WO2023204215A1 - Electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, method for producing coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery - Google Patents

Electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, method for producing coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery Download PDF

Info

Publication number
WO2023204215A1
WO2023204215A1 PCT/JP2023/015512 JP2023015512W WO2023204215A1 WO 2023204215 A1 WO2023204215 A1 WO 2023204215A1 JP 2023015512 W JP2023015512 W JP 2023015512W WO 2023204215 A1 WO2023204215 A1 WO 2023204215A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
negative electrode
material particles
lithium ion
Prior art date
Application number
PCT/JP2023/015512
Other languages
French (fr)
Japanese (ja)
Inventor
石賀渉
磯村省吾
堀江英明
横溝大悟
大前直也
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022068283A external-priority patent/JP2023158439A/en
Priority claimed from JP2022068282A external-priority patent/JP2023158438A/en
Priority claimed from JP2022074585A external-priority patent/JP2023163593A/en
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2023204215A1 publication Critical patent/WO2023204215A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, a method for producing coated negative electrode active material particles for lithium ion batteries, a negative electrode for lithium ion batteries, and a lithium ion battery.
  • Lithium ion batteries have been widely used in a variety of applications in recent years as secondary batteries that can achieve high energy density and high power density, and various studies are being conducted to develop higher performance lithium ion batteries. In particular, increasing the capacity of batteries is strongly desired, and various studies are underway.
  • Patent Document 1 discloses a method of increasing the energy density of a battery by increasing the film thickness of an electrode to reduce the relative proportions of a current collector and a separator.
  • Patent Document 2 discloses a method of improving the deterioration of electronic conductivity when the film thickness of an electrode is increased by using two types of conductive fibers together.
  • the present invention has been made in view of the above-mentioned problems, and provides an electrode composition for lithium ion batteries that can produce an electrode that has high electronic conductivity and good formability even when the film is thick.
  • the purpose is to
  • the inventors of the present invention have diligently studied the above-mentioned problems and found that when a conductive filler with a small aspect ratio (for example, less than 2.00) is used, the conductive path becomes short and the electron conductivity in the electrode becomes unstable. It was discovered that the internal resistance value of the electrode increases. On the other hand, the present inventors found that the use of conductive fillers with large aspect ratios (e.g., greater than 7.00) causes steric hindrance (inhibits the construction of conductive paths), and as a result, It has been found that the moldability during molding deteriorates, particularly when the film thickness of the electrode is increased, the deterioration of the moldability becomes remarkable.
  • a conductive filler with a small aspect ratio for example, less than 2.00
  • the present inventors found that by using two or more types of conductive fillers with aspect ratios in a specific range, all of the above-mentioned problems were solved, and even with a large film thickness, electronic conductivity was achieved.
  • the present invention was achieved by discovering that it is possible to obtain an electrode composition for lithium ion batteries that can produce an electrode with high moldability and good moldability.
  • the present invention provides an electrode composition for a lithium ion battery containing a conductive filler, wherein the conductive filler is composed of two or more types having different aspect ratios, and the aspect ratio of the conductive filler is It also relates to an electrode composition for a lithium ion battery in which the ratio is 2.00 to 7.00.
  • the present invention provides an electrode composition for a lithium ion battery containing a conductive filler, wherein the conductive filler is composed of two or more types having different aspect ratios, and each of the conductive fillers has an aspect ratio of 2.
  • the present invention relates to an electrode composition for lithium ion batteries having a molecular weight of .00 to 7.00.
  • the electrode composition for a lithium ion battery of the present invention contains a conductive filler, and the conductive filler is composed of two or more types having different aspect ratios.
  • the aspect ratio of each conductive filler is 2.00 to 7.00.
  • the conductive filler may be one containing two or more types in the range of 2.00 to 7.00, but conductive filler A with a value of 2.00 or more and less than 4.00, and conductive filler A with a value of 2.00 or more and less than 4.00. It is preferable to contain less than 7.00% of conductive filler B.
  • the conductive filler A covers the electrode active material particles described below and contributes to improving the conductivity of the surface of the electrode active material particles, and the conductive filler B contributes to improving the conductivity of the electrode active material particle surface.
  • the conductivity between the electrode active material particles can be improved by serving as a connection between the electrode active material particles.
  • the conductive filler may contain two or more types of conductive filler A and two or more types of conductive filler B.
  • the aspect ratio of the conductive filler can be measured, for example, under the following measurement conditions.
  • Measuring equipment PITA-04 (particle shape image analysis device, manufactured by Seishin Enterprise Co., Ltd.)
  • Camera Monochrome CCD camera (1 pixel 2.8 ⁇ m x 2.8 ⁇ m), maximum 54fps Number of observed particles: 5000
  • metals nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black], mixtures thereof, etc. can be used as long as they satisfy the above-mentioned aspect ratio. be able to.
  • the shape (form) of the conductive filler is not limited to the particle form, as long as it satisfies the aspect ratio described above, and may be in a form other than the particle form, such as a so-called filler type such as fibrous (carbon nanofiber). It may be in a form that has been put into practical use as a conductive resin composition.
  • the conductive filler consists of flaky graphite and fibrous graphite.
  • the flaky graphite corresponds to the above-mentioned conductive filler A, and can be coated to cover the electrode active material particles described below to improve the conductivity of the surface of the electrode active material particles.
  • fibrous graphite corresponds to the above-mentioned conductive filler B, and can play a role of connecting electrode active material particles, which will be described later, to improve the conductivity between electrode active material particles.
  • flaky graphite examples include UP-5- ⁇ (manufactured by Nippon Graphite Co., Ltd., aspect ratio: 2.3), CNP15 (manufactured by Ito Graphite Industries Co., Ltd., aspect ratio: 3.9) FT-4. (manufactured by East Japan Carbon Co., Ltd., aspect ratio: 3.2).
  • fibrous graphite examples include ZEONANO SG101 (carbon nanotubes, manufactured by Nippon Zeon Co., Ltd., aspect ratio: 6.8), SWNT carbon nanotubes (manufactured by Meijo Nano Carbon Co., Ltd., aspect ratio: 6.7), etc. can be mentioned.
  • the average particle diameter when the conductive filler is particulate, the fiber diameter when it is fibrous, etc. are not particularly limited as long as the aspect ratio described above is satisfied.
  • the average particle size may be, for example, 0.01 to 10 ⁇ m.
  • the average fiber diameter may be 0.1 to 20 ⁇ m.
  • particle diameter means the maximum distance L among the distances between any two points on the contour line of a particle.
  • the value of "average particle diameter” is the average value of the particle diameter of particles observed in several to several dozen fields of view using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the weight proportion of the conductive filler is preferably 1 to 6% by weight based on the weight of the lithium ion battery electrode composition.
  • the weight ratio of the conductive filler A is 1.5 to 4.5 weight based on the weight of the lithium ion battery electrode composition. % is preferable. Further, the weight proportion of the conductive filler B is preferably 0.5 to 2% by weight based on the weight of the electrode composition for a lithium ion battery. Further, it is preferable that the weight ratio of the conductive filler A is larger than that of the conductive filler B.
  • the electrode composition for a lithium ion battery of the present invention preferably contains coated electrode active material particles in which at least a portion of the surface of the electrode active material particles is coated with a coating layer containing a polymer compound.
  • the conductive filler is preferably contained in the coating layer, more preferably contained outside the coating layer, and is preferably contained in the coating layer and outside the coating layer. It is more preferable that it be contained.
  • the electrode active material particles may be either positive electrode active material particles or negative electrode active material particles.
  • composite oxides of lithium and transition metals ⁇ complex oxides containing one type of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 and LiMn 2 O 4 etc.), transition metal elements
  • lithium-containing transition metal phosphates for example, LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO 4 ), transition metal oxides (e.g. MnO 2 and V 2 O 5 ), transition metal sulfides (e.g. MoS 2 and TiS 2 ) and conductive polymers (e.g. polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p- phenylene and polyvinylcarbazole), and two or more types may be used in combination.
  • the lithium-containing transition metal phosphate may be one in which some of the transition metal sites are replaced with another transition metal.
  • the volume average particle diameter of the positive electrode active material particles is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 35 ⁇ m, and even more preferably from 2 to 30 ⁇ m, from the viewpoint of electrical characteristics of the battery. preferable.
  • the volume average particle diameter means the particle diameter (Dv50) at 50% of the integrated value in the particle size distribution determined by the Microtrack method (laser diffraction/scattering method).
  • the microtrack method is a method of determining particle size distribution using scattered light obtained by irradiating particles with laser light. Note that, for measuring the volume average particle diameter, a Microtrack manufactured by Nikkiso Co., Ltd., etc. can be used.
  • the negative electrode active material particles include carbon-based materials [graphite, non-graphitizable carbon (hard carbon), amorphous carbon, fired resin bodies (for example, carbonized phenolic resins, furan resins, etc.); Cokes (e.g.
  • silicon-based materials silicon, silicon oxide (SiOx), silicon-carbon composites (carbon particles whose surfaces are coated with silicon and/or silicon carbide) silicon particles or silicon oxide particles whose surfaces are coated with carbon and/or silicon carbide, silicon carbide, etc.
  • silicon alloys silicon-aluminum alloys, silicon-lithium alloys, silicon-nickel alloys, silicon-iron alloys
  • conductive polymers e.g.
  • the negative electrode active material particles those that do not contain lithium or lithium ions inside may be subjected to a pre-doping treatment in which part or all of the negative electrode active material particles contain lithium or lithium ions.
  • the volume average particle diameter of the negative electrode active material particles is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 60 ⁇ m, and even more preferably from 2 to 40 ⁇ m, from the viewpoint of the electrical characteristics of the battery. preferable.
  • a coating layer that covers at least a portion of the surface of the electrode active material particles contains a polymer compound.
  • the polymer compound is preferably a resin containing a polymer having the acrylic monomer (a) as an essential constituent monomer, for example.
  • the polymer compound constituting the coating layer of the coated electrode active material particles is preferably a polymer of a monomer composition containing acrylic acid (a0) as the acrylic monomer (a).
  • the content of acrylic acid (a0) is preferably more than 90% by weight and not more than 98% by weight based on the weight of the entire monomer.
  • the content of acrylic acid (a0) is more preferably 93.0 to 97.5% by weight, more preferably 95.0 to 97.5% by weight, based on the weight of the entire monomer. More preferably, it is 0% by weight.
  • the polymer compound constituting the coating layer may contain, as the acrylic monomer (a), a monomer (a1) having a carboxyl group or an acid anhydride group other than acrylic acid (a0).
  • Monomers (a1) having a carboxyl group or acid anhydride group other than acrylic acid (a0) include monocarboxylic acids having 3 to 15 carbon atoms such as methacrylic acid, crotonic acid, and cinnamic acid; (anhydrous) maleic acid, fumaric acid; acids, (anhydrous) dicarboxylic acids with 4 to 24 carbon atoms such as itaconic acid, citraconic acid, and mesaconic acid; polycarboxylic acids with 6 to 24 carbon atoms, trivalent to tetravalent or higher valences such as aconitic acid, etc. can be mentioned.
  • the polymer compound constituting the coating layer may contain a monomer (a2) represented by the following general formula (1) as the acrylic monomer (a).
  • CH 2 C(R 1 )COOR 2 (1)
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a straight chain alkyl group having 4 to 12 carbon atoms or a branched alkyl group having 3 to 36 carbon atoms.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 is a methyl group.
  • R 2 is preferably a straight chain or branched alkyl group having 4 to 12 carbon atoms, or a branched alkyl group having 13 to 36 carbon atoms.
  • Monomer (a2) is classified into (a21) and (a22) depending on the group of R 2 .
  • (a21) Ester compound in which R 2 is a straight chain or branched alkyl group having 4 to 12 carbon atoms
  • straight chain alkyl groups having 4 to 12 carbon atoms include butyl group, pentyl group, hexyl group, heptyl group, octyl group, Examples include nonyl group, decyl group, undecyl group, and dodecyl group.
  • Examples of branched alkyl groups having 4 to 12 carbon atoms include 1-methylpropyl group (sec-butyl group), 2-methylpropyl group, 1,1-dimethylethyl group (tert-butyl group), 1-methylbutyl group, , 1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group (neopentyl group), 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group , 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group , 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, 4-methylhexyl group, 5-methylhexyl group, 1-e
  • the branched alkyl group having 13 to 36 carbon atoms includes a 1-alkylalkyl group [1-methyldodecyl group, 1-butyleicosyl group, 1-hexyloctadecyl group, 1-octylhexadecyl group, 1-decyltetradecyl group, 1-undecyltridecyl group, etc.], 2-alkylalkyl group [2-methyldodecyl group, 2-hexyloctadecyl group, 2- Octylhexadecyl group, 2-decyltetradecyl group, 2-undecyltridecyl group, 2-dodecylhexadecyl group, 2-tridecylpentadecyl group, 2-decyloctadecyl group, 2-tetradec
  • the polymer compound constituting the coating layer may contain, as the acrylic monomer (a), an ester compound (a3) of a monohydric aliphatic alcohol having 1 to 3 carbon atoms and (meth)acrylic acid.
  • the monovalent aliphatic alcohol having 1 to 3 carbon atoms constituting the ester compound (a3) include methanol, ethanol, 1-propanol, and 2-propanol.
  • (meth)acrylic acid means acrylic acid or methacrylic acid.
  • the polymer compound constituting the coating layer is a polymer of a monomer composition containing acrylic acid (a0) and at least one of monomer (a1), monomer (a2), and ester compound (a3). More preferably, it is a polymer of a monomer composition containing acrylic acid (a0) and at least one of a monomer (a1), an ester compound (a21), and an ester compound (a3), More preferably, it is a polymer of a monomer composition containing acrylic acid (a0) and any one of a monomer (a1), a monomer (a2), and an ester compound (a3); ) and any one of the monomer (a1), the ester compound (a21), and the ester compound (a3).
  • Examples of the polymer compound constituting the coating layer include a copolymer of acrylic acid and maleic acid using maleic acid as the monomer (a1), and acrylic acid using 2-ethylhexyl methacrylate as the monomer (a2). and a copolymer of 2-ethylhexyl methacrylate, a copolymer of acrylic acid and methyl methacrylate using methyl methacrylate as the ester compound (a3), and the like.
  • the total content of monomer (a1), monomer (a2), and ester compound (a3) is 2.0 to 9.9% based on the weight of the entire monomer, from the viewpoint of suppressing volume change of electrode active material particles. It is preferably 2.5 to 7.0% by weight, more preferably 2.5 to 7.0% by weight.
  • the polymer compound constituting the coating layer preferably does not contain, as the acrylic monomer (a), a salt (a4) of an anionic monomer having a polymerizable unsaturated double bond and an anionic group.
  • Examples of the structure having a polymerizable unsaturated double bond include a vinyl group, an allyl group, a styrenyl group, and a (meth)acryloyl group.
  • Examples of anionic groups include sulfonic acid groups and carboxyl groups.
  • Anionic monomers having a polymerizable unsaturated double bond and an anionic group are compounds obtained by a combination of these, and include, for example, vinylsulfonic acid, allylsulfonic acid, styrenesulfonic acid, and (meth)acrylic acid. It will be done.
  • a (meth)acryloyl group means an acryloyl group or a methacryloyl group.
  • Examples of the cations constituting the anionic monomer salt (a4) include lithium ions, sodium ions, potassium ions, and ammonium ions.
  • the polymer compound constituting the coating layer may be copolymerized with acrylic acid (a0), monomer (a1), monomer (a2), and ester compound (a3) as acrylic monomer (a) to the extent that physical properties are not impaired. It may also contain a radically polymerizable monomer (a5).
  • the radically polymerizable monomer (a5) is preferably a monomer that does not contain active hydrogen, and the following monomers (a51) to (a58) can be used.
  • the above monools include (i) straight chain aliphatic monools (tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, (nonadecyl alcohol, arachidyl alcohol, etc.), (ii) alicyclic monools (cyclopentyl alcohol, cyclohexyl alcohol, cycloheptyl alcohol, cyclooctyl alcohol, etc.), (iii) aromatic aliphatic monools (benzyl alcohol, etc.), and these Examples include mixtures of two or
  • (a53-2) (meth)acrylate compound (i) Dialkyl (1 to 4 carbon atoms) Aminoalkyl (1 to 4 carbon atoms) (meth)acrylate [N,N-dimethylaminoethyl (meth)acrylate, N,N - diethylaminoethyl (meth)acrylate, t-butylaminoethyl (meth)acrylate, morpholinoethyl (meth)acrylate, etc.] (ii) Quaternary ammonium group-containing (meth)acrylate ⁇ tertiary amino group-containing (meth)acrylate [N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, etc.] compounds (quaternized using a quaternizing agent such as methyl chloride, dimethyl sulfate, benzyl chloride, dimethyl carbonate, etc.), etc
  • pyridine compounds (7 to 14 carbon atoms, e.g. 2- or 4-vinylpyridine), imidazole compounds (5 to 12 carbon atoms, e.g. N-vinylimidazole), pyrrole compounds (carbon atoms 6 to 13 carbon atoms, e.g. N-vinylpyrrole), pyrrolidone compounds (6 to 13 carbon atoms, e.g. N-vinyl-2-pyrrolidone)
  • Nitrile group-containing vinyl compound Nitrile group-containing vinyl compound having 3 to 15 carbon atoms, such as (meth)acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate
  • Nitro group-containing vinyl compounds (8 to 16 carbon atoms, such as nitrostyrene), etc.
  • Vinyl hydrocarbon (a54-1) Aliphatic vinyl hydrocarbon Olefin having 2 to 18 or more carbon atoms (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), Dienes having 4 to 10 carbon atoms or more (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.), etc.
  • (a54-2) Alicyclic vinyl hydrocarbon Cyclic unsaturated compounds having 4 to 18 or more carbon atoms, such as cycloalkenes (e.g. cyclohexene), (di)cycloalkadienes [e.g. (di)cyclopentadiene], terpenes ( e.g. pinene and limonene), indene
  • cycloalkenes e.g. cyclohexene
  • (di)cycloalkadienes e.g. (di)cyclopentadiene]
  • terpenes e.g. pinene and limonene
  • Aromatic vinyl hydrocarbon Aromatic unsaturated compounds having 8 to 20 carbon atoms or more, such as styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butyl Styrene, phenylstyrene, cyclohexylstyrene, benzylstyrene
  • Vinyl ester aliphatic vinyl ester [carbon number 4-15, e.g. alkenyl ester of aliphatic carboxylic acid (mono- or dicarboxylic acid) (e.g. vinyl acetate, vinyl propionate, vinyl butyrate, diallyl adipate, isopropenyl acetate, vinyl methoxy acetate)]
  • Aromatic vinyl esters [9 to 20 carbon atoms, such as alkenyl esters of aromatic carboxylic acids (mono- or dicarboxylic acids) (such as vinyl benzoate, diallyl phthalate, methyl-4-vinyl benzoate), aromatic ring-containing aliphatic carboxylic acids ester (e.g. acetoxystyrene)]
  • Vinyl ether aliphatic vinyl ether [3 to 15 carbon atoms, such as vinyl alkyl (1 to 10 carbon atoms) ether (vinyl methyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, etc.), vinyl alkoxy (1 to 6 carbon atoms) Alkyl (1-4 carbon atoms) ether (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether, vinyl-2-ethyl mercaptoethyl ether, etc.), poly(2-4)(meth)allyloxyalkane (carbon number 2-6) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetramethallyloxyethane, etc.)], Aromatic vinyl ether (8 to 20 carbon atoms, e.g. vinyl phenyl
  • Vinyl ketone Aliphatic vinyl ketone (4 to 25 carbon atoms, e.g. vinyl methyl ketone, vinyl ethyl ketone), aromatic vinyl ketone (9 to 21 carbon atoms, e.g. vinyl phenyl ketone)
  • Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms, such as dialkyl fumarate (two alkyl groups are linear, branched, or alicyclic groups having 1 to 22 carbon atoms) ), dialkyl maleate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms)
  • the radically polymerizable monomer (a5) When the radically polymerizable monomer (a5) is contained, its content is preferably 0.1 to 3.0% by weight based on the weight of the entire monomer.
  • a preferable lower limit of the weight average molecular weight of the polymer compound constituting the coating layer is 3,000, a more preferable lower limit is 5,000, and an even more preferable lower limit is 7,000.
  • the preferable upper limit of the weight average molecular weight of the polymer compound is 100,000, and the more preferable upper limit is 70,000.
  • the weight average molecular weight of the polymer compound constituting the coating layer can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
  • Equipment Alliance GPC V2000 (manufactured by Waters) Solvent: Orthodichlorobenzene, N,N-dimethylformamide (hereinafter abbreviated as DMF), tetrahydrofuran Standard material: polystyrene Sample concentration: 3 mg/ml
  • Column stationary phase PLgel 10 ⁇ m, MIXED-B 2 in series (manufactured by Polymer Laboratories) Column temperature: 135°C
  • the polymer compound constituting the coating layer is a known polymerization initiator ⁇ azo initiator [2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2,4-dimethylvaleronitrile) ), 2,2'-azobis(2-methylbutyronitrile), etc.], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.) It can be produced by a polymerization method (bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
  • the amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the monomer, from the viewpoint of adjusting the weight average molecular weight to a preferable range. More preferably, it is 0.1 to 1.5% by weight, and the polymerization temperature and time are adjusted depending on the type of polymerization initiator, etc., but the polymerization temperature is preferably -5 to 150°C, (more preferably 30 to 120°C), and the reaction time is preferably 0.1 to 50 hours (more preferably 2 to 24 hours).
  • Solvents used in solution polymerization include, for example, esters (with 2 to 8 carbon atoms, such as ethyl acetate and butyl acetate), alcohols (with 1 to 8 carbon atoms, such as methanol, ethanol and octanol), hydrocarbons (with 1 to 8 carbon atoms, such as methanol, ethanol and octanol), 4 to 8, such as n-butane, cyclohexane, and toluene), amides (such as DMF), and ketones (3 to 9 carbon atoms, such as methyl ethyl ketone).
  • esters with 2 to 8 carbon atoms, such as ethyl acetate and butyl acetate
  • alcohols with 1 to 8 carbon atoms, such as methanol, ethanol and octanol
  • hydrocarbons with 1 to 8 carbon atoms, such as methanol, ethanol and octanol
  • the amount used is preferably 5 to 900% by weight, more preferably 10 to 400% by weight, even more preferably 30 to 300% by weight, based on the total weight of the monomers, and the monomer concentration is preferably 10 to 95% by weight. , more preferably 20 to 90% by weight, still more preferably 30 to 80% by weight.
  • Dispersion media in emulsion polymerization and suspension polymerization include water, alcohol (e.g. ethanol), ester (e.g. ethyl propionate), light naphtha, etc., and emulsifiers include higher fatty acid (carbon number 10-24) metal salts. (e.g. sodium oleate and sodium stearate), higher alcohol (10-24 carbon atoms) sulfate ester metal salt (e.g. sodium lauryl sulfate), ethoxylated tetramethyldecynediol, sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc. can be mentioned.
  • alcohol e.g. ethanol
  • ester e.g. ethyl propionate
  • light naphtha etc.
  • emulsifiers include higher fatty acid (carbon number 10-24) metal salts. (e.g. sodium oleate and sodium stearate
  • polyvinyl alcohol, polyvinylpyrrolidone, etc. may be added as a stabilizer.
  • the monomer concentration of the solution or dispersion is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, even more preferably 15 to 85% by weight, and the amount of the polymerization initiator used is based on the total weight of the monomers.
  • the amount is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight.
  • chain transfer agents such as mercapto compounds (dodecyl mercaptan, n-butyl mercaptan, etc.) and/or halogenated hydrocarbons (carbon tetrachloride, carbon tetrabromide, benzyl chloride, etc.) can be used. .
  • the polymer compound constituting the coating layer is a crosslinking agent (A') having a reactive functional group that reacts with a carboxyl group of the polymer compound ⁇ preferably a polyepoxy compound (a'1) [polyglycidyl ether (bisphenol A) diglycidyl ether, propylene glycol diglycidyl ether, glycerin triglycidyl ether, etc.) and polyglycidylamines (N,N-diglycidylaniline and 1,3-bis(N,N-diglycidylaminomethyl)), etc.] and/or A crosslinked polymer formed by crosslinking with a polyol compound (a'2) (ethylene glycol, etc.) may also be used.
  • a polyepoxy compound a'1
  • polyglycidyl ether bisphenol A
  • propylene glycol diglycidyl ether propylene glycol diglycidyl ether, glycerin triglycidy
  • Examples of the method of crosslinking the polymer compound constituting the coating layer using the crosslinking agent (A') include a method in which electrode active material particles are coated with the polymer compound constituting the coating layer and then crosslinked. Specifically, after producing coated electrode active material particles by mixing electrode active material particles and a resin solution containing a polymer compound constituting the coating layer and removing the solvent, a solution containing a crosslinking agent (A') is prepared. By mixing and heating the coated electrode active material particles, a solvent removal and crosslinking reaction is caused, and a reaction in which the polymer compound constituting the coating layer is crosslinked by the crosslinking agent (A') is caused to occur in the electrode active material.
  • One example is a method in which this occurs on the surface of particles.
  • the heating temperature is adjusted depending on the type of crosslinking agent, but when using the polyepoxy compound (a'1) as the crosslinking agent, it is preferably 70°C or higher, and when using the polyol compound (a'2), it is preferably 70°C or higher. Preferably it is 120°C or higher.
  • the coating layer may contain a conductive aid and ceramic particles in addition to the polymer compound.
  • conductive aids include metals with aspect ratios other than 2.00 to 7.00 [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black], and mixtures thereof. Can be mentioned.
  • the weight proportion of the conductive additive is 0.5 to 3% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
  • Ceramic particles examples include metal carbide particles, metal oxide particles, glass ceramic particles, and the like.
  • metal carbide particles include silicon carbide (SiC), tungsten carbide (WC), molybdenum carbide ( Mo2C ), titanium carbide (TiC), tantalum carbide (TaC), niobium carbide (NbC), and vanadium carbide (VC). ), zirconium carbide (ZrC), and the like.
  • metal oxide particles examples include zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), tin oxide (SnO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), Indium oxide ( In2O3 ) , Li2B4O7 , Li4Ti5O12 , Li2Ti2O5 , LiTaO3 , LiNbO3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li 2 TiO 3 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 and ABO 3 (However, A is Ca, Sr, Ba, La, Pr and Y, and B is at least one selected from the group consisting of Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re.
  • Examples include perovskite-type oxide particles represented by (which is a species).
  • metal oxide particles zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ) and lithium tetraborate (Li 2 B 4 O 7 ) are preferred.
  • M is one or more elements selected from the group consisting of Zr, Ti, Fe, Mn, Co, Cr, Ca, Mg, Sr, Y, Sc, Sn, La, Ge, Nb, and Al.
  • part of P may be replaced with Si or B, and part of O may be replaced with F, Cl, etc.
  • Li 1.15 Ti 1.85 Al 0.15 Si 0.05 P 2. 95 O 12 Li 1.2 Ti 1.8 Al 0.1 Ge 0.1 Si 0.05 P 2.95 O 12 , etc. can be used.
  • materials with different compositions may be mixed or composited, and the surface may be coated with a glass electrolyte or the like.
  • glass ceramic particles that precipitate a crystalline phase of a lithium-containing phosphate compound having a NASICON type structure by heat treatment.
  • the glass electrolyte include the glass electrolyte described in JP-A-2019-96478.
  • the blending ratio of Li 2 O in the glass ceramic particles is preferably 8% by mass or less in terms of oxide. Even if it is not a NASICON type structure, it is composed of Li, La, Mg, Ca, Fe, Co, Cr, Mn, Ti, Zr, Sn, Y, Sc, P, Si, O, In, Nb, F, and LISICON type, A solid electrolyte that has a perovskite type, ⁇ -Fe 2 (SO 4 ) 3 type, and Li 3 In 2 (PO 4 ) 3 type crystal structure and conducts Li ions at a rate of 1 ⁇ 10 -5 S/cm or more at room temperature. May be used.
  • the above-mentioned ceramic particles may be used alone or in combination of two or more.
  • the volume average particle diameter of the ceramic particles is preferably from 1 to 1000 nm, more preferably from 1 to 500 nm, even more preferably from 1 to 150 nm, from the viewpoint of energy density and electrical resistance value.
  • the weight proportion of the ceramic particles is preferably 0.5 to 5.0% by weight based on the weight of the coated electrode active material particles. By containing the ceramic particles in the above range, side reactions occurring between the electrolytic solution and the coated electrode active material particles can be suitably suppressed.
  • the weight proportion of the ceramic particles is more preferably 2.0 to 4.0% by weight based on the weight of the coated electrode active material particles.
  • the coated electrode active material particles may have two or more coating layers.
  • the composition of the polymer compound contained in each coating layer may be the same or different.
  • the type of conductive filler contained in each coating layer may be the same or different.
  • the coating layer contains a conductive additive and ceramic particles, the types of the conductive additive and ceramic particles contained in each coating layer may be the same or different.
  • the method for producing coated electrode active material particles preferably includes, for example, a step of mixing electrode active material particles, a polymer compound, a conductive filler, optionally used ceramic particles, and an organic solvent, and then removing the solvent.
  • the organic solvent is not particularly limited as long as it can dissolve the polymer compound, and any known organic solvent can be appropriately selected and used.
  • electrode active material particles In the method for producing coated electrode active material particles, first, electrode active material particles, a polymer compound constituting the coating layer, a conductive filler, and optionally used ceramic particles are mixed in an organic solvent.
  • the order in which the electrode active material particles, the polymer compound forming the coating layer, the conductive filler, and the ceramic particles are mixed is not particularly limited.
  • the polymer compound forming the coating layer, the conductive filler, and the ceramic are mixed in advance.
  • the resin composition consisting of the particles may be further mixed with the electrode active material particles, or the electrode active material particles, the polymer compound constituting the coating layer, the conductive filler, and the ceramic particles may be mixed at the same time.
  • a polymer compound constituting the coating layer may be mixed with the electrode active material particles, and further a conductive filler and ceramic particles may be mixed therein.
  • the coated electrode active material particles can be obtained by coating the electrode active material particles with a coating layer containing a polymer compound, a conductive filler, and optionally used ceramic particles. Place in a mixer and stir at 30 to 500 rpm, dropwise mix the resin solution containing the polymer compound constituting the coating layer over 1 to 90 minutes, and if conductive filler and ceramic particles are used, add them. It can be obtained by mixing, raising the temperature to 50 to 200°C while stirring, reducing the pressure to 0.007 to 0.04 MPa, and holding for 10 to 150 minutes to remove the solvent.
  • coated electrode active material particles have two coating layers, for example, after forming the first coating layer according to the above method, a resin solution containing a polymer compound constituting the second coating layer, a conductive filler and Using ceramic particles, coated electrode active material particles in which a second coating layer is provided on a first coating layer can be obtained by the same procedure as the above method. Even when the coated electrode active material particles have three or more coating layers, the coated electrode active material particles can be obtained by forming a coating layer on the surface of the electrode active material particles using the same method.
  • the blending ratio of the electrode active material particles and the resin composition containing the polymer compound, conductive filler, and optionally used ceramic particles constituting the coating layer is not particularly limited; It is preferable that the ratio of material particles to resin composition is 1:0.001 to 0.1.
  • the electrode active material particles preferably have a coverage rate of 10 to 90%, more preferably 15 to 65%, obtained by the following calculation formula, from the viewpoint of suitably imparting charge/discharge performance.
  • Coverage rate (%) ⁇ 1-[BET specific surface area of coated electrode active material particles/(BET specific surface area of electrode active material particles x weight percentage of electrode active material particles contained in coated electrode active material particles + conductive filler) BET specific surface area x weight percentage of conductive filler contained in coated electrode active material particles + BET specific surface area of ceramic particles x weight percentage of ceramic particles contained in coated electrode active material particles) ⁇ x 100
  • BET specific surface area of electrode active material particles x weight ratio of electrode active material particles contained in covered electrode active material particles corresponds to the surface area of electrode active material particles contained in covered electrode active material particles.
  • BET specific surface area of conductive filler x weight ratio of conductive filler contained in coated electrode active material particles corresponds to the surface area of conductive filler contained in coated electrode active material particles.
  • BET specific surface area of ceramic particles x weight percentage of ceramic particles contained in coated electrode active material particles corresponds to the surface area of ceramic particles contained in coated electrode active material particles.
  • BET specific surface area of electrode active material particles x weight percentage of electrode active material particles contained in coated electrode active material particles + BET specific surface area of conductive filler x amount of conductive filler contained in coated electrode active material particles is calculated as follows: ceramic particles).
  • BET specific surface area of coated electrode active material particles is [(Surface area of the part of the electrode active material particles not covered with resin) + (Surface area of the part of the conductive filler not covered with resin). (Surface area of the part not covered with resin) + (Surface area of the part of the ceramic particles not covered with resin) + (Surface area of resin)] Since (the surface area of the resin) is extremely small compared to (the surface area of the electrode active material particles), (the surface area of the conductive filler), and (the surface area of the ceramic particles), (the surface area of the resin) is set to "zero".
  • BET specific surface area of coated electrode active material particles is [(Surface area of the part of the electrode active material particles not covered with resin) + (part of the conductive filler not covered with resin) surface area) + (surface area of the portion of the ceramic particles not covered with resin)].
  • the total surface area of the materials constituting the coated electrode active material particles (electrode active material particles + conductive filler + ceramic particles) before coating is calculated by "BET specific surface area of the electrode active material particles x contained in the coated electrode active material particles.
  • the total surface area of the "parts not covered with resin" after being coated with the resin is the "BET specific surface area of the coated electrode active material particles.” Therefore, "BET specific surface area of coated electrode active material particles” is calculated as "BET specific surface area of electrode active material particles x weight percentage of electrode active material particles contained in coated electrode active material particles + BET specific surface area of conductive filler x coating".
  • the value divided by "weight percentage of conductive filler contained in electrode active material particles + BET specific surface area of ceramic particles x weight percentage of ceramic particles contained in coated electrode active material particles” is the value that constitutes the coated electrode active material particles. This is the percentage of the surface of the "portion not covered with resin” among the surfaces of the electrode active material particles, conductive filler, and ceramic particles. Then, the coated electrode The ratio of the area of the "portion covered with resin” among the surfaces of the electrode active material particles, conductive filler, and ceramic particles that constitute the active material particles can be determined.
  • the electrode composition for lithium ion batteries of the present invention can form an electrode active material layer by combining with an electrolytic solution containing an electrolyte and a solvent. Moreover, the electrode active material layer can form a lithium ion battery electrode by combining with a current collector.
  • electrolytes, solvents, and current collectors used in known lithium ion batteries can be appropriately selected and used.
  • the electrode active material layer does not contain a binder.
  • a binder means a drug that cannot reversibly fix coated electrode active material particles or coated electrode active material particles and a current collector, and includes starch, polyvinylidene fluoride, Examples include known solvent-dried binders for lithium ion batteries such as polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, and polypropylene.
  • binders are used by being dissolved or dispersed in a solvent, and are solidified by volatilizing or distilling off the solvent, thereby irreversibly binding the coated electrode active material particles to each other and the coated electrode active material particles to the current collector. It is to be fixed at
  • the electrode active material layer may contain adhesive resin.
  • Adhesive resin refers to a resin that does not solidify even after drying after volatilizing the solvent component and remains adhesive, and is a different material from a binder and is distinguished from it. Further, while the coating layer constituting the covered electrode active material particles is fixed to the surface of the electrode active material particles, the adhesive resin reversibly fixes the surfaces of the electrode active material particles to each other. Although the adhesive resin can be easily separated from the surface of the electrode active material particles, the coating layer cannot be easily separated. Therefore, the coating layer and the adhesive resin are different materials.
  • the adhesive resin contains as an essential constituent monomer at least one low Tg monomer selected from the group consisting of vinyl acetate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, butyl acrylate, and butyl methacrylate.
  • low Tg monomer selected from the group consisting of vinyl acetate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, butyl acrylate, and butyl methacrylate.
  • examples include polymers in which the total weight proportion of is 45% by weight or more based on the total weight of the constituent monomers.
  • the thickness of the electrode active material layer is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m.
  • the electrode active material layer may contain other types of electrode active material particles in addition to the above-mentioned coated electrode active material particles, and can be blended within a range that does not affect the cycle characteristics of the battery.
  • the electrode active material particles the above-mentioned positive electrode active material particles or negative electrode active material particles can be used. Further, the other types of electrode active material particles may be coated electrode active material particles.
  • the thickness of the electrode current collector is not particularly limited, but is preferably 5 to 150 ⁇ m.
  • the electrode for a lithium ion battery is produced, for example, by applying the electrode composition for a lithium ion battery of the present invention on a current collector, pressing it with a press to form an electrode active material layer, and then pouring an electrolyte solution. be able to. Further, the electrode composition for lithium ion batteries of the present invention is applied onto a release film and pressed to form an electrode active material layer, and after the electrode active material layer is transferred to a current collector, an electrolytic solution is poured. You can.
  • the lithium ion battery preferably includes the above-described lithium ion battery electrode, a separator, and an electrode serving as a counter electrode.
  • Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene films and porous polypropylene, nonwoven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces.
  • Examples include known separators for lithium ion batteries, such as those to which fine ceramic particles of alumina, titania, etc. are attached.
  • the electrode serving as the counter electrode is not particularly limited, and may be the electrode for lithium ion batteries described above, and electrodes used in known lithium ion batteries can be appropriately selected and used.
  • a lithium ion battery can be manufactured by, for example, stacking the above-described lithium ion battery electrode, separator, and counter electrode in this order, and then injecting an electrolyte as necessary.
