WO2023206666A1 - 分布式水冷散热装置 - Google Patents

分布式水冷散热装置 Download PDF

Info

Publication number
WO2023206666A1
WO2023206666A1 PCT/CN2022/094077 CN2022094077W WO2023206666A1 WO 2023206666 A1 WO2023206666 A1 WO 2023206666A1 CN 2022094077 W CN2022094077 W CN 2022094077W WO 2023206666 A1 WO2023206666 A1 WO 2023206666A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat dissipation
heat
cooling
chamber
Prior art date
Application number
PCT/CN2022/094077
Other languages
English (en)
French (fr)
Inventor
赵党生
娄耀郏
李焱
张勇
陆游
丁奕嘉
Original Assignee
北京市鑫全盛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京市鑫全盛科技有限公司 filed Critical 北京市鑫全盛科技有限公司
Publication of WO2023206666A1 publication Critical patent/WO2023206666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20209Thermal management, e.g. fan control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to the field of heat dissipation of electronic devices, and in particular to a distributed water-cooling heat dissipation device.
  • the water-cooling radiator with better heat dissipation effect usually includes a water pump unit, a heat exchange unit, a header cooling unit including a fan, and Composed of connecting water pipes.
  • the heat dissipation circuit of the prior art includes a heat dissipation unit 1, a heat exchange unit 2, a driving unit 3 and a connecting pipeline 4.
  • the heat dissipation unit 1 further includes a U-shaped waterway heat dissipation assembly 101, a water inlet chamber 1011, a water outlet Chamber 1012, rotating water chamber 1013, water inlet 1014, water outlet 1015, etc.
  • the heat dissipation working method of the prior art is as follows: the water pump in the driving unit 3 drives the water to flow through the heat exchange unit 2 to exchange heat, and then the hot water flows out.
  • the high-temperature water flows through the connecting pipe 4 to the water inlet chamber 1014 in the upper half of the hot water drain.
  • the water flow in the chamber 1014 flows to the rotating water chamber 1013 through the multiple diverting water channels (high-frequency pipes) 1016 in the upper half of the water radiator. (frequency pipe) flows to the water outlet chamber 1015, and then returns the water to the pump head through the connecting pipe 4 to exchange heat with the heat source again. as shown in picture 2.
  • Folding heat dissipation belts are welded between the exteriors of multiple high-frequency pipe flow channels of the heat dissipation unit. Under the air convection provided by the fan, the water temperature of the water body is gradually reduced along the direction of the water flow.
  • the heat dissipation methods of the existing technology have the following problems:
  • the water-cooling radiator in the prior art only has a single water drain, and its heat dissipation capacity is affected by the specifications of the water drain.
  • the larger the specification of a single water drain the stronger the heat dissipation capacity, but it is limited by the size of the chassis and the As for the installation conditions, the current largest drain specification is 120*480mm, which can install four 120 specification cooling fans.
  • the heat dissipation capacity of the water drain has become one of the main bottlenecks in the heat dissipation capacity of water cooling systems.
  • the existing water radiator is designed as a U-shaped waterway radiator assembly with a "U"-shaped flow channel. After the hot water flows from the inlet water chamber to the rotating water chamber through the upper part of the header pipe, it needs to be turned back in the rotating water chamber. 180° and then flows to the outlet water chamber through the lower part of the header pipe. During this process, the water flow resistance is very large, and a large number of eddies will be formed in the rotating water chamber, which greatly consumes the power output of the water pump and affects the overall flow of the system.
  • each cooling fan needs to span 50% of the relative hot water flow channels and 50% of the cold water. flow channel.
  • the greater the temperature difference between the object to be cooled and the ambient temperature the better the heat dissipation effect. If the temperature difference between the object to be cooled and the ambient air temperature is small, the fan will not work as well as it should. From the above analysis, it can be seen that in the prior art, any cooling fan installed on the water radiator has half corresponding to the relative high temperature difference and the other half corresponding to the relative low temperature difference, which ultimately results in the fan's working efficiency not being optimal.
  • the purpose of the present invention is to provide a distributed water-cooling heat dissipation device that can form a larger effective heat dissipation area under the existing chassis capacity and water-cooling radiator installation conditions through series connection or parallel connection or a combination of series and parallel connection.
  • the present invention provides a distributed water-cooling heat dissipation device, which includes a heat dissipation unit, a heat exchange unit and a driving unit;
  • the heat dissipation unit includes a plurality of heat dissipation radiator assemblies and a plurality of heat dissipation fans;
  • the plurality of heat dissipation radiator assemblies are respectively arranged on Electronic equipment is accommodated in different installation positions of the box; multiple cooling fans are fixed on multiple heat dissipation components;
  • the heat exchange unit is used to exchange heat with the heat source, and the drive unit is used to drive the fluid flow; among them, the heat dissipation unit and the heat exchange unit
  • the driving unit is coupled and connected through the connecting pipe to form a conductive loop.
  • the heat dissipation assembly includes a one-way through-water channel heat dissipation assembly.
  • the one-way through-water channel heat dissipation assembly includes a water inlet chamber, a water outlet chamber and a plurality of diverted water channels, and the water inlet chamber and the water outlet chamber are respectively arranged in multiple opposite directions.
  • the water inlet chamber is provided with a water inlet
  • the water outlet chamber is provided with a water outlet.
  • Multiple diversion water channels are arranged in parallel and extend in the length direction.
  • the outer walls of the diversion water channels have corrugated heat sinks that are connected and fixed in sequence.
  • a one-way communication path is formed through the water inlet, the water inlet chamber, the plurality of divided water channels, the water outlet chamber and the water outlet.
  • the water-cooled multiple branch water channels also include a U-shaped water channel heat dissipation assembly, the water inlet chamber and the water outlet chamber are both arranged at the same end of the U-shaped water channel heat dissipation assembly, and the water inlet chamber and the water outlet chamber are two An independent chamber is connected to the same rotating water chamber at the other end through multiple split water channels.
  • the multiple split water channels are arranged in parallel and extend in the length direction.
  • the outer walls of the split water channels have corrugated heat sinks that are connected and fixed in sequence. The fluid passes through the inlet in sequence. Water inlet, water inlet chamber, multiple diversion water channels, rotating water chamber, water outlet chamber and U-shaped water channel conduction passage of the water outlet.
  • the plurality of heat sink assemblies are sequentially connected in series in a series mode in which the water outlet of one heat sink assembly is conductively connected to the water inlet of another heat sink assembly through a connecting pipe to form a series conductive water path.
