WO2023206922A1 - 传输吸波结构和天线带内特性测试系统 - Google Patents
传输吸波结构和天线带内特性测试系统 Download PDFInfo
- Publication number
- WO2023206922A1 WO2023206922A1 PCT/CN2022/118910 CN2022118910W WO2023206922A1 WO 2023206922 A1 WO2023206922 A1 WO 2023206922A1 CN 2022118910 W CN2022118910 W CN 2022118910W WO 2023206922 A1 WO2023206922 A1 WO 2023206922A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- tested
- coupling
- equivalent
- wall structure
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 103
- 230000005540 biological transmission Effects 0.000 title claims abstract description 61
- 230000006698 induction Effects 0.000 claims abstract description 8
- 230000008878 coupling Effects 0.000 claims description 81
- 238000010168 coupling process Methods 0.000 claims description 81
- 238000005859 coupling reaction Methods 0.000 claims description 81
- 239000002184 metal Substances 0.000 claims description 14
- 230000010287 polarization Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 abstract description 30
- 238000004891 communication Methods 0.000 abstract description 5
- 239000011358 absorbing material Substances 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/12—Hollow waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/008—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
- H04B17/12—Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/21—Monitoring; Testing of receivers for calibration; for correcting measurements
Definitions
- the invention relates to the technical field of microwave antenna engineering design of radar and communication systems, and specifically relates to a transmission absorbing structure and an antenna in-band characteristic testing system.
- the antenna is an important part of the radar and communication system.
- the performance of the antenna directly reflects and affects the performance of the entire system to a great extent.
- the in-band amplitude and phase characteristics of the antenna have an important impact on the performance of electronic information systems. Taking synthetic aperture radar as an example, the in-band amplitude and phase characteristics of the antenna directly affect the peak side-lobe ratio of the point target of the radar, thereby affecting the imaging quality of the target.
- the present invention provides a transmission absorbing structure and an antenna in-band characteristic testing system, which solves the problem of traditional methods having high requirements on test sites.
- a transmission wave absorbing structure including:
- a coupling feed structure has a coupling gap for energy coupling with the antenna, and the coupling gap is used for energy coupling with the antenna to be tested;
- the equivalent electric wall structure and the equivalent magnetic wall structure surround the coupling feed structure, and the equivalent electric wall structure and the equivalent magnetic wall structure form a TEM mode waveguide;
- the height of the equivalent electric wall structure and the equivalent magnetic wall structure above the coupling feed structure is less than the intermediate frequency operating wavelength of the antenna to be tested.
- the number of coupling slots is the same as the number of antenna units to be tested, and the spacing of the coupling slots is the same as the spacing of the antenna units to be tested.
- the coupling slots are perpendicular to the polarization of the antenna to be tested, and the coupling slots are parallel to each other.
- the coupling gap is a cavity-type parallel double-slit structure.
- the equivalent electric wall structure is a metal plate, and the spacing between the two metal plates is the same as the spacing between the E planes of the array units of the antenna to be tested in this direction.
- the equivalent magnetic wall structure is implemented using a microstrip circuit, and the spacing between the two equivalent magnetic wall structures is the same as the H-plane spacing between the array units of the antenna under test in this direction.
- an antenna in-band characteristic testing system including a vector network analyzer and an antenna to be tested electrically connected to the vector network analyzer.
- the test system also includes:
- a transmission absorbing structure electrically connected to the vector network analyzer, and located in the induction field area of the antenna to be tested;
- the transmission absorbing structure includes:
- a coupling feed structure has a coupling gap for energy coupling with the antenna, and the coupling gap is used for energy coupling with the antenna to be tested;
- the equivalent electric wall structure and the equivalent magnetic wall structure surround the coupling feed structure, and the equivalent electric wall structure and the equivalent magnetic wall structure form a TEM mode waveguide;
- the height of the equivalent electric wall structure and the equivalent magnetic wall structure above the coupling feed structure is less than the intermediate frequency operating wavelength of the antenna to be tested.
- test system also includes another transmission absorbing structure for replacing the antenna under test to calibrate the test system before testing.
- test system further includes: a temperature box, used for placing the antenna to be tested and the transmission absorbing structure inside the temperature box during testing.
- the number of coupling slots is the same as the number of antenna units to be tested, and the spacing of the coupling slots is the same as the spacing of the antenna units to be tested;
- the coupling slots are perpendicular to the polarization of the antenna to be tested, and the coupling slots are parallel to each other;
- the equivalent electric wall structure is a metal plate, and the distance between the two metal plates is the same as the distance between the E planes of the array unit of the antenna to be tested in this direction;
- the equivalent magnetic wall structure is realized by a microstrip circuit, and the two so The spacing of the equivalent magnetic wall structure is the same as the H-plane spacing of the array elements of the antenna to be tested in this direction.
- the invention provides a transmission absorbing structure and an antenna in-band characteristic testing system. Compared with existing technology, it has the following beneficial effects:
- the transmission absorbing structure of the present invention is used in conjunction with the equivalent electric wall and the equivalent magnetic wall, so that the electric wall (electric wall to electric wall) and the magnetic wall (magnetic wall to magnetic wall) placed by the four objects form a
- a standard TEM mode waveguide can simulate plane waves irradiating the antenna under test in a closed environment.
- the test system of the present invention is constructed based on a closed induction field area. Compared with the traditional near field method or far field method, the electromagnetic leakage is small, the test environment does not require absorbing materials, and there is no need to operate in the microwave near field or far field. Carry out tests in a dark room.