  • the present disclosure (1) is an electrode composition for a lithium ion battery containing a conductive filler, wherein the conductive filler is composed of two or more types having different aspect ratios, and the aspect ratio of the conductive filler is This is an electrode composition for a lithium ion battery in which the average number is 2.00 to 7.00.
  • the present disclosure (2) is the electrode composition for a lithium ion battery according to the present disclosure (1), in which the conductive filler includes flaky graphite and fibrous graphite.
  • the present disclosure (3) is the lithium ion battery according to the present disclosure (1) or (2), wherein the weight percentage of the conductive filler is 1 to 6% by weight based on the weight of the lithium ion battery electrode composition. It is an electrode composition for
  • the present disclosure (4) includes coated electrode active material particles in which at least a part of the surface of the electrode active material particles is coated with a coating layer containing a polymer compound, and the conductive filler is contained in the coating layer and in the coating.
  • This is an electrode composition for a lithium ion battery in any combination of any one of (1) to (3) of the present disclosure contained outside the layer.
  • Conductive filler > The following materials were used as the conductive filler.
  • Conductive filler A Acetylene black (aspect ratio: 1.0)
  • Conductive filler B Flaky graphite (aspect ratio: 2.2)
  • Conductive filler C Fibrous graphite (aspect ratio: 6.6)
  • Conductive filler D Carbon nanofiber (aspect ratio: 17.0)
  • Conductive aid A Ketjen Black, EC300J, manufactured by Lion Specialty Chemicals Co., Ltd., aspect ratio: 1.0
  • Conductive aid B carbon fiber, Dona Carbo Milled S-243, manufactured by Osaka Gas Chemical Co., Ltd., aspect ratio: 9.8
  • the obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 150° C. and 0.01 MPa for 3 hours, and DMF was distilled off to obtain a copolymer.
  • This copolymer was roughly pulverized with a hammer, and then further pulverized in a mortar to obtain a powdery coating polymer compound.
  • Example 1 One part of the coating polymer compound was dissolved in 3 parts of DMF to obtain a coating polymer compound solution. 88.0 parts of positive electrode active material particles (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 ⁇ m) were placed in a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.]. While stirring at room temperature and 720 rpm, 15.2 parts of the coating polymer compound solution was added dropwise over 2 minutes, followed by further stirring for 5 minutes.
  • positive electrode active material particles LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 ⁇ m
  • conductive filler B 3.0 parts of conductive filler B, 2.0 parts of conductive filler C, 2.0 parts of silicon dioxide (AEROSIL 200, manufactured by Nippon Aerosil Co., Ltd.), and a conductive additive were added.
  • A Ketjen Black, EC300J, manufactured by Lion Specialty Chemicals Co., Ltd.
  • conductive aid B carbon fiber, Dona Carbo Milled S-243, manufactured by Osaka Gas Chemicals Co., Ltd.
  • the obtained powder was classified using a sieve with an opening of 200 ⁇ m to prepare an electrode composition for a lithium ion battery, which is coated positive electrode active material particles.
  • Example 2 to 8 Comparative Examples 1 to 6
  • An electrode composition for a lithium ion battery was produced in the same manner as in Example 1, except that the amounts of each material added were changed as shown in Table 1.
  • Example 9 One part of the coating polymer compound was dissolved in 3 parts of DMF to obtain a coating polymer compound solution. Put 89.0 parts of positive electrode active material particles (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 ⁇ m) into a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.]. While stirring at room temperature and 720 rpm, 15.2 parts of the coating polymer compound solution was added dropwise over 2 minutes, followed by further stirring for 5 minutes.
  • positive electrode active material particles LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 ⁇ m
  • conductive filler C 1.0 part of conductive filler C, 2.0 parts of silicon dioxide (AEROSIL 200, manufactured by Nippon Aerosil Co., Ltd.), and conductive additive A (Ketjen Black, EC300J, Lion Specialty Chemicals) were added. Co., Ltd.) and 0.5 part of conductive aid B (carbon fiber, Dona Carbo Milled S-243, Osaka Gas Chemical Co., Ltd.) were added in portions over 2 minutes, and stirred for 30 minutes. continued. Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. . 3.0 parts of conductive filler B was added, and the resulting powder was classified using a sieve with an opening of 200 ⁇ m to prepare an electrode composition for a lithium ion battery, which is coated positive electrode active material particles.
  • AEROSIL 200 silicon dioxide
  • Example 10, 12 An electrode composition for a lithium ion battery was produced in the same manner as in Example 9, except that the type of conductive filler and the amount added were changed as shown in Table 1.
  • the conductive filler described as inside the coating layer in Table 1 was added at the same stage as silicon dioxide and the conductive additive, and the conductive filler described as outside the coating layer was added after volatile content was distilled off. This is a conductive filler added before post-classification.
  • Example 11 92.8 parts of positive electrode active material particles (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 ⁇ m) were placed in a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.].
  • An electrolytic solution was prepared by dissolving LiN(FSO 2 ) 2 (LiFSI) at a ratio of 2 mol/L in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) (volume ratio 1:1).
  • the obtained conductive film for a resin current collector was cut into a circular shape with a diameter of 15 mm or 16 mm, one side was evaporated with nickel, and a terminal (5 mm x 3 cm) for current extraction was connected to the resin.
  • a current collector was obtained. Note that a circular resin current collector with a diameter of 15 mm was used as the resin current collector for the positive electrode, and a circular resin current collector with a diameter of 16 mm was used as the resin current collector.
  • Example 11 The prepared electrode composition for lithium ion batteries and 50 ⁇ l of electrolyte were stirred using a powder mixer, and the resulting mixture was placed on a mold of ⁇ 15 mm so that the basis weight of the positive electrode active material particles was 50 mg/cm 2 .
  • a positive electrode active material layer (thickness: 213 ⁇ m) was formed by tableting with a press machine (HANDTAB-100T15, manufactured by Ichihashi Seiki Co., Ltd.) at a pressure of 1 ton/cm 2 , and 50 ⁇ l of the electrolyte was added. After injecting the solution from above, it was laminated on one side of the resin current collector to produce a positive electrode for a lithium ion battery (circular with a diameter of 15 mm).
  • acetylene black (Denka Black (registered trademark) manufactured by Denka Co., Ltd.), which is a conductive additive, was added in portions over 2 minutes while stirring, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
  • the obtained powder was classified using a sieve with an opening of 200 ⁇ m to obtain coated negative electrode active material particles.
  • a negative electrode active material layer (thickness: 300 ⁇ m) was formed by compression molding at a pressure of /cm 2 and was laminated on one side of the resin current collector to produce a negative electrode for a lithium ion battery (circular with a diameter of 16 mm). .
  • the mixture was filled to a thickness of cm 2 and tableted using a press machine (HANDTAB-100T15, manufactured by Ichihashi Seiki Co., Ltd.) at a pressure of 0.5 ton/cm 2 , and the thickness ( ⁇ m) was measured.
  • HANDTAB-100T15 manufactured by Ichihashi Seiki Co., Ltd.
  • the thinner the cathode active material particles can achieve a predetermined basis weight the better the moldability can be judged to be, and the better the moldability can be judged to be if the thickness is 480 ⁇ m or less. .
  • the present invention also relates to a method for producing coated negative electrode active material particles for lithium ion batteries and coated negative electrode active material particles for lithium ion batteries described below.
  • the above-mentioned electrode composition for a lithium ion battery may have this negative electrode active material particle.
  • Lithium ion batteries have recently been used for various purposes as secondary batteries that can achieve high energy density and high output density. With the expansion of uses for lithium ion batteries, further improvements in battery characteristics are required, and in particular, there is a strong desire to improve cycle characteristics, and various studies are being conducted with the aim of improving cycle characteristics.
  • coated negative electrode active material particles for lithium ion batteries in which at least a part of the surface of the negative electrode active material particles for lithium ion batteries are coated with a coating layer containing a polymer compound and a conductive agent, It has been reported that the cycle characteristics of lithium ion batteries can be improved by adjusting the coverage within a certain range.
  • the three-dimensional structure of the conductive additive in the coating layer of the coated negative electrode active material particles has a significant effect on the cycle characteristics of the battery. That is, in the coating layer, conductivity is exhibited by the conductive additives forming a three-dimensional structure that allows them to exchange electrons with each other.
  • a three-dimensional structure of the conductive additive is required that will not be destroyed even if the coated negative electrode active material particles repeatedly expand and contract during charging and discharging.
  • the present invention meets the above requirements, and aims to provide coated negative electrode active material particles for lithium ion batteries that can improve the cycle characteristics of lithium ion batteries.
  • the present inventors have conducted extensive studies on the above-mentioned problems, and have found that the three-dimensional structure of the conductive additive is determined by the shearing force applied to each material containing the conductive additive during the manufacturing process of coated negative electrode active material particles. . Furthermore, it has been found that the coverage of the coated negative electrode active material particles is similarly determined by the shear force. That is, as the shear force increases, the coverage of the coated negative electrode active material particles decreases, and as the shear force decreases, the coverage of the coated negative electrode active material particles increases. Based on the above findings, the present inventors constructed a conductive additive with an optimized three-dimensional structure by applying shearing force so that the coverage of the coated negative electrode active material particles was 80% or more. The inventors have discovered that the cycle characteristics of lithium ion batteries can be improved as a result, and have thus arrived at the present invention.
  • the present invention provides coated negative electrode active material particles for lithium ion batteries, in which at least a part of the surface of the negative electrode active material particles for lithium ion batteries is coated with a coating layer containing a polymer compound and a conductive additive.
  • the weight ratio of the conductive additive is 6.1 to 10.5% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries, and the coverage obtained by the following formula is 80%.
  • Coverage rate (%) ⁇ 1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material contained in coated negative electrode active material particles + BET specific surface area of conductive aid x weight ratio of conductive aid contained in coated negative electrode active material particles)] x 100
  • coated negative electrode active material particles for lithium ion batteries that can improve the cycle characteristics of lithium ion batteries.
  • the coated negative electrode active material particles for lithium ion batteries of the present invention are lithium ion batteries in which at least a part of the surface of the negative electrode active material particles for lithium ion batteries is coated with a coating layer containing a polymer compound and a conductive additive.
  • Coverage rate (%) ⁇ 1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles) + BET specific surface area of the conductive aid ⁇ weight ratio of the conductive aid contained in the coated negative electrode active material particles)] ⁇ 100
  • Negative electrode active material particles for lithium ion batteries include carbon-based materials [graphite, non-graphitizable carbon (hard carbon), amorphous carbon, fired resin bodies (such as phenol resin and Cokes (e.g. pitch coke, needle coke, petroleum coke, etc.) and carbon fibers], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composites] (carbon particles whose surfaces are coated with silicon and/or silicon carbide, silicon particles or silicon oxide particles whose surfaces are coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloys, conductive polymers (e.g.
  • the negative electrode active material particles those that do not contain lithium or lithium ions inside may be subjected to a pre-doping treatment in which part or all of the negative electrode active material particles contain lithium or lithium ions.
  • the negative electrode active material particles are preferably non-graphitizable carbon or a mixture of non-graphitizable carbon and a silicon-based material.
  • the volume average particle diameter of the negative electrode active material particles is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 60 ⁇ m, and even more preferably from 2 to 40 ⁇ m, from the viewpoint of the electrical characteristics of the battery. preferable.
  • the volume average particle diameter means the particle diameter (Dv50) at 50% of the integrated value in the particle size distribution determined by the Microtrack method (laser diffraction/scattering method).
  • the microtrack method is a method of determining particle size distribution using scattered light obtained by irradiating particles with laser light. Note that, for measuring the volume average particle diameter, a Microtrack manufactured by Nikkiso Co., Ltd., etc. can be used.
  • the weight percentage of the negative electrode active material particles is preferably 75 to 90% by weight, more preferably 79 to 87% by weight, based on the weight of the coated negative electrode active material particles for lithium ion batteries.
  • the coated negative electrode active material particles for lithium ion batteries of the present invention at least a portion of the surface of the negative electrode active material particles is coated with a coating layer containing a polymer compound and a conductive aid.
  • the covering layer may have a first covering layer and a second covering layer covering at least a portion of the surface of the first covering layer.
  • the polymer compounds constituting the first coating layer and the second coating layer may be the same or different, and may be appropriately selected from among the polymer compounds described below.
  • the polymer compound is a monomer composition containing a (meth)acrylic acid alkyl ester monomer from the viewpoint of imparting strength to the negative electrode for lithium ion batteries using the coated negative electrode active material for lithium ion batteries.
  • a (meth)acrylic acid alkyl ester monomer from the viewpoint of imparting strength to the negative electrode for lithium ion batteries using the coated negative electrode active material for lithium ion batteries.
  • (meth)acrylic acid means acrylic acid and/or methacrylic acid.
  • (Meth)acrylic acid alkyl ester copolymer is an acrylic polymer that essentially has a constituent unit derived from (meth)acrylic acid alkyl ester monomer, and constitutes (meth)acrylic acid alkyl ester copolymer. It is preferable that the weight proportion of the (meth)acrylic acid alkyl ester monomer in the monomer composition is 90% by weight or more based on the weight of the monomer composition.
  • the weight ratio (wt%) of the (meth)acrylic acid alkyl ester monomer is determined by dissolving the polymer in a supercritical fluid and analyzing the resulting oligomer component by gas chromatography-mass spectrometry (GC-MS). It can be measured by the following methods.
  • Examples of (meth)acrylic acid alkyl ester monomers include 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, n-butyl acrylate, n-butyl methacrylate, iso-butyl methacrylate, methyl methacrylate, methyl acrylate, and Examples include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate containing a hydroxyl group at the end.
  • polyfunctional acrylates are also included in the above (meth)acrylic acid alkyl ester monomers.
  • Examples of the polyfunctional acrylate include 1,6-hexanediol methacrylate and ethylene glycol dimethacrylate. From the viewpoint of stability of the electrode shape, the weight proportion of the polyfunctional acrylate is preferably 0.1 to 3% by weight based on the total weight of the monomers.
  • the (meth)acrylic acid alkyl ester copolymer contains two or more types of (meth)acrylic acid alkyl ester monomers as constituent monomers, and the total content thereof is 90% by weight based on the total weight of the constituent monomers. % or more.
  • Preferred combinations of the above (meth)acrylic acid alkyl ester monomers include a combination of n-butyl acrylate, 2-hydroxyethyl acrylate and acrylonitrile, a combination of 2-ethylhexyl methacrylate and 2-ethylhexyl acrylate, and a combination of n-butyl acrylate and 2-ethylhexyl acrylate. Examples include a combination of ethylhexyl acrylate, a combination of methyl acrylate and n-butyl acrylate, or a combination of methyl methacrylate and iso-butyl methacrylate.
  • the (meth)acrylic acid alkyl ester copolymer preferably contains (meth)acrylic acid monomer as a constituent monomer as a monomer other than the above-mentioned (meth)acrylic acid alkyl ester monomer.
  • (meth)acrylic acid monomer is included as a constituent monomer, it is possible to neutralize by-products such as lithium hydroxide generated within the battery and prevent corrosion of the electrodes.
  • the weight proportion of the (meth)acrylic acid monomer is preferably 0.1 to 10% by weight based on the total weight of the constituent monomers.
  • the (meth)acrylic acid alkyl ester copolymer may contain a monovinyl monomer copolymerizable with the (meth)acrylic acid alkyl ester monomer as a constituent monomer.
  • a monovinyl monomer containing a fluoro group, siloxane, etc. (dimethylsiloxane, etc.) can be used as the monovinyl monomer.
  • the preferable lower limit of the weight average molecular weight of the (meth)acrylic acid alkyl ester copolymer is 10,000, more preferably 50,000, still more preferably 100,000, and the preferable upper limit is 1,000,000, more preferably 800,000, more preferably 500,000, particularly preferably 400,000.
  • the weight average molecular weight of a polymer compound can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
  • Solution injection volume 10 ⁇ L
  • Flow rate 0.6mL/min
  • Measurement temperature 40°C
  • Detection device Refractive index detector
  • Reference material Standard polystyrene [manufactured by Tosoh Corporation]
  • the polymer compound is a known polymerization initiator ⁇ azo initiator [2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2 A known polymerization method (bulk polymerization , solution polymerization, emulsion polymerization, suspension polymerization, etc.).
  • the amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the monomer, from the viewpoint of adjusting the weight average molecular weight to a preferable range.
  • the polymerization temperature and time are adjusted depending on the type of polymerization initiator, etc., but the polymerization temperature is preferably -5 to 150°C, (more preferably 30 to 120°C), and the reaction time is preferably 0.1 to 50 hours (more preferably 2 to 24 hours).
  • Solvents used in solution polymerization include, for example, esters (with 2 to 8 carbon atoms, such as ethyl acetate and butyl acetate), alcohols (with 1 to 8 carbon atoms, such as methanol, ethanol and octanol), hydrocarbons (with 1 to 8 carbon atoms, such as methanol, ethanol and octanol), 4 to 8, such as n-butane, cyclohexane, and toluene), amides (such as dimethylformamide, hereinafter abbreviated as DMF), and ketones (3 to 9 carbon atoms, such as methyl ethyl ketone), and the weight average molecular weight is adjusted to a preferable range. From the viewpoint of the is 10 to 95% by weight, more preferably 20 to 90% by weight, even more preferably 30 to 80% by weight.
  • Dispersion media in emulsion polymerization and suspension polymerization include water, alcohol (e.g. ethanol), ester (e.g. ethyl propionate), light naphtha, etc., and emulsifiers include higher fatty acid (carbon number 10-24) metal salts. (e.g. sodium oleate and sodium stearate), higher alcohol (10-24 carbon atoms) sulfate ester metal salt (e.g. sodium lauryl sulfate), ethoxylated tetramethyldecynediol, sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc. can be mentioned.
  • alcohol e.g. ethanol
  • ester e.g. ethyl propionate
  • light naphtha etc.
  • emulsifiers include higher fatty acid (carbon number 10-24) metal salts. (e.g. sodium oleate and sodium stearate
  • polyvinyl alcohol, polyvinylpyrrolidone, etc. may be added as a stabilizer.
  • the monomer concentration of the solution or dispersion is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, even more preferably 15 to 85% by weight, and the amount of the polymerization initiator used is based on the total weight of the monomers.
  • the amount is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight.
  • chain transfer agents such as mercapto compounds (dodecyl mercaptan, n-butyl mercaptan, etc.) and/or halogenated hydrocarbons (carbon tetrachloride, carbon tetrabromide, benzyl chloride, etc.) can be used. .
  • the coating layer contains a conductive additive. Items common to the conductive additive contained in the first coating layer and the second coating layer described above will be described without particular distinction.
  • conductive aids include metals [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite (flake graphite (UP)), carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanofibers (CNF), etc.], and mixtures thereof.
  • the conductive aid is preferably acetylene black and/or flaky graphite from the viewpoint of improving the cycle characteristics of a lithium ion battery using coated negative electrode active material particles for a lithium ion battery.
  • the weight proportion of the conductive additive is 6.1 to 10.5% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
  • the weight proportion of the conductive additive is preferably 6.8 to 10.5% by weight, and preferably 6.8 to 7.5% by weight, based on the weight of the coated negative electrode active material particles for lithium ion batteries. More preferred.
  • the ratio of the polymer compound that makes up the coating layer and the conductive additive is not particularly limited, but from the viewpoint of internal resistance of the battery, etc., the weight ratio of the polymer compound that makes up the coating layer (resin solid content weight) :
  • the ratio of the conductive aid is preferably 1:0.01 to 1:50, more preferably 1:0.2 to 1:3.0.
  • the coating layer may further contain ceramic particles.
  • the ceramic particles include metal carbide particles, metal oxide particles, glass ceramic particles, and the like.
  • metal carbide particles include silicon carbide (SiC), tungsten carbide (WC), molybdenum carbide ( Mo2C ), titanium carbide (TiC), tantalum carbide (TaC), niobium carbide (NbC), and vanadium carbide (VC). ), zirconium carbide (ZrC), and the like.
  • metal oxide particles examples include zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), tin oxide (SnO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), Indium oxide ( In2O3 ) , Li2B4O7 , Li4Ti5O12 , Li2Ti2O5 , LiTaO3 , LiNbO3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li 2 TiO 3 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 and ABO 3 (However, A is Ca, Sr, Ba, La, Pr and Y, and B is at least one selected from the group consisting of Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re.
  • Examples include perovskite-type oxide particles represented by (which is a species).
  • metal oxide particles zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ) and lithium tetraborate (Li 2 B 4 O 7 ) are preferred.
  • M is one or more elements selected from the group consisting of Zr, Ti, Fe, Mn, Co, Cr, Ca, Mg, Sr, Y, Sc, Sn, La, Ge, Nb, and Al.
  • part of P may be replaced with Si or B, and part of O may be replaced with F, Cl, etc.
  • Li 1.15 Ti 1.85 Al 0.15 Si 0.05 P 2. 95 O 12 Li 1.2 Ti 1.8 Al 0.1 Ge 0.1 Si 0.05 P 2.95 O 12 , etc. can be used.
  • materials with different compositions may be mixed or composited, and the surface may be coated with a glass electrolyte or the like.
  • glass ceramic particles that precipitate a crystalline phase of a lithium-containing phosphate compound having a NASICON type structure by heat treatment.
  • the glass electrolyte include the glass electrolyte described in JP-A-2019-96478.
  • the blending ratio of Li 2 O in the glass ceramic particles is preferably 8% by mass or less in terms of oxide. Even if it is not a NASICON type structure, it is composed of Li, La, Mg, Ca, Fe, Co, Cr, Mn, Ti, Zr, Sn, Y, Sc, P, Si, O, In, Nb, F, and LISICON type, Using a solid electrolyte that has a perovskite type, ⁇ -Fe 2 (SO 4 ) 3 type, and Li 3 In 2 (PO 4 ) 3 type crystal structure and conducts Li ions at a rate of 1 ⁇ 10 -5 S/cm or more at room temperature. It's okay.
  • the above-mentioned ceramic particles may be used alone or in combination of two or more.
  • the volume average particle diameter of the ceramic particles is preferably from 1 to 1000 nm, more preferably from 1 to 500 nm, even more preferably from 1 to 150 nm, from the viewpoint of energy density and electrical resistance value.
  • the weight proportion of the ceramic particles is preferably 0.5 to 5.0% by weight based on the weight of the coated negative electrode active material particles.
  • the coated negative electrode active material particles for lithium ion batteries of the present invention have a coverage rate of 80% or more obtained by the following calculation formula.
  • Coverage rate (%) ⁇ 1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles) + BET specific surface area of the conductive aid ⁇ weight ratio of the conductive aid contained in the coated negative electrode active material particles)] ⁇ 100
  • the coated negative electrode active material particles for lithium ion batteries of the present invention have a coverage rate within the above range, the shearing force applied to each material including a conductive aid during the manufacturing process of the coated negative electrode active material particles can be suitably adjusted. It is possible to construct a conductive additive with an optimized three-dimensional structure.
  • the coverage rate is preferably 83% or more. Further, the coverage rate is preferably 95% or less, more preferably 92% or less.
  • BET specific surface area of negative electrode active material particles when not coated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles corresponds to the surface area of negative electrode active material particles contained in coated negative electrode active material particles. do. Further, “BET specific surface area of the conductive additive x weight percentage of the conductive additive contained in the coated negative electrode active material particles” corresponds to the surface area of the conductive additive contained in the coated negative electrode active material particles.
  • BET specific surface area of uncoated negative electrode active material particles x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles + BET specific surface area of conductive additive x contained in coated negative electrode active material particles weight percentage of negative electrode active material particles contained in coated negative electrode active material particles
  • Weight percentage of conductive aid corresponds to “total surface area of materials (negative electrode active material particles + conductive aid) contained in coated negative electrode active material particles before coating”.
  • BET specific surface area of coated negative electrode active material particles is [(Surface area of the part of the negative electrode active material particles not covered with resin) + (Surface area of the part of the conductive additive not covered with resin) (Surface area of non-containing parts) + (Surface area of resin)] Since (the surface area of the resin) is extremely small compared to (the surface area of the negative electrode active material particles) and (the surface area of the conductive additive), if (the surface area of the resin) is set to "zero," The BET specific surface area of material particles is expressed as [(Surface area of the part of the negative electrode active material particles not covered with resin) + (Surface area of the part of the conductive additive not covered with resin)]. Ru.
  • the total surface area of the materials (negative electrode active material particles + conductive additive) constituting the coated negative electrode active material particles before coating is calculated as follows:
  • the total surface area of the "absent part” is the "BET specific surface area of the coated negative electrode active material particles.” Therefore, "BET specific surface area of coated negative electrode active material particles” is calculated as "BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles + BET of conductive support agent".
  • the value divided by "specific surface area x weight percentage of the conductive additive contained in the coated negative electrode active material particles” is calculated based on the ratio of "resin This is the percentage of the surface that is not covered by Then, by subtracting [the ratio of the surface of the "portion not covered with resin” among the surfaces of the negative electrode active material particles and the conductive additive that constitute the coated negative electrode active material particles] from 1, the coated negative electrode active material particles are calculated.
  • the area ratio of the "portion covered with resin” among the surfaces of the negative electrode active material particles constituting the material particles and the conductive additive can be determined.
  • the coverage rate of the coated negative electrode active material particles for lithium ion batteries can be determined by adjusting the content of the negative electrode active material particles, conductive agent, and polymer compound, and the volume average particle diameter of the negative electrode active material particles within the above-mentioned preferred ranges. It can be suitably satisfied.
  • the coated negative electrode active material particles for lithium ion batteries of the present invention have a ratio of a loose bulk density of the coated negative electrode active material particles for lithium ion batteries to a firm bulk density of the coated negative electrode active material particles for lithium ion batteries measured by a tapping method. It is preferably 0.60 to 0.85.
  • the ratio of loose bulk density to hard bulk density of the coated negative electrode active material particles for lithium ion batteries is more preferably 0.60 to 0.70.
  • the loose bulk density is the bulk density measured in accordance with JIS K 6219-2 (2005) using a cylindrical container with a capacity of 100 cm 3 and a diameter of 30 mm.
  • the loose bulk density and hardened density each use the average value of five measurements.
  • the method for producing coated negative electrode active material particles for lithium ion batteries of the present invention includes the step of mixing negative electrode active material particles, a polymer compound, a conductive agent, and an organic solvent, and then removing the solvent to obtain first coated negative electrode active material particles. and a second coating step in which the first coated negative electrode active material particles are mixed with a polymer compound, a conductive additive, and an organic solvent, and then the solvent is removed.
  • the negative electrode active material particles are placed in a universal mixer and stirred at a stirring speed (peripheral speed) of 1 to 7 m/s.
  • a resin solution containing a polymer compound constituting one coating layer (also referred to as coating polymer compound solution) is mixed dropwise over a period of 1 to 90 minutes, and the temperature is raised to 50 to 200°C while stirring, and the temperature is increased to 0.007 to 200°C.
  • coated negative electrode active material particles in which the second coating layer is provided on the first coating layer can be obtained.
  • the stirring speed (peripheral speed) is preferably 2 to 5 m/s, more preferably 2.5 to 4 m/s. Note that the stirring speed in the first coating step refers to the speed of stirring performed from the time when the negative electrode active material particles are placed in the universal mixer until the entire coating polymer compound solution is dropped.
  • the stirring time is preferably 1 to 90 minutes, more preferably 2 to 60 minutes.
  • the stirring time in the first coating step is the time from when all the materials constituting the first coating layer, such as the coating polymer compound solution and conductive agent, are added until the temperature starts to increase for solvent removal. means the time of
  • the drying time is preferably 3 to 7 hours, more preferably 4 to 6 hours. Note that the drying time in the first coating step means the time from the start of temperature increase and pressure reduction for solvent removal until the completion of solvent removal.
  • the stirring speed (peripheral speed) is preferably 1 to 5 m/s, more preferably 2 to 4.5 m/s. Note that the stirring speed in the second coating step refers to the speed of stirring performed from the time when the negative electrode active material particles forming the first coating layer are placed in the universal mixer until the entire coating polymer compound solution is dropped. do.
  • the stirring time is preferably 1 to 90 minutes, more preferably 3 to 60 minutes.
  • the stirring time in the second coating step is the period from when all the materials constituting the second coating layer, such as the coating polymer compound solution and conductive agent, are added until the temperature starts to be raised for solvent removal. means the time of
  • the drying time is preferably 1.5 to 10 hours, more preferably 2 to 9 hours. Note that the drying time in the second coating step means the time from the start of temperature increase and pressure reduction for solvent removal until the completion of solvent removal.
  • the negative electrode active material particles on which the first coating layer is formed (before the second coating step) preferably have a BET specific surface area of 0.8 to 1.2 m 2 /g, and preferably 0.9 to 1.1 m 2 /g. It is more preferable that When the negative electrode active material particles forming the first coating layer have such a BET specific surface area, the coverage can be suitably satisfied in the second coating step.
  • the BET specific surface area can be measured by the method described in Examples described later.
  • coated negative electrode active material particles produced by the method for producing coated negative electrode active material particles for lithium ion batteries of the present invention preferably have a BET specific surface area of 0.25 to 0.8 m 2 /g, preferably 0.3 More preferably, it is 0.75 m 2 /g.
  • the coverage can be suitably satisfied.
  • the coverage rate can be suitably adjusted.
  • the organic solvent is not particularly limited as long as it is an organic solvent that can dissolve the polymer compound, and any known organic solvent can be appropriately selected and used.
  • the negative electrode for a lithium ion battery preferably includes a negative electrode active material layer containing the coated negative electrode active material particles of the present invention, an electrolytic solution containing an electrolyte and a solvent, and a negative electrode current collector.
  • electrolytes, solvents, and negative electrode current collectors used in known lithium ion batteries can be appropriately selected and used.
  • the negative electrode active material layer may further contain a conductive additive in addition to the conductive additive contained in the coating layer of the coated negative electrode active material particles described above. They can be distinguished from each other in that the conductive agent contained in the coating layer is integrated with the coated negative electrode active material particles, whereas the conductive agent contained in the negative electrode active material layer is contained separately from the coated negative electrode active material particles.
  • the conductive additive that the negative electrode active material layer may contain, the conductive additive described in the above-mentioned coated negative electrode active material particles for lithium ion batteries can be used.
  • the negative electrode active material layer does not contain a binder.
  • a binder means a drug that cannot reversibly fix coated negative electrode active material particles or coated negative electrode active material particles and a current collector, and includes starch, polyvinylidene fluoride, Examples include known solvent-dried binders for lithium ion batteries such as polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, and polypropylene.
  • binders are used by being dissolved or dispersed in a solvent, and solidify by volatilizing or distilling off the solvent, thereby irreversibly binding the coated negative electrode active material particles to each other and the coated negative electrode active material particles to the current collector. It is to be fixed at
  • the negative electrode active material layer may contain adhesive resin.
  • Adhesive resin refers to a resin that does not solidify even after drying after volatilizing a solvent component and remains adhesive, and is a different material from a binder and is distinguished from it. Further, while the coating layer constituting the coated negative electrode active material particles is fixed to the surface of the negative electrode active material particles, the adhesive resin reversibly fixes the surfaces of the negative electrode active material particles to each other. Although the adhesive resin can be easily separated from the surface of the negative electrode active material particles, the coating layer cannot be easily separated. Therefore, the coating layer and the adhesive resin are different materials.
  • the adhesive resin contains as an essential constituent monomer at least one low Tg monomer selected from the group consisting of vinyl acetate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, butyl acrylate, and butyl methacrylate.
  • low Tg monomer selected from the group consisting of vinyl acetate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, butyl acrylate, and butyl methacrylate.
  • examples include polymers in which the total weight proportion of is 45% by weight or more based on the total weight of the constituent monomers.
  • a sticky resin it is preferable to use 0.01 to 10% by weight of the sticky resin based on the total weight of the negative electrode active material particles.
  • the thickness of the negative electrode active material layer is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m.
  • the negative electrode active material layer may contain other types of negative electrode active material particles in addition to the coated negative electrode active material particles of the present invention.
  • Other types of negative electrode active material particles include carbon-based negative electrode active material particles, silicon-based negative electrode active material particles, and the like. These other types of negative electrode active material particles can be blended within a range that does not affect the cycle characteristics of the battery. Further, the other types of negative electrode active material particles may be coated negative electrode active material particles.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 5 to 150 ⁇ m.
  • a negative electrode for a lithium ion battery can be produced, for example, by coating a negative electrode current collector with a powder (negative electrode precursor) mixed with the coated negative electrode active material particles of the present invention and, if necessary, a conductive agent, etc., and pressing the powder with a press machine. It can be produced by injecting an electrolytic solution after forming a negative electrode active material layer. Alternatively, a negative electrode precursor may be applied and pressed onto a release film to form a negative electrode active material layer, and after the negative electrode active material layer is transferred to a negative electrode current collector, an electrolytic solution may be injected.
  • the lithium ion battery preferably includes the above-described negative electrode for a lithium ion battery, a separator, and a positive electrode.
  • Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene films and porous polypropylene, nonwoven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces.
  • Examples include known separators for lithium ion batteries, such as those to which fine ceramic particles of alumina, titania, etc. are attached.
  • the positive electrode is not particularly limited, and any positive electrode used in known lithium ion batteries can be appropriately selected and used.
  • a lithium ion battery can be manufactured, for example, by stacking a positive electrode, a separator, and the above-described negative electrode for lithium ion batteries in this order, and then injecting an electrolyte as necessary.
  • the present disclosure (5) provides coated negative electrode active material particles for lithium ion batteries, in which at least a part of the surface of the negative electrode active material particles for lithium ion batteries is coated with a coating layer containing a polymer compound and a conductive additive.
  • the weight ratio of the conductive additive is 6.1 to 10.5% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries, and the coverage obtained by the following formula is 80%. % or more of coated negative electrode active material particles for lithium ion batteries.
  • Coverage rate (%) ⁇ 1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles) + BET specific surface area of the conductive aid ⁇ weight ratio of the conductive aid contained in the coated negative electrode active material particles)] ⁇ 100
  • the present disclosure (6) provides the lithium ion battery according to the present disclosure (5), wherein the negative electrode active material particles for lithium ion batteries are non-graphitizable carbon or a mixture of non-graphitizable carbon and a silicon-based material. These are coated negative electrode active material particles for batteries.
  • the polymer compound is formed by polymerizing a monomer composition containing an alkyl (meth)acrylate monomer, and the alkyl (meth)acrylate in the monomer composition is provided.
  • the present disclosure (8) is the coated negative electrode active material particle for a lithium ion battery according to any one of the present disclosure (5) to (7), wherein the conductive additive is acetylene black and/or flaky graphite.
  • the present disclosure (9) provides that the ratio of the loose bulk density of the coated negative electrode active material particles for lithium ion batteries to the firm bulk density of the coated negative electrode active material particles for lithium ion batteries measured by a tapping method is 0.60 to 0.
  • the coated negative electrode active material particles for a lithium ion battery according to any one of (5) to (8) of the present disclosure have a particle diameter of .85.
  • the present disclosure (10) includes a first coating step of mixing negative electrode active material particles, a polymer compound, a conductive aid, and an organic solvent and then removing the solvent to obtain first coated negative electrode active material particles;
  • Example 201 [Preparation of polymer compound covering negative electrode active material particles]
  • 150 parts of DMF was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 75°C.
  • the obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 150° C. and 0.01 MPa for 3 hours, and DMF was distilled off to obtain a copolymer.
  • This copolymer was roughly pulverized with a hammer, and then further pulverized in a mortar to obtain a powdery polymer compound.
  • the obtained powder was classified using a sieve with an opening of 106 ⁇ m to produce coated negative electrode active material particles having the compositions shown in Table 3.
  • the composition shown in Table 3 is expressed in "wt%" using the negative electrode active material particles, the polymer compound, and the conductive aid used in the formation of the first coating layer and the second coating layer. It is a value.
  • Example 202 to 208 Same as Example 201 except that the amounts of negative electrode active material particles, polymer compound, and conductive aid used, as well as the stirring time, stirring speed (peripheral speed), and drying time were changed to the values listed in Table 3. coated negative electrode active material particles were prepared. Note that the stirring time, stirring speed, and drying time in the first coating step and the second coating step mean the stirring time, stirring speed, and drying time described in this specification.
  • a monomer mixture containing 20.0 parts of butyl methacrylate, 55.0 parts of acrylic acid, 22.0 parts of methyl methacrylate, 3 parts of sodium allylsulfonate, and 20 parts of DMF, and 2,2'-azobis(2 , 4-dimethylvaleronitrile) and 0.8 parts of 2,2'-azobis(2-methylbutyronitrile) dissolved in 10.0 parts of DMF were placed in a four-necked flask under nitrogen gas. was continuously added dropwise over a period of 2 hours using a dropping funnel while stirring to carry out radical polymerization.
  • compositions shown in Table 3 are values expressed in "wt%" of the amounts of the negative electrode active material particles, polymer compound, and conductive aid used to form the coating layer. Furthermore, in Table 3, the stirring time and drying time are listed in the "first coating step" column.
  • Comparative example 203 Coated negative electrode active material particles were produced in the same manner as Comparative Example 202, except that the amounts of negative electrode active material particles, polymer compound, and conductive aid were changed to the values listed in Table 3.
  • Coverage rate (%) ⁇ 1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles) + BET specific surface area of the conductive aid ⁇ weight ratio of the conductive aid contained in the coated negative electrode active material particles)] ⁇ 100
  • BET specific surface area after the first coating step means "BET specific surface area of the negative electrode active material particles forming the first coating layer ( "before the second coating step)" and "coated BET specific surface area” indicates “BET specific surface area of the prepared coated negative electrode active material particles.” Note that Comparative Examples 202 and 203 do not have the second coating step, so the column for the BET specific surface area after the first coating step is left blank, and only “coated BET specific surface area” is written.