  • parallel conduction is used between the heat dissipation components to form a parallel conduction waterway, and the parallel conduction waterway includes a main waterway and a branch waterway;
  • the fluid in the main water channel is divided to form multiple water channels. After the multiple water channels flow into the water inlets of the multiple heat sink assemblies, they flow out from the respective water outlets and merge to form the main water channel again.
  • At least two of the plurality of heat dissipation assemblies are connected in parallel and then connected in series to at least one other heat dissipation assembly.
  • At least two of the plurality of heat dissipation assemblies are connected in series and then connected in parallel to at least one other heat dissipation assembly.
  • the driving unit and the heat exchange unit are integrated and arranged to form an integrated heat exchange driving unit; the driving unit and the heat exchange unit are arranged independently to form a separated heat exchange unit.
  • Driving unit, the separated heat exchange driving unit includes one or more heat exchange units and driving units.
  • the heat exchange units are connected in parallel to form a parallel water channel, and the parallel water channel includes a main water channel and a branch water channel; wherein the fluid in the main water channel is divided to form a plurality of branch water channels, and the branch water channels are respectively After flowing into the water inlets of multiple heat exchange units, they flow out from their respective water outlets and merge to form the main waterway again.
  • one or more drive units are electrically connected to the parallel heat exchange unit.
  • multiple cooling fans can be set to different rated rotation speeds according to the waterway positions of different cooling units.
  • the distributed water-cooling heat dissipation device of the present invention has the following beneficial effects:
  • multiple sets of water radiators can be connected in series or parallel or a combination of series and parallel to form a larger effective heat dissipation area under the existing limited chassis capacity and water cooling radiator installation conditions.
  • a one-way through water channel heat dissipation assembly is used, that is, the inlet water chamber and the outlet water chamber are respectively arranged in the collector.
  • the water-cooling liquid in the water-cooled radiator header flows in one direction, which avoids the eddy current caused by the short-distance rotation of the U-shaped water radiator assembly in the prior art, reduces the system impedance, and improves the water flow efficiency.
  • the fan in the cooling system Differential definitions can be made based on the position of the corresponding cold liquid in the flow channel. That is, the fan on the water-cooling radiator that is closer to the high-temperature water flowing out of the heat-exchanged device after heat exchange can be defined as a higher speed, and the fan on the water-cooling radiator can be defined as a higher speed.
  • the fan installed on the water cooling radiator near the rear end after heat dissipation can be set to a lower speed, which can ensure lower energy consumption and lower noise while ensuring improved system heat dissipation effect.
  • Figure 1 is a schematic structural diagram of a heat dissipation unit according to an embodiment of the prior art
  • Figure 2 is a schematic structural diagram of a water-cooled radiator assembly according to an embodiment of the prior art
  • Figure 3 is a schematic structural diagram of a distributed water-cooling heat dissipation device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a chassis with a distributed water cooling device according to an embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a one-way through waterway heat dissipation assembly according to an embodiment of the present invention
  • Figure 6 is a schematic structural diagram of a combination of multiple one-way through waterway heat dissipation components according to an embodiment of the present invention
  • Figure 7 is a schematic structural diagram of a series-connected water channel according to an embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of another series-connected water channel according to an embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of a parallel conductive waterway according to an embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of a series-parallel connection waterway according to an embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of a multi-heat source water circuit according to an embodiment of the present invention.
  • 1-heat dissipation unit 101-radiator assembly, 1011-water inlet chamber, 1012-water outlet chamber, 1013-rotating water chamber, 1014-water inlet, 1015-water outlet, 1016-diversion water channel, 1017-wavy heat sink, 1018 -One-way straight-through waterway radiator assembly, 1019-U-shaped waterway radiator assembly, 102-cooling fan, 2-heat exchange unit, 3-drive unit, 4-connecting pipeline, 5-separate heat exchange drive unit, 6 -Integrated heat exchange drive unit, 10-cooling unit group.
  • a distributed water-cooling heat dissipation device includes a heat dissipation unit 1 and an integrated heat exchange driving unit 6.
  • the heat dissipation unit 1 includes a plurality of heat dissipation assemblies 101 and a plurality of heat dissipation fans 102 .
  • the plurality of heat sink assemblies 101 are respectively arranged at different installation positions of the electronic equipment housing box.
  • a plurality of cooling fans 102 are fixed on a plurality of heat sink assemblies 101 .
  • the heat dissipation assembly 101 may be, but is not limited to, a cold exhaust integrated heat exchange drive unit 6 including a heat exchange unit 2 and a drive unit 3.
  • the heat exchange unit 2 is used to exchange heat with the heat source, and the drive unit 3 is used to drive fluid flow.
  • the heat exchange unit 2 may be, but is not limited to, a cold head that exchanges heat with a heat source, and the driving unit 3 may be, for example, but is not limited to a water pump.
  • the heat dissipation unit 1, the heat exchange unit 2 and the driving unit 3 are coupled and connected through the connecting pipe 4 to form a conductive loop.
  • a heat dissipation unit 1 is arranged on the top and front panel of the chassis respectively.
  • the heat dissipation unit 1 includes a heat dissipation assembly 101 and a cooling fan 102 fixedly installed on the heat dissipation assembly.
  • the integrated heat exchange drive unit 6 and the motherboard CPU For direct contact heat exchange, the integrated heat exchange drive unit 6 is connected to the two heat sink assemblies 101 through the connecting pipeline 4 .
  • the cooling components are distributed on the top and front panel of the chassis, and can also be placed on the left panel, right panel, etc.
  • the heat dissipation assembly 101 includes a one-way through waterway heat dissipation assembly 1018.
  • the one-way through waterway heat dissipation assembly 1018 includes a water inlet chamber 1011, a water outlet chamber 1012 and a plurality of branch water channels. 1016.
  • the outer wall of the diversion water channel 1016 has wavy heat dissipation belts 1017 that are connected and fixed in sequence, and the water inlet chamber 1011 and the water outlet chamber 1012 are respectively arranged at both ends of the plurality of diversion water channels 1016.
  • the water inlet chamber 1011 is provided with a water inlet 1014, and the water outlet is provided with a water inlet 1014.