- the test system of the present invention can complete the high-precision self-correction of the test system by replacing the antenna to be tested with another transmission absorbing structure with exactly the same in-band characteristics guaranteed by mechanical processing.
- the antenna to be tested and the transmission absorbing structure of the test system of the present invention can be completely placed in an ordinary temperature box, and the in-band characteristics of the antenna within a wide temperature range can be tested.
- Figure 1 is a schematic diagram of the test system for testing the in-band characteristics of the antenna using the traditional near-field method
- Figure 2 is a schematic diagram of the transmission absorbing structure for testing the in-band characteristics of a one-dimensional antenna array according to Embodiment 1 of the present invention
- Figure 3 is a schematic diagram of the transmission absorbing structure for testing the in-band characteristics of the units in the two-dimensional phased array antenna array according to Embodiment 2 of the present invention
- Figure 4 is a schematic diagram of a test system for testing the in-band characteristics of an antenna using the induction field method according to Embodiment 3 of the present invention
- Figure 5 is a curve of the transmission amplitude of the antenna to be tested at the working center frequency point changing with temperature in Embodiment 1 of the present invention
- Figure 6 is a curve of the transmission phase of the antenna under test at the working center frequency point changing with temperature in Embodiment 1 of the present invention.
- Embodiments of the present invention solve the problem of traditional methods having high requirements on test sites by providing a transmission absorbing structure and an antenna in-band characteristic testing system.
- the purpose of the present invention is to provide a transmission absorbing structure that can be used for antenna in-band characteristic testing
- Another object of the present invention is to provide an antenna in-band characteristic testing system that can solve the problem of traditional methods having high requirements on test sites.
- the standard antenna contains the amplitude and phase within the test system band. Characteristic in-band amplitude and phase characteristics;
- the only standard antenna used for antenna testing is the standard gain horn antenna.
- the horn antenna manufacturer only provides the in-band amplitude characteristics of the antenna, but not the in-band phase characteristics of the antenna.
- the far-field method needs to be used to independently calibrate the phase characteristics of this antenna.
- the test needs to be carried out in a microwave anechoic room.
- the test site requirements are high and it is difficult to test the temperature characteristics.
- an antenna in-band characteristic test system based on the induction field area.
- the entire test system includes a transmission absorbing structure 1, an antenna to be tested 2, a vector network analyzer 3 and corresponding test cables.
- the antenna to be tested 2 and the transmission absorbing structure 1 are placed in opposite parallel positions.
- the transmission absorbing structure 1 can completely receive the electromagnetic waves radiated by the antenna 2 to be tested, and the transmission absorbing structure 1 can receive the same amplitude and phase.
- the antenna senses electromagnetic energy in the field area, thereby simulating the plane wave exposure of the antenna.
- the invention provides a transmission wave absorbing structure, which includes:
- the coupling feed structure 11 has a coupling slot 111 for energy coupling with the antenna to be tested 2, and the coupling slot 111 is used for energy coupling with the antenna to be tested 2;
- the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13 surround the coupling feed structure 11, and the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13 form a TEM mode waveguide;
- the height H of the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13 above the coupling feed structure 11 is less than the intermediate frequency operating wavelength of the antenna 2 to be tested.
- the equivalent electric wall and the equivalent magnetic wall are used together, and their function is equivalent to a TEM mode waveguide.
- four objects are placed: the electric wall (electric wall to electric wall) and the magnetic wall (magnetic wall to magnetic wall). ) forms a standard TEM mode waveguide, which can simulate plane waves irradiating the antenna to be tested in a closed environment.
- the antenna 2 to be tested is an antenna array used for a one-dimensional large-angle scanning phased array. Specifically, it is a linearly polarized cracked waveguide array containing 6 slots as radiating units. The polarization direction is perpendicular to In the linear array direction, the linear array spacing is 0.72 ⁇ ( ⁇ is the intermediate frequency operating wavelength).
- this embodiment provides a transmission wave absorbing structure, including:
- the coupling feed structure 11 is used for electromagnetic coupling transmission with the antenna unit 2 to be tested.
- the coupling feed structure 11 in this embodiment adopts the same coupling feed structure as the traditional slot waveguide antenna, and has six coupling slots 111 with the same spacing as the radiating unit of the antenna to be tested. Strong coupling of electromagnetic energy occurs between antenna radiating units.
- the two equivalent electric wall structures 12 are made of metal plates, making them equivalent to equivalent electric walls perpendicular to the antenna radiation electric field, and the distance dx between the two metal plates is equal to the distance dx between the two metal plates.
- the distance between the E-planes of the array elements of the measuring antenna 2 in this direction is the same.
- the two equivalent magnetic wall structures 13 are implemented using microstrip circuits, such as using dielectric double-sided circuit boards.
- the distance dy between the two dielectric double-sided circuit boards and the H surface of the antenna 2 to be tested are The length is the same, and a periodic circuit 131 is etched on the inner surface, so that it is designed to be an artificial equivalent magnetic wall within the operating frequency band.
- the equivalent electric wall structure and the equivalent magnetic wall structure surround the coupling feed structure, and the equivalent electric wall structure and the equivalent magnetic wall structure form a TEM mode waveguide;
- the height H of the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13 above the coupling feed structure 11 is less than the intermediate frequency operating wavelength of the antenna 2 to be tested.
- the TEM waveguide composed of the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13, the coupling gap for energy coupling with the antenna, and the coupling feed structure for excitation can realize the function of absorbing wave transmission and can be used in a closed space. It can test the amplitude and phase characteristics within the antenna band.
- the antenna 2 to be tested is an antenna unit used in a two-dimensional large-angle scanning phased array.
