WO2023204224A1 - Cleaning device and nozzle cleaning method - Google Patents

Cleaning device and nozzle cleaning method Download PDF

Info

Publication number
WO2023204224A1
WO2023204224A1 PCT/JP2023/015534 JP2023015534W WO2023204224A1 WO 2023204224 A1 WO2023204224 A1 WO 2023204224A1 JP 2023015534 W JP2023015534 W JP 2023015534W WO 2023204224 A1 WO2023204224 A1 WO 2023204224A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
nozzle
tank
stored
cleaning liquid
Prior art date
Application number
PCT/JP2023/015534
Other languages
French (fr)
Japanese (ja)
Inventor
恭央 川上
信太郎 吉武
武 村中
Original Assignee
富士レビオ株式会社
日本電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士レビオ株式会社, 日本電子株式会社 filed Critical 富士レビオ株式会社
Publication of WO2023204224A1 publication Critical patent/WO2023204224A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to a cleaning device and a nozzle cleaning method, and particularly to a technique for cleaning a cleaning nozzle for B/F separation.
  • a sample analyzer is a device that analyzes blood, urine, etc. collected from a subject.
  • An immunoassay device is known as a sample analyzer.
  • An immunoassay device is a device that measures a target substance in a specimen using an immune reaction (antigen-antibody reaction).
  • B/F separation Bound/Free Separation
  • B/F separation is a process that separates a substance bound to a solid phase (Bound) and a substance not bound to a solid phase (Free) after an immune reaction.
  • Bound a substance bound to a solid phase
  • Free a substance not bound to a solid phase
  • B/F separation leaves the immune complex in the reaction vessel and removes unreacted substances from the reaction vessel.
  • a cleaning device equipped with a cleaning nozzle does this.
  • a typical cleaning nozzle consists of a discharge nozzle and a suction nozzle.
  • the tip opening of the discharge nozzle is located at a higher position than the tip opening of the suction nozzle.
  • the tip opening of the discharge nozzle is located at a higher position than the opening of the reaction container.
  • the cleaning device has cleaning equipment for cleaning the cleaning nozzle after use.
  • the cleaning equipment has a well-shaped cleaning tank. Note that a cleaning nozzle may be used in processes other than B/F separation.
  • Patent Document 1 and Patent Document 2 describe a method for cleaning the cleaning nozzle itself.
  • the cleaning nozzle is cleaned multiple times.
  • the tip of the suction nozzle (highly contaminated part) is first cleaned with a small amount of cleaning liquid, and then the entire suction nozzle (lowly contaminated part) is cleaned with a large amount of cleaning liquid. has been done.
  • the cleaning nozzle is cleaned by cleaning equipment after use. If the cleaning nozzle is insufficiently cleaned, in other words, if the previous reaction solution (especially the previous sample) continues to adhere to the surface of the cleaning nozzle, the previous reaction solution will interfere with the subsequent reaction during the next reaction vessel cleaning. It gets mixed into the solution as a contaminant. This phenomenon is also called carryover. For highly accurate measurement or highly sensitive measurement, it is required to reduce contamination between containers (or between solutions) via the cleaning nozzle as much as possible.
  • An object of the present disclosure is to improve the degree of cleaning of a cleaning nozzle.
  • an object of the present invention is to reduce carryover mediated by the cleaning nozzle.
  • a cleaning device includes a cleaning nozzle for cleaning a reaction vessel, and a nozzle cleaning equipment equipped with a cleaning tank for cleaning the cleaning nozzle after cleaning the reaction vessel, and includes a cleaning device for cleaning the reaction vessel.
  • the cleaning liquid is discharged from the cleaning nozzle into the cleaning tank, whereby the cleaning liquid is stored in the cleaning tank, and when the nozzle cleaning starts after cleaning the reaction vessel, the cleaning nozzle is discharged into the cleaning tank.
  • the cleaning liquid is inserted into the cleaning liquid stored in the cleaning liquid.
  • a cleaning liquid is discharged from a cleaning nozzle into a cleaning tank, whereby a stored cleaning liquid is accumulated in the cleaning tank, and the cleaning nozzle cleans the reaction vessel.
  • the cleaning liquid stored in the cleaning tank is maintained during the cleaning process, and the cleaning nozzle is inserted into the cleaning liquid stored in the cleaning tank when nozzle cleaning is started after cleaning the reaction vessel. .
  • FIG. 1 is a diagram illustrating a configuration example of a sample analyzer according to an embodiment.
  • FIG. 1 is a diagram showing a cleaning device according to an embodiment.
  • FIG. 7 is a schematic diagram showing an operation according to a comparative example. It is a schematic diagram which shows the operation
  • FIG. 6 is a diagram showing experimental results obtained using a method according to a comparative example and an experimental result obtained using a method according to an example. It is a figure showing a 1st modification. It is a figure showing a 2nd modification. It is a figure showing a 3rd modification. It is a figure which shows the 4th modification. It is a figure showing other examples of a cleaning nozzle.
  • a cleaning device includes a cleaning nozzle and nozzle cleaning equipment.
  • the cleaning nozzle is for cleaning the reaction vessel.
  • the nozzle cleaning equipment includes a cleaning tank for cleaning the cleaning nozzle after cleaning the reaction vessel.
  • the cleaning liquid is discharged from the cleaning nozzle into the cleaning tank, whereby the cleaning liquid (reserved cleaning liquid) is stored in the cleaning tank.
  • the cleaning nozzle is inserted into the cleaning liquid stored in the cleaning tank.
  • the cleaning nozzle is inserted into the stored cleaning liquid, and the immersion state (post-immersion state) of the cleaning nozzle is formed. At that time, all or part of the substance adhering to the cleaning nozzle dissolves into the stored cleaning liquid, or peels off from the cleaning nozzle and is taken into the stored cleaning liquid. Thereafter, after the stored cleaning liquid is suctioned and removed, a new cleaning liquid is discharged and nozzle cleaning is performed by suctioning the new cleaning liquid. Through such a series of steps, the degree of cleaning of the cleaning nozzle is improved.
  • the cleaning liquid is stored in the cleaning tank.
  • the cleaning nozzle is in a immersed state (pre-soaked state)
  • the degree of cleaning of the cleaning nozzle can be further improved. If the cleaning device according to the embodiment is incorporated into a sample analyzer, the accuracy of analysis or the reliability of analysis results can be improved by reducing the amount of carryover.
  • the cleaning liquid by injecting the cleaning liquid into the cleaning tank after cleaning the reaction vessel, it is also possible to form a post-immersion state in which the cleaning nozzle is immersed in the cleaning liquid.
  • it takes a certain amount of time to complete the formation of the post-immersion state making it difficult to bring a large amount of cleaning liquid into contact with each part of the cleaning nozzle within a finite time range.
  • the post-immersion state can be quickly formed, and it becomes easy to bring a large amount of cleaning liquid into contact with each part of the cleaning nozzle within a finite time range.
  • the cleaning nozzle includes a suction nozzle and a discharge nozzle.
  • the suction port of the suction nozzle is located at a lower position than the discharge port of the discharge nozzle.
  • the cleaning liquid is discharged from the discharge nozzle into the cleaning tank while the suction nozzle is inserted into the cleaning tank, thereby forming a pre-immersion state in which the suction nozzle is immersed in the stored cleaning liquid in the cleaning tank.
  • Ru At the start of nozzle cleaning, the suction nozzle is inserted into the cleaning liquid stored in the cleaning tank, thereby forming a post-immersion state in which the suction nozzle is immersed in the cleaning liquid stored in the cleaning tank.
  • the suction nozzle that becomes contaminated during cleaning of the reaction container, and the suction nozzle is the cleaning target.
  • the number of times or time that the suction nozzle is immersed in the cleaning liquid can be increased, so that the degree of cleaning of the suction nozzle can be improved.
  • the suction nozzle (particularly the highly contaminated portion of the suction nozzle) can be quickly subjected to primary cleaning.
  • the pre-immersion state is maintained for a certain period of time, and then the cleaning nozzle is transported to the reaction vessel.
  • the degree of cleaning of the suction nozzle can be further improved. We believe that if the surface of the suction nozzle can be kept moist after the suction nozzle is lifted from the stored cleaning liquid, it will be possible to reduce the amount of substances that adhere to the surface of the suction nozzle when the suction nozzle is inserted into the reaction vessel. It will be done.
  • the cleaning nozzle is transported from the cleaning tank to the reaction vessel.
  • the suction nozzle performs a suction operation during all or part of the process of transporting the cleaning nozzle from the cleaning tank to the reaction vessel.
  • the cleaning liquid is likely to drip from the cleaning nozzle. According to the above configuration, it is possible to prevent or reduce dripping of the cleaning liquid from the cleaning nozzle.
  • the cleaning device is incorporated into an immunoassay device that uses immunoassay to analyze a sample removed from a living body.
  • a control unit is provided that determines the amount of the stored cleaning liquid according to measurement items set for the specimen.
  • Measurement items are basic items that define the measurement method and measurement conditions depending on the type of target substance in the sample. Generally, the amount of specimen and reagent is determined according to the measurement item. Therefore, the above configuration determines the required amount of the stored cleaning liquid depending on the measurement item. By optimizing the amount of stored cleaning liquid, the degree of cleaning can be increased and at the same time, wastage of cleaning liquid can be suppressed.
  • the immunoassay device operates on a cycle time basis.
  • the nth container cleaning operation and the nth nozzle cleaning operation are performed within the nth cycle time.
  • a pre-immersion state is formed in which the cleaning nozzle is immersed in the stored cleaning liquid in preparation for the n+1th nozzle cleaning operation.
  • n 1, 2, 3, . . .
  • the nozzle cleaning method includes a storage step, a cleaning step, and a dipping step.
  • the storage step before cleaning the reaction vessel, the cleaning liquid is discharged from the cleaning nozzle into the cleaning tank, whereby the stored cleaning liquid is stored in the cleaning tank.
  • the cleaning step the reaction container is cleaned by the cleaning nozzle. At this time, the cleaning liquid stored in the cleaning tank is maintained.
  • the immersion step at the start of nozzle cleaning after cleaning the reaction vessel, the cleaning nozzle is inserted into the cleaning liquid stored in the cleaning tank.
  • FIG. 1 shows a sample analyzer 10 according to an embodiment.
  • FIG. 1 schematically shows the top surface of the sample analyzer 10.
  • the sample analyzer 10 is an immunoassay device that analyzes a sample using an immune reaction, that is, an antigen-antibody reaction. Specifically, it is an immunoassay device that follows chemiluminescent enzyme immunoassay (CLEIA). be.
  • CLLIA chemiluminescent enzyme immunoassay
  • the sample analyzer 10 includes a sample supply section 12, a reaction section 14, a reagent supply section 16, a light detection section 18, a cuvette supply section 20, a substrate cooler 22, cuvette transfer mechanisms 24 and 26, and a sample dispensing mechanism. 28 and reagent dispensing mechanisms 30 and 32, and further includes cleaning mechanisms (cleaning devices) 70 and 71 according to the embodiment.
  • the sample supply unit 12 has a turntable 33 as a rotating table.
  • a holding hole group 34 is formed in the turntable 33, and the holding hole group 34 is composed of a plurality of holding holes 34a.
  • the holding hole group 34 includes an outer holding hole row consisting of a plurality of holding holes 34a arranged in an annular shape, and an inner holding hole row consisting of a plurality of holding holes 34a arranged in an annular shape.
  • Each holding hole 34a is a portion that accommodates a sample container as a source container. A specimen is contained within the specimen container.
  • the specimen is blood such as serum or plasma. Other liquids such as saliva or urine collected from a living body may also be used as the specimen.
  • the specimen container is a blood collection tube containing blood or other container containing blood.
  • Each specimen container is inserted into each holding hole 34a manually by the examiner. In other words, each sample container is constructed.
  • An arbitrary number of sample containers can be installed on the sample supply section 12. The examiner can also arbitrarily determine the timing for erecting each sample container. Sample containers may be automatically loaded using a mechanism for transporting sample container racks.
  • the sample supply unit 12 is provided with a barcode reader (BCR), which is not shown.
  • BCR barcode reader
  • the BCR reads the contents of the barcode labels affixed to each sample container held by the holding hole group 34. Thereby, sample information such as sample ID is read for each sample. Based on the sample ID, subject information, analysis items, sample container type, etc. are specified.
  • the sample dispensing mechanism 28 includes a rail mechanism 46, a slide base 48, an arm 50, a nozzle 52, and the like.
  • the rail mechanism 46 has a rail extending in a direction inclined with respect to the left-right direction of the device and the depth direction of the device.
  • the slide base 48 slides along the rail (see reference numeral 53).
  • the base end of the arm 50 is rotatably held by the slide base 48, and a nozzle 52 is disposed at the tip of the arm 50.
  • the nozzle 52 is composed of a nozzle body and a nozzle tip.
  • a nozzle tip is removably attached to the nozzle body.
  • the nozzle body is made of metal, and the nozzle tip is made of transparent, translucent, or non-transparent resin. After aspirating the sample, the nozzle tip is replaced.
  • the movement area of the nozzle 52 is expanded by the combination of the sliding movement of the slide base 48 and the pivoting movement of the arm 50.
  • a control unit (not shown)
  • the sample in the sample container (original container) at the suction position is aspirated by the nozzle 52, and the aspirated sample is transferred from the nozzle 52 to a specific location on the reaction section 14. is discharged into a cuvette.
  • the discharge destination position may be fixedly determined, or the discharge destination position may be dynamically changed.
  • the chip rack 54 is a member that holds a plurality of nozzle chips. When replacing a nozzle tip, the used nozzle tip is removed from the nozzle body and discarded. Thereafter, the tip of the nozzle body is inserted into the upper opening of the nozzle tip selected from the tip rack 54. This attaches a new nozzle tip to the nozzle body.
  • the tip rack is exchanged by a tip rack exchange mechanism (not shown).
  • the reaction section 14 has a turntable 39 as a rotating table.
  • a holding hole group 40 is formed in the turntable 39, and the holding hole group 40 is composed of a plurality of holding holes 40a.
  • the retaining hole group 40 may include an outer retaining hole row consisting of a plurality of retaining holes arranged in an annular shape, and an inner retaining hole row consisting of a plurality of retaining holes arranged annularly.
  • Each holding hole 40a is a portion that accommodates a cuvette as a reaction container. Reagents and specimens are injected stepwise into each cuvette. This generates an immune reaction within each cuvette.
  • the specimen is measured based on a so-called two-step method, for example.
  • the two-step method included a first immunoreaction step using a first reagent containing a first antibody, a second immunoreaction step using a second reagent containing a second antibody, and a substrate (substrate solution). It includes an enzyme reaction step and a light detection step.
  • a first immune reaction step, a second immune reaction step, and an enzyme reaction step are performed.
  • a B/F separation step, a stirring step, etc. are performed.
  • cleaning mechanisms 70 and 71 provided near the reaction section 14 operate.
  • two cleaning mechanisms 70, 71 are provided, but more cleaning mechanisms may be provided.
  • Each cleaning mechanism 70, 71 basically has the same configuration.
  • the cleaning mechanisms 70 and 71 each have a cleaning nozzle 72, a transport mechanism 73, and a nozzle cleaning equipment 74.
  • the transport mechanism 73 includes a rotary table that rotates around a rotation axis, and the like.
  • a cleaning nozzle 72 is fixed to the rotating table.
  • the cleaning nozzle 72 rotates and moves up and down.
  • the nozzle cleaning equipment 74 includes a cleaning container and a well-shaped cleaning tank 75 provided inside the cleaning container. The configuration and operation of the cleaning mechanisms 70 and 71 will be detailed later.
  • the reagent supply unit 16 has a reagent tank 41 as a rotating cold storage.
  • the reagent tank 41 accommodates a reagent bottle row 42 and a reagent bottle row 44 .
  • the reagent bottle row 42 and the reagent bottle row 44 each include a plurality of reagent bottles.
  • Each reagent bottle contains a reagent.
  • Each reagent used in the first immunoreaction step includes a plurality of magnetic particles. Each magnetic particle functions as a solid phase. That is, an antibody layer (or antigen layer) is provided on the surface of each magnetic particle.
  • Reagent dispensing mechanisms 30 and 32 are provided adjacent to the reagent supply section 16 and reaction section 14.