  • the chamber 1012 is provided with a water outlet 1015.
  • the outer wall of the diversion water channel 1016 has wavy heat dissipation belts 1017 that are connected and fixed in sequence.
  • the diversion water channel 1016 has a hollow cavity. Multiple diversion water channels 1016 extend in the length direction to abut the water outlet chamber 1012 and the water inlet chamber 1011. The coupling is conducted, and the fluid passes through the water inlet 1014, the water inlet chamber 1011, a plurality of branch water channels 1016, the water outlet chamber 1012 and the water outlet 1015 in one direction.
  • the heat dissipation assembly 101 of this embodiment can also include the prior art U-shaped water channel heat dissipation assembly 1019 and the one-way straight water channel heat dissipation assembly 1018 for use in combination to adapt to the integration of different installation locations and different heat dissipation requirements. .
  • the water inlet chamber 1011 and the outlet water chamber 1012 of the U-shaped water path heat dissipation assembly 1019 are both located at the same end of the U-shaped water path heat dissipation assembly 1019.
  • the water inlet chamber 1011 and the water outlet chamber 1012 are two independent chambers.
  • the chamber is connected to the rotary water chamber at the other end through multiple shunt water channels.
  • the fluid passes through the water inlet 1014, the water inlet chamber 1015, multiple shunt water channels 1016, the rotary water chamber 1013, the water outlet chamber 1012 and the U-shaped water channel of the water outlet 1015.
  • a plurality of branch water channels 1016 are arranged in parallel and extend in the length direction.
  • the outer walls of the branch water channels 1016 have wavy heat dissipation belts 1017 that are connected and fixed in sequence.
  • multiple heat sink assemblies 101 are connected in sequence with the water outlet 1015 of one heat sink assembly 101 connected to the water inlet 1014 of another heat sink assembly 101 through the connecting pipe 4
  • the series pattern of connections forms a series conduction water path.
  • the embodiment of FIG. 8 is a series-connected water path composed of two one-way through water path heat dissipation components 1018, a U-shaped water path heat dissipation component 1019, and a separate heat exchange drive unit 5.
  • parallel conduction is used between the heat dissipation components 101 to form a parallel conduction water channel
  • the parallel conduction water channel includes a main water channel and a branch water channel.
  • the fluid in the main water channel is divided to form multiple branch water channels. After the multiple water channels flow into the water inlets 1014 of the multiple heat sink assemblies 101, they flow out from the respective water outlets 1015 and merge to form the main water channel again.
  • the heat exchange unit 2 and the drive unit 3 are divided into: an integrated heat exchange drive unit 6 and a separate heat exchange drive unit 5 according to the different arrangements.
  • the integrated heat exchange drive unit 6 integrates the drive unit 3 and the heat exchange unit 2 into one body.
  • the separate heat exchange drive unit 5 is provided independently from the drive unit 3 and the heat exchange unit 2 .
  • the separated heat exchange driving unit 5 includes one or more heat exchange units 2, and the driving unit 3 of the separated heat exchange driving unit 5 includes one or more water pumps.
  • At least two of the plurality of heat sink assemblies 101 are connected in parallel and then connected in series to at least one other heat sink assembly 101.
  • the specifications of the heat sink assembly 101 in this embodiment can be The same or different.
  • two 120*480mm straight-through radiator components 1018 are connected in parallel and then connected in series with a 280*140mm straight-through radiator component 1018 to connect with the heat exchange unit 2 and the drive unit 3 .
  • At least two of the plurality of heat dissipation assemblies 101 are connected in series and then connected in parallel to at least one other heat dissipation assembly 101 (not shown).
  • the heat exchange units 2 are connected in parallel to form a parallel water channel, and the parallel water channel includes a main water channel and a branch water channel. The fluid in the main water channel is divided to form multiple branch water channels. After the branch water channels flow into the water inlets 1014 of the multiple heat exchange units 2, they flow out from the respective water outlets 1015 and merge to form the main water channel again.
  • one or more water pumps are connected to the parallel heat exchange units 2 and then connected to the heat dissipation unit group 10.
  • the heat dissipation unit group 10 can be a plurality of heat dissipation radiators.
  • the series connection of the components 101 can also be a parallel connection of the water channel, or a combination of series and parallel connection of the water channel.
  • the heat dissipation assembly 101 may also be a combination of multiple specifications, or may be a combination of a one-way straight waterway heat dissipation assembly 1018 and a U-shaped waterway heat dissipation assembly 1019 .
  • the present invention is not limited thereto.
  • multiple integrated heat exchange drive units 5 or separate heat exchange drive units 6 can be arranged in parallel and then connected to the heat dissipation unit.
  • multiple cooling fans 102 can be set at different rated speeds according to the water path positions of different cooling units 1 , that is, the fans on the water cooling radiator located closer to the high-temperature water flowing out of the heat-dissipated device after heat exchange can be used. It is defined as a higher speed, and the fan configured on the water cooling radiator close to the rear end after stepwise heat dissipation can be set to a lower speed.
  • the distributed water cooling device of the present invention has the following advantages:
  • multiple sets of water radiators can be installed in different locations to form a larger effective heat dissipation area under the existing limited chassis capacity and water-cooling radiator installation conditions through series or parallel connection or a combination of series and parallel connections.
  • a one-way through water channel heat dissipation assembly is used, that is, the inlet water chamber and the outlet water chamber are respectively arranged in the collector.
  • the water-cooling liquid in the water-cooled radiator header flows in one direction, which avoids the eddy current caused by the short-distance rotation of the U-shaped water radiator assembly in the prior art, reduces the system impedance, and improves the water flow efficiency.
  • the fan in the cooling system Differential definitions can be made based on the position of the corresponding cold liquid in the flow channel. That is, the fan on the water-cooling radiator that is closer to the high-temperature water flowing out of the heat-exchanged device after heat exchange can be defined as a higher speed, and the fan on the water-cooling radiator can be defined as a higher speed.
  • the fan installed on the water cooling radiator near the rear end after heat dissipation can be set to a lower speed, which can ensure lower energy consumption and lower noise while ensuring improved system heat dissipation effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明公开了一种分布式水冷散热装置,包括散热单元、换热单元和驱动单元;散热单元包括多个散热排组件及多个散热风扇;多个散热排组件分别设置在电子设备容置箱体的不同安装位置;多个散热风扇固定在多个散热排组件上;换热单元用以与热源进行热量交换,驱动单元用以驱动流体流动;散热单元、换热单元以及驱动单元通过连接管路耦合连接形成导通回路。本发明的分布式水冷散热装置,能够通过串联或者并联或者串并联结合的形式,具有较好散热效果。

