WO2023204470A1 - 인공 지능 장치 및 그의 화자 자동 인식 방법 - Google Patents
인공 지능 장치 및 그의 화자 자동 인식 방법 Download PDFInfo
- Publication number
- WO2023204470A1 WO2023204470A1 PCT/KR2023/004106 KR2023004106W WO2023204470A1 WO 2023204470 A1 WO2023204470 A1 WO 2023204470A1 KR 2023004106 W KR2023004106 W KR 2023004106W WO 2023204470 A1 WO2023204470 A1 WO 2023204470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speaker
- node
- speech data
- new
- processor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 59
- 230000004044 response Effects 0.000 claims abstract description 110
- 230000006690 co-activation Effects 0.000 claims description 17
- 238000002372 labelling Methods 0.000 claims description 9
- 238000003062 neural network model Methods 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 230000003044 adaptive effect Effects 0.000 abstract description 14
- 238000005516 engineering process Methods 0.000 description 39
- 238000013528 artificial neural network Methods 0.000 description 31
- 230000006870 function Effects 0.000 description 29
- 230000003993 interaction Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000010801 machine learning Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 210000002569 neuron Anatomy 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- 238000001994 activation Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 238000003058 natural language processing Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 210000000225 synapse Anatomy 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/02—Preprocessing operations, e.g. segment selection; Pattern representation or modelling, e.g. based on linear discriminant analysis [LDA] or principal components; Feature selection or extraction
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/04—Training, enrolment or model building
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/22—Interactive procedures; Man-machine interfaces
Definitions
- This disclosure relates to an artificial intelligence device capable of automatically recognizing a speaker based on adaptive self-learning through active queries and a method for automatically recognizing a speaker thereof.
- artificial intelligence is a field of computer engineering and information technology that studies ways to enable computers to do things like thinking, learning, and self-development that can be done with human intelligence. This means enabling imitation of intelligent behavior.
- artificial intelligence does not exist by itself, but is directly or indirectly related to other fields of computer science.
- attempts are being made very actively to introduce artificial intelligence elements in various fields of information technology and use them to solve problems in those fields.
- the artificial intelligence models of home appliances that provide these services can perform speaker recognition to provide customized services for each individual.
- a speaker registration procedure in advance is essential for individual speaker recognition by the artificial intelligence model.
- the artificial intelligence model in order to provide a personalized service through a voice assistant, the artificial intelligence model must identify the speaker only with voice data, so users are required to go through an initial registration process before using the service.
- This initial registration process had to be carried out in a situation where there was no voice data of the new speaker, so there was a problem that it required a lot of time, and unregistered users were restricted from using the service, so they had to go through the registration process every time a new user was added. There was an inconvenience.
- the artificial intelligence model of the home appliance that provides the service does not provide the corresponding service when a new user suddenly requests a service in a home environment when there is a situation where the members using the service and the total number of members are unknown. It may not be possible.
- the present disclosure aims to solve the above-described problems and other problems.
- the present disclosure improves speaker recognition accuracy and service quality by automatically learning the new speaker's speech data and automatically registering the new speaker in the speaker list by providing active questions to the new speaker along with uncertainty measurement of the input speech data.
- the purpose is to provide an artificial intelligence device and a method for automatically recognizing speakers.
- An artificial intelligence device includes a memory that stores a pre-learned speaker list, and a processor that identifies a new speaker from input speech data, and the processor generates speech data when speech data is input. Preprocess, identify a new speaker based on the preprocessed speech data, output an active question for the identified new speaker, and when the new speaker's response speech data to the output active question is input, the new speaker's response speech data is generated. Based on this, new speakers can be learned and registered in the speaker list.
- the automatic speaker recognition method of an artificial intelligence device includes the steps of receiving speaker's speech data, preprocessing the speaker's speech data, and identifying whether the speaker is a new speaker based on the preprocessed speech data. , when identified as a new speaker, outputting an active question for the new speaker, receiving the new speaker's response speech data to the active question, learning a new speaker based on the new speaker's response speech data, and learning. It may include registering a new speaker in the speaker list.
- the artificial intelligence device provides active questions to the new speaker along with uncertainty measurement for the input speech data, automatically learns the speech data of the new speaker, and automatically registers the new speaker in the speaker list. By doing so, speaker recognition accuracy and service quality can be improved.
- FIG 1 shows an artificial intelligence device according to an embodiment of the present disclosure.
- Figure 2 shows an artificial intelligence server according to an embodiment of the present disclosure.
- Figure 3 shows an artificial intelligence system according to an embodiment of the present disclosure.
- FIG. 4 is a diagram for explaining the operation of an artificial intelligence device according to an embodiment of the present disclosure.
- FIG. 5 is a diagram illustrating a method of adding a new speaker in an artificial intelligence device according to an embodiment of the present disclosure.
- 6 to 14 are diagrams for explaining a neural network model of an artificial intelligence device according to an embodiment of the present disclosure.
- Figure 15 is a diagram for explaining a new speaker registration process of an artificial intelligence device according to an embodiment of the present disclosure.
- 16 to 18 are diagrams showing speaker recognition accuracy performance results for the neural network model of an artificial intelligence device according to an embodiment of the present disclosure.
- 19 and 20 are diagrams for explaining the overall operation flow of an artificial intelligence device according to an embodiment of the present disclosure.
- a neural network may consist of a set of interconnected computational units, which can generally be referred to as “nodes.” These “nodes” may also be referred to as “neurons.”
- a neural network is composed of at least two or more nodes. The nodes (or neurons) that make up neural networks may be interconnected by one or more “links.”
- Machine learning refers to the field of defining various problems dealt with in the field of artificial intelligence and researching methodologies to solve them. it means.
- Machine learning is also defined as an algorithm that improves the performance of a task through consistent experience.
- ANN Artificial Neural Network
- ANN is a model used in machine learning and can refer to an overall model with problem-solving capabilities that is composed of artificial neurons (nodes) that form a network through the combination of synapses.
- Artificial neural networks can be defined by connection patterns between neurons in different layers, a learning process that updates model parameters, and an activation function that generates output values.
- An artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer includes one or more neurons, and the artificial neural network may include synapses connecting neurons. In an artificial neural network, each neuron can output the activation function value for the input signals, weight, and bias input through the synapse.
- Model parameters refer to parameters determined through learning and include the weight of synaptic connections and the bias of neurons.
- Hyperparameters refer to parameters that must be set before learning in a machine learning algorithm and include learning rate, number of repetitions, mini-batch size, initialization function, etc.
- the purpose of learning an artificial neural network can be seen as determining model parameters that minimize the loss function.
- the loss function can be used as an indicator to determine optimal model parameters in the learning process of an artificial neural network.
- Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning depending on the learning method.
- Supervised learning refers to a method of training an artificial neural network with a given label for the learning data, and the label is the correct answer (or result value) that the artificial neural network must infer when the learning data is input to the artificial neural network. It can mean.
- Unsupervised learning can refer to a method of training an artificial neural network in a state where no labels for training data are given.
- Reinforcement learning can refer to a learning method in which an agent defined within an environment learns to select an action or action sequence that maximizes the cumulative reward in each state.
- machine learning implemented as a deep neural network (DNN) that includes multiple hidden layers is also called deep learning, and deep learning is a part of machine learning.
- DNN deep neural network
- machine learning is used to include deep learning.
- a robot can refer to a machine that automatically processes or operates a given task based on its own abilities.
- a robot that has the ability to recognize the environment, make decisions on its own, and perform actions can be called an intelligent robot.
- Robots can be classified into industrial, medical, household, military, etc. depending on their purpose or field of use.
- a robot is equipped with a driving unit including an actuator or motor and can perform various physical movements such as moving robot joints.
- a mobile robot includes wheels, brakes, and propellers in the driving part, and can travel on the ground or fly in the air through the driving part.
- Autonomous driving refers to technology that drives on its own, and an autonomous vehicle refers to a vehicle that drives without user intervention or with minimal user intervention.
- autonomous driving includes technology that maintains the driving lane, technology that automatically adjusts speed such as adaptive cruise control, technology that automatically drives along a set route, technology that automatically sets the route and drives once the destination is set, etc. All of these can be included.
- Vehicles include vehicles equipped only with an internal combustion engine, hybrid vehicles equipped with both an internal combustion engine and an electric motor, and electric vehicles equipped with only an electric motor, and may include not only cars but also trains and motorcycles.
- the self-driving vehicle can be viewed as a robot with self-driving functions.
- Extended reality refers collectively to virtual reality (VR), augmented reality (AR), and mixed reality (MR).
- VR technology provides objects and backgrounds in the real world only as CG images
- AR technology provides virtual CG images on top of images of real objects
- MR technology provides computer technology that mixes and combines virtual objects in the real world. It is a graphic technology.
- MR technology is similar to AR technology in that it shows real objects and virtual objects together. However, in AR technology, virtual objects are used to complement real objects, whereas in MR technology, virtual objects and real objects are used equally.
- XR technology can be applied to HMD (Head-Mount Display), HUD (Head-Up Display), mobile phones, tablet PCs, laptops, desktops, TVs, digital signage, etc., and devices with XR technology applied are called XR Devices. It can be called.
- HMD Head-Mount Display
- HUD Head-Up Display
- mobile phones tablet PCs, laptops, desktops, TVs, digital signage, etc.
- XR Devices It can be called.
- Figure 1 shows an AI device 100 according to an embodiment of the present disclosure.
- the AI device 100 includes TVs, projectors, mobile phones, smartphones, desktop computers, laptops, digital broadcasting terminals, PDAs (personal digital assistants), PMPs (portable multimedia players), navigation, tablet PCs, wearable devices, and set-top boxes ( It can be implemented as a fixed or movable device, such as STB), DMB receiver, radio, washing machine, refrigerator, desktop computer, digital signage, robot, vehicle, etc.
- the AI device 100 includes a communication unit 110, an input unit 120, a learning processor 130, a sensing unit 140, an output unit 150, a memory 170, and a processor 180. It may include etc.
- the communication unit 110 can transmit and receive data with external devices such as other AI devices 100a to 100e or the AI server 200 using wired or wireless communication technology.
- the communication unit 110 may transmit and receive sensor information, user input, learning models, and control signals with external devices.
- communication technologies used by the communication unit 110 include GSM (Global System for Mobile communication), CDMA (Code Division Multi Access), LTE (Long Term Evolution), 5G, WLAN (Wireless LAN), and Wi-Fi (Wireless- Fidelity), Bluetooth, RFID (Radio Frequency Identification), Infrared Data Association (IrDA), ZigBee, NFC (Near Field Communication), etc.
- GSM Global System for Mobile communication
- CDMA Code Division Multi Access
- LTE Long Term Evolution
- 5G Fifth Generation
- WLAN Wireless LAN
- Wi-Fi Wireless- Fidelity
- Bluetooth Bluetooth
- RFID Radio Frequency Identification
- IrDA Infrared Data Association
- ZigBee ZigBee
- NFC Near Field Communication
- the input unit 120 can acquire various types of data.
- the input unit 120 may include a camera for inputting video signals, a microphone for receiving audio signals, and a user input unit for receiving information from the user.
- the camera or microphone may be treated as a sensor, and the signal obtained from the camera or microphone may be referred to as sensing data or sensor information.
- the input unit 120 may acquire training data for model learning and input data to be used when obtaining an output using a learning model.
- the input unit 120 may acquire unprocessed input data, and in this case, the processor 180 or the learning processor 130 may extract input features by preprocessing the input data.
- the learning processor 130 can train a model composed of an artificial neural network using training data.
- the learned artificial neural network may be referred to as a learning model.
- a learning model can be used to infer a result value for new input data other than learning data, and the inferred value can be used as the basis for a decision to perform a certain operation.
- the learning processor 130 may perform AI processing together with the learning processor 240 of the AI server 200 of FIG. 2.
- the learning processor 130 may include a memory integrated or implemented in the AI device 100.
- the learning processor 130 may be implemented using the memory 170, an external memory directly coupled to the AI device 100, or a memory maintained in an external device.
- the sensing unit 140 may use various sensors to obtain at least one of internal information of the AI device 100, information about the surrounding environment of the AI device 100, and user information.
- the sensors included in the sensing unit 140 include a proximity sensor, illuminance sensor, acceleration sensor, magnetic sensor, gyro sensor, inertial sensor, RGB sensor, IR sensor, fingerprint recognition sensor, ultrasonic sensor, light sensor, microphone, and There are Ida, Radar, etc.
- the output unit 150 may generate output related to vision, hearing, or tactile sensation.
- the output unit 150 may include a display unit that outputs visual information, a speaker that outputs auditory information, and a haptic module that outputs tactile information.
- the memory 170 may store data supporting various functions of the AI device 100.
- the memory 170 may store input data, learning data, learning models, learning history, etc. obtained from the input unit 120.
- the processor 180 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. Additionally, the processor 180 may control the components of the AI device 100 to perform the determined operation.
- the processor 180 may request, retrieve, receive, or utilize data from the learning processor 130 or the memory 170, and may perform an operation that is predicted or is determined to be desirable among the at least one executable operation. Components of the AI device 100 can be controlled to execute.
- the processor 180 may generate a control signal to control the external device and transmit the generated control signal to the external device.
- the processor 180 may obtain intent information regarding user input and determine the user's request based on the obtained intent information.
- the processor 180 uses at least one of a STT (Speech To Text) engine for converting voice input into a character string or a Natural Language Processing (NLP) engine for acquiring intent information of natural language, Intent information corresponding to user input can be obtained.
- STT Seech To Text
- NLP Natural Language Processing
- At this time, at least one of the STT engine or the NLP engine may be composed of at least a portion of an artificial neural network learned according to a machine learning algorithm. And, at least one of the STT engine or the NLP engine is learned by the learning processor 130, learned by the learning processor 240 of the AI server 200, or learned by distributed processing thereof. It may be.
- the processor 180 collects history information including the operation content of the AI device 100 or user feedback on the operation, and stores it in the memory 170 or the learning processor 130, or the AI server 200, etc. Can be transmitted to external devices. The collected historical information can be used to update the learning model.
- the processor 180 may control at least some of the components of the AI device 100 to run an application program stored in the memory 170. Furthermore, the processor 180 may operate two or more of the components included in the AI device 100 in combination with each other in order to run the application program.
- Figure 2 shows an AI server 200 according to an embodiment of the present disclosure.
- the AI server 200 may refer to a device that trains an artificial neural network using a machine learning algorithm or uses a learned artificial neural network.
- the AI server 200 may be composed of a plurality of servers to perform distributed processing, and may be defined as a 5G network.
- the AI server 200 may be included as a part of the AI device 100 and may perform at least part of the AI processing.
- the AI server 200 may include a communication unit 210, a memory 230, a learning processor 240, and a processor 260.
- the communication unit 210 can transmit and receive data with an external device such as the AI device 100.
- the memory 230 may include a model storage unit 231.
- the model storage unit 231 may store a model (or artificial neural network, 231a) that is being trained or has been learned through the learning processor 240.
- the learning processor 240 can train the artificial neural network 231a using training data.
- the learning model may be used while mounted on the AI server 200 of the artificial neural network, or may be mounted and used on an external device such as the AI device 100.
- the learning model may be implemented in hardware, software, or a combination of hardware and software. When part or all of the learning model is implemented as software, one or more instructions constituting the learning model may be stored in the memory 230.
- the processor 260 may infer a result value for new input data using a learning model and generate a response or control command based on the inferred result value.
- Figure 3 shows an AI system 1 according to an embodiment of the present invention.
- the AI system 1 includes at least one of an AI server 200, a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e. It is connected to this cloud network (10).
- a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e to which AI technology is applied may be referred to as AI devices 100a to 100e.
- the cloud network 10 may constitute part of a cloud computing infrastructure or may refer to a network that exists within the cloud computing infrastructure.
- the cloud network 10 may be configured using a 3G network, 4G, Long Term Evolution (LTE) network, or 5G network.
- each device (100a to 100e, 200) constituting the AI system 1 may be connected to each other through the cloud network 10.
- the devices 100a to 100e and 200 may communicate with each other through a base station, but may also communicate directly with each other without going through the base station.
- the AI server 200 may include a server that performs AI processing and a server that performs calculations on big data.
- the AI server 200 is connected to at least one of the AI devices constituting the AI system 1: a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e. It is connected through the cloud network 10 and can assist at least some of the AI processing of the connected AI devices 100a to 100e.
- the AI server 200 can train an artificial neural network according to a machine learning algorithm on behalf of the AI devices 100a to 100e, and directly store or transmit the learning model to the AI devices 100a to 100e.
- the AI server 200 receives input data from the AI devices 100a to 100e, infers a result value for the received input data using a learning model, and provides a response or control command based on the inferred result value. It can be generated and transmitted to AI devices (100a to 100e).
- the AI devices 100a to 100e may infer a result value for input data using a direct learning model and generate a response or control command based on the inferred result value.
- AI devices 100a to 100e to which the above-described technology is applied will be described.
- the AI devices 100a to 100e shown in FIG. 3 can be viewed as specific examples of the AI device 100 shown in FIG. 1.