  • the reagent dispensing mechanism 30 has a rotating arm 60 and a nozzle 62 provided at the tip of the arm 60.
  • the reagent dispensing mechanism 32 has a rotating arm 64 and a nozzle 65 provided at the tip of the arm 64.
  • the nozzles 62 and 65 are each non-replaceable nozzles, that is, washable nozzles.
  • the reagent dispensing mechanisms 30 and 32 aspirate a specific reagent and discharge the aspirated reagent into a specific cuvette.
  • the light detection unit 18 is a unit that detects light emission generated within the cuvette after the enzyme reaction. The concentration of the substance to be analyzed is calculated based on the detected value.
  • cuvette transfer mechanisms 24 and 26 function.
  • the cleaning mechanism cleans the inside of the cuvette 92 using the cleaning nozzle 72 in the B/F separation step.
  • the cleaning mechanism includes a cleaning nozzle 72, a transport mechanism 73, a nozzle cleaning equipment 74, pumps P1, P2, tanks T1, T2, a control section 86, and the like.
  • the cleaning nozzle 72 is composed of a discharge nozzle 78 and a suction nozzle 80 that are integrated with each other.
  • the position of the discharge port 79 of the discharge nozzle 78 is higher than the position of the suction port 81 of the suction nozzle 80.
  • a surface coating 82 is applied to the suction nozzle 80 over an area that may come into contact with the reaction solution.
  • the transport mechanism 73 is a mechanism that transports the cleaning nozzle 72.
  • the transport mechanism 73 has a vertical transport mechanism and a horizontal transport mechanism.
  • the vertical conveyance mechanism has a spring that absorbs the impact that occurs when the tip of the suction nozzle hits the cuvette or the bottom of the cleaning tank.
  • a discharge pump P1 is connected to the discharge nozzle 78 via a tube 83.
  • Tank T1 connected to pump P1 is a cleaning liquid tank. The cleaning liquid is supplied to the discharge nozzle 78 by the action of the pump P1.
  • a syringe pump may be used as the pump P1. In that case, the flow path may be switched by a three-way valve or the like.
  • a pump P2 is connected to the suction nozzle 80 via a tube 84. Pump P2 is a suction pump.
  • Tank T2 is a waste liquid tank. The waste liquid sucked by the suction nozzle 80 is sent to the tank T2.
  • a diaphragm pump may be used as the pump P2.
  • the control unit 86 controls the operation of the transport mechanism 73 and pumps P1 and P2.
  • the control unit 86 has a function of controlling the container cleaning operation and the nozzle cleaning operation.
  • the control unit 86 controls the discharge amount (including the storage amount described later), discharge speed, etc. of the cleaning liquid.
  • a cuvette 92 is arranged within the holding hole 40a of the turntable 39. Magnetic particles 96 in the reaction solution are captured by the magnet unit 94 .
  • Reference numeral 72A indicates a cleaning nozzle inserted into the cuvette 92. The cleaning liquid discharged from the discharge nozzle 78A is injected into the cuvette 92. Thereafter, the cleaning liquid in the cuvette 92 is sucked by the suction nozzle 80A. Discharge and suction of the cleaning liquid are repeated as necessary. This performs B/F separation. Note that when the suction nozzle 80A is inserted, its suction port is brought into contact with the bottom surface of the cuvette 92. In this state, the cleaning liquid is sucked through the plurality of slits formed in the suction port.
  • the nozzle cleaning equipment 74 has a cleaning container 101 as a frame, and a well-shaped cleaning tank 75 is provided inside the cleaning container 101.
  • the horizontal cross-sectional shape of the cleaning tank 75 is, for example, circular or rectangular.
  • Reference numeral 104 indicates a drain for discharging waste liquid caused by overflow.
  • the internal space 100 of the cleaning tank 75 has a capacity to store, for example, 420 ⁇ l of cleaning liquid.
  • Reference numeral 72B indicates a cleaning nozzle during nozzle cleaning.
  • the cleaning liquid is discharged from the discharge nozzle 78B and is injected into the cleaning tank 75. If necessary, an amount of cleaning liquid greater than the above-mentioned capacity is injected into the cleaning tank 75. In that case, an overflow occurs in the cleaning tank 75.
  • the cleaning liquid in the cleaning tank 75 is sucked by the suction nozzle 80B.
  • the suction port of the suction nozzle 80B is brought into contact with the bottom surface of the cleaning tank 75. In this state, the cleaning liquid is sucked through the plurality of slits formed in the suction port.
  • FIG. 3 shows a nozzle cleaning operation according to a comparative example.
  • FIG. 4 shows a nozzle cleaning operation according to the embodiment.
  • (a1) shows B/F separation.
  • the suction nozzle 80 in the cleaning nozzle 72 is inserted into the cuvette 92 .
  • the reaction solution in the cuvette 92 is sucked by the suction nozzle 80.
  • the discharge nozzle discharges the cleaning liquid, and then the suction nozzle 80 suctions the cleaning liquid. They are repeated as many times as necessary.
  • the inside of the cuvette 92 is cleaned, that is, B/F separation is performed.
  • the cleaning nozzle 72 is transported to the cleaning tank.
  • (b1) and (c1) indicate primary cleaning.
  • the cleaning nozzle 72 is inserted into the cleaning tank 75, and in this state, the cleaning liquid is injected into the cleaning tank 75 from the discharge nozzle 78.
  • the amount of cleaning liquid is determined to be enough to cover the highly contaminated area of the suction nozzle 80.
  • the volume is 100 ⁇ l.
  • Reference numeral 106 indicates a small amount of cleaning liquid poured into the cleaning tank.
  • Reference numeral 80A indicates a portion of the suction nozzle 80 that is immersed in the cleaning liquid 106.
  • the cleaning tank 75 has a capacity of, for example, 420 ⁇ l. After the cleaning liquid is discharged, the cleaning liquid 106 in the cleaning tank 75 is sucked by the suction nozzle 80, as shown in (c1).
  • (d1) and (e1) indicate secondary cleaning.
  • a large amount of cleaning liquid is injected into the cleaning tank 98 from the discharge nozzle 78.
  • the amount is, for example, 800 ⁇ l.
  • Reference numeral 80B indicates a portion of the suction nozzle 80 that comes into contact with the cleaning liquid.
  • all of the cleaning liquid in the cleaning tank 75 is sucked by the suction nozzle 80.
  • the state shown in (e1) is maintained until the cleaning nozzle starts to be transported.
  • (f2') indicates the final stage of the previous nozzle cleaning process.
  • the suction nozzle 80 of the cleaning nozzle 72 is inserted into the cleaning tank 75.
  • a predetermined amount of cleaning liquid is injected into the cleaning tank 75 from the discharge nozzle 78 .
  • Reference numeral 112-0 indicates the cleaning liquid (reserved cleaning liquid) accumulated in the cleaning tank 75.
  • the predetermined amount is determined so that the entire contaminated area (reaction solution contact area) generated in the suction nozzle 80 is immersed in the cleaning liquid 112-0.
  • the predetermined amount is 300 ⁇ l.
  • more cleaning liquid may be stored or, conversely, less cleaning liquid may be stored so that only the highly contaminated area near the suction port is submerged.
  • a pre-immersion state is formed in which the suction nozzle 80 is immersed in the cleaning liquid 112-0.
  • Reference numeral 80C indicates a portion of the suction nozzle 80 that is immersed in the cleaning liquid 112-0.
  • the cleaning nozzle 72 is transported from the cleaning tank 75 to the cuvette 92 prior to B/F separation. While B/F separation is being performed, the cleaning liquid 112-0 is maintained in a stored state. Note that the suction nozzle 80 performs a suction operation during all or part of the transport process of the cleaning nozzle 72. This prevents the cleaning liquid from dripping.
  • (a2) shows B/F separation.
  • the suction nozzle 80 of the washing nozzle 72 is inserted into the cuvette 92. Immediately before that, a pre-soaked state is formed, so the surface of the cleaning nozzle 72 is in a wet state. Therefore, it is expected that the amount or degree of adhesion of the reaction solution to the cleaning nozzle 72 will be reduced.
  • the reaction solution in the cuvette 92 is sucked by the suction nozzle 80.
  • the discharge nozzle 78 discharges the cleaning liquid and the suction nozzle 80 suctions the cleaning liquid. They are repeated as many times as necessary.
  • the inside of the cuvette 92 is cleaned, that is, B/F separation is performed.
  • the cleaning nozzle 72 is transported to the cleaning tank 75.
  • the suction nozzle 80 performs a suction operation during all or part of the conveyance process.
  • FIG. (b2) shows immersion of the cleaning nozzle 72.
  • a cleaning liquid 112-0 is stored in advance in the cleaning tank 75, into which the suction nozzle 80 is inserted. This creates a post-soak condition.
  • Reference numeral 80D indicates a portion of the suction nozzle 80 that is immersed in the cleaning liquid 112-0. The upper end level of the portion 80D is higher than the upper end level of the portion in contact with the reaction solution. Due to the formation of the post-immersion state, all or part of the contamination-causing substances adhering to the suction nozzle 80 are dissolved into the cleaning liquid 112-0, or all or part of the contamination-causing substances are peeled off from the suction nozzle 80. It is taken into the cleaning liquid 112-0. After the post-immersion state is formed, as shown in (c2), the cleaning liquid stored in the cleaning tank 75 is sucked by the suction nozzle 80.
  • a relatively large amount of cleaning liquid is injected into the cleaning tank 75 from the discharge nozzle 78.
  • the amount is, for example, 600 ⁇ l. In that case, 180 ⁇ l of cleaning liquid overflows from the cleaning tank 75 (see reference numeral 110).
  • Reference numeral 80B indicates a portion that comes into contact with the cleaning liquid.
  • all of the cleaning liquid in the cleaning tank 75 is sucked by the suction nozzle 80.
  • the cleaning liquid is stored in the cleaning tank 75. Similar to the step shown in (f2'), in the step shown in (f2), a predetermined amount of cleaning liquid is injected into the cleaning tank 75 from the discharge nozzle 78. As a result, the cleaning liquid 112-1 accumulates in the cleaning tank 75, and a pre-immersion state is formed in which a portion 80C of the suction nozzle 80 is immersed in the cleaning liquid 112-1. After this state is maintained for a certain period of time, the cleaning nozzle 72 is transferred from the cleaning tank 75 to the cuvette to be cleaned. At that time, the suction nozzle 80 performs a suction operation during all or part of the conveyance process.
  • FIG. 5 shows the operation of the comparative example and the operation of the example as a timing chart.
  • the horizontal axis is the time axis.
  • the analyzer operates in cycle time units.
  • the cycle time is, for example, 15 seconds.
  • a plurality of gray boxes each indicate a discharge operation
  • a plurality of white boxes each indicate a suction operation.
  • (A) shows a plurality of cycle times lined up on the time axis, and specifically shows the n-th cycle time and the n+1-th cycle time.
  • n is the cycle time number.
  • n is an integer of 1 or more.
  • the cycle time starts at the time when the cleaning nozzle movement starts before performing B/F separation, but the cycle time may start at another time.
  • one cycle time includes a movement process (outward movement process), a B/F separation process, a movement process (return movement process), and a nozzle cleaning process.
  • a B/F separation process 116n from left to right, a B/F separation process 116n, a movement process 118n, a nozzle cleaning process 114n, a movement process 118n+1, and a B/F separation process 116n+1 are shown.
  • 120n indicates the timing of inserting the cleaning nozzle into the cleaning tank
  • 121n+1 indicates the timing of lifting the cleaning nozzle from the cleaning tank.
  • FIG. 5 shows the operation of the comparative example.
  • (a1) to (e1) in FIG. 5 indicate states (a1) to (e1) shown in FIG.
  • a small amount of cleaning liquid is discharged into the cleaning tank (see numeral 122), and then the cleaning liquid in the cleaning tank is sucked (see numeral 124).
  • a large amount of cleaning liquid is discharged into the cleaning tank (see numeral 126), and then the cleaning liquid in the cleaning tank is sucked (see numeral 128).
  • FIG. 5 shows the operation of the embodiment.
  • (a2) to (f2) in FIG. 5 indicate states (a2) to (f2) shown in FIG. 3.
  • Reference numeral 132 indicates a period from when the suction nozzle comes into contact with the cleaning liquid during its descent until the suction nozzle completes its descent.
  • time period 132 may be a portion of nozzle cleaning step 114n'. In other words, the last part of the nozzle moving process 118n and the first part of the nozzle cleaning process 114n' overlap.
  • the cleaning liquid (reserved cleaning liquid) in the cleaning tank is sucked by the suction nozzle (see reference numeral 134). Thereafter, a relatively large amount of cleaning liquid is injected into the cleaning tank from the discharge nozzle (see reference numeral 136). Subsequently, the cleaning liquid in the cleaning tank is sucked by the suction nozzle (see reference numeral 138). After a certain period of time has elapsed, a predetermined amount of cleaning liquid is injected into the cleaning tank from the discharge nozzle (see reference numeral 142). This creates a pre-soaked condition.
  • Reference numeral 143 indicates a certain period during which the pre-soaking state of the suction nozzle continues. A certain period of time is specified in advance.
  • the cleaning nozzle is transferred from the cleaning tank to the cuvette to be cleaned. During B/F separation, the cleaning liquid remains in the cleaning tank. Note that the suction operation 138 may be made longer, or the suction operation may be performed after a certain period of time has elapsed after the suction operation 138.
  • the suction nozzle after cleaning the cuvette, the suction nozzle can be immersed in a large amount of cleaning liquid immediately, so that the degree of initial cleaning of the contaminated area in the suction nozzle can be increased.
  • the contact time or number of times the cleaning liquid contacts the suction nozzle can be increased compared to the comparative example. Cleanliness can be improved. As described above, according to the embodiment, carryover can be effectively reduced without prolonging or complicating the cleaning process.
  • FIG. 6 shows the experimental results of the above comparative example and the experimental results of the above example.
  • a highly concentrated antigen was used as a specimen (more specifically, a contaminant that causes carryover). Its concentration was 5 ⁇ g/ml, which corresponds to 5 times the concentration used in typical experiments.
  • reference numeral 144 indicates the number of experiments, and three experiments were conducted.
  • Reference numeral 146 indicates the experimental results of the comparative example.
  • Reference numeral 148 indicates the experimental results of the example.
  • the total amount of washing liquid used was 900 ⁇ l in the comparative example and 900 ⁇ l in the example.
  • the amount of cleaning liquid discharged at each stage was as exemplified above.
  • FIG. 7 shows a first modification.
  • the cleaning liquid 150 may be stored so that all or substantially all of the internal space of the cleaning tank 75 is filled. In that case, most part 80E of suction nozzle 80 is immersed in cleaning liquid 150.
  • FIG. 8 schematically shows control of the cleaning liquid storage amount 154.
  • the storage amount 154 may be set based on the measurement item 152.
  • the measurement items 152 are basic items that define the measurement method and measurement conditions.
  • the storage amount 154 may be determined based on information 156 other than the measurement items 152.
  • the storage amount may be determined based on conditions such as sample amount, reagent amount, cuvette size, washing tank size, and type of washing liquid.
  • the descending speed of the cleaning nozzle and the residence time after stopping the descending may be changed depending on the measurement item.
  • FIGS. 9 and 10 A third modification and a fourth modification are shown in FIGS. 9 and 10.
  • elements similar to those shown in FIG. 5 are denoted by the same reference numerals, and their explanations will be omitted.
  • the cleaning nozzle may be immediately pulled up after the injection of the cleaning liquid without a certain waiting time (see reference numeral 121n+1).
  • the period indicated by reference numeral 142A is the discharge period and the immersion period.
  • the cleaning liquid is immediately discharged (see reference numeral 142B), and thereafter the cleaning nozzle is maintained in an immersed state for a relatively long period of time. (See reference numeral 143B). Thereafter, the cleaning nozzle is pulled up (see reference numeral 121n+1).
  • FIG. 11 shows another example of the configuration of the cleaning nozzle.
  • the illustrated cleaning nozzle 160 is composed of one nozzle, which is a discharge/suction nozzle.
  • the stored cleaning liquid 162 is stored in the cleaning tank 75, and a portion 160A of the cleaning nozzle 160 is immersed in the stored cleaning liquid 162.
  • the cleaning mechanism (cleaning device) described above may be incorporated into a sample analyzer other than the immunoassay device.
  • the nozzle cleaning method described above may be performed in other processes than B/F separation.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A cleaning liquid (112-0) is stored in a cleaning tank (75) before cleaning of a cuvette (92). The cleaning liquid (112-0) in the cleaning tank (75) is retained while the cuvette (92) is being cleaned by a cleaning nozzle (72). At the start of nozzle cleaning after the cleaning of the cuvette (92), a suction nozzle (80) in the cleaning nozzle (72) is inserted into the cleaning liquid (112-0) in the cleaning tank (75). Then, the suction nozzle (80) is further cleaned through discharging and suctioning the cleaning liquid.