- this embodiment provides a transmission wave absorbing structure, including:
- the coupling feed structure 11 is used for electromagnetic coupling transmission with the antenna unit 2 to be tested.
- the coupling feed structure 11 adopts a cavity-type parallel double-slit structure, with two coupling slots 111 perpendicular to the polarization of the antenna 2 under test and parallel to each other, so as to conduct electromagnetic communication with the antenna unit under test. coupled transmission.
- the two equivalent electric wall structures 12 are made of metal plates, making them equivalent to equivalent electric walls perpendicular to the antenna radiation electric field, and the distance dx between the two metal plates is equal to the distance dx between the two metal plates.
- the distance between the E-planes of the array elements of the measuring antenna 2 in this direction is the same.
- the two equivalent magnetic wall structures 13 are implemented using microstrip circuits, such as using dielectric double-sided circuit boards.
- the distance dy between the two dielectric double-sided circuit boards and the antenna 2 under test is in this direction.
- the H-plane spacing of the units in the array is the same, and a periodic circuit 131 is etched on the inner surface, so that it is designed to be an artificial equivalent magnetic wall within the operating frequency band.
- the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13 surround the coupling feed structure 11, and the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13 form a TEM mode waveguide;
- the height H of the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13 above the coupling feed structure 11 is less than the intermediate frequency operating wavelength of the antenna 2 to be tested.
- the TEM waveguide composed of the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13, the coupling gap for energy coupling with the antenna, and the coupling feed structure for excitation can realize the function of absorbing wave transmission and can be used in a closed space. It can test the amplitude and phase characteristics within the antenna band.
- the present invention also provides an antenna in-band characteristic testing system.
- the system includes: a vector network analyzer 3 and an antenna to be tested 2 electrically connected to the vector network analyzer 3;
- a transmission absorbing structure 1 is electrically connected to the vector network analyzer 3 and is located in the induction field area of the antenna to be tested 2;
- the transmission absorbing structure 1 includes:
- the coupling feed structure 11 has a coupling slot 111 for energy coupling with the antenna, and the coupling slot 111 is used for energy coupling with the antenna to be tested 2;
- the equivalent electric wall structure and the equivalent magnetic wall structure surround the coupling feed structure, and the equivalent electric wall structure and the equivalent magnetic wall structure form a TEM mode waveguide;
- the height of the equivalent electric wall structure 12 and the equivalent magnetic wall structure 13 above the coupling feed structure 11 is less than the intermediate frequency operating wavelength of the antenna to be tested.
- the test system also includes another transmission absorbing structure 4 for replacing the antenna 2 under test to calibrate the test system before testing.
- the test system also includes: a temperature box (not shown in the figure), used to place the antenna to be tested 2 and the transmission absorbing structure 1 inside during testing.
- a temperature box (not shown in the figure), used to place the antenna to be tested 2 and the transmission absorbing structure 1 inside during testing.
- the antenna 2 to be tested and the transmission absorbing structure 1 can also be placed in an ordinary temperature box. Using this testing method and the transmission absorbing structure 1, the temperature box is set to the required temperature, and the amplitude of the antenna can be measured. The temperature characteristics of the phases are tested.
- the transmission wave-absorbing structure 1 provided by the embodiment of the present invention corresponds to the transmission wave-absorbing structure 1 in Embodiments 1 and 2.
- examples, beneficial effects, etc. of the relevant content please refer to Embodiment 1 and 2.
- the corresponding contents of the transmission absorbing structure 1 in 2 will not be described again here.
- FIG. 5 gives the temperature change curve of the transmission amplitude of the antenna under test at the working center frequency point. It can be seen that the amplitude characteristics of the two linear arrays change less than 0.1dB within the temperature range of 100°C.
- Figure 6 shows the temperature change curve of the transmission phase of the antenna under test at the working center frequency point. It can be seen that the insertion phase of the linear array shows an obvious downward trend with the increase of temperature. At the same time, the insertion phase of the two linear arrays changes with temperature basically the same. , if the normal temperature insertion phase is used for normalization, the phase difference in the wide temperature range will be less than 1°, which shows the high amplitude and phase testing accuracy of this testing system and method.
- the present invention has the following beneficial effects:
- the transmission absorbing structure of the present invention is used in conjunction with the equivalent electric wall and the equivalent magnetic wall, so that the electric wall (electric wall to electric wall) and the magnetic wall (magnetic wall to magnetic wall) placed by the four objects form a
- a standard TEM mode waveguide can simulate plane waves irradiating the antenna under test in a closed environment.
- the test system of the present invention is constructed based on a closed induction field area. Compared with the traditional near field method or far field method, the electromagnetic leakage is small, the test environment does not require absorbing materials, and there is no need to operate in the microwave near field or far field. Carry out tests in a dark room.
- the test system of the present invention can complete the high-precision self-correction of the test system by replacing the antenna to be tested with another transmission absorbing structure with exactly the same in-band characteristics guaranteed by mechanical processing.
- the antenna to be tested and the transmission absorbing structure of the test system of the present invention can be completely placed in an ordinary temperature box, and the in-band characteristics of the antenna within a wide temperature range can be tested.
- each embodiment can be implemented by means of software plus a necessary general hardware platform.
- the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disc, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.