Description

分布式水冷散热装置
本申请要求北京市鑫全盛科技有限公司于2022年04月29日向中国专利局提交的、申请号为202210465306.9、发明名称为“分布式水冷散热器”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明是关于电子装置的散热领域,特别是关于一种分布式水冷散热装置。
背景技术
随着电子信息技术的发展,台式个人计算机运算能力越来越强,伴随而来的是CPU、GPU以及系统其它原件发热量的不断提升,因此对电脑系统散热能力的要求也越来越高。
目前台式个人电脑中CPU或GPU等核心器件的各种散热方案中,散热效果比较好的是水冷散热器,它通常包括一个水泵单元、一个换热单元、一个包括风扇的集流管散热单元和连接水管组成。如图1所示,现有技术的散热回路包括散热单元1、换热单元2、驱动单元3以及连接管路4,其中散热单元1又包括U型水路散热排组件101、入水室1011、出水室1012及回转水室1013和入水口1014及出水口1015等。
现有技术的散热工作方式为:驱动单元3中水泵驱动水流经换热单元2换热后将热水流出,高温水经由连接管路4流至散热水排上半部的入水室1014,入水室1014的水流通过散热水排上半部的多个分流水道(高频管)1016流至回转水室1013并在水流汇聚后调转180°经由散热水排下半部的多个流道(高频管)流至出水室1015,再经由连接管路4将水流回泵头再次对热源换热。如图2所示。
在散热单元的多个高频管流道的外部之间焊接有折叠散热带,在风扇提供的空气对流下,实现水体水温沿水流方向的逐级降低。
现有技术的散热方式存在以下问题:
首先,现有技术中的水冷散热器中的只有单一的散热水排,其散热能力受水排规格的影响,通常单一水排的规格越大,散热能力越强,但受限于机箱尺寸及安装条件,目前最大的水排规格为120*480mm,即可装4个120规格散热风扇。随着CPU发热功率的逐步提升,水排的散热能力已经成为水冷散热系统散热能力的主要瓶颈之一。
其次,现有技术中的散热水排散热效率较低,具体分析如下:
现有散热水排的设计方式为一个“U”形流道的U型水路散热排组件,热水从入水水室经由上半部分集流管流至回转水室后,需要在回转水室折返180°再经下半部分的集流管流至出水水室。在这个过程中,水流阻力很大,同时会在回转水室形成大量涡流,极大消耗了水泵的动力输出,影响了系统整体的流量。
另外,在U型水路散热排组件,水温会随着在散热水排中流动而逐渐降低,在这种布置下每一个散热风扇都需要横跨50%的相对热水流道和50%的冷水流道。众所周知,风扇提供的强制对流空气流场下,被散热物体与环境温度之间的温差越大,散热效果越好。如果被散热物体与环境空气温度之间温差很小时,风扇的工作将起不到应有的作用。由上述分析可知,在现有技术中,设置于散热水排之上的任一一个散热风扇都存在一半对应相对高温差,另一半对应相对低温差,最终导致风扇工作效率无法达成最优。
鉴于上述原因,有必要提出一种全新的散热思路以解决现有技术的上述问题。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种分布式水冷散热装置,其能够通过串联或者并联或者串并联结合的形式,在现有的机箱箱体容量和水冷排安装条件下,形成更大的有效散热面积。
为实现上述目的,本发明提供了一种分布式水冷散热装置,包括散热单元以及换热单元和驱动单元;散热单元包括多个散热排组件及多个散热风扇;多个散热排组件分别设置在电子设备容置箱体的不同安装位置;多个散热风扇固定在多个散热排组件上;换热单元用以与热源进行热量交换,驱动单元用以驱动流体流动;其中散热单元、换热单元以及驱动单元通过连接管路耦合连接形成导通回路。
在一优选的实施方式中,散热排组件包括单向直通水路散热排组件,单向直通水路散热排组件包括入水室、出水室及多个分流水道,且入水室和出水室分别相对设置在多个分流水道的两端,入水室设置有入水口,出水室设置有出水口,多个分流水道为平行设置并向长度方向延伸,分流水道外侧壁具有依次连接固定的波浪形散热带,流体依次经过所述入水口、所述入水室、所述多个分流水道、所述出水室以及所述出水口形成单向导通通路。
在一优选的实施方式中,水冷多个分流水道还包括U型水路散热排组件,其入水水室和出水水室均设置在U型水路散热排组件的同一端,入水室和出水室为两个独立腔室并通过多个分流水道与另一端同一回转水室连接,多个分流水道为平行设置并向长度方向延伸, 分流水道外侧壁具有依次连接固定的波浪形散热带,流体依次经过入水口、入水室、多个分流水道、回转水室、出水室以及出水口的U型水路导通通路。
在一优选的实施方式中,多个散热排组件依次以一个散热排组件的出水口通过连接管路与另一个散热排组件的入水口导通连接的串联模式形成串联导通水路。
在一优选的实施方式中,散热排组件之间采用并联导通形成并联导通水路,并联导通水路包括主水路和分水路;