Description

洗浄装置及びノズル洗浄方法Cleaning equipment and nozzle cleaning method
 本発明は、洗浄装置及びノズル洗浄方法に関し、特に、B/F分離用の洗浄ノズルを洗浄する技術に関する。 The present invention relates to a cleaning device and a nozzle cleaning method, and particularly to a technique for cleaning a cleaning nozzle for B/F separation.
 検体分析装置は、被検者から採取された血液、尿等を分析する装置である。検体分析装置として、免疫測定装置が知られている。免疫測定装置は、免疫反応(抗原抗体反応)を利用して検体中の目的物質を測定する装置である。免疫測定装置においては、免疫反応後の溶液に対してB/F分離(Bound/Free Separation)が適用される。 A sample analyzer is a device that analyzes blood, urine, etc. collected from a subject. An immunoassay device is known as a sample analyzer. An immunoassay device is a device that measures a target substance in a specimen using an immune reaction (antigen-antibody reaction). In the immunoassay device, B/F separation (Bound/Free Separation) is applied to the solution after the immune reaction.
 B/F分離は、免疫反応後において、固相に結合した物質(Bound)と、固相に結合しなかった物質(Free)と、を分離する処理である。具体的には、磁性粒子が固相として用いられる場合、磁性粒子の表面に抗体(又は抗原)が固定されており、その抗体(又は抗原)に対して、検体中の抗原(又は抗体)が結合する。これにより免疫複合体が構成される。その場合、B/F分離は、免疫複合体を反応容器内に残し、未反応の物質を反応容器から外部へ取り出すものである。 B/F separation is a process that separates a substance bound to a solid phase (Bound) and a substance not bound to a solid phase (Free) after an immune reaction. Specifically, when magnetic particles are used as a solid phase, antibodies (or antigens) are immobilized on the surface of the magnetic particles, and the antigens (or antibodies) in the sample are Join. This constitutes an immune complex. In that case, B/F separation leaves the immune complex in the reaction vessel and removes unreacted substances from the reaction vessel.
 B/F分離に際しては、反応容器内の磁性粒子が磁力により捕獲された状態において、反応容器の内部が洗浄される。それを行うのが洗浄ノズルを備えた洗浄装置である。典型的な洗浄ノズルは、吐出ノズル及び吸引ノズルにより構成される。吐出ノズルの先端開口は、吸引ノズルの先端開口よりも高い位置にある。具体的には、反応容器内の洗浄時において、吐出ノズルの先端開口は、反応容器の開口よりも高い位置にある。洗浄装置は、使用後の洗浄ノズルを洗浄する洗浄設備を有する。洗浄設備は、井戸状の洗浄槽を有する。なお、B/F分離以外の処理において洗浄ノズルが利用されることもある。 During B/F separation, the inside of the reaction container is cleaned while the magnetic particles inside the reaction container are captured by magnetic force. A cleaning device equipped with a cleaning nozzle does this. A typical cleaning nozzle consists of a discharge nozzle and a suction nozzle. The tip opening of the discharge nozzle is located at a higher position than the tip opening of the suction nozzle. Specifically, when cleaning the inside of the reaction container, the tip opening of the discharge nozzle is located at a higher position than the opening of the reaction container. The cleaning device has cleaning equipment for cleaning the cleaning nozzle after use. The cleaning equipment has a well-shaped cleaning tank. Note that a cleaning nozzle may be used in processes other than B/F separation.
 特許文献1及び特許文献2には、洗浄ノズルそれ自体の洗浄方法が記載されている。特許文献1に係る洗浄方法では、洗浄ノズルに対して複数回の洗浄が実施されている。特許文献2に係る洗浄方法では、最初に、吸引ノズルの先端部(高濃度汚染部分)が少量の洗浄液で洗浄され、次に、吸引ノズルの全体(低濃度汚染部分)が大量の洗浄液で洗浄されている。 Patent Document 1 and Patent Document 2 describe a method for cleaning the cleaning nozzle itself. In the cleaning method according to Patent Document 1, the cleaning nozzle is cleaned multiple times. In the cleaning method according to Patent Document 2, the tip of the suction nozzle (highly contaminated part) is first cleaned with a small amount of cleaning liquid, and then the entire suction nozzle (lowly contaminated part) is cleaned with a large amount of cleaning liquid. has been done.
特開2005-283246号公報Japanese Patent Application Publication No. 2005-283246 特開2015-215277号公報Japanese Patent Application Publication No. 2015-215277
 洗浄ノズルを備えた洗浄装置においては、使用後の洗浄ノズルが洗浄設備により洗浄される。洗浄ノズルの洗浄が不十分な場合、つまり、洗浄ノズルの表面に先の反応溶液(特に先の検体)が付着し続けている場合、次の反応容器洗浄時に、先の反応溶液が後の反応溶液の中に汚染物質として混入してしまう。その現象はキャリーオーバーとも呼ばれる。高精度の測定又は高感度の測定のためには、洗浄ノズルを媒介とする容器間(又は溶液間)のコンタミネーションをできる限り低減することが求められる。 In a cleaning device equipped with a cleaning nozzle, the cleaning nozzle is cleaned by cleaning equipment after use. If the cleaning nozzle is insufficiently cleaned, in other words, if the previous reaction solution (especially the previous sample) continues to adhere to the surface of the cleaning nozzle, the previous reaction solution will interfere with the subsequent reaction during the next reaction vessel cleaning. It gets mixed into the solution as a contaminant. This phenomenon is also called carryover. For highly accurate measurement or highly sensitive measurement, it is required to reduce contamination between containers (or between solutions) via the cleaning nozzle as much as possible.
 本開示の目的は、洗浄ノズルの洗浄度を高めることにある。あるいは、本発明の目的は、洗浄ノズルを媒介とするキャリーオーバーを低減させることにある。 An object of the present disclosure is to improve the degree of cleaning of a cleaning nozzle. Alternatively, an object of the present invention is to reduce carryover mediated by the cleaning nozzle.
 本開示に係る洗浄装置は、反応容器を洗浄するための洗浄ノズルと、前記反応容器の洗浄後に前記洗浄ノズルを洗浄するための洗浄槽を備えたノズル洗浄設備と、を含み、前記反応容器の洗浄前に、前記洗浄ノズルから前記洗浄槽内へ洗浄液が吐出され、これにより前記洗浄槽内に貯留洗浄液が溜められ、前記反応容器の洗浄後のノズル洗浄開始時に、前記洗浄ノズルが前記洗浄槽内の前記貯留洗浄液に差し込まれる、ことを特徴とする。 A cleaning device according to the present disclosure includes a cleaning nozzle for cleaning a reaction vessel, and a nozzle cleaning equipment equipped with a cleaning tank for cleaning the cleaning nozzle after cleaning the reaction vessel, and includes a cleaning device for cleaning the reaction vessel. Before cleaning, the cleaning liquid is discharged from the cleaning nozzle into the cleaning tank, whereby the cleaning liquid is stored in the cleaning tank, and when the nozzle cleaning starts after cleaning the reaction vessel, the cleaning nozzle is discharged into the cleaning tank. The cleaning liquid is inserted into the cleaning liquid stored in the cleaning liquid.
 本開示に係るノズル洗浄方法は、反応容器の洗浄前に、洗浄ノズルから洗浄槽内へ洗浄液が吐出され、これにより前記洗浄槽内に貯留洗浄液が溜められ、前記洗浄ノズルにより前記反応容器を洗浄している間、前記洗浄槽内の前記貯留洗浄液が維持され、前記反応容器の洗浄後のノズル洗浄開始時に、前記洗浄ノズルが前記洗浄槽内の前記貯留洗浄液に差し込まれる、ことを特徴とする。 In the nozzle cleaning method according to the present disclosure, before cleaning a reaction vessel, a cleaning liquid is discharged from a cleaning nozzle into a cleaning tank, whereby a stored cleaning liquid is accumulated in the cleaning tank, and the cleaning nozzle cleans the reaction vessel. The cleaning liquid stored in the cleaning tank is maintained during the cleaning process, and the cleaning nozzle is inserted into the cleaning liquid stored in the cleaning tank when nozzle cleaning is started after cleaning the reaction vessel. .
実施形態に係る検体分析装置の構成例を示す図である。1 is a diagram illustrating a configuration example of a sample analyzer according to an embodiment. 実施形態に係る洗浄装置を示す図である。FIG. 1 is a diagram showing a cleaning device according to an embodiment. 比較例に係る動作を示す模式図である。FIG. 7 is a schematic diagram showing an operation according to a comparative example. 実施例に係る動作を示す模式図である。It is a schematic diagram which shows the operation|movement based on an Example. 比較例に係る動作及び実施例に係る動作を示すタイミングチャートである。7 is a timing chart showing an operation according to a comparative example and an operation according to an example. 比較例に係る方法よる実験結果及び実施例に係る方法による実験結果を示す図である。FIG. 6 is a diagram showing experimental results obtained using a method according to a comparative example and an experimental result obtained using a method according to an example. 第1変形例を示す図である。It is a figure showing a 1st modification. 第2変形例を示す図である。It is a figure showing a 2nd modification. 第3変形例を示す図である。It is a figure showing a 3rd modification. 第4変形例を示す図である。It is a figure which shows the 4th modification. 洗浄ノズルの他の例を示す図である。It is a figure showing other examples of a cleaning nozzle.
 以下、実施形態を図面に基づいて説明する。 Hereinafter, embodiments will be described based on the drawings.
 (1)実施形態の概要
 実施形態に係る洗浄装置は、洗浄ノズル及びノズル洗浄設備を有する。洗浄ノズルは、反応容器を洗浄するためのものである。ノズル洗浄設備は、反応容器の洗浄後に洗浄ノズルを洗浄するための洗浄槽を備える。反応容器の洗浄前に、洗浄ノズルから洗浄槽内へ洗浄液が吐出され、これにより洗浄槽内に洗浄液(貯留洗浄液)が溜められる。反応容器の洗浄後のノズル洗浄開始時に、洗浄ノズルが洗浄槽内の貯留洗浄液に差し込まれる。
(1) Overview of Embodiment A cleaning device according to an embodiment includes a cleaning nozzle and nozzle cleaning equipment. The cleaning nozzle is for cleaning the reaction vessel. The nozzle cleaning equipment includes a cleaning tank for cleaning the cleaning nozzle after cleaning the reaction vessel. Before cleaning the reaction vessel, the cleaning liquid is discharged from the cleaning nozzle into the cleaning tank, whereby the cleaning liquid (reserved cleaning liquid) is stored in the cleaning tank. At the start of nozzle cleaning after cleaning the reaction vessel, the cleaning nozzle is inserted into the cleaning liquid stored in the cleaning tank.
 上記構成によれば、反応容器の洗浄後に、洗浄ノズルが貯留洗浄液に差し込まれ、洗浄ノズルの浸漬状態(事後浸漬状態)が形成される。その際、洗浄ノズルに付着している物質の全部又は一部が、貯留洗浄液へ溶け出し、あるいは、洗浄ノズルから剥がれて貯留洗浄液内に取り込まれる。その後、貯留洗浄液が吸引、除去された上で、新たな洗浄液の吐出及びその吸引によるノズル洗浄が実施される。そのような一連の過程を経て洗浄ノズルの洗浄度が高められる。 According to the above configuration, after cleaning the reaction vessel, the cleaning nozzle is inserted into the stored cleaning liquid, and the immersion state (post-immersion state) of the cleaning nozzle is formed. At that time, all or part of the substance adhering to the cleaning nozzle dissolves into the stored cleaning liquid, or peels off from the cleaning nozzle and is taken into the stored cleaning liquid. Thereafter, after the stored cleaning liquid is suctioned and removed, a new cleaning liquid is discharged and nozzle cleaning is performed by suctioning the new cleaning liquid. Through such a series of steps, the degree of cleaning of the cleaning nozzle is improved.
 ノズル洗浄過程の最終段階において、洗浄槽内に貯留洗浄液が溜められる。その際、洗浄ノズルの浸漬状態(事前浸漬状態)が形成されるならば、洗浄ノズルの洗浄度がより高められる。実施形態に係る洗浄装置を検体分析装置へ組み込めば、キャリーオーバー量の低減により、分析の精度又は分析結果の信頼性を高められる。 At the final stage of the nozzle cleaning process, the cleaning liquid is stored in the cleaning tank. At this time, if the cleaning nozzle is in a immersed state (pre-soaked state), the degree of cleaning of the cleaning nozzle can be further improved. If the cleaning device according to the embodiment is incorporated into a sample analyzer, the accuracy of analysis or the reliability of analysis results can be improved by reducing the amount of carryover.
 なお、反応容器の洗浄後に洗浄槽へ洗浄液を注入することにより、洗浄ノズルが洗浄液に浸かった事後浸漬状態を形成することも可能である。しかしながら、その場合には、事後浸漬状態の形成完了までにある程度の時間を要し、有限な時間範囲内において洗浄ノズルの各部分へ多量の洗浄液を接触させることが難しくなる。これに対し、上記構成によれば、事後浸漬状態を速やかに形成でき、有限な時間範囲内において洗浄ノズルの各部分へ多量の洗浄液を接触させることが容易となる。 Note that by injecting the cleaning liquid into the cleaning tank after cleaning the reaction vessel, it is also possible to form a post-immersion state in which the cleaning nozzle is immersed in the cleaning liquid. However, in that case, it takes a certain amount of time to complete the formation of the post-immersion state, making it difficult to bring a large amount of cleaning liquid into contact with each part of the cleaning nozzle within a finite time range. On the other hand, according to the above configuration, the post-immersion state can be quickly formed, and it becomes easy to bring a large amount of cleaning liquid into contact with each part of the cleaning nozzle within a finite time range.
 実施形態において、洗浄ノズルは、吸引ノズル及び吐出ノズルを含む。吸引ノズルの吸引口は、吐出ノズルの吐出口よりも低い位置にある。反応容器の洗浄前に、吸引ノズルが洗浄槽に差し込まれた状態で吐出ノズルから洗浄槽内へ洗浄液が吐出され、これにより洗浄槽内において吸引ノズルが貯留洗浄液に浸かった事前浸漬状態が形成される。ノズル洗浄開始時に、吸引ノズルが洗浄槽内の貯留洗浄液に差し込まれ、これにより洗浄槽内において吸引ノズルが貯留洗浄液に浸かった事後浸漬状態が形成される。 In an embodiment, the cleaning nozzle includes a suction nozzle and a discharge nozzle. The suction port of the suction nozzle is located at a lower position than the discharge port of the discharge nozzle. Before cleaning the reaction vessel, the cleaning liquid is discharged from the discharge nozzle into the cleaning tank while the suction nozzle is inserted into the cleaning tank, thereby forming a pre-immersion state in which the suction nozzle is immersed in the stored cleaning liquid in the cleaning tank. Ru. At the start of nozzle cleaning, the suction nozzle is inserted into the cleaning liquid stored in the cleaning tank, thereby forming a post-immersion state in which the suction nozzle is immersed in the cleaning liquid stored in the cleaning tank.
 上記構成において、反応容器の洗浄時に汚染が生じるのは吸引ノズルであり、吸引ノズルが洗浄対象となる。事前浸漬状態の形成により、吸引ノズルが洗浄液に浸かる回数又は時間を増大できるので、吸引ノズルの洗浄度を高められる。また、事後浸漬状態の形成により、吸引ノズル(特に吸引ノズルにおける高濃度汚染部分)に対して、速やかに一次洗浄を実施できる。 In the above configuration, it is the suction nozzle that becomes contaminated during cleaning of the reaction container, and the suction nozzle is the cleaning target. By forming the pre-immersion state, the number of times or time that the suction nozzle is immersed in the cleaning liquid can be increased, so that the degree of cleaning of the suction nozzle can be improved. Furthermore, by forming the post-immersion state, the suction nozzle (particularly the highly contaminated portion of the suction nozzle) can be quickly subjected to primary cleaning.
 実施形態においては、貯留洗浄液を溜めるための洗浄液吐出の完了後、一定時間にわたって事前浸漬状態が維持され、その後、洗浄ノズルが反応容器へ搬送される。この構成によれば、吸引ノズルの洗浄度をより高められる。貯留洗浄液から吸引ノズルを引き上げた後において、吸引ノズルの表面の湿潤状態を保てるならば、反応容器内に吸引ノズルを挿入した際に吸引ノズルの表面に付着する物質の量を低減できるものと考えられる。 In the embodiment, after completion of discharging the cleaning liquid for storing the stored cleaning liquid, the pre-immersion state is maintained for a certain period of time, and then the cleaning nozzle is transported to the reaction vessel. According to this configuration, the degree of cleaning of the suction nozzle can be further improved. We believe that if the surface of the suction nozzle can be kept moist after the suction nozzle is lifted from the stored cleaning liquid, it will be possible to reduce the amount of substances that adhere to the surface of the suction nozzle when the suction nozzle is inserted into the reaction vessel. It will be done.