  • the obtained conductive film for a resin current collector was cut into a size of 17.0 cm x 17.0 cm, nickel vapor deposition was performed on one side, and a terminal for current extraction (5 mm x 3 cm) was connected. A resin current collector was obtained.
  • the electrolyte After adding 1.0 parts of the electrolyte, the electrolyte was further mixed for 2 minutes at 2000 rpm with a foaming Rentaro, and 20 parts of the electrolyte was further added, and the electrolyte was stirred with a foaming Rentaro for 1 minute at 2000 rpm. After 3 more parts were added, the mixture was stirred by a foaming Rentaro for 2 minutes at 2000 rpm to prepare a slurry for a positive electrode active material layer. The obtained slurry for the positive electrode active material layer was applied to one side of the resin current collector so that the basis weight was 80 mg/cm 2 , and pressed at a pressure of 1.4 MPa for about 10 seconds to form a lithium layer with a thickness of 340 ⁇ m. A positive electrode (190 cm x 90 cm) for an ion battery was produced.
  • Lithium ion batteries 1 to 12 were produced by combining and sealing a separator with any of the lithium ion battery positive electrode and lithium ion battery negative electrodes 1 to 12 produced above. As the separator, Celgard #3501 was used. The capacity retention rates of the obtained lithium ion batteries 1 to 12 were measured. The results are shown in Table 4.
  • the present invention also relates to coated negative electrode active material particles for lithium ion batteries, negative electrodes for lithium ion batteries, and lithium ion batteries described below.
  • the above-mentioned electrode composition for a lithium ion battery may have this negative electrode active material particle.
  • Lithium ion batteries have been used in a variety of applications in recent years as secondary batteries that can achieve high energy density and high output density, and various battery components are being studied.
  • carbon-based materials such as graphite and amorphous carbon used as negative electrode active materials are being widely studied because they are low cost and have excellent cycle life.
  • a negative electrode active material made of a carbon-based material causes side reactions such as a decomposition reaction of an electrolytic solution using the surface of the active material as a reaction site during charging and discharging.
  • side reactions such as a decomposition reaction of an electrolytic solution using the surface of the active material as a reaction site during charging and discharging.
  • a decrease in battery performance was observed, such as an increase in the irreversible capacity of the battery and an increase in internal resistance.
  • a widely adopted method is to form a film (SEI: Solid Electrolyte Interface, also referred to as SEI surface film) on the surface of the negative electrode active material to prevent the negative electrode active material from coming into direct contact with the electrolyte.
  • SEI Solid Electrolyte Interface
  • Patent Document 4 discloses a method of suppressing side reactions by using a polymer compound having a specific acid value as a coating resin for a negative electrode active material.
  • the coated negative electrode active material disclosed in Patent Document 4 in which at least a portion of the surface of the negative electrode active material is coated with a polymer compound, has a problem that the electrode strength is not sufficient when the electrode is produced by compression molding. there were. Particularly in these days when lithium ion batteries are required to have higher capacities and electrodes are becoming thicker in order to achieve higher capacities, there is a strong desire to solve this problem.
  • the present invention solves the above-mentioned problems, and when producing an electrode by compression molding, the present invention provides an electrode that has a low initial internal resistance value and a low rate of increase in resistance after charging and discharging, has a high capacity retention rate, and has excellent electrode strength.
  • An object of the present invention is to provide coated negative electrode active material particles for lithium ion batteries that can be used to produce lithium ion battery coated negative electrode active material particles.
  • At least a part of the surface of negative electrode active material particles for lithium ion batteries is coated with a first coating layer, and at least a part of the surface of the first coating layer is coated with a second coating layer.
  • Coated negative electrode active material particles for lithium ion batteries wherein the first coating layer comprises an ester compound (a11) of a monovalent aliphatic alcohol having 1 to 12 carbon atoms and (meth)acrylic acid and an anionic monomer.
  • the polymer compound (P1) has a glass transition temperature of 20° C. and a conductive additive (C1).
  • the second coating layer comprises coated negative electrode active material particles for lithium ion batteries containing a polymer compound (P2) having a glass transition temperature of 20° C.
  • the present invention relates to a lithium ion battery negative electrode comprising a non-binding body containing negative electrode active material particles and a conductive filler; and a lithium ion battery comprising the above lithium ion battery negative electrode.
  • lithium when producing an electrode by compression molding, lithium can be used to produce an electrode that has a low initial internal resistance value and a low rate of increase in resistance after charging and discharging, has a high capacity retention rate, and has excellent electrode strength.
  • Coated negative electrode active material particles for ion batteries can be provided.
  • the present invention relates to coated negative electrode active material particles for lithium ion batteries.
  • the present invention when describing a lithium ion battery, it is a concept that also includes a lithium ion secondary battery.
  • the coated negative electrode active material particles for lithium ion batteries of the present invention are obtained by coating at least a part of the surface of the negative electrode active material particles for lithium ion batteries with a first coating layer, and at least a part of the surface of the first coating layer. is coated with a second coating layer.
  • the first coating layer is provided primarily to suppress side reactions between the negative electrode active material particles for lithium ion batteries and the electrolyte.
  • the second coating layer is provided mainly for the purpose of maintaining the strength of the electrode when the electrode is formed using the coated negative electrode active material particles for lithium ion batteries of the present invention.
  • carbon-based materials graphite, non-graphitizable carbon (hard carbon), amorphous carbon, fired resin bodies (for example, those obtained by firing and carbonizing phenol resin and furan resin, etc.), Cokes (e.g. pitch coke, needle coke, petroleum coke, etc.) and carbon fibers]
  • silicon-based materials silicon, silicon oxide (SiO x ), silicon-carbon composites (carbon particles whose surfaces are made of silicon and/or silicon carbide) silicon particles or silicon oxide particles coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloy, silicon- conductive polymers (e.g.
  • the negative electrode active material particles those that do not contain lithium or lithium ions inside may be subjected to a pre-doping treatment in which part or all of the negative electrode active material particles contain lithium or lithium ions.
  • the volume average particle diameter of the negative electrode active material particles is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 60 ⁇ m, and even more preferably from 2 to 40 ⁇ m, from the viewpoint of the electrical characteristics of the battery. preferable.
  • the volume average particle diameter means the particle diameter (Dv50) at 50% of the integrated value in the particle size distribution determined by the Microtrack method (laser diffraction/scattering method).
  • the microtrack method is a method of determining particle size distribution using scattered light obtained by irradiating particles with laser light. Note that, for measuring the volume average particle diameter, a Microtrack manufactured by Nikkiso Co., Ltd., etc. can be used.
  • the first coating layer includes a polymer compound (P1) and a conductive aid (C1).
  • the polymer compound (P1) has a monomer composition comprising an ester compound (a11) of a monovalent aliphatic alcohol having 1 to 12 carbon atoms and (meth)acrylic acid and an anionic monomer (a12). It is a polymer of substances, and its glass transition temperature (Tg) exceeds 20°C.
  • Tg glass transition temperature
  • (meth)acrylic acid in this specification means methacrylic acid or acrylic acid.
  • Tg is a value measured by the method specified in ASTM D3418-82 (DSC method).
  • the Tg of the polymer compound (P1) is preferably 40°C or higher, more preferably 60°C or higher from the viewpoint of suppressing side reactions.
  • the ester compound (a11) is an ester compound of a monovalent aliphatic alcohol having 1 to 12 carbon atoms and (meth)acrylic acid.
  • monovalent aliphatic alcohols having 1 to 12 carbon atoms include monovalent branched or straight chain aliphatic alcohols having 1 to 12 carbon atoms, such as methanol, ethanol, propanol (n-propanol, iso-propanol), Butyl alcohol (n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol), pentyl alcohol (n-pentyl alcohol, 2-pentyl alcohol, neopentyl alcohol, etc.), hexyl alcohol (1-hexanol, 2-hexanol and 3-hexanol) -hexanol, etc.), heptyl alcohol (n-heptyl alcohol, 1-methylhexyl alcohol, 2-methylhexyl alcohol
  • Preferred ester compounds (a11) include methyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-methylhexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. , dodecyl (meth)acrylate, among which methyl methacrylate, butyl methacrylate, dodecyl methacrylate, and 2-ethylhexyl methacrylate are more preferred.
  • the anionic monomer (a12) will be explained.
  • the anionic monomer (a12) is a monomer having a radically polymerizable polymerizable group and an anionic group, and preferable radically polymerizable groups include a vinyl group, an allyl group, a styrenyl group, and a (meth) ) Acryloyl group, etc., and preferred anionic groups include phosphonic acid group, sulfonic acid group, carboxyl group, etc.
  • Preferred examples of the anionic monomer (a12) include radically polymerizable unsaturated carboxylic acids having 3 to 9 carbon atoms, radically polymerizable unsaturated sulfonic acids having 2 to 8 carbon atoms, and radically polymerizable unsaturated carboxylic acids having 2 to 9 carbon atoms. At least one selected from the group consisting of sexually unsaturated phosphonic acids is mentioned.
  • Examples of the radically polymerizable unsaturated carboxylic acid having 3 to 9 carbon atoms include radically polymerizable unsaturated aliphatic monocarboxylic acids having 3 to 9 carbon atoms and radically polymerizable unsaturated aromatic monocarboxylic acids having 9 carbon atoms.
  • Examples of radically polymerizable unsaturated aliphatic monocarboxylic acids having 3 to 9 carbon atoms include (meth)acrylic acid, butanoic acid (including substituted butanoic acids such as 2-methylbutanoic acid and 3-methylbutanoic acid), and pentenoic acid (2-methylbutanoic acid and substituted butanoic acid such as 3-methylbutanoic acid).
  • - including substituted pentenoic acids such as methylpentenoic acid and 3-methylpentenoic acid hexenoic acid (including substituted hexenoic acids such as 2-methylhexenoic acid and 3-methylhexenoic acid), heptenoic acid (including substituted hexenoic acids such as 2-methylhexenoic acid and 3-methylhexenoic acid), (including substituted heptenoic acids such as 3-methylheptenoic acid) and octenoic acid (including substituted octenoic acids such as 2-methyloctenoic acid and 3-methyloctenoic acid).
  • the radically polymerizable unsaturated aromatic monocarboxylic acid having 9 carbon atoms include 3-phenylpropenoic acid and vinylbenzoic acid.
  • radically polymerizable unsaturated sulfonic acids having 2 to 8 carbon atoms include radically polymerizable unsaturated aliphatic monosulfonic acids having 2 to 8 carbon atoms and radically polymerizable unsaturated aromatic monosulfonic acids having 8 carbon atoms. .
  • Examples of radically polymerizable unsaturated aliphatic monosulfonic acids having 2 to 8 carbon atoms include vinylsulfonic acid (including substituted vinylsulfonic acids such as 1-methylvinylsulfonic acid and 2-methylvinylsulfonic acid), allylsulfonic acid ( (including substituted allylsulfonic acids such as 1-methylallylsulfonic acid and 2-methylallylsulfonic acid anion), butenesulfonic acid (including substituted butenesulfonic acids such as 1-methylbutenesulfonic acid and 2-methylbutenesulfonic acid) ), pentensulfonic acid (including substituted pentensulfonic acids such as 1-methylpentensulfonic acid and 2-methylpentensulfonic acid), hexenesulfonic acid (substituted pentensulfonic acids such as 1-methylhexenesulfonic acid and 2-methylhexenesulfonic acid) (including hexenesulfonic acid
  • Examples of radically polymerizable unsaturated phosphonic acids having 2 to 9 carbon atoms include vinylphosphonic acid, allylphosphonic acid, vinylbenzylphosphonic acid, 1- or 2-phenylethenylphosphonic acid, (meth)acrylamidoalkylphosphonic acid, and acrylamidealkylphosphonic acid.
  • Diphosphonic acid, phosphonomethylated vinylamine, (meth)acrylicphosphonic acid, and the like can be mentioned.
  • These anionic monomers may be a mixture.
  • the toughness of the polymer compound (P1) is improved, making it less susceptible to stress due to expansion and contraction of the negative electrode active material particles associated with lithium ion deintercalation reactions during charging and discharging. .
  • anionic monomers may be used alone or in combination of two or more.
  • the anionic monomer (a12) is a radically polymerizable unsaturated carboxylic acid having 3 to 9 carbon atoms or a radically polymerizable unsaturated carboxylic acid having 2 to 8 carbon atoms. It is preferable to use in combination at least two selected from the group consisting of saturated sulfonic acids and radically polymerizable unsaturated phosphonic acids having 2 to 9 carbon atoms, and radically polymerizable unsaturated carboxylic acids having 3 to 9 carbon atoms and 2 to 9 carbon atoms. It is more preferable to use a radically polymerizable unsaturated sulfonic acid having 1 to 8 carbon atoms or a radically polymerizable unsaturated phosphonic acid having 2 to 9 carbon atoms in combination.
  • the content of the ester compound (a11) contained in the monomer composition is based on the total weight of the ester compound (a11) and the anionic monomer (a12) from the viewpoint of adhesiveness with the negative electrode active material particles.
  • the amount is preferably 1 to 99% by weight, more preferably 20 to 80% by weight, and even more preferably 30 to 70% by weight.
  • the content of the anionic monomer (a12) contained in the monomer composition is 1 to 99% based on the total weight of the ester compound (a11) and the anionic monomer (a12). It is preferably % by weight, more preferably 20-80% by weight, even more preferably 30-70% by weight.
  • the monomer composition further includes a salt of an anionic monomer (a13).
  • a13 the internal resistance of the lithium ion battery can be reduced.
  • the anionic monomer salt (a13) will be explained.
  • examples of the anion of the anionic monomer constituting the anionic monomer salt (a13) include the same anion of the anionic monomer as exemplified for the anionic monomer (a12), At least one anion selected from the group consisting of vinylsulfonate anion, allylsulfonate anion, styrenesulfonate anion, and (meth)acrylate anion is preferred.
  • the cation constituting the anionic monomer salt (a13) includes monovalent inorganic cations, preferably alkali metal cations and ammonium ions, more preferably lithium ions, sodium ions, potassium ions and ammonium ions, Lithium ions are more preferred.
  • the anionic monomer salt (a13) may be used alone or in combination, and when the anionic monomer salt (a13) has multiple anions, the cations are lithium ions, sodium ions.
  • the cation is preferably at least one selected from the group consisting of , potassium ion, and ammonium ion.
  • the content of the ester compound (a11) contained in the monomer composition is determined from the viewpoint of adhesion to the active material, etc. , preferably 5 to 95% by weight, more preferably 20 to 80% by weight, based on the total weight of the ester compound (a11), the anionic monomer (a12) and the salt of the anionic monomer (a13). %, more preferably 30 to 70% by weight.
  • the content of the anionic monomer (a12) contained in the monomer composition is determined from the viewpoint of ionic conductivity. It is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, based on the total weight of the compound (a11), the anionic monomer (a12) and the salt of the anionic monomer (a13). The content is more preferably 30 to 70% by weight.
  • the content of the anionic monomer salt (a13) contained in the monomer composition is determined from the viewpoint of internal resistance, etc.
  • the ester compound (a11), the anionic monomer (a12) and the salt of the anionic monomer (a13) are preferably 0.1 to 10% by weight, more preferably 0.
  • the amount is 5 to 10% by weight, more preferably 1 to 10% by weight.
  • the weight average molecular weight of the polymer compound (P1) is preferably from 20,000 to 96,000 from the viewpoint of adhesion to the active material, and in the method for obtaining the polymer described below, the polymerization conditions are preferably set. By setting the weight average molecular weight within this range, the weight average molecular weight can be set within a preferable range.
  • the weight average molecular weight of the polymer compound (P1) in this specification is measured by gel permeation chromatography (hereinafter abbreviated as GPC) measured under the following conditions.
  • the monomer composition includes a copolymerizable vinyl monomer (c) that does not contain active hydrogen. "Hereinafter, referred to as copolymerizable vinyl monomer (c)" may be included.
  • Examples of the copolymerizable vinyl monomer (c) include the following (c1) to (c5).
  • (c1) Formed from a branched or straight-chain aliphatic monool having 13 to 20 carbon atoms, an alicyclic monool having 5 to 20 carbon atoms, or an aromatic aliphatic monool having 7 to 20 carbon atoms, and (meth)acrylic acid.
  • the monools mentioned above include (i) branched or straight-chain aliphatic monools having 13 to 20 carbon atoms (tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, isostearyl alcohol, nonadecyl alcohol, arachidyl alcohol, etc.), (ii) alicyclic monool having 5 to 20 carbon atoms (cyclohexyl alcohol, etc.), (iii) aromatic aliphatic monool having 7 to 20 carbon atoms (benzyl alcohol, etc.) and mixtures of two or more thereof.
  • (meth)acrylamide compound having 3 to 30 carbon atoms such as N,N-dialkyl (1 to 6 carbon atoms) or dialkyl (carbon number 7-15) (meth)acrylamide (N,N-dimethylacrylamide, N,N
  • (c3-2) (meth)acrylate compound (i) dialkyl (1 to 4 carbon atoms) aminoalkyl (1 to 4 carbon atoms) (meth)acrylate [N,N-dimethylaminoethyl (meth)acrylate, N,N -diethylaminoethyl (meth)acrylate, t-butylaminoethyl (meth)acrylate, morpholinoethyl (meth)acrylate, etc.].
  • (c3-3) Heterocycle-containing vinyl compounds Pyridine compounds with 7 to 14 carbon atoms (2- or 4-vinylpyridine, etc.), imidazole compounds with 5 to 12 carbon atoms (N-vinylimidazole, etc.), 6 to 13 carbon atoms pyrrole compounds (such as N-vinylpyrrole) and pyrrolidone compounds having 6 to 13 carbon atoms (such as N-vinyl-2-pyrrolidone).
  • Nitrile group-containing vinyl compound A nitrile group-containing vinyl compound having 3 to 15 carbon atoms [(meth)acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate, etc.].
  • vinyl hydrocarbon (c4-1) aliphatic vinyl hydrocarbon olefin having 2 to 18 carbon atoms or more (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), Dienes having 4 to 10 or more carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.), etc.
  • (c4-2) Alicyclic vinyl hydrocarbon Cyclic unsaturated compounds having 4 to 18 carbon atoms or more ⁇ cycloalkenes (cyclohexene, etc.), (di)cycloalkadienes [(di)cyclopentadiene, etc.], terpenes (pinene, etc.) , limonene and indene, etc.) ⁇ .
  • Aromatic vinyl hydrocarbon Aromatic unsaturated compounds having 8 to 20 carbon atoms or more and derivatives thereof (styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropyl styrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene, etc.).
  • Vinyl ester, vinyl ether, vinyl ketone and unsaturated dicarboxylic acid diester (c5-1) Vinyl ester aliphatic vinyl ester [alkenyl ester of aliphatic carboxylic acid (mono- or dicarboxylic acid) having 4 to 15 carbon atoms (vinyl acetate) , vinyl propionate, vinyl butyrate, diallyl adipate, isopropenyl acetate, vinyl methoxy acetate, etc.).
  • Aromatic vinyl esters [alkenyl esters of aromatic carboxylic acids (mono- or dicarboxylic acids) having 9 to 20 carbon atoms (vinyl benzoate, diallyl phthalate, methyl-4-vinyl benzoate, etc.) and aromatic ring-containing esters of aliphatic carboxylic acids (acetoxystyrene, etc.)].
  • (c5-2) Vinyl ether aliphatic vinyl ether [vinyl alkyl having 3 to 15 carbon atoms (1 to 10 carbon atoms) ether (vinyl methyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, etc.), vinyl alkoxy (having 1 to 6 carbon atoms) ) Alkyl (1-4 carbon atoms) ethers (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether and vinyl-2- ethyl mercaptoethyl ether, etc.), poly(2-4)(meth)allyloxyalkanes (2-6 carbon atoms) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetramethallyloxyethane, etc.), etc. ]. Aromatic vinyl ethers having
  • Vinyl ketone Aliphatic vinyl ketone having 4 to 25 carbon atoms (vinyl methyl ketone, vinyl ethyl ketone, etc.). Aromatic vinyl ketones having 9 to 21 carbon atoms (vinylphenyl ketones, etc.).
  • the content of the copolymerizable vinyl monomer (c) is 4% based on the total weight of the monomer components contained in the monomer composition. It is preferably .5 to 6.5% by weight.
  • the monomer component refers to a monomer component having polymerizability such as an ester compound (a11), an anionic monomer (a12), and a salt of an anionic monomer (a13).
  • the total weight of the monomer components also includes the weight of the copolymerizable vinyl monomer (c).
  • the acid value of the polymer compound (P1) is 30 to 700 from the viewpoint of suppressing volume change of the active material. If the acid value is lower than 30 or higher than 700, the interfacial resistance between the coated active materials increases and good electrical properties cannot be exhibited.
  • the acid value can be adjusted depending on the type of active material and electrolyte used, it is more preferably 500 to 700 from the viewpoint of electrical properties.
  • the acid value of the polymer compound (P1) in this specification is measured by the method of JIS K 0070-1992, and the acid value of the polymer compound (P1) is determined by the amount of anionic monomer contained in the monomer composition. The above range can be achieved by adjusting the content of body (a12).
  • the polymer compound (P1) consists of an ester compound (a11), an anionic monomer (a12), a salt of the anionic monomer (a13) used as necessary, and a copolymerizable vinyl monomer (c). It can be obtained by polymerizing a monomer composition, and known polymerization methods (bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.) can be used as the polymerization method.
  • known polymerization initiators ⁇ azo initiators [2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2,4-dimethylvaleronitrile) and 2,2' -azobis(2-methylbutyronitrile), etc.], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc.).
  • the amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of monomer components contained in the monomer composition.
  • Solvents used in solution polymerization include ester solvents [preferably ester compounds having 2 to 8 carbon atoms (e.g. ethyl acetate and butyl acetate)], alcohols [preferably aliphatic alcohols having 1 to 8 carbon atoms (e.g. methanol, ethanol, isopropanol and octanol)], hydrocarbons with a linear, branched or cyclic structure having 5 to 8 carbon atoms (e.g. pentane, hexane, heptane, octane, cyclohexane, toluene and xylene), amide solvents [e.g.
  • DMF N-dimethylformamide
  • dimethylacetamide dimethylacetamide
  • ketone solvents preferably a ketone compound having 3 to 9 carbon atoms (for example, methyl ethyl ketone)], etc., and the amount used is included in the monomer composition. It is usually 50 to 200% by weight based on the total weight of the monomer components, and the concentration of the monomer composition is usually 30 to 70% by weight.
  • solvents (dispersion media) used in emulsion polymerization and suspension polymerization include water, alcohol (e.g. ethanol), ester solvents (e.g. ethyl propionate), light naphtha, etc., and examples of emulsifiers such as higher fatty acids (C10-24) metal salts (e.g. sodium oleate and sodium stearate), higher alcohol (C10-24) sulfate ester metal salts (e.g. sodium lauryl sulfate), ethoxylated tetramethyldecynediol, methacrylic acid sulfonate. Examples include ethyl sodium and dimethylaminomethyl methacrylate.
  • emulsifiers such as higher fatty acids (C10-24) metal salts (e.g. sodium oleate and sodium stearate), higher alcohol (C10-24) sulfate ester metal salts (e.g. sodium lauryl sul
  • polyvinyl alcohol, polyvinylpyrrolidone, etc. may be added as a stabilizer.
  • concentration of the monomer composition in emulsion polymerization or suspension polymerization is usually 5 to 95% by weight, and the amount of polymerization initiator used is usually 0.01 to 5% by weight based on the total weight of the monomer composition. From the viewpoint of adhesive strength and cohesive strength, it is preferably 0.05 to 2% by weight.
  • chain transfer agents such as mercapto compounds (dodecyl mercaptan, n-butyl mercaptan, etc.) and halogenated hydrocarbons (carbon tetrachloride, carbon tetrabromide, benzyl chloride, etc.) can be used.
  • the amount used is usually 2% by weight or less based on the total weight of the monomer components contained in the monomer composition, and preferably 0.5% by weight or less from the viewpoint of resin strength.
  • the temperature in the system during the polymerization reaction is usually -5 to 150°C, preferably 30 to 120°C
  • the reaction time is usually 0.1 to 50 hours, preferably 2 to 24 hours
  • the end point of the polymerization reaction is
  • the amount of reacted monomer is usually 5% by weight or less, preferably 1% by weight or less based on the total weight of monomer components contained in the monomer composition, and the amount of unreacted monomer is The amount can be confirmed by a known method for quantifying monomer content such as gas chromatography.
  • the weight proportion of the polymer compound (P1) in the coated negative electrode active material particles for lithium ion batteries is preferably 0.7 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
  • the weight proportion of the polymer compound (P1) is more preferably 1.0 to 9.0% by weight, even more preferably 2.0 to 6.0% by weight.
  • the conductive aid (C1) is not particularly limited, and examples thereof include particles and fibers, such as metals [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite (flake carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanofiber (CNF), etc.], and mixtures thereof.
  • the conductive aid (C1) may be used alone or in combination of two or more.
  • the ratio of the polymer compound (P1) and the conductive agent (C1) constituting the first coating layer is not particularly limited, but from the viewpoint of internal resistance of the battery, etc.
  • the ratio of molecular compound (P1) (resin solid content weight) to conductive aid (C1) is preferably 1:0.01 to 1:50, more preferably 1:0.1 to 1:3.0. preferable.
  • the first coating layer may further contain ceramic particles in addition to the polymer compound (P1) and the conductive aid (C1).
  • ceramic particles include metal carbide particles, metal oxide particles, glass ceramic particles, and the like.
  • metal carbide particles include silicon carbide (SiC), tungsten carbide (WC), molybdenum carbide ( Mo2C ), titanium carbide (TiC), tantalum carbide (TaC), niobium carbide (NbC), and vanadium carbide (VC). ), zirconium carbide (ZrC), and the like.
  • metal oxide particles examples include zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), tin oxide (SnO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), Indium oxide ( In2O3 ) , Li2B4O7 , Li4Ti5O12 , Li2Ti2O5 , LiTaO3 , LiNbO3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li 2 TiO 3 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 and ABO 3 (However, A is Ca, Sr, Ba, La, Pr and Y, and B is at least one selected from the group consisting of Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re.
  • Examples include perovskite-type oxide particles represented by (species).
  • metal oxide particles zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ) and lithium tetraborate (Li 2 B 4 O 7 ) are preferred.
  • M is one or more elements selected from the group consisting of Zr, Ti, Fe, Mn, Co, Cr, Ca, Mg, Sr, Y, Sc, Sn, La, Ge, Nb, and Al.
  • part of P may be replaced with Si or B, and part of O may be replaced with F, Cl, etc.
  • Li 1.15 Ti 1.85 Al 0.15 Si 0.05 P 2. 95 O 12 Li 1.2 Ti 1.8 Al 0.1 Ge 0.1 Si 0.05 P 2.95 O 12 , etc. can be used.
  • materials with different compositions may be mixed or composited, and the surface may be coated with a glass electrolyte or the like.
  • glass ceramic particles that precipitate a crystalline phase of a lithium-containing phosphate compound having a NASICON type structure by heat treatment.
  • the glass electrolyte include the glass electrolyte described in JP-A-2019-96478.
  • the blending ratio of Li 2 O in the glass ceramic particles is preferably 8% by mass or less in terms of oxide. Even if it is not a NASICON type structure, it is composed of Li, La, Mg, Ca, Fe, Co, Cr, Mn, Ti, Zr, Sn, Y, Sc, P, Si, O, In, Nb, F, and LISICON type, Using a solid electrolyte that has a perovskite type, ⁇ -Fe 2 (SO 4 ) 3 type, and Li 3 In 2 (PO 4 ) 3 type crystal structure and conducts Li ions at a rate of 1 ⁇ 10 -5 S/cm or more at room temperature. It's okay.
  • the above-mentioned ceramic particles may be used alone or in combination of two or more.
  • the volume average particle diameter of the ceramic particles is preferably from 1 to 1000 nm, more preferably from 1 to 500 nm, even more preferably from 1 to 150 nm, from the viewpoint of energy density and electrical resistance value.
  • the weight proportion of the ceramic particles is preferably 0.5 to 5.0% by weight based on the weight of the coated negative electrode active material particles.
  • the second coating layer includes a polymer compound (P2) and a conductive aid (C2).
  • the polymer compound (P2) has a glass transition temperature (Tg) of 20°C or lower.
  • Examples of the polymer compound (P2) include adhesive resins having a Tg of 20°C or less.
  • Adhesive resin refers to a resin that does not solidify even when a solvent component is evaporated and is dried, but remains adhesive, and is a different material from a binder, and these are distinguished from each other.
  • the second coating layer is the outermost surface of the coated negative electrode active material particles, and the surfaces of the coated negative electrode active material particles are reversibly fixed to each other by the adhesive resin contained in the second coating layer.
  • the polymer compound (P2) is preferably at least one selected from the group consisting of urethane resin, (meth)acrylic acid alkyl ester copolymer, and styrene-butadiene rubber.
  • the urethane resin is preferably a urethane resin obtained by reacting the active hydrogen component (b1) and the isocyanate component (b2). Since the urethane resin has flexibility, by covering the negative electrode active material particles with the urethane resin, the volume change of the electrode can be alleviated and the expansion of the electrode can be suppressed.
  • the active hydrogen component (b1) preferably contains at least one selected from the group consisting of polyether diol, polycarbonate diol, and polyester diol.
  • polyether diols examples include polyoxyethylene glycol (hereinafter abbreviated as PEG), polyoxyethylene oxypropylene block copolymer diol, polyoxyethylene oxytetramethylene block copolymer diol; ethylene glycol, propylene glycol, 1,4-butane.
  • PEG polyoxyethylene glycol
  • polyoxyethylene oxypropylene block copolymer diol examples include polyoxyethylene oxytetramethylene block copolymer diol
  • ethylene glycol propylene glycol, 1,4-butane.
  • Ethylene oxide adducts of low molecular weight glycols such as diol, 1,6-hexamethylene glycol, neopentyl glycol, bis(hydroxymethyl)cyclohexane, 4,4'-bis(2-hydroxyethoxy)-diphenylpropane, number average molecular weight 2 ,000 or less and dicarboxylic acids [aliphatic dicarboxylic acids with 4 to 10 carbon atoms (e.g. succinic acid, adipic acid, sebacic acid, etc.), aromatic dicarboxylic acids with 8 to 15 carbon atoms (e.g. terephthalic acid, isophthalic acid, etc.) ) etc.] and mixtures of two or more of these.
  • dicarboxylic acids aliphatic dicarboxylic acids with 4 to 10 carbon atoms (e.g. succinic acid, adipic acid, sebacic acid, etc.), aromatic dicarboxylic acids with 8 to 15 carbon atom
  • the polycarbonate diol includes one or more alkylene diols having an alkylene group having 4 to 12 carbon atoms, preferably 6 to 10 carbon atoms, and more preferably 6 to 9 carbon atoms, and a low-molecular carbonate compound (for example, By condensing a dialkyl carbonate having an alkyl group with 1 to 6 carbon atoms, an alkylene carbonate having an alkylene group having 2 to 6 carbon atoms, and a diaryl carbonate having an aryl group having 6 to 9 carbon atoms while performing a dealcoholization reaction.
  • Polycarbonate polyols e.g. polyhexamethylene carbonate diol
  • polyester diols include condensed polyester diols obtained by reacting low-molecular diols and/or polyether diols with a number average molecular weight of 1,000 or less with one or more of the aforementioned dicarboxylic acids, and lactones having 4 to 12 carbon atoms.
  • Examples include polylactone diol obtained by ring-opening polymerization of .
  • Examples of the low-molecular diol include the low-molecular glycols exemplified in the section of the polyether diol.
  • the polyether diol having a number average molecular weight of 1,000 or less include polyoxypropylene glycol and polytetramethylene ether glycol.
  • lactone examples include ⁇ -caprolactone and ⁇ -valerolactone.
  • polyester diol examples include polyethylene adipate diol, polybutylene adipate diol, polyneopentylene adipate diol, poly(3-methyl-1,5-pentylene adipate) diol, polyhexamethylene adipate diol, and polycaprolactone diol. and mixtures of two or more thereof.
  • the active hydrogen component (b1) may be a mixture of two or more of the above polyether diol, polycarbonate diol, and polyester diol.
  • the active hydrogen component (b1) desirably contains a polymeric diol (b11) having a number average molecular weight of 2,500 to 15,000 as an essential component.
  • the polymer diol (b11) include the above-mentioned polyether diol, polycarbonate diol, and polyester diol.
  • the polymer diol (b11) is preferable because the hardness of the urethane resin is moderately soft and the strength of the coating is strong.
  • the number average molecular weight of the polymer diol (b11) is more preferably 3,000 to 12,500, and even more preferably 4,000 to 10,000.
  • the number average molecular weight of the polymer diol (b11) can be calculated from the hydroxyl value of the polymer diol. Furthermore, the hydroxyl value can be measured according to the description in JIS K1557-1.
  • the active hydrogen component (b1) contains a polymeric diol (b11) as an essential component, and the content of the polymeric diol (b11) is 20 to 80% by weight based on the weight of the urethane resin.
  • the content of the polymeric diol (b11) is more preferably 30 to 70% by weight, and even more preferably 40 to 65% by weight. It is preferable that the content of the polymeric diol (b11) is 20 to 80% by weight in terms of absorption of the electrolyte by the urethane resin.
  • the active hydrogen component (b1) contains a polymeric diol (b11) having a number average molecular weight of 2,500 to 15,000 and a chain extender (b13) as essential components.
  • chain extender (b13) include low-molecular diols having 2 to 10 carbon atoms [e.g., ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexamethylene glycol, etc.]; diamines [carbon Aliphatic diamines having 2 to 6 carbon atoms (e.g. ethylene diamine, 1,2-propylene diamine, etc.), alicyclic diamines having 6 to 15 carbon atoms (e.g.
  • the combination of polymer diol (b11) and chain extender (b13) is a combination of PEG as polymer diol (b11) and ethylene glycol as chain extender (b13), or a combination of polymer diol (b11) as PEG and ethylene glycol as chain extender (b13).
  • a combination of polycarbonate diol and ethylene glycol as chain extender (b13) is preferred.
  • isocyanate component (b2) those conventionally used in polyurethane production can be used.
  • Such isocyanates include aromatic diisocyanates having 6 to 20 carbon atoms (excluding the carbon in the NCO group, the same applies hereinafter), aliphatic diisocyanates having 2 to 18 carbon atoms, alicyclic diisocyanates having 4 to 15 carbon atoms, Included are aromatic aliphatic diisocyanates having 8 to 15 carbon atoms, modified products of these diisocyanates (carbodiimide modified products, urethane modified products, uretdione modified products, etc.), and mixtures of two or more thereof.
  • aromatic diisocyanate examples include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate, and 2,4'- or 4,4'-diphenylmethane diisocyanate (hereinafter referred to as , diphenylmethane diisocyanate is abbreviated as MDI), 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocya Examples include natodiphenylmethane and 1,5-naphthylene diisocyanate.
  • aliphatic diisocyanate examples include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethyl caproate, Bis(2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate, and the like.
  • alicyclic diisocyanate examples include isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis(2-isocyanatoethyl)-4-cyclohexylene-1,2 -dicarboxylate, 2,5- or 2,6-norbornane diisocyanate, and the like.
  • araliphatic diisocyanate examples include m- or p-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, and the like.
  • aromatic diisocyanates and alicyclic diisocyanates are preferred, aromatic diisocyanates are more preferred, and MDI is particularly preferred.
  • the preferred equivalent ratio of (b2)/(b11) is 10 to 30/1, more preferably 11 to 28/1. If the ratio of the isocyanate component (b2) exceeds 30 equivalents, a hard coating will result.
  • the number average molecular weight of the urethane resin is preferably 40,000 to 500,000, more preferably 50,000 to 400,000. If the number average molecular weight of the urethane resin is less than 40,000, the strength of the coating will be low, and if it exceeds 500,000, the solution viscosity will be high and a uniform coating may not be obtained.
  • the number average molecular weight of the urethane resin is measured by gel permeation chromatography (hereinafter abbreviated as GPC) using DMF as a solvent and polyoxypropylene glycol as a standard substance.
  • GPC gel permeation chromatography
  • the sample concentration is 0.25% by weight
  • the column stationary phase is one each of TSKgel Super H2000, TSKgel Super H3000, and TSKgel Super H4000 (all manufactured by Tosoh Corporation) connected together, and the column temperature is 40°C.
  • the urethane resin can be produced by reacting the active hydrogen component (b1) and the isocyanate component (b2).
  • a method in which a polymer diol (b11) and a chain extender (b13) are used as the active hydrogen component (b1), and the isocyanate component (b2), the polymer diol (b11), and the chain extender (b13) are simultaneously reacted examples include the shot method and the prepolymer method in which the polymer diol (b11) and the isocyanate component (b2) are first reacted and then the chain extender (b13) is reacted.
  • urethane resins are manufactured in the presence of solvents that are inert to isocyanate groups, such as solvents [DMF, dimethylacetamide, etc.], sulfoxide-based solvents (dimethylsulfoxide, etc.), ketone-based solvents [methyl ethyl ketone, methyl isobutyl ketone, etc.] , aromatic solvents (toluene, xylene, etc.), ether solvents (dioxane, tetrahydrofuran, etc.), ester solvents (ethyl acetate, butyl acetate, etc.), and mixtures of two or more of these.
  • solvents that are inert to isocyanate groups
  • solvents such as solvents [DMF, dimethylacetamide, etc.], sulfoxide-based solvents (dimethylsulfoxide, etc.), ketone-based solvents [methyl ethyl ketone, methyl isobuty
  • the reaction temperature during the production of urethane resin is preferably 20 to 100°C when a solvent is used, and 20 to 220°C when no solvent is used.