其中主水路的流体经分流后形成多个分水路,多个分水路分别流入多个散热排组件的入水口后,再从各自的出水口分别流出经过汇流后再次形成主水路。
在一优选的实施方式中,多个散热排组件的其中至少两个并联连接后与至少另一个散热排组件串联连接导通。
在一优选的实施方式中,多个散热排组件的其中至少两个串联连接后与至少另一个散热排组件并联连接导通。
在一优选的实施方式中,所述驱动单元与所述换热单元集成为一体设置,形成一体式换热驱动单元;所述驱动单元与所述换热单元分开独立设置,形成分离式换热驱动单元,所述分离式换热驱动单元包括一个或多个换热单元及驱动单元。
在一优选的实施方式中,换热单元之间并联导通形成并联导通水路,并联导通水路包括主水路和分水路;其中主水路的流体经分流后形成多个分水路,分水路分别流入多个换热单元的入水口后,再从各自的出水口分别流出经过汇流后再次形成主水路。
在一优选的实施方式中,一个或多驱动单元与并联后的换热单元连接导通设置。
在一优选的实施方式中,多个散热风扇能够根据不同散热单元的水路位置设置不同的额定转速。
与现有技术相比,本发明的分布式水冷散热装置具有以下有益效果:
首先,多组水排通过串联或者并联或者串并联结合的形式,可以在现有的有限机箱箱体容量和水冷排安装条件下,形成更大的有效散热面积。
第二,本发明的分布式水冷散热装置中,针对于一组多个冷排中的单一冷排,采用了单向直通水路散热排组件,即入口水室与出口水室分别设置在集流管两端,因此水冷排集流管中的水冷液全部单向流动,避免了现有技术中的U型水路散热排组件因短距离回转造成的涡流,降低了系统阻抗,提升了水流效率。
第三,单向直通水路散热排组件因为是单向流动,其冷液水温在一个散热风扇覆盖的范围内是相近的,因此散热风扇的散热效率也可以得到提升,因此该散热系统中的风扇可 以根据其对应的冷液在流道中的位置进行差异化定义,即距被散热器件经热交换后流出的高温水较近位置的水冷排上的风扇可定义为较高转速,而经逐级散热后接近后端的水冷排所配置的风扇可设置为较低转速,这样在保证系统散热效果提升的同时,可以形成更低的能耗和更低的噪音。
附图说明
图1是根据现有技术一实施方式的散热单元的结构示意图;
图2是根据现有技术一实施方式的水冷散热器组件的结构示意图;
图3是根据本发明一实施方式的分布式水冷散热装置的结构示意图;
图4是根据本发明一实施方式的具有分布式水冷散热装置机箱的结构示意图;
图5是根据本发明一实施方式的单向直通水路散热排组件的结构示意图;
图6是根据本发明一实施方式的多个单向直通水路散热排组件组合的结构示意图;
图7是根据本发明一实施方式的一种串联导通水路的结构示意图;
图8是根据本发明一实施方式的另一种串联导通水路的结构示意图;
图9是根据本发明一实施方式的一种并联导通水路的结构示意图;
图10是根据本发明一实施方式的一种串并联导通水路的结构示意图;
图11是根据本发明一实施方式的一种多发热源水路的结构示意图。
主要附图标记说明:
1-散热单元,101-散热排组件,1011-入水室,1012-出水室,1013-回转水室,1014-入水口,1015-出水口,1016-分流水道,1017-波浪形散热带,1018-单向直通水路散热排组件,1019-U型水路散热排组件,102-散热风扇,2-换热单元,3-驱动单元,4-连接管路,5-分离式换热驱动单元,6-一体式换热驱动单元,10-散热单元组。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
如图3至图6所示,根据本发明优选实施方式的一种分布式水冷散热装置,包括散热 单元1以及一体式换热驱动单元6。散热单元1包括多个散热排组件101及多个散热风扇102。多个散热排组件101分别设置在电子设备容置箱体的不同安装位置。多个散热风扇102固定在多个散热排组件101上。散热排组件101可以是但不限于冷排一体式换热驱动单元6包括换热单元2及驱动单元3,换热单元2用以与热源进行热量交换,驱动单元3用以驱动流体流动。换热单元2可以是但不限于和发热源进行热量交换的冷头,驱动单元3例如是但不限于水泵。其中散热单元1、换热单元2以及驱动单元3通过连接管路4耦合连接形成导通回路。
如图4所示,机箱的顶部和前面板分别布置有散热单元1,散热单元1中包括散热排组件101及固定安装在散热排组件的散热风扇102,一体式换热驱动单元6与主板CPU直接接触换热,通过连接管路4将一体式换热驱动单元6与两个散热排组件101连接导通。散热组件为分布式设置在机箱的顶部和前面板,还可以设置在左面板、右面板等位置。
如图5至图6所示,在一些实施方式中,散热排组件101包括单向直通水路散热排组件1018,单向直通水路散热排组件1018包括入水室1011、出水室1012及多个分流水道1016,分流水道1016外侧壁具有依次连接固定的呈波浪形散热带1017,且入水室1011和出水室1012分别相对设置在多个分流水道1016的两端,入水室1011设置有入水口1014,出水室1012设置有出水口1015。