- a computer device which can be a personal computer, a server, or a network device, etc.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本发明提供了一种传输吸波结构和天线带内特性测试系统,涉及雷达与通信系统的微波天线工程设计技术领域。本发明的传输吸波结构通过等效电壁与等效磁壁是搭配使用的,使其四个对象放置的电壁与磁壁形成了一个标准的TEM模波导,可在封闭环境内模拟平面波对待测天线的照射。同时本发明的测试系统是基于封闭的感应场区进行构建的,相对于传统近场法或远场法,电磁泄漏小,测试环境无需吸波材料,不需要在微波近场或远场暗室内开展测试。
Description
本发明涉及雷达与通信系统的微波天线工程设计技术领域,具体涉及一种传输吸波结构和天线带内特性测试系统。
天线是雷达与通信系统的重要组成部分,天线的性能直接反映并在很大程度上影响整个系统的性能。随着雷达与通信系统向着高分辨、大数据率等方向发展,对天线的瞬时带宽要求也越来越大。而天线的带内幅相特性对电子信息系统的性能有重要影响,以合成孔径雷达为例,天线的带内幅相特性直接影响雷达的点目标峰值旁瓣比,从而影响目标的成像质量。为补偿天线的带内幅相特性起伏,需要对发射信号的带内相位起伏进行预失真处理,对接收链路的带内幅相起伏进行均衡。这两个技术手段的前提都是需要通过测试获取天线的带内幅相特性。
传统的获取天线带内幅相特性的测试方法主要有两种,一种是近场法,另一种是远场法。
以如图1所示的近场法的示意图为例,上述两种方法都需要在开放的微波暗室内进行测试。对测试场地要求较高,且校正过程复杂,校正精度差,需要寻求新的测试方法。
针对现有技术的不足,本发明提供了一种传输吸波结构和天线带内特性测试系统,解决了传统方法对测试场地要求较高的问题。
为实现以上目的,本发明通过以下技术方案予以实现:
第一方面,提供了一种传输吸波结构,包括:
耦合馈电结构,其上开设有与天线进行能量耦合的耦合缝隙,所述耦合缝隙用于与待测天线进行能量耦合;
两个平行设置的等效电壁结构;
两个平行设置的等效磁壁结构;
所述等效电壁结构与等效磁壁结构包围耦合馈电结构,且所述等效电壁结构与等效磁壁结构构成一个TEM模波导;
所述等效电壁结构以及所述等效磁壁结构高出所述耦合馈电结构的高度小于待测天线的中频工作波长。
进一步的,所述待测天线为一维天线线阵时,所述耦合缝隙的数量与待测天线单元的数量相同,且所述耦合缝隙的间距与待测天线单元的间距相同。
进一步的,所述待测天线为二维相控阵天线阵中单元时,所述耦合缝隙与待测天线极化相垂直,且所述耦合缝隙间相互平行。
进一步的,所述耦合缝隙为腔体式平行双缝结构。
进一步的,所述等效电壁结构为金属板,且两个金属板的间距与待测天线在此方向的阵中单元E面间距相同。
进一步的,所述等效磁壁结构采用微带电路实现,两个所述等效磁壁结构的间距与待测天线在此方向的阵中单元H面间距相同。
第二方面,提供了一种天线带内特性测试系统,包括矢量网络分析仪以及与所述矢量网络分析仪电性连接的待测天线,该测试系统还包括:
一个传输吸波结构,与所述矢量网络分析仪电性连接,并处于待测天线的感应场区;
所述传输吸波结构包括:
耦合馈电结构,其上开设有与天线进行能量耦合的耦合缝隙,所述耦合缝隙用于与待测天线进行能量耦合;
两个平行设置的等效电壁结构;
两个平行设置的等效磁壁结构;
所述等效电壁结构与等效磁壁结构包围耦合馈电结构,且所述等效电壁结构与等效磁壁结构构成一个TEM模波导;
所述等效电壁结构以及所述等效磁壁结构高出所述耦合馈电结构的高度小于待测天线的中频工作波长。
进一步的,所述测试系统还包括另一个所述传输吸波结构,用于在测试前替换待测天线以对测试系统进行校正。
进一步的,所述测试系统还包括:温度箱,用于在测试时,在其内部放置所述待测天线与传输吸波结构。
进一步的,当所述待测天线为一维天线线阵时,所述耦合缝隙的数量与待测天线单元的数量相同,且所述耦合缝隙的间距与待测天线单元的间距相同;
当所述待测天线为二维相控阵天线阵中单元时,所述耦合缝隙与待测天线极化相垂直,且所述耦合缝隙间相互平行;
且所述等效电壁结构为金属板,且两个金属板的间距与待测天线在此方向的阵中单元E面间距相同;所述等效磁壁结构采用微带电路实现,两个所述等效磁壁结构的间距与待测天线在此方向的阵中单元H面间距相同。
本发明提供了一种传输吸波结构和天线带内特性测试系统。与现有技术相比,具备以下有益效果:
(1)本发明的传输吸波结构通过等效电壁与等效磁壁是搭配使用的,使其四个对象放置的电壁(电壁对电壁)与磁壁(磁壁对磁壁)形成了一个标准的TEM模波导,可在封闭环境内模拟平面波对待测天线的照射。
(2)本发明的测试系统是基于封闭的感应场区进行构建的,相对于传统近场法或远场法,电磁泄漏小,测试环境无需吸波材料,不需要在微波近场或远场暗室内开展测试。
(3)本发明的测试系统可通过将待测天线更换为另外一个通过机械加工保证的带内特性完全一样传输吸波结构,从而完成测试系统的高精度自校正。
(4)本发明的测试系统的待测天线和传输吸波结构可完整地放于普通温度箱内,可对宽温范围内的天线带内特性进行测试。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是传统的近场法测试天线带内特性的测试系统示意图;
图2是本发明实施例1的针对一维天线线阵带内特性测试的传输吸波结构示意图;
图3是本发明实施例2的针对二维相控阵天线阵中单元带内特性测试的传输吸波结构示意图;
图4是本发明实施例3的感应场法测试天线带内特性的测试系统示意图;
图5是本发明实施例1的工作中心频率点待测天线传输幅度随温变化曲线;
图6是本发明实施例1的工作中心频率点待测天线传输相位随温变化曲线。
为使本发明实施例的目的、技术方案和优点更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例通过提供一种传输吸波结构和天线带内特性测试系统,解决了传统方法对测试场地要求较高的问题。
本发明实施例中的技术方案为解决上述技术问题,总体思路如下:
本发明的目的在于提供一种传输吸波结构,可用于天线带内特性测试;
本发明的另一个目的在于提供一种天线带内特性测试系统,能够解决传统方法对测试场地要求较高的问题。
常规近场法带内特性测试的步骤:
1)将待测天线按中华人民共和国电子行业军用标准SJ20884-2003《相控阵天线测试方法》中规定的平面近场测试具体要求在微波暗室内进行架设,测试探头与待测天线之间的距离需要控制在3λ~10λ之间;
2)按图1所示的连接关系进行测试系统与待测天线的连接;