 実施形態においては、事前浸漬状態の形成後、洗浄槽から反応容器へ洗浄ノズルが搬送される。洗浄槽から反応容器へ洗浄ノズルを搬送する過程の全部又は一部において吸引ノズルが吸引動作を行う。事前浸漬状態にある洗浄ノズルを搬送する場合、洗浄ノズルからの洗浄液の滴下が生じ易くなる。上記構成によれば、洗浄ノズルからの洗浄液の滴下を防止又は軽減することが可能となる。 In an embodiment, after the formation of the pre-soaked state, the cleaning nozzle is transported from the cleaning tank to the reaction vessel. The suction nozzle performs a suction operation during all or part of the process of transporting the cleaning nozzle from the cleaning tank to the reaction vessel. When transporting a cleaning nozzle in a pre-immersed state, the cleaning liquid is likely to drip from the cleaning nozzle. According to the above configuration, it is possible to prevent or reduce dripping of the cleaning liquid from the cleaning nozzle.
 実施形態において、洗浄装置は、免疫測定を利用して生体から取り出された検体を分析する免疫測定装置に組み込まれる。検体に対して設定された測定項目に応じて貯留洗浄液の量を定める制御部が設けられる。 In an embodiment, the cleaning device is incorporated into an immunoassay device that uses immunoassay to analyze a sample removed from a living body. A control unit is provided that determines the amount of the stored cleaning liquid according to measurement items set for the specimen.
 測定項目は、検体中の目的物質の種類などに応じて測定方法や測定条件を規定する基本事項である。一般に、測定項目に従って検体量及び試薬量が定まる。そこで、上記構成は、測定項目に応じて貯留洗浄液の必要量を定めるものである。貯留洗浄液の量を最適化すれば、洗浄度を高められ、同時に、洗浄液の浪費を抑制できる。 Measurement items are basic items that define the measurement method and measurement conditions depending on the type of target substance in the sample. Generally, the amount of specimen and reagent is determined according to the measurement item. Therefore, the above configuration determines the required amount of the stored cleaning liquid depending on the measurement item. By optimizing the amount of stored cleaning liquid, the degree of cleaning can be increased and at the same time, wastage of cleaning liquid can be suppressed.
 実施形態において、免疫測定装置は、サイクルタイム単位で動作する。n番目のサイクルタイム内においてn番目の容器洗浄動作及びn番目のノズル洗浄動作が実行される。n番目のノズル洗浄動作の最終段階においてn+1番目のノズル洗浄動作を準備するために洗浄ノズルが貯留洗浄液に浸かった事前浸漬状態が形成される。このように、n番目のノズル洗浄動作とn+1番目のノズル洗浄動作とが連携する。n=1,2,3,・・・である。 In an embodiment, the immunoassay device operates on a cycle time basis. The nth container cleaning operation and the nth nozzle cleaning operation are performed within the nth cycle time. In the final stage of the nth nozzle cleaning operation, a pre-immersion state is formed in which the cleaning nozzle is immersed in the stored cleaning liquid in preparation for the n+1th nozzle cleaning operation. In this way, the n-th nozzle cleaning operation and the (n+1)-th nozzle cleaning operation cooperate. n=1, 2, 3, . . .
 実施形態に係るノズル洗浄方法は、貯留工程、洗浄工程、及び、浸漬工程を含む。貯留工程では、反応容器の洗浄前に、洗浄ノズルから洗浄槽内へ洗浄液が吐出され、これにより洗浄槽内に貯留洗浄液が溜められる。洗浄工程では、洗浄ノズルにより反応容器が洗浄される。その際、洗浄槽内の貯留洗浄液が維持される。浸漬工程では、反応容器の洗浄後のノズル洗浄開始時に、洗浄ノズルが洗浄槽内の貯留洗浄液に差し込まれる。 The nozzle cleaning method according to the embodiment includes a storage step, a cleaning step, and a dipping step. In the storage step, before cleaning the reaction vessel, the cleaning liquid is discharged from the cleaning nozzle into the cleaning tank, whereby the stored cleaning liquid is stored in the cleaning tank. In the cleaning step, the reaction container is cleaned by the cleaning nozzle. At this time, the cleaning liquid stored in the cleaning tank is maintained. In the immersion step, at the start of nozzle cleaning after cleaning the reaction vessel, the cleaning nozzle is inserted into the cleaning liquid stored in the cleaning tank.
 (2)実施形態の詳細
 図1には、実施形態に係る検体分析装置10が示されている。図1は、検体分析装置10の上面を模式的に示すものである。この検体分析装置10は、免疫反応つまり抗原抗体反応を利用して検体を分析する免疫測定装置であり、具体的には、化学発光酵素免疫測定法(CLEIA:Chemiluminescent enzyme immunoassay)に従う免疫測定装置である。
(2) Details of Embodiment FIG. 1 shows a sample analyzer 10 according to an embodiment. FIG. 1 schematically shows the top surface of the sample analyzer 10. The sample analyzer 10 is an immunoassay device that analyzes a sample using an immune reaction, that is, an antigen-antibody reaction. Specifically, it is an immunoassay device that follows chemiluminescent enzyme immunoassay (CLEIA). be.
 図1において、検体分析装置10は、検体供給部12、反応部14、試薬供給部16、光検出部18、キュベット供給部20、基質保冷庫22、キュベット移送機構24,26、検体分注機構28、試薬分注機構30,32を有し、更に、実施形態に係る洗浄機構(洗浄装置)70,71を有する。 In FIG. 1, the sample analyzer 10 includes a sample supply section 12, a reaction section 14, a reagent supply section 16, a light detection section 18, a cuvette supply section 20, a substrate cooler 22, cuvette transfer mechanisms 24 and 26, and a sample dispensing mechanism. 28 and reagent dispensing mechanisms 30 and 32, and further includes cleaning mechanisms (cleaning devices) 70 and 71 according to the embodiment.
 検体供給部12は、回転台としてのターンテーブル33を有する。ターンテーブル33には、保持孔群34が形成されており、保持孔群34は複数の保持孔34aにより構成される。図示例では、保持孔群34は、環状に配列された複数の保持孔34aからなる外側保持孔列と、環状に配列された複数の保持孔34aからなる内側保持孔列と、により構成される。各保持孔34aは、元容器としての検体容器を収容する部分である。検体容器内には検体が収容されている。 The sample supply unit 12 has a turntable 33 as a rotating table. A holding hole group 34 is formed in the turntable 33, and the holding hole group 34 is composed of a plurality of holding holes 34a. In the illustrated example, the holding hole group 34 includes an outer holding hole row consisting of a plurality of holding holes 34a arranged in an annular shape, and an inner holding hole row consisting of a plurality of holding holes 34a arranged in an annular shape. . Each holding hole 34a is a portion that accommodates a sample container as a source container. A specimen is contained within the specimen container.
 実施形態において、検体は血清や血漿などの血液である。生体から採取された唾液や尿など他の液体が検体とされてもよい。検体容器は、血液を収容している採血管又は血液を収容している他の容器である。検査者の手作業によって、各検体容器が各保持孔34aに差し込まれる。つまり、各検体容器が架設される。検体供給部12に対して任意数の検体容器を架設し得る。各検体容器を架設するタイミングも検査者が任意に定め得る。検体容器ラックを搬送する機構を用いて、検体容器が自動的に投入されてもよい。 In an embodiment, the specimen is blood such as serum or plasma. Other liquids such as saliva or urine collected from a living body may also be used as the specimen. The specimen container is a blood collection tube containing blood or other container containing blood. Each specimen container is inserted into each holding hole 34a manually by the examiner. In other words, each sample container is constructed. An arbitrary number of sample containers can be installed on the sample supply section 12. The examiner can also arbitrarily determine the timing for erecting each sample container. Sample containers may be automatically loaded using a mechanism for transporting sample container racks.
 検体供給部12には、図示されていないバーコードリーダー(BCR)が設けられている。BCRにより、保持孔群34によって保持されている各検体容器に貼付されたバーコードラベルの内容が読み取られる。これにより、検体ごとに検体ID等の検体情報が読み取られる。検体IDに基づいて、被検者情報、分析項目、検体容器種別等が特定される。 The sample supply unit 12 is provided with a barcode reader (BCR), which is not shown. The BCR reads the contents of the barcode labels affixed to each sample container held by the holding hole group 34. Thereby, sample information such as sample ID is read for each sample. Based on the sample ID, subject information, analysis items, sample container type, etc. are specified.
 検体分注機構28は、レール機構46、スライドベース48、アーム50、ノズル52、等を有する。レール機構46は、装置左右方向及び装置奥行方向に対して傾斜した方向に伸長したレールを有する。そのレールに沿ってスライドベース48がスライド運動する(符号53を参照)。アーム50の基端部がスライドベース48により回転可能に保持されており、アーム50の先端部にノズル52が配置されている。 The sample dispensing mechanism 28 includes a rail mechanism 46, a slide base 48, an arm 50, a nozzle 52, and the like. The rail mechanism 46 has a rail extending in a direction inclined with respect to the left-right direction of the device and the depth direction of the device. The slide base 48 slides along the rail (see reference numeral 53). The base end of the arm 50 is rotatably held by the slide base 48, and a nozzle 52 is disposed at the tip of the arm 50.
 ノズル52は、ノズル本体及びノズルチップにより構成される。ノズル本体に対してノズルチップが着脱可能に装着される。ノズル本体は金属により構成され、ノズルチップは透明性、半透明性又は非透明性を有する樹脂により構成される。検体吸引後にノズルチップが交換される。 The nozzle 52 is composed of a nozzle body and a nozzle tip. A nozzle tip is removably attached to the nozzle body. The nozzle body is made of metal, and the nozzle tip is made of transparent, translucent, or non-transparent resin. After aspirating the sample, the nozzle tip is replaced.
 スライドベース48のスライド運動、及び、アーム50の旋回運動の組み合わせにより、ノズル52の移動エリアが拡大されている。図示されていない制御部の制御により、検体分注時に、吸引位置にある検体容器(元容器)内の検体がノズル52により吸引され、吸引された検体がノズル52から反応部14上の特定のキュベット内に吐出される。吐出先位置が固定的に定められてもよいし、吐出先位置が動的に変更されてもよい。 The movement area of the nozzle 52 is expanded by the combination of the sliding movement of the slide base 48 and the pivoting movement of the arm 50. Under the control of a control unit (not shown), during sample dispensing, the sample in the sample container (original container) at the suction position is aspirated by the nozzle 52, and the aspirated sample is transferred from the nozzle 52 to a specific location on the reaction section 14. is discharged into a cuvette. The discharge destination position may be fixedly determined, or the discharge destination position may be dynamically changed.
 チップラック54は、複数のノズルチップを保持している部材である。ノズルチップの交換時には、ノズル本体から使用済みノズルチップが取り外され、それが廃棄される。その後、ノズル本体の先端部がチップラック54の中から選択されたノズルチップの上側開口内に差し込まれる。これによりノズル本体に対して新しいノズルチップが装着される。図示されていないチップラック交換機構によりチップラックが交換される。 The chip rack 54 is a member that holds a plurality of nozzle chips. When replacing a nozzle tip, the used nozzle tip is removed from the nozzle body and discarded. Thereafter, the tip of the nozzle body is inserted into the upper opening of the nozzle tip selected from the tip rack 54. This attaches a new nozzle tip to the nozzle body. The tip rack is exchanged by a tip rack exchange mechanism (not shown).
 反応部14は、回転台としてのターンテーブル39を有する。ターンテーブル39には、保持孔群40が形成されており、保持孔群40は複数の保持孔40aにより構成される。保持孔群40が、環状に配列された複数の保持孔からなる外側保持孔列と、環状に配列された複数の保持孔からなる内側保持孔列と、により構成されてもよい。各保持孔40aは、反応容器としてのキュベットを収容する部分である。各キュベット内に試薬及び検体が段階的に注入される。これにより、各キュベット内において免疫反応が生じる。 The reaction section 14 has a turntable 39 as a rotating table. A holding hole group 40 is formed in the turntable 39, and the holding hole group 40 is composed of a plurality of holding holes 40a. The retaining hole group 40 may include an outer retaining hole row consisting of a plurality of retaining holes arranged in an annular shape, and an inner retaining hole row consisting of a plurality of retaining holes arranged annularly. Each holding hole 40a is a portion that accommodates a cuvette as a reaction container. Reagents and specimens are injected stepwise into each cuvette. This generates an immune reaction within each cuvette.
 実施形態においては、例えば、いわゆる2ステップ法に基づいて検体が測定される。2ステップ法には、第1の抗体を含む第1試薬を用いた第1免疫反応工程、第2の抗体を含む第2試薬を用いた第2免疫反応工程、基質(基質液)を用いた酵素反応工程、及び、光検出工程が含まれる。反応部14において、第1免疫反応工程、第2免疫反応工程、及び、酵素反応工程が実施される。また、反応部14において、B/F分離工程、攪拌工程、等が実施される。 In the embodiment, the specimen is measured based on a so-called two-step method, for example. The two-step method included a first immunoreaction step using a first reagent containing a first antibody, a second immunoreaction step using a second reagent containing a second antibody, and a substrate (substrate solution). It includes an enzyme reaction step and a light detection step. In the reaction section 14, a first immune reaction step, a second immune reaction step, and an enzyme reaction step are performed. Further, in the reaction section 14, a B/F separation step, a stirring step, etc. are performed.
 B/F分離工程では、反応部14の近傍に設けられた洗浄機構70,71が動作する。実施形態においては、2つの洗浄機構70,71が設けられているが、より多くの洗浄機構が設けられてもよい。各洗浄機構70,71は基本的に同じ構成を有している。洗浄機構70,71は、それぞれ、洗浄ノズル72、搬送機構73、及び、ノズル洗浄設備74を有する。 In the B/F separation step, cleaning mechanisms 70 and 71 provided near the reaction section 14 operate. In the embodiment, two cleaning mechanisms 70, 71 are provided, but more cleaning mechanisms may be provided. Each cleaning mechanism 70, 71 basically has the same configuration. The cleaning mechanisms 70 and 71 each have a cleaning nozzle 72, a transport mechanism 73, and a nozzle cleaning equipment 74.
 搬送機構73は、回転軸回りにおいて回転運動する回転台、等を有する。回転台に洗浄ノズル72が固定されている。洗浄ノズル72は、回転運動及び昇降運動する。ノズル洗浄設備74は、洗浄容器及びその内部に設けられた井戸状の洗浄槽75を有する。洗浄機構70,71の構成及び動作については後に詳述する。 The transport mechanism 73 includes a rotary table that rotates around a rotation axis, and the like. A cleaning nozzle 72 is fixed to the rotating table. The cleaning nozzle 72 rotates and moves up and down. The nozzle cleaning equipment 74 includes a cleaning container and a well-shaped cleaning tank 75 provided inside the cleaning container. The configuration and operation of the cleaning mechanisms 70 and 71 will be detailed later.
 試薬供給部16は、回転する保冷庫としての試薬槽41を有する。試薬槽41には、試薬ボトル列42及び試薬ボトル列44が収容されている。試薬ボトル列42及び試薬ボトル列44はそれぞれ複数の試薬ボトルにより構成されている。各試薬ボトルには試薬が収容されている。第1免疫反応工程で使用される各試薬には複数の磁性粒子が含まれる。各磁性粒子は固相として機能する。すなわち、各磁性粒子の表面に抗体層(又は抗原層)が設けられている。 The reagent supply unit 16 has a reagent tank 41 as a rotating cold storage. The reagent tank 41 accommodates a reagent bottle row 42 and a reagent bottle row 44 . The reagent bottle row 42 and the reagent bottle row 44 each include a plurality of reagent bottles. Each reagent bottle contains a reagent. Each reagent used in the first immunoreaction step includes a plurality of magnetic particles. Each magnetic particle functions as a solid phase. That is, an antibody layer (or antigen layer) is provided on the surface of each magnetic particle.
 試薬供給部16及び反応部14に隣接して試薬分注機構30,32が設けられている。試薬分注機構30は、旋回するアーム60及びアーム60の先端に設けられたノズル62を有する。試薬分注機構32は、旋回するアーム64及びアーム64の先端に設けられたノズル65を有する。ノズル62,65は、それぞれ非交換型ノズル、つまり洗浄式ノズルである。試薬分注機構30,32により、特定の試薬が吸引され、吸引された試薬が特定のキュベット内に吐出される。 Reagent dispensing mechanisms 30 and 32 are provided adjacent to the reagent supply section 16 and reaction section 14. The reagent dispensing mechanism 30 has a rotating arm 60 and a nozzle 62 provided at the tip of the arm 60. The reagent dispensing mechanism 32 has a rotating arm 64 and a nozzle 65 provided at the tip of the arm 64. The nozzles 62 and 65 are each non-replaceable nozzles, that is, washable nozzles. The reagent dispensing mechanisms 30 and 32 aspirate a specific reagent and discharge the aspirated reagent into a specific cuvette.