  • the urethane resin can be manufactured using manufacturing equipment commonly employed in the industry. Moreover, when a solvent is not used, a manufacturing device such as a kneader or an extruder can be used.
  • the solution viscosity of the urethane resin produced in this way measured as a 30% by weight (solid content) DMF solution, is usually 10 to 10,000 poise/20°C, and practically preferred is 100 to 2,000 poise. /20°C.
  • (Meth)acrylic acid alkyl ester copolymer is an acrylic polymer that essentially has a constituent unit derived from (meth)acrylic acid alkyl ester monomer, and constitutes (meth)acrylic acid alkyl ester copolymer.
  • the weight proportion of the (meth)acrylic acid alkyl ester monomer in the monomer is 50% by weight or more based on the total weight of the monomers.
  • the weight ratio (wt%) of the (meth)acrylic acid alkyl ester monomer is determined by dissolving the polymer in a supercritical fluid and analyzing the resulting oligomer component by gas chromatography-mass spectrometry (GC-MS). It can be measured by the following methods.
  • the weight ratio of the (meth)acrylic acid alkyl ester monomer in the monomers constituting the (meth)acrylic acid alkyl ester copolymer is less than 50% by weight based on the total weight of the monomers, it is suitable. It does not have a strong adhesive force, and the stability of the electrode shape becomes low.
  • Examples of the (meth)acrylic acid alkyl ester monomers include 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, n-butyl acrylate, n-butyl methacrylate, iso-butyl methacrylate, methyl methacrylate, methyl acrylate, and alkyl chains. Examples include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate containing a hydroxyl group at the terminal thereof. Further, polyfunctional acrylates are also included in the above (meth)acrylic acid alkyl ester monomers.
  • the polyfunctional acrylate examples include 1,6-hexanediol methacrylate and ethylene glycol dimethacrylate. From the viewpoint of stability of the electrode shape, the weight proportion of the polyfunctional acrylate is preferably 0.1 to 3% by weight based on the total weight of the monomers.
  • the (meth)acrylic acid alkyl ester copolymer contains two or more types of (meth)acrylic acid alkyl ester monomers as constituent monomers, and the total content thereof is 50% by weight based on the total weight of the constituent monomers. % or more.
  • Preferred combinations of the above (meth)acrylic acid alkyl ester monomers include a combination of n-butyl acrylate, 2-hydroxyethyl acrylate and acrylonitrile, a combination of 2-ethylhexyl methacrylate and 2-ethylhexyl acrylate, and a combination of n-butyl acrylate and 2-ethylhexyl acrylate. Examples include a combination of ethylhexyl acrylate, a combination of methyl acrylate and n-butyl acrylate, or a combination of methyl methacrylate and iso-butyl methacrylate.
  • the (meth)acrylic acid alkyl ester copolymer preferably contains (meth)acrylic acid monomer as a constituent monomer as a monomer other than the above-mentioned (meth)acrylic acid alkyl ester monomer.
  • (meth)acrylic acid monomer is included as a constituent monomer, it is possible to neutralize by-products such as lithium hydroxide generated within the battery and prevent corrosion of the electrodes.
  • the weight proportion of the (meth)acrylic acid monomer is preferably 0.1 to 15% by weight based on the total weight of the constituent monomers.
  • the (meth)acrylic acid alkyl ester copolymer may contain a monovinyl monomer copolymerizable with the (meth)acrylic acid alkyl ester monomer as a constituent monomer.
  • a monovinyl monomer containing a fluoro group, siloxane, etc. (dimethylsiloxane, etc.) can be used as the monovinyl monomer.
  • the preferable lower limit of the weight average molecular weight of the (meth)acrylic acid alkyl ester copolymer is 10,000, more preferably 50,000, still more preferably 100,000, and the preferable upper limit is 1,000,000, more preferably 800,000, more preferably 500,000, particularly preferably 400,000.
  • the (meth)acrylic acid alkyl ester copolymer can be produced in the same manner as for the above-mentioned polymer compound (P1).
  • styrene-butadiene rubber for example, those commercially available for use as a battery binder can be used.
  • Commercial products of styrene-butadiene rubber include, for example, product names: TRD104A (manufactured by JSR Corporation), BM-400B (manufactured by Nippon Zeon Corporation), and the like.
  • the amount of bound styrene in the styrene-butadiene rubber is not particularly limited, but from the viewpoint of improving the strength of the electrode, it is, for example, 10 to 60% by mass, preferably 15 to 55% by mass. Note that the amount of bound styrene can be measured by 1 H-NMR.
  • the weight proportion of the polymer compound (P2) in the coated negative electrode active material particles for lithium ion batteries is preferably 0.3 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
  • the weight proportion of the polymer compound (P2) is more preferably 0.5 to 9.0% by weight, and still more preferably 3.0 to 6.0% by weight.
  • the conductive aid (C2) is not particularly limited, and those exemplified as the conductive aid (C1) can be used.
  • the conductive aid (C2) may be used alone or in combination of two or more.
  • the ratio of the polymer compound (P2) and the conductive agent (C2) constituting the second coating layer is not particularly limited, but from the viewpoint of internal resistance of the battery, etc., the proportion of the polymer compound (P2) constituting the second coating layer is
  • the ratio of molecular compound (P2) (resin solid content weight) to conductive aid (C2) is preferably 1:0.01 to 1:50, more preferably 1:0.1 to 1:3.0. preferable.
  • the second coating layer may further contain ceramic particles in addition to the polymer compound (P2) and the conductive aid (C2).
  • ceramic particles include the same ceramic particles that are optionally used in the first coating layer.
  • the weight proportion of the polymer compound (P1) is 0.7 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
  • the weight proportion of the polymer compound (P2) is preferably 0.3 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
  • the negative electrode active material particles preferably have a first coating layer coverage of 30 to 95%, which is obtained by the following calculation formula.
  • Coverage rate (%) ⁇ 1 - [BET specific surface area of negative electrode active material particles coated with the first coating layer / (BET specific surface area of negative electrode active material particles when not coated x negative electrode coated with the first coating layer) Weight ratio of the negative electrode active material particles contained in the active material particles + BET specific surface area of the conductive agent (C1) x weight of the conductive agent (C1) contained in the negative electrode active material particles coated with the first coating layer ratio + BET specific surface area of optionally included ceramic particles ⁇ weight ratio of ceramic particles optionally included in the negative electrode active material particles coated with the first coating layer)] ⁇ 100
  • the coated negative electrode active material particles of the present invention at least a portion of the surface of the first coating layer is coated with the second coating layer.
  • the coverage ratio of the second coating layer to the first coating layer is preferably 30 to 95%.
  • the coverage of the second coating layer can be obtained by calculation from the BET specific surface area of the sample coated with the first coating layer and the BET specific surface area of the second coating layer.
  • Coverage rate (%) ⁇ 1 - [BET specific surface area of negative electrode active material particles covered with second coating layer / (BET specific surface area of negative electrode active material particles covered with first coating layer x second coating layer) Weight proportion of the negative electrode active material particles contained in the coated negative electrode active material particles + BET specific surface area of the conductive aid (C1) ⁇ conductive aid contained in the negative electrode active material particles coated with the second coating layer ( Weight ratio of C1) + BET specific surface area of optionally included ceramic particles x weight ratio of ceramic particles optionally included in the negative electrode active material particles coated with the second coating layer) ⁇ 100
  • coated negative electrode active material particles of the present invention may have a portion on the surface of the negative electrode active material particle where the first coating layer is not formed, and a portion where the surface of the negative electrode active material particle is coated with the second coating layer. You can.
  • the method for producing the coated negative electrode active material particles of the present invention is not particularly limited, but for example, the negative electrode active material particles, the polymer compound (P1), the conductive agent (C1), and optionally used ceramic particles are mixed and then the coated negative electrode active material particles are mixed.
  • a step of forming a first coating layer, and a second coating by mixing the negative electrode active material particles on which the first coating layer has been formed, a polymer compound (P2), a conductive agent (C2), and optionally used ceramic particles. It is preferable to include a step of forming a layer.
  • the order in which negative electrode active material particles, polymer compounds (P1), (P2), conductive aids (C1), (C2), and optionally used ceramic particles are mixed is not particularly limited.
  • a resin composition consisting of a polymer compound, a conductive agent, and ceramic particles mixed in the above may be further mixed with negative electrode active material particles, or a resin composition consisting of a polymer compound, a conductive agent, and ceramic particles mixed with negative electrode active material particles, a polymer compound, a conductive agent, and ceramic particles may be further mixed with They may be mixed at the same time, or the polymer compound may be mixed with the negative electrode active material particles, and then the conductive additive and ceramic particles may be mixed.
  • the polymer compound (P1) and the polymer compound (P2) are each dissolved in an organic solvent and added in the form of a resin solution.
  • examples include a method in which the resin solution is added by a spray method, a method in which the polymer compound (P1) and the polymer compound (P2) are used in powder form, and the like.
  • the organic solvent is not particularly limited as long as it can dissolve the polymer compound (P1) and the polymer compound (P2), and any known organic solvent can be appropriately selected and used.
  • a spray system using a nozzle of WA-101-102P manufactured by Anest Iwata Co., Ltd.
  • the particle size of the powder is not particularly limited. The particle size of the powder may be changed depending on the desired thickness of the coating layer.
  • the methods of adding the polymer compound (P1) and the polymer compound (P2) may be the same or different. Good too. Specifically, the following combinations (i) to (iv) may be mentioned.
  • (i) Put the negative electrode active material particles and the polymer compound (P1) solution into a mixer, mix them, remove the solvent, and then mix the conductive aid (C1) to form a first coating layer, and further conductive Method of adding the auxiliary agent (C2), adding the polymer compound (P2) solution, mixing, and removing the solvent.
  • a conductive additive (C1) is mixed to form a first coating layer, and a conductive additive (C2) is further added, a polymer compound (P2) solution is added and mixed, and the solvent is removed ( iii) After putting the negative electrode active material particles and the polymer compound (P1) solution into a mixer and mixing them and removing the solvent, the conductive additive (C1) is mixed to form a first coating layer, and then the conductive additive (C1) is mixed. (iv) Put the negative electrode active material particles and the powdered polymer compound (P1) into a mixer. After heating and mixing, the conductive additive (C1) is mixed to form a first coating layer, and the conductive additive (C2) is further added, and the polymer compound (P2) solution is added by a spray method and mixed. How to remove solvent
  • the negative electrode active material particles are placed in a universal mixer and stirred at 30 to 500 rpm.
  • the resin solution containing the polymer compound (P1) constituting the first coating layer was mixed dropwise over 1 to 90 minutes, the conductive agent (C1) and optionally used ceramic particles were mixed, and the mixture was stirred for 50 minutes.
  • the temperature was raised to ⁇ 200°C, reducing the pressure to 0.007 ⁇ 0.04 MPa, and holding it for 10 ⁇ 150 minutes to remove the solvent, at least a part of the surface of the negative electrode active material particles is covered with the first coating layer. particles can be obtained.
  • coated negative electrode active material particles in which the second coating layer is provided on the first coating layer can be obtained.
  • the above resin solution can be added using a spray system using a nozzle of WA-101-102P (manufactured by Anest Iwata Co., Ltd.).
  • An example of a method for adding a resin solution by spraying is a method in which a resin solution with a solid content concentration of about 10% is heated to 40° C. and the above-mentioned spray system is used.
  • the viscosity of the resin solution is high, it is preferable to use it at a diluted concentration.
  • the solid polymeric compounds (P1) and (P2) are crushed in a mortar (manufactured by Osaka Chemical Co., Ltd., a crusher such as Force Mill can also be used).
  • the powdered polymer compounds (P1) and (P2) can be added by crushing and passing through a 200 mesh (opening 75 ⁇ m).
  • the negative electrode for lithium ion batteries of the present invention (hereinafter also simply referred to as "negative electrode”) is characterized by being composed of a non-binding body containing coated negative electrode active material particles for lithium ion batteries of the present invention and a conductive filler. .
  • a non-bound body means that the coated negative electrode active material particles for lithium ion battery and the conductive filler are not fixed in position by a binder (also referred to as a binder). That is, the coated negative electrode active material particles for a lithium ion battery and the conductive filler are in a state where they can each move in response to an external force.
  • a binder also referred to as a binder
  • the coated negative electrode active material particles and the conductive filler are not irreversibly fixed by the binder.
  • Irreversible fixation means that the coated negative electrode active material particles and the conductive filler are adhesively fixed using the following known solvent drying binder for lithium ion batteries, and the coated negative electrode that has been adhesively fixed is In order to separate the active material particles and the conductive filler, it is necessary to mechanically destroy the interface between the coated negative electrode active material particles and the conductive filler. On the other hand, in the case of a non-binding body, the coated negative electrode active material particles and the conductive filler are not irreversibly adhesively fixed, so the interface between the coated negative electrode active material particles and the conductive filler is not mechanically destroyed. Can be separated.
  • the negative electrode of the present invention preferably does not contain a solvent-drying binder.
  • the solvent-drying binder include known binders for lithium ion batteries such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and by volatilizing or distilling off the solvent, the surface becomes solid without exhibiting stickiness, and the coated negative electrode active material particles and the conductive filler are bonded to each other, and This is to firmly fix the coated negative electrode active material particles, the conductive filler, and the current collector.
  • the negative electrode of the present invention preferably includes a negative electrode active material layer containing coated negative electrode active material particles, a conductive filler, and an electrolytic solution containing an electrolyte and a solvent.
  • electrolytes used in known electrolytes can be used, such as lithium salts of inorganic anions such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 and LiN(FSO 2 ) 2 , LiN
  • lithium salts of organic anions such as (CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 and LiC(CF 3 SO 2 ) 3 .
  • LiN(FSO 2 ) 2 is preferred from the viewpoint of battery output and charge/discharge cycle characteristics.
  • nonaqueous solvents used in known electrolyte solutions can be used, such as lactone compounds, cyclic or chain carbonates, chain carboxylic esters, cyclic or chain ethers, phosphate esters, and nitrile compounds. , amide compounds, sulfones, sulfolanes and mixtures thereof can be used.
  • lactone compound examples include lactone compounds with a 5-membered ring (such as ⁇ -butyrolactone and ⁇ -valerolactone) and a 6-membered ring (such as ⁇ -valerolactone).
  • Examples of the cyclic carbonate ester include propylene carbonate, ethylene carbonate (EC), and butylene carbonate (BC).
  • Examples of chain carbonate esters include dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate. .
  • chain carboxylic acid esters examples include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
  • Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, and 1,4-dioxane.
  • Examples of chain ethers include dimethoxymethane and 1,2-dimethoxyethane.
  • Phosphate esters include trimethyl phosphate, triethyl phosphate, ethyldimethyl phosphate, diethylmethyl phosphate, tripropyl phosphate, tributyl phosphate, tri(trifluoromethyl) phosphate, tri(trichloromethyl) phosphate, Tri(trifluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2-dioxaphosphoran-2-one and 2 -methoxyethoxy-1,3,2-dioxaphosphorane-2-one and the like.
  • Examples of the nitrile compound include acetonitrile and the like.
  • Examples of the amide compound include DMF and the like.
  • Examples of the sulfone include dimethylsulfone and diethylsulfone.
  • solvents may be used alone or in combination of two or more.
  • the concentration of electrolyte in the electrolytic solution is preferably 1.2 to 5.0 mol/L, more preferably 1.5 to 4.5 mol/L, and 1.8 to 4.0 mol/L. It is more preferable that the amount is 2.0 to 3.5 mol/L, and particularly preferably 2.0 to 3.5 mol/L. Since such an electrolytic solution has an appropriate viscosity, it can form a liquid film between the coated negative electrode active material particles, and provides a lubricating effect (ability to adjust the position of the coated active material particles) to the coated negative electrode active material particles. can do.
  • the negative electrode of the present invention contains a conductive filler in addition to the conductive additive (C1) and the conductive additive (C2) contained in the first coating layer and the second coating layer of the coated negative electrode active material particles described above.
  • the conductive additive (C1) and conductive additive (C2) contained in the first coating layer and the second coating layer are integrated with the coated negative electrode active material particles, whereas the conductive filler is integrated with the coated negative electrode active material particles. They can be distinguished by being included separately.
  • the conductive filler may be the same as or different from the conductive additive (C1) contained in the first coating layer and the conductive additive (C2) contained in the second coating layer.
  • the conductive filler that may be included in the negative electrode of the present invention the same one as exemplified as the conductive aid (C1) can be used.
  • the negative electrode active material layer contains a conductive filler
  • the conductive filler contained in the negative electrode the conductive agent (C1) contained in the first coating layer, and the conductive agent (C2) contained in the second coating layer.
  • the total content of is not particularly limited, it is preferably 0.5 to 20% by weight based on the weight of the negative electrode active material layer excluding the electrolyte.
  • the thickness of the negative electrode active material layer is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m, from the viewpoint of battery performance.
  • the negative electrode of the present invention can be produced, for example, by applying a negative electrode slurry containing coated negative electrode active material particles, a conductive filler, and an electrolytic solution to a current collector, and then drying the slurry. Specifically, after applying the negative electrode slurry onto the current collector using a coating device such as a bar coater, the solvent is removed by placing a nonwoven fabric on the active material and absorbing the liquid, and then pressing if necessary. Examples include a method of pressing with a machine.
  • materials constituting the current collector include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, as well as calcined carbon, conductive polymer materials, conductive glass, etc. can be mentioned.
  • the shape of the current collector is not particularly limited, and may be a sheet-like current collector made of the above-mentioned material or a deposited layer made of fine particles made of the above-mentioned material.
  • the thickness of the current collector is not particularly limited, but is preferably 50 to 500 ⁇ m.
  • the negative electrode of the present invention preferably further includes a current collector, and the negative electrode active material layer is provided on the surface of the current collector.
  • the negative electrode of the present invention preferably includes a resin current collector made of a conductive polymer material, and the negative electrode active material layer is provided on the surface of the resin current collector.
  • the conductive polymer material constituting the resin current collector for example, a resin containing a conductive agent can be used.
  • the conductive agent constituting the conductive polymer material the same conductive agent (C1) of the first coating layer can be suitably used.
  • resins constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), and polyethylene terephthalate (PET).
  • Tetrafluoroethylene PTFE
  • SBR styrene-butadiene rubber
  • PAN polyacrylonitrile
  • PMA polymethyl acrylate
  • PMMA polymethyl methacrylate
  • PVdF polyvinylidene fluoride
  • epoxy resin silicone resin, or these Examples include mixtures.
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • PE polyethylene
  • PE polypropylene
  • PP polymethylpentene
  • PCO polycycloolefin
  • PMP polyethylene
  • the resin current collector can be obtained by a known method described in JP-A No. 2012-150905, Re-Table No. 2015/005116, and the like.
  • the lithium ion battery of the present invention is characterized by comprising the negative electrode for lithium ion batteries of the present invention.
  • the lithium ion battery of the present invention is obtained by combining an electrode serving as a counter electrode, housing the cell container together with a separator in a cell container, injecting an electrolytic solution, and sealing the cell container.
  • a positive electrode is formed on one side of the current collector and a negative electrode is formed on the other side to create a bipolar (bipolar) type electrode, and the bipolar (bipolar) type electrode is laminated with a separator to form a cell container. It can also be obtained by storing the cell, injecting electrolyte, and sealing the cell container.
  • the negative electrode of the present invention the lithium ion battery of the present invention can be obtained.
  • Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene films and porous polypropylene, nonwoven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces.
  • Examples include known separators for lithium ion batteries, such as those to which fine ceramic particles of alumina, titania, etc. are attached.
  • Lithium obtained by coating at least a part of the surface of negative electrode active material particles for lithium ion batteries with a first coating layer, and at least a part of the surface of the first coating layer by coating with a second coating layer.
  • the polymer compound (P1) is a polymer of a monomer composition containing (a12) and a conductive additive (C1), and the polymer compound (P1) has a glass transition temperature of more than 20°C.
  • the second coating layer is a coated negative electrode active material particle for a lithium ion battery containing a polymer compound (P2) having a glass transition temperature of 20° C. or lower and a conductive additive (C2).
  • the weight proportion of the polymer compound (P1) in the coated negative electrode active material particles for lithium ion batteries is 0.7 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
  • the weight proportion of the polymer compound (P2) in the coated negative electrode active material particles for lithium ion batteries is 0.3 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
  • the coated negative electrode active material particles for lithium ion batteries according to [11] above.
  • the polymer compound (P2) is at least one selected from the group consisting of urethane resin, (meth)acrylic acid alkyl ester copolymer, and styrene-butadiene rubber.
  • the coated negative electrode active material particles for lithium ion batteries as described in .
  • a negative electrode for a lithium ion battery comprising a non-binding body comprising the coated negative electrode active material particles for a lithium ion battery according to any one of [11] to [13] above and a conductive filler.
  • a lithium ion battery comprising the negative electrode for a lithium ion battery according to [14] above.
  • the obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 150° C. and 0.01 MPa for 3 hours, and DMF was distilled off to obtain a copolymer.
  • This copolymer was roughly pulverized with a hammer, and then further pulverized in a mortar to obtain a powdery polymer compound (P1).
  • the Tg of the obtained polymer compound (P1) was measured and found to be 105°C.
  • Polymer compound (P2-1) used for second coating layer As the polymer compound (P2-1) used for the second coating layer, a urethane emulsion (product name: Ucoat, manufactured by Sanyo Chemical Industries, Ltd., Tg: -70°C) was used.
  • polymerization was continued for 2 hours, and 488 parts of toluene was added to obtain a polymer compound (P2-2) solution with a resin concentration of 10% by weight.
  • the molecular weight of the obtained polymer compound (P2-2) was measured by GPC, and the Mw was 510,000.
  • the Tg of the obtained polymer compound (P2-2) was measured and found to be -21°C.
  • Polymer compound used for second coating layer (P2-3) As the polymer compound (P2-3) used for the second coating layer, styrene-butadiene rubber (product name: TRD104A, manufactured by JSR Corporation, Tg: 7° C.) was used.
  • a polymerization initiator was continuously added dropwise using a dropping funnel over a period of 4 hours to carry out radical polymerization.
  • a solution of 0.800 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) dissolved in 12.4 parts of toluene was added using a dropping funnel for 6 to 8 hours after starting polymerization. I added it continuously.
  • polymerization was continued for 2 hours, and 488 parts of toluene was added to obtain a polymer compound (P2-4) solution with a resin concentration of 10% by weight.
  • the molecular weight of the obtained polymer compound (P2-4) was measured by GPC, and the Mw was 460,000.
  • the Tg of the obtained polymer compound (P2-4) was measured and found to be 16°C.
  • An electrolytic solution was prepared by dissolving LiN(FSO 2 ) 2 at a ratio of 2.0 mol/L in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) (volume ratio 1:1).
  • Example 301 Preparation of coated negative electrode active material particles 1] (Formation of first coating layer) 1 part of polymer compound (P1) was dissolved in 3 parts of DMF to obtain a polymer compound (P1) solution. 77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 ⁇ m) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, a polymer compound was added. 21.2 parts of the (P1) solution (5.3 parts in terms of solid content) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, while stirring, 5.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 ⁇ m], which is a conductive additive (C1), was added in portions over 2 minutes, and stirring was continued for 30 minutes. did.
  • UP graphite
  • Example 302 [Preparation of coated negative electrode active material particles 2] Table 5 shows the results in the same manner as in Example 301 except that 59.0 parts (5.9 parts in terms of solid content) of the polymer compound (P2-2) solution was used instead of the polymer compound (P2-1). Coated negative electrode active material particles 2 having the composition shown were obtained.
  • Example 303 Preparation of coated negative electrode active material particles 3
  • Coated negative electrode active material particles 3 having the compositions shown in Table 5 were obtained in the same manner as in Example 301 except that .
  • Example 304 [Preparation of coated negative electrode active material particles 4] Table 5 was carried out in the same manner as in Example 301, except that 59.0 parts of polymer compound (P2-4) solution (5.9 parts in terms of solid content) was used instead of polymer compound (P2-1) solution. Coated negative electrode active material particles 4 having the composition shown below were obtained.
  • Example 305 [Preparation of coated negative electrode active material particles 5] (Creation of powdered polymer compound P1) The polymer compound P1 solution was placed in a vacuum dryer at 140°C, and the solvent was completely volatilized to obtain a P1 solid. The obtained P1 solid was crushed in a mortar (manufactured by Osaka Chemical Co., Ltd.) and passed through a 200 mesh (opening 75 ⁇ m) to create a powdery polymer compound P1.
  • first coating layer 77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 ⁇ m) were placed in a multipurpose mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, powdered 5.3 parts of the polymer compound (P1) was added, heated to 140°C, and further stirred for 60 minutes. Next, while stirring, 5.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 ⁇ m], which is a conductive additive (C1), was added in portions over 2 minutes, and stirring was continued for 30 minutes. did.
  • UP graphite
  • the obtained powder was classified using a sieve with an opening of 200 ⁇ m to obtain coated negative electrode active material particles 5 having the composition shown in Table 5.
  • Example 306 [Preparation of coated negative electrode active material particles 6] (Formation of first coating layer) 1 part of polymer compound (P1) was dissolved in 3 parts of DMF to obtain a polymer compound (P1) solution. 77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 ⁇ m) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, a polymer compound was added. 21.2 parts (5.3 parts in terms of solid content) of the (P1) solution was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, while stirring, 5.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 ⁇ m], which is a conductive additive (C1), was added in portions over 2 minutes, and stirring was continued for 30 minutes. did.
  • UP graphite
  • the obtained powder was classified using a sieve with an opening of 200 ⁇ m to obtain coated negative electrode active material particles 6 having the composition shown in Table 5.
  • Example 307 Preparation of coated negative electrode active material particles 7] (Formation of first coating layer) 77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 ⁇ m) were placed in a multipurpose mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, powdered 5.3 parts of the polymer compound (P1) was added, heated to 140°C, and further stirred for 60 minutes. Next, while stirring, 5.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 ⁇ m], which is a conductive additive (C1), was added in portions over 2 minutes, and stirring was continued for 30 minutes. did.
  • UP graphite
  • coated negative electrode active material particles 7 having the composition shown in Table 5.
  • Example 308 [Preparation of coated negative electrode active material particles 8] 80.9 parts of negative electrode active material particles, 4.0 parts of polymer compound (P1) solution (1.0 parts in terms of solid content), 5.5 parts of conductive aid (C1), and polymer compound (P2). -2) The composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 62.0 parts (6.2 parts in terms of solid content) and the conductive aid (C2) was changed to 4.2 parts. Coated negative electrode active material particles 8 were obtained.
  • Example 309 [Preparation of coated negative electrode active material particles 9] 74.5 parts of negative electrode active material particles, 34.8 parts of polymer compound (P1) solution (8.7 parts in terms of solid content), 5.1 parts of conductive aid (C1), and polymer compound (P2). -2)
  • the composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 57.0 parts (5.7 parts in terms of solid content) and the conductive aid (C2) was changed to 3.9 parts. Coated negative electrode active material particles 9 were obtained.
  • Example 310 [Preparation of coated negative electrode active material particles 10] 81.8 parts of negative electrode active material particles, 22.4 parts of polymer compound (P1) solution (5.6 parts in terms of solid content), 5.6 parts of conductive aid (C1), and polymer compound (P2). -2) The composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 5.0 parts (0.5 parts in terms of solid content) and the conductive aid (C2) was changed to 4.2 parts. Coated negative electrode active material particles 10 were obtained.
  • Example 311 [Preparation of coated negative electrode active material particles 11] 79.7 parts of negative electrode active material particles, 22.0 parts of polymer compound (P1) solution (5.5 parts in terms of solid content), 5.5 parts of conductive aid (C1), and polymer compound (P2). -2)
  • the composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 31.0 parts (3.1 parts in terms of solid content) and the conductive aid (C2) was changed to 4.1 parts. Coated negative electrode active material particles 11 were obtained.
  • Example 312 [Preparation of coated negative electrode active material particles 12] 74.9 parts of negative electrode active material particles, 20.4 parts of polymer compound (P1) solution (5.1 parts in terms of solid content), 5.1 parts of conductive aid (C1), and polymer compound (P2). -2) The composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 87.0 parts (8.7 parts in terms of solid content) and the conductive aid (C2) was changed to 3.9 parts. Coated negative electrode active material particles 12 were obtained.
  • Comparative Example 301 [Preparation of coated negative electrode active material particles 13] 1 part of polymer compound (P1) was dissolved in 3 parts of DMF to obtain a polymer compound (P1) solution. 86.0 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 ⁇ m) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, a polymer compound was added. 23.6 parts of the (P1) solution (5.9 parts in terms of solid content) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes.
  • the (P1) solution 5.9 parts in terms of solid content
  • Comparative Example 302 Preparation of coated negative electrode active material particles 14
  • 86.7 parts of negative electrode active material particles hard carbon powder, volume average particle diameter 25 ⁇ m
  • High Speed Mixer FS25 manufactured by Earth Technica Co., Ltd.
  • acetylene black (AB) [manufactured by Denka Co., Ltd., trade name "Denka Black", volume average particle diameter 35 nm] was added in portions over 2 minutes, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
  • the obtained powder was classified using a sieve with an opening of 200 ⁇ m to obtain coated negative electrode active material particles 14 having the composition shown in Table 6.
  • Comparative Example 303 [Preparation of coated negative electrode active material particles 15] 1 part of polymer compound (P1) was dissolved in 3 parts of DMF to obtain a polymer compound (P1) solution. 77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 ⁇ m) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, a polymer compound was added. (P1) solution 23.6 parts (5.9 parts in terms of solid content) and polymer compound (P2-2) solution 59.0 parts (5.9 parts in terms of solid content) were added simultaneously for 2 minutes. It was added dropwise and further stirred for 5 minutes.
  • the obtained conductive film for a resin current collector was cut into a size of 17.0 cm x 17.0 cm, nickel vapor deposition was performed on one side, and a terminal (5 mm x 3 cm) for current extraction was connected. A resin current collector was obtained.
  • the prepared negative electrode precursor was filled into a ⁇ 16 mold so that the basis weight of the negative electrode active material was 23.4 mg/cm 2 , and then pressed to a pressure of 1 ton/cm using a press machine (HANDTAB-100T15, manufactured by Ichihashi Seiki Co., Ltd.).
  • a negative electrode active material layer (thickness: 300 ⁇ m) was formed by compression molding at a pressure of 2 , and was laminated on one side of the resin current collector to produce a negative electrode for a lithium ion battery (circular with a diameter of 16 mm).
  • Electrode strength The strengths of the lithium ion battery negative electrodes 1 to 15 obtained above were measured as follows.
  • the yield stress of the obtained lithium ion battery negative electrodes 1 to 15 (sample size: circular with a diameter of 16 mm) was measured using Autograph [manufactured by Shimadzu Corporation] in accordance with ISO178 (Plastic - How to determine bending properties).
  • the electrode strength was evaluated using the following criteria. First, each sample of negative electrode for lithium ion batteries was set in a jig with a distance between supporting points of 5 mm, and a load cell (rated load: 20 N) set in an autograph was lowered toward the electrode at a speed of 1 mm/min until it yielded. The yield stress at the point was calculated. The results are shown in Table 7.
  • Negative electrodes 1 to 15 for lithium ion batteries were evaluated by the following method at 25° C. using a charge/discharge measuring device "HJ-SD8" [manufactured by Hokuto Denko Co., Ltd.]. After charging to 4.2V using a constant current/constant voltage method (0.1C), after a 10 minute break, the battery was discharged to 2.5V using a constant current method (0.1C). The voltage and current after 0 seconds of discharge at 0.1C and the voltage and current after 10 seconds of discharge at 0.1C were measured using the constant current constant voltage method (also referred to as CCCV mode), and the internal resistance was calculated using the following formula. . It means that the smaller the internal resistance, the better the battery characteristics.
  • the prepared positive electrode precursor was filled into a mold of ⁇ 15 so that the basis weight of the positive electrode active material was 50 mg/cm 2 , and then pressed with a press machine (HANDTAB-100T15, manufactured by Ichihashi Seiki Co., Ltd.) at 1 ton/cm 2 .
  • a positive electrode active material layer (thickness: 213 ⁇ m) was formed by compression molding under pressure, and was laminated on one side of the resin current collector to produce a positive electrode for a lithium ion battery (circular shape with a diameter of 15 mm).
  • a separator was combined with any of the positive electrode for lithium ion battery and negative electrode for lithium ion battery 1 to 15 produced above, and an electrolytic solution was added and sealed to produce lithium ion batteries 1 to 15. The electrolytic solution was added so as to account for 160% of the total void volume of each of the positive electrode, negative electrode, and separator. As the separator, Celgard #3501 was used. The capacity retention rates of the obtained lithium ion batteries 1 to 15 were measured. The results are shown in Table 8.
  • the negative electrodes and batteries obtained using coated negative electrode active material particles 1 to 12 for lithium ion batteries of Examples 301 to 312 were compared with those obtained using coated negative electrode active material particles 13 to 15 of Comparative Examples 301 to 303. Therefore, the electrode strength was excellent, the initial internal resistance was low, the rate of increase in internal resistance was low, and the capacity retention rate was high.
  • the coated negative electrode active material particles 13 and 15 of Comparative Examples 301 and 303 could not be formed into electrodes, and the rate of increase in internal resistance was also high.
  • the coated negative electrode active material particles 14 of Comparative Example 302 had a high internal resistance increase rate.
  • Example 303 using the polymer compound (P2-3) had higher electrode strength than Examples 301, 302, and 304, which differed only in the type of polymer compound (P2).
  • Examples 305 to 307 coated negative electrode active material particles for lithium ion batteries were produced using the same formulation as in Example 302 except for changing the method of preparing the polymer compound, but the internal resistance increase rate was lower than that in Example 302. No major differences were observed, except for a slightly higher value.
  • Examples 302, 308, and 309 in which the blending amount of the polymer compound (P1) was changed the rate of increase in internal resistance was lower as the amount of the polymer compound (P1) increased.
  • Examples 302 and 310 to 312 in which the amount of the polymer compound (P2-2) was changed, the electrode strength increased as the amount of the polymer compound (P2-2) increased.
  • the electrode composition for lithium ion batteries, the coated negative electrode active material particles for lithium ion batteries, and the negative electrode for lithium ion batteries of the present invention can be used particularly for stationary power supplies, mobile phones, personal computers, hybrid vehicles, electric vehicles, etc. It is useful for producing lithium-ion batteries.
  • the lithium ion battery of the present invention is particularly useful as a lithium ion battery for mobile phones, personal computers, hybrid vehicles, and electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The purpose of the present invention is to provide an electrode composition for lithium ion batteries, which enables the production of an electrode that has high electron conductivity even when the thickness of the electrode is large and also has satisfactory moldability. Provided is an electrode composition for lithium ion batteries, which contains an electroconductive filler, in which the electroconductive filler comprises at least two types of electroconductive fillers having different aspect ratio from each other and each of the aspect ratios of the electroconductive fillers is 2.00 to 7.00.

Description

リチウムイオン電池用電極組成物、リチウムイオン電池用被覆負極活物質粒子、リチウムイオン電池用被覆負極活物質粒子の製造方法、リチウムイオン電池用負極及びリチウムイオン電池Electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, method for producing coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion batteries
本発明は、リチウムイオン電池用電極組成物、リチウムイオン電池用被覆負極活物質粒子、リチウムイオン電池用被覆負極活物質粒子の製造方法、リチウムイオン電池用負極及びリチウムイオン電池に関する。 The present invention relates to an electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, a method for producing coated negative electrode active material particles for lithium ion batteries, a negative electrode for lithium ion batteries, and a lithium ion battery.
リチウムイオン電池は、高エネルギー密度、高出力密度が達成できる二次電池として、近年様々な用途に多用されており、より高性能のリチウムイオン電池を開発するために種々の検討がなされている。
特に電池の高容量化は切に望まれており、各種検討が進められている。
Lithium ion batteries have been widely used in a variety of applications in recent years as secondary batteries that can achieve high energy density and high power density, and various studies are being conducted to develop higher performance lithium ion batteries.
In particular, increasing the capacity of batteries is strongly desired, and various studies are underway.
例えば、特許文献1には、電極の膜厚を厚くすることにより、集電体やセパレータの相対的な割合を減少させて電池のエネルギー密度を高くするという手段が開示されている。 For example, Patent Document 1 discloses a method of increasing the energy density of a battery by increasing the film thickness of an electrode to reduce the relative proportions of a current collector and a separator.
また、特許文献2には、電極の膜厚を厚くした場合の電子伝導性の悪化を2種類の導電性繊維を併用することで改良する方法が開示されている。 Moreover, Patent Document 2 discloses a method of improving the deterioration of electronic conductivity when the film thickness of an electrode is increased by using two types of conductive fibers together.
特開平9-204936号公報Japanese Patent Application Publication No. 9-204936 特開2016-189325号公報Japanese Patent Application Publication No. 2016-189325 特開2017-188452号公報Japanese Patent Application Publication No. 2017-188452 特開2020-009751号公報Japanese Patent Application Publication No. 2020-009751
しかしながら、リチウムイオン電池の応用範囲が拡大するにつれて更なる高容量化が求められるようになり、従来の検討では十分とは言えない状況になりつつある。 However, as the range of applications of lithium ion batteries expands, higher capacity is required, and conventional studies are no longer sufficient.