- the robot 100a applies AI technology and can be implemented as a guidance robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, etc.
- the robot 100a may include a robot control module for controlling operations, and the robot control module may mean a software module or a chip implementing it as hardware.
- the robot 100a uses sensor information obtained from various types of sensors to obtain status information of the robot 100a, detect (recognize) the surrounding environment and objects, generate map data, or determine movement path and driving. It can determine a plan, determine a response to user interaction, or determine an action.
- the robot 100a may use sensor information acquired from at least one sensor among lidar, radar, and camera to determine the movement path and driving plan.
- the robot 100a may perform the above operations using a learning model composed of at least one artificial neural network.
- the robot 100a can recognize the surrounding environment and objects using a learning model, and can determine an operation using the recognized surrounding environment information or object information.
- the learning model may be learned directly from the robot 100a or from an external device such as the AI server 200.
- the robot 100a may perform an operation by generating a result using a direct learning model, but performs the operation by transmitting sensor information to an external device such as the AI server 200 and receiving the result generated accordingly. You may.
- the robot 100a determines the movement path and driving plan using at least one of map data, object information detected from sensor information, or object information acquired from an external device, and controls the driving unit to follow the determined movement path and driving plan.
- the robot 100a can be driven accordingly.
- the map data may include object identification information about various objects arranged in the space where the robot 100a moves.
- map data may include object identification information for fixed objects such as walls and doors and movable objects such as flower pots and desks.
- object identification information may include name, type, distance, location, etc.
- the robot 100a can perform actions or drive by controlling the driving unit based on the user's control/interaction. At this time, the robot 100a may acquire interaction intention information according to the user's motion or voice utterance, determine a response based on the acquired intention information, and perform the operation.
- the self-driving vehicle 100b can be implemented as a mobile robot, vehicle, unmanned aerial vehicle, etc. by applying AI technology.
- the autonomous vehicle 100b may include an autonomous driving control module for controlling autonomous driving functions, and the autonomous driving control module may refer to a software module or a chip implementing it as hardware.
- the self-driving control module may be included internally as a component of the self-driving vehicle 100b, but may also be configured as separate hardware and connected to the outside of the self-driving vehicle 100b.
- the self-driving vehicle 100b uses sensor information obtained from various types of sensors to obtain status information of the self-driving vehicle 100b, detect (recognize) the surrounding environment and objects, generate map data, or You can determine the movement route and driving plan, or determine the action.
- the autonomous vehicle 100b may use sensor information acquired from at least one sensor among lidar, radar, and camera to determine the movement path and driving plan.
- the autonomous vehicle 100b can recognize the environment or objects in an area where the view is obscured or an area over a certain distance by receiving sensor information from external devices, or receive recognized information directly from external devices. .
- the autonomous vehicle 100b may perform the above operations using a learning model composed of at least one artificial neural network.
- the self-driving vehicle 100b can recognize the surrounding environment and objects using a learning model, and can determine a driving route using the recognized surrounding environment information or object information.
- the learning model may be learned directly from the autonomous vehicle 100b or from an external device such as the AI server 200.
- the self-driving vehicle 100b may perform operations by generating results using a direct learning model, but operates by transmitting sensor information to an external device such as the AI server 200 and receiving the results generated accordingly. You can also perform .
- the autonomous vehicle 100b determines the movement path and driving plan using at least one of map data, object information detected from sensor information, or object information acquired from an external device, and controls the driving unit to maintain the determined movement path and driving.
- the autonomous vehicle 100b can be driven according to a plan.
- the map data may include object identification information about various objects placed in the space (eg, road) where the autonomous vehicle 100b drives.
- map data may include object identification information for fixed objects such as streetlights, rocks, and buildings, and movable objects such as vehicles and pedestrians.
- object identification information may include name, type, distance, location, etc.
- the autonomous vehicle 100b can perform operations or drive by controlling the driving unit based on the user's control/interaction. At this time, the autonomous vehicle 100b may acquire interaction intention information according to the user's motion or voice utterance, determine a response based on the acquired intention information, and perform the operation.
- the XR device (100c) is equipped with AI technology and can be used for HMD (Head-Mount Display), HUD (Head-Up Display) installed in vehicles, televisions, mobile phones, smart phones, computers, wearable devices, home appliances, and digital signage. , it can be implemented as a vehicle, a fixed robot, or a mobile robot.
- HMD Head-Mount Display
- HUD Head-Up Display
- the XR device 100c analyzes 3D point cloud data or image data acquired through various sensors or from external devices to generate location data and attribute data for 3D points, thereby providing information about surrounding space or real objects.
- the XR object to be acquired and output can be rendered and output.
- the XR device 100c may output an XR object containing additional information about the recognized object in correspondence to the recognized object.
- the XR device 100c may perform the above operations using a learning model composed of at least one artificial neural network.
- the XR device 100c can recognize a real object from 3D point cloud data or image data using a learning model, and provide information corresponding to the recognized real object.
- the learning model may be learned directly from the XR device 100c or may be learned from an external device such as the AI server 200.
- the XR device 100c may perform an operation by generating a result using a direct learning model, but may perform the operation by transmitting sensor information to an external device such as the AI server 200 and receiving the result generated accordingly. It can also be done.
- the robot 100a applies AI technology and autonomous driving technology, and can be implemented as a guidance robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, etc.
- the robot 100a to which AI technology and autonomous driving technology is applied may refer to a robot itself with autonomous driving functions or a robot 100a that interacts with an autonomous vehicle 100b.
- the robot 100a with an autonomous driving function may refer to devices that move on their own along a given route without user control or move by determining the route on their own.
- a robot 100a and an autonomous vehicle 100b with autonomous driving functions may use a common sensing method to determine one or more of a movement path or a driving plan.
- the robot 100a and the autonomous vehicle 100b with autonomous driving functions can determine one or more of a movement path or a driving plan using information sensed through lidar, radar, and cameras.
- the robot 100a that interacts with the self-driving vehicle 100b exists separately from the self-driving vehicle 100b and is linked to the self-driving function inside the self-driving vehicle 100b or is connected to the self-driving vehicle 100b. You can perform actions linked to the user on board.
- the robot 100a interacting with the self-driving vehicle 100b acquires sensor information on behalf of the self-driving vehicle 100b and provides it to the self-driving vehicle 100b, or acquires sensor information and provides surrounding environment information or By generating object information and providing it to the autonomous vehicle 100b, the autonomous driving function of the autonomous vehicle 100b can be controlled or assisted.
- the robot 100a interacting with the self-driving vehicle 100b may monitor the user riding the self-driving vehicle 100b or control the functions of the self-driving vehicle 100b through interaction with the user. .
- the robot 100a may activate the autonomous driving function of the autonomous vehicle 100b or assist in controlling the driving unit of the autonomous vehicle 100b.
- the functions of the autonomous vehicle 100b controlled by the robot 100a may include not only the autonomous driving function but also functions provided by a navigation system or audio system provided inside the autonomous vehicle 100b.
- the robot 100a interacting with the self-driving vehicle 100b may provide information to the self-driving vehicle 100b or assist its functions from outside the self-driving vehicle 100b.
- the robot 100a may provide traffic information including signal information to the autonomous vehicle 100b, such as a smart traffic light, and may interact with the autonomous vehicle 100b, such as an automatic electric charger for an electric vehicle. You can also automatically connect an electric charger to the charging port.
- the robot 100a applies AI technology and XR technology and can be implemented as a guidance robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, a drone, etc.
- the robot 100a to which XR technology is applied may refer to a robot that is subject to control/interaction within an XR image.
- the robot 100a is distinct from the XR device 100c and may be interoperable with each other.
- the robot 100a which is the object of control/interaction within the XR image, acquires sensor information from sensors including a camera
- the robot 100a or the XR device 100c generates an XR image based on the sensor information.
- the XR device 100c can output the generated XR image.
- this robot 100a may operate based on a control signal input through the XR device 100c or user interaction.
- the user can check the XR image corresponding to the viewpoint of the remotely linked robot 100a through an external device such as the XR device 100c, and adjust the autonomous driving path of the robot 100a through interaction. , you can control movement or driving, or check information about surrounding objects.
- the self-driving vehicle 100b can be implemented as a mobile robot, vehicle, unmanned aerial vehicle, etc. by applying AI technology and XR technology.
- the autonomous vehicle 100b to which XR technology is applied may refer to an autonomous vehicle equipped with a means for providing XR images or an autonomous vehicle that is subject to control/interaction within XR images.
- the autonomous vehicle 100b, which is the subject of control/interaction within the XR image is distinct from the XR device 100c and may be interoperable with each other.
- An autonomous vehicle 100b equipped with a means for providing an XR image may acquire sensor information from sensors including a camera and output an XR image generated based on the acquired sensor information.
- the self-driving vehicle 100b may be equipped with a HUD and output XR images, thereby providing occupants with XR objects corresponding to real objects or objects on the screen.
- the XR object when the XR object is output to the HUD, at least a portion of the XR object may be output to overlap the actual object toward which the passenger's gaze is directed.
- the XR object when the XR object is output to a display provided inside the autonomous vehicle 100b, at least part of the XR object may be output to overlap the object in the screen.
- the autonomous vehicle 100b may output XR objects corresponding to objects such as lanes, other vehicles, traffic lights, traffic signs, two-wheeled vehicles, pedestrians, buildings, etc.
- the autonomous vehicle 100b which is the subject of control/interaction within the XR image, acquires sensor information from sensors including a camera, the autonomous vehicle 100b or the XR device 100c detects sensor information based on the sensor information. An XR image is generated, and the XR device 100c can output the generated XR image.
- this autonomous vehicle 100b may operate based on a control signal input through an external device such as the XR device 100c or user interaction.
- FIG. 4 is a diagram for explaining the operation of an artificial intelligence device according to an embodiment of the present disclosure.
- the artificial intelligence device 100 of the present disclosure includes a memory 170 that stores a pre-learned speaker list, and a processor 180 that identifies a new speaker from input speech data. You can.
- the processor 180 preprocesses the speech data, identifies a new speaker based on the preprocessed speech data, outputs an active question for the identified new speaker, and outputs the output active question.
- a new speaker's response speech data to a question is input, a new speaker can be learned based on the new speaker's response speech data and registered in the speaker list.
- the processor 180 may preprocess speech data by performing feature extraction and dimension reduction from the speech data when it is input.
- the processor 180 inputs the preprocessed speech data into the neural network model to configure a first node corresponding to the speech data in the embedding space, and connects the nodes. Based on the correlation, an edge is connected between the first node and the second node that already exists in the embedding space, and it is possible to identify whether the speaker of the speech data is a new speaker based on the connection relationship of the edge.
- the processor 180 may configure the currently input speaker's speech data as a node in the form of a topological graph in the embedding space.
- the processor 180 when configuring the first node, the processor 180, if the similarity of the currently input speaker's speech data with the data group of the already existing second node does not satisfy the reference condition, the currently input speaker's speech data is Construct a new first node containing data, and if the similarity of the currently input speaker's speech data with the data group of the already existing second node satisfies the standard condition, the currently input speaker's speech data is transferred to the second node. Can be included as a data group.
- the processor 180 may configure the first node based on the resonance condition of Adaptive Resonance Theory (ART).
- ART Adaptive Resonance Theory
- the first node is a node corresponding to the currently input speaker's utterance data and may include unlabeled utterance data in which the speaker's label does not exist.
- the second node is a node corresponding to existing utterance data of the learned speaker, includes labeled utterance data containing the speaker's label, and can be pre-trained.
- the second node may include unlabeled utterance data in which the speaker's label does not exist.
- the processor 180 sets a weight based on the number of co-activations between the first node and the second node when the first node is configured. Based on the calculated weight, the first node and the second node can be connected with an edge.
- the processor 180 may not connect the first node and the second node with an edge if the calculated weight is 0.
- the processor 180 may increase the co-activated count between the first node and the second node when the similarity between the first node and the second node is high.
- the processor 180 may increase the edge weight connecting the first node and the second node as the number of co-activations between the first node and the second node increases.
- the processor 180 may increase the increase rate of the edge weight between the first node and the second node in proportion to the increase rate of the number of co-activations between the first node and the second node.
- the processor 180 may increase the increase rate of the edge weight between the first node and the second node at the same rate as the increase rate of the number of co-activations between the first node and the second node.
- the processor 180 may connect a plurality of edges to the first node if there are a plurality of second nodes that are co-activated with the first node.
- the number of edges connected to the first node may be equal to the number of second nodes that are co-activated with the first node.
- the processor 180 may assign weights to a plurality of edges connecting the first node and the plurality of second nodes based on the number of co-activations between the first node and the plurality of second nodes. .
- weights assigned to the plurality of edges may be different depending on the number of co-activations between the first node and the plurality of second nodes, but this is only an example and is not limited thereto.
- the processor 180 collects information on the first node and the second node connected to the edge based on the connection relationship of the edge, and creates the first node based on the collected information on the second node.
- the uncertainty score of 1 node is calculated, and if the calculated uncertainty score is higher than the standard value, the speaker in the speech data can be identified as a new speaker.
- the processor 180 collects information about the second node based on a message passing method, updates the first node based on the information about the second node, and updates the first node based on the information about the second node.
- the uncertainty score of the first node can be calculated by inferring the correlation between the node and the second node.
- the processor 180 may identify the speaker of the speech data as a speaker already registered in the speaker list.
- the processor 180 may select a specific active question corresponding to the new speaker from a pre-stored active question list and output the selected specific active question to the new speaker.
- the processor 180 can convert a specific active question into at least one of voice, video, and text and output it, but this is only an example and is not limited thereto.
- the processor 180 may select a specific active question corresponding to the new speaker from a pre-stored list of active questions based on the uncertainty score.
- the pre-stored active question list may include a plurality of active question items, and the plurality of active question items may be classified by uncertainty score.
- the pre-stored active question list may place active question items with a high uncertainty score at a higher level and active question items with a low uncertainty score at a lower level.
- multiple active question items may be arranged sequentially according to uncertainty score.
- the processor 180 may select and extract an active question item corresponding to the calculated uncertainty score from among a plurality of active question items included in the active question list.
- the processor 180 may select and extract only one active question item whose uncertainty score is greater than or equal to the standard score, and may select and extract a plurality of active question items whose uncertainty score is less than the standard score. This is only an example, and It is not limited.
- the processor 180 may increase the number of active question items selected as the uncertainty score becomes lower.
- the processor 180 checks whether the response speech data is response speech data that satisfies the active question, and if it is response speech data that satisfies the active question, the first node You can learn a new speaker by labeling the speech data included in and register the new learned speaker in the speaker list.
- the processor 180 may re-output the active question for a new speaker if the response speech data does not satisfy the active question.
- the processor 180 checks whether the response speech data is response speech data that satisfies the active question, and determines whether the response speech data satisfies the re-output active question. If it is not speech data, the speaker of the speech data included in the first node may be unlabeled.
- the processor 180 checks whether all of the plurality of response speech data are response speech data that satisfies the plurality of active questions, and If all of the response speech data satisfies a plurality of active questions, a new speaker may be learned by labeling the speech data included in the first node, and the learned new speaker may be registered in the speaker list.
- the processor 180 when checking whether the processor 180 is response speech data that satisfies a plurality of active questions, if at least one of the plurality of response speech data is not response speech data that satisfies the plurality of active questions, the processor 180 sends the first node to the first node.
- the speaker of the included speech data can be unlabeled.
- the processor 180 determines whether at least one of the plurality of response speech data is response speech data that satisfies the plurality of active questions. Check, and if at least one of the plurality of response speech data is response speech data that satisfies the plurality of active questions, label the speech data included in the first node to learn a new speaker, and place the learned new speaker in the speaker list. You can also register within.
- the neural network model of the present disclosure may include a Message Passing Adaptive Resonance Theory (MPART) model.
- MPART Message Passing Adaptive Resonance Theory
- the artificial intelligence device of the present disclosure provides active questions to the new speaker along with uncertainty measurement for the input speech data, automatically learns the speech data of the new speaker, and automatically registers the new speaker in the speaker list, thereby Recognition accuracy and service quality can be improved.
- FIG. 5 is a diagram illustrating a method of adding a new speaker in an artificial intelligence device according to an embodiment of the present disclosure.
- the artificial intelligence device 100 of the present disclosure when applied to a voice assistant system, etc., accurately identifies the speaker 500 using only the speech data 600 of the speaker 500 and provides the service desired by the speaker. can be provided.
- the artificial intelligence device 100 of the present disclosure can increase speaker recognition accuracy based on adaptive self-learning through active questions with only a small amount of label data using the Message Passing Adaptive Resonance Theory (MPART) model.
- MPART Message Passing Adaptive Resonance Theory
- the artificial intelligence device 100 of the present disclosure responds to the fourth speaker 540.
- the fourth speech data 640 of the first speech data 610 of the first speaker 510, the second speech data 620 of the second speaker 520, and the third speaker 530 are already registered. It is determined whether the fourth speech data 640 of the fourth speaker 540 is different from the existing speech data, and if the fourth speech data 640 of the fourth speaker 540 is different from the existing speech data, it is recognized as new speech data. By measuring the uncertainty of the fourth speech data 640, an active question can be provided to the fourth speaker 540.
