021-08-23 | 2021-12-17 | 上海联适导航技术股份有限公司 | 一种耙地作业的路径规划方法及装置 |
-
2022
- 2022-04-29 CN CN202210475977.3A patent/CN115617030A/zh active Pending
- 2022-12-27 WO PCT/CN2022/142399 patent/WO2023207182A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180359907A1 (en) * | 2017-06-19 | 2018-12-20 | Cnh Industrial America Llc | Path planning system for a work vehicle |
KR101879247B1 (ko) * | 2017-10-31 | 2018-08-17 | 충남대학교산학협력단 | 자율주행 농업기계의 작업경로 설정방법 |
CN109240284A (zh) * | 2018-08-10 | 2019-01-18 | 江苏大学 | 一种无人驾驶农机的自主路径规划方法及装置 |
CN113448324A (zh) * | 2020-03-09 | 2021-09-28 | 北京合众思壮科技股份有限公司 | 路径规划方法、装置、电子设备和存储介质 |
CN113804212A (zh) * | 2021-08-23 | 2021-12-17 | 上海联适导航技术股份有限公司 | 一种耙地作业的路径规划方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115617030A (zh) | 2023-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023207182A1 (zh) | 对角耙地路径规划方法、电子设备和计算机可读存储介质 | |
AU2019278049B2 (en) | Route planning method for mobile vehicle | |
CN106643719B (zh) | 一种智能割草车的路径规划算法 | |
WO2019154119A1 (zh) | 基于激光测距传感器的移动机器人的地图创建方法 | |
CN111915106B (zh) | 一种路径生成方法、装置、晶面机及存储介质 | |
CN108575095B (zh) | 自移动设备及其定位系统、定位方法和控制方法 | |
CN112462763B (zh) | 一种基于栅格地图的割草机器人路径规划方法 | |
CN107943049A (zh) | 一种无人车控制方法及无人割草车 | |
EP3518649B1 (en) | A method for determining placement of new obstacles in an agricultural field | |
WO2021135248A1 (zh) | 遍历方法、系统,机器人及可读存储介质 | |
CN114019982A (zh) | 一种无人驾驶智能农机集群作业方法 | |
US20230090080A1 (en) | Method and apparatus for full coverage path planning over three-dimensional terrain | |
CN113313784B (zh) | 基于无人驾驶农机的农田画制作方法及装置 | |
JP7460502B2 (ja) | 経路設定装置、経路設定方法、記憶媒体及びプログラム | |
CN112102429B (zh) | 一种割草机的建图方法、存储介质以及割草机 | |
CN104898551B (zh) | 全自动割草机器人的双视觉自定位系统 | |
US20230081037A1 (en) | Multi-vehicle coordination systems and methods for agricultural field operations | |
US20230011137A1 (en) | Agricultural Path Planning | |
CN112148813A (zh) | 一种随机式割草机分区方法及随机式割草机 | |
CN116050682A (zh) | 一种基于改进遗传算法的全覆盖田间路径规划方法及装置 | |
CN112835371B (zh) | 地块融合方法、地块融合装置以及机器可读存储介质 | |
CN113552882A (zh) | 一种用于大区域的无人割草车的行驶路线控制方法 | |
CN118444686B (zh) | 一种基于数字仿真的机器人移动路径再现方法及系统 | |
CN118276590B (zh) | 一种农业作业方法、装置、设备及计算机存储介质 | |
CN117268401B (zh) | 一种动态围栏的园艺路径生成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22939990 Country of ref document: EP Kind code of ref document: A1 |