在一些实施方式中,分流水道1016外侧壁具有依次连接固定的呈波浪形散热带1017,分流水道1016具有中空腔室,多个分流水道1016长度方向延伸与出水室1012和入水室1011抵接并耦合导通,流体依次经过入水口1014、入水室1011、多个分流水道1016、出水室1012以及出水口1015单向导通。
在一些实施方式中,本实施例的散热排组件101也可以包括现有技术的U型水路散热排组件1019与单向直通水路散热排组件1018组合使用,以适应不同安装位置集成和不同散热需求。
在一些实施方式中,U型水路散热排组件1019,其入水水室1011和出水水室1012均设置在U型水路散热排组件1019的同一端,入水室1011和出水室1012为两个独立腔室并通过多个分流水道与另一端回转水室连接,流体依次经过入水口1014、入水室1015、多个分流水道1016、回转水室1013、出水室1012以及出水口1015的U型水路导通通路,多个分流水道1016为平行设置向长度方向延伸,分流水道1016外侧壁具有依次连接固定的呈波浪形散热带1017。
如图7至图8所示,在一些实施方式中,多个散热排组件101依次以一个散热排组件 101的出水口1015通过连接管路4与另一个散热排组件101的入水口1014导通连接的串联模式形成串联导通水路。图8实施例即为两个单向直通水路散热排组件1018与一个U型水路散热排组件1019以及一个分离式换热驱动单元5组合而成的串联导通水路。
如图9所示,在一些实施方式中,散热排组件101之间采用并联导通形成并联导通水路,并联导通水路包括主水路和分水路。其中主水路的流体经分流后形成多个分水路,多个分水路分别流入多个散热排组件101的入水口1014后,再从各自的出水口1015分别流出经过汇流后再次形成主水路。
在一些实施方式中,根据换热单元2和驱动单元3的设置方式不同分为:一体式换热驱动单元6以及分离式换热驱动单元5。一体式换热驱动单元6是将驱动单元3与换热单元2集成为一体设置。分离式换热驱动单元5为驱动单元3与换热单元2分开独立设置。其中分离式换热驱动单元5包括一个或多个换热单元2,分离式换热驱动单元5的驱动单元3包括一个或多个水泵。
如图10所示,在一些实施方式中,多个散热排组件101的其中至少两个并联连接后与至少另一个散热排组件101串联连接导通,该实施例的散热排组件101的规格可以相同,也可以不相同。例如是但不限于采用两个120*480mm直通式散热排组件1018并联后再与一个280*140mm直通式散热排组件1018串联后与换热单元2与驱动单元3连通。
在一些实施方式中,多个散热排组件101的其中至少两个串联连接后与至少另一个散热排组件101并联连接导通(未绘示)。在一些实施方式中,换热单元2之间并联导通形成并联导通水路,并联导通水路包括主水路和分水路。其中主水路的流体经分流后形成多个分水路,分水路分别流入多个换热单元2的入水口1014后,再从各自的出水口1015分别流出经过汇流后再次形成主水路。
如图11所示,在一些实施方式中,一个或多个水泵与并联后的换热单元2连接导通设置,然后再与散热单元组10连通,该散热单元组10可以是多个散热排组件101的串联导通水路,也可以是并联导通水路,还可以是串联、并联的组合导通水路。散热排组件101也可以是多种规格的组合,也可以是单向直通水路散热排组件1018和U型水路散热排组件1019的组合。本发明并不以此为限。
在一些实施方式中,多个一体式换热驱动单元5或分离式换热驱动单元6可以并联设置后与散热单元连通。
在一些实施方式中,多个散热风扇102能够根据不同散热单元1的水路位置设置不同的额定转速,即:距被散热器件经热交换后流出的高温水较近位置的水冷排上的风扇可定 义为较高转速,而经逐级散热后接近后端的水冷排所配置的风扇可设置为较低转速。
综上所述,本发明的分布式水冷散热装置具有以下优点:
首先,多组水排通过串联或者并联或者串并联结合的形式,可以在现有的有限的机箱箱体容量和水冷排安装条件下,可以安装在不同位置形成更大的有效散热面积。
第二,本发明的分布式水冷散热装置中,针对于一组多个冷排中的单一冷排,采用了单向直通水路散热排组件,即入口水室与出口水室分别设置在集流管两端,因此水冷排集流管中的水冷液全部单向流动,避免了现有技术中的U型水路散热排组件因短距离回转造成的涡流,降低了系统阻抗,提升了水流效率。
第三,单向直通水路散热排组件因为是单向流动,其冷液水温在一个散热风扇覆盖的范围内是相近的,因此散热风扇的散热效率也可以得到提升,因此该散热系统中的风扇可以根据其对应的冷液在流道中的位置进行差异化定义,即距被散热器件经热交换后流出的高温水较近位置的水冷排上的风扇可定义为较高转速,而经逐级散热后接近后端的水冷排所配置的风扇可设置为较低转速,这样在保证系统散热效果提升的同时,可以形成更低的能耗和更低的噪音。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (11)