- the artificial intelligence device 100 of the present disclosure provides the fourth speaker 540 with an active question, "Are you a new person?", and the fourth speaker 540's response speech data to the active question.
- the speech data is labeled based on the response speech data of the fourth speaker 540, and the fourth speaker 540 is learned based on the labeled speech data, and the fourth speaker 540 is added as a new speaker in the speaker list. It can be added as .
- the present disclosure can perform semi-supervised learning that can learn each speaker based on a small amount of label data.
- the present disclosure automatically selects a new speaker based on online learning, which performs adaptive self-learning through active questioning even when there is a situation where the total number of speakers and speakers using a voice service in a home environment are unknown. By registering, you can provide voice services to new speakers at any time.
- the present disclosure can perform active learning, which measures uncertainty about currently input speech data and simultaneously provides active questions to the speaker.
- the present disclosure can improve speaker recognition accuracy by automatically labeling speech data as a speaker's response to an active question through uncertainty measurement.
- 6 to 14 are diagrams for explaining a neural network model of an artificial intelligence device according to an embodiment of the present disclosure.
- the present disclosure can perform adaptive self-learning through active questioning using the Message Passing Adaptive Resonance Theory (MPART) model.
- MPART Message Passing Adaptive Resonance Theory
- the first speech data of the first speaker 510 when the first speech data of the first speaker 510 is input, feature extraction and dimension reduction are performed on the first speech data to reduce the dimension.
- the first speech data 610 expressed as a reduced-dimensional feature vector may be mapped to an embedding space 400.
- the present disclosure may configure the first utterance data 610 in the embedding space 400 as a node 700 in the form of a topological graph.
- the second speech data of the second speaker 520 when the second speech data of the second speaker 520 is input, feature extraction and dimensionality reduction are performed on the second speech data and the second speech data 620 expressed as a dimensionally reduced vector is embedded. It can be mapped to space (400).
- the present disclosure may configure the second utterance data 620 in the embedding space 400 as a node 700 in the form of a topology graph.
- nodes 700 corresponding to the first speech data 610 and nodes 700 corresponding to the second speech data 620 may be placed in the embedding space.
- the present disclosure provides that if the currently input second speech data 620 does not satisfy the similarity standard condition with the first speech data group of the node already existing in the embedding space 400, the currently input second speech data ( 620) can be configured as a new node.
- the present disclosure provides that if the currently input second utterance data 620 satisfies the similarity criterion condition with the first utterance data group of a node already existing in the embedding space 400, the currently input second utterance data 620 Instead of configuring 620 as a new node, the winner node may be updated by being included in the first speech data group, which is a winner node.
- the present disclosure may use an algorithm including Equation 1 below when configuring a node.
- M j is the matching function
- T j is the choice function
- ⁇ represents the element-wise minimum operation
- ⁇ 1 is L1 normalization.
- ⁇ > 0 is a hyperparameter for the selection function
- the input I t is [r t , 1-r t ]
- r t can be a reduced-dimensional feature vector. there is.
- the input I t is compared with all nodes j to obtain a matching function M j (I t ).
- the matching function M j (I t ) can be a winner node candidate if it is greater than or equal to the vigilance parameter ⁇ ⁇ [0, 1].
- the final winner node J t can be selected as the node whose selection function T j (I t ) has the largest value among the winner node candidates, and the remaining nodes are co-activated nodes (co- activated nodes).
- the winner node is updated with a learning rate ⁇ ⁇ [0, 1], and the winning count d Jt can be increased by Equation 2 below.
- the node when configuring a node, can be configured based on the resonance condition of Adaptive Resonance Theory (ART).
- ART Adaptive Resonance Theory
- the present disclosure can connect the nodes 700 with an edge 800 based on the relationship between the nodes 700 .
- the present disclosure calculates a weight based on the number of co-activations between the nodes 700, and connects the calculated weight to an edge 800 between the nodes 700.
- the nodes 700 may not be connected by edges.
- the number of co-activations between nodes can be increased. As the number of co-activations between nodes 700 increases, the number of connections between nodes 700 increases.
- the edge 800 weight can be increased.
- the present disclosure may increase the weight increase rate of the edge 800 in proportion to the increase rate of the number of joint activations between the nodes 700.
- the present disclosure may increase the edge 700 weight increase rate at the same rate as the increase rate of the number of joint activations between the nodes 700.
- a plurality of nodes 700 that are co-activated to one node 700 may be connected to an edge 800.
- the number of edges 800 connected to one node 700 may be equal to the number of co-activated nodes 700, but this is an example and is not limited thereto.
- the present disclosure may assign different weights to each edge 800 connecting the nodes 700 based on the number of joint activations between the nodes 700.
- the weight given to the edge 800 may be different depending on the number of joint activations between the nodes 700.
- the number of co-activations cJ t v between the winner node J t and the co-activation nodes v ⁇ J t may increase by 1.
- the edge weight e ij of the topological graph can be defined as Equation 3 below.
- c ij is the co-activated count of nodes i and j
- the edge weight e ij is between 0 and 1
- the edge weight is the message passing of the topological graph without normalization.
- the present disclosure identifies the speaker of the speech data based on the connection relationship between the edges 800 of the nodes 700 and identifies the first speaker 510 corresponding to the first speech data 610. ) and the second speaker 520 corresponding to the second speech data 620 can be self-learned and speaker registration can be performed.
- the present disclosure provides that the currently input third speech data 630 is comprised of a data group such as the first speech data 610 and the second speech data 620 included in a node that already exists in the embedding space 400. If the similarity is different, the currently input third speech data 630 can be configured as a new node.
- the present disclosure calculates a weight based on the number of joint activations between the nodes 700, and based on the calculated weight, a new node 700 corresponding to the third speech data 630 and other existing nodes ( 700) can be connected to an edge 800.
- the present disclosure can identify whether the speaker of the third speech data 630 is a new speaker based on the connection relationship of the edge 800.
- the present disclosure collects information on existing nodes connected to the new node and the edge 800 based on the connection relationship of the edge 800, and calculates the uncertainty score of the new node based on the collected information on the existing node. And, if the calculated uncertainty score is greater than or equal to the reference value, the speaker corresponding to the third speech data 630 is identified as a new speaker. If the calculated uncertainty score is less than the reference value, the speaker of the third speech data 630 can be identified as an existing speaker already registered in the speaker list.
- the present disclosure collects information on the existing node based on the message passing 810 method, updates the new node based on the information on the existing node, and updates the new node and the existing node. By inferring the correlation between them, the uncertainty score of a new node can be calculated.
- the present disclosure can define a message passing 810 method for node identification using Equation 4 below.
- ⁇ ⁇ [0, 1] is a hyperparameter of the propagation rate
- X i and X j are information vectors such as label density and winning count
- Ni is Node idml can be the set of all neighboring nodes.
- This message passing method can be used repeatedly in multiple layers to collect a wider range of information.
- the present disclosure provides node information of the final layer L to perform the desired task. can be used.
- the present disclosure can identify the speaker of the input speech data x t by estimating the class label of the winner node J t .
- the present disclosure may increase the label density qJ t (y t ) by 1 when the label y t is received at the winner node.
- one node class can be evaluated not only by the label of the node containing the currently input speech data, but also by the rarely given labels of surrounding nodes.
- the class probability distribution p t (y) and the estimated speaker ⁇ y of the currently input speech data x i are the aggregated label density as shown in Equation 5 below. It can be obtained using .
- C may be a set of labels for an already known speaker.
- the present disclosure provides the aggregated winning count of the winner node Jt. You can use to select representative speech data samples for speaker identification.
- the aggregated winning count may increase as the number of input speech data samples that activate winner node J and its surrounding nodes increases.
- the aggregated winning count may have a large value at the center of the feature vector distribution for a given speaker.
- the present disclosure provides an aggregated winning count, as shown in Equation 6 below: You can use to define the density score s t of the input speech data sample x t .
- k d > 0 may be a constant for sensitivity.
- the present disclosure can query representative samples by selecting input speech data samples whose density score s t is greater than the density threshold ⁇ d ⁇ [0, 1].
- the present disclosure relates to the label density of the winner node J t , as shown in Equation 7 below: You can use to calculate the uncertainty score u t, which can be viewed as epistemological uncertainty.
- k u > 0 may be a sensitivity constant for the uncertainty score u t .
- the uncertainty score u t may have a high value in a region with few labels among the input speech data distribution.
- the present disclosure can query informative samples by selecting input speech data samples with an uncertainty score u t greater than the uncertainty threshold ⁇ u .
- the present disclosure can utilize the density score s t and uncertainty score u t respectively for query selection.
- the present disclosure can obtain labels and gradually improve speaker recognition performance by querying input speech data samples that satisfy both the conditions where the density score is s t > ⁇ d and the uncertainty score is u t > ⁇ u . there is.
- the present disclosure can output an active question for identification to a new third speaker 530 corresponding to the third speech data 630 based on the density score and uncertainty score.
- the present disclosure may select a specific active question corresponding to a new speaker from a pre-stored active question list and output the selected specific active question to the new speaker.
- the present disclosure can convert and output a specific active question into at least one of voice, video, and text, but this is only an example and is not limited thereto.
- the present disclosure can select a specific active question corresponding to a new speaker from a pre-stored list of active questions based on the uncertainty score.
- the pre-stored active question list may include a plurality of active question items, and the plurality of active question items may be classified by uncertainty score.
- the pre-stored active question list may place active question items with a high uncertainty score at a higher level and active question items with a low uncertainty score at a lower level.
- multiple active question items may be arranged sequentially according to uncertainty score.
- an active question item corresponding to the calculated uncertainty score can be selected and extracted from among a plurality of active question items included in the active question list.
- the present disclosure may increase the number of active question items selected as the uncertainty score decreases.
- the response speech data of the third speaker 530 to the active question is input, it is confirmed whether the response speech data is response speech data that satisfies the active question, and the active question is answered. If the response speech data satisfies , a new third speaker 530 can be learned by labeling the third speech data 630, and the learned new third speaker 530 can be registered in the speaker list.
- the active question for the third speaker 530 can be re-output.
- the response speech data of the third speaker 530 to the re-output active question when the response speech data of the third speaker 530 to the re-output active question is input, it is confirmed whether the response speech data is response speech data that satisfies the active question, and the re-output active question is satisfied. If it is not response speech data, the third speech data 630 may be unlabeled.
- the present disclosure provides that, when a plurality of response speech data of the third speaker 530 to a plurality of active questions are input, it is determined whether the plurality of response speech data are all response speech data that satisfy the plurality of active questions. If the plurality of response speech data are all response speech data that satisfy the plurality of active questions, the third speech data 630 is labeled to learn the third speaker 530, and the learned new third speaker 530 is used as the speaker. You can also register in the list.
- the third speech data 630 when checking whether the response speech data satisfies a plurality of active questions, if at least one of the plurality of response speech data is not response speech data satisfying the plurality of active questions, the third speech data 630 ) can be unlabeled.
- the speech data when a plurality of response speech data of a new speaker to a plurality of active questions is input, it is confirmed whether at least one of the plurality of response speech data is response speech data that satisfies the plurality of active questions, and , if at least one of the plurality of response speech data is response speech data that satisfies the plurality of active questions, the speech data may be labeled to learn a new speaker, and the learned new speaker may be registered in the speaker list.
- Figure 15 is a diagram for explaining a new speaker registration process of an artificial intelligence device according to an embodiment of the present disclosure.
- the unlabeled speech data when unlabeled speech data is input from a plurality of speakers 900, the unlabeled speech data is preprocessed to create a first node 920 in the embedding space. It can be configured.
- the currently input speaker when configuring the first node 920, if the speech data of the currently input speaker does not satisfy the similarity standard condition with the data group of the already existing second node 930, the currently input speaker A new first node 920 containing speech data is configured, and if the currently input speaker's speech data satisfies the similarity standard condition with the data group of the already existing second node 930, the currently input speaker's speech data is configured. Speech data may be included in the data group of the second node 930.
- the first node 920 when configuring a new first node 920, the first node 920 may be configured based on the resonance condition of Adaptive Resonance Theory (ART).
- ART Adaptive Resonance Theory
- the first node 920 may include unlabeled utterance data of the speaker 900.
- the already existing second node 930 may include unlabeled utterance data of the speaker 900.
- the present disclosure connects the first node 920 and the second node 930 that already exists in the embedding space with an edge 800 based on the correlation between nodes, and the edge 800 Based on the connection relationship, it can be identified whether the speaker 900 of the speech data is a new speaker 910.
- a weight is calculated based on the number of co-activations between the currently configured first node 920 and the previously configured second node 930, and , Based on the calculated weight, the first node 920 and the second node 930 can be connected with an edge 800.
- the edge 800 may not be connected between the first node 920 and the second node 930.
- the present disclosure can increase the number of co-activations between the first node 920 and the second node 930 when the similarity between the first node 920 and the second node 930 is high.
- the edge weight connecting the first node 920 and the second node 930 can be increased. there is.
- the speaker 900 of the speech data can be identified as the new speaker 910. there is.
- the uncertainty score of the first node 920 when calculating the uncertainty score of the first node 920, collecting the information of the second node 930 based on the message passing 810 method based on the information of the second node 930 The first node 920 can be updated, and the uncertainty score of the first node 920 can be calculated by inferring the correlation between the first node 920 and the second node 930.
- the speaker 900 of the speech data can be identified as a speaker 900 already registered in the speaker list.
- an active question for a new speaker 910 is output, and when response speech data of the new speaker 910 to the output active question is input, a new speaker 910 is based on the response speech data.
- the speaker 910 can be learned and registered in the speaker list.
- a specific active question corresponding to the new speaker 910 can be selected from a pre-stored active question list, and the selected specific active question can be output to the new speaker 910.
- the present disclosure may select a specific active question corresponding to the new speaker 910 from a pre-stored list of active questions based on the uncertainty score.
- the pre-stored active question list includes a plurality of active question items, and the plurality of active question items may be classified by uncertainty score.
- an active question item corresponding to the calculated uncertainty score can be selected and extracted from among a plurality of active question items included in the active question list.
- response speech data of a new speaker 910 to an active question when response speech data of a new speaker 910 to an active question is input, it is checked whether the response speech data is response speech data that satisfies the active question, and if it is response speech data that satisfies the active question, the first A new speaker 910 can be learned by labeling the speech data included in the node 920, and the learned new speaker 910 can be registered in the speaker list.
- the active question for the new speaker 910 can be re-output.
- response speech data of a new speaker 910 to a re-output active question when response speech data of a new speaker 910 to a re-output active question is input, it is confirmed whether the response speech data is response speech data that satisfies the active question, and whether the response speech data satisfies the re-output active question is checked. If it is not response speech data, the speaker 900 of the speech data included in the first node 920 may be unlabeled.
- the present disclosure provides, when a plurality of response speech data of a new speaker 910 to a plurality of active questions is input, it is checked whether the plurality of response speech data are all response speech data that satisfy the plurality of active questions, If the plurality of response speech data are all response speech data that satisfies the plurality of active questions, the speech data included in the first node 920 is labeled to learn a new speaker 910, and the learned new speaker 910 is used as the speaker. You can register in the list.
- the speech data included in the first node 920 is labeled to learn a new speaker, and the learned new speaker is added to the speaker list. You can register within.
- the neural network model used in this disclosure may include a Message Passing Adaptive Resonance Theory (MPART) model.
- MPART Message Passing Adaptive Resonance Theory
- 16 to 18 are diagrams showing speaker recognition accuracy performance results for the neural network model of an artificial intelligence device according to an embodiment of the present disclosure.
- Figure 16 is a chart showing the speaker recognition accuracy of the present disclosure as the number of speakers increases.
- the person method is a value showing speaker recognition accuracy when the same number of label data samples are given to each speaker
- the random method is a value showing speaker recognition accuracy.
- the speaker recognition accuracy of the person method and the random method increases as the number of label data samples (N/S) per speaker increases, but it can be seen that the speaker recognition accuracy is lower than that of the method of the present disclosure.
- the method (ours) of the present disclosure is a method in which active questions are given to speakers estimated through unlabeled data samples, and is a first method (our-1) in which the provision rate (Q/S) of active questions given to identified speakers is low. ) and a second method (our-2) with a high provision rate (Q/S) of active questions given to the identified speaker.
- the method (ours) of the present disclosure improves speaker recognition accuracy more highly than the person method and the random method, and among the methods of the present disclosure, the second method has a higher active question provision rate than the first method. It can be seen that the speaker recognition accuracy is further improved.
- Figure 17 is a chart showing the speaker recognition accuracy of the present disclosure for a speaker group added first and a speaker group joined later. An active question provision test was performed on the speaker group added first, and then the speaker group joined later. This is a diagram showing the robustness of the present disclosure against the forgetting phenomenon by conducting an active question provision test.
- the first method (our-1) of the present disclosure has a low rate (Q/S) of active questions given to the identified speaker, and the rate (Q) of active questions given to the identified speaker is low.