 光検出部18は、酵素反応後においてキュベット内で生じる発光を検出するユニットである。検出値に基づいて分析対象物質の濃度等が演算される。キュベットの移送に際しては、キュベット移送機構24,26が機能する。 The light detection unit 18 is a unit that detects light emission generated within the cuvette after the enzyme reaction. The concentration of the substance to be analyzed is calculated based on the detected value. When transferring cuvettes, cuvette transfer mechanisms 24 and 26 function.
 次に、図2を用いて洗浄機構の構成及び動作について説明する。洗浄機構は、B/F分離工程において、洗浄ノズル72を利用してキュベット92の内部を洗浄するものである。洗浄機構には、洗浄ノズル72、搬送機構73、ノズル洗浄設備74、ポンプP1,P2、タンクT1,T2、制御部86、等が含まれる。 Next, the configuration and operation of the cleaning mechanism will be explained using FIG. 2. The cleaning mechanism cleans the inside of the cuvette 92 using the cleaning nozzle 72 in the B/F separation step. The cleaning mechanism includes a cleaning nozzle 72, a transport mechanism 73, a nozzle cleaning equipment 74, pumps P1, P2, tanks T1, T2, a control section 86, and the like.
 洗浄ノズル72は、互いに一体化された吐出ノズル78及び吸引ノズル80により構成される。吐出ノズル78の吐出口79の位置は、吸引ノズル80の吸引口81の位置よりも高い。吐出口79から洗浄液を吐出した場合、吐出された洗浄液は吸引ノズル80の外面を伝わって流下する。吸引ノズル80においては、反応溶液に接する可能性のある範囲にわたって表面コーティング82が施されている。 The cleaning nozzle 72 is composed of a discharge nozzle 78 and a suction nozzle 80 that are integrated with each other. The position of the discharge port 79 of the discharge nozzle 78 is higher than the position of the suction port 81 of the suction nozzle 80. When the cleaning liquid is discharged from the discharge port 79, the discharged cleaning liquid flows down the outer surface of the suction nozzle 80. A surface coating 82 is applied to the suction nozzle 80 over an area that may come into contact with the reaction solution.
 搬送機構73は、洗浄ノズル72を搬送する機構である。搬送機構73は、上下搬送機構及び水平搬送機構を有する。上下搬送機構は、吸引ノズルの先端がキュベット又は洗浄槽の底面に突き当たった際に生じる衝撃を吸収するスプリングを有している。 The transport mechanism 73 is a mechanism that transports the cleaning nozzle 72. The transport mechanism 73 has a vertical transport mechanism and a horizontal transport mechanism. The vertical conveyance mechanism has a spring that absorbs the impact that occurs when the tip of the suction nozzle hits the cuvette or the bottom of the cleaning tank.
 吐出ポンプP1がチューブ83を介して吐出ノズル78に接続されている。ポンプP1に接続されたタンクT1は洗浄液タンクである。ポンプP1の作用により、洗浄液が吐出ノズル78へ供給される。ポンプP1としてシリンジポンプを用いてもよい。その場合、三方弁等によって流路が切り替えられてもよい。吸引ノズル80に対してチューブ84を介してポンプP2が接続されている。ポンプP2は吸引ポンプである。タンクT2は廃液タンクである。吸引ノズル80によって吸引された廃液がタンクT2へ送られる。ポンプP2としてダイヤフラムポンプを用いてもよい。 A discharge pump P1 is connected to the discharge nozzle 78 via a tube 83. Tank T1 connected to pump P1 is a cleaning liquid tank. The cleaning liquid is supplied to the discharge nozzle 78 by the action of the pump P1. A syringe pump may be used as the pump P1. In that case, the flow path may be switched by a three-way valve or the like. A pump P2 is connected to the suction nozzle 80 via a tube 84. Pump P2 is a suction pump. Tank T2 is a waste liquid tank. The waste liquid sucked by the suction nozzle 80 is sent to the tank T2. A diaphragm pump may be used as the pump P2.
 制御部86により、搬送機構73及びポンプP1,P2の動作が制御される。実施形態においては、制御部86は、容器洗浄動作及びノズル洗浄動作を制御する機能を有する。ノズル洗浄動作の制御に際しては、洗浄液の吐出量(後述する貯留量を含む)、吐出速度等が制御部86によって制御される。 The control unit 86 controls the operation of the transport mechanism 73 and pumps P1 and P2. In the embodiment, the control unit 86 has a function of controlling the container cleaning operation and the nozzle cleaning operation. When controlling the nozzle cleaning operation, the control unit 86 controls the discharge amount (including the storage amount described later), discharge speed, etc. of the cleaning liquid.
 ターンテーブル39における保持孔40a内にキュベット92が配置されている。磁石ユニット94によって、反応溶液中の磁性粒子96が捕獲されている。符号72Aは、キュベット92内に差し込まれた洗浄ノズルを示している。吐出ノズル78Aから吐出された洗浄液がキュベット92内へ注入される。その後、吸引ノズル80Aによりキュベット92内の洗浄液が吸引される。必要に応じて、洗浄液の吐出及び吸引が繰り返される。これによりB/F分離が実施される。なお、吸引ノズル80Aの挿入時に、その吸引口がキュベット92の底面に付き当てられる。その状態において、吸引口に形成された複数のスリットを通じて洗浄液が吸引される。 A cuvette 92 is arranged within the holding hole 40a of the turntable 39. Magnetic particles 96 in the reaction solution are captured by the magnet unit 94 . Reference numeral 72A indicates a cleaning nozzle inserted into the cuvette 92. The cleaning liquid discharged from the discharge nozzle 78A is injected into the cuvette 92. Thereafter, the cleaning liquid in the cuvette 92 is sucked by the suction nozzle 80A. Discharge and suction of the cleaning liquid are repeated as necessary. This performs B/F separation. Note that when the suction nozzle 80A is inserted, its suction port is brought into contact with the bottom surface of the cuvette 92. In this state, the cleaning liquid is sucked through the plurality of slits formed in the suction port.
 ノズル洗浄設備74は、枠体としての洗浄容器101を有し、その内部に井戸状の洗浄槽75が設けられている。洗浄槽75の水平断面形状は、例えば円形又は矩形である。符号104は、オーバーフローにより生じた廃液を排出するためのドレインを示している。洗浄槽75の内部空間100は、例えば420μlの洗浄液を貯留する容量を有している。符号72Bは、ノズル洗浄時の洗浄ノズルを示している。吐出ノズル78Bから洗浄液が吐出され、洗浄槽75の内部に洗浄液が注入される。必要に応じて、上記容量以上の量の洗浄液が洗浄槽75に注入される。その場合、洗浄槽75においてオーバーフローが生じる。吸引ノズル80Bにより洗浄槽75内の洗浄液が吸引される。 The nozzle cleaning equipment 74 has a cleaning container 101 as a frame, and a well-shaped cleaning tank 75 is provided inside the cleaning container 101. The horizontal cross-sectional shape of the cleaning tank 75 is, for example, circular or rectangular. Reference numeral 104 indicates a drain for discharging waste liquid caused by overflow. The internal space 100 of the cleaning tank 75 has a capacity to store, for example, 420 μl of cleaning liquid. Reference numeral 72B indicates a cleaning nozzle during nozzle cleaning. The cleaning liquid is discharged from the discharge nozzle 78B and is injected into the cleaning tank 75. If necessary, an amount of cleaning liquid greater than the above-mentioned capacity is injected into the cleaning tank 75. In that case, an overflow occurs in the cleaning tank 75. The cleaning liquid in the cleaning tank 75 is sucked by the suction nozzle 80B.
 なお、ノズル洗浄時においては、吸引ノズル80Bの吸引口が洗浄槽75の底面に付き当てられる。その状態で、吸引口に形成された複数のスリット等を通じて洗浄液が吸引される。 Note that during nozzle cleaning, the suction port of the suction nozzle 80B is brought into contact with the bottom surface of the cleaning tank 75. In this state, the cleaning liquid is sucked through the plurality of slits formed in the suction port.
 図3には、比較例に係るノズル洗浄動作が示されている。図4には、実施例に係るノズル洗浄動作が示されている。最初に比較例を説明し、続いて実施例を説明する。 FIG. 3 shows a nozzle cleaning operation according to a comparative example. FIG. 4 shows a nozzle cleaning operation according to the embodiment. First, a comparative example will be explained, and then an example will be explained.
 (a1)は、B/F分離を示している。洗浄ノズル72における吸引ノズル80がキュベット92内に差し込まれる。キュベット92内の磁性粒子96が磁石ユニット94によって捕獲されている状態において、キュベット92内の反応溶液が吸引ノズル80により吸引される。続いて、吐出ノズルによる洗浄液吐出が実施された上で、吸引ノズル80による洗浄液吸引が実施される。それらが必要回数繰り返される。これによりキュベット92内が洗浄され、つまり、B/F分離が実施される。B/F分離の実施後、洗浄ノズル72が洗浄槽へ搬送される。 (a1) shows B/F separation. The suction nozzle 80 in the cleaning nozzle 72 is inserted into the cuvette 92 . In a state where the magnetic particles 96 in the cuvette 92 are captured by the magnet unit 94, the reaction solution in the cuvette 92 is sucked by the suction nozzle 80. Subsequently, the discharge nozzle discharges the cleaning liquid, and then the suction nozzle 80 suctions the cleaning liquid. They are repeated as many times as necessary. As a result, the inside of the cuvette 92 is cleaned, that is, B/F separation is performed. After performing B/F separation, the cleaning nozzle 72 is transported to the cleaning tank.
 (b1)及び(c1)は、一次洗浄を示している。(b1)が示すように、洗浄ノズル72が洗浄槽75内に差し込まれ、その状態で、吐出ノズル78から洗浄槽75内へ洗浄液が注入される。洗浄液の量として、吸引ノズル80における高濃度汚染領域をカバーする程度の量が定められる。例えば、その量は100μlである。符号106は、洗浄槽に注入された少量の洗浄液を示している。符号80Aは、吸引ノズル80において洗浄液106に浸かっている部分を示している。既に説明したように、洗浄槽75は、例えば、420μlの容量を有する。洗浄液吐出後、(c1)が示すように、洗浄槽75内の洗浄液106が吸引ノズル80によって吸引される。 (b1) and (c1) indicate primary cleaning. As shown in (b1), the cleaning nozzle 72 is inserted into the cleaning tank 75, and in this state, the cleaning liquid is injected into the cleaning tank 75 from the discharge nozzle 78. The amount of cleaning liquid is determined to be enough to cover the highly contaminated area of the suction nozzle 80. For example, the volume is 100 μl. Reference numeral 106 indicates a small amount of cleaning liquid poured into the cleaning tank. Reference numeral 80A indicates a portion of the suction nozzle 80 that is immersed in the cleaning liquid 106. As already explained, the cleaning tank 75 has a capacity of, for example, 420 μl. After the cleaning liquid is discharged, the cleaning liquid 106 in the cleaning tank 75 is sucked by the suction nozzle 80, as shown in (c1).
 (d1)及び(e1)は、二次洗浄を示している。(d1)が示すように、吐出ノズル78から洗浄槽98内へ大量の洗浄液が注入される。その量は、例えば、800μlである。その場合、380μlの洗浄液が洗浄槽75からあふれ出す(符号110を参照)。符号80Bは、吸引ノズル80において洗浄液に接する部分を示している。その後、(e1)が示すように、洗浄槽75内の洗浄液の全部が吸引ノズル80によって吸引される。洗浄ノズルの搬送開始まで、(e1)が示している状態が維持される。 (d1) and (e1) indicate secondary cleaning. As shown in (d1), a large amount of cleaning liquid is injected into the cleaning tank 98 from the discharge nozzle 78. The amount is, for example, 800 μl. In that case, 380 μl of cleaning liquid overflows from the cleaning tank 75 (see reference numeral 110). Reference numeral 80B indicates a portion of the suction nozzle 80 that comes into contact with the cleaning liquid. Thereafter, as shown in (e1), all of the cleaning liquid in the cleaning tank 75 is sucked by the suction nozzle 80. The state shown in (e1) is maintained until the cleaning nozzle starts to be transported.
 次に実施例について説明する。図4において、(f2’)は、前回のノズル洗浄工程の最終段階を示している。洗浄ノズル72における吸引ノズル80が洗浄槽75に差し込まれた状態にある。吐出ノズル78から所定量の洗浄液が洗浄槽75内に注入される。符号112-0は、洗浄槽75内に溜まった洗浄液(貯留洗浄液)を示している。次のB/F分離において、吸引ノズル80において生じる汚染範囲(反応溶液接触範囲)の全部が洗浄液112-0に浸かるように、上記所定量が定められる。例えば、所定量は300μlである。もっとも、より多く洗浄液が溜められてもよいし、逆に、吸引口近くの高濃度汚染領域だけが浸かるように、より少ない洗浄液が溜められてもよい。 Next, examples will be described. In FIG. 4, (f2') indicates the final stage of the previous nozzle cleaning process. The suction nozzle 80 of the cleaning nozzle 72 is inserted into the cleaning tank 75. A predetermined amount of cleaning liquid is injected into the cleaning tank 75 from the discharge nozzle 78 . Reference numeral 112-0 indicates the cleaning liquid (reserved cleaning liquid) accumulated in the cleaning tank 75. In the next B/F separation, the predetermined amount is determined so that the entire contaminated area (reaction solution contact area) generated in the suction nozzle 80 is immersed in the cleaning liquid 112-0. For example, the predetermined amount is 300 μl. However, more cleaning liquid may be stored or, conversely, less cleaning liquid may be stored so that only the highly contaminated area near the suction port is submerged.
 洗浄槽75内に洗浄液112-0を溜めることにより、洗浄液112-0中に吸引ノズル80が浸けられた事前浸漬状態が形成される。符号80Cは、吸引ノズル80において洗浄液112-0に浸かっている部分を示している。その後、B/F分離に先立って、洗浄槽75からキュベット92へ洗浄ノズル72が搬送される。B/F分離の実行中において、洗浄液112-0の貯留状態が維持される。なお、洗浄ノズル72の搬送過程の全部又は一部において、吸引ノズル80が吸引動作を行う。これにより、洗浄液の滴下が防止される。 By storing the cleaning liquid 112-0 in the cleaning tank 75, a pre-immersion state is formed in which the suction nozzle 80 is immersed in the cleaning liquid 112-0. Reference numeral 80C indicates a portion of the suction nozzle 80 that is immersed in the cleaning liquid 112-0. Thereafter, the cleaning nozzle 72 is transported from the cleaning tank 75 to the cuvette 92 prior to B/F separation. While B/F separation is being performed, the cleaning liquid 112-0 is maintained in a stored state. Note that the suction nozzle 80 performs a suction operation during all or part of the transport process of the cleaning nozzle 72. This prevents the cleaning liquid from dripping.
 (a2)は、B/F分離を示している。既に説明したように、洗浄ノズル72における吸引ノズル80がキュベット92内に差し込まれる。その直前に、事前浸漬状態が形成されているので、洗浄ノズル72の表面は湿潤状態にある。よって、洗浄ノズル72への反応溶液の付着量又は付着程度の低減が期待される。 (a2) shows B/F separation. As already explained, the suction nozzle 80 of the washing nozzle 72 is inserted into the cuvette 92. Immediately before that, a pre-soaked state is formed, so the surface of the cleaning nozzle 72 is in a wet state. Therefore, it is expected that the amount or degree of adhesion of the reaction solution to the cleaning nozzle 72 will be reduced.
 キュベット92内の磁性粒子96が磁石ユニット94によって捕獲されている状態において、キュベット92内の反応溶液が吸引ノズル80により吸引される。続いて、吐出ノズル78による洗浄液吐出及び吸引ノズル80による洗浄液吸引が実施される。それらが必要回数繰り返される。これによりキュベット92内が洗浄され、つまり、B/F分離が実施される。B/F分離の実施後、洗浄ノズル72が洗浄槽75へ搬送される。その搬送過程の全部又は一部において吸引ノズル80が吸引動作を行う。 While the magnetic particles 96 in the cuvette 92 are captured by the magnet unit 94, the reaction solution in the cuvette 92 is sucked by the suction nozzle 80. Subsequently, the discharge nozzle 78 discharges the cleaning liquid and the suction nozzle 80 suctions the cleaning liquid. They are repeated as many times as necessary. As a result, the inside of the cuvette 92 is cleaned, that is, B/F separation is performed. After the B/F separation is performed, the cleaning nozzle 72 is transported to the cleaning tank 75. The suction nozzle 80 performs a suction operation during all or part of the conveyance process.
 (b2)は、洗浄ノズル72の浸漬を示している。洗浄槽75内には洗浄液112-0が事前に溜められており、その中に、吸引ノズル80が差し込まれる。これにより事後浸漬状態が形成される。符号80Dは、吸引ノズル80において洗浄液112-0に浸かっている部分を示している。その部分80Dの上端レベルは、反応溶液に接した部分の上端レベルよりも高い位置にある。事後浸漬状態の形成により、吸引ノズル80に付着している汚染原因物質の全部又は一部が洗浄液112-0内に溶け出し、あるいは、吸引ノズル80から汚染原因物質の全部又は一部が剥がれて洗浄液112-0内に取り込まれる。事後浸漬状態の形成後、(c2)が示すように、洗浄槽75内の貯留洗浄液が吸引ノズル80によって吸引される。 (b2) shows immersion of the cleaning nozzle 72. A cleaning liquid 112-0 is stored in advance in the cleaning tank 75, into which the suction nozzle 80 is inserted. This creates a post-soak condition. Reference numeral 80D indicates a portion of the suction nozzle 80 that is immersed in the cleaning liquid 112-0. The upper end level of the portion 80D is higher than the upper end level of the portion in contact with the reaction solution. Due to the formation of the post-immersion state, all or part of the contamination-causing substances adhering to the suction nozzle 80 are dissolved into the cleaning liquid 112-0, or all or part of the contamination-causing substances are peeled off from the suction nozzle 80. It is taken into the cleaning liquid 112-0. After the post-immersion state is formed, as shown in (c2), the cleaning liquid stored in the cleaning tank 75 is sucked by the suction nozzle 80.