本発明は、上記課題を鑑みてなされたものであり、膜厚が厚くとも電子伝導性が高く、かつ、成形性が良好な電極を作製することができるリチウムイオン電池用電極組成物を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and provides an electrode composition for lithium ion batteries that can produce an electrode that has high electronic conductivity and good formability even when the film is thick. The purpose is to
本発明者らは上記課題について鋭意検討したところ、アスペクト比が小さい(例えば、2.00未満)導電性フィラーを使用すると、導電パスが短くなり、電極における電子伝導性が不安定となり、その結果、電極の内部抵抗値が上昇してしまうことを見出した。
その一方で、本発明者らは、アスペクト比が大きい(例えば、7.00を超える)導電性フィラーを使用すると、立体障害(導電パスの構築を阻害する)を起こしてしまい、その結果、電極成形時の成形性が悪化してしまう、特に電極の膜厚が大きくする場合に成形性の悪化が顕著になることを見出した。本発明者らは、更に鋭意検討をしたところ、アスペクト比が特定の範囲である2種以上の導電性フィラーを併用することにより、上述した課題を全て解決し、膜厚が厚くとも電子伝導性が高く、かつ、成形性が良好な電極を作製することができるリチウムイオン電池用電極組成物を得ることができることを見出し本発明に到達した。
The inventors of the present invention have diligently studied the above-mentioned problems and found that when a conductive filler with a small aspect ratio (for example, less than 2.00) is used, the conductive path becomes short and the electron conductivity in the electrode becomes unstable. It was discovered that the internal resistance value of the electrode increases.
On the other hand, the present inventors found that the use of conductive fillers with large aspect ratios (e.g., greater than 7.00) causes steric hindrance (inhibits the construction of conductive paths), and as a result, It has been found that the moldability during molding deteriorates, particularly when the film thickness of the electrode is increased, the deterioration of the moldability becomes remarkable. After further intensive study, the present inventors found that by using two or more types of conductive fillers with aspect ratios in a specific range, all of the above-mentioned problems were solved, and even with a large film thickness, electronic conductivity was achieved. The present invention was achieved by discovering that it is possible to obtain an electrode composition for lithium ion batteries that can produce an electrode with high moldability and good moldability.
すなわち、本発明は、導電性フィラーを含有するリチウムイオン電池用電極組成物であって、上記導電性フィラーは、異なるアスペクト比を有する2種以上からなり、上記導電性フィラーのアスペクト比は、いずれも2.00~7.00であるリチウムイオン電池用電極組成物に関する。 That is, the present invention provides an electrode composition for a lithium ion battery containing a conductive filler, wherein the conductive filler is composed of two or more types having different aspect ratios, and the aspect ratio of the conductive filler is It also relates to an electrode composition for a lithium ion battery in which the ratio is 2.00 to 7.00.
膜厚が厚くとも電子伝導性が高く、かつ、成形性が良好な電極を作製することができるリチウムイオン電池用電極組成物を提供することができる。 It is possible to provide an electrode composition for a lithium ion battery that can produce an electrode with high electron conductivity and good moldability even if the film thickness is large.
[リチウムイオン電池用電極組成物]
本発明は、導電性フィラーを含有するリチウムイオン電池用電極組成物であって、上記導電性フィラーは、異なるアスペクト比を有する2種以上からなり、上記導電性フィラーのアスペクト比は、いずれも2.00~7.00であるリチウムイオン電池用電極組成物に関する。
[Electrode composition for lithium ion batteries]
The present invention provides an electrode composition for a lithium ion battery containing a conductive filler, wherein the conductive filler is composed of two or more types having different aspect ratios, and each of the conductive fillers has an aspect ratio of 2. The present invention relates to an electrode composition for lithium ion batteries having a molecular weight of .00 to 7.00.
(導電性フィラー)
本発明のリチウムイオン電池用電極組成物は、導電性フィラーを含有し、導電性フィラーは、異なるアスペクト比を有する2種以上からなる。
(conductive filler)
The electrode composition for a lithium ion battery of the present invention contains a conductive filler, and the conductive filler is composed of two or more types having different aspect ratios.
導電性フィラーのアスペクト比は、いずれも2.00~7.00である。
導電性フィラーとしては、2.00~7.00の範囲に含まれる2種以上を含有するものであればよいが、2.00以上4.00未満の導電性フィラーAと、4.00以上7.00未満の導電性フィラーBとを含有することが好ましい。
このような導電性フィラーを含有することにより、導電性フィラーAが後述する電極活物質粒子を覆うように被覆して電極活物質粒子表面の導電性の向上に寄与し、導電性フィラーBが後述する電極活物質粒子間を接続する役割をして電極活物質粒子間の導電性を向上させることができる。
なお、導電性フィラーは、導電性フィラーAを2種以上、導電性フィラーBを2種以上含有してもよい。
The aspect ratio of each conductive filler is 2.00 to 7.00.
The conductive filler may be one containing two or more types in the range of 2.00 to 7.00, but conductive filler A with a value of 2.00 or more and less than 4.00, and conductive filler A with a value of 2.00 or more and less than 4.00. It is preferable to contain less than 7.00% of conductive filler B.
By containing such a conductive filler, the conductive filler A covers the electrode active material particles described below and contributes to improving the conductivity of the surface of the electrode active material particles, and the conductive filler B contributes to improving the conductivity of the electrode active material particle surface. The conductivity between the electrode active material particles can be improved by serving as a connection between the electrode active material particles.
Note that the conductive filler may contain two or more types of conductive filler A and two or more types of conductive filler B.
導電性フィラーのアスペクト比は、例えば以下の測定条件により測定することができる。
測定機器:PITA-04(粒子形状画像解析装置、株式会社セイシン企業製)
カメラ:モノクロCCDカメラ(1画素2.8μm × 2.8μm)、最大54fps
観測粒子数:5000個
The aspect ratio of the conductive filler can be measured, for example, under the following measurement conditions.
Measuring equipment: PITA-04 (particle shape image analysis device, manufactured by Seishin Enterprise Co., Ltd.)
Camera: Monochrome CCD camera (1 pixel 2.8μm x 2.8μm), maximum 54fps
Number of observed particles: 5000
導電性フィラーとしては、上述したアスペクト比を満たすものであれば、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック]及びこれらの混合物等を用いることができる。 As the conductive filler, metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black], mixtures thereof, etc. can be used as long as they satisfy the above-mentioned aspect ratio. be able to.
導電性フィラーの形状(形態)は、上述したアスペクト比を満たすものであれば、粒子形態に限られず、粒子形態以外の形態であってもよく、繊維状(カーボンナノファイバー)等、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であってもよい。 The shape (form) of the conductive filler is not limited to the particle form, as long as it satisfies the aspect ratio described above, and may be in a form other than the particle form, such as a so-called filler type such as fibrous (carbon nanofiber). It may be in a form that has been put into practical use as a conductive resin composition.
導電性フィラーは、薄片状黒鉛と繊維状黒鉛とからなることが好ましい。
薄片状黒鉛は、上述した導電性フィラーAに該当するものであり、後述する電極活物質粒子を覆うように被覆して電極活物質粒子表面の導電性を向上させることができる。
また、繊維状黒鉛は、上述した導電性フィラーBに該当するものであり、後述する電極活物質粒子間を接続する役割をして電極活物質粒子間の導電性を向上させることができる。
It is preferable that the conductive filler consists of flaky graphite and fibrous graphite.
The flaky graphite corresponds to the above-mentioned conductive filler A, and can be coated to cover the electrode active material particles described below to improve the conductivity of the surface of the electrode active material particles.
Further, fibrous graphite corresponds to the above-mentioned conductive filler B, and can play a role of connecting electrode active material particles, which will be described later, to improve the conductivity between electrode active material particles.
薄片状黒鉛の具体例としては、UP-5-α(日本黒鉛(株)製、アスペクト比:2.3)、CNP15(伊藤黒鉛工業(株)製、アスペクト比:3.9)FT-4 (東日本カーボン(株)製、アスペクト比:3.2)等が挙げられる。 Specific examples of flaky graphite include UP-5-α (manufactured by Nippon Graphite Co., Ltd., aspect ratio: 2.3), CNP15 (manufactured by Ito Graphite Industries Co., Ltd., aspect ratio: 3.9) FT-4. (manufactured by East Japan Carbon Co., Ltd., aspect ratio: 3.2).
繊維状黒鉛の具体例としては、ZEONANO SG101(カーボンナノチューブ、日本ゼオン(株)製、アスペクト比:6.8)、SWNTカーボンナノチューブ((株)名城ナノカーボン製、アスペクト比:6.7)等が挙げられる。 Specific examples of fibrous graphite include ZEONANO SG101 (carbon nanotubes, manufactured by Nippon Zeon Co., Ltd., aspect ratio: 6.8), SWNT carbon nanotubes (manufactured by Meijo Nano Carbon Co., Ltd., aspect ratio: 6.7), etc. can be mentioned.
導電性フィラーが粒子状である場合の平均粒子径や、繊維状である場合の繊維径等については、上述したアスペクト比を満たせば特に限定されない。
導電性フィラーが粒子状である場合、平均粒子径は、例えば0.01~10μmであればよい。
また、導電性フィラーが繊維状である場合、平均繊維径は0.1~20μmであればよい。
なお、本明細書中において、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
The average particle diameter when the conductive filler is particulate, the fiber diameter when it is fibrous, etc. are not particularly limited as long as the aspect ratio described above is satisfied.
When the conductive filler is in the form of particles, the average particle size may be, for example, 0.01 to 10 μm.
Further, when the conductive filler is fibrous, the average fiber diameter may be 0.1 to 20 μm.
In addition, in this specification, "particle diameter" means the maximum distance L among the distances between any two points on the contour line of a particle. The value of "average particle diameter" is the average value of the particle diameter of particles observed in several to several dozen fields of view using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
本発明のリチウムイオン電池用電極組成物は、導電性フィラーの重量割合が、リチウムイオン電池用電極組成物の重量を基準として1~6重量%であることが好ましい。 In the lithium ion battery electrode composition of the present invention, the weight proportion of the conductive filler is preferably 1 to 6% by weight based on the weight of the lithium ion battery electrode composition.
導電性フィラーとして、上述する導電性フィラーA及び導電性フィラーBを含有する場合、導電性フィラーAの重量割合が、リチウムイオン電池用電極組成物の重量を基準として1.5~4.5重量%であることが好ましい。
また、導電性フィラーBの重量割合が、リチウムイオン電池用電極組成物の重量を基準として0.5~2重量%であることが好ましい。
また、導電性フィラーAの方が導電性フィラーBよりも重量割合が大きい方が好ましい。
When containing the conductive filler A and conductive filler B described above as the conductive filler, the weight ratio of the conductive filler A is 1.5 to 4.5 weight based on the weight of the lithium ion battery electrode composition. % is preferable.
Further, the weight proportion of the conductive filler B is preferably 0.5 to 2% by weight based on the weight of the electrode composition for a lithium ion battery.
Further, it is preferable that the weight ratio of the conductive filler A is larger than that of the conductive filler B.
(被覆電極活物質粒子)
本発明のリチウムイオン電池用電極組成物は、電極活物質粒子の表面の少なくとも一部が高分子化合物を含む被覆層で被覆された被覆電極活物質粒子を含有することが好ましい。
導電性フィラーは、電子伝導性を好適に付与する観点から、被覆層中に含有されていることが好ましく、被覆層外に含有されていることがより好ましく、被覆層中と被覆層外とに含有されていることが更に好ましい。
(Coated electrode active material particles)
The electrode composition for a lithium ion battery of the present invention preferably contains coated electrode active material particles in which at least a portion of the surface of the electrode active material particles is coated with a coating layer containing a polymer compound.
From the viewpoint of suitably imparting electronic conductivity, the conductive filler is preferably contained in the coating layer, more preferably contained outside the coating layer, and is preferably contained in the coating layer and outside the coating layer. It is more preferable that it be contained.
電極活物質粒子としては、正極活物質粒子及び負極活物質粒子のいずれであってもよい。 The electrode active material particles may be either positive electrode active material particles or negative electrode active material particles.
正極活物質粒子としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1-xCo、LiMn1-yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び遷移金属元素が3種以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等が挙げられ、2種以上を併用してもよい。
なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。
As the positive electrode active material particles, composite oxides of lithium and transition metals {complex oxides containing one type of transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2 and LiMn 2 O 4 etc.), transition metal elements Composite oxides having two types of _ _ _ _ _ _ Co 0.15 Al 0.05 O 2 ) and a composite oxide containing three or more types of transition metal elements [e.g. LiM a M' b M'' c O 2 (M, M' and M'' are different transitions) It is a metal element and satisfies a+b+c=1. For example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), etc.), lithium-containing transition metal phosphates (for example, LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO 4 ), transition metal oxides (e.g. MnO 2 and V 2 O 5 ), transition metal sulfides (e.g. MoS 2 and TiS 2 ) and conductive polymers (e.g. polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p- phenylene and polyvinylcarbazole), and two or more types may be used in combination.
Note that the lithium-containing transition metal phosphate may be one in which some of the transition metal sites are replaced with another transition metal.
正極活物質粒子の体積平均粒子径は、電池の電気特性の観点から、0.01~100μmであることが好ましく、0.1~35μmであることがより好ましく、2~30μmであることが更に好ましい。
本明細書において体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。
The volume average particle diameter of the positive electrode active material particles is preferably from 0.01 to 100 μm, more preferably from 0.1 to 35 μm, and even more preferably from 2 to 30 μm, from the viewpoint of electrical characteristics of the battery. preferable.
In this specification, the volume average particle diameter means the particle diameter (Dv50) at 50% of the integrated value in the particle size distribution determined by the Microtrack method (laser diffraction/scattering method). The microtrack method is a method of determining particle size distribution using scattered light obtained by irradiating particles with laser light. Note that, for measuring the volume average particle diameter, a Microtrack manufactured by Nikkiso Co., Ltd., etc. can be used.
負極活物質粒子としては、炭素系材料[黒鉛(グラファイト)、難黒鉛化性炭素(ハードカーボン)、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
上記負極活物質粒子のうち、内部にリチウム又はリチウムイオンを含まないものについては、予め負極活物質粒子の一部又は全部にリチウム又はリチウムイオンを含ませるプレドープ処理を施してもよい。
The negative electrode active material particles include carbon-based materials [graphite, non-graphitizable carbon (hard carbon), amorphous carbon, fired resin bodies (for example, carbonized phenolic resins, furan resins, etc.); Cokes (e.g. pitch coke, needle coke, petroleum coke, etc.) and carbon fibers], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composites (carbon particles whose surfaces are coated with silicon and/or silicon carbide) silicon particles or silicon oxide particles whose surfaces are coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloys, silicon-lithium alloys, silicon-nickel alloys, silicon-iron alloys) conductive polymers (e.g. polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium, titanium, etc.), Metal oxides (titanium oxide and lithium titanium oxide, etc.), metal alloys (for example, lithium-tin alloy, lithium-aluminum alloy, lithium-aluminum-manganese alloy, etc.), and mixtures of these with carbon-based materials, etc. Can be mentioned.
Among the negative electrode active material particles, those that do not contain lithium or lithium ions inside may be subjected to a pre-doping treatment in which part or all of the negative electrode active material particles contain lithium or lithium ions.
負極活物質粒子の体積平均粒子径は、電池の電気特性の観点から、0.01~100μmであることが好ましく、0.1~60μmであることがより好ましく、2~40μmであることが更に好ましい。 The volume average particle diameter of the negative electrode active material particles is preferably from 0.01 to 100 μm, more preferably from 0.1 to 60 μm, and even more preferably from 2 to 40 μm, from the viewpoint of the electrical characteristics of the battery. preferable.
被覆電極活物質粒子は、電極活物質粒子の表面の少なくとも一部を被覆する被覆層は、高分子化合物を含む。 In the coated electrode active material particles, a coating layer that covers at least a portion of the surface of the electrode active material particles contains a polymer compound.
高分子化合物としては、例えば、アクリルモノマー(a)を必須構成単量体とする重合体を含む樹脂であることが好ましい。
具体的には、被覆電極活物質粒子の被覆層を構成する高分子化合物は、アクリルモノマー(a)として、アクリル酸(a0)を含む単量体組成物の重合体であることが好ましい。
上記単量体組成物において、アクリル酸(a0)の含有量は、単量体全体の重量を基準として90重量%を超え、98重量%以下であることが好ましい。被覆層の柔軟性の観点から、アクリル酸(a0)の含有量は、単量体全体の重量を基準として93.0~97.5重量%であることがより好ましく、95.0~97.0重量%であることが更に好ましい。
The polymer compound is preferably a resin containing a polymer having the acrylic monomer (a) as an essential constituent monomer, for example.
Specifically, the polymer compound constituting the coating layer of the coated electrode active material particles is preferably a polymer of a monomer composition containing acrylic acid (a0) as the acrylic monomer (a).
In the above monomer composition, the content of acrylic acid (a0) is preferably more than 90% by weight and not more than 98% by weight based on the weight of the entire monomer. From the viewpoint of flexibility of the coating layer, the content of acrylic acid (a0) is more preferably 93.0 to 97.5% by weight, more preferably 95.0 to 97.5% by weight, based on the weight of the entire monomer. More preferably, it is 0% by weight.
被覆層を構成する高分子化合物は、アクリルモノマー(a)として、アクリル酸(a0)以外のカルボキシル基又は酸無水物基を有するモノマー(a1)を含有してもよい。 The polymer compound constituting the coating layer may contain, as the acrylic monomer (a), a monomer (a1) having a carboxyl group or an acid anhydride group other than acrylic acid (a0).
アクリル酸(a0)以外のカルボキシル基又は酸無水物基を有するモノマー(a1)としては、メタクリル酸、クロトン酸、桂皮酸等の炭素数3~15のモノカルボン酸;(無水)マレイン酸、フマル酸、(無水)イタコン酸、シトラコン酸、メサコン酸等の炭素数4~24のジカルボン酸;アコニット酸等の炭素数6~24の3価~4価又はそれ以上の価数のポリカルボン酸等が挙げられる。 Monomers (a1) having a carboxyl group or acid anhydride group other than acrylic acid (a0) include monocarboxylic acids having 3 to 15 carbon atoms such as methacrylic acid, crotonic acid, and cinnamic acid; (anhydrous) maleic acid, fumaric acid; acids, (anhydrous) dicarboxylic acids with 4 to 24 carbon atoms such as itaconic acid, citraconic acid, and mesaconic acid; polycarboxylic acids with 6 to 24 carbon atoms, trivalent to tetravalent or higher valences such as aconitic acid, etc. can be mentioned.
被覆層を構成する高分子化合物は、アクリルモノマー(a)として、下記一般式(1)で表されるモノマー(a2)を含有してもよい。
CH=C(R)COOR  (1)
[式(1)中、Rは水素原子又はメチル基であり、Rは炭素数4~12の直鎖アルキル基又は炭素数3~36の分岐アルキル基である。]
The polymer compound constituting the coating layer may contain a monomer (a2) represented by the following general formula (1) as the acrylic monomer (a).
CH 2 =C(R 1 )COOR 2 (1)
[In formula (1), R 1 is a hydrogen atom or a methyl group, and R 2 is a straight chain alkyl group having 4 to 12 carbon atoms or a branched alkyl group having 3 to 36 carbon atoms. ]
上記一般式(1)で表されるモノマー(a2)において、Rは水素原子又はメチル基を表す。Rはメチル基であることが好ましい。
は、炭素数4~12の直鎖若しくは分岐アルキル基、又は、炭素数13~36の分岐アルキル基であることが好ましい。
In the monomer (a2) represented by the above general formula (1), R 1 represents a hydrogen atom or a methyl group. Preferably, R 1 is a methyl group.
R 2 is preferably a straight chain or branched alkyl group having 4 to 12 carbon atoms, or a branched alkyl group having 13 to 36 carbon atoms.
モノマー(a2)は、Rの基によって(a21)と(a22)に分類される。
(a21)Rが炭素数4~12の直鎖又は分岐アルキル基であるエステル化合物炭素数4~12の直鎖アルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が挙げられる。
炭素数4~12の分岐アルキル基としては、1-メチルプロピル基(sec-ブチル基)、2-メチルプロピル基、1,1-ジメチルエチル基(tert-ブチル基)、1-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基(ネオペンチル基)、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1,1-ジメチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、6-メチルヘプチル基、1,1-ジメチルヘキシル基、1,2-ジメチルヘキシル基、1,3-ジメチルヘキシル基、1,4-ジメチルヘキシル基、1,5-ジメチルヘキシル基、1-エチルヘキシル基、2-エチルヘキシル基、1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、4-メチルオクチル基、5-メチルオクチル基、6-メチルオクチル基、7-メチルオクチル基、1,1-ジメチルヘプチル基、1,2-ジメチルヘプチル基、1,3-ジメチルヘプチル基、1,4-ジメチルヘプチル基、1,5-ジメチルヘプチル基、1,6-ジメチルヘプチル基、1-エチルヘプチル基、2-エチルヘプチル基、1-メチルノニル基、2-メチルノニル基、3-メチルノニル基、4-メチルノニル基、5-メチルノニル基、6-メチルノニル基、7-メチルノニル基、8-メチルノニル基、1,1-ジメチルオクチル基、1,2-ジメチルオクチル基、1,3-ジメチルオクチル基、1,4-ジメチルオクチル基、1,5-ジメチルオクチル基、1,6-ジメチルオクチル基、1,7-ジメチルオクチル基、1-エチルオクチル基、2-エチルオクチル基、1-メチルデシル基、2-メチルデシル基、3-メチルデシル基、4-メチルデシル基、5-メチルデシル基、6-メチルデシル基、7-メチルデシル基、8-メチルデシル基、9-メチルデシル基、1,1-ジメチルノニル基、1,2-ジメチルノニル基、1,3-ジメチルノニル基、1,4-ジメチルノニル基、1,5-ジメチルノニル基、1,6-ジメチルノニル基、1,7-ジメチルノニル基、1,8-ジメチルノニル基、1-エチルノニル基、2-エチルノニル基、1-メチルウンデシル基、2-メチルウンデシル基、3-メチルウンデシル基、4-メチルウンデシル基、5-メチルウンデシル基、6-メチルウンデシル基、7-メチルウンデシル基、8-メチルウンデシル基、9-メチルウンデシル基、10-メチルウンデシル基、1,1-ジメチルデシル基、1,2-ジメチルデシル基、1,3-ジメチルデシル基、1,4-ジメチルデシル基、1,5-ジメチルデシル基、1,6-ジメチルデシル基、1,7-ジメチルデシル基、1,8-ジメチルデシル基、1,9-ジメチルデシル基、1-エチルデシル基、2-エチルデシル基等が挙げられる。これらの中では、特に、2-エチルヘキシル基が好ましい。
Monomer (a2) is classified into (a21) and (a22) depending on the group of R 2 .
(a21) Ester compound in which R 2 is a straight chain or branched alkyl group having 4 to 12 carbon atoms Examples of straight chain alkyl groups having 4 to 12 carbon atoms include butyl group, pentyl group, hexyl group, heptyl group, octyl group, Examples include nonyl group, decyl group, undecyl group, and dodecyl group.
Examples of branched alkyl groups having 4 to 12 carbon atoms include 1-methylpropyl group (sec-butyl group), 2-methylpropyl group, 1,1-dimethylethyl group (tert-butyl group), 1-methylbutyl group, , 1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group (neopentyl group), 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group , 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group , 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, 4-methylhexyl group, 5-methylhexyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 1 , 1-dimethylpentyl group, 1,2-dimethylpentyl group, 1,3-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 1-methylheptyl group, 2-methylheptyl group , 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 6-methylheptyl group, 1,1-dimethylhexyl group, 1,2-dimethylhexyl group, 1,3-dimethylhexyl group, 1 , 4-dimethylhexyl group, 1,5-dimethylhexyl group, 1-ethylhexyl group, 2-ethylhexyl group, 1-methyloctyl group, 2-methyloctyl group, 3-methyloctyl group, 4-methyloctyl group, 5 -Methyloctyl group, 6-methyloctyl group, 7-methyloctyl group, 1,1-dimethylheptyl group, 1,2-dimethylheptyl group, 1,3-dimethylheptyl group, 1,4-dimethylheptyl group, 1 , 5-dimethylheptyl group, 1,6-dimethylheptyl group, 1-ethylheptyl group, 2-ethylheptyl group, 1-methylnonyl group, 2-methylnonyl group, 3-methylnonyl group, 4-methylnonyl group, 5-methylnonyl group group, 6-methylnonyl group, 7-methylnonyl group, 8-methylnonyl group, 1,1-dimethyloctyl group, 1,2-dimethyloctyl group, 1,3-dimethyloctyl group, 1,4-dimethyloctyl group, 1 , 5-dimethyloctyl group, 1,6-dimethyloctyl group, 1,7-dimethyloctyl group, 1-ethyloctyl group, 2-ethyloctyl group, 1-methyldecyl group, 2-methyldecyl group, 3-methyldecyl group, 4-methyldecyl group, 5-methyldecyl group, 6-methyldecyl group, 7-methyldecyl group, 8-methyldecyl group, 9-methyldecyl group, 1,1-dimethylnonyl group, 1,2-dimethylnonyl group, 1,3- Dimethylnonyl group, 1,4-dimethylnonyl group, 1,5-dimethylnonyl group, 1,6-dimethylnonyl group, 1,7-dimethylnonyl group, 1,8-dimethylnonyl group, 1-ethylnonyl group, 2 -Ethylnonyl group, 1-methylundecyl group, 2-methylundecyl group, 3-methylundecyl group, 4-methylundecyl group, 5-methylundecyl group, 6-methylundecyl group, 7-methylundecyl group Decyl group, 8-methylundecyl group, 9-methylundecyl group, 10-methylundecyl group, 1,1-dimethyldecyl group, 1,2-dimethyldecyl group, 1,3-dimethyldecyl group, 1, 4-dimethyldecyl group, 1,5-dimethyldecyl group, 1,6-dimethyldecyl group, 1,7-dimethyldecyl group, 1,8-dimethyldecyl group, 1,9-dimethyldecyl group, 1-ethyldecyl group , 2-ethyldecyl group, etc. Among these, 2-ethylhexyl group is particularly preferred.
(a22)Rが炭素数13~36の分岐アルキル基であるエステル化合物
炭素数13~36の分岐アルキル基としては、1-アルキルアルキル基[1-メチルドデシル基、1-ブチルエイコシル基、1-ヘキシルオクタデシル基、1-オクチルヘキサデシル基、1-デシルテトラデシル基、1-ウンデシルトリデシル基等]、2-アルキルアルキル基[2-メチルドデシル基、2-ヘキシルオクタデシル基、2-オクチルヘキサデシル基、2-デシルテトラデシル基、2-ウンデシルトリデシル基、2-ドデシルヘキサデシル基、2-トリデシルペンタデシル基、2-デシルオクタデシル基、2-テトラデシルオクタデシル基、2-ヘキサデシルオクタデシル基、2-テトラデシルエイコシル基、2-ヘキサデシルエイコシル基等]、3~34-アルキルアルキル基(3-アルキルアルキル基、4-アルキルアルキル基、5-アルキルアルキル基、32-アルキルアルキル基、33-アルキルアルキル基及び34-アルキルアルキル基等)、並びに、プロピレンオリゴマー(7~11量体)、エチレン/プロピレン(モル比16/1~1/11)オリゴマー、イソブチレンオリゴマー(7~8量体)及びα-オレフィン(炭素数5~10)オリゴマー(4~8量体)等から得られるオキソアルコールから水酸基を除いた残基のような1又はそれ以上の分岐アルキル基を含有する混合アルキル基等が挙げられる。
(a22) Ester compound in which R 2 is a branched alkyl group having 13 to 36 carbon atoms The branched alkyl group having 13 to 36 carbon atoms includes a 1-alkylalkyl group [1-methyldodecyl group, 1-butyleicosyl group, 1-hexyloctadecyl group, 1-octylhexadecyl group, 1-decyltetradecyl group, 1-undecyltridecyl group, etc.], 2-alkylalkyl group [2-methyldodecyl group, 2-hexyloctadecyl group, 2- Octylhexadecyl group, 2-decyltetradecyl group, 2-undecyltridecyl group, 2-dodecylhexadecyl group, 2-tridecylpentadecyl group, 2-decyloctadecyl group, 2-tetradecyloctadecyl group, 2- hexadecyl octadecyl group, 2-tetradecyl eicosyl group, 2-hexadecyl eicosyl group, etc.], 3-34-alkylalkyl group (3-alkylalkyl group, 4-alkylalkyl group, 5-alkylalkyl group, 32 -alkylalkyl group, 33-alkylalkyl group, 34-alkylalkyl group, etc.), propylene oligomer (7-11mer), ethylene/propylene (molar ratio 16/1-1/11) oligomer, isobutylene oligomer ( One or more branched alkyl groups, such as residues obtained by removing the hydroxyl group from oxo alcohols obtained from α-olefins (7- to 8-mer) and α-olefin (5-10 carbon atoms) oligomers (4- to 8-mer), etc. Examples include mixed alkyl groups.
被覆層を構成する高分子化合物は、アクリルモノマー(a)として、炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)を含有してもよい。
エステル化合物(a3)を構成する炭素数1~3の1価の脂肪族アルコールとしては、メタノール、エタノール、1-プロパノール及び2-プロパノール等が挙げられる。
なお、(メタ)アクリル酸は、アクリル酸又はメタクリル酸を意味する。
The polymer compound constituting the coating layer may contain, as the acrylic monomer (a), an ester compound (a3) of a monohydric aliphatic alcohol having 1 to 3 carbon atoms and (meth)acrylic acid.
Examples of the monovalent aliphatic alcohol having 1 to 3 carbon atoms constituting the ester compound (a3) include methanol, ethanol, 1-propanol, and 2-propanol.
Note that (meth)acrylic acid means acrylic acid or methacrylic acid.
被覆層を構成する高分子化合物は、アクリル酸(a0)と、モノマー(a1)、モノマー(a2)及びエステル化合物(a3)のうちの少なくとも1つとを含む単量体組成物の重合体であることが好ましく、アクリル酸(a0)と、モノマー(a1)、エステル化合物(a21)及びエステル化合物(a3)のうちの少なくとも1つとを含む単量体組成物の重合体であることがより好ましく、アクリル酸(a0)と、モノマー(a1)、モノマー(a2)及びエステル化合物(a3)のうちのいずれか1つとを含む単量体組成物の重合体であることが更に好ましく、アクリル酸(a0)と、モノマー(a1)、エステル化合物(a21)及びエステル化合物(a3)のうちのいずれか1つとを含む単量体組成物の重合体であることが最も好ましい。
被覆層を構成する高分子化合物としては、例えば、モノマー(a1)としてマレイン酸を用いた、アクリル酸及びマレイン酸の共重合体、モノマー(a2)としてメタクリル酸2-エチルヘキシルを用いた、アクリル酸及びメタクリル酸2-エチルヘキシルの共重合体、エステル化合物(a3)としてメタクリル酸メチルを用いた、アクリル酸及びメタクリル酸メチルの共重合体等が挙げられる。
The polymer compound constituting the coating layer is a polymer of a monomer composition containing acrylic acid (a0) and at least one of monomer (a1), monomer (a2), and ester compound (a3). More preferably, it is a polymer of a monomer composition containing acrylic acid (a0) and at least one of a monomer (a1), an ester compound (a21), and an ester compound (a3), More preferably, it is a polymer of a monomer composition containing acrylic acid (a0) and any one of a monomer (a1), a monomer (a2), and an ester compound (a3); ) and any one of the monomer (a1), the ester compound (a21), and the ester compound (a3).
Examples of the polymer compound constituting the coating layer include a copolymer of acrylic acid and maleic acid using maleic acid as the monomer (a1), and acrylic acid using 2-ethylhexyl methacrylate as the monomer (a2). and a copolymer of 2-ethylhexyl methacrylate, a copolymer of acrylic acid and methyl methacrylate using methyl methacrylate as the ester compound (a3), and the like.
モノマー(a1)、モノマー(a2)及びエステル化合物(a3)の合計含有量は、電極活物質粒子の体積変化抑制等の観点から、単量体全体の重量を基準として2.0~9.9重量%であることが好ましく、2.5~7.0重量%であることがより好ましい。 The total content of monomer (a1), monomer (a2), and ester compound (a3) is 2.0 to 9.9% based on the weight of the entire monomer, from the viewpoint of suppressing volume change of electrode active material particles. It is preferably 2.5 to 7.0% by weight, more preferably 2.5 to 7.0% by weight.
被覆層を構成する高分子化合物は、アクリルモノマー(a)として、重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a4)を含有しないことが好ましい。 The polymer compound constituting the coating layer preferably does not contain, as the acrylic monomer (a), a salt (a4) of an anionic monomer having a polymerizable unsaturated double bond and an anionic group.
重合性不飽和二重結合を有する構造としてはビニル基、アリル基、スチレニル基及び(メタ)アクリロイル基等が挙げられる。
アニオン性基としては、スルホン酸基及びカルボキシル基等が挙げられる。
重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体はこれらの組み合わせにより得られる化合物であり、例えばビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸及び(メタ)アクリル酸が挙げられる。
なお、(メタ)アクリロイル基は、アクリロイル基又はメタクリロイル基を意味する。
アニオン性単量体の塩(a4)を構成するカチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン及びアンモニウムイオン等が挙げられる。
Examples of the structure having a polymerizable unsaturated double bond include a vinyl group, an allyl group, a styrenyl group, and a (meth)acryloyl group.
Examples of anionic groups include sulfonic acid groups and carboxyl groups.
Anionic monomers having a polymerizable unsaturated double bond and an anionic group are compounds obtained by a combination of these, and include, for example, vinylsulfonic acid, allylsulfonic acid, styrenesulfonic acid, and (meth)acrylic acid. It will be done.
In addition, a (meth)acryloyl group means an acryloyl group or a methacryloyl group.
Examples of the cations constituting the anionic monomer salt (a4) include lithium ions, sodium ions, potassium ions, and ammonium ions.
また、被覆層を構成する高分子化合物は、物性を損なわない範囲で、アクリルモノマー(a)として、アクリル酸(a0)、モノマー(a1)、モノマー(a2)及びエステル化合物(a3)と共重合可能であるラジカル重合性モノマー(a5)を含有してもよい。
ラジカル重合性モノマー(a5)としては、活性水素を含有しないモノマーが好ましく、下記(a51)~(a58)のモノマーを用いることができる。
In addition, the polymer compound constituting the coating layer may be copolymerized with acrylic acid (a0), monomer (a1), monomer (a2), and ester compound (a3) as acrylic monomer (a) to the extent that physical properties are not impaired. It may also contain a radically polymerizable monomer (a5).
The radically polymerizable monomer (a5) is preferably a monomer that does not contain active hydrogen, and the following monomers (a51) to (a58) can be used.
(a51)炭素数13~20の直鎖脂肪族モノオール、炭素数5~20の脂環式モノオール及び炭素数7~20の芳香脂肪族モノオールのうち少なくとも1つのモノオールと(メタ)アクリル酸から形成されるハイドロカルビル(メタ)アクリレート
上記モノオールとしては、(i)直鎖脂肪族モノオール(トリデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、セチルアルコール、ヘプタデシルアルコール、ステアリルアルコール、ノナデシルアルコール、アラキジルアルコール等)、(ii)脂環式モノオール(シクロペンチルアルコール、シクロヘキシルアルコール、シクロヘプチルアルコール、シクロオクチルアルコール等)、(iii)芳香脂肪族モノオール(ベンジルアルコール等)及びこれらの2種以上の混合物が挙げられる。
(a51) at least one monol selected from a linear aliphatic monool having 13 to 20 carbon atoms, an alicyclic monool having 5 to 20 carbon atoms, and an aromatic aliphatic monool having 7 to 20 carbon atoms; and (meth) Hydrocarbyl (meth)acrylate formed from acrylic acid The above monools include (i) straight chain aliphatic monools (tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, (nonadecyl alcohol, arachidyl alcohol, etc.), (ii) alicyclic monools (cyclopentyl alcohol, cyclohexyl alcohol, cycloheptyl alcohol, cyclooctyl alcohol, etc.), (iii) aromatic aliphatic monools (benzyl alcohol, etc.), and these Examples include mixtures of two or more of these.
(a52)ポリ(n=2~30)オキシアルキレン(炭素数2~4)アルキル(炭素数1~18)エーテル(メタ)アクリレート[メタノールのエチレンオキサイド(以下EOと略記)10モル付加物(メタ)アクリレート、メタノールのプロピレンオキサイド(以下POと略記)10モル付加物(メタ)アクリレート等] (a52) Poly(n=2-30) oxyalkylene (carbon number 2-4) alkyl (carbon number 1-18) ether (meth)acrylate [10 mol adduct of methanol with ethylene oxide (hereinafter abbreviated as EO) (meth) ) acrylate, 10 mole adduct of methanol with propylene oxide (hereinafter abbreviated as PO) (meth)acrylate, etc.]
(a53)窒素含有ビニル化合物
(a53-1)アミド基含有ビニル化合物
(i)炭素数3~30の(メタ)アクリルアミド化合物、例えばN,N-ジアルキル(炭素数1~6)又はジアラルキル(炭素数7~15)(メタ)アクリルアミド(N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミド等)、ジアセトンアクリルアミド
(ii)上記(メタ)アクリルアミド化合物を除く、炭素数4~20のアミド基含有ビニル化合物、例えばN-メチル-N-ビニルアセトアミド、環状アミド[ピロリドン化合物(炭素数6~13、例えば、N-ビニルピロリドン等)]
(a53) Nitrogen-containing vinyl compound (a53-1) Amide group-containing vinyl compound (i) (meth)acrylamide compound having 3 to 30 carbon atoms, such as N,N-dialkyl (1 to 6 carbon atoms) or dialkyl (carbon number 7-15) (Meth)acrylamide (N,N-dimethylacrylamide, N,N-dibenzylacrylamide, etc.), diacetone acrylamide (ii) Containing an amide group having 4 to 20 carbon atoms, excluding the above (meth)acrylamide compounds Vinyl compounds, such as N-methyl-N-vinylacetamide, cyclic amides [pyrrolidone compounds (6 to 13 carbon atoms, such as N-vinylpyrrolidone)]
(a53-2)(メタ)アクリレート化合物
(i)ジアルキル(炭素数1~4)アミノアルキル(炭素数1~4)(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、モルホリノエチル(メタ)アクリレート等]
(ii)4級アンモニウム基含有(メタ)アクリレート{3級アミノ基含有(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート等]の4級化物(メチルクロライド、ジメチル硫酸、ベンジルクロライド、ジメチルカーボネート等の4級化剤を用いて4級化したもの)等}
(a53-2) (meth)acrylate compound (i) Dialkyl (1 to 4 carbon atoms) Aminoalkyl (1 to 4 carbon atoms) (meth)acrylate [N,N-dimethylaminoethyl (meth)acrylate, N,N - diethylaminoethyl (meth)acrylate, t-butylaminoethyl (meth)acrylate, morpholinoethyl (meth)acrylate, etc.]