- the second method (our-2) of the present disclosure which has a high /S), has high speaker recognition accuracy and excellent robustness against the forgetting phenomenon.
- the second method which has a higher active question provision rate than the first method, has better robustness against the forgetting phenomenon.
- Figure 18 is a graph showing speaker recognition accuracy as the number of label data samples per speaker increases.
- the person method is a method in which the same number of label data samples are given to each speaker
- the random method is a method in which label data samples are randomly given to speakers in the home environment.
- the method of this disclosure is a method in which an active question is given to a speaker estimated through an unlabeled data sample.
- the speaker recognition accuracy of the method of the present disclosure, the person method, and the random method all increase as the number of label data samples per speaker increases, but the speaker recognition accuracy of the method of the present disclosure is lower than that of the person method and the random method. You can find out which one is the best.
- 19 and 20 are diagrams for explaining the overall operation flow of an artificial intelligence device according to an embodiment of the present disclosure.
- the speaker's speech data can be input (S10).
- the present disclosure can preprocess the speaker's speech data (S20).
- the present disclosure can perform feature extraction and dimension reduction from speech data.
- the present disclosure can identify whether the speaker is a new speaker based on preprocessed speech data (S30).
- the present disclosure inputs preprocessed speech data into a neural network model to construct a first node corresponding to the speech data in the embedding space, and based on the correlation between the nodes, the first node and the first node that already exist in the embedding space 2
- the nodes are connected by edges, and based on the connection relationship of the edges, it is possible to identify whether the speaker in the speech data is a new speaker.
- the currently input speaker's speech data may be included in the data group of the second node.
- a weight is calculated based on the number of co-activations between the first node and the second node, and the first node and the second node are based on the calculated weight.
- Nodes can be connected with edges.
- the present disclosure collects information on a second node connected to the first node and the edge based on the connection relationship of the edges, and calculates an uncertainty score of the first node based on the collected information on the second node, If the calculated uncertainty score is greater than or equal to the reference value, the speaker in the speech data can be identified as a new speaker.
- the first node is updated based on the information on the second node, and the correlation between the first node and the second node is inferred. 1
- the uncertainty score of a node can be calculated.
- an active question for the new speaker can be output (S40).
- the present disclosure can select a specific active question corresponding to a new speaker from a pre-stored active question list and output the selected specific active question to the new speaker.
- the present disclosure can convert a specific active question into at least one of voice, video, and text and output it.
- response speech data from a new speaker to an active question can be input (S50).
- the present disclosure can learn a new speaker based on the new speaker's response speech data (S60).
- the new learned speaker can be registered in the speaker list (S70).
- new speaker's response speech data to an active question when new speaker's response speech data to an active question is input, it is checked whether the response speech data is response speech data that satisfies the active question, and if it is response speech data that satisfies the active question, it is included in the first node. You can learn a new speaker by labeling the utterance data, and register the new speaker in the speaker list.
- the present disclosure may re-output the active question for a new speaker if the response speech data does not satisfy the active question.
- the response utterance data is response utterance data that satisfies the active question, and response utterance data that satisfies the re-output active question is checked. Otherwise, the speaker of the speech data included in the first node may be unlabeled.
- the present disclosure when configuring a node, can configure the node based on the resonance condition of Adaptive Resonance Theory (ART).
- ART Adaptive Resonance Theory
- the winner node can be updated by joining the currently input speaker's speech data to the winner node (S130).
- a new node corresponding to the currently input speaker's speech data can be configured (S140).
- the present disclosure provides active questions to a new speaker along with uncertainty measurement for input speech data, automatically learns the speech data of the new speaker, and automatically registers the new speaker in the speaker list, thereby improving speaker recognition accuracy and service. Quality can be improved.
- Computer-readable media includes all types of recording devices that store data that can be read by a computer system. Examples of computer-readable media include HDD (Hard Disk Drive), SSD (Solid State Disk), SDD (Silicon Disk Drive), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc. There is. Additionally, the computer may include a processor 180 of an artificial intelligence device.
- speaker recognition is achieved by providing active questions to a new speaker along with uncertainty measurement for input speech data, automatically learning the speech data of the new speaker, and automatically registering the new speaker in the speaker list. Because it has the effect of improving accuracy and service quality, it has significant industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
능동 질문(active query)을 통한 적응적 자가 학습(adaptive self learning) 기반으로 화자를 자동 인식할 수 있는 인공 지능 장치 및 그의 화자 자동 인식 방법에 관한 것으로, 사전 학습한 화자 목록을 저장하는 메모리, 그리고 입력되는 발화 데이터로부터 새로운 화자를 식별하는 프로세서를 포함하고, 프로세서는, 발화 데이터가 입력되면 발화 데이터를 전처리하고, 전처리한 발화 데이터를 기반으로 새로운 화자를 식별하며, 식별한 새로운 화자에 대한 능동 질문을 출력하고, 출력한 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 새로운 화자의 응답 발화 데이터를 기반으로 새로운 화자를 학습하여 화자 목록 내에 등록할 수 있다.
Description
본 개시는, 능동 질문(active query)을 통한 적응적 자가 학습(adaptive self learning) 기반으로 화자를 자동 인식할 수 있는 인공 지능 장치 및 그의 화자 자동 인식 방법에 관한 것이다.
일반적으로, 인공 지능(artificial intelligence)은, 인간의 지능으로 할 수 있는 사고, 학습, 자기계발 등을 컴퓨터가 할 수 있도록 하는 방법을 연구하는 컴퓨터 공학 및 정보기술의 한 분야로, 컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 것을 의미한다.
또한, 인공지능은, 그 자체로 존재하는 것이 아니라, 컴퓨터 과학의 다른 분야와 직간접으로 많은 관련을 맺고 있다. 특히, 현대에는, 정보기술의 여러 분야에서 인공지능적 요소를 도입하여, 그 분야의 문제 풀이에 활용하려는 시도가 매우 활발하게 이루어지고 있다.
한편, 인공지능을 이용하여 주변의 상황을 인지 및 학습하고, 사용자가 원하는 정보를 원하는 형태로 제공하거나 사용자가 원하는 동작이나 기능을 수행하는 기술이 활발하게 연구되고 있다.
그리고, 이러한 각종 동작과 기능을 제공하는 전자장치를 인공지능 디바이스라고 명칭할 수 있다.
최근, 음성 비서 등과 같은 가전기기는, 인공지능 기술을 통해 사용자의 음성 명령을 인식하여 음성 명령에 상응하는 업무를 수행하는 서비스를 제공하고 있다.
이러한 서비스를 제공하는 가전기기의 인공지능 모델은, 개인별로 맞춤 서비스를 제공하기 위하여 화자 인식을 수행할 수 있다.
특히, 다수의 화자들이 존재하는 홈 환경에서는, 인공지능 모델의 개인별 화자 인식을 위하여 사전에 화자 등록 절차가 반드시 필요하다.
즉, 음성 비서를 통한 개인화 서비스를 제공하기 위해서는, 인공지능 모델이 음성 데이터만으로 화자를 식별해야 하므로, 사용자는, 서비스를 이용하기 전에 초기 등록 절차가 요구되고 있다.
이러한 초기 등록 절차는, 새로운 화자의 음성 데이터가 없는 상황에서 진행되어야 하므로 많은 시간이 요구되는 문제가 있었고, 미등록 사용자는, 서비스 사용에 제한이 되므로, 새로운 사용자가 추가될 때마다 등록 절차를 진행해야 하는 불편함이 있었다.
이처럼, 서비스를 제공하는 가전기기의 인공지능 모델은, 홈 환경에서, 해당 서비스를 사용하는 구성원과 전체 구성원 수를 모르는 상황이 존재할 때, 새로운 사용자가 갑자기 서비스를 요청하면 그에 상응하는 서비스를 제공하지 못할 수 있다.
따라서, 향후, 사용자의 추가 등록 절차 없이도 새로운 화자를 자동 인식하여 새로운 화자를 언제든지 자동으로 추가 등록함으로써, 서비스 품질을 향상시킬 수 있는 인공지능 기술의 개발이 필요하다.
본 개시는, 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.
본 개시는, 입력되는 발화 데이터에 대한 불확실도 측정과 함께 새로운 화자에게 능동 질문을 제공하여, 새로운 화자의 발화 데이터를 자동 학습하고 화자 목록에 새로운 화자를 자동 등록함으로써, 화자 인식 정확도 및 서비스 품질을 향상시킬 수 있는 인공 지능 장치 및 그의 화자 자동 인식 방법의 제공을 목적으로 한다.
본 개시의 일 실시예에 따른 인공 지능 장치는, 사전 학습한 화자 목록을 저장하는 메모리, 그리고 입력되는 발화 데이터로부터 새로운 화자를 식별하는 프로세서를 포함하고, 프로세서는, 발화 데이터가 입력되면 발화 데이터를 전처리하고, 전처리한 발화 데이터를 기반으로 새로운 화자를 식별하며, 식별한 새로운 화자에 대한 능동 질문을 출력하고, 출력한 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 새로운 화자의 응답 발화 데이터를 기반으로 새로운 화자를 학습하여 화자 목록 내에 등록할 수 있다.
본 개시의 일 실시예에 따른 인공 지능 장치의 화자 자동 인식 방법은, 화자의 발화 데이터가 입력받는 단계, 화자의 발화 데이터를 전처리하는 단계, 전처리한 발화 데이터를 기반으로 새로운 화자인지를 식별하는 단계, 새로운 화자로 식별되면 새로운 화자에 대한 능동 질문을 출력하는 단계, 능동 질문에 대한 새로운 화자의 응답 발화 데이터를 입력받는 단계, 새로운 화자의 응답 발화 데이터를 기반으로 새로운 화자를 학습하는 단계, 및 학습한 새로운 화자를 화자 목록에 등록시키는 단계를 포함할 수 있다.
본 개시의 일 실시예에 따르면, 인공 지능 장치는, 입력되는 발화 데이터에 대한 불확실도 측정과 함께 새로운 화자에게 능동 질문을 제공하여, 새로운 화자의 발화 데이터를 자동 학습하고 화자 목록에 새로운 화자를 자동 등록함으로써, 화자 인식 정확도 및 서비스 품질을 향상시킬 수 있다.
도 1은, 본 개시의 일 실시 예에 따른 인공 지능 장치를 나타낸다.
도 2는, 본 개시의 일 실시 예에 따른 인공 지능 서버를 나타낸다.
도 3은, 본 개시의 일 실시 예에 따른 인공 지능 시스템을 나타낸다.
도 4는, 본 개시의 일 실시 예에 따른 인공 지능 장치의 동작을 설명하기 위한 도면이다.
도 5는, 본 개시의 일 실시 예에 따른 인공 지능 장치의 신규 화자 추가 방법을 설명하기 위한 도면이다.
도 6 내지 도 14는, 본 개시의 일 실시 예에 따른 인공 지능 장치의 뉴럴 네트워크 모델을 설명하기 위한 도면이다.
도 15는, 본 개시의 일 실시 예에 따른 인공 지능 장치의 신규 화자 등록 과정을 설명하기 위한 도면이다.
도 16 내지 도 18은, 본 개시의 일 실시 예에 따른 인공 지능 장치의 뉴럴 네트워크 모델에 대한 화자 인식 정확도 성능 결과를 보여주는 도면이다.
도 19 및 도 20은, 본 개시의 일 실시 예에 따른 인공 지능 장치의 전체적인 동작 흐름을 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 개시의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
또한, 본 명세서에 걸쳐, 뉴럴 네트워크(neural network), 신경망 네트워크, 네트워크 함수는, 동일한 의미로 사용될 수 있다. 뉴럴 네트워크는, 일반적으로 “노드”라 지칭될 수 있는 상호 연결된 계산 단위들의 집합으로 구성될 수 있다. 이러한 “노드”들은, “뉴런(neuron)”들로 지칭될 수도 있다. 뉴럴 네트워크는, 적어도 둘 이상의 노드들을 포함하여 구성된다. 뉴럴 네트워크들을 구성하는 노드(또는 뉴런)들은 하나 이상의 “링크”에 의해 상호 연결될 수 있다.
<인공 지능(AI: Artificial Intelligence)>
인공 지능은, 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(ANN: Artificial Neural Network)은, 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 업데이트하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은, 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는, 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은, 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은, 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은, 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서, 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
<로봇(Robot)>
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
<자율 주행(Self-Driving)>
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.
<확장 현실(XR: eXtended Reality)>
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
도 1은, 본 개시의 일 실시 예에 따른 AI 장치(100)를 나타낸다.
AI 장치(100)는, TV, 프로젝터, 휴대폰, 스마트폰, 데스크탑 컴퓨터, 노트북, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), DMB 수신기, 라디오, 세탁기, 냉장고, 데스크탑 컴퓨터, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 1을 참조하면, AI 장치(100)는, 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 메모리(170) 및 프로세서(180) 등을 포함할 수 있다.
통신부(110)는, 유무선 통신 기술을 이용하여 다른 AI 장치(100a 내지 100e)나 AI 서버(200) 등의 외부 장치들과 데이터를 송수신할 수 있다. 예컨대, 통신부(110)는 외부 장치들과 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등을 송수신할 수 있다.
이때, 통신부(110)가 이용하는 통신 기술에는, GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), LTE(Long Term Evolution), 5G, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), 블루투스(Bluetooth쪠), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), ZigBee, NFC(Near Field Communication) 등이 있다.
입력부(120)는, 다양한 종류의 데이터를 획득할 수 있다.
이때, 입력부(120)는 영상 신호 입력을 위한 카메라, 오디오 신호를 수신하기 위한 마이크로폰, 사용자로부터 정보를 입력 받기 위한 사용자 입력부 등을 포함할 수 있다. 여기서, 카메라나 마이크로폰을 센서로 취급하여, 카메라나 마이크로폰으로부터 획득한 신호를 센싱 데이터 또는 센서 정보라고 할 수도 있다.
입력부(120)는, 모델 학습을 위한 학습 데이터 및 학습 모델을 이용하여 출력을 획득할 때 사용될 입력 데이터 등을 획득할 수 있다. 입력부(120)는, 가공되지 않은 입력 데이터를 획득할 수도 있으며, 이 경우 프로세서(180) 또는 러닝 프로세서(130)는, 입력 데이터에 대하여 전처리로써 입력 특징점(input feature)을 추출할 수 있다.
러닝 프로세서(130)는, 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 여기서, 학습된 인공 신경망을 학습 모델이라 칭할 수 있다. 학습 모델은, 학습 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있고, 추론된 값은 어떠한 동작을 수행하기 위한 판단의 기초로 이용될 수 있다.
이때, 러닝 프로세서(130)는, 도 2의 AI 서버(200)의 러닝 프로세서(240)과 함께 AI 프로세싱을 수행할 수 있다.
이때, 러닝 프로세서(130)는, AI 장치(100)에 통합되거나 구현된 메모리를 포함할 수 있다. 또는, 러닝 프로세서(130)는, 메모리(170), AI 장치(100)에 직접 결합된 외부 메모리 또는 외부 장치에서 유지되는 메모리를 사용하여 구현될 수도 있다.
센싱부(140)는, 다양한 센서들을 이용하여 AI 장치(100) 내부 정보, AI 장치(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 획득할 수 있다.
이때, 센싱부(140)에 포함되는 센서에는, 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등이 있다.
출력부(150)는, 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다.
이때, 출력부(150)에는, 시각 정보를 출력하는 디스플레이부, 청각 정보를 출력하는 스피커, 촉각 정보를 출력하는 햅틱 모듈 등이 포함될 수 있다.
메모리(170)는, AI 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예컨대, 메모리(170)는 입력부(120)에서 획득한 입력 데이터, 학습 데이터, 학습 모델, 학습 히스토리 등을 저장할 수 있다.
프로세서(180)는, 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 장치(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 프로세서(180)는, AI 장치(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다.
이를 위해, 프로세서(180)는, 러닝 프로세서(130) 또는 메모리(170)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 장치(100)의 구성 요소들을 제어할 수 있다.
이때, 프로세서(180)는, 결정된 동작을 수행하기 위하여 외부 장치의 연계가 필요한 경우, 해당 외부 장치를 제어하기 위한 제어 신호를 생성하고, 생성한 제어 신호를 해당 외부 장치에 전송할 수 있다.
프로세서(180)는, 사용자 입력에 대하여 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 사용자의 요구 사항을 결정할 수 있다.
이때, 프로세서(180)는, 음성 입력을 문자열로 변환하기 위한 STT(Speech To Text) 엔진 또는 자연어의 의도 정보를 획득하기 위한 자연어 처리(NLP: Natural Language Processing) 엔진 중에서 적어도 하나 이상을 이용하여, 사용자 입력에 상응하는 의도 정보를 획득할 수 있다.
이때, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 적어도 일부가 머신 러닝 알고리즘에 따라 학습된 인공 신경망으로 구성될 수 있다. 그리고, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 러닝 프로세서(130)에 의해 학습된 것이나, AI 서버(200)의 러닝 프로세서(240)에 의해 학습된 것이거나, 또는 이들의 분산 처리에 의해 학습된 것일 수 있다.