3)利用平面近场测试系统采集带内不同频点天线口径场的幅相分布;
4)利用近远场变换得到包含测试系统带内幅相特性的待测天线远场幅相特性;
5)将待测天线换成带内幅相特性已知的标准天线;
6)利用平面近场重复步骤1)~步骤4),且探头到标准天线之间的距离要与步骤1)中测待测天线之间的距离相同,得到标准天线包含测试系统带内幅相特性的带内幅相特性;
7)根据标准天线已知的带内幅相特性标定出测试系统的带内幅相特性;
8)根据测试系统带内幅相特性的标定数据,得到待测天线的带内幅相特性。
发明人通过对上述步骤的分析发现传统方法存在以下缺点:
1、需要对测试系统的带内幅相特性进行标定。
2、目前用于天线测试的标准天线只有标准增益喇叭天线,该喇叭天线厂家仅提供天线的带内幅度特性,而不提供天线的带内相位特性。需要采用远场法对此天线的相位特性进行独立标定。
3、需要在微波暗室内进行测试,测试场地要求高,难以进行温度特性测试。
为了解决上述问题,提供了一种基于感应场区的天线带内特性测试系统,整个测试系统包括传输吸波结构1、待测天线2、矢量网络分析仪3及相应的测试电缆等部分组成。其中待测天线2与传输吸波结构1之间采用对面平行限位放置,传输吸波结构1可完整地接收待测天线2所辐射出的电磁波,且传输吸波结构1可等幅同相接收天线感应场区的电磁能量,从而模拟天线平面波照射情况。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
本发明提供了一种传输吸波结构,包括:
耦合馈电结构11,其上开设有与待测天线2进行能量耦合的耦合缝隙111,所述耦合缝隙111用于与待测天线2进行能量耦合;
两个平行设置的等效电壁结构12;
两个平行设置的等效磁壁结构13;
所述等效电壁结构12与等效磁壁结构13包围耦合馈电结构11,且所述等效电壁结构12与等效磁壁结构13构成一个TEM模波导;
所述等效电壁结构12以及所述等效磁壁结构13高出所述耦合馈电结构11的高度H小于待测天线2的中频工作波长。
在本发明中,等效电壁与等效磁壁是搭配使用的,其作用是等效一个TEM模波导,理论上四个对象放置的电壁(电壁对电壁)与磁壁(磁壁对磁壁)就形成了一个标准的TEM模波导,可在封闭环境内模拟平面波对待测天线的照射。
实施例1:
本实施例中待测天线2是用于一维大角度扫描相控阵的天线线阵,具体的,是一个包含6个缝隙作为辐射单元的线极化裂缝波导线阵,极化方向垂直于线阵方向,线阵间距为0.72λ(λ是中频工作波长)。
因此,如图2所示,本实施例提供一种传输吸波结构,包括:
耦合馈电结构11,用于与待测天线单元2之间进行电磁耦合传输。
具体的:本实施例中所述耦合馈电结构11采用与传统缝隙波导天线相同的耦合馈电结构,其上开有与待测天线辐射单元间距相同的六个耦合缝隙111,以与待测天线辐射单元之间进行电磁能量的强耦合。
两个平行设置的等效电壁结构12。
具体的,在本实施例中,两个所述等效电壁结构12采用金属板,使其等效为与天线辐射电场相垂直的等效电壁,且两个金属板的距离dx与待测天线2在此方向的阵中单元E面间距相同。
两个平行设置的等效磁壁结构13。
具体的,在本实施例中,两个所述等效磁壁结构13采用微带电路实现,例如采用介质双面电路板,两个介质双面电路板的距离dy与待测天线2的H面长度相同,同时在内表面上蚀刻有周期电路131,使其在工作频带内设计成一个人工等效磁壁。
所述等效电壁结构与等效磁壁结构包围耦合馈电结构,且所述等效电壁结构与等效磁壁结构构成一个TEM模波导;
同时,所述等效电壁结构12以及所述等效磁壁结构13高出所述耦合馈电结构11的高度H小于待测天线2的中频工作波长。
等效电壁结构12以及所述等效磁壁结构13构成的TEM波导、与天线进行能量耦合的耦合缝隙和对其进行激励的耦合馈电结构一起,可实现吸波传输功能,可在闭合空间能实现对天线带内幅相特性的测试。
实施例2:
本实施例中待测天线2是一个用于两维大角度扫描相控阵的天线单元,具体的,天线单元采用一个线极化微带贴片天线,天线单元在阵中的单元间距为dx=0.5λ、dy=0.55λ(λ是中频工作波长),天线单元的极化方向沿着x方向。
因此,如图3所示,本实施例提供一种传输吸波结构,包括:
耦合馈电结构11,用于与待测天线单元2之间进行电磁耦合传输。
具体的,耦合馈电结构11是采用腔体式平行双缝结构,其上开有两个与待测天线2极化相垂直且相互平行的耦合缝隙111,以便与待测天线单元之间进行电磁耦合传输。
两个平行设置的等效电壁结构12。
具体的,在本实施例中,两个所述等效电壁结构12采用金属板,使其等效为与天线辐射电场相垂直的等效电壁,且两个金属板的距离dx与待测天线2在此方向的阵中单元E面间距相同。
两个平行设置的等效磁壁结构13。
具体的,在本实施例中,两个所述等效磁壁结构13采用微带电路实现,例如采用介质双面电路板,两个介质双面电路板的距离dy与待测天线2在此方向的阵中单元H面间距相同,同时在内表面上蚀刻有周期电路131,使其在工作频带内设计成一个人工等效磁壁。
所述等效电壁结构12与等效磁壁结构13包围耦合馈电结构11,且所述等效电壁结构12与等效磁壁结构13构成一个TEM模波导;
同时,所述等效电壁结构12以及所述等效磁壁结构13高出所述耦合馈电结构11的高度H小于待测天线2的中频工作波长。
等效电壁结构12以及所述等效磁壁结构13构成的TEM波导、与天线进行能量耦合的耦合缝隙和对其进行激励的耦合馈电结构一起,可实现吸波传输功能,可在闭合空间能实现对天线带内幅相特性的测试。
实施例3
如图4所示,本发明还提供了一种天线带内特性测试系统,该系统包括:矢量网络分析仪3以及与所述矢量网络分析仪3电性连接的待测天线2;
一个传输吸波结构1,与所述矢量网络分析仪3电性连接,并处于待测天线2的感应场区;
所述传输吸波结构1包括:
耦合馈电结构11,其上开设有与天线进行能量耦合的耦合缝隙111,所述耦合缝隙111用于与待测天线2进行能量耦合;
两个平行设置的等效电壁结构12;
两个平行设置的等效磁壁结构13;
所述等效电壁结构与等效磁壁结构包围耦合馈电结构,且所述等效电壁结构与等效磁壁结构构成一个TEM模波导;
所述等效电壁结构12以及所述等效磁壁结构13高出所述耦合馈电结构11的高度小于待测天线的中频工作波长。
可选的,所述测试系统还包括另一个所述传输吸波结构4,用于在测试前替换待测天线2以对测试系统进行校正。
可选的,所述测试系统还包括:温度箱(图中未示出),用于在测试时,在其内部放置所述待测天线2与传输吸波结构1。
本发明实施例的测试系统的测试步骤如下:
1)按图4架设待测天线2与传输吸波结构1,两者之间平行对向放置,间距取小于λ;即传输吸波结构的电磁接口面与天线单元的辐射端面的间距d取小于λ;