  1. 一种分布式水冷散热装置,其特征在于,包括:
    散热单元,其包括:
    多个散热排组件,其分别设置在电子设备容置箱体的不同安装位置;及
    多个散热风扇,其固定在所述多个散热排组件上;以及
    换热单元,所述换热单元用以与热源进行热量交换;
    驱动单元,所述驱动单元用以驱动流体流动;
    其中所述散热单元、所述换热单元以及所述驱动单元通过连接管路耦合连接形成导通回路。
  2. 如权利要求1所述的分布式水冷散热装置,其特征在于,所述散热排组件包括单向直通水路散热排组件,所述单向直通水路散热排组件包括入水室、出水室及多个分流水道,且所述入水室和所述出水室分别相对设置在所述多个分流水道的两端,所述多个分流水道为平行设置并向长度方向延伸,且所述分流水道外侧壁具有依次连接固定的波浪形散热带,所述入水室设置有入水口,所述出水室设置有出水口,流体依次经过所述入水口、所述入水室、所述多个分流水道、所述出水室以及所述出水口形成单向导通通路。
  3. 如权利要求1所述的分布式水冷散热装置,其特征在于,所述散热排组件还包括U型水路散热排组件,其入水水室和出水水室均设置在所述U型水路散热排组件的同一端,所述入水室和出水室为两个独立腔室并通过多个分流水道与另一端同一回转水室连接,所述多个分流水道为平行设置并向长度方向延伸,且所述分流水道外侧壁具有依次连接固定的波浪形散热带,流体依次经过所述入水口、所述入水室、所述多个分流水道、所述回转水室、所述出水室以及所述出水口的U型水路导通通路。
  4. 如权利要求1所述的分布式水冷散热装置,其特征在于,多个所述散热排组件依次以一个所述散热排组件的出水口通过连接管路与另一个所述散热排组件的入水口导通连接的串联模式形成串联导通水路。
  5. 如权利要求1所述的分布式水冷散热装置,其特征在于,所述散热排组件之间采用并联导通形成并联导通水路,所述并联导通水路包括主水路和分水路;
    其中所述主水路的流体经分流后形成多个所述分水路,所述多个分水路分别流入多个所述散热排组件的入水口后,再从各自的出水口分别流出经过汇流后再次形成所述主水路。
  6. 如权利要求1所述的分布式水冷散热装置,其特征在于,所述多个散热排组件的其中至少两个并联连接后与至少另一个所述散热排组件串联连接导通。
  7. 如权利要求1所述的分布式水冷散热装置,其特征在于,所述多个散热排组件的其中至少两个串联连接后与至少另一个所述散热排组件并联连接导通。
  8. 如权利要求1所述的分布式水冷散热装置,其特征在于,所述驱动单元与所述换热单元集成为一体设置,形成一体式换热驱动单元,所述驱动单元与所述换热单元分开独立设置,形成分离式换热驱动单元,所述分离式换热驱动单元包括一个或多个换热单元及驱动单元。
  9. 如权利要求8所述的分布式水冷散热装置,其特征在于,所述换热单元之间并联导通形成并联导通水路,所述并联导通水路包括主水路和分水路;
    其中所述主水路的流体经分流后形成多个所述分水路,所述分水路分别流入多个所述换热单元的入水口后,再从各自的出水口分别流出经过汇流后再次形成所述主水路。
  10. 如权利要求9所述的分布式水冷散热装置,其特征在于,所述一个或多个驱动单元与并联后的换热单元连接导通设置。
  11. 如权利要求1所述的分布式水冷散热装置,其特征在于,所述多个散热风扇能够根据不同所述散热单元的水路位置设置不同的额定转速。
PCT/CN2022/094077 2022-04-29 2022-05-20 分布式水冷散热装置 WO2023206666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210465306.9 2022-04-29
CN202210465306.9A CN114885577A (zh) 2022-04-29 2022-04-29 分布式水冷散热装置