프로세서(180)는, AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리(170) 또는 러닝 프로세서(130)에 저장하거나, AI 서버(200) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 업데이트하는데 이용될 수 있다.
프로세서(180)는, 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, AI 장치(100)의 구성 요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는, 상기 응용 프로그램의 구동을 위하여, AI 장치(100)에 포함된 구성 요소들 중 둘 이상을 서로 조합하여 동작시킬 수 있다.
도 2는, 본 개시의 일 실시 예에 따른 AI 서버(200)를 나타낸다.
도 2를 참조하면, AI 서버(200)는, 머신 러닝 알고리즘을 이용하여 인공 신경망을 학습시키거나 학습된 인공 신경망을 이용하는 장치를 의미할 수 있다. 여기서, AI 서버(200)는, 복수의 서버들로 구성되어 분산 처리를 수행할 수도 있고, 5G 네트워크로 정의될 수 있다. 이때, AI 서버(200)는 AI 장치(100)의 일부의 구성으로 포함되어, AI 프로세싱 중 적어도 일부를 함께 수행할 수도 있다.
AI 서버(200)는, 통신부(210), 메모리(230), 러닝 프로세서(240) 및 프로세서(260) 등을 포함할 수 있다.
통신부(210)는, AI 장치(100) 등의 외부 장치와 데이터를 송수신할 수 있다.
메모리(230)는, 모델 저장부(231)를 포함할 수 있다. 모델 저장부(231)는, 러닝 프로세서(240)을 통하여 학습 중인 또는 학습된 모델(또는 인공 신경망, 231a)을 저장할 수 있다.
러닝 프로세서(240)는, 학습 데이터를 이용하여 인공 신경망(231a)을 학습시킬 수 있다. 학습 모델은, 인공 신경망의 AI 서버(200)에 탑재된 상태에서 이용되거나, AI 장치(100) 등의 외부 장치에 탑재되어 이용될 수도 있다.
학습 모델은, 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 학습 모델의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델을 구성하는 하나 이상의 명령어(instruction)는 메모리(230)에 저장될 수 있다.
프로세서(260)는, 학습 모델을 이용하여 새로운 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수 있다.
도 3은 본 발명의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.
도 3을 참조하면, AI 시스템(1)은 AI 서버(200), 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 등을 AI 장치(100a 내지 100e)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템(1)을 구성하는 각 장치들(100a 내지 100e, 200)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(100a 내지 100e, 200)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(200)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(200)는 AI 시스템(1)을 구성하는 AI 장치들인 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(100a 내지 100e)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(100a 내지 100e)에 전송할 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(100a 내지 100e)로 전송할 수 있다.
또는, AI 장치(100a 내지 100e)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
이하에서는, 상술한 기술이 적용되는 AI 장치(100a 내지 100e)의 다양한 실시 예들을 설명한다. 여기서, 도 3에 도시된 AI 장치(100a 내지 100e)는 도 1에 도시된 AI 장치(100)의 구체적인 실시 예로 볼 수 있다.
<AI+로봇>
로봇(100a)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(100a)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(100a)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(100a)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(100a)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(100a)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(100a)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(100a)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+자율주행>
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 자율 주행 차량(100b)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율 주행 차량(100b)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율 주행 차량(100b)을 주행시킬 수 있다.
맵 데이터에는 자율 주행 차량(100b)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율 주행 차량(100b)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 자율 주행 차량(100b)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+XR>
XR 장치(100c)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(100c)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(100c)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(100c)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(100c)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(100c)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, XR 장치(100c)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
<AI+로봇+자율주행>
로봇(100a)은 AI 기술 및 자율 주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율 주행 기술이 적용된 로봇(100a)은 자율 주행 기능을 가진 로봇 자체나, 자율 주행 차량(100b)과 상호작용하는 로봇(100a) 등을 의미할 수 있다.
자율 주행 기능을 가진 로봇(100a)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)과 별개로 존재하면서, 자율 주행 차량(100b)의 내부에서 자율 주행 기능에 연계되거나, 자율 주행 차량(100b)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이때, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)을 대신하여 센서 정보를 획득하여 자율 주행 차량(100b)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율 주행 차량(100b)에 제공함으로써, 자율 주행 차량(100b)의 자율 주행 기능을 제어하거나 보조할 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율 주행 차량(100b)의 기능을 제어할 수 있다. 예컨대, 로봇(100a)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율 주행 차량(100b)의 자율 주행 기능을 활성화하거나 자율 주행 차량(100b)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(100a)이 제어하는 자율 주행 차량(100b)의 기능에는 단순히 자율 주행 기능뿐만 아니라, 자율 주행 차량(100b)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)의 외부에서 자율 주행 차량(100b)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(100a)은 스마트 신호등과 같이 자율 주행 차량(100b)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율 주행 차량(100b)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
<AI+로봇+XR>
로봇(100a)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(100a)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(100a)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(100a)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(100a) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(100a)은 XR 장치(100c)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(100c) 등의 외부 장치를 통해 원격으로 연동된 로봇(100a)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(100a)의 자율 주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
<AI+자율주행+XR>
자율 주행 차량(100b)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율 주행 차량(100b)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(100b)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율 주행 차량(100b)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(100b)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율 주행 차량(100b) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율 주행 차량(100b)은 XR 장치(100c) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
도 4는, 본 개시의 일 실시 예에 따른 인공 지능 장치의 동작을 설명하기 위한 도면이다.
도 4에 도시된 바와 같이, 본 개시의 인공 지능 장치(100)는, 사전 학습한 화자 목록을 저장하는 메모리(170), 그리고 입력되는 발화 데이터로부터 새로운 화자를 식별하는 프로세서(180)를 포함할 수 있다.
프로세서(180)는, 화자(500)의 발화 데이터가 입력되면 발화 데이터를 전처리하고, 전처리한 발화 데이터를 기반으로 새로운 화자를 식별하며, 식별한 새로운 화자에 대한 능동 질문을 출력하고, 출력한 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 새로운 화자의 응답 발화 데이터를 기반으로 새로운 화자를 학습하여 화자 목록 내에 등록할 수 있다.
여기서, 프로세서(180)는, 발화 데이터를 전처리할 때, 발화 데이터가 입력되면 발화 데이터로부터 특징 추출(feature extraction) 및 차원 축소(dimension reduction)를 수행하여 전처리할 수 있다.
그리고, 프로세서(180)는, 새로운 화자를 식별할 때, 전처리한 발화 데이터를 뉴럴 네트워크 모델에 입력하여 임베딩 공간(embedding space) 내에 발화 데이터에 상응하는 제1 노드(node)를 구성하고, 노드들간의 연관성을 기반으로 제1 노드와 임베딩 공간에 이미 존재하는 제2 노드 사이를 에지(edge)로 연결하며, 에지의 연결 관계를 기반으로 발화 데이터의 화자가 새로운 화자인지를 식별할 수 있다.
프로세서(180)는, 제1 노드를 구성할 때, 현재 입력되는 화자의 발화 데이터를 임베딩 공간에 토폴로지 그래프(topological graph) 형태의 노드로 구성할 수 있다.
일 예로, 프로세서(180)는, 제1 노드를 구성할 때, 현재 입력되는 화자의 발화 데이터가 이미 존재하는 제2 노드의 데이터 그룹과의 유사도가 기준 조건에 만족되지 않으면 현재 입력되는 화자의 발화 데이터를 포함하는 새로운 제1 노드를 구성하고, 현재 입력되는 화자의 발화 데이터가 이미 존재하는 제2 노드의 데이터 그룹과의 유사도가 기준 조건에 만족하면 현재 입력되는 화자의 발화 데이터를 제2 노드의 데이터 그룹으로 포함할 수 있다.
여기서, 프로세서(180)는, 새로운 제1 노드를 구성할 때, 적응 공명 이론(ART: Adaptive Resonance Theory)의 공명 조건을 기반으로 제1 노드를 구성할 수 있다.
이때, 제1 노드는, 현재 입력되는 화자의 발화 데이터에 상응하는 노드로서, 화자의 레이블(label)이 미존재하는 언레이블드 발화 데이터(unlabeled utterance data)를 포함할 수 있다.
그리고, 제2 노드는, 기존에 이미 존재하는 학습된 화자의 발화 데이터에 상응하는 노드로서, 화자의 레이블이 존재하는 레이블드 발화 데이터(labeled utterance data)를 포함하고, 사전 학습될 수 있다.
경우에 따라, 제2 노드는, 화자의 레이블이 미존재하는 언레이블드 발화 데이터(unlabeled utterance data)를 포함할 수도 있다.
이어, 프로세서(180)는, 제1 노드와 제2 노드 사이를 에지로 연결할 때, 제1 노드가 구성되면 제1 노드와 제2 노드 사이의 공동 활성화(co-activation) 횟수를 기반으로 가중치를 산출하고, 산출한 가중치를 기반으로 제1 노드와 제2 노드 사이를 에지로 연결할 수 있다.
경우에 따라, 프로세서(180)는, 산출한 가중치가 0이면 제1 노드와 제2 노드 사이를 에지로 연결하지 않을 수 있다.
또한, 프로세서(180)는, 제1 노드와 제2 노드 사이의 유사도가 높으면 제1 노드와 제2 노드 사이의 공동 활성화 횟수(co-activated count)를 증가시킬 수 있다.
여기서, 프로세서(180)는, 제1 노드와 제2 노드 사이의 공동 활성화 횟수가 증가할수록 제1 노드와 제2 노드 사이를 연결하는 에지 가중치를 증가시킬 수 있다.
일 예로, 프로세서(180)는, 가중치를 증가시킬 때, 제1 노드와 제2 노드 사이의 공동 활성화 횟수 증가율에 비례하여 제1 노드와 제2 노드 사이의 에지 가중치 증가율을 증가시킬 수 있다.
즉, 프로세서(180)는, 가중치를 증가시킬 때, 제1 노드와 제2 노드 사이의 공동 활성화 횟수 증가율과 동일한 비율로 제1 노드와 제2 노드 사이의 에지 가중치 증가율을 증가시킬 수 있다.
또한, 프로세서(180)는, 제1 노드와 제2 노드 사이를 에지로 연결할 때, 제1 노드와 공동 활성화되는 제2 노드가 복수 개이면 제1 노드에 복수 개의 에지들을 연결시킬 수 있다.
일 예로, 제1 노드에 연결되는 에지의 개수는, 제1 노드와 공동 활성화되는 제2 노드의 개수와 동일할 수 있다.
그리고, 프로세서(180)는, 제1 노드와 복수의 제2 노드들 사이의 공동 활성화 횟수를 기반으로 제1 노드와 복수의 제2 노드들 사이를 연결하는 복수의 에지에 가중치를 부여할 수 있다.
여기서, 복수의 에지에 부여되는 가중치는, 제1 노드와 복수의 제2 노드들 사이의 공동 활성화 횟수에 따라 서로 다를 수 있는데, 이는 일 실시예일 뿐, 이에 한정되지 않는다.
다음, 프로세서(180)는, 새로운 화자를 식별할 때, 에지의 연결 관계를 기반으로 제1 노드와 에지로 연결되는 제2 노드의 정보를 수집하고, 수집한 제2 노드의 정보를 기반으로 제1 노드의 불확실성 스코어를 산출하며, 산출한 불확실성 스코어가 기준값 이상이면 발화 데이터의 화자를 새로운 화자로 식별할 수 있다.
여기서, 프로세서(180)는, 제1 노드의 불확실성 스코어를 산출할 때, 메시지 패싱 방법을 기반으로 제2 노드의 정보를 수집하면 제2 노드의 정보를 기반으로 제1 노드를 업데이트하고, 제1 노드와 제2 노드 사이의 상관 관계를 유추하여 제1 노드의 불확실성 스코어를 산출할 수 있다.
일 예로, 프로세서(180)는, 산출한 불확실성 스코어가 기준값 미만이면 발화 데이터의 화자를 화자 목록 내에 기등록된 화자로 식별할 수 있다.
이어, 프로세서(180)는, 능동 질문을 출력할 때, 기저장된 능동 질문 목록으로부터 새로운 화자에 상응하는 특정 능동 질문을 선택하고, 선택한 특정 능동 질문을 새로운 화자에게 출력할 수 있다.
여기서, 프로세서(180)는, 특정 능동 질문을 음성, 영상, 문자 중 적어도 어느 하나로 변환하여 출력할 수 있는데, 이는 일 실시예일 뿐, 이에 한정되지 않는다.
또한, 프로세서(180)는, 불확실성 스코어를 기반으로 기저장된 능동 질문 목록으로부터 새로운 화자에 상응하는 특정 능동 질문을 선택할 수 있다.
일 예로, 기저장된 능동 질문 목록은, 복수의 능동 질문 항목들을 포함할 수 있고, 복수의 능동 질문 항목들은, 불확실성 스코어별로 분류될 수 있다.
경우에 따라, 기저장된 능동 질문 목록은, 불확실성 스코어가 높은 능동 질문 항목을 상위 레벨로 배치하고, 불확실성 스코어가 낮은 능동 질문 항목을 하위 레벨로 배치할 수도 있다.
다른 경우로서, 복수의 능동 질문 항목들은, 불확실성 스코어에 따라 순차 배열될 수도 있다.
그 이유는, 복수의 능동 질문 항목들이 불확실성 스코어에 따라 순차 배열됨으로써, 발화 데이터의 불확실성 레벨에 따라 필요한 능동 질문을 정확하고 신속하게 선택하여 출력할 수 있을 뿐만 아니라, 빠른 레이블링 처리로 신규 화자 학습 및 화자 인식 정확도가 향상될 수 있기 때문이다.
다음, 프로세서(180)는, 능동 질문 목록에 포함되는 복수의 능동 질문 항목들 중 산출된 불확실성 스코어에 상응하는 능동 질문 항목을 선택하여 추출할 수 있다.
여기서, 프로세서(180)는, 불확실성 스코어가 기준 스코어 이상인 능동 질문 항목을 하나만 선택하여 추출하고, 불확실성 스코어가 기준 스코어 미만인 능동 질문 항목을 복수 개 선택하여 추출할 수 있는데, 이는 일 실시예일 뿐, 이에 한정되지 않는다.
일 예로, 프로세서(180)는, 불확실성 스코어가 낮을수록 선택되는 능동 질문 항목의 개수를 증가시킬 수 있다.
그 이유는, 불확실성 레벨이 낮은 발화 데이터의 경우에도 복수의 능동 질문을 통해 빠른 레이블링 처리로 화자 인식 정확도를 높일 수 있기 때문이다.
이어, 프로세서(180)는, 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 응답 발화 데이터가 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 능동 질문에 만족하는 응답 발화 데이터이면 제1 노드에 포함되는 발화 데이터를 레이블링하여 새로운 화자를 학습하고, 학습한 새로운 화자를 화자 목록 내에 등록할 수 있다.
여기서, 프로세서(180)는, 능동 질문에 만족하는 응답 발화 데이터인지를 확인할 때, 능동 질문에 만족하는 응답 발화 데이터가 아니면 새로운 화자에 대한 능동 질문을 재출력할 수 있다.
그리고, 프로세서(180)는, 재출력한 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 응답 발화 데이터가 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 재출력한 능동 질문에 만족하는 응답 발화 데이터가 아니면 제1 노드에 포함되는 발화 데이터의 화자를 언레이블링할 수 있다.
경우에 따라, 프로세서(180)는, 복수의 능동 질문에 대한 새로운 화자의 복수의 응답 발화 데이터들이 입력되면 복수의 응답 발화 데이터들이 모두 복수의 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 복수의 응답 발화 데이터들이 모두 복수의 능동 질문에 만족하는 응답 발화 데이터이면 제1 노드에 포함되는 발화 데이터를 레이블링하여 새로운 화자를 학습하고, 학습한 새로운 화자를 화자 목록 내에 등록할 수도 있다.
여기서, 프로세서(180)는, 복수의 능동 질문에 만족하는 응답 발화 데이터인지를 확인할 때, 복수의 응답 발화 데이터들 중 적어도 어느 하나가 복수의 능동 질문에 만족하는 응답 발화 데이터가 아니면 제1 노드에 포함되는 발화 데이터의 화자를 언레이블링할 수 있다.
다른 경우로서, 프로세서(180)는, 복수의 능동 질문에 대한 새로운 화자의 복수의 응답 발화 데이터들이 입력되면 복수의 응답 발화 데이터들 중 적어도 어느 하나가 복수의 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 복수의 응답 발화 데이터들 중 적어도 어느 하나가 복수의 능동 질문에 만족하는 응답 발화 데이터이면 제1 노드에 포함되는 발화 데이터를 레이블링하여 새로운 화자를 학습하고, 학습한 새로운 화자를 상기 화자 목록 내에 등록할 수도 있다.
여기서, 본 개시의 뉴럴 네트워크 모델은, MPART(Message Passing Adaptive Resonance Theory) 모델을 포함할 수 있다.