(ii) Quaternary ammonium group-containing (meth)acrylate {tertiary amino group-containing (meth)acrylate [N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, etc.] compounds (quaternized using a quaternizing agent such as methyl chloride, dimethyl sulfate, benzyl chloride, dimethyl carbonate, etc.), etc.}
(a53-3)複素環含有ビニル化合物
ピリジン化合物(炭素数7~14、例えば2-又は4-ビニルピリジン)、イミダゾール化合物(炭素数5~12、例えばN-ビニルイミダゾール)、ピロール化合物(炭素数6~13、例えばN-ビニルピロール)、ピロリドン化合物(炭素数6~13、例えばN-ビニル-2-ピロリドン)
(a53-3) Heterocycle-containing vinyl compounds, pyridine compounds (7 to 14 carbon atoms, e.g. 2- or 4-vinylpyridine), imidazole compounds (5 to 12 carbon atoms, e.g. N-vinylimidazole), pyrrole compounds (carbon atoms 6 to 13 carbon atoms, e.g. N-vinylpyrrole), pyrrolidone compounds (6 to 13 carbon atoms, e.g. N-vinyl-2-pyrrolidone)
(a53-4)ニトリル基含有ビニル化合物
炭素数3~15のニトリル基含有ビニル化合物、例えば(メタ)アクリロニトリル、シアノスチレン、シアノアルキル(炭素数1~4)アクリレート
(a53-4) Nitrile group-containing vinyl compound Nitrile group-containing vinyl compound having 3 to 15 carbon atoms, such as (meth)acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate
(a53-5)その他の窒素含有ビニル化合物
ニトロ基含有ビニル化合物(炭素数8~16、例えばニトロスチレン)等
(a53-5) Other nitrogen-containing vinyl compounds Nitro group-containing vinyl compounds (8 to 16 carbon atoms, such as nitrostyrene), etc.
(a54)ビニル炭化水素
(a54-1)脂肪族ビニル炭化水素
炭素数2~18又はそれ以上のオレフィン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン等)、炭素数4~10又はそれ以上のジエン(ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエン、1,7-オクタジエン等)等
(a54) Vinyl hydrocarbon (a54-1) Aliphatic vinyl hydrocarbon Olefin having 2 to 18 or more carbon atoms (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), Dienes having 4 to 10 carbon atoms or more (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.), etc.
(a54-2)脂環式ビニル炭化水素
炭素数4~18又はそれ以上の環状不飽和化合物、例えばシクロアルケン(例えばシクロヘキセン)、(ジ)シクロアルカジエン[例えば(ジ)シクロペンタジエン]、テルペン(例えばピネン及びリモネン)、インデン
(a54-2) Alicyclic vinyl hydrocarbon Cyclic unsaturated compounds having 4 to 18 or more carbon atoms, such as cycloalkenes (e.g. cyclohexene), (di)cycloalkadienes [e.g. (di)cyclopentadiene], terpenes ( e.g. pinene and limonene), indene
(a54-3)芳香族ビニル炭化水素
炭素数8~20又はそれ以上の芳香族不飽和化合物、例えばスチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン
(a54-3) Aromatic vinyl hydrocarbon Aromatic unsaturated compounds having 8 to 20 carbon atoms or more, such as styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butyl Styrene, phenylstyrene, cyclohexylstyrene, benzylstyrene
(a55)ビニルエステル
脂肪族ビニルエステル[炭素数4~15、例えば脂肪族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルアジペート、イソプロペニルアセテート、ビニルメトキシアセテート)]
芳香族ビニルエステル[炭素数9~20、例えば芳香族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(例えばビニルベンゾエート、ジアリルフタレート、メチル-4-ビニルベンゾエート)、脂肪族カルボン酸の芳香環含有エステル(例えばアセトキシスチレン)]
(a55) Vinyl ester aliphatic vinyl ester [carbon number 4-15, e.g. alkenyl ester of aliphatic carboxylic acid (mono- or dicarboxylic acid) (e.g. vinyl acetate, vinyl propionate, vinyl butyrate, diallyl adipate, isopropenyl acetate, vinyl methoxy acetate)]
Aromatic vinyl esters [9 to 20 carbon atoms, such as alkenyl esters of aromatic carboxylic acids (mono- or dicarboxylic acids) (such as vinyl benzoate, diallyl phthalate, methyl-4-vinyl benzoate), aromatic ring-containing aliphatic carboxylic acids ester (e.g. acetoxystyrene)]
(a56)ビニルエーテル
脂肪族ビニルエーテル[炭素数3~15、例えばビニルアルキル(炭素数1~10)エーテル(ビニルメチルエーテル、ビニルブチルエーテル、ビニル2-エチルヘキシルエーテル等)、ビニルアルコキシ(炭素数1~6)アルキル(炭素数1~4)エーテル(ビニル-2-メトキシエチルエーテル、メトキシブタジエン、3,4-ジヒドロ-1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル、ビニル-2-エチルメルカプトエチルエーテル等)、ポリ(2~4)(メタ)アリロキシアルカン(炭素数2~6)(ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシブタン、テトラメタアリロキシエタン等)]、芳香族ビニルエーテル(炭素数8~20、例えばビニルフェニルエーテル、フェノキシスチレン)
(a56) Vinyl ether aliphatic vinyl ether [3 to 15 carbon atoms, such as vinyl alkyl (1 to 10 carbon atoms) ether (vinyl methyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, etc.), vinyl alkoxy (1 to 6 carbon atoms) Alkyl (1-4 carbon atoms) ether (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether, vinyl-2-ethyl mercaptoethyl ether, etc.), poly(2-4)(meth)allyloxyalkane (carbon number 2-6) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetramethallyloxyethane, etc.)], Aromatic vinyl ether (8 to 20 carbon atoms, e.g. vinyl phenyl ether, phenoxystyrene)
(a57)ビニルケトン
脂肪族ビニルケトン(炭素数4~25、例えばビニルメチルケトン、ビニルエチルケトン)、芳香族ビニルケトン(炭素数9~21、例えばビニルフェニルケトン)
(a57) Vinyl ketone Aliphatic vinyl ketone (4 to 25 carbon atoms, e.g. vinyl methyl ketone, vinyl ethyl ketone), aromatic vinyl ketone (9 to 21 carbon atoms, e.g. vinyl phenyl ketone)
(a58)不飽和ジカルボン酸ジエステル
炭素数4~34の不飽和ジカルボン酸ジエステル、例えばジアルキルフマレート(2個のアルキル基は、炭素数1~22の、直鎖、分岐鎖又は脂環式の基)、ジアルキルマレエート(2個のアルキル基は、炭素数1~22の、直鎖、分岐鎖又は脂環式の基)
(a58) Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms, such as dialkyl fumarate (two alkyl groups are linear, branched, or alicyclic groups having 1 to 22 carbon atoms) ), dialkyl maleate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms)
ラジカル重合性モノマー(a5)を含有する場合、その含有量は、単量体全体の重量を基準として0.1~3.0重量%であることが好ましい。 When the radically polymerizable monomer (a5) is contained, its content is preferably 0.1 to 3.0% by weight based on the weight of the entire monomer.
被覆層を構成する高分子化合物の重量平均分子量の好ましい下限は3,000、より好ましい下限は5,000、更に好ましい下限は7,000である。一方、上記高分子化合物の重量平均分子量の好ましい上限は100,000、より好ましい上限は70,000である。 A preferable lower limit of the weight average molecular weight of the polymer compound constituting the coating layer is 3,000, a more preferable lower limit is 5,000, and an even more preferable lower limit is 7,000. On the other hand, the preferable upper limit of the weight average molecular weight of the polymer compound is 100,000, and the more preferable upper limit is 70,000.
被覆層を構成する高分子化合物の重量平均分子量は、以下の条件でゲルパーミエーションクロマトグラフィー(以下GPCと略記)測定により求めることができる。
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン、N,N-ジメチルホルムアミド(以下、DMFと略記する)、テトラヒドロフラン
標準物質:ポリスチレン
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED-B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃
The weight average molecular weight of the polymer compound constituting the coating layer can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
Equipment: Alliance GPC V2000 (manufactured by Waters)
Solvent: Orthodichlorobenzene, N,N-dimethylformamide (hereinafter abbreviated as DMF), tetrahydrofuran Standard material: polystyrene Sample concentration: 3 mg/ml
Column stationary phase: PLgel 10μm, MIXED-B 2 in series (manufactured by Polymer Laboratories)
Column temperature: 135℃
被覆層を構成する高分子化合物は、公知の重合開始剤{アゾ系開始剤[2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)等]、パーオキサイド系開始剤(ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ラウリルパーオキサイド等)等}を使用して公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合等)により製造することができる。
重合開始剤の使用量は、重量平均分子量を好ましい範囲に調整する等の観点から、モノマーの全重量に基づいて好ましくは0.01~5重量%、より好ましくは0.05~2重量%、更に好ましくは0.1~1.5重量%であり、重合温度及び重合時間は重合開始剤の種類等に応じて調整されるが、重合温度は好ましくは-5~150℃、(より好ましくは30~120℃)、反応時間は好ましくは0.1~50時間(より好ましくは2~24時間)である。
The polymer compound constituting the coating layer is a known polymerization initiator {azo initiator [2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2,4-dimethylvaleronitrile) ), 2,2'-azobis(2-methylbutyronitrile), etc.], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.) It can be produced by a polymerization method (bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
The amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the monomer, from the viewpoint of adjusting the weight average molecular weight to a preferable range. More preferably, it is 0.1 to 1.5% by weight, and the polymerization temperature and time are adjusted depending on the type of polymerization initiator, etc., but the polymerization temperature is preferably -5 to 150°C, (more preferably 30 to 120°C), and the reaction time is preferably 0.1 to 50 hours (more preferably 2 to 24 hours).
溶液重合の場合に使用される溶媒としては、例えばエステル(炭素数2~8、例えば酢酸エチル及び酢酸ブチル)、アルコール(炭素数1~8、例えばメタノール、エタノール及びオクタノール)、炭化水素(炭素数4~8、例えばn-ブタン、シクロヘキサン及びトルエン)、アミド(例えばDMF)及びケトン(炭素数3~9、例えばメチルエチルケトン)が挙げられ、重量平均分子量を好ましい範囲に調整する等の観点から、その使用量はモノマーの合計重量に基づいて好ましくは5~900重量%、より好ましくは10~400重量%、更に好ましくは30~300重量%であり、モノマー濃度としては、好ましくは10~95重量%、より好ましくは20~90重量%、更に好ましくは30~80重量%である。 Solvents used in solution polymerization include, for example, esters (with 2 to 8 carbon atoms, such as ethyl acetate and butyl acetate), alcohols (with 1 to 8 carbon atoms, such as methanol, ethanol and octanol), hydrocarbons (with 1 to 8 carbon atoms, such as methanol, ethanol and octanol), 4 to 8, such as n-butane, cyclohexane, and toluene), amides (such as DMF), and ketones (3 to 9 carbon atoms, such as methyl ethyl ketone). The amount used is preferably 5 to 900% by weight, more preferably 10 to 400% by weight, even more preferably 30 to 300% by weight, based on the total weight of the monomers, and the monomer concentration is preferably 10 to 95% by weight. , more preferably 20 to 90% by weight, still more preferably 30 to 80% by weight.
乳化重合及び懸濁重合における分散媒としては、水、アルコール(例えばエタノール)、エステル(例えばプロピオン酸エチル)、軽ナフサ等が挙げられ、乳化剤としては、高級脂肪酸(炭素数10~24)金属塩(例えばオレイン酸ナトリウム及びステアリン酸ナトリウム)、高級アルコール(炭素数10~24)硫酸エステル金属塩(例えばラウリル硫酸ナトリウム)、エトキシ化テトラメチルデシンジオール、メタクリル酸スルホエチルナトリウム、メタクリル酸ジメチルアミノメチル等が挙げられる。更に安定剤としてポリビニルアルコール、ポリビニルピロリドン等を加えてもよい。
溶液又は分散液のモノマー濃度は好ましくは5~95重量%、より好ましくは10~90重量%、更に好ましくは15~85重量%であり、重合開始剤の使用量は、モノマーの全重量に基づいて好ましくは0.01~5重量%、より好ましくは0.05~2重量%である。
重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン、n-ブチルメルカプタン等)及び/又はハロゲン化炭化水素(四塩化炭素、四臭化炭素、塩化ベンジル等)を使用することができる。
Dispersion media in emulsion polymerization and suspension polymerization include water, alcohol (e.g. ethanol), ester (e.g. ethyl propionate), light naphtha, etc., and emulsifiers include higher fatty acid (carbon number 10-24) metal salts. (e.g. sodium oleate and sodium stearate), higher alcohol (10-24 carbon atoms) sulfate ester metal salt (e.g. sodium lauryl sulfate), ethoxylated tetramethyldecynediol, sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc. can be mentioned. Furthermore, polyvinyl alcohol, polyvinylpyrrolidone, etc. may be added as a stabilizer.
The monomer concentration of the solution or dispersion is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, even more preferably 15 to 85% by weight, and the amount of the polymerization initiator used is based on the total weight of the monomers. The amount is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight.
During polymerization, known chain transfer agents such as mercapto compounds (dodecyl mercaptan, n-butyl mercaptan, etc.) and/or halogenated hydrocarbons (carbon tetrachloride, carbon tetrabromide, benzyl chloride, etc.) can be used. .
被覆層を構成する高分子化合物は、該高分子化合物をカルボキシル基と反応する反応性官能基を有する架橋剤(A’){好ましくはポリエポキシ化合物(a’1)[ポリグリシジルエーテル(ビスフェノールAジグリシジルエーテル、プロピレングリコールジグリシジルエーテル及びグリセリントリグリシジルエーテル等)及びポリグリシジルアミン(N,N-ジグリシジルアニリン及び1,3-ビス(N,N-ジグリシジルアミノメチル))等]及び/又はポリオール化合物(a’2)(エチレングリコール等)}で架橋してなる架橋重合体であってもよい。 The polymer compound constituting the coating layer is a crosslinking agent (A') having a reactive functional group that reacts with a carboxyl group of the polymer compound {preferably a polyepoxy compound (a'1) [polyglycidyl ether (bisphenol A) diglycidyl ether, propylene glycol diglycidyl ether, glycerin triglycidyl ether, etc.) and polyglycidylamines (N,N-diglycidylaniline and 1,3-bis(N,N-diglycidylaminomethyl)), etc.] and/or A crosslinked polymer formed by crosslinking with a polyol compound (a'2) (ethylene glycol, etc.) may also be used.
架橋剤(A’)を用いて被覆層を構成する高分子化合物を架橋する方法としては、電極活物質粒子を、被覆層を構成する高分子化合物で被覆した後に架橋する方法が挙げられる。
具体的には、電極活物質粒子と被覆層を構成する高分子化合物を含む樹脂溶液を混合し脱溶剤することにより、被覆電極活物質粒子を製造した後に、架橋剤(A’)を含む溶液を該被覆電極活物質粒子に混合して加熱することにより、脱溶剤と架橋反応を生じさせて、被覆層を構成する高分子化合物が架橋剤(A’)によって架橋される反応を電極活物質粒子の表面で起こす方法が挙げられる。
加熱温度は、架橋剤の種類に応じて調整されるが、架橋剤としてポリエポキシ化合物(a’1)を用いる場合は好ましくは70℃以上であり、ポリオール化合物(a’2)を用いる場合は好ましくは120℃以上である。
Examples of the method of crosslinking the polymer compound constituting the coating layer using the crosslinking agent (A') include a method in which electrode active material particles are coated with the polymer compound constituting the coating layer and then crosslinked.
Specifically, after producing coated electrode active material particles by mixing electrode active material particles and a resin solution containing a polymer compound constituting the coating layer and removing the solvent, a solution containing a crosslinking agent (A') is prepared. By mixing and heating the coated electrode active material particles, a solvent removal and crosslinking reaction is caused, and a reaction in which the polymer compound constituting the coating layer is crosslinked by the crosslinking agent (A') is caused to occur in the electrode active material. One example is a method in which this occurs on the surface of particles.
The heating temperature is adjusted depending on the type of crosslinking agent, but when using the polyepoxy compound (a'1) as the crosslinking agent, it is preferably 70°C or higher, and when using the polyol compound (a'2), it is preferably 70°C or higher. Preferably it is 120°C or higher.
被覆層は、高分子化合物の他に、導電助剤及びセラミック粒子を含んでいてもよい。 The coating layer may contain a conductive aid and ceramic particles in addition to the polymer compound.
導電助剤としては、アスペクト比が2.00~7.00ではない金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック]及びこれらの混合物等が挙げられる。 Examples of conductive aids include metals with aspect ratios other than 2.00 to 7.00 [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black], and mixtures thereof. Can be mentioned.
導電助剤の重量割合は、リチウムイオン電池用被覆負極活物質粒子の重量を基準として0.5~3重量%である。 The weight proportion of the conductive additive is 0.5 to 3% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
セラミック粒子としては、金属炭化物粒子、金属酸化物粒子、ガラスセラミック粒子等が挙げられる。 Examples of the ceramic particles include metal carbide particles, metal oxide particles, glass ceramic particles, and the like.
金属炭化物粒子としては、例えば、炭化ケイ素(SiC)、炭化タングステン(WC)、炭化モリブデン(MoC)、炭化チタン(TiC)、炭化タンタル(TaC)、炭化ニオブ(NbC)、炭化バナジウム(VC)、炭化ジルコニウム(ZrC)等が挙げられる。 Examples of metal carbide particles include silicon carbide (SiC), tungsten carbide (WC), molybdenum carbide ( Mo2C ), titanium carbide (TiC), tantalum carbide (TaC), niobium carbide (NbC), and vanadium carbide (VC). ), zirconium carbide (ZrC), and the like.
金属酸化物粒子としては、例えば、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)、酸化スズ(SnO)、チタニア(TiO)、ジルコニア(ZrO)、酸化インジウム(In)、Li、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiOや、ABO(但し、Aは、Ca、Sr、Ba、La、Pr及びYからなる群より選択される少なくとも1種であり、Bは、Ni、Ti、V、Cr、Mn、Fe、Co、Mo、Ru、Rh、Pd及びReからなる群より選択される少なくとも1種である)で表されるペロブスカイト型酸化物粒子等が挙げられる。
金属酸化物粒子としては、電解液と被覆電極活物質粒子との間で起こる副反応を好適に抑制する観点から、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)、及び、四ほう酸リチウム(Li)が好ましい。
Examples of metal oxide particles include zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), tin oxide (SnO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), Indium oxide ( In2O3 ) , Li2B4O7 , Li4Ti5O12 , Li2Ti2O5 , LiTaO3 , LiNbO3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li 2 TiO 3 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 and ABO 3 (However, A is Ca, Sr, Ba, La, Pr and Y, and B is at least one selected from the group consisting of Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re. Examples include perovskite-type oxide particles represented by (which is a species).
As the metal oxide particles, zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ) and lithium tetraborate (Li 2 B 4 O 7 ) are preferred.
ガラスセラミック粒子としては、菱面体晶系を有するリチウム含有リン酸化合物であることが好ましく、その化学式は、LiM”12(X=1~1.7)で表される。
ここでM”はZr、Ti、Fe、Mn、Co、Cr、Ca、Mg、Sr、Y、Sc、Sn、La、Ge、Nb、Alからなる群より選ばれた1種以上の元素である。また、Pの一部をSi又はBに、Oの一部をF、Cl等で置換してもよい。例えば、Li1.15Ti1.85Al0.15Si0.052.9512、Li1.2Ti1.8Al0.1Ge0.1Si0.052.9512等を用いることができる。
また、異なる組成の材料を混合又は複合してもよく、ガラス電解質等で表面をコートしてもよい。又は、熱処理によりNASICON型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスセラミック粒子を用いることが好ましい。
ガラス電解質としては、特開2019-96478号公報に記載のガラス電解質等が挙げられる。
The glass ceramic particles are preferably lithium-containing phosphoric acid compounds having a rhombohedral crystal system, and the chemical formula thereof is represented by Li x M'' 2 P 3 O 12 (X=1 to 1.7).
Here, M" is one or more elements selected from the group consisting of Zr, Ti, Fe, Mn, Co, Cr, Ca, Mg, Sr, Y, Sc, Sn, La, Ge, Nb, and Al. Also, part of P may be replaced with Si or B, and part of O may be replaced with F, Cl, etc. For example, Li 1.15 Ti 1.85 Al 0.15 Si 0.05 P 2. 95 O 12 , Li 1.2 Ti 1.8 Al 0.1 Ge 0.1 Si 0.05 P 2.95 O 12 , etc. can be used.
Furthermore, materials with different compositions may be mixed or composited, and the surface may be coated with a glass electrolyte or the like. Alternatively, it is preferable to use glass ceramic particles that precipitate a crystalline phase of a lithium-containing phosphate compound having a NASICON type structure by heat treatment.
Examples of the glass electrolyte include the glass electrolyte described in JP-A-2019-96478.
ここで、ガラスセラミック粒子におけるLiOの配合割合は酸化物換算で8質量%以下であることが好ましい。
NASICON型構造でなくとも、Li、La、Mg、Ca、Fe、Co、Cr、Mn、Ti、Zr、Sn、Y、Sc、P、Si、O、In、Nb、Fからなり、LISICON型、ペロブスカイト型、β-Fe(SO型、LiIn(PO型の結晶構造を、持ち、Liイオンを室温で1×10-5S/cm以上伝導する固体電解質を用いても良い。
Here, the blending ratio of Li 2 O in the glass ceramic particles is preferably 8% by mass or less in terms of oxide.
Even if it is not a NASICON type structure, it is composed of Li, La, Mg, Ca, Fe, Co, Cr, Mn, Ti, Zr, Sn, Y, Sc, P, Si, O, In, Nb, F, and LISICON type, A solid electrolyte that has a perovskite type, β-Fe 2 (SO 4 ) 3 type, and Li 3 In 2 (PO 4 ) 3 type crystal structure and conducts Li ions at a rate of 1×10 -5 S/cm or more at room temperature. May be used.
上述したセラミック粒子は、1種単独で用いてもよいし、2種以上を併用してもよい。 The above-mentioned ceramic particles may be used alone or in combination of two or more.
セラミック粒子の体積平均粒子径は、エネルギー密度の観点及び電気抵抗値の観点から、1~1000nmであることが好ましく、1~500nmであることがより好ましく、1~150nmであることが更に好ましい。 The volume average particle diameter of the ceramic particles is preferably from 1 to 1000 nm, more preferably from 1 to 500 nm, even more preferably from 1 to 150 nm, from the viewpoint of energy density and electrical resistance value.
セラミック粒子の重量割合は、被覆電極活物質粒子の重量を基準として0.5~5.0重量%であることが好ましい。
セラミック粒子を上記範囲で含有することにより、電解液と被覆電極活物質粒子との間で起こる副反応を好適に抑制することができる。
セラミック粒子の重量割合は、被覆電極活物質粒子の重量を基準として2.0~4.0重量%であることがより好ましい。
The weight proportion of the ceramic particles is preferably 0.5 to 5.0% by weight based on the weight of the coated electrode active material particles.
By containing the ceramic particles in the above range, side reactions occurring between the electrolytic solution and the coated electrode active material particles can be suitably suppressed.
The weight proportion of the ceramic particles is more preferably 2.0 to 4.0% by weight based on the weight of the coated electrode active material particles.
被覆電極活物質粒子は、被覆層が2層以上であってもよい。被覆層が2層以上である場合、各被覆層に含まれる高分子化合物の組成は同じであってもよいし、異なっていてもよい。
また、被覆層に導電性フィラーが含まれる場合、各被覆層に含まれる導電性フィラーの種類は同じであってもよいし、異なっていてもよい。
また、被覆層に導電助剤及びセラミック粒子が含まれる場合、各被覆層に含まれる導電助剤及びセラミック粒子の種類は同じであってもよいし、異なっていてもよい。
The coated electrode active material particles may have two or more coating layers. When there are two or more coating layers, the composition of the polymer compound contained in each coating layer may be the same or different.
Moreover, when a conductive filler is contained in a coating layer, the type of conductive filler contained in each coating layer may be the same or different.
Furthermore, when the coating layer contains a conductive additive and ceramic particles, the types of the conductive additive and ceramic particles contained in each coating layer may be the same or different.
被覆電極活物質粒子の製造方法は、例えば、電極活物質粒子、高分子化合物、導電性フィラー、任意で使用するセラミック粒子及び有機溶剤を混合した後に脱溶剤する工程を有することが好ましい。 The method for producing coated electrode active material particles preferably includes, for example, a step of mixing electrode active material particles, a polymer compound, a conductive filler, optionally used ceramic particles, and an organic solvent, and then removing the solvent.
有機溶剤としては高分子化合物を溶解可能な有機溶剤であれば特に限定されず、公知の有機溶剤を適宜選択して用いることができる。 The organic solvent is not particularly limited as long as it can dissolve the polymer compound, and any known organic solvent can be appropriately selected and used.
被覆電極活物質粒子の製造方法では、まず、電極活物質粒子、被覆層を構成する高分子化合物、導電性フィラー及び任意で使用するセラミック粒子を有機溶剤中で混合する。
電極活物質粒子、被覆層を構成する高分子化合物、導電性フィラー及びセラミック粒子を混合する順番は特に限定されず、例えば、事前に混合した被覆層を構成する高分子化合物と導電性フィラーとセラミック粒子とからなる樹脂組成物を、電極活物質粒子と更に混合してもよいし、電極活物質粒子、被覆層を構成する高分子化合物、導電性フィラー及びセラミック粒子を同時に混合してもよいし、電極活物質粒子に被覆層を構成する高分子化合物を混合し、更に導電性フィラー及びセラミック粒子を混合してもよい。
In the method for producing coated electrode active material particles, first, electrode active material particles, a polymer compound constituting the coating layer, a conductive filler, and optionally used ceramic particles are mixed in an organic solvent.
The order in which the electrode active material particles, the polymer compound forming the coating layer, the conductive filler, and the ceramic particles are mixed is not particularly limited. For example, the polymer compound forming the coating layer, the conductive filler, and the ceramic are mixed in advance. The resin composition consisting of the particles may be further mixed with the electrode active material particles, or the electrode active material particles, the polymer compound constituting the coating layer, the conductive filler, and the ceramic particles may be mixed at the same time. Alternatively, a polymer compound constituting the coating layer may be mixed with the electrode active material particles, and further a conductive filler and ceramic particles may be mixed therein.
被覆電極活物質粒子は、電極活物質粒子を、高分子化合物と導電性フィラーと任意で使用するセラミック粒子とを含む被覆層で被覆することで得ることができ、例えば、電極活物質粒子を万能混合機に入れて30~500rpmで撹拌した状態で、被覆層を構成する高分子化合物を含む樹脂溶液を1~90分かけて滴下混合し、導電性フィラー及びセラミック粒子を使用する場合はこれらを混合し、撹拌したまま50~200℃に昇温し、0.007~0.04MPaまで減圧した後に10~150分保持して脱溶剤することにより得ることができる。 The coated electrode active material particles can be obtained by coating the electrode active material particles with a coating layer containing a polymer compound, a conductive filler, and optionally used ceramic particles. Place in a mixer and stir at 30 to 500 rpm, dropwise mix the resin solution containing the polymer compound constituting the coating layer over 1 to 90 minutes, and if conductive filler and ceramic particles are used, add them. It can be obtained by mixing, raising the temperature to 50 to 200°C while stirring, reducing the pressure to 0.007 to 0.04 MPa, and holding for 10 to 150 minutes to remove the solvent.
被覆電極活物質粒子の被覆層が2層である場合、例えば上記の方法に従って第1の被覆層を形成した後、第2の被覆層を構成する高分子化合物を含む樹脂溶液、導電性フィラー及びセラミック粒子を用いて、上記の方法と同じ手順で第1の被覆層の上に第2の被覆層が設けられた被覆電極活物質粒子を得ることができる。被覆電極活物質粒子の被覆層が3層以上である場合も同様の方法で、電極活物質粒子の表面に被覆層を形成することによって被覆電極活物質粒子を得ることができる。 When the coated electrode active material particles have two coating layers, for example, after forming the first coating layer according to the above method, a resin solution containing a polymer compound constituting the second coating layer, a conductive filler and Using ceramic particles, coated electrode active material particles in which a second coating layer is provided on a first coating layer can be obtained by the same procedure as the above method. Even when the coated electrode active material particles have three or more coating layers, the coated electrode active material particles can be obtained by forming a coating layer on the surface of the electrode active material particles using the same method.
電極活物質粒子と、被覆層を構成する高分子化合物、導電性フィラー及び任意で使用するセラミック粒子とを含む樹脂組成物との配合比率は特に限定されるものではないが、重量比率で電極活物質粒子:樹脂組成物=1:0.001~0.1であることが好ましい。 The blending ratio of the electrode active material particles and the resin composition containing the polymer compound, conductive filler, and optionally used ceramic particles constituting the coating layer is not particularly limited; It is preferable that the ratio of material particles to resin composition is 1:0.001 to 0.1.
電極活物質粒子は、表面の少なくとも一部が被覆層で被覆されている。
電極活物質粒子は、充放電性能を好適に付与する観点から、下記計算式で得られる被覆率が10~90%であることが好ましく、15~65%であることがより好ましい。
被覆率(%)={1-[被覆電極活物質粒子のBET比表面積/(電極活物質粒子のBET比表面積×被覆電極活物質粒子中に含まれる電極活物質粒子の重量割合+導電性フィラーのBET比表面積×被覆電極活物質粒子中に含まれる導電性フィラーの重量割合+セラミック粒子のBET比表面積×被覆電極活物質粒子中に含まれるセラミック粒子の重量割合)]}×100
At least a portion of the surface of the electrode active material particles is coated with a coating layer.
The electrode active material particles preferably have a coverage rate of 10 to 90%, more preferably 15 to 65%, obtained by the following calculation formula, from the viewpoint of suitably imparting charge/discharge performance.
Coverage rate (%) = {1-[BET specific surface area of coated electrode active material particles/(BET specific surface area of electrode active material particles x weight percentage of electrode active material particles contained in coated electrode active material particles + conductive filler) BET specific surface area x weight percentage of conductive filler contained in coated electrode active material particles + BET specific surface area of ceramic particles x weight percentage of ceramic particles contained in coated electrode active material particles)} x 100
ここで上記計算式について詳しく説明する。
「電極活物質粒子のBET比表面積×被覆電極活物質粒子中に含まれる電極活物質粒子の重量割合」は、被覆電極活物質粒子中に含まれる電極活物質粒子の表面積に相当する。
また、「導電性フィラーのBET比表面積×被覆電極活物質粒子中に含まれる導電性フィラーの重量割合」は、被覆電極活物質粒子中に含まれる導電性フィラーの表面積に相当する。
更に、「セラミック粒子のBET比表面積×被覆電極活物質粒子中に含まれるセラミック粒子の重量割合」は、被覆電極活物質粒子中に含まれるセラミック粒子の表面積に相当する。
したがって、「電極活物質粒子のBET比表面積×被覆電極活物質粒子中に含まれる電極活物質粒子の重量割合+導電性フィラーのBET比表面積×被覆電極活物質粒子中に含まれる導電性フィラーの重量割合+セラミック粒子のBET比表面積×被覆電極活物質粒子中に含まれるセラミック粒子の重量割合」は、[被覆電極活物質粒子に含まれる被覆前の材料(電極活物質粒子+導電性フィラー+セラミック粒子)の表面積の合計]に相当する。
Here, the above calculation formula will be explained in detail.
"BET specific surface area of electrode active material particles x weight ratio of electrode active material particles contained in covered electrode active material particles" corresponds to the surface area of electrode active material particles contained in covered electrode active material particles.
Further, "BET specific surface area of conductive filler x weight ratio of conductive filler contained in coated electrode active material particles" corresponds to the surface area of conductive filler contained in coated electrode active material particles.
Furthermore, "BET specific surface area of ceramic particles x weight percentage of ceramic particles contained in coated electrode active material particles" corresponds to the surface area of ceramic particles contained in coated electrode active material particles.
Therefore, "BET specific surface area of electrode active material particles x weight percentage of electrode active material particles contained in coated electrode active material particles + BET specific surface area of conductive filler x amount of conductive filler contained in coated electrode active material particles""Weight percentage + BET specific surface area of ceramic particles x weight percentage of ceramic particles contained in coated electrode active material particles" is calculated as follows: ceramic particles).
これに対して、「被覆電極活物質粒子のBET比表面積」は、[(電極活物質粒子のうち、樹脂で覆われていない部分の表面積)+(導電性フィラーのうち、樹脂で覆われていない部分の表面積)+(セラミック粒子のうち、樹脂で覆われていない部分の表面積)+(樹脂の表面積)]で表される。
そして、(樹脂の表面積)が、(電極活物質粒子の表面積)、(導電性フィラーの表面積)及び(セラミック粒子の表面積)と比較して極めて小さいことから、(樹脂の表面積)を「ゼロ」とすると、「被覆電極活物質粒子のBET比表面積」は、[(電極活物質粒子のうち、樹脂で覆われていない部分の表面積)+(導電性フィラーのうち、樹脂で覆われていない部分の表面積)+(セラミック粒子のうち、樹脂で覆われていない部分の表面積)]で表される。
On the other hand, "BET specific surface area of coated electrode active material particles" is [(Surface area of the part of the electrode active material particles not covered with resin) + (Surface area of the part of the conductive filler not covered with resin). (Surface area of the part not covered with resin) + (Surface area of the part of the ceramic particles not covered with resin) + (Surface area of resin)]
Since (the surface area of the resin) is extremely small compared to (the surface area of the electrode active material particles), (the surface area of the conductive filler), and (the surface area of the ceramic particles), (the surface area of the resin) is set to "zero". Then, "BET specific surface area of coated electrode active material particles" is [(Surface area of the part of the electrode active material particles not covered with resin) + (part of the conductive filler not covered with resin) surface area) + (surface area of the portion of the ceramic particles not covered with resin)].
すなわち、被覆電極活物質粒子を構成する材料(電極活物質粒子+導電性フィラー+セラミック粒子)の、被覆前の総表面積が「電極活物質粒子のBET比表面積×被覆電極活物質粒子中に含まれる電極活物質粒子の重量割合+導電性フィラーのBET比表面積×被覆電極活物質粒子中に含まれる導電性フィラーの重量割合+セラミック粒子のBET比表面積×被覆電極活物質粒子中に含まれるセラミック粒子の重量割合」であり、樹脂により被覆された後の「樹脂で被覆されていない部分」の総表面積が「被覆電極活物質粒子のBET比表面積」である。
そのため、「被覆電極活物質粒子のBET比表面積」を「電極活物質粒子のBET比表面積×被覆電極活物質粒子中に含まれる電極活物質粒子の重量割合+導電性フィラーのBET比表面積×被覆電極活物質粒子中に含まれる導電性フィラーの重量割合+セラミック粒子のBET比表面積×被覆電極活物質粒子中に含まれるセラミック粒子の重量割合」で割った値は、被覆電極活物質粒子を構成する電極活物質粒子、導電性フィラー及びセラミック粒子の表面のうち、「樹脂で覆われていない部分」の表面の割合となる。
そして、1から[被覆電極活物質粒子を構成する電極活物質粒子、導電性フィラー及びセラミック粒子の表面のうち、「樹脂で覆われていない部分」の表面の割合]を引くことにより、被覆電極活物質粒子を構成する電極活物質粒子、導電性フィラー及びセラミック粒子の表面のうち「樹脂で覆われている部分」の面積の割合を求めることができる。
In other words, the total surface area of the materials constituting the coated electrode active material particles (electrode active material particles + conductive filler + ceramic particles) before coating is calculated by "BET specific surface area of the electrode active material particles x contained in the coated electrode active material particles. Weight percentage of electrode active material particles + BET specific surface area of conductive filler x weight percentage of conductive filler contained in coated electrode active material particles + BET specific surface area of ceramic particles x ceramic contained in coated electrode active material particles The total surface area of the "parts not covered with resin" after being coated with the resin is the "BET specific surface area of the coated electrode active material particles."
Therefore, "BET specific surface area of coated electrode active material particles" is calculated as "BET specific surface area of electrode active material particles x weight percentage of electrode active material particles contained in coated electrode active material particles + BET specific surface area of conductive filler x coating". The value divided by "weight percentage of conductive filler contained in electrode active material particles + BET specific surface area of ceramic particles x weight percentage of ceramic particles contained in coated electrode active material particles" is the value that constitutes the coated electrode active material particles. This is the percentage of the surface of the "portion not covered with resin" among the surfaces of the electrode active material particles, conductive filler, and ceramic particles.
Then, the coated electrode The ratio of the area of the "portion covered with resin" among the surfaces of the electrode active material particles, conductive filler, and ceramic particles that constitute the active material particles can be determined.