2)对矢量网络分析仪3及测试电缆进行传输直通校准;
3)测试传输吸波结构1与待测天线2之间的幅相传播常数;
4)利用两个完全相同的传输吸波结构1和4按图4方式平行对向放置,间距与步骤1)相同,重复步骤1)~步骤3),完成传播吸波结构1的幅相特性的校正;
5)对数据进行处理得到待测天线2的带内幅相特性。
此外,还可将待测天线2与传输吸波结构1放置于普通的温度箱内,利用此测试方法与传输吸波结构1,将温度箱设定为需要的温度,即可对天线的幅相的温度特性进行测试。
可理解的是,本发明实施例提供的传输吸波结构1与实施例1、2中的传输吸波结构1相对应,其有关内容的解释、举例、有益效果等部分可以参考实施例1、2中的传输吸波结构1中的相应内容,此处不再赘述。
如图5、6所示,构建了一个测试系统,在温度箱内对一个由8行线阵组成的待测天线阵中的两个线阵的幅相特性随工作温度变化的影响情况,图5给出了工作中心频率点待测天线传输幅度随温变化曲线,可见两个线阵的幅度特性在100℃的温度变化范围内变化小于0.1dB。图6给出了工作中心频率点待测天线传输相位随温变化曲线,可见线阵的插入相位随温度的升高表现出明显的下降趋势,同时两线阵插入相位随温度的变化量基本一致,若以常温插入相位进行归一化,则宽温范围内的相位差将小于1°,表现了该测试系统及方法较高的幅相测试精度。
综上所述,与现有技术相比,本发明具备以下有益效果:
(1)本发明的传输吸波结构通过等效电壁与等效磁壁是搭配使用的,使其四个对象放置的电壁(电壁对电壁)与磁壁(磁壁对磁壁)形成了一个标准的TEM模波导,可在封闭环境内模拟平面波对待测天线的照射。
(2)本发明的测试系统是基于封闭的感应场区进行构建的,相对于传统近场法或远场法,电磁泄漏小,测试环境无需吸波材料,不需要在微波近场或远场暗室内开展测试。
(3)本发明的测试系统可通过将待测天线更换为另外一个通过机械加工保证的带内特性完全一样传输吸波结构,从而完成测试系统的高精度自校正。
(4)本发明的测试系统的待测天线和传输吸波结构可完整地放于普通温度箱内,可对宽温范围内的天线带内特性进行测试。
需要说明的是,通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (9)
- 一种传输吸波结构,其特征在于,包括:耦合馈电结构,其上开设有与天线进行能量耦合的耦合缝隙,所述耦合缝隙用于与待测天线进行能量耦合;两个平行设置的等效电壁结构;两个平行设置的等效磁壁结构;所述等效电壁结构与等效磁壁结构包围耦合馈电结构,且所述等效电壁结构与等效磁壁结构构成一个TEM模波导;所述等效电壁结构以及所述等效磁壁结构高出所述耦合馈电结构的高度小于待测天线的中频工作波长。
- 如权利要求1所述的一种传输吸波结构,其特征在于,所述待测天线为一维天线线阵时,所述耦合缝隙的数量与待测天线单元的数量相同,且所述耦合缝隙的间距与待测天线单元的间距相同。
- 如权利要求1所述的一种传输吸波结构,其特征在于,所述待测天线为二维相控阵天线阵中单元时,所述耦合缝隙与待测天线极化相垂直,且所述耦合缝隙间相互平行。
- 如权利要求3所述的一种传输吸波结构,其特征在于,所述耦合缝隙为腔体式平行双缝结构。
- 如权利要求1所述的一种传输吸波结构,其特征在于,所述等效电壁结构为金属板,且两个金属板的间距与待测天线在此方向的阵中单元E面间距相同。
- 如权利要求3所述的一种传输吸波结构,其特征在于,所述等效磁壁结构采用微带电路实现,两个所述等效磁壁结构的间距与待测天线在此方向的阵中单元H面间距相同。
- 一种天线带内特性测试系统,包括矢量网络分析仪以及与所述矢量网络分析仪电性连接的待测天线,其特征在于,该测试系统还包括:一个传输吸波结构,与所述矢量网络分析仪电性连接,并处于待测天线的感应场区;所述传输吸波结构包括:耦合馈电结构,其上开设有与天线进行能量耦合的耦合缝隙,所述耦合缝隙用于与待测天线进行能量耦合;两个平行设置的等效电壁结构;两个平行设置的等效磁壁结构;所述等效电壁结构与等效磁壁结构包围耦合馈电结构,且所述等效电壁结构与等效磁壁结构构成一个TEM模波导;所述等效电壁结构以及所述等效磁壁结构高出所述耦合馈电结构的高度小于待测天线的中频工作波长。
- 如权利要求7所述的一种天线带内特性测试系统,其特征在于,所述测试系统还包括另一个所述传输吸波结构,用于在测试前替换待测天线以对测试系统进行校正。
- 如权利要求7所述的一种天线带内特性测试系统,其特征在于,当所述待测天线为一维天线线阵时,所述耦合缝隙的数量与待测天线单元的数量相同,且所述耦合缝隙的间距与待测天线单元的间距相同;当所述待测天线为二维相控阵天线阵中单元时,所述耦合缝隙与待测天线极化相垂直,且所述耦合缝隙间相互平行;且所述等效电壁结构为金属板,且两个金属板的间距与待测天线在此方向的阵中单元E面间距相同;所述等效磁壁结构采用微带电路实现,两个所述等效磁壁结构的间距与待测天线在此方向的阵中单元H面间距相同。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/331,663 US11828781B2 (en) | 2022-04-29 | 2023-06-08 | Transmission absorbing structure and antenna in-band characteristics test system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210462369.9A CN114583428B (zh) | 2022-04-29 | 2022-04-29 | 传输吸波结构和天线带内特性测试系统 |
CN202210462369.9 | 2022-04-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/331,663 Continuation US11828781B2 (en) | 2022-04-29 | 2023-06-08 | Transmission absorbing structure and antenna in-band characteristics test system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023206922A1 true WO2023206922A1 (zh) | 2023-11-02 |
Family
ID=81779030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/118910 WO2023206922A1 (zh) | 2022-04-29 | 2022-09-15 | 传输吸波结构和天线带内特性测试系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114583428B (zh) |