이와 같이, 본 개시의 인공 지능 장치는, 입력되는 발화 데이터에 대한 불확실도 측정과 함께 새로운 화자에게 능동 질문을 제공하여, 새로운 화자의 발화 데이터를 자동 학습하고 화자 목록에 새로운 화자를 자동 등록함으로써, 화자 인식 정확도 및 서비스 품질을 향상시킬 수 있다.
도 5는, 본 개시의 일 실시 예에 따른 인공 지능 장치의 신규 화자 추가 방법을 설명하기 위한 도면이다.
도 5에 도시된 바와 같이, 본 개시의 인공 지능 장치(100)는, 음성 비서 시스템 등에 적용됨으로써, 화자(500)의 발화 데이터(600)만으로도 화자(500)를 정확하게 식별하여 화자가 원하는 서비스를 제공할 수 있다.
본 개시의 인공 지능 장치(100)는, MPART(Message Passing Adaptive Resonance Theory) 모델을 이용하여 적은 레이블 데이터만으로도 능동 질문을 통한 적응적 자가 학습을 기반으로 화자 인식 정확도를 높일 수 있다.
도 5와 같이, 본 개시의 인공 지능 장치(100)는, 복수의 화자(500)들 중 제4 화자(540)로부터 "노래 틀어줘"라는 제4 발화 데이터가 입력되면 제4 화자(540)의 제4 발화 데이터(640)가 기존에 이미 등록된 제1 화자(510)의 제1 발화 데이터(610), 제2 화자(520)의 제2 발화 데이터(620) 및 제3 화자(530)의 제3 발화 데이터(630)들과 다른지를 판단하고, 제4 화자(540)의 제4 발화 데이터(640)가 기존의 발화 데이터들과 다르면 새로운 발화 데이터로 인지하며, 제4 화자(540)의 제4 발화 데이터(640)의 불확실도를 측정하여 제4 화자(540)에게 능동 질문을 제공할 수 있다.
일 예로, 본 개시의 인공 지능 장치(100)는, "당신은 새로운 사람인가요?"라는 능동 질문을 제4 화자(540)에게 제공하고, 능동 질문에 대한 제4 화자(540)의 응답 발화 데이터가 입력되면 제4 화자(540)의 응답 발화 데이터를 기반으로 발화 데이터가 레이블링되며, 레이블된 발화 데이터를 기반으로 제4 화자(540)를 학습하여 제4 화자(540)를 화자 목록 내에 신규 화자로 추가할 수 있다.
이처럼, 본 개시는, 적은 레이블 데이터를 기반으로 각 화자를 학습할 수 있는 준지도 학습(semi-supervised learning)을 수행할 수 있다.
또한, 본 개시는, 홈 환경에서 음성 서비스를 사용하는 화자와 전체 화자 수를 모르는 상황이 존재하여도 능동 질문을 통한 적응적 자가 학습을 수행하는 온라인 학습(online learning)을 기반으로 새로운 화자를 자동 등록하여 새로운 화자에게도 언제든지 음성 서비스를 제공할 수 있다.
또한, 본 개시는, 현재 입력되는 발화 데이터에 대해 불확실도 측정과 동시에 화자에게 능동 질문을 제공하는 능동 학습(active learning)을 수행할 수 있다.
또한, 본 개시는, 불확실도 측정을 통한 능동 질문에 대한 화자의 응답으로 발화 데이터가 자동 레이블링되어 화자 인식 정확도를 향상시킬 수 있다.
도 6 내지 도 14는, 본 개시의 일 실시 예에 따른 인공 지능 장치의 뉴럴 네트워크 모델을 설명하기 위한 도면이다.
본 개시는, MPART(Message Passing Adaptive Resonance Theory) 모델을 이용하여 능동 질문을 통한 적응적 자가 학습을 수행할 수 있다.
도 6에 도시된 바와 같이, 본 개시는, 제1 화자(510)의 제1 발화 데이터가 입력되면 제1 발화 데이터에 대해 특징 추출(feature extraction) 및 차원 축소(dimension reduction)를 수행하여 차원 축소된 벡터(reduced-dimensional feature vector)로 표현되는 제1 발화 데이터(610)를 임베딩 공간(embedding space)(400)에 매핑할 수 있다.
이어, 도 7에 도시된 바와 같이, 본 개시는, 임베딩 공간(400) 내의 제1 발화 데이터(610)를 토폴로지 그래프(topological graph) 형태의 노드(700)로 구성할 수 있다.
그리고, 본 개시는, 제2 화자(520)의 제2 발화 데이터가 입력되면 제2 발화 데이터에 대해 특징 추출 및 차원 축소를 수행하여 차원 축소된 벡터로 표현되는 제2 발화 데이터(620)를 임베딩 공간(400)에 매핑할 수 있다.
다음, 도 8에 도시된 바와 같이, 본 개시는, 임베딩 공간(400) 내의 제2 발화 데이터(620)를 토폴로지 그래프 형태의 노드(700)로 구성할 수 있다.
즉, 임베딩 공간에는, 제1 발화 데이터(610)에 상응하는 노드(700)들과, 제2 발화 데이터(620)에 상응하는 노드(700)들이 배치될 수 있다.
여기서, 본 개시는, 현재 입력되는 제2 발화 데이터(620)가 임베딩 공간(400)에 이미 존재하는 노드의 제1 발화 데이터 그룹과의 유사도 기준 조건에 만족되지 않으면 현재 입력되는 제2 발화 데이터(620)를 새로운 노드로 구성할 수 있다.
경우에 따라, 본 개시는, 현재 입력되는 제2 발화 데이터(620)가 임베딩 공간(400)에 이미 존재하는 노드의 제1 발화 데이터 그룹과의 유사도 기준 조건에 만족되면 현재 입력되는 제2 발화 데이터(620)를 새로운 노드로 구성하지 않고 위너 노드(winner node)인 제1 발화 데이터 그룹에 포함되어 위너 노드를 업데이트시킬 수도 있다.
일 예로, 본 개시는, 노드를 구성할 때, 하기 수학식 1을 포함하는 알고리즘을 사용할 수 있다.
여기서, Mj는 매칭 함수(matching function)이고, Tj는 선택 함수(choice function)이며, ∧는 요소별 최소 동작(element-wise minimum operation)을 나타내고, ∥·∥1는, L1 정규화(normalization)이며, α > 0은 선택 함수에 대한 하이퍼파라미터(hyperparameter)이고, 입력 It는 [rt, 1-rt]이며, rt는 차원 축소된 특징 벡터(reduced-dimensional feature vector)일 수 있다.
이때, 입력 It는 모든 노드들 j와 비교되어 매칭 함수 Mj(It)를 얻을 수 있다.
그리고, 매칭 함수 Mj(It)는, 경계 매개 변수(vigilance parameter) ρ ∈ [0, 1]보다 더 크거나 또는 동일하면 위너 노드 후보가 될 수 있다.
이어, 최종 위너 노드(winner node) Jt는, 위너 노드 후보들 중 선택 함수 Tj(It)가 가장 큰 값을 가지는 노드로 선택될 수 있고, 나머지 노드들은, 공동 활성화된 노드들(co-activated nodes)일 수 있다.
또한, 위너 노드는, 학습률 β ∈ [0, 1]로 업데이트되고, 하기 수학식 2에 의해 위닝 카운트(winning count) dJt를 증가시킬 수 있다.
여기서, 위너 노드가 없는 경우, 새로운 노드 Jt가 생성되고, 새로운 노드는, wJt = It와 dJt = 1로 초기화될 수 있다.
이처럼, 본 개시는, 노드를 구성할 때, 적응 공명 이론(ART: Adaptive Resonance Theory)의 공명 조건을 기반으로 노드를 구성할 수 있다.
이어, 도 9에 도시된 바와 같이, 본 개시는, 노드(700)들간의 연관성을 기반으로 노드(700)들 사이를 에지(edge)(800)로 연결할 수 있다.
여기서, 본 개시는, 노드(700)들 사이의 공동 활성화(co-activation) 횟수를 기반으로 가중치를 산출하고, 산출한 가중치를 노드(700)들 사이를 에지(800)로 연결할 수 있다.
일 예로, 본 개시는, 산출한 가중치가 0이면 노드(700)들 사이를 에지로 연결하지 않을 수 있다.
본 개시는, 노드(700)들 사이의 유사도가 높으면 노드와 노드 사이의 공동 활성화 횟수를 증가시킬 수 있는데, 노드(700)들 사이의 공동 활성화 횟수가 증가할수록 노드(700)들 사이를 연결하는 에지(800) 가중치를 증가시킬 수 있다.
일 예로, 본 개시는, 노드(700)들 사이의 공동 활성화 횟수 증가율에 비례하여 에지(800) 가중치 증가율을 증가시킬 수 있다.
다른 일 예로, 본 개시는, 노드(700)들 사이의 공동 활성화 횟수 증가율과 동일한 비율로 에지(700) 가중치 증가율을 증가시킬 수도 있다.
또한, 본 개시는, 하나의 노드(700)에 공동 활성화되는 복수의 노드(700)들이 에지(800)로 연결될 수 있다.
여기서, 하나의 노드(700)에 연결되는 에지(800)의 개수는, 공동 활성화되는 노드(700)들의 개수와 동일할 수 있는데, 이는 일 실시예로서, 이에 한정되지 않는다.
그리고, 본 개시는, 노드(700)들 사이의 공동 활성화 횟수를 기반으로 노드(700)들을 연결하는 에지(800)마다 서로 다른 가중치를 부여할 수 있다.
즉, 에지(800)에 부여되는 가중치는, 노드(700)들 사이의 공동 활성화 횟수에 따라 서로 다를 수 있다.
이처럼, 복수의 노드(700)들이 활성화되면, 위너 노드 Jt와 공동 활성화 노드들 v ≠ Jt 사이의 공동 활성화 횟수 cJtv는, 1씩 증가할 수 있다.
이어, 토폴로지컬 그래프의 에지 가중치 eij는, 하기 수학식 3으로 정의될 수 있다.
여기서, cij는, 노드 i와 j의 공동 활성화된 횟수(co-activated count)이고, 에지 가중치 eij는, 0과 1 사이이며, 에지 가중치는, 정규화 없이 토폴로지컬 그래프의 메시지 패싱(massage passing)으로 이용될 수 있다.
다음, 도 10에 도시된 바와 같이, 본 개시는, 노드(700)들의 에지(800) 연결 관계를 기반으로 발화 데이터의 화자를 식별하여 제1 발화 데이터(610)에 상응하는 제1 화자(510)와 제2 발화 데이터(620)에 상응하는 제2 화자(520)를 자가 학습하고 화자 등록을 수행할 수 있다.
그리고, 새로운 제3 화자(520)의 제3 발화 데이터가 입력되면 새로운 제3 발화 데이터에 대해 특징 추출 및 차원 축소를 수행하여 차원 축소된 벡터로 표현되는 제3 발화 데이터(630)를 임베딩 공간(400)에 매핑할 수 있다.
그리고, 본 개시는, 현재 입력되는 제3 발화 데이터(630)가 임베딩 공간(400)에 이미 존재하는 노드에 포함되는 제1 발화 데이터(610)와 제2 발화 데이터(620) 등의 데이터 그룹과 유사도가 다르면 현재 입력되는 제3 발화 데이터(630)를 새로운 노드로 구성할 수 있다.
이어, 본 개시는, 노드(700)들간의 공동 활성화 횟수를 기반으로 가중치를 산출하고, 산출한 가중치를 기반으로 제3 발화 데이터(630)에 상응하는 새로운 노드(700)와 기존의 다른 노드(700)들을 에지(800)로 연결할 수 있다.
이어, 도 11 및 도 12에 도시된 바와 같이, 본 개시는, 에지(800)의 연결 관계를 기반으로 제3 발화 데이터(630)의 화자가 새로운 화자인지를 식별할 수 있다.
여기서, 본 개시는, 에지(800)의 연결 관계를 기반으로 새로운 노드와 에지(800)로 연결되는 기존 노드의 정보를 수집하고, 수집한 기존 노드의 정보를 기반으로 새로운 노드의 불확실성 스코어를 산출하며, 산출한 불확실성 스코어가 기준값 이상이면 제3 발화 데이터(630)에 상응하는 화자를 새로운 화자로 식별하고. 산출한 불확실성 스코어가 기준값 미만이면 제3 발화 데이터(630)의 화자를 화자 목록 내에 기등록된 기존 화자로 식별할 수 있다.
이때, 본 개시는, 새로운 노드의 불확실성 스코어를 산출할 때, 메시지 패싱(810) 방법을 기반으로 기존 노드의 정보를 수집하면 기존 노드의 정보를 기반으로 새로운 노드를 업데이트하고, 새로운 노드와 기존 노드 사이의 상관 관계를 유추하여 새로운 노드의 불확실성 스코어를 산출할 수 있다.
이처럼, 본 개시는, 하기 수학식 4를 이용하여 노드 식별을 위한 메시지 패싱(810) 방법을 정의할 수 있다.
여기서, δ ∈ [0, 1]은, 전파속도(propagation rate)의 하이퍼파라미터이고, Xi와 Xj는, 레이블 밀도(label density)와 위닝 카운트(winning count)와 같은 정보 벡터들이며, Ni는 노드 idml 모든 이웃 노드들의 집합일 수 있다.
이러한 메시지 패싱 방식은, 보다 넓은 범위의 정보를 수집하기 위하여 복수의 레이어에서 반복적으로 사용될 수 있다.
또한, 본 개시는, 위너 노드 Jt의 클래스 레이블(class label)을 추정하여 입력되는 발화 데이터 xt의 화자를 식별할 수 있다.
일 예로, 본 개시는, 레이블 yt가 위너 노드에 수신되면 레이블 밀도 qJt(yt)를 1씩 증가시킬 수 있다.
여기서, 하나의 노드 클래스는, 현재 입력되는 발화 데이터가 포함되는 노드의 레이블뿐만 아니라, 드물게 주어지는 주변 노드들의 레이블들로 평가될 수 있다.
클래스 확률 분포 pt(y)와 현재 입력되는 발화 데이터 xi의 추정 화자 ^y는, 하기 수학식 5와 같이 집계된 레이블 밀도(aggregated label density) 를 사용하여 얻어질 수 있다.
여기서, C는, 이미 알려진 화자의 레이블 세트일 수 있다.
여기서, kd > 0은, 감도(sensitivity)에 대한 상수(constant)일 수 있다.
그리고, 본 개시는, 밀도 스코어 st가 밀도 임계치 θd ∈ [0, 1]보다 더 큰 입력 발화 데이터 샘플들을 선택하여 대표 샘플을 쿼리(query)할 수 있다.
또한, 본 개시는, 하기 수학식 7과 같이, 위너 노드 Jt의 레이블 밀도(label density) 를 사용하여 인식론적 불확실성으로 볼 수 있는 불확실성 스코어 ut를 산출할 수 있다.
여기서, ku > 0은, 불확실성 스코어 ut에 대한 감도 상수(sensitivity constant)일 수 있다.
그리고, 불확실성 스코어 ut는, 입력 발화 데이터 분포 중 레이블이 적은 영역에서 높은 값을 가질 수 있다.
따라서, 본 개시는, 불확실성 임계값 θu 보다 더 큰 불확실성 스코어 ut를 갖는 입력 발화 데이터 샘플을 선택함으로써, 유익한 샘플들을 쿼리할 수 있다.
이처럼, 본 개시는, 쿼리 선택을 위해 밀도 스코어 st와 불확실성 스코어 ut를 각각 활용할 수 있다.
결론적으로, 본 개시는, 밀도 스코어가 st > θd이고, 불확실성 스코어가 ut > θu 인 조건을 모두 만족하는 입력 발화 데이터 샘플을 쿼리하여 레이블을 획득하고 점차적으로 화자 인식 성능을 향상시킬 수 있다.
다음 도 13에 도시된 바와 같이, 본 개시는, 밀도 스코어 및 불확실성 스코어를 기반으로 제3 발화 데이터(630)에 상응하는 새로운 제3 화자(530)에게 식별을 위한 능동 질문을 출력할 수 있다.
일 예로, 본 개시는, 기저장된 능동 질문 목록으로부터 새로운 화자에 상응하는 특정 능동 질문을 선택하고, 선택한 특정 능동 질문을 새로운 화자에게 출력할 수 있다.
여기서, 본 개시는, 특정 능동 질문을 음성, 영상, 문자 중 적어도 어느 하나로 변환하여 출력할 수 있는데, 이는 일 실시예일 뿐, 이에 한정되지 않는다.
또한, 본 개시는, 불확실성 스코어를 기반으로 기저장된 능동 질문 목록으로부터 새로운 화자에 상응하는 특정 능동 질문을 선택할 수 있다.
일 예로, 기저장된 능동 질문 목록은, 복수의 능동 질문 항목들을 포함할 수 있고, 복수의 능동 질문 항목들은, 불확실성 스코어별로 분류될 수 있다.
경우에 따라, 기저장된 능동 질문 목록은, 불확실성 스코어가 높은 능동 질문 항목을 상위 레벨로 배치하고, 불확실성 스코어가 낮은 능동 질문 항목을 하위 레벨로 배치할 수도 있다.