 その後、(d2)が示すように、吐出ノズル78から洗浄槽75内へ比較的多量の洗浄液が注入される。その量は、例えば、600μlである。その場合、180μlの洗浄液が洗浄槽75からあふれ出す(符号110を参照)。符号80Bは、洗浄液に接する部分を示している。その後、(e2)が示すように、洗浄槽75内の洗浄液の全部が吸引ノズル80によって吸引される。 Thereafter, as shown in (d2), a relatively large amount of cleaning liquid is injected into the cleaning tank 75 from the discharge nozzle 78. The amount is, for example, 600 μl. In that case, 180 μl of cleaning liquid overflows from the cleaning tank 75 (see reference numeral 110). Reference numeral 80B indicates a portion that comes into contact with the cleaning liquid. Thereafter, as shown in (e2), all of the cleaning liquid in the cleaning tank 75 is sucked by the suction nozzle 80.
 続いて、(f2)が示すように、洗浄槽75内に洗浄液が溜められる。(f2’)が示している工程と同様に、(f2)が示す工程では、吐出ノズル78から洗浄槽75内に所定量の洗浄液が注入される。これにより洗浄槽75内に洗浄液112-1が溜まり、洗浄液112-1に吸引ノズル80の一部分80Cが浸った事前浸漬状態が形成される。その状態が一定時間維持された上で、洗浄槽75から洗浄対象キュベットへ洗浄ノズル72が搬送される。その際には、搬送過程の全部又は一部において、吸引ノズル80が吸引動作を行う。 Subsequently, as shown in (f2), the cleaning liquid is stored in the cleaning tank 75. Similar to the step shown in (f2'), in the step shown in (f2), a predetermined amount of cleaning liquid is injected into the cleaning tank 75 from the discharge nozzle 78. As a result, the cleaning liquid 112-1 accumulates in the cleaning tank 75, and a pre-immersion state is formed in which a portion 80C of the suction nozzle 80 is immersed in the cleaning liquid 112-1. After this state is maintained for a certain period of time, the cleaning nozzle 72 is transferred from the cleaning tank 75 to the cuvette to be cleaned. At that time, the suction nozzle 80 performs a suction operation during all or part of the conveyance process.
 図5には、比較例の動作及び実施例の動作がタイミングチャートとして示されている。図5において横軸は時間軸である。分析装置はサイクルタイム単位で動作を行っている。サイクルタイムは例えば15秒である。図5において複数のグレーのボックスはそれぞれ吐出動作を示しており、複数の白いボックスはそれぞれ吸引動作を示している。 FIG. 5 shows the operation of the comparative example and the operation of the example as a timing chart. In FIG. 5, the horizontal axis is the time axis. The analyzer operates in cycle time units. The cycle time is, for example, 15 seconds. In FIG. 5, a plurality of gray boxes each indicate a discharge operation, and a plurality of white boxes each indicate a suction operation.
 (A)は、時間軸上において並ぶ複数のサイクルタイムを示しており、具体的には、n番目のサイクルタイム及びn+1番目のサイクルタイムを示している。nはサイクルタイム番号である。nは1以上の整数である。図示された例では、B/F分離を実行する前の洗浄ノズル移動開始時点がサイクルタイムの始期とされているが、他の時点がサイクルタイムの始期とされてもよい。 (A) shows a plurality of cycle times lined up on the time axis, and specifically shows the n-th cycle time and the n+1-th cycle time. n is the cycle time number. n is an integer of 1 or more. In the illustrated example, the cycle time starts at the time when the cleaning nozzle movement starts before performing B/F separation, but the cycle time may start at another time.
 (B)は、サイクルタイム内の複数の工程を示している。1つのサイクルタイムには、図示の例において、移動工程(往路移動工程)、B/F分離工程、移動工程(復路移動工程)及びノズル洗浄工程が含まれる。図5においては、左側から右側にかけて、B/F分離工程116n、移動工程118n、ノズル洗浄工程114n、移動工程118n+1、B/F分離工程116n+1、が示されている。なお、符号120nは、洗浄槽への洗浄ノズルの挿入タイミングを示しており、符号121n+1は、洗浄槽からの洗浄ノズルの引き上げタイミングを示している。 (B) shows multiple steps within the cycle time. In the illustrated example, one cycle time includes a movement process (outward movement process), a B/F separation process, a movement process (return movement process), and a nozzle cleaning process. In FIG. 5, from left to right, a B/F separation process 116n, a movement process 118n, a nozzle cleaning process 114n, a movement process 118n+1, and a B/F separation process 116n+1 are shown. Note that 120n indicates the timing of inserting the cleaning nozzle into the cleaning tank, and 121n+1 indicates the timing of lifting the cleaning nozzle from the cleaning tank.
 (C)は、比較例の動作を示している。図5中の(a1)~(e1)は、図3に示した状態(a1)~(e1)を示している。最初に洗浄槽内に少量の洗浄液が吐出され(符号122を参照)、続いて、洗浄槽内の洗浄液が吸引される(符号124を参照)。次に、洗浄槽内に大量の洗浄液が吐出され(符号126を参照)、続いて、洗浄槽内の洗浄液が吸引される(符号128を参照)。 (C) shows the operation of the comparative example. (a1) to (e1) in FIG. 5 indicate states (a1) to (e1) shown in FIG. First, a small amount of cleaning liquid is discharged into the cleaning tank (see numeral 122), and then the cleaning liquid in the cleaning tank is sucked (see numeral 124). Next, a large amount of cleaning liquid is discharged into the cleaning tank (see numeral 126), and then the cleaning liquid in the cleaning tank is sucked (see numeral 128).
 (D)は、実施例の動作を示している。図5中の(a2)~(f2)は、図3に示した状態(a2)~(f2)を示している。 (D) shows the operation of the embodiment. (a2) to (f2) in FIG. 5 indicate states (a2) to (f2) shown in FIG. 3.
 n番目のサイクルタイムの最終段階で洗浄槽内に洗浄液が溜められたことを前提として、ノズル洗浄の初期において、洗浄槽内の洗浄液(貯留洗浄液)に対して吸引ノズルが挿入され(符号120nを参照)、事後浸漬状態が形成される。符号132は、下降途中で吸引ノズルが洗浄液に接してから吸引ノズルの下降が完了するまでの期間を示している。実施例において、期間132はノズル洗浄工程114n’の一部分であると言い得る。換言すれば、ノズル移動工程118nの最後部分とノズル洗浄工程114n’の最初部分とがオーバーラップしている。 Assuming that the cleaning liquid is stored in the cleaning tank at the final stage of the n-th cycle time, at the beginning of nozzle cleaning, a suction nozzle is inserted into the cleaning liquid (reserved cleaning liquid) in the cleaning tank (reference code 120n). ), a post-soaked state is formed. Reference numeral 132 indicates a period from when the suction nozzle comes into contact with the cleaning liquid during its descent until the suction nozzle completes its descent. In some embodiments, time period 132 may be a portion of nozzle cleaning step 114n'. In other words, the last part of the nozzle moving process 118n and the first part of the nozzle cleaning process 114n' overlap.
 吸引ノズルの下降が完了した時点で、吸引ノズルにより洗浄槽内の洗浄液(貯留洗浄液)が吸引される(符号134を参照)。その後、吐出ノズルから洗浄槽内へ比較的多量の洗浄液が注入される(符号136を参照)。続いて、吸引ノズルにより洗浄槽内の洗浄液が吸引される(符号138を参照)。一定時間の経過後、吐出ノズルから洗浄槽内へ所定量の洗浄液が注入される(符号142を参照)。これにより事前浸漬状態が形成される。符号143は、吸引ノズルの事前浸漬状態が継続する一定の期間を示している。一定の期間は、事前に指定される。期間143の経過後、洗浄ノズルが洗浄槽から洗浄対象キュベットへ搬送される。B/F分離の実施中、洗浄槽内に洗浄液が溜まったままとなる。なお、吸引動作138をより長くしてもよいし、吸引動作138の後に一定時間をおいた上で更に吸引動作を行うようにしてもよい。 When the suction nozzle completes its descent, the cleaning liquid (reserved cleaning liquid) in the cleaning tank is sucked by the suction nozzle (see reference numeral 134). Thereafter, a relatively large amount of cleaning liquid is injected into the cleaning tank from the discharge nozzle (see reference numeral 136). Subsequently, the cleaning liquid in the cleaning tank is sucked by the suction nozzle (see reference numeral 138). After a certain period of time has elapsed, a predetermined amount of cleaning liquid is injected into the cleaning tank from the discharge nozzle (see reference numeral 142). This creates a pre-soaked condition. Reference numeral 143 indicates a certain period during which the pre-soaking state of the suction nozzle continues. A certain period of time is specified in advance. After the period 143 has elapsed, the cleaning nozzle is transferred from the cleaning tank to the cuvette to be cleaned. During B/F separation, the cleaning liquid remains in the cleaning tank. Note that the suction operation 138 may be made longer, or the suction operation may be performed after a certain period of time has elapsed after the suction operation 138.
 実施例によれば、キュベット洗浄後、吸引ノズルを速やかにしかも多量の洗浄液に浸けることができるので、吸引ノズルにおける汚染範囲の初期洗浄度を高められる。また、ノズル洗浄工程の最終段階で、吸引ノズルを多量の洗浄液に浸けることができるので、比較例に比べて吸引ノズルに対する洗浄液の接触時間又は接触回数を増やすことができ、吸引ノズルの最終的な洗浄度を高められる。このように、実施例によれば、洗浄工程を長期化又は複雑化することなく、キャリーオーバーを効果的に低減できる。 According to the embodiment, after cleaning the cuvette, the suction nozzle can be immersed in a large amount of cleaning liquid immediately, so that the degree of initial cleaning of the contaminated area in the suction nozzle can be increased. In addition, since the suction nozzle can be immersed in a large amount of cleaning liquid at the final stage of the nozzle cleaning process, the contact time or number of times the cleaning liquid contacts the suction nozzle can be increased compared to the comparative example. Cleanliness can be improved. As described above, according to the embodiment, carryover can be effectively reduced without prolonging or complicating the cleaning process.
 図6には、上記比較例の実験結果及び上記実施例の実験結果が示されている。実験においては、検体(より詳しくはキャリーオーバーを生じさせる汚染原因物質)として、高濃度抗原を使用した。その濃度は、5μg/mlであり、一般的な実験で使用する濃度の5倍に相当する。図6において符号144は実験回数を示しており、3回の実験が実施された。符号146は比較例の実験結果を示している。符号148は実施例の実験結果を示している。使用する洗浄液の総量は、比較例において900μlであり、実施例においても900μlであった。各段階での洗浄液吐出量は上記において例示した通りであった。 FIG. 6 shows the experimental results of the above comparative example and the experimental results of the above example. In the experiment, a highly concentrated antigen was used as a specimen (more specifically, a contaminant that causes carryover). Its concentration was 5 μg/ml, which corresponds to 5 times the concentration used in typical experiments. In FIG. 6, reference numeral 144 indicates the number of experiments, and three experiments were conducted. Reference numeral 146 indicates the experimental results of the comparative example. Reference numeral 148 indicates the experimental results of the example. The total amount of washing liquid used was 900 μl in the comparative example and 900 μl in the example. The amount of cleaning liquid discharged at each stage was as exemplified above.
 図6に示されるように、3回の実験それぞれにおいて、比較例の実験結果より実施例の実験結果の方が優れており、具体的には、比較例に対して、実施例によれば、約5倍のキャリーオーバー低減効果が確認された。 As shown in FIG. 6, in each of the three experiments, the experimental results of the example were superior to the experimental results of the comparative example, and specifically, according to the example compared to the comparative example, A carryover reduction effect of about 5 times was confirmed.
 次に、図7~図11を用いて幾つかの変形例について説明する。図7には第1変形例が示されている。図7に示すように、洗浄槽75内に事前に洗浄液を溜める際、より多くの洗浄液150を溜めてもよい。例えば、洗浄槽75の内部空間の全部又はほぼ全部が満たされるよう洗浄液150を溜めてもよい。その場合、吸引ノズル80の大部分80Eが洗浄液150に浸漬される。 Next, some modified examples will be explained using FIGS. 7 to 11. FIG. 7 shows a first modification. As shown in FIG. 7, when the cleaning liquid is stored in the cleaning tank 75 in advance, a larger amount of the cleaning liquid 150 may be stored. For example, the cleaning liquid 150 may be stored so that all or substantially all of the internal space of the cleaning tank 75 is filled. In that case, most part 80E of suction nozzle 80 is immersed in cleaning liquid 150.
 図8には、第2変形例が示されている。具体的には、図8には、洗浄液の貯留量154の制御が模式的に示されている。図示されるように、測定項目152に基づいて貯留量154が設定されてもよい。この構成が採用される場合、検体ごとに最適な貯留量154を個別的に設定し得る。測定項目152は、測定方法及び測定条件を規定する基本事項である。測定項目152以外の情報156に基づいて貯留量154が決定されてもよい。例えば、検体量、試薬量、キュベットサイズ、洗浄槽サイズ、洗浄液種類、等の諸条件に基づいて貯留量が決定されてもよい。事前浸漬状態の形成時に、測定項目に応じて洗浄ノズル降下速度や降下停止後の停留時間が変更されてもよい。 A second modification example is shown in FIG. Specifically, FIG. 8 schematically shows control of the cleaning liquid storage amount 154. As illustrated, the storage amount 154 may be set based on the measurement item 152. When this configuration is adopted, the optimal storage amount 154 can be individually set for each sample. The measurement items 152 are basic items that define the measurement method and measurement conditions. The storage amount 154 may be determined based on information 156 other than the measurement items 152. For example, the storage amount may be determined based on conditions such as sample amount, reagent amount, cuvette size, washing tank size, and type of washing liquid. When forming the pre-immersion state, the descending speed of the cleaning nozzle and the residence time after stopping the descending may be changed depending on the measurement item.
 図9及び図10には、第3変形例及び第4変形例が示されている。図9及び図10において、図5に示した要素と同様の要素には同一の符号を付し、その説明を省略する。 A third modification and a fourth modification are shown in FIGS. 9 and 10. In FIGS. 9 and 10, elements similar to those shown in FIG. 5 are denoted by the same reference numerals, and their explanations will be omitted.
 図9に示されているように、ノズル洗浄工程の最後の段階で、洗浄液の注入後、一定の待機時間をおくことなく、直ちに洗浄ノズルが引き上げられてもよい(符号121n+1を参照)。その場合、符号142Aで示す期間が吐出期間且つ浸漬期間となる。 As shown in FIG. 9, at the final stage of the nozzle cleaning process, the cleaning nozzle may be immediately pulled up after the injection of the cleaning liquid without a certain waiting time (see reference numeral 121n+1). In that case, the period indicated by reference numeral 142A is the discharge period and the immersion period.
 図10に示されているように、符号138が示す吸引の完了後、早々に洗浄液の吐出を行って(符号142Bを参照)、その後、比較的に長い時間にわたって洗浄ノズルの浸漬状態が維持されてもよい(符号143Bを参照)。その後、洗浄ノズルが引き上げられる(符号121n+1を参照)。 As shown in FIG. 10, after the suction indicated by reference numeral 138 is completed, the cleaning liquid is immediately discharged (see reference numeral 142B), and thereafter the cleaning nozzle is maintained in an immersed state for a relatively long period of time. (See reference numeral 143B). Thereafter, the cleaning nozzle is pulled up (see reference numeral 121n+1).
 図11には、洗浄ノズルの他の構成例が示されている。図示される洗浄ノズル160は、1本のノズルで構成され、それは吐出吸引兼用ノズルである。洗浄ノズル160から洗浄液の吐出を行うことにより、洗浄槽75内に貯留洗浄液162が溜められ、洗浄ノズル160における一部分160Aが貯留洗浄液162に浸される。 FIG. 11 shows another example of the configuration of the cleaning nozzle. The illustrated cleaning nozzle 160 is composed of one nozzle, which is a discharge/suction nozzle. By discharging the cleaning liquid from the cleaning nozzle 160, the stored cleaning liquid 162 is stored in the cleaning tank 75, and a portion 160A of the cleaning nozzle 160 is immersed in the stored cleaning liquid 162.
 以上説明した洗浄機構(洗浄装置)が免疫測定装置以外の他の検体分析装置に組み込まれてもよい。同様に、以上説明したノズル洗浄方法がB/F分離以外の他の処理において実施されてもよい。 The cleaning mechanism (cleaning device) described above may be incorporated into a sample analyzer other than the immunoassay device. Similarly, the nozzle cleaning method described above may be performed in other processes than B/F separation.