(リチウムイオン電池用電極)
本発明のリチウムイオン電池用電極組成物は、電解質及び溶媒を含有する電解液と組み合わせることにより、電極活物質層を形成することができる。
また、電極活物質層は、集電体と組み合わせることにより、リチウムイオン電池用電極を形成することができる。
(Lithium ion battery electrode)
The electrode composition for lithium ion batteries of the present invention can form an electrode active material layer by combining with an electrolytic solution containing an electrolyte and a solvent.
Moreover, the electrode active material layer can form a lithium ion battery electrode by combining with a current collector.
上述した電解質及び溶媒、並びに、集電体としては、公知のリチウムイオン電池で用いられている電解質及び溶媒、並びに、集電体を適宜選択して用いることができる。 As the electrolyte, solvent, and current collector described above, electrolytes, solvents, and current collectors used in known lithium ion batteries can be appropriately selected and used.
電極活物質層は、結着剤を含まないことが好ましい。
なお、本明細書において、結着剤とは、被覆電極活物質粒子同士及び被覆電極活物質粒子と集電体とを可逆的に固定することができない薬剤を意味し、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレンブタジエンゴム、ポリエチレン及びポリプロピレン等の公知の溶剤乾燥型のリチウムイオン電池用結着剤等が挙げられる。
これらの結着剤は、溶剤に溶解又は分散して用いられ、溶剤を揮発、留去することで固体化して、被覆電極活物質粒子同士及び被覆電極活物質粒子と集電体とを不可逆的に固定するものである。
Preferably, the electrode active material layer does not contain a binder.
In addition, in this specification, a binder means a drug that cannot reversibly fix coated electrode active material particles or coated electrode active material particles and a current collector, and includes starch, polyvinylidene fluoride, Examples include known solvent-dried binders for lithium ion batteries such as polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, and polypropylene.
These binders are used by being dissolved or dispersed in a solvent, and are solidified by volatilizing or distilling off the solvent, thereby irreversibly binding the coated electrode active material particles to each other and the coated electrode active material particles to the current collector. It is to be fixed at
電極活物質層には、粘着性樹脂が含まれていてもよい。
粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性を有する樹脂を意味し、結着剤とは異なる材料であり、区別される。
また、被覆電極活物質粒子を構成する被覆層が電極活物質粒子の表面に固定されているのに対して、粘着性樹脂は電極活物質粒子の表面同士を可逆的に固定するものである。電極活物質粒子の表面から粘着性樹脂は容易に分離できるが、被覆層は容易に分離できない。
従って、上記被覆層と上記粘着性樹脂は異なる材料である。
The electrode active material layer may contain adhesive resin.
Adhesive resin refers to a resin that does not solidify even after drying after volatilizing the solvent component and remains adhesive, and is a different material from a binder and is distinguished from it.
Further, while the coating layer constituting the covered electrode active material particles is fixed to the surface of the electrode active material particles, the adhesive resin reversibly fixes the surfaces of the electrode active material particles to each other. Although the adhesive resin can be easily separated from the surface of the electrode active material particles, the coating layer cannot be easily separated.
Therefore, the coating layer and the adhesive resin are different materials.
粘着性樹脂としては、酢酸ビニル、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、ブチルアクリレート及びブチルメタクリレートからなる群から選択された少なくとも1種の低Tgモノマーを必須構成単量体として含み上記低Tgモノマーの合計重量割合が構成単量体の合計重量に基づいて45重量%以上である重合体が挙げられる。
粘着性樹脂を用いる場合、電極活物質粒子の合計重量に対して0.01~10重量%の粘着性樹脂を用いることが好ましい。
The adhesive resin contains as an essential constituent monomer at least one low Tg monomer selected from the group consisting of vinyl acetate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, butyl acrylate, and butyl methacrylate. Examples include polymers in which the total weight proportion of is 45% by weight or more based on the total weight of the constituent monomers.
When using an adhesive resin, it is preferable to use 0.01 to 10% by weight of the adhesive resin based on the total weight of the electrode active material particles.
電極活物質層の厚みは、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 From the viewpoint of battery performance, the thickness of the electrode active material layer is preferably 150 to 600 μm, more preferably 200 to 450 μm.
電極活物質層には、上述した被覆電極活物質粒子以外に、他の種類の電極活物質粒子を含んでもよく、電池のサイクル特性に影響のない範囲で配合させることができる。
電極活物質粒子としては、上述した正極活物質粒子又は負極活物質粒子を用いることができる。
また、上記他の種類の電極活物質粒子は、被覆電極活物質粒子であってもよい。
The electrode active material layer may contain other types of electrode active material particles in addition to the above-mentioned coated electrode active material particles, and can be blended within a range that does not affect the cycle characteristics of the battery.
As the electrode active material particles, the above-mentioned positive electrode active material particles or negative electrode active material particles can be used.
Further, the other types of electrode active material particles may be coated electrode active material particles.
電極集電体の厚さは、特に限定されないが、5~150μmであることが好ましい。 The thickness of the electrode current collector is not particularly limited, but is preferably 5 to 150 μm.
リチウムイオン電池用電極は、例えば、本発明のリチウムイオン電池用電極組成物を集電体に塗布しプレス機でプレスして電極活物質層を形成した後に電解液を注液することによって作製することができる。
また、本発明のリチウムイオン電池用電極組成物を離型フィルム上に塗布、プレスして電極活物質層を形成し、電極活物質層を集電体に転写した後、電解液を注液してもよい。
The electrode for a lithium ion battery is produced, for example, by applying the electrode composition for a lithium ion battery of the present invention on a current collector, pressing it with a press to form an electrode active material layer, and then pouring an electrolyte solution. be able to.
Further, the electrode composition for lithium ion batteries of the present invention is applied onto a release film and pressed to form an electrode active material layer, and after the electrode active material layer is transferred to a current collector, an electrolytic solution is poured. You can.
<リチウムイオン電池>
リチウムイオン電池は、上述したリチウムイオン電池用電極と、セパレータと、対極となる電極とを備えることが好ましい。
<Lithium ion battery>
The lithium ion battery preferably includes the above-described lithium ion battery electrode, a separator, and an electrode serving as a counter electrode.
セパレータとしては、ポリエチレン又はポリプロピレン製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。 Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene films and porous polypropylene, nonwoven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces. Examples include known separators for lithium ion batteries, such as those to which fine ceramic particles of alumina, titania, etc. are attached.
対極となる電極としては特に限定されず、上述したリチウムイオン電池用電極であってもよく、公知のリチウムイオン電池で用いられている電極を適宜選択して用いることができる。 The electrode serving as the counter electrode is not particularly limited, and may be the electrode for lithium ion batteries described above, and electrodes used in known lithium ion batteries can be appropriately selected and used.
リチウムイオン電池は、例えば、上述したリチウムイオン電池用電極、セパレータ、対極となる電極をこの順に重ね合わせた後、必要に応じて電解液を注入することにより製造することができる。 A lithium ion battery can be manufactured by, for example, stacking the above-described lithium ion battery electrode, separator, and counter electrode in this order, and then injecting an electrolyte as necessary.
本明細書には以下の事項が開示されている。 The following items are disclosed in this specification.
本開示(1)は導電性フィラーを含有するリチウムイオン電池用電極組成物であって、前記導電性フィラーは、異なるアスペクト比を有する2種以上からなり、前記導電性フィラーのアスペクト比は、いずれも2.00~7.00であるリチウムイオン電池用電極組成物である。 The present disclosure (1) is an electrode composition for a lithium ion battery containing a conductive filler, wherein the conductive filler is composed of two or more types having different aspect ratios, and the aspect ratio of the conductive filler is This is an electrode composition for a lithium ion battery in which the average number is 2.00 to 7.00.
本開示(2)は前記導電性フィラーが、薄片状黒鉛と繊維状黒鉛とからなる本開示(1)に記載のリチウムイオン電池用電極組成物である。 The present disclosure (2) is the electrode composition for a lithium ion battery according to the present disclosure (1), in which the conductive filler includes flaky graphite and fibrous graphite.
本開示(3)は前記導電性フィラーの重量割合が、前記リチウムイオン電池用電極組成物の重量を基準として1~6重量%である本開示(1)又は(2)に記載のリチウムイオン電池用電極組成物である。 The present disclosure (3) is the lithium ion battery according to the present disclosure (1) or (2), wherein the weight percentage of the conductive filler is 1 to 6% by weight based on the weight of the lithium ion battery electrode composition. It is an electrode composition for
本開示(4)は電極活物質粒子の表面の少なくとも一部が高分子化合物を含む被覆層で被覆された被覆電極活物質粒子を含有し、前記導電性フィラーが、前記被覆層中と前記被覆層外とに含有されている本開示(1)~(3)のいずれかとの任意の組合せのリチウムイオン電池用電極組成物である。 The present disclosure (4) includes coated electrode active material particles in which at least a part of the surface of the electrode active material particles is coated with a coating layer containing a polymer compound, and the conductive filler is contained in the coating layer and in the coating. This is an electrode composition for a lithium ion battery in any combination of any one of (1) to (3) of the present disclosure contained outside the layer.
次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 EXAMPLES Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the examples unless it departs from the gist of the present invention. In addition, unless otherwise specified, parts mean parts by weight, and % means weight %.
<導電性フィラー>
導電性フィラーとして、以下の材料を用いた。
(導電性フィラーA)
アセチレンブラック(アスペクト比:1.0)
(導電性フィラーB)
薄片状黒鉛(アスペクト比:2.2)
(導電性フィラーC)
繊維状黒鉛(アスペクト比:6.6)
(導電性フィラーD)
カーボンナノファイバー(アスペクト比:17.0)
<正極活物質粒子>
LiNi0.8Co0.15Al0.05粉末(体積平均粒子径4μm)
<セラミック粒子>
二酸化ケイ素(AEROSIL 200、日本アエロジル(株)製)
<導電助剤>
導電助剤A(ケッチェンブラック、EC300J、ライオン・スペシャリティ・ケミカルズ(株)製、アスペクト比:1.0)
導電助剤B(炭素繊維、ドナカーボ・ミルド S-243、大阪ガスケミカル(株)製、アスペクト比:9.8)
<Conductive filler>
The following materials were used as the conductive filler.
(Conductive filler A)
Acetylene black (aspect ratio: 1.0)
(Conductive filler B)
Flaky graphite (aspect ratio: 2.2)
(Conductive filler C)
Fibrous graphite (aspect ratio: 6.6)
(Conductive filler D)
Carbon nanofiber (aspect ratio: 17.0)
<Cathode active material particles>
LiNi 0.8 Co 0.15 Al 0.05 O 2 powder (volume average particle diameter 4 μm)
<Ceramic particles>
Silicon dioxide (AEROSIL 200, manufactured by Nippon Aerosil Co., Ltd.)
<Conductivity aid>
Conductive aid A (Ketjen Black, EC300J, manufactured by Lion Specialty Chemicals Co., Ltd., aspect ratio: 1.0)
Conductive aid B (carbon fiber, Dona Carbo Milled S-243, manufactured by Osaka Gas Chemical Co., Ltd., aspect ratio: 9.8)
<被覆用高分子化合物の作製>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF150部を仕込み、75℃に昇温した。次いで、アクリル酸91部、メタクリル酸メチル9部及びDMF50部を配合した単量体組成物と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.3部及び2,2’-アゾビス(2-メチルブチロニトリル)0.8部をDMF30部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで、80℃に昇温して反応を3時間継続し、樹脂濃度30%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して150℃、0.01MPaで3時間の減圧乾燥を行い、DMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の被覆用高分子化合物を得た。
<Preparation of polymer compound for coating>
150 parts of DMF was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 75°C. Next, a monomer composition containing 91 parts of acrylic acid, 9 parts of methyl methacrylate, and 50 parts of DMF, and 0.3 part of 2,2'-azobis(2,4-dimethylvaleronitrile) and 2,2'- An initiator solution prepared by dissolving 0.8 parts of azobis(2-methylbutyronitrile) in 30 parts of DMF was continuously added dropwise into a four-necked flask using a dropping funnel over 2 hours under stirring while blowing nitrogen. Radical polymerization was performed. After the dropwise addition was completed, the reaction was continued at 75°C for 3 hours. Next, the temperature was raised to 80°C and the reaction was continued for 3 hours to obtain a copolymer solution with a resin concentration of 30%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 150° C. and 0.01 MPa for 3 hours, and DMF was distilled off to obtain a copolymer. This copolymer was roughly pulverized with a hammer, and then further pulverized in a mortar to obtain a powdery coating polymer compound.
(実施例1)
被覆用高分子化合物1部をDMF3部に溶解し、被覆用高分子化合物溶液を得た。
正極活物質粒子(LiNi0.8Co0.15Al0.05粉末、体積平均粒子径4μm)88.0部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、被覆用高分子化合物溶液15.2部を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電性フィラーである導電性フィラーB3.0部、導電性フィラーC2.0部、二酸化ケイ素(AEROSIL 200、日本アエロジル(株)製)2.0部、並びに、導電助剤A(ケッチェンブラック、EC300J、ライオン・スペシャリティ・ケミカルズ(株)製)0.7部、導電助剤B(炭素繊維、ドナカーボ・ミルド S-243、大阪ガスケミカル(株)製)0.5部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、被覆正極活物質粒子であるリチウムイオン電池用電極組成物を作製した。
(Example 1)
One part of the coating polymer compound was dissolved in 3 parts of DMF to obtain a coating polymer compound solution.
88.0 parts of positive electrode active material particles (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 μm) were placed in a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.]. While stirring at room temperature and 720 rpm, 15.2 parts of the coating polymer compound solution was added dropwise over 2 minutes, followed by further stirring for 5 minutes.
Next, in a stirred state, 3.0 parts of conductive filler B, 2.0 parts of conductive filler C, 2.0 parts of silicon dioxide (AEROSIL 200, manufactured by Nippon Aerosil Co., Ltd.), and a conductive additive were added. A (Ketjen Black, EC300J, manufactured by Lion Specialty Chemicals Co., Ltd.) 0.7 part, conductive aid B (carbon fiber, Dona Carbo Milled S-243, manufactured by Osaka Gas Chemicals Co., Ltd.) 0.5 part was added in portions over 2 minutes, and stirring was continued for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to prepare an electrode composition for a lithium ion battery, which is coated positive electrode active material particles.
(実施例2~8、比較例1~6)
各材料の添加量を表1に記載のように変更したこと以外は、実施例1と同様にしてリチウムイオン電池用電極組成物を作製した。
(Examples 2 to 8, Comparative Examples 1 to 6)
An electrode composition for a lithium ion battery was produced in the same manner as in Example 1, except that the amounts of each material added were changed as shown in Table 1.
(実施例9)
被覆用高分子化合物1部をDMF3部に溶解し、被覆用高分子化合物溶液を得た。
正極活物質粒子(LiNi0.8Co0.15Al0.05粉末、体積平均粒子径4μm)89.0部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、被覆用高分子化合物溶液15.2部を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電性フィラーC1.0部、二酸化ケイ素(AEROSIL 200、日本アエロジル(株)製)2.0部、並びに、導電助剤A(ケッチェンブラック、EC300J、ライオン・スペシャリティ・ケミカルズ(株)製)0.7部、導電助剤B(炭素繊維、ドナカーボ・ミルド S-243、大阪ガスケミカル(株)製)0.5部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
導電性フィラーB3.0部を添加し、得られた粉体を目開き200μmの篩いで分級し、被覆正極活物質粒子であるリチウムイオン電池用電極組成物を作製した。
(Example 9)
One part of the coating polymer compound was dissolved in 3 parts of DMF to obtain a coating polymer compound solution.
Put 89.0 parts of positive electrode active material particles (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 μm) into a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.]. While stirring at room temperature and 720 rpm, 15.2 parts of the coating polymer compound solution was added dropwise over 2 minutes, followed by further stirring for 5 minutes.
Next, in a stirred state, 1.0 part of conductive filler C, 2.0 parts of silicon dioxide (AEROSIL 200, manufactured by Nippon Aerosil Co., Ltd.), and conductive additive A (Ketjen Black, EC300J, Lion Specialty Chemicals) were added. Co., Ltd.) and 0.5 part of conductive aid B (carbon fiber, Dona Carbo Milled S-243, Osaka Gas Chemical Co., Ltd.) were added in portions over 2 minutes, and stirred for 30 minutes. continued.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
3.0 parts of conductive filler B was added, and the resulting powder was classified using a sieve with an opening of 200 μm to prepare an electrode composition for a lithium ion battery, which is coated positive electrode active material particles.
(実施例10、12)
導電性フィラーの種類、及び、添加量を表1に記載のように変更したこと以外は、実施例9と同様にしてリチウムイオン電池用電極組成物を作製した。
なお、表1に記載の被覆層内と記載の導電性フィラーは、二酸化ケイ素や導電助剤と同じ段階で添加したものであり、被覆層外と記載の導電性フィラーは、揮発分を留去後分級前に添加した導電性フィラーである。
(Example 10, 12)
An electrode composition for a lithium ion battery was produced in the same manner as in Example 9, except that the type of conductive filler and the amount added were changed as shown in Table 1.
In addition, the conductive filler described as inside the coating layer in Table 1 was added at the same stage as silicon dioxide and the conductive additive, and the conductive filler described as outside the coating layer was added after volatile content was distilled off. This is a conductive filler added before post-classification.
(実施例11)
正極活物質粒子(LiNi0.8Co0.15Al0.05粉末、体積平均粒子径4μm)92.8部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、導電性フィラーB3.0部、導電性フィラーC1.0部、二酸化ケイ素(AEROSIL 200、日本アエロジル(株)製)2.0部、並びに、導電助剤A(ケッチェンブラック、EC300J、ライオン・スペシャリティ・ケミカルズ(株)製)0.7部、導電助剤B(炭素繊維、ドナカーボ・ミルド S-243、大阪ガスケミカル(株)製)0.5部を分割しながら2分間で投入し、30分撹拌を継続した。
得られた粉体を目開き200μmの篩いで分級し、正極活物質粒子であるリチウムイオン電池用電極組成物を作製した。
(Example 11)
92.8 parts of positive electrode active material particles (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 μm) were placed in a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.]. While stirring at room temperature and 720 rpm, 3.0 parts of conductive filler B, 1.0 part of conductive filler C, 2.0 parts of silicon dioxide (AEROSIL 200, manufactured by Nippon Aerosil Co., Ltd.), and conductive aid A ( Divide 0.7 parts of Ketjen Black, EC300J, manufactured by Lion Specialty Chemicals Co., Ltd., and 0.5 parts of conductive aid B (carbon fiber, Dona Carbo Milled S-243, manufactured by Osaka Gas Chemicals Co., Ltd.). The mixture was added over 2 minutes while stirring, and stirring was continued for 30 minutes.
The obtained powder was classified using a sieve with an opening of 200 μm to prepare an electrode composition for a lithium ion battery, which is a positive electrode active material particle.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<電子伝導性評価>
[電解液の作製]
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSO(LiFSI)を2mol/Lの割合で溶解させた溶液を電解液とした。
<Electronic conductivity evaluation>
[Preparation of electrolyte]
An electrolytic solution was prepared by dissolving LiN(FSO 2 ) 2 (LiFSI) at a ratio of 2 mol/L in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) (volume ratio 1:1).
[集電体の作製]
2軸押出機にて、ポリプロピレン[商品名「サンアロマーPL500A」、サンアロマー(株)製]70部、カーボンナノチューブ[商品名「FloTube9000」、CNano社製]25部及び分散剤[商品名「ユーメックス1001」、三洋化成工業(株)製]5部を200℃、200rpmの条件で溶融混練して樹脂混合物を得た。
得られた樹脂混合物を、Tダイ押出しフィルム成形機に通して、それを延伸圧延することで、膜厚100μmの樹脂集電体用導電性フィルムを得た。次いで、得られた樹脂集電体用導電性フィルムを直径15mm又は16mmの円形となるように切断し、片面にニッケル蒸着を施した後、電流取り出し用の端子(5mm×3cm)を接続した樹脂集電体を得た。
なお、直径15mmの円形の樹脂集電体を正極用樹脂集電体として用い、直径16mmの円形の樹脂集電体を樹脂集電体として用いた。
[Preparation of current collector]
In a twin-screw extruder, 70 parts of polypropylene [trade name "Sun Allomer PL500A", manufactured by Sun Allomer Co., Ltd.], 25 parts of carbon nanotubes [trade name "FloTube9000", manufactured by CNano], and a dispersant [trade name "Yumex 1001"] were added. , manufactured by Sanyo Chemical Industries, Ltd.] were melt-kneaded at 200° C. and 200 rpm to obtain a resin mixture.
The obtained resin mixture was passed through a T-die extrusion film forming machine and stretched and rolled to obtain a conductive film for a resin current collector having a thickness of 100 μm. Next, the obtained conductive film for a resin current collector was cut into a circular shape with a diameter of 15 mm or 16 mm, one side was evaporated with nickel, and a terminal (5 mm x 3 cm) for current extraction was connected to the resin. A current collector was obtained.
Note that a circular resin current collector with a diameter of 15 mm was used as the resin current collector for the positive electrode, and a circular resin current collector with a diameter of 16 mm was used as the resin current collector.
[リチウムイオン電池用正極の作製]
(実施例1~10、12、比較例1~6)
作製したリチウムイオン電池用電極組成物のそれぞれを、Φ15mmの金型上に正極活物質粒子の目付量が50mg/cmになるように充填し、プレス機(HANDTAB-100T15、市橋精機(株)製)で1ton/cmの圧力で打錠成形して正極活物質層(厚さが213μm)を形成し、電解液50μlを上から注液した後、上記樹脂集電体の片面に積層してリチウムイオン電池用正極(直径15mmの円形)を作製した。
[Preparation of positive electrode for lithium ion battery]
(Examples 1 to 10, 12, Comparative Examples 1 to 6)
Each of the prepared electrode compositions for lithium ion batteries was filled into a mold with a diameter of 15 mm so that the basis weight of the positive electrode active material particles was 50 mg/cm 2 , and a press machine (HANDTAB-100T15, Ichihashi Seiki Co., Ltd.) was used. A positive electrode active material layer (thickness: 213 μm) was formed by tablet-forming at a pressure of 1 ton/cm 2 (manufactured by J.D. Co., Ltd.), and after pouring 50 μl of electrolyte from above, it was laminated on one side of the resin current collector. A positive electrode for a lithium ion battery (circular with a diameter of 15 mm) was produced.
(実施例11)
作製したリチウムイオン電池用電極組成物と電解液50μlとを粉体混合機にて撹拌して得られた混合物を、Φ15mmの金型上に正極活物質粒子の目付量が50mg/cmになるように充填し、プレス機(HANDTAB-100T15、市橋精機(株)製)で1ton/cmの圧力で打錠成形して正極活物質層(厚さが213μm)を形成し、電解液50μlを上から注液した後、上記樹脂集電体の片面に積層してリチウムイオン電池用正極(直径15mmの円形)を作製した。
(Example 11)
The prepared electrode composition for lithium ion batteries and 50 μl of electrolyte were stirred using a powder mixer, and the resulting mixture was placed on a mold of Φ15 mm so that the basis weight of the positive electrode active material particles was 50 mg/cm 2 . A positive electrode active material layer (thickness: 213 μm) was formed by tableting with a press machine (HANDTAB-100T15, manufactured by Ichihashi Seiki Co., Ltd.) at a pressure of 1 ton/cm 2 , and 50 μl of the electrolyte was added. After injecting the solution from above, it was laminated on one side of the resin current collector to produce a positive electrode for a lithium ion battery (circular with a diameter of 15 mm).
[被覆負極活物質粒子の作製]
上述した被覆用高分子化合物1部をDMF3部に溶解し、被覆用高分子化合物溶液を得た。
負極活物質粒子(ハードカーボン粉末、体積平均粒子径25μm)80.04部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、被覆用高分子化合物溶液37.92部を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電助剤であるアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)]9.48部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、被覆負極活物質粒子を得た。
[Preparation of coated negative electrode active material particles]
One part of the above-mentioned coating polymer compound was dissolved in 3 parts of DMF to obtain a coating polymer compound solution.
80.04 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 μm) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, 37.92 parts of the molecular compound solution was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes.
Next, 9.48 parts of acetylene black (Denka Black (registered trademark) manufactured by Denka Co., Ltd.), which is a conductive additive, was added in portions over 2 minutes while stirring, and stirring was continued for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated negative electrode active material particles.
[リチウムイオン電池用負極の作製]
作製した被覆負極活物質粒子99部と、炭素繊維[大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm]1部とを混合して負極前駆体を作製した。
作製した負極前駆体を、Φ16の金型上に負極活物質粒子の目付量が23.4mg/cmになるように充填し、プレス機(HANDTAB-100T15、市橋精機(株)製)で1ton/cmの圧力で打錠成形して負極活物質層(厚さが300μm)を形成し、上記樹脂集電体の片面に積層してリチウムイオン電池用負極(直径16mmの円形)を作製した。
[Preparation of negative electrode for lithium ion battery]
99 parts of the prepared coated negative electrode active material particles were mixed with 1 part of carbon fiber [Dona Carbo Milled S-243 manufactured by Osaka Gas Chemical Co., Ltd.: average fiber length 500 μm, average fiber diameter 13 μm, electrical conductivity 200 mS/cm]. A negative electrode precursor was prepared.
The produced negative electrode precursor was filled into a Φ16 mold so that the basis weight of negative electrode active material particles was 23.4 mg/cm 2 , and 1 ton was filled with a press machine (HANDTAB-100T15, manufactured by Ichihashi Seiki Co., Ltd.). A negative electrode active material layer (thickness: 300 μm) was formed by compression molding at a pressure of /cm 2 and was laminated on one side of the resin current collector to produce a negative electrode for a lithium ion battery (circular with a diameter of 16 mm). .
[リチウムイオン電池の作製]
作製したリチウムイオン電池用正極と、リチウムイオン電池用負極とを、セパレータ(セルガード製#3501)を介して組み合わせて、リチウムイオン電池を作製した。
[Fabrication of lithium ion battery]
The produced positive electrode for a lithium ion battery and the negative electrode for a lithium ion battery were combined via a separator (#3501 manufactured by Celgard) to produce a lithium ion battery.
[直流抵抗値(DCR)の測定]
作製したリチウムイオン電池のそれぞれを25℃にて0.1Cで上限電圧4.2V(充電深度(SOC:state  of  charge)が約80%)まで定電流定電圧充電を行った(停止条件:定電圧モードで電流値が0.01C未満)。
その後、10分間の休止後、定電流方式(0.1C)で2.5Vまで放電した。そして、定電流放電過程における放電開始直前のセル電圧(V1)および放電10秒後のセル電圧(V2)を用いて、以下の式に基づいて、DCR(直流抵抗、Direct  Current  Resistance)を測定した。
なお、直流抵抗値(DCR)が15.7Ω・cm以下であったものを合格と判断した。
[Measurement of DC resistance value (DCR)]
Each of the produced lithium ion batteries was charged at constant current and constant voltage at 0.1C at 25°C to an upper limit voltage of 4.2V (depth of charge (SOC: state of charge) is approximately 80%) (stopping condition: constant). Current value is less than 0.01C in voltage mode).
Thereafter, after a 10-minute rest, the battery was discharged to 2.5V using a constant current method (0.1C). Then, DCR (Direct Current Resistance) was measured based on the following formula using the cell voltage (V1) immediately before the start of discharge in the constant current discharge process and the cell voltage (V2) 10 seconds after discharge. .
In addition, those whose direct current resistance value (DCR) was 15.7 Ω·cm 2 or less were judged to have passed.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
<成形性評価>
作製したリチウムイオン電池用電極組成物のそれぞれを、Φ15mmの金型上に正極活物質粒子の目付量が100mg/cmになるように充填し、プレス機(HANDTAB-100T15、市橋精機(株)製)で0.5ton/cmの圧力で打錠成形したあとの厚み(μm)を測定した。
実施例11については、リチウムイオン電池用電極組成物と電解液50μlとを粉体混合機にて撹拌して得られた混合物を、Φ15mmの金型上に正極活物質粒子の目付量が100mg/cmになるように充填し、プレス機(HANDTAB-100T15、市橋精機(株)製)で0.5ton/cmの圧力で打錠成形したあとの厚み(μm)を測定した。
なお、正極活物質粒子の目付量が所定の値のものを薄い厚みで実現できる程、成形性に優れると判断することができ、厚みが480μm以下であったものを成形性に優れると判断した。
<Moldability evaluation>
Each of the prepared electrode compositions for lithium ion batteries was filled into a mold with a diameter of 15 mm so that the basis weight of the positive electrode active material particles was 100 mg/cm 2 , and a press machine (HANDTAB-100T15, Ichihashi Seiki Co., Ltd.) was used. The thickness (μm) of the tablet was measured after it was compressed into a tablet at a pressure of 0.5 ton/ cm2 .
Regarding Example 11, a mixture obtained by stirring the electrode composition for a lithium ion battery and 50 μl of the electrolytic solution using a powder mixer was placed on a mold with a diameter of 15 mm so that the basis weight of the positive electrode active material particles was 100 mg/kg. The mixture was filled to a thickness of cm 2 and tableted using a press machine (HANDTAB-100T15, manufactured by Ichihashi Seiki Co., Ltd.) at a pressure of 0.5 ton/cm 2 , and the thickness (μm) was measured.
It should be noted that the thinner the cathode active material particles can achieve a predetermined basis weight, the better the moldability can be judged to be, and the better the moldability can be judged to be if the thickness is 480 μm or less. .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表2より、実施例のリチウムイオン電池用電極組成物を用いることにより、膜厚が厚くとも電子伝導性が高く、かつ、成形性が良好な電極を作製できることが確認された。 From Table 2, it was confirmed that by using the electrode compositions for lithium ion batteries of Examples, electrodes with high electronic conductivity and good moldability could be produced even if the film thickness was large.
 本発明はまた、以下に述べるリチウムイオン電池用被覆負極活物質粒子及びリチウムイオン電池用被覆負極活物質粒子の製造方法に関する。上述のリチウムイオン電池用電極組成物はこの負極活物質粒子を有していてもよい。 The present invention also relates to a method for producing coated negative electrode active material particles for lithium ion batteries and coated negative electrode active material particles for lithium ion batteries described below. The above-mentioned electrode composition for a lithium ion battery may have this negative electrode active material particle.
リチウムイオン電池は、高エネルギー密度、高出力密度が達成できる二次電池として、近年様々な用途に利用されている。
リチウムイオン電池の用途拡大に伴い、電池特性のさらなる向上が求められており、なかでも、サイクル特性を向上することに対する要望は強く、サイクル特性の向上を目的として各種検討が行われている。
Lithium ion batteries have recently been used for various purposes as secondary batteries that can achieve high energy density and high output density.
With the expansion of uses for lithium ion batteries, further improvements in battery characteristics are required, and in particular, there is a strong desire to improve cycle characteristics, and various studies are being conducted with the aim of improving cycle characteristics.
例えば、特許文献3では、リチウムイオン電池用負極活物質粒子が有する表面の少なくとも一部を高分子化合物と導電剤とを含む被覆層で被覆してなるリチウムイオン電池用被覆負極活物質粒子において、被覆率を一定の範囲内に調整することでリチウムイオン電池のサイクル特性の向上がなされることが報告されている。 For example, in Patent Document 3, coated negative electrode active material particles for lithium ion batteries in which at least a part of the surface of the negative electrode active material particles for lithium ion batteries are coated with a coating layer containing a polymer compound and a conductive agent, It has been reported that the cycle characteristics of lithium ion batteries can be improved by adjusting the coverage within a certain range.
近年、検討を進める中で被覆負極活物質粒子における被覆層中での導電助剤の立体構造が電池のサイクル特性に顕著な効果を与えることがわかってきた。
すなわち、被覆層中では、導電助剤同士が相互に電子をやり取りできるような立体構造をとることで導電性を発現している。
In recent years, as studies have progressed, it has been found that the three-dimensional structure of the conductive additive in the coating layer of the coated negative electrode active material particles has a significant effect on the cycle characteristics of the battery.
That is, in the coating layer, conductivity is exhibited by the conductive additives forming a three-dimensional structure that allows them to exchange electrons with each other.
従来のリチウムイオン電池用被覆負極活物質粒子では、充放電に伴って被覆負極活物質に体積変化が起こると、被覆負極活物質粒子の体積変化に被覆層が追随する過程で導電助剤の立体構造が破壊され、導電助剤同士のネットワークが切断されて導電性が低下してしまい、その結果、リチウムイオン電池のサイクル特性が低下するといった課題があった。 In conventional coated negative electrode active material particles for lithium ion batteries, when a volume change occurs in the coated negative electrode active material during charging and discharging, the conductive additive becomes steric in the process in which the coating layer follows the volume change of the coated negative electrode active material particles. The structure was destroyed and the network between the conductive additives was cut, resulting in a decrease in conductivity, which resulted in a problem in that the cycle characteristics of the lithium ion battery deteriorated.
そのため、リチウムイオン電池のサイクル特性を向上するために、被覆負極活物質粒子が充放電に伴い膨張・収縮を繰り返したとしても破壊されない導電助剤の立体構造が要求される。 Therefore, in order to improve the cycle characteristics of lithium ion batteries, a three-dimensional structure of the conductive additive is required that will not be destroyed even if the coated negative electrode active material particles repeatedly expand and contract during charging and discharging.
本発明は、上記要求に応えるものであり、リチウムイオン電池のサイクル特性を向上させることができるリチウムイオン電池用被覆負極活物質粒子を提供することを目的とする。 The present invention meets the above requirements, and aims to provide coated negative electrode active material particles for lithium ion batteries that can improve the cycle characteristics of lithium ion batteries.
本発明者らは、上記課題について鋭意検討したところ、導電助剤の立体構造は、被覆負極活物質粒子の製造過程で導電助剤を含む各材料にかけるせん断力により決定されることを見出した。また、被覆負極活物質粒子の被覆率も同じく、せん断力により決定されることを見出した。すなわち、せん断力が大きくなれば被覆負極活物質粒子の被覆率は小さくなり、せん断力が小さくなれば被覆負極活物質粒子の被覆率は大きくなる。
本発明者らは、上記知見に基づいて、被覆負極活物質粒子の被覆率が80%以上になるようにせん断力をかけることにより、導電助剤の立体構造を最適化した状態で構築することができ、その結果、リチウムイオン電池のサイクル特性を向上できることを見出し本発明に到達した。
The present inventors have conducted extensive studies on the above-mentioned problems, and have found that the three-dimensional structure of the conductive additive is determined by the shearing force applied to each material containing the conductive additive during the manufacturing process of coated negative electrode active material particles. . Furthermore, it has been found that the coverage of the coated negative electrode active material particles is similarly determined by the shear force. That is, as the shear force increases, the coverage of the coated negative electrode active material particles decreases, and as the shear force decreases, the coverage of the coated negative electrode active material particles increases.
Based on the above findings, the present inventors constructed a conductive additive with an optimized three-dimensional structure by applying shearing force so that the coverage of the coated negative electrode active material particles was 80% or more. The inventors have discovered that the cycle characteristics of lithium ion batteries can be improved as a result, and have thus arrived at the present invention.
すなわち、本発明は、リチウムイオン電池用負極活物質粒子が有する表面の少なくとも一部が高分子化合物と導電助剤とを含む被覆層により被覆されてなるリチウムイオン電池用被覆負極活物質粒子であって、上記導電助剤の重量割合が、上記リチウムイオン電池用被覆負極活物質粒子の重量を基準として6.1~10.5重量%であり、下記の計算式で得られる被覆率が80%以上であるリチウムイオン電池用被覆負極活物質粒子;負極活物質粒子、高分子化合物、導電助剤及び有機溶剤を混合した後に脱溶剤して第1被覆負極活物質粒子を得る第1被覆工程と、上記第1被覆負極活物質粒子と高分子化合物、導電助剤及び有機溶剤を混合した後に脱溶剤する第2被覆工程とを有するリチウムイオン電池用被覆負極活物質粒子の製造方法に関する。
被覆率(%)={1-[被覆負極活物質粒子のBET比表面積/(未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質の重量割合+導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合)]}×100
That is, the present invention provides coated negative electrode active material particles for lithium ion batteries, in which at least a part of the surface of the negative electrode active material particles for lithium ion batteries is coated with a coating layer containing a polymer compound and a conductive additive. The weight ratio of the conductive additive is 6.1 to 10.5% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries, and the coverage obtained by the following formula is 80%. The above coated negative electrode active material particles for lithium ion batteries; a first coating step in which the negative electrode active material particles, the polymer compound, the conductive agent, and the organic solvent are mixed and then the solvent is removed to obtain the first coated negative electrode active material particles; , relates to a method for producing coated negative electrode active material particles for a lithium ion battery, comprising a second coating step of mixing the first coated negative electrode active material particles, a polymer compound, a conductive aid, and an organic solvent, and then removing the solvent.
Coverage rate (%) = {1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material contained in coated negative electrode active material particles + BET specific surface area of conductive aid x weight ratio of conductive aid contained in coated negative electrode active material particles)] x 100
リチウムイオン電池のサイクル特性を向上させることができるリチウムイオン電池用被覆負極活物質粒子を提供することができる。 It is possible to provide coated negative electrode active material particles for lithium ion batteries that can improve the cycle characteristics of lithium ion batteries.