다른 경우로서, 복수의 능동 질문 항목들은, 불확실성 스코어에 따라 순차 배열될 수도 있다.
그 이유는, 복수의 능동 질문 항목들이 불확실성 스코어에 따라 순차 배열됨으로써, 발화 데이터의 불확실성 레벨에 따라 필요한 능동 질문을 정확하고 신속하게 선택하여 출력할 수 있을 뿐만 아니라, 빠른 레이블링 처리로 신규 화자 학습 및 화자 인식 정확도가 향상될 수 있기 때문이다.
다음, 본 개시는, 능동 질문 목록에 포함되는 복수의 능동 질문 항목들 중 산출된 불확실성 스코어에 상응하는 능동 질문 항목을 선택하여 추출할 수 있다.
여기서, 본 개시는, 불확실성 스코어가 기준 스코어 이상인 능동 질문 항목을 하나만 선택하여 추출하고, 불확실성 스코어가 기준 스코어 미만인 능동 질문 항목을 복수 개 선택하여 추출할 수 있는데, 이는 일 실시예일 뿐, 이에 한정되지 않는다.
일 예로, 본 개시는, 불확실성 스코어가 낮을수록 선택되는 능동 질문 항목의 개수를 증가시킬 수 있다.
그 이유는, 불확실성 레벨이 낮은 발화 데이터의 경우에도 복수의 능동 질문을 통해 빠른 레이블링 처리로 화자 인식 정확도를 높일 수 있기 때문이다.
이어, 도 14에 도시된 바와 같이, 본 개시는, 능동 질문에 대한 제3 화자(530)의 응답 발화 데이터가 입력되면 응답 발화 데이터가 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 능동 질문에 만족하는 응답 발화 데이터이면 제3 발화 데이터(630)를 레이블링하여 새로운 제3 화자(530)를 학습하고, 학습한 새로운 제3 화자(530)를 화자 목록 내에 등록할 수 있다.
여기서, 본 개시는, 능동 질문에 만족하는 응답 발화 데이터인지를 확인할 때, 능동 질문에 만족하는 응답 발화 데이터가 아니면 제3 화자(530)에 대한 능동 질문을 재출력할 수 있다.
그리고, 본 개시는, 재출력한 능동 질문에 대한 제3 화자(530)의 응답 발화 데이터가 입력되면 응답 발화 데이터가 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 재출력한 능동 질문에 만족하는 응답 발화 데이터가 아니면 제3 발화 데이터(630)를 언레이블링할 수 있다.
경우에 따라, 본 개시는, 복수의 능동 질문에 대한 제3 화자(530)의 복수의 응답 발화 데이터들이 입력되면 복수의 응답 발화 데이터들이 모두 복수의 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 복수의 응답 발화 데이터들이 모두 복수의 능동 질문에 만족하는 응답 발화 데이터이면 제3 발화 데이터(630)를 레이블링하여 제3 화자(530)를 학습하고, 학습한 새로운 제3 화자(530)를 화자 목록 내에 등록할 수도 있다.
여기서, 본 개시는, 복수의 능동 질문에 만족하는 응답 발화 데이터인지를 확인할 때, 복수의 응답 발화 데이터들 중 적어도 어느 하나가 복수의 능동 질문에 만족하는 응답 발화 데이터가 아니면 제3 발화 데이터(630)를 언레이블링할 수 있다.
다른 경우로서, 본 개시는, 복수의 능동 질문에 대한 새로운 화자의 복수의 응답 발화 데이터들이 입력되면 복수의 응답 발화 데이터들 중 적어도 어느 하나가 복수의 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 복수의 응답 발화 데이터들 중 적어도 어느 하나가 복수의 능동 질문에 만족하는 응답 발화 데이터이면 발화 데이터를 레이블링하여 새로운 화자를 학습하고, 학습한 새로운 화자를 화자 목록 내에 등록할 수도 있다.
도 15는, 본 개시의 일 실시 예에 따른 인공 지능 장치의 신규 화자 등록 과정을 설명하기 위한 도면이다.
도 15에 도시된 바와 같이, 본 개시는, 복수의 화자(900)들로부터 언레이블된 발화 데이터가 입력되면 언레이블된 발화 데이터를 전처리하여 임베딩 공간(embedding space) 내에 제1 노드(920)를 구성할 수 있다.
여기서, 본 개시는, 제1 노드(920)를 구성할 때, 현재 입력되는 화자의 발화 데이터가 이미 존재하는 제2 노드(930)의 데이터 그룹과의 유사도 기준 조건에 만족되지 않으면 현재 입력되는 화자의 발화 데이터를 포함하는 새로운 제1 노드(920)를 구성하고, 현재 입력되는 화자의 발화 데이터가 이미 존재하는 제2 노드(930)의 데이터 그룹과의 유사도 기준 조건에 만족하면 현재 입력되는 화자의 발화 데이터를 제2 노드(930)의 데이터 그룹으로 포함할 수 있다.
일 예로, 본 개시는, 새로운 제1 노드(920)를 구성할 때, 적응 공명 이론(ART: Adaptive Resonance Theory)의 공명 조건을 기반으로 제1 노드(920)를 구성할 수 있다.
또한, 제1 노드(920)는, 화자(900)의 언레이블드 발화 데이터(unlabeled utterance data)를 포함할 수 있다.
또한, 기존에 이미 존재하는 제2 노드(930)는, 화자(900)의 레이블드 발화 데이터(labeled utterance data)를 포함하고, 사전 학습될 수 있다.
경우에 따라, 기존에 이미 존재하는 제2 노드(930)는, 화자(900)의 언레이블드 발화 데이터(unlabeled utterance data)를 포함할 수도 있다.
그리고, 본 개시는, 노드들간의 연관성을 기반으로 제1 노드(920)와 임베딩 공간에 이미 존재하는 제2 노드(930) 사이를 에지(edge)(800)로 연결하고, 에지(800)의 연결 관계를 기반으로 발화 데이터의 화자(900)가 새로운 화자(910)인지를 식별할 수 있다.
여기서, 본 개시는, 제1 노드(920)가 구성되면 현재 구성된 제1 노드(920)와 이전에 구성된 제2 노드(930) 사이의 공동 활성화(co-activation) 횟수를 기반으로 가중치를 산출하고, 산출한 가중치를 기반으로 제1 노드(920)와 제2 노드(930) 사이를 에지(800)로 연결할 수 있다.
일 예로, 본 개시는, 산출한 가중치가 0이면 제1 노드(920)와 제2 노드(930) 사이를 에지(800)로 연결하지 않을 수 있다.
또한, 본 개시는, 제1 노드(920)와 제2 노드(930) 사이의 유사도가 높으면 제1 노드(920)와 제2 노드(930) 사이의 공동 활성화 횟수를 증가시킬 수 있다.
여기서, 본 개시는, 제1 노드(920)와 제2 노드(930) 사이의 공동 활성화 횟수가 증가할수록 제1 노드(920)와 제2 노드(930) 사이를 연결하는 에지 가중치를 증가시킬 수 있다.
그리고, 본 개시는, 새로운 화자(910)를 식별할 때, 에지(800)의 연결 관계를 기반으로 제1 노드(920)와 에지로 연결되는 제2 노드(930)의 정보를 수집하고, 수집한 제2 노드(930)의 정보를 기반으로 제1 노드(920)의 불확실성 스코어를 산출하며, 산출한 불확실성 스코어가 기준값 이상이면 발화 데이터의 화자(900)를 새로운 화자(910)로 식별할 수 있다.
여기서, 본 개시는, 제1 노드(920)의 불확실성 스코어를 산출할 때, 메시지 패싱(810) 방법을 기반으로 제2 노드(930)의 정보를 수집하면 제2 노드(930)의 정보를 기반으로 제1 노드(920)를 업데이트하고, 제1 노드(920)와 제2 노드(930) 사이의 상관 관계를 유추하여 제1 노드(920)의 불확실성 스코어를 산출할 수 있다.
이때, 본 개시는, 산출한 불확실성 스코어가 기준값 미만이면 발화 데이터의 화자(900)를 화자 목록 내에 기등록된 화자(900)로 식별할 수 있다.
다음, 본 개시는, 새로운 화자(910)에 대한 능동 질문을 출력하고, 출력한 능동 질문에 대한 새로운 화자(910)의 응답 발화 데이터가 입력되면 새로운 화자(910)의 응답 발화 데이터를 기반으로 새로운 화자(910)를 학습하여 화자 목록 내에 등록할 수 있다.
여기서, 본 개시는, 능동 질문을 출력할 때, 기저장된 능동 질문 목록으로부터 새로운 화자(910)에 상응하는 특정 능동 질문을 선택하고, 선택한 특정 능동 질문을 새로운 화자(910)에게 출력할 수 있다.
경우에 따라, 본 개시는, 불확실성 스코어를 기반으로 기저장된 능동 질문 목록으로부터 새로운 화자(910)에 상응하는 특정 능동 질문을 선택할 수도 있다.
일 예로, 기저장된 능동 질문 목록은, 복수의 능동 질문 항목들을 포함하고, 복수의 능동 질문 항목들은, 불확실성 스코어별로 분류될 수 있다.
여기서, 본 개시는, 능동 질문 목록에 포함되는 복수의 능동 질문 항목들 중 산출된 불확실성 스코어에 상응하는 능동 질문 항목을 선택하여 추출할 수 있다.
이어, 본 개시는, 능동 질문에 대한 새로운 화자(910)의 응답 발화 데이터가 입력되면 응답 발화 데이터가 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 능동 질문에 만족하는 응답 발화 데이터이면 제1 노드(920)에 포함되는 발화 데이터를 레이블링하여 새로운 화자(910)를 학습하고, 학습한 새로운 화자(910)를 화자 목록 내에 등록할 수 있다.
여기서, 본 개시는, 능동 질문에 만족하는 응답 발화 데이터인지를 확인할 때, 능동 질문에 만족하는 응답 발화 데이터가 아니면 새로운 화자(910)에 대한 능동 질문을 재출력할 수 있다.
또한, 본 개시는, 재출력한 능동 질문에 대한 새로운 화자(910)의 응답 발화 데이터가 입력되면 응답 발화 데이터가 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 재출력한 능동 질문에 만족하는 응답 발화 데이터가 아니면 제1 노드(920)에 포함되는 발화 데이터의 화자(900)를 언레이블링할 수 있다.
경우에 따라, 본 개시는, 복수의 능동 질문에 대한 새로운 화자(910)의 복수의 응답 발화 데이터들이 입력되면 복수의 응답 발화 데이터들이 모두 복수의 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 복수의 응답 발화 데이터들이 모두 복수의 능동 질문에 만족하는 응답 발화 데이터이면 제1 노드(920)에 포함되는 발화 데이터를 레이블링하여 새로운 화자(910)를 학습하고, 학습한 새로운 화자(910)를 화자 목록 내에 등록할 수 있다.
다른 경우로서, 본 개시는, 복수의 능동 질문에 대한 새로운 화자의 복수의 응답 발화 데이터들이 입력되면 복수의 응답 발화 데이터들 중 적어도 어느 하나가 복수의 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 복수의 응답 발화 데이터들 중 적어도 어느 하나가 복수의 능동 질문에 만족하는 응답 발화 데이터이면 제1 노드(920)에 포함되는 발화 데이터를 레이블링하여 새로운 화자를 학습하고, 학습한 새로운 화자를 화자 목록 내에 등록할 수 있다.
본 개시에서 사용되는 뉴럴 네트워크 모델은, MPART(Message Passing Adaptive Resonance Theory) 모델을 포함할 수 있다.
도 16 내지 도 18은, 본 개시의 일 실시 예에 따른 인공 지능 장치의 뉴럴 네트워크 모델에 대한 화자 인식 정확도 성능 결과를 보여주는 도면이다.
도 16은, 화자 수의 증가에 따른 본 개시의 화자 인식 정확도를 보여주는 도표이다.
도 16에 도시된 바와 같이, 본 개시에 대한 비교 방식으로서, 퍼슨(person) 방식은, 각각의 화자에게 동일한 수의 레이블 데이터 샘플들이 주어진 경우, 화자 인식 정확도를 보여주는 수치이고, 랜덤(random) 방식은, 홈 환경 내의 화자들에게 랜덤하게 레이블 데이터 샘들이 주어진 경우, 화자 인식 정확도를 보여주는 수치이다.
여기서, 퍼슨 방식과 랜덤 방식은, 화자당 레이블 데이터 샘플 수(N/S)가 증가할수록 화자 인식 정확도가 증가하는 것을 알 수 있지만, 본 개시의 방식에 비하여 화자 인식 정확도가 낮은 것을 알 수 있다.
본 개시의 방식(ours)은, 언레이블 데이터 샘플을 통해 추정되는 화자에게 능동 질문이 주어지는 방식으로서, 식별된 화자에게 주어지는 능동 질문의 제공율(Q/S)이 낮은 제1 방식(our-1)과, 식별된 화자에게 주어지는 능동 질문의 제공율(Q/S)이 높은 제2 방식(our-2)을 포함할 수 있다.
여기서, 본 개시의 방식(ours)은, 퍼슨 방식과 랜덤 방식에 비해 화자 인식 정확도가 더 높게 향상되는 것을 알 수 있으며, 본 개시의 방식들 중에서도 제1 방식보다 능동 질문 제공율이 높은 제2 방식의 화자 인식 정확도가 더 향상되는 것을 알 수 있다.
도 17은, 먼저 추가된 화자 그룹과 나중에 합류된 화자 그룹에 대한 본 개시의 화자 인식 정확도를 보여주는 도표로서, 먼저 추가된 화자 그룹에 대해 능동 질문 제공 테스트를 진행한 다음, 나중에 합류된 화자 그룹에 대해 능동 질문 제공 테스트를 진행하여 포게팅(forgetting) 현상에 대한 본 개시의 강건성(robustness)을 보여주는 도표이다.
도 17에 도시된 바와 같이, 식별된 화자에게 주어지는 능동 질문의 제공율(Q/S)이 낮은 본 개시의 제1 방식(our-1)과, 식별된 화자에게 주어지는 능동 질문의 제공율(Q/S)이 높은 본 개시의 제2 방식(our-2)은, 화자 인식 정확도가 높아서 포게팅(forgetting) 현상에 대한 강건성(robustness)이 우수한 것을 알 수 있다.
또한, 본 개시의 방식들 중에서도 제1 방식보다 능동 질문 제공율이 높은 제2 방식이 포게팅 현상에 대한 강건성이 더 우수한 것을 알 수 있다.
도 18은, 화자당 레이블 데이터 샘플 수의 증가에 따른 화자 인식 정확도를 보여주는 그래프이다.
도 18에 도시된 바와 같이, 퍼슨(person) 방식은, 각각의 화자에게 동일한 수의 레이블 데이터 샘플들이 주어진 방식이고, 랜덤(random) 방식은, 홈 환경 내의 화자들에게 랜덤하게 레이블 데이터 샘들이 주어진 방식이며, 본 개시의 방식은, 언레이블 데이터 샘플을 통해 추정되는 화자에게 능동 질문이 주어지는 방식이다.
여기서, 본 개시의 방식, 퍼슨 방식 및 랜덤 방식은, 화자당 레이블 데이터 샘플 수가 증가할수록 화자 인식 정확도가 모두 증가하는 것을 알 수 있지만, 본 개시의 방식이 퍼슨 방식과 랜덤 방식에 비하여 화자 인식 정확도가 가장 우수한 것을 알 수 있다.
도 19 및 도 20은, 본 개시의 일 실시 예에 따른 인공 지능 장치의 전체적인 동작 흐름을 설명하기 위한 도면이다.
도 19에 도시된 바와 같이, 본 개시는, 화자의 발화 데이터가 입력받을 수 있다(S10).
그리고, 본 개시는, 화자의 발화 데이터를 전처리할 수 있다(S20).
여기서, 본 개시는, 발화 데이터로부터 특징 추출(feature extraction) 및 차원 축소(dimension reduction)를 수행할 수 있다.
다음, 본 개시는, 전처리한 발화 데이터를 기반으로 새로운 화자인지를 식별할 수 있다(S30).
여기서, 본 개시는, 전처리한 발화 데이터를 뉴럴 네트워크 모델에 입력하여 임베딩 공간 내에 발화 데이터에 상응하는 제1 노드를 구성하고, 노드들간의 연관성을 기반으로 제1 노드와 임베딩 공간에 이미 존재하는 제2 노드 사이를 에지로 연결하며, 에지의 연결 관계를 기반으로 발화 데이터의 화자가 새로운 화자인지를 식별할 수 있다.
일 예로, 본 개시는, 현재 입력되는 화자의 발화 데이터가 이미 존재하는 제2 노드의 데이터 그룹과의 유사도 기준 조건에 만족되지 않으면 현재 입력되는 화자의 발화 데이터를 포함하는 새로운 제1 노드를 구성하고, 현재 입력되는 화자의 발화 데이터가 이미 존재하는 제2 노드의 데이터 그룹과의 유사도 기준 조건에 만족하면 현재 입력되는 화자의 발화 데이터를 제2 노드의 데이터 그룹으로 포함할 수 있다.