Publications (1)

Publication Number Publication Date
WO2023206666A1 true WO2023206666A1 (zh) 2023-11-02

Family

ID=82673420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094077 WO2023206666A1 (zh) 2022-04-29 2022-05-20 分布式水冷散热装置

Country Status (2)

Country Link
CN (1) CN114885577A (zh)
WO (1) WO2023206666A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118068940A (zh) * 2024-04-22 2024-05-24 北京市九州风神科技股份有限公司 一种水冷散热装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204104273U (zh) * 2014-02-20 2015-01-14 河北瑞发汽车散热器有限公司 服务器机柜水冷散热装置
JP2015185708A (ja) * 2014-03-25 2015-10-22 パナソニックIpマネジメント株式会社 冷却装置とこれを備えたデータセンター
CN207151063U (zh) * 2017-08-18 2018-03-27 深圳市研派科技有限公司 一种高功率液体散热装置
CN207281691U (zh) * 2017-09-18 2018-04-27 深圳市高昱电子科技有限公司 风冷水冷一体装置
CN214507770U (zh) * 2021-09-22 2021-10-26 四川科跃热传电子有限公司 一种液冷散热水排单进单出单排结构
CN215529706U (zh) * 2021-07-19 2022-01-14 深圳市万景华科技有限公司 散热装置
CN114047811A (zh) * 2021-12-07 2022-02-15 东莞市凯普电子有限公司 一种水冷散热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204104273U (zh) * 2014-02-20 2015-01-14 河北瑞发汽车散热器有限公司 服务器机柜水冷散热装置
JP2015185708A (ja) * 2014-03-25 2015-10-22 パナソニックIpマネジメント株式会社 冷却装置とこれを備えたデータセンター
CN207151063U (zh) * 2017-08-18 2018-03-27 深圳市研派科技有限公司 一种高功率液体散热装置
CN207281691U (zh) * 2017-09-18 2018-04-27 深圳市高昱电子科技有限公司 风冷水冷一体装置
CN215529706U (zh) * 2021-07-19 2022-01-14 深圳市万景华科技有限公司 散热装置
CN214507770U (zh) * 2021-09-22 2021-10-26 四川科跃热传电子有限公司 一种液冷散热水排单进单出单排结构
CN114047811A (zh) * 2021-12-07 2022-02-15 东莞市凯普电子有限公司 一种水冷散热器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118068940A (zh) * 2024-04-22 2024-05-24 北京市九州风神科技股份有限公司 一种水冷散热装置

Also Published As

Publication number Publication date
CN114885577A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN109944806B (zh) 并联双泵导液装置及其液冷散热系统
CN108235655B (zh) 一种采用液冷散热的易插拔的服务器机柜
TWI687640B (zh) 散熱系統及其冷卻液分配模組
WO2023206666A1 (zh) 分布式水冷散热装置
CN113365477B (zh) 冷却装置、机柜及数据处理设备
WO2021258837A1 (zh) 液冷散热装置、液冷数据处理设备以及均温方法
CN105916358A (zh) 一种充电机散热系统
CN206149693U (zh) 一种散热机构及具有热源的设备
WO2023078397A1 (zh) 液冷服务器
CN2612070Y (zh) 液冷式散热装置
CN114531825B (zh) 一种电源辅助散热设计方法、服务器电源、数据中心
CN209787684U (zh) 用于冷却电子设备的液冷装置及电子设备
CN217742102U (zh) 分布式水冷散热装置
CN215982881U (zh) 一种空调机组用高效翅片换热器
TW202242605A (zh) 冷卻裝置、冷卻組合件、以及用於冷卻計算系統的方法
KR101897931B1 (ko) 전자 장치의 프로세서 냉각 시스템
CN219872306U (zh) 一种内存散热器
CN107809879A (zh) 一种散热机构及具有热源的设备
CN218498192U (zh) 一种散热均匀的电池包用水冷板
CN221238209U (zh) 一种换热风机
CN111045496A (zh) 一种迷你主机电脑cpu散热器
CN218972929U (zh) 一种液压油生产用节能式冷却装置
CN219916301U (zh) 一种分体式水冷工控机及无人驾驶汽车
CN214664793U (zh) 一种传热效率高的风机盘管
CN219876726U (zh) 一种液冷换热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939500

Country of ref document: EP

Kind code of ref document: A1