Claims (7)

  1.  反応容器を洗浄するための洗浄ノズルと、
     前記反応容器の洗浄後に前記洗浄ノズルを洗浄するための洗浄槽を備えたノズル洗浄設備と、
     を含み、
     前記反応容器の洗浄前に、前記洗浄ノズルから前記洗浄槽内へ洗浄液が吐出され、これにより前記洗浄槽内に貯留洗浄液が溜められ、
     前記反応容器の洗浄後のノズル洗浄開始時に、前記洗浄ノズルが前記洗浄槽内の前記貯留洗浄液に差し込まれる、
     ことを特徴とする洗浄装置。
    a cleaning nozzle for cleaning the reaction vessel;
    nozzle cleaning equipment including a cleaning tank for cleaning the cleaning nozzle after cleaning the reaction container;
    including;
    Before cleaning the reaction vessel, a cleaning liquid is discharged from the cleaning nozzle into the cleaning tank, whereby a stored cleaning liquid is stored in the cleaning tank,
    When starting nozzle cleaning after cleaning the reaction vessel, the cleaning nozzle is inserted into the stored cleaning liquid in the cleaning tank.
    A cleaning device characterized by:
  2.  請求項1記載の洗浄装置において、
     前記洗浄ノズルは、吸引ノズル及び吐出ノズルを含み、
     前記吸引ノズルの吸引口は、前記吐出ノズルの吐出口よりも低い位置にあり、
     前記反応容器の洗浄前に、前記吸引ノズルが前記洗浄槽に差し込まれた状態で前記吐出ノズルから前記洗浄槽内へ洗浄液が吐出され、これにより前記洗浄槽内において前記吸引ノズルが前記貯留洗浄液に浸かった事前浸漬状態が形成され、
     前記ノズル洗浄開始時に、前記吸引ノズルが前記洗浄槽内の前記貯留洗浄液に差し込まれ、これにより前記洗浄槽内において前記吸引ノズルが前記貯留洗浄液に浸かった事後浸漬状態が形成される、
     ことを特徴とする洗浄装置。
    The cleaning device according to claim 1,
    The cleaning nozzle includes a suction nozzle and a discharge nozzle,
    The suction port of the suction nozzle is located at a lower position than the discharge port of the discharge nozzle,
    Before cleaning the reaction container, the suction nozzle is inserted into the cleaning tank, and the cleaning liquid is discharged from the discharge nozzle into the cleaning tank, so that the suction nozzle is connected to the stored cleaning liquid in the cleaning tank. A soaked pre-soaked state is formed;
    When the nozzle cleaning starts, the suction nozzle is inserted into the stored cleaning liquid in the cleaning tank, thereby forming a post-immersion state in which the suction nozzle is immersed in the stored cleaning liquid in the cleaning tank.
    A cleaning device characterized by:
  3.  請求項2記載の洗浄装置において、
     前記貯留洗浄液を溜めるための洗浄液吐出の完了後、一定時間にわたって前記事前浸漬状態が維持され、その後、前記洗浄ノズルが前記反応容器へ搬送される、
     ことを特徴とする洗浄装置。
    The cleaning device according to claim 2,
    After completion of discharging the cleaning liquid for storing the stored cleaning liquid, the pre-immersion state is maintained for a certain period of time, and then the cleaning nozzle is transported to the reaction vessel.
    A cleaning device characterized by:
  4.  請求項2記載の洗浄装置において、
     前記事前浸漬状態の形成後、前記洗浄槽から前記反応容器へ前記洗浄ノズルが搬送され、
     前記洗浄槽から前記反応容器へ前記洗浄ノズルを搬送する過程の全部又は一部において前記吸引ノズルが吸引動作を行う、
     ことを特徴とする洗浄装置。
    The cleaning device according to claim 2,
    After forming the pre-soaked state, the cleaning nozzle is transported from the cleaning tank to the reaction vessel,
    The suction nozzle performs a suction operation during all or part of the process of transporting the cleaning nozzle from the cleaning tank to the reaction vessel.
    A cleaning device characterized by:
  5.  請求項1記載の洗浄装置において、
     当該洗浄装置は、免疫測定を利用して生体から取り出された検体を分析する免疫測定装置に組み込まれ、
     前記検体に対して設定された測定項目に応じて前記貯留洗浄液の量を定める制御部が設けられた、
     ことを特徴とする洗浄装置。
    The cleaning device according to claim 1,
    The cleaning device is incorporated into an immunoassay device that uses immunoassay to analyze samples taken from a living body.
    a control unit that determines the amount of the stored cleaning liquid according to measurement items set for the specimen;
    A cleaning device characterized by:
  6.  請求項1記載の洗浄装置において、
     当該洗浄装置は、免疫測定を利用して生体から取り出された検体を分析する免疫測定装置に組み込まれ、
     前記免疫測定装置は、サイクルタイム単位で動作し、
     n番目のサイクルタイム内においてn番目の容器洗浄動作及びn番目のノズル洗浄動作が実行され、
     前記n番目のノズル洗浄動作の最終段階においてn+1番目のノズル洗浄動作を準備するために前記洗浄ノズルが前記貯留洗浄液に浸かった事前浸漬状態が形成される、
     ことを特徴とする洗浄装置。
    The cleaning device according to claim 1,
    The cleaning device is incorporated into an immunoassay device that uses immunoassay to analyze samples taken from a living body.
    The immunoassay device operates in cycle time units,
    An n-th container cleaning operation and an n-th nozzle cleaning operation are performed within the n-th cycle time,
    A pre-immersion state is formed in which the cleaning nozzle is immersed in the stored cleaning liquid in order to prepare for the n+1th nozzle cleaning operation in the final stage of the nth nozzle cleaning operation.
    A cleaning device characterized by:
  7.  反応容器の洗浄前に、洗浄ノズルから洗浄槽内へ洗浄液が吐出され、これにより前記洗浄槽内に貯留洗浄液が溜められ、
     前記洗浄ノズルにより前記反応容器を洗浄している間、前記洗浄槽内の前記貯留洗浄液が維持され、
     前記反応容器の洗浄後のノズル洗浄開始時に、前記洗浄ノズルが前記洗浄槽内の前記貯留洗浄液に差し込まれる、
     ことを特徴とするノズル洗浄方法。
    Before cleaning the reaction vessel, a cleaning liquid is discharged from a cleaning nozzle into a cleaning tank, whereby a stored cleaning liquid is stored in the cleaning tank,
    While the reaction vessel is being cleaned by the cleaning nozzle, the cleaning liquid stored in the cleaning tank is maintained;
    When starting nozzle cleaning after cleaning the reaction vessel, the cleaning nozzle is inserted into the stored cleaning liquid in the cleaning tank.
    A nozzle cleaning method characterized by:
PCT/JP2023/015534 2022-04-20 2023-04-19 Cleaning device and nozzle cleaning method WO2023204224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022069726 2022-04-20
JP2022-069726 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023204224A1 true WO2023204224A1 (en) 2023-10-26