그리고, 본 개시는, 제1 노드가 구성되면 제1 노드와 상기 제2 노드 사이의 공동 활성화(co-activation) 횟수를 기반으로 가중치를 산출하고, 산출한 가중치를 기반으로 제1 노드와 제2 노드 사이를 에지로 연결할 수 있다.
또한, 본 개시는, 에지의 연결 관계를 기반으로 제1 노드와 에지로 연결되는 제2 노드의 정보를 수집하고, 수집한 제2 노드의 정보를 기반으로 제1 노드의 불확실성 스코어를 산출하며, 산출한 불확실성 스코어가 기준값 이상이면 발화 데이터의 화자를 새로운 화자로 식별할 수 있다.
여기서, 본 개시는, 메시지 패싱 방법을 기반으로 제2 노드의 정보를 수집하면 제2 노드의 정보를 기반으로 제1 노드를 업데이트하고, 제1 노드와 제2 노드 사이의 상관 관계를 유추하여 제1 노드의 불확실성 스코어를 산출할 수 있다.
이어, 본 개시는, 새로운 화자로 식별되면 새로운 화자에 대한 능동 질문을 출력할 수 있다(S40).
여기서, 본 개시는, 기저장된 능동 질문 목록으로부터 새로운 화자에 상응하는 특정 능동 질문을 선택하고, 선택한 특정 능동 질문을 새로운 화자에게 출력할 수 있다.
일 예로, 본 개시는, 특정 능동 질문을 음성, 영상, 문자 중 적어도 어느 하나로 변환하여 출력할 수 있다.
그리고, 본 개시는, 능동 질문에 대한 새로운 화자의 응답 발화 데이터를 입력받을 수 있다(S50).
다음, 본 개시는, 새로운 화자의 응답 발화 데이터를 기반으로 새로운 화자를 학습할 수 있다(S60).
이어, 본 개시는, 학습한 새로운 화자를 화자 목록에 등록시킬 수 있다(S70).
여기서, 본 개시는, 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 응답 발화 데이터가 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 능동 질문에 만족하는 응답 발화 데이터이면 제1 노드에 포함되는 발화 데이터를 레이블링하여 새로운 화자를 학습하고, 학습한 새로운 화자를 화자 목록 내에 등록할 수 있다.
경우에 따라, 본 개시는, 능동 질문에 만족하는 응답 발화 데이터가 아니면 새로운 화자에 대한 능동 질문을 재출력할 수도 있다.
여기서, 본 개시는, 재출력한 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 응답 발화 데이터가 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 재출력한 능동 질문에 만족하는 응답 발화 데이터가 아니면 제1 노드에 포함되는 발화 데이터의 화자를 언레이블링할 수 있다.
또한, 도 20에 도시된 바와 같이, 본 개시는, 노드를 구성할 때, 적응 공명 이론(ART: Adaptive Resonance Theory)의 공명 조건을 기반으로 노드를 구성할 수 있다.
본 개시는, 화자의 발화 데이터가 입력되면(S110), 기존의 노드들 중에서 위너 노드(winner node)가 존재하는지를 판단할 수 있다(S120).
그리고, 본 개시는, 위너 노드가 존재하면 현재 입력되는 화자의 발화 데이터를 위너 노드에 합류시켜 위너 노드를 업데이트할 수 있다(S130).
또한, 본 개시는, 위너 노드가 존재하지 않으면 현재 입력되는 화자의 발화 데이터에 상응하는 새로운 노드를 구성할 수 있다(S140).
이와 같이, 본 개시는, 입력되는 발화 데이터에 대한 불확실도 측정과 함께 새로운 화자에게 능동 질문을 제공하여, 새로운 화자의 발화 데이터를 자동 학습하고 화자 목록에 새로운 화자를 자동 등록함으로써, 화자 인식 정확도 및 서비스 품질을 향상시킬 수 있다.
전술한 본 개시는, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀 질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있다. 또한, 상기 컴퓨터는 인공 지능 기기의 프로세서(180)를 포함할 수도 있다.
본 개시에 따른 인공 지능 장치에 의하면, 입력되는 발화 데이터에 대한 불확실도 측정과 함께 새로운 화자에게 능동 질문을 제공하여, 새로운 화자의 발화 데이터를 자동 학습하고 화자 목록에 새로운 화자를 자동 등록함으로써, 화자 인식 정확도 및 서비스 품질을 향상시킬 수 있는 효과가 있으므로, 산업상 이용가능성이 현저하다.
Claims (15)
- 사전 학습한 화자 목록을 저장하는 메모리; 그리고,입력되는 발화 데이터로부터 새로운 화자를 식별하는 프로세서를 포함하고,상기 프로세서는,상기 발화 데이터가 입력되면 상기 발화 데이터를 전처리하고, 상기 전처리한 발화 데이터를 기반으로 새로운 화자를 식별하며, 상기 식별한 새로운 화자에 대한 능동 질문을 출력하고, 상기 출력한 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 상기 새로운 화자의 응답 발화 데이터를 기반으로 상기 새로운 화자를 학습하여 상기 화자 목록 내에 등록하는 것을 특징으로 하는 인공 지능 장치.
- 제1 항에 있어서,상기 프로세서는,상기 발화 데이터를 전처리할 때, 상기 발화 데이터가 입력되면 상기 발화 데이터로부터 특징 추출(feature extraction) 및 차원 축소(dimension reduction)를 수행하여 전처리하는 것을 특징으로 하는 인공 지능 장치.
- 제2 항에 있어서,상기 프로세서는,상기 새로운 화자를 식별할 때, 상기 전처리한 발화 데이터를 뉴럴 네트워크 모델에 입력하여 임베딩 공간(embedding space) 내에 상기 발화 데이터에 상응하는 제1 노드(node)를 구성하고, 노드들간의 연관성을 기반으로 상기 제1 노드와 상기 임베딩 공간에 이미 존재하는 제2 노드 사이를 에지(edge)로 연결하며, 상기 에지의 연결 관계를 기반으로 상기 발화 데이터의 화자가 새로운 화자인지를 식별하는 것을 특징으로 하는 인공 지능 장치.
- 제3 항에 있어서,상기 프로세서는,상기 제1 노드를 구성할 때, 현재 입력되는 화자의 발화 데이터가 이미 존재하는 제2 노드의 데이터 그룹과의 유사도 기준 조건에 만족되지 않으면 상기 현재 입력되는 화자의 발화 데이터를 포함하는 새로운 제1 노드를 구성하고, 상기 현재 입력되는 화자의 발화 데이터가 이미 존재하는 제2 노드의 데이터 그룹과의 유사도 기준 조건에 만족하면 상기 현재 입력되는 화자의 발화 데이터를 상기 제2 노드의 데이터 그룹으로 포함하는 것을 특징으로 하는 인공 지능 장치.
- 제3 항에 있어서,상기 프로세서는,상기 제1 노드와 상기 제2 노드 사이를 에지로 연결할 때, 상기 제1 노드가 구성되면 상기 제1 노드와 상기 제2 노드 사이의 공동 활성화(co-activation) 횟수를 기반으로 가중치를 산출하고, 상기 산출한 가중치를 기반으로 상기 제1 노드와 상기 제2 노드 사이를 에지로 연결하는 것을 특징으로 하는 인공 지능 장치.
- 제5 항에 있어서,상기 프로세서는,상기 산출한 가중치가 0이면 상기 제1 노드와 상기 제2 노드 사이를 에지로 연결하지 않는 것을 특징으로 하는 인공 지능 장치.
- 제5 항에 있어서,상기 프로세서는,상기 제1 노드와 상기 제2 노드 사이의 유사도가 높으면 상기 제1 노드와 상기 제2 노드 사이의 공동 활성화 횟수를 증가시키는 것을 특징으로 하는 인공 지능 장치.
- 제3 항에 있어서,상기 프로세서는,상기 새로운 화자를 식별할 때, 상기 에지의 연결 관계를 기반으로 상기 제1 노드와 에지로 연결되는 상기 제2 노드의 정보를 수집하고, 상기 수집한 제2 노드의 정보를 기반으로 상기 제1 노드의 불확실성 스코어를 산출하며, 상기 산출한 불확실성 스코어가 기준값 이상이면 상기 발화 데이터의 화자를 새로운 화자로 식별하는 것을 특징으로 하는 인공 지능 장치.
- 제8 항에 있어서,상기 프로세서는,상기 제1 노드의 불확실성 스코어를 산출할 때, 메시지 패싱 방법을 기반으로 상기 제2 노드의 정보를 수집하면 상기 제2 노드의 정보를 기반으로 상기 제1 노드를 업데이트하고, 상기 제1 노드와 제2 노드 사이의 상관 관계를 유추하여 상기 제1 노드의 불확실성 스코어를 산출하는 것을 특징으로 하는 인공 지능 장치.
- 제8 항에 있어서,상기 프로세서는,상기 산출한 불확실성 스코어가 기준값 미만이면 상기 발화 데이터의 화자를 상기 화자 목록 내에 기등록된 화자로 식별하는 것을 특징으로 하는 인공 지능 장치.
- 제1 항에 있어서,상기 프로세서는,상기 능동 질문을 출력할 때, 기저장된 능동 질문 목록으로부터 상기 새로운 화자에 상응하는 특정 능동 질문을 선택하고, 상기 선택한 특정 능동 질문을 상기 새로운 화자에게 출력하는 것을 특징으로 하는 인공 지능 장치.
- 제1 항에 있어서,상기 프로세서는,상기 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 상기 응답 발화 데이터가 상기 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 상기 능동 질문에 만족하는 응답 발화 데이터이면 상기 제1 노드에 포함되는 발화 데이터를 레이블링하여 상기 새로운 화자를 학습하고, 상기 학습한 새로운 화자를 상기 화자 목록 내에 등록하는 것을 특징으로 하는 인공 지능 장치.
- 제12 항에 있어서,상기 프로세서는,상기 능동 질문에 만족하는 응답 발화 데이터인지를 확인할 때, 상기 능동 질문에 만족하는 응답 발화 데이터가 아니면 상기 새로운 화자에 대한 능동 질문을 재출력하는 것을 특징으로 하는 인공 지능 장치.
- 제13 항에 있어서,상기 프로세서는,상기 재출력한 능동 질문에 대한 새로운 화자의 응답 발화 데이터가 입력되면 상기 응답 발화 데이터가 상기 능동 질문에 만족하는 응답 발화 데이터인지를 확인하고, 상기 재출력한 능동 질문에 만족하는 응답 발화 데이터가 아니면 상기 제1 노드에 포함되는 발화 데이터의 화자를 언레이블링하는 것을 특징으로 하는 인공 지능 장치.
- 화자의 발화 데이터가 입력받는 단계;상기 화자의 발화 데이터를 전처리하는 단계;상기 전처리한 발화 데이터를 기반으로 새로운 화자인지를 식별하는 단계;상기 새로운 화자로 식별되면 상기 새로운 화자에 대한 능동 질문을 출력하는 단계;상기 능동 질문에 대한 새로운 화자의 응답 발화 데이터를 입력받는 단계;상기 새로운 화자의 응답 발화 데이터를 기반으로 상기 새로운 화자를 학습하는 단계; 및상기 학습한 새로운 화자를 화자 목록에 등록시키는 단계를 포함하는 것을 특징으로 하는 인공 지능 장치의 화자 자동 인식 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20220050442 | 2022-04-22 | ||
KR10-2022-0050442 | 2022-04-22 | ||
KR1020230038748A KR20230150722A (ko) | 2022-04-22 | 2023-03-24 | 인공 지능 장치 및 그의 화자 자동 인식 방법 |
KR10-2023-0038748 | 2023-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023204470A1 true WO2023204470A1 (ko) | 2023-10-26 |
Family
ID=88420290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/004106 WO2023204470A1 (ko) | 2022-04-22 | 2023-03-28 | 인공 지능 장치 및 그의 화자 자동 인식 방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023204470A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100027865A (ko) * | 2008-09-03 | 2010-03-11 | 엘지전자 주식회사 | 화자 및 음성 인식 장치 및 그 방법 |
KR20170103586A (ko) * | 2016-02-24 | 2017-09-13 | 라인 가부시키가이샤 | 메신저 서비스를 이용한 인공지능 학습 방법 및 시스템, 그리고 인공지능을 이용한 답변 중계 방법 및 시스템 |
JP6239826B2 (ja) * | 2013-01-29 | 2017-11-29 | 綜合警備保障株式会社 | 話者認識装置、話者認識方法及び話者認識プログラム |
KR20180024167A (ko) * | 2016-08-29 | 2018-03-08 | 주식회사 케이티 | 음성 명령을 수행하는 단말 및 사용 로그 데이터를 이용한 화자 식별 방법 |
KR20210015542A (ko) * | 2019-08-02 | 2021-02-10 | 서울시립대학교 산학협력단 | 미등록 화자를 추가할 수 있는 심층 신경망 기반의 화자 식별 장치, 이를 위한 방법 및 이 방법을 수행하기 위한 프로그램이 기록된 컴퓨터 판독 가능한 기록매체 |
-
2023
- 2023-03-28 WO PCT/KR2023/004106 patent/WO2023204470A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100027865A (ko) * | 2008-09-03 | 2010-03-11 | 엘지전자 주식회사 | 화자 및 음성 인식 장치 및 그 방법 |
JP6239826B2 (ja) * | 2013-01-29 | 2017-11-29 | 綜合警備保障株式会社 | 話者認識装置、話者認識方法及び話者認識プログラム |
KR20170103586A (ko) * | 2016-02-24 | 2017-09-13 | 라인 가부시키가이샤 | 메신저 서비스를 이용한 인공지능 학습 방법 및 시스템, 그리고 인공지능을 이용한 답변 중계 방법 및 시스템 |
KR20180024167A (ko) * | 2016-08-29 | 2018-03-08 | 주식회사 케이티 | 음성 명령을 수행하는 단말 및 사용 로그 데이터를 이용한 화자 식별 방법 |
KR20210015542A (ko) * | 2019-08-02 | 2021-02-10 | 서울시립대학교 산학협력단 | 미등록 화자를 추가할 수 있는 심층 신경망 기반의 화자 식별 장치, 이를 위한 방법 및 이 방법을 수행하기 위한 프로그램이 기록된 컴퓨터 판독 가능한 기록매체 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021006404A1 (ko) | 인공지능 서버 | |
WO2020213750A1 (ko) | 객체를 인식하는 인공 지능 장치 및 그 방법 | |
WO2020246643A1 (ko) | 서빙 로봇 및 그를 이용한 고객 접대 방법 | |
WO2018128362A1 (en) | Electronic apparatus and method of operating the same | |
WO2021006366A1 (ko) | 디스플레이 패널의 색상을 조정하는 인공 지능 장치 및 그 방법 | |
WO2021029457A1 (ko) | 사용자에게 정보를 제공하는 인공 지능 서버 및 그 방법 | |
WO2021010509A1 (ko) | 인공지능 조리 기기 | |
WO2021025217A1 (ko) | 인공지능 서버 | |
EP3545436A1 (en) | Electronic apparatus and method of operating the same | |
WO2020184748A1 (ko) | 교통 정보에 기반한 오토 스탑 시스템을 제어하는 인공 지능 장치 및 그 방법 | |
WO2020213758A1 (ko) | 음성으로 상호작용하는 인공 지능 장치 및 그 방법 | |
WO2019225961A1 (en) | Electronic device for outputting response to speech input by using application and operation method thereof | |
WO2021206221A1 (en) | Artificial intelligence apparatus using a plurality of output layers and method for same | |
WO2020246647A1 (ko) | 인공 지능 시스템의 동작을 관리하는 인공 지능 장치 및 그 방법 | |
WO2020246640A1 (ko) | 사용자의 위치를 결정하는 인공 지능 장치 및 그 방법 | |
WO2019135621A1 (ko) | 영상 재생 장치 및 그의 제어 방법 | |
WO2021172642A1 (ko) | 장치 간 연동에 기초한 장치 제어 기능을 제공하는 인공 지능 장치 및 그 방법 | |
WO2020241920A1 (ko) | 장치 정보에 기반하여, 다른 장치를 제어할 수 있는 인공 지능 장치 | |
WO2020262721A1 (ko) | 인공 지능을 이용하여, 복수의 로봇들을 제어하는 관제 시스템 | |
WO2021215547A1 (ko) | 스마트 홈 장치 및 방법 | |
WO2020184753A1 (ko) | 음성 추출 필터를 이용하여 음성 제어를 수행하는 인공 지능 장치 및 그 방법 | |
WO2022080517A1 (ko) | 학습 데이터를 생성하는 인공 지능 장치 및 방법 | |
WO2020251074A1 (ko) | 음성 인식 기능을 제공하는 인공 지능 로봇 및 그의 동작 방법 | |
WO2021040105A1 (ko) | 개체명 테이블을 생성하는 인공 지능 장치 및 그 방법 | |
WO2020251096A1 (ko) | 인공 지능 로봇 및 그의 동작 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23792050 Country of ref document: EP Kind code of ref document: A1 |