WO (1) | WO2023206922A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11828781B2 (en) | 2022-04-29 | 2023-11-28 | 38Th Research Institute, China Electronics Technology Group Corporation | Transmission absorbing structure and antenna in-band characteristics test system |
CN114583428B (zh) * | 2022-04-29 | 2022-07-12 | 中国电子科技集团公司第三十八研究所 | 传输吸波结构和天线带内特性测试系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5861753A (en) * | 1996-07-23 | 1999-01-19 | Thermo Voltek Europe B.V. | Electromagnetic compatibility (EMC) test cell |
JP2015049203A (ja) * | 2013-09-04 | 2015-03-16 | 独立行政法人情報通信研究機構 | コモンモード伝導妨害波測定装置 |
CN110470874A (zh) * | 2019-09-12 | 2019-11-19 | 深圳市蓉声科技有限公司 | 一种天线测试系统及其线缆组件 |
CN213602012U (zh) * | 2020-10-20 | 2021-07-02 | 佛山市安捷信通讯设备有限公司 | 超薄型吸顶天线装置 |
CN114137481A (zh) * | 2021-09-18 | 2022-03-04 | 北京航空航天大学 | 一种基于低频柱面源天线阵列的电磁散射测试系统及方法 |
CN114583428A (zh) * | 2022-04-29 | 2022-06-03 | 中国电子科技集团公司第三十八研究所 | 传输吸波结构和天线带内特性测试系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2239642C (en) * | 1997-06-26 | 2001-05-29 | Geza Dienes | Antenna for radiating cable-to-vehicle communication systems |
US7576703B1 (en) * | 2006-04-25 | 2009-08-18 | Rockwell Collins, Inc. | Parallel waveguide slot coupler with reactive buffering region |
CN105425185A (zh) * | 2014-12-30 | 2016-03-23 | 北京无线电计量测试研究所 | 一种平面波幅相性能直角坐标扫描校准系统及方法 |
CN105548729B (zh) * | 2016-02-22 | 2019-07-05 | 石家庄世联达科技有限公司 | 一种阵列天线辐射特性的快速测量方法 |
CN208872779U (zh) * | 2018-08-21 | 2019-05-17 | 湖北三江航天险峰电子信息有限公司 | 一种天线温漂相位稳定性测试箱及测试系统 |
US10749256B1 (en) * | 2019-01-30 | 2020-08-18 | Raytheon Company | Waveguide adapter for slot antennas |
CN112904095A (zh) * | 2021-02-05 | 2021-06-04 | 西安交通大学 | 一种阵列天线近场校准系统及方法 |
CN112834830A (zh) * | 2021-02-05 | 2021-05-25 | 中国人民解放军海军航空大学航空作战勤务学院 | 一种天线近场耦合测量装置及方法 |
-
2022
- 2022-04-29 CN CN202210462369.9A patent/CN114583428B/zh active Active
- 2022-09-15 WO PCT/CN2022/118910 patent/WO2023206922A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5861753A (en) * | 1996-07-23 | 1999-01-19 | Thermo Voltek Europe B.V. | Electromagnetic compatibility (EMC) test cell |
JP2015049203A (ja) * | 2013-09-04 | 2015-03-16 | 独立行政法人情報通信研究機構 | コモンモード伝導妨害波測定装置 |
CN110470874A (zh) * | 2019-09-12 | 2019-11-19 | 深圳市蓉声科技有限公司 | 一种天线测试系统及其线缆组件 |
CN213602012U (zh) * | 2020-10-20 | 2021-07-02 | 佛山市安捷信通讯设备有限公司 | 超薄型吸顶天线装置 |
CN114137481A (zh) * | 2021-09-18 | 2022-03-04 | 北京航空航天大学 | 一种基于低频柱面源天线阵列的电磁散射测试系统及方法 |
CN114583428A (zh) * | 2022-04-29 | 2022-06-03 | 中国电子科技集团公司第三十八研究所 | 传输吸波结构和天线带内特性测试系统 |
Non-Patent Citations (3)
Title |
---|
GAO -SHENG LI, MING YONG-JIN: "Radome Equivalent Transmission Line Theory and Application", COMMUNICATIONS TECHNOLOGY, vol. 47, no. 1, 10 January 2014 (2014-01-10), pages 7 - 12, XP093103789 * |