Family

ID=88419812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015534 WO2023204224A1 (en) 2022-04-20 2023-04-19 Cleaning device and nozzle cleaning method

Country Status (1)

Country Link
WO (1) WO2023204224A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209372A (en) * 1988-02-18 1989-08-23 Toshiba Corp Cleaner for automatic chemical analyzer
JPH05502726A (en) * 1989-12-01 1993-05-13 アクゾ・エヌ・ヴエー Apparatus and method for cleaning reagent dispensing probes
JP2000506979A (en) * 1996-03-18 2000-06-06 ロッシュ ディアグノスティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Pipette probe or stirrer cleaning device
JP2005283246A (en) * 2004-03-29 2005-10-13 Olympus Corp Nozzle washing method and apparatus
JP2009174876A (en) * 2008-01-21 2009-08-06 Olympus Corp Cleaning equipment and analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209372A (en) * 1988-02-18 1989-08-23 Toshiba Corp Cleaner for automatic chemical analyzer
JPH05502726A (en) * 1989-12-01 1993-05-13 アクゾ・エヌ・ヴエー Apparatus and method for cleaning reagent dispensing probes
JP2000506979A (en) * 1996-03-18 2000-06-06 ロッシュ ディアグノスティクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Pipette probe or stirrer cleaning device
JP2005283246A (en) * 2004-03-29 2005-10-13 Olympus Corp Nozzle washing method and apparatus
JP2009174876A (en) * 2008-01-21 2009-08-06 Olympus Corp Cleaning equipment and analyzer

Similar Documents

Publication Publication Date Title
JP6726242B2 (en) Centrifuge and method for exerting centrifugal force on a reaction vessel unit
JP6647288B2 (en) Automatic analyzer and method
JP5744923B2 (en) Automatic analyzer
JPH0346786B2 (en)
JP6310767B2 (en) Automatic analyzer and nozzle cleaning method
WO2023098392A1 (en) Fully-automatic line-type immunological detection system and detection method thereof
CN111033263A (en) Automatic analysis device and working method thereof
JP5285026B2 (en) Cleaning method to remove unnecessary components in analysis sample
JP2010210596A (en) Autoanalyzer and probe cleaning method
JP3659164B2 (en) Automatic analyzer
WO2023204224A1 (en) Cleaning device and nozzle cleaning method
JP4175916B2 (en) Automatic analyzer
US20190018029A1 (en) Automated Analysis Device and Automated Analysis Method
JP4509473B2 (en) Liquid dispensing method and apparatus
WO2022091545A1 (en) Automatic analysis device
JP3492870B2 (en) Automatic analyzer
JPH0688828A (en) Automatic immune analyzing instrument
JPH02228562A (en) Automatic immunological measuring apparatus
JP2007316010A (en) Container-discarding method and autoanalyzer
JP2014228318A (en) Automatic analyzer and automatic analysis method
JP2883347B2 (en) Automatic immunoassay device cartridge washing device
WO2020166611A1 (en) Analysis device
EP1420240B1 (en) Wash process for removing undesired components in samples being analyzed
JPH03230000A (en) Pressure reducing absorbing device of liquid
JP2009030995A (en) Washing device and analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791872

Country of ref document: EP

Kind code of ref document: A1