HAN YI-DAN; ZHU BANG-CAI; YAN ZE-HONG: "Design of A Wave-Absorbing Frequency Selective Surface Unit", 2018 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), IEEE, 21 July 2018 (2018-07-21), pages 1 - 2, XP033398565, DOI: 10.1109/CSQRWC.2018.8455705 * |
ZHANG WEI; LI JIANYING; XIE JIAN: "Dual-Frequency Tunable Wave Absorbing Structure Based on Frequency Selective Surface", 2018 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, IEEE, 8 July 2018 (2018-07-08), pages 2057 - 2058, XP033496353, DOI: 10.1109/APUSNCURSINRSM.2018.8608489 * |
Also Published As
Publication number | Publication date |
---|---|
CN114583428A (zh) | 2022-06-03 |
CN114583428B (zh) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023206922A1 (zh) | 传输吸波结构和天线带内特性测试系统 | |
US20240014907A1 (en) | Method, apparatus and system for measuring total radiated power of array antenna | |
CN102818942B (zh) | 天线远场参数校准装置及校准方法 | |
US11372037B2 (en) | Freespace antenna measurement system | |
Cai et al. | Small anechoic chamber design method for on-line and on-site passive intermodulation measurement | |
Isom et al. | Design and development of multiband coaxial continuous transverse stub (CTS) antenna arrays | |
Zhang et al. | Plane wave generator in non-anechoic radio environment | |
Tang et al. | Efficient Angle Calibration Method for Peak Beam Measurements in Transmitarray-Based Compact Antenna Test Range | |
CN112763818A (zh) | 一种小屏蔽体宽频带屏蔽效能测量装置及方法 | |
Smolders | Design and construction of a broadband wide-scan angle phased-array antenna with 4096 radiating elements | |
US11828781B2 (en) | Transmission absorbing structure and antenna in-band characteristics test system | |
CN217820801U (zh) | 一种平面波生成装置及平面波生成装置测试系统 | |
Foged et al. | Modern Automotive Antenna Measurements | |
Narang et al. | Design and characterization of microstrip based E-field sensor for GSM and UMTS frequency bands | |
Clemente et al. | Antenna measurements from 50 MHz to millimeter wave frequencies at the CEA-Leti far-field facility | |
Mandaris | High strength electromagnetic field generation for radiated EMI measurements | |
Ghosh et al. | Radiation from rectangular waveguide-fed fractal apertures | |
Hietpas | Applications & Considerations for Double-Ridge Guide Horn Antennas. | |
Khadka | Evaluation of Radio Anechoic Chamber | |
Solbach | Phased array simulation using circular patch radiators | |
JPH11133079A (ja) | 電磁波結合装置 | |
Sevgi et al. | Antenna calibration for EMC tests and measurements | |
Ramani et al. | Comparison Between Shielding Effectiveness of Slotted Cavities in a Mode Stirred Chamber and Free Space | |
Herd | Full wave analysis of proximity coupled rectangular microstrip antenna arrays | |
Ji et al. | A novel method to measure small antennas using a wideband coaxial cone TEM cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22939746 Country of ref document: EP Kind code of ref document: A1 |