<リチウムイオン電池用被覆負極活物質粒子>
本発明のリチウムイオン電池用被覆負極活物質粒子は、リチウムイオン電池用負極活物質粒子が有する表面の少なくとも一部が高分子化合物と導電助剤とを含む被覆層により被覆されてなるリチウムイオン電池用被覆負極活物質粒子であって、上記導電助剤の重量割合が、上記リチウムイオン電池用被覆負極活物質粒子の重量を基準として6.1~10.5重量%であり、下記の計算式で得られる被覆率が80%以上である。
被覆率(%)={1-[被覆負極活物質粒子のBET比表面積/(未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合)]}×100
<Coated negative electrode active material particles for lithium ion batteries>
The coated negative electrode active material particles for lithium ion batteries of the present invention are lithium ion batteries in which at least a part of the surface of the negative electrode active material particles for lithium ion batteries is coated with a coating layer containing a polymer compound and a conductive additive. coated negative electrode active material particles for lithium ion batteries, in which the weight ratio of the conductive additive is 6.1 to 10.5% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries, and the weight ratio is calculated using the following calculation formula: The coverage obtained is 80% or more.
Coverage rate (%) = {1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles) + BET specific surface area of the conductive aid × weight ratio of the conductive aid contained in the coated negative electrode active material particles)]}×100
(負極活物質粒子)
リチウムイオン電池用負極活物質粒子(単に負極活物質粒子ともいう)としては、炭素系材料[黒鉛(グラファイト)、難黒鉛化性炭素(ハードカーボン)、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
上記負極活物質粒子のうち、内部にリチウム又はリチウムイオンを含まないものについては、予め負極活物質粒子の一部又は全部にリチウム又はリチウムイオンを含ませるプレドープ処理を施してもよい。
(Negative electrode active material particles)
Negative electrode active material particles for lithium ion batteries (also simply referred to as negative electrode active material particles) include carbon-based materials [graphite, non-graphitizable carbon (hard carbon), amorphous carbon, fired resin bodies (such as phenol resin and Cokes (e.g. pitch coke, needle coke, petroleum coke, etc.) and carbon fibers], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composites] (carbon particles whose surfaces are coated with silicon and/or silicon carbide, silicon particles or silicon oxide particles whose surfaces are coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloys, conductive polymers (e.g. polyacetylene, polypyrrole, etc.) , metals (tin, aluminum, zirconium, titanium, etc.), metal oxides (titanium oxides and lithium/titanium oxides, etc.), and metal alloys (such as lithium-tin alloys, lithium-aluminum alloys, lithium-aluminum-manganese alloys, etc.) ), and mixtures of these and carbon-based materials.
Among the negative electrode active material particles, those that do not contain lithium or lithium ions inside may be subjected to a pre-doping treatment in which part or all of the negative electrode active material particles contain lithium or lithium ions.
負極活物質粒子は、電気容量を増加させる観点から、難黒鉛化性炭素、又は、難黒鉛化性炭素と珪素系材料との混合物であることが好ましい。 From the viewpoint of increasing electric capacity, the negative electrode active material particles are preferably non-graphitizable carbon or a mixture of non-graphitizable carbon and a silicon-based material.
負極活物質粒子の体積平均粒子径は、電池の電気特性の観点から、0.01~100μmであることが好ましく、0.1~60μmであることがより好ましく、2~40μmであることが更に好ましい。
本明細書において体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。
The volume average particle diameter of the negative electrode active material particles is preferably from 0.01 to 100 μm, more preferably from 0.1 to 60 μm, and even more preferably from 2 to 40 μm, from the viewpoint of the electrical characteristics of the battery. preferable.
In this specification, the volume average particle diameter means the particle diameter (Dv50) at 50% of the integrated value in the particle size distribution determined by the Microtrack method (laser diffraction/scattering method). The microtrack method is a method of determining particle size distribution using scattered light obtained by irradiating particles with laser light. Note that, for measuring the volume average particle diameter, a Microtrack manufactured by Nikkiso Co., Ltd., etc. can be used.
負極活物質粒子の重量割合は、リチウムイオン電池用被覆負極活物質粒子の重量を基準として75~90重量%であることが好ましく、79~87重量%であることがより好ましい。 The weight percentage of the negative electrode active material particles is preferably 75 to 90% by weight, more preferably 79 to 87% by weight, based on the weight of the coated negative electrode active material particles for lithium ion batteries.
(高分子化合物)
本発明のリチウムイオン電池用被覆負極活物質粒子は、負極活物質粒子が有する表面の少なくとも一部が高分子化合物と導電助剤とを含む被覆層により被覆されてなる。
被覆層は、第1被覆層と、第1被覆層の表面の少なくとも一部を被覆する第2被覆層を有してもよい。
第1被覆層と第2被覆層を構成する高分子化合物は、同じであっても異なるものであっても良いが、後述する高分子化合物の中から適宜選択して用いればよい。
(polymer compound)
In the coated negative electrode active material particles for lithium ion batteries of the present invention, at least a portion of the surface of the negative electrode active material particles is coated with a coating layer containing a polymer compound and a conductive aid.
The covering layer may have a first covering layer and a second covering layer covering at least a portion of the surface of the first covering layer.
The polymer compounds constituting the first coating layer and the second coating layer may be the same or different, and may be appropriately selected from among the polymer compounds described below.
高分子化合物は、なかでも、リチウムイオン電池用被覆負極活物質を用いたリチウムイオン電池用負極に強度を付与する観点から、(メタ)アクリル酸アルキルエステル単量体を含む単量体組成物を重合してなることが好ましい。
なお、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を意味する。
In particular, the polymer compound is a monomer composition containing a (meth)acrylic acid alkyl ester monomer from the viewpoint of imparting strength to the negative electrode for lithium ion batteries using the coated negative electrode active material for lithium ion batteries. Preferably, it is formed by polymerization.
Note that (meth)acrylic acid means acrylic acid and/or methacrylic acid.
(メタ)アクリル酸アルキルエステル共重合体は、(メタ)アクリル酸アルキルエステル単量体由来の構成単位を必須とするアクリル系重合体であり、(メタ)アクリル酸アルキルエステル共重合体を構成する単量体組成物中における(メタ)アクリル酸アルキルエステル単量体の重量割合が単量体組成物の重量を基準として90重量%以上であることが好ましい。 (Meth)acrylic acid alkyl ester copolymer is an acrylic polymer that essentially has a constituent unit derived from (meth)acrylic acid alkyl ester monomer, and constitutes (meth)acrylic acid alkyl ester copolymer. It is preferable that the weight proportion of the (meth)acrylic acid alkyl ester monomer in the monomer composition is 90% by weight or more based on the weight of the monomer composition.
(メタ)アクリル酸アルキルエステル単量体の重量割合(重量%)は、超臨界流体中に重合体を溶解させ、得られたオリゴマー成分をガスクロマトグラフィー質量分析(GC-MS)法で解析する等の方法で測定することができる。 The weight ratio (wt%) of the (meth)acrylic acid alkyl ester monomer is determined by dissolving the polymer in a supercritical fluid and analyzing the resulting oligomer component by gas chromatography-mass spectrometry (GC-MS). It can be measured by the following methods.
(メタ)アクリル酸アルキルエステル単量体としては、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、iso-ブチルメタクリレート、メタクリル酸メチル、アクリル酸メチル、またアルキル鎖の末端に水酸基を含有する2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等が挙げられる。
また、多官能アクリレートも上記(メタ)アクリル酸アルキルエステル単量体に含まれる。上記多官能アクリレートとしては、1,6-ヘキサンジオールメタクリレート、エチレングリコールジメタクリレート等が挙げられる。
電極形状の安定性の観点から、上記多官能アクリレートの重量割合は単量体の合計重量を基準としては0.1~3重量%であることが好ましい。
Examples of (meth)acrylic acid alkyl ester monomers include 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, n-butyl acrylate, n-butyl methacrylate, iso-butyl methacrylate, methyl methacrylate, methyl acrylate, and Examples include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate containing a hydroxyl group at the end.
Further, polyfunctional acrylates are also included in the above (meth)acrylic acid alkyl ester monomers. Examples of the polyfunctional acrylate include 1,6-hexanediol methacrylate and ethylene glycol dimethacrylate.
From the viewpoint of stability of the electrode shape, the weight proportion of the polyfunctional acrylate is preferably 0.1 to 3% by weight based on the total weight of the monomers.
(メタ)アクリル酸アルキルエステル共重合体は2種類以上の(メタ)アクリル酸アルキルエステル単量体を構成単量体として含み、その合計含有量が構成単量体の合計重量を基準として90重量%以上であることが好ましい。上記(メタ)アクリル酸アルキルエステル単量体の好ましい組合せとして、n-ブチルアクリレートと2-ヒドロキシエチルアクリレートとアクリロニトリルの組み合わせ、2-エチルヘキシルメタクリレートと2-エチルヘキシルアクリレートの組み合わせ、n-ブチルアクリレートと2-エチルヘキシルアクリレートの組合せ、アクリル酸メチルとn-ブチルアクリレートの組合せ、又は、メタクリル酸メチルとiso-ブチルメタクリレートの組合せが挙げられる。 The (meth)acrylic acid alkyl ester copolymer contains two or more types of (meth)acrylic acid alkyl ester monomers as constituent monomers, and the total content thereof is 90% by weight based on the total weight of the constituent monomers. % or more. Preferred combinations of the above (meth)acrylic acid alkyl ester monomers include a combination of n-butyl acrylate, 2-hydroxyethyl acrylate and acrylonitrile, a combination of 2-ethylhexyl methacrylate and 2-ethylhexyl acrylate, and a combination of n-butyl acrylate and 2-ethylhexyl acrylate. Examples include a combination of ethylhexyl acrylate, a combination of methyl acrylate and n-butyl acrylate, or a combination of methyl methacrylate and iso-butyl methacrylate.
(メタ)アクリル酸アルキルエステル共重合体は、上記(メタ)アクリル酸アルキルエステル単量体以外の単量体として、(メタ)アクリル酸単量体を構成単量体として含むことが好ましい。(メタ)アクリル酸単量体を構成単量体として含むと電池内で生成する水酸化リチウム等の副生成物を中和し、電極の腐食を防止することができる。(メタ)アクリル酸単量体の重量割合は構成単量体の合計重量を基準として0.1~10重量%であることが好ましい。 The (meth)acrylic acid alkyl ester copolymer preferably contains (meth)acrylic acid monomer as a constituent monomer as a monomer other than the above-mentioned (meth)acrylic acid alkyl ester monomer. When (meth)acrylic acid monomer is included as a constituent monomer, it is possible to neutralize by-products such as lithium hydroxide generated within the battery and prevent corrosion of the electrodes. The weight proportion of the (meth)acrylic acid monomer is preferably 0.1 to 10% by weight based on the total weight of the constituent monomers.
(メタ)アクリル酸アルキルエステル共重合体は、(メタ)アクリル酸アルキルエステル単量体と共重合可能なモノビニル単量体を構成単量体として含んでいてもよい。
モノビニル単量体としては、フルオロ基、シロキサン等を含有したモノビニル単量体(ジメチルシロキサン等)を使用することができる。
The (meth)acrylic acid alkyl ester copolymer may contain a monovinyl monomer copolymerizable with the (meth)acrylic acid alkyl ester monomer as a constituent monomer.
As the monovinyl monomer, a monovinyl monomer containing a fluoro group, siloxane, etc. (dimethylsiloxane, etc.) can be used.
(メタ)アクリル酸アルキルエステル共重合体の重量平均分子量の好ましい下限は10,000、より好ましくは50,000、更に好ましくは100,000であり、好ましい上限は1,000,000、より好ましくは800,000、更に好ましくは500,000、特に好ましくは400,000である。 The preferable lower limit of the weight average molecular weight of the (meth)acrylic acid alkyl ester copolymer is 10,000, more preferably 50,000, still more preferably 100,000, and the preferable upper limit is 1,000,000, more preferably 800,000, more preferably 500,000, particularly preferably 400,000.
高分子化合物の重量平均分子量は、以下の条件でゲルパーミエーションクロマトグラフィー(以下GPCと略記)測定により求めることができる。
装置:「HLC-8120GPC」[東ソー(株)製]
カラム:「TSKgel  GMHXL」(2本)、「TSKgel Multipore  HXL-Mを各1本連結したもの」[いずれも東ソー(株)製]
試料溶液:0.25重量%のテトラヒドロフラン溶液
溶液注入量:10μL
流量:0.6mL/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:標準ポリスチレン[東ソー(株)製]
The weight average molecular weight of a polymer compound can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
Equipment: “HLC-8120GPC” [manufactured by Tosoh Corporation]
Column: "TSKgel GMHXL" (2 columns), "TSKgel Multipore HXL-M each connected one column" [both manufactured by Tosoh Corporation]
Sample solution: 0.25% by weight tetrahydrofuran solution Solution injection volume: 10 μL
Flow rate: 0.6mL/min Measurement temperature: 40℃
Detection device: Refractive index detector Reference material: Standard polystyrene [manufactured by Tosoh Corporation]
高分子化合物は、公知の重合開始剤{アゾ系開始剤[2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)等]、パーオキサイド系開始剤(ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ラウリルパーオキサイド等)等}を使用して公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合等)により製造することができる。
重合開始剤の使用量は、重量平均分子量を好ましい範囲に調整する等の観点から、モノマーの全重量に基づいて好ましくは0.01~5重量%、より好ましくは0.05~2重量%、更に好ましくは0.1~1.5重量%であり、重合温度及び重合時間は重合開始剤の種類等に応じて調整されるが、重合温度は好ましくは-5~150℃、(より好ましくは30~120℃)、反応時間は好ましくは0.1~50時間(より好ましくは2~24時間)である。
The polymer compound is a known polymerization initiator {azo initiator [2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2 A known polymerization method (bulk polymerization , solution polymerization, emulsion polymerization, suspension polymerization, etc.).
The amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the monomer, from the viewpoint of adjusting the weight average molecular weight to a preferable range. More preferably, it is 0.1 to 1.5% by weight, and the polymerization temperature and time are adjusted depending on the type of polymerization initiator, etc., but the polymerization temperature is preferably -5 to 150°C, (more preferably 30 to 120°C), and the reaction time is preferably 0.1 to 50 hours (more preferably 2 to 24 hours).
溶液重合の場合に使用される溶媒としては、例えばエステル(炭素数2~8、例えば酢酸エチル及び酢酸ブチル)、アルコール(炭素数1~8、例えばメタノール、エタノール及びオクタノール)、炭化水素(炭素数4~8、例えばn-ブタン、シクロヘキサン及びトルエン)、アミド(例えばジメチルホルムアミド、以下DMFと略記)及びケトン(炭素数3~9、例えばメチルエチルケトン)が挙げられ、重量平均分子量を好ましい範囲に調整する等の観点から、その使用量はモノマーの合計重量に基づいて好ましくは5~900重量%、より好ましくは10~400重量%、更に好ましくは30~300重量%であり、モノマー濃度としては、好ましくは10~95重量%、より好ましくは20~90重量%、更に好ましくは30~80重量%である。 Solvents used in solution polymerization include, for example, esters (with 2 to 8 carbon atoms, such as ethyl acetate and butyl acetate), alcohols (with 1 to 8 carbon atoms, such as methanol, ethanol and octanol), hydrocarbons (with 1 to 8 carbon atoms, such as methanol, ethanol and octanol), 4 to 8, such as n-butane, cyclohexane, and toluene), amides (such as dimethylformamide, hereinafter abbreviated as DMF), and ketones (3 to 9 carbon atoms, such as methyl ethyl ketone), and the weight average molecular weight is adjusted to a preferable range. From the viewpoint of the is 10 to 95% by weight, more preferably 20 to 90% by weight, even more preferably 30 to 80% by weight.
乳化重合及び懸濁重合における分散媒としては、水、アルコール(例えばエタノール)、エステル(例えばプロピオン酸エチル)、軽ナフサ等が挙げられ、乳化剤としては、高級脂肪酸(炭素数10~24)金属塩(例えばオレイン酸ナトリウム及びステアリン酸ナトリウム)、高級アルコール(炭素数10~24)硫酸エステル金属塩(例えばラウリル硫酸ナトリウム)、エトキシ化テトラメチルデシンジオール、メタクリル酸スルホエチルナトリウム、メタクリル酸ジメチルアミノメチル等が挙げられる。更に安定剤としてポリビニルアルコール、ポリビニルピロリドン等を加えてもよい。
溶液又は分散液のモノマー濃度は好ましくは5~95重量%、より好ましくは10~90重量%、更に好ましくは15~85重量%であり、重合開始剤の使用量は、モノマーの全重量に基づいて好ましくは0.01~5重量%、より好ましくは0.05~2重量%である。
重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン、n-ブチルメルカプタン等)及び/又はハロゲン化炭化水素(四塩化炭素、四臭化炭素、塩化ベンジル等)を使用することができる。
Dispersion media in emulsion polymerization and suspension polymerization include water, alcohol (e.g. ethanol), ester (e.g. ethyl propionate), light naphtha, etc., and emulsifiers include higher fatty acid (carbon number 10-24) metal salts. (e.g. sodium oleate and sodium stearate), higher alcohol (10-24 carbon atoms) sulfate ester metal salt (e.g. sodium lauryl sulfate), ethoxylated tetramethyldecynediol, sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc. can be mentioned. Furthermore, polyvinyl alcohol, polyvinylpyrrolidone, etc. may be added as a stabilizer.
The monomer concentration of the solution or dispersion is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, even more preferably 15 to 85% by weight, and the amount of the polymerization initiator used is based on the total weight of the monomers. The amount is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight.
During polymerization, known chain transfer agents such as mercapto compounds (dodecyl mercaptan, n-butyl mercaptan, etc.) and/or halogenated hydrocarbons (carbon tetrachloride, carbon tetrabromide, benzyl chloride, etc.) can be used. .
(導電助剤)
本発明のリチウムイオン電池用被覆負極活物質粒子は、被覆層が導電助剤を含む。
上述する第1被覆層、第2被覆層に含まれる導電助剤として共通する事項については特に区別することなく記載する。
(conductivity aid)
In the coated negative electrode active material particles for lithium ion batteries of the present invention, the coating layer contains a conductive additive.
Items common to the conductive additive contained in the first coating layer and the second coating layer described above will be described without particular distinction.
導電助剤としては、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、カーボン[グラファイト(薄片状黒鉛(UP))、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック及びサーマルランプブラック等)及びカーボンナノファイバー(CNF)等]、及びこれらの混合物等が挙げられる。 Examples of conductive aids include metals [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite (flake graphite (UP)), carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanofibers (CNF), etc.], and mixtures thereof.
導電助剤は、リチウムイオン電池用被覆負極活物質粒子を用いたリチウムイオン電池のサイクル特性を向上させる観点から、アセチレンブラック及び/又は薄片状黒鉛であることが好ましい。 The conductive aid is preferably acetylene black and/or flaky graphite from the viewpoint of improving the cycle characteristics of a lithium ion battery using coated negative electrode active material particles for a lithium ion battery.
導電助剤の重量割合は、リチウムイオン電池用被覆負極活物質粒子の重量を基準として6.1~10.5重量%である。
導電助剤の重量割合を上記範囲とすることにより、被覆負極活物質粒子の製造過程で導電助剤を含む各材料にかけるせん断力を好適に調整することができ、導電助剤の立体構造を最適化した状態で構築することができる。
導電助剤の重量割合は、リチウムイオン電池用被覆負極活物質粒子の重量を基準として6.8~10.5重量%であることが好ましく、6.8~7.5重量%であることがより好ましい。
The weight proportion of the conductive additive is 6.1 to 10.5% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries.
By setting the weight ratio of the conductive agent within the above range, the shearing force applied to each material containing the conductive agent during the manufacturing process of coated negative electrode active material particles can be suitably adjusted, and the three-dimensional structure of the conductive agent can be adjusted. It can be constructed in an optimized state.
The weight proportion of the conductive additive is preferably 6.8 to 10.5% by weight, and preferably 6.8 to 7.5% by weight, based on the weight of the coated negative electrode active material particles for lithium ion batteries. More preferred.
被覆層を構成する高分子化合物と導電助剤の比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で被覆層を構成する高分子化合物(樹脂固形分重量):導電助剤が1:0.01~1:50であることが好ましく、1:0.2~1:3.0であることがより好ましい。 The ratio of the polymer compound that makes up the coating layer and the conductive additive is not particularly limited, but from the viewpoint of internal resistance of the battery, etc., the weight ratio of the polymer compound that makes up the coating layer (resin solid content weight) : The ratio of the conductive aid is preferably 1:0.01 to 1:50, more preferably 1:0.2 to 1:3.0.
(その他)
本発明のリチウムイオン電池用被覆負極活物質粒子において、被覆層は、更にセラミック粒子を含んでいてもよい。
セラミック粒子としては、金属炭化物粒子、金属酸化物粒子、ガラスセラミック粒子等が挙げられる。
(others)
In the coated negative electrode active material particles for lithium ion batteries of the present invention, the coating layer may further contain ceramic particles.
Examples of the ceramic particles include metal carbide particles, metal oxide particles, glass ceramic particles, and the like.
金属炭化物粒子としては、例えば、炭化ケイ素(SiC)、炭化タングステン(WC)、炭化モリブデン(MoC)、炭化チタン(TiC)、炭化タンタル(TaC)、炭化ニオブ(NbC)、炭化バナジウム(VC)、炭化ジルコニウム(ZrC)等が挙げられる。 Examples of metal carbide particles include silicon carbide (SiC), tungsten carbide (WC), molybdenum carbide ( Mo2C ), titanium carbide (TiC), tantalum carbide (TaC), niobium carbide (NbC), and vanadium carbide (VC). ), zirconium carbide (ZrC), and the like.
金属酸化物粒子としては、例えば、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)、酸化スズ(SnO)、チタニア(TiO)、ジルコニア(ZrO)、酸化インジウム(In)、Li、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiOや、ABO(但し、Aは、Ca、Sr、Ba、La、Pr及びYからなる群より選択される少なくとも1種であり、Bは、Ni、Ti、V、Cr、Mn、Fe、Co、Mo、Ru、Rh、Pd及びReからなる群より選択される少なくとも1種である)で表されるペロブスカイト型酸化物粒子等が挙げられる。
金属酸化物粒子としては、電解液と被覆負極活物質粒子との間で起こる副反応を好適に抑制する観点から、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)、及び、四ほう酸リチウム(Li)が好ましい。
Examples of metal oxide particles include zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), tin oxide (SnO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), Indium oxide ( In2O3 ) , Li2B4O7 , Li4Ti5O12 , Li2Ti2O5 , LiTaO3 , LiNbO3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li 2 TiO 3 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 and ABO 3 (However, A is Ca, Sr, Ba, La, Pr and Y, and B is at least one selected from the group consisting of Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re. Examples include perovskite-type oxide particles represented by (which is a species).
As the metal oxide particles, zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ) and lithium tetraborate (Li 2 B 4 O 7 ) are preferred.
ガラスセラミック粒子としては、菱面体晶系を有するリチウム含有リン酸化合物であることが好ましく、その化学式は、LiM”12(X=1~1.7)で表される。
ここでM”はZr、Ti、Fe、Mn、Co、Cr、Ca、Mg、Sr、Y、Sc、Sn、La、Ge、Nb、Alからなる群より選ばれた1種以上の元素である。また、Pの一部をSi又はBに、Oの一部をF、Cl等で置換してもよい。例えば、Li1.15Ti1.85Al0.15Si0.052.9512、Li1.2Ti1.8Al0.1Ge0.1Si0.052.9512等を用いることができる。
また、異なる組成の材料を混合又は複合してもよく、ガラス電解質等で表面をコートしてもよい。又は、熱処理によりNASICON型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスセラミック粒子を用いることが好ましい。
ガラス電解質としては、特開2019-96478号公報に記載のガラス電解質等が挙げられる。
The glass ceramic particles are preferably lithium-containing phosphoric acid compounds having a rhombohedral crystal system, and the chemical formula thereof is represented by Li x M'' 2 P 3 O 12 (X=1 to 1.7).
Here, M" is one or more elements selected from the group consisting of Zr, Ti, Fe, Mn, Co, Cr, Ca, Mg, Sr, Y, Sc, Sn, La, Ge, Nb, and Al. Also, part of P may be replaced with Si or B, and part of O may be replaced with F, Cl, etc. For example, Li 1.15 Ti 1.85 Al 0.15 Si 0.05 P 2. 95 O 12 , Li 1.2 Ti 1.8 Al 0.1 Ge 0.1 Si 0.05 P 2.95 O 12 , etc. can be used.
Furthermore, materials with different compositions may be mixed or composited, and the surface may be coated with a glass electrolyte or the like. Alternatively, it is preferable to use glass ceramic particles that precipitate a crystalline phase of a lithium-containing phosphate compound having a NASICON type structure by heat treatment.
Examples of the glass electrolyte include the glass electrolyte described in JP-A-2019-96478.
ここで、ガラスセラミック粒子におけるLiOの配合割合は酸化物換算で8質量%以下であることが好ましい。
NASICON型構造でなくとも、Li、La、Mg、Ca、Fe、Co、Cr、Mn、Ti、Zr、Sn、Y、Sc、P、Si、O、In、Nb、Fからなり、LISICON型、ペロブスカイト型、β-Fe(SO型、LiIn(PO型の結晶構造を持ち、Liイオンを室温で1×10-5S/cm以上伝導する固体電解質を用いても良い。
Here, the blending ratio of Li 2 O in the glass ceramic particles is preferably 8% by mass or less in terms of oxide.
Even if it is not a NASICON type structure, it is composed of Li, La, Mg, Ca, Fe, Co, Cr, Mn, Ti, Zr, Sn, Y, Sc, P, Si, O, In, Nb, F, and LISICON type, Using a solid electrolyte that has a perovskite type, β-Fe 2 (SO 4 ) 3 type, and Li 3 In 2 (PO 4 ) 3 type crystal structure and conducts Li ions at a rate of 1 × 10 -5 S/cm or more at room temperature. It's okay.
上述したセラミック粒子は、1種単独で用いてもよいし、2種以上を併用してもよい。 The above-mentioned ceramic particles may be used alone or in combination of two or more.
セラミック粒子の体積平均粒子径は、エネルギー密度の観点及び電気抵抗値の観点から、1~1000nmであることが好ましく、1~500nmであることがより好ましく、1~150nmであることが更に好ましい。 The volume average particle diameter of the ceramic particles is preferably from 1 to 1000 nm, more preferably from 1 to 500 nm, even more preferably from 1 to 150 nm, from the viewpoint of energy density and electrical resistance value.
セラミック粒子の重量割合は、被覆負極活物質粒子の重量を基準として0.5~5.0重量%であることが好ましい。
セラミック粒子を上記範囲で含有することにより、電解液と被覆負極活物質粒子との間で起こる副反応を抑制することができる。
The weight proportion of the ceramic particles is preferably 0.5 to 5.0% by weight based on the weight of the coated negative electrode active material particles.
By containing the ceramic particles in the above range, side reactions occurring between the electrolytic solution and the coated negative electrode active material particles can be suppressed.
(被覆率)
本発明のリチウムイオン電池用被覆負極活物質粒子は、下記の計算式で得られる被覆率が80%以上である。
被覆率(%)={1-[被覆負極活物質粒子のBET比表面積/(未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合)]}×100
(Coverage rate)
The coated negative electrode active material particles for lithium ion batteries of the present invention have a coverage rate of 80% or more obtained by the following calculation formula.
Coverage rate (%) = {1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles) + BET specific surface area of the conductive aid × weight ratio of the conductive aid contained in the coated negative electrode active material particles)]}×100
本発明のリチウムイオン電池用被覆負極活物質粒子は、被覆率が上記範囲であることにより、被覆負極活物質粒子の製造過程で導電助剤を含む各材料にかけるせん断力を好適に調整することができ、導電助剤の立体構造を最適化した状態で構築することができる。
被覆率は83%以上であることが好ましい。また、被覆率は95%以下であることが好ましく、92%以下であることがより好ましい。
Since the coated negative electrode active material particles for lithium ion batteries of the present invention have a coverage rate within the above range, the shearing force applied to each material including a conductive aid during the manufacturing process of the coated negative electrode active material particles can be suitably adjusted. It is possible to construct a conductive additive with an optimized three-dimensional structure.
The coverage rate is preferably 83% or more. Further, the coverage rate is preferably 95% or less, more preferably 92% or less.
ここで上記計算式について詳しく説明する。
「未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合」は、被覆負極活物質粒子中に含まれる負極活物質粒子の表面積に相当する。
また、「導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合」は、被覆負極活物質粒子中に含まれる導電助剤の表面積に相当する。
したがって、「未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合」は、[被覆負極活物質粒子に含まれる被覆前の材料(負極活物質粒子+導電助剤)の表面積の合計]に相当する。
Here, the above calculation formula will be explained in detail.
"BET specific surface area of negative electrode active material particles when not coated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles" corresponds to the surface area of negative electrode active material particles contained in coated negative electrode active material particles. do.
Further, "BET specific surface area of the conductive additive x weight percentage of the conductive additive contained in the coated negative electrode active material particles" corresponds to the surface area of the conductive additive contained in the coated negative electrode active material particles.
Therefore, "BET specific surface area of uncoated negative electrode active material particles x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles + BET specific surface area of conductive additive x contained in coated negative electrode active material particles""Weight percentage of conductive aid" corresponds to "total surface area of materials (negative electrode active material particles + conductive aid) contained in coated negative electrode active material particles before coating".
これに対して、「被覆負極活物質粒子のBET比表面積」は、[(負極活物質粒子のうち、樹脂で覆われていない部分の表面積)+(導電助剤のうち、樹脂で覆われていない部分の表面積)+(樹脂の表面積)]で表される。
そして、(樹脂の表面積)が、(負極活物質粒子の表面積)及び(導電助剤の表面積)と比較して極めて小さいことから、(樹脂の表面積)を「ゼロ」とすると、「被覆負極活物質粒子のBET比表面積」は、[(負極活物質粒子のうち、樹脂で覆われていない部分の表面積)+(導電助剤のうち、樹脂で覆われていない部分の表面積)]で表される。
On the other hand, "BET specific surface area of coated negative electrode active material particles" is [(Surface area of the part of the negative electrode active material particles not covered with resin) + (Surface area of the part of the conductive additive not covered with resin) (Surface area of non-containing parts) + (Surface area of resin)]
Since (the surface area of the resin) is extremely small compared to (the surface area of the negative electrode active material particles) and (the surface area of the conductive additive), if (the surface area of the resin) is set to "zero," The BET specific surface area of material particles is expressed as [(Surface area of the part of the negative electrode active material particles not covered with resin) + (Surface area of the part of the conductive additive not covered with resin)]. Ru.
すなわち、被覆負極活物質粒子を構成する材料(負極活物質粒子+導電助剤)の、被覆前の総表面積が「未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合」であり、樹脂により被覆された後の「樹脂で被覆されていない部分」の総表面積が「被覆負極活物質粒子のBET比表面積」である。
そのため、「被覆負極活物質粒子のBET比表面積」を「未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合」で割った値は、被覆負極活物質粒子を構成する負極活物質粒子、及び、導電助剤の表面のうち、「樹脂で覆われていない部分」の表面の割合となる。
そして、1から[被覆負極活物質粒子を構成する負極活物質粒子、及び、導電助剤の表面のうち、「樹脂で覆われていない部分」の表面の割合]を引くことにより、被覆負極活物質粒子を構成する負極活物質粒子、及び、導電助剤の表面のうち「樹脂で覆われている部分」の面積の割合を求めることができる。
In other words, the total surface area of the materials (negative electrode active material particles + conductive additive) constituting the coated negative electrode active material particles before coating is calculated as follows: The weight ratio of the negative electrode active material particles contained + the BET specific surface area of the conductive additive x the weight ratio of the conductive additive contained in the coated negative electrode active material particles. The total surface area of the "absent part" is the "BET specific surface area of the coated negative electrode active material particles."
Therefore, "BET specific surface area of coated negative electrode active material particles" is calculated as "BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles + BET of conductive support agent". The value divided by "specific surface area x weight percentage of the conductive additive contained in the coated negative electrode active material particles" is calculated based on the ratio of "resin This is the percentage of the surface that is not covered by
Then, by subtracting [the ratio of the surface of the "portion not covered with resin" among the surfaces of the negative electrode active material particles and the conductive additive that constitute the coated negative electrode active material particles] from 1, the coated negative electrode active material particles are calculated. The area ratio of the "portion covered with resin" among the surfaces of the negative electrode active material particles constituting the material particles and the conductive additive can be determined.
リチウムイオン電池用被覆負極活物質粒子の被覆率は、負極活物質粒子、導電助剤、高分子化合物の含有量や、負極活物質粒子の体積平均粒子径を上述した好ましい範囲とすることにより、好適に充足することができる。 The coverage rate of the coated negative electrode active material particles for lithium ion batteries can be determined by adjusting the content of the negative electrode active material particles, conductive agent, and polymer compound, and the volume average particle diameter of the negative electrode active material particles within the above-mentioned preferred ranges. It can be suitably satisfied.
(嵩密度)
本発明のリチウムイオン電池用被覆負極活物質粒子は、タッピング法により測定されるリチウムイオン電池用被覆負極活物質粒子のかため嵩密度に対するリチウムイオン電池用被覆負極活物質粒子のゆるめ嵩密度の比率が0.60~0.85であることが好ましい。
リチウムイオン電池用被覆負極活物質粒子のかため嵩密度に対するゆるめ嵩密度の比率を上記範囲とすることにより、リチウムイオン電池のサイクル特性を好適に向上させることができる。
リチウムイオン電池用被覆負極活物質粒子のかため嵩密度に対するゆるめ嵩密度の比率は、0.60~0.70であることがより好ましい。
(The bulk density)
The coated negative electrode active material particles for lithium ion batteries of the present invention have a ratio of a loose bulk density of the coated negative electrode active material particles for lithium ion batteries to a firm bulk density of the coated negative electrode active material particles for lithium ion batteries measured by a tapping method. It is preferably 0.60 to 0.85.
By setting the ratio of the loose bulk density to the hard bulk density of the coated negative electrode active material particles for lithium ion batteries within the above range, the cycle characteristics of the lithium ion battery can be suitably improved.
The ratio of loose bulk density to hard bulk density of the coated negative electrode active material particles for lithium ion batteries is more preferably 0.60 to 0.70.
本明細書において、ゆるめ嵩密度とは、容量100cm、直径30mmの円筒容器を用い、JIS K 6219-2(2005)に準じて測定した嵩密度であり、かため嵩密度(タップ密度ともいう)とは、落下高さを5mm、タンプ(タッピング又は上下振動ともいう)回数を2000回としてJIS K 5101-12-2(2004)に準じて測定した嵩密度である。なお、ゆるめ嵩密度及びかため密度は、それぞれ5回の測定の平均値を用いる。 In this specification, the loose bulk density is the bulk density measured in accordance with JIS K 6219-2 (2005) using a cylindrical container with a capacity of 100 cm 3 and a diameter of 30 mm. ) is the bulk density measured according to JIS K 5101-12-2 (2004) with a falling height of 5 mm and a number of tamps (also referred to as tapping or vertical vibration) of 2000 times. Note that the loose bulk density and hardened density each use the average value of five measurements.
<リチウムイオン電池用被覆負極活物質粒子の製造方法>
本発明のリチウムイオン電池用被覆負極活物質粒子の製造方法は、負極活物質粒子、高分子化合物、導電助剤及び有機溶剤を混合した後に脱溶剤して第1被覆負極活物質粒子を得る第1被覆工程と、上記第1被覆負極活物質粒子と高分子化合物、導電助剤及び有機溶剤を混合した後に脱溶剤する第2被覆工程とを有する。
<Method for producing coated negative electrode active material particles for lithium ion batteries>
The method for producing coated negative electrode active material particles for lithium ion batteries of the present invention includes the step of mixing negative electrode active material particles, a polymer compound, a conductive agent, and an organic solvent, and then removing the solvent to obtain first coated negative electrode active material particles. and a second coating step in which the first coated negative electrode active material particles are mixed with a polymer compound, a conductive additive, and an organic solvent, and then the solvent is removed.
例えば、高分子化合物を、それぞれ有機溶剤に溶解して樹脂溶液で添加する場合、負極活物質粒子を万能混合機に入れて撹拌速度(周速)1~7m/sで撹拌した状態で、第1被覆層を構成する高分子化合物を含む樹脂溶液(被覆用高分子化合物溶液ともいう)を1~90分かけて滴下混合し、撹拌したまま50~200℃に昇温し、0.007~0.04MPaまで減圧した後に2~9時間保持して脱溶剤した後、導電助剤及び任意で使用するセラミック粒子を混合することにより、負極活物質粒子の表面の少なくとも一部が第1被覆層で被覆された粒子を得ることができる。
第2被覆層は、上記と同じ手順で形成することにより、第1被覆層の上に第2被覆層が設けられた被覆負極活物質粒子を得ることができる。
For example, when each polymer compound is dissolved in an organic solvent and added as a resin solution, the negative electrode active material particles are placed in a universal mixer and stirred at a stirring speed (peripheral speed) of 1 to 7 m/s. A resin solution containing a polymer compound constituting one coating layer (also referred to as coating polymer compound solution) is mixed dropwise over a period of 1 to 90 minutes, and the temperature is raised to 50 to 200°C while stirring, and the temperature is increased to 0.007 to 200°C. After reducing the pressure to 0.04 MPa and holding it for 2 to 9 hours to remove the solvent, at least a part of the surface of the negative electrode active material particles is coated with the first coating layer by mixing a conductive additive and optionally used ceramic particles. particles coated with can be obtained.
By forming the second coating layer using the same procedure as described above, coated negative electrode active material particles in which the second coating layer is provided on the first coating layer can be obtained.
第1被覆工程では、撹拌速度(周速)は、2~5m/sであることが好ましく、2.5~4m/sであることがより好ましい。
なお、第1被覆工程における撹拌速度とは、負極活物質粒子を万能混合機に入れてから、被覆用高分子化合物溶液を全て滴下するまでに行う撹拌の速度を意味する。
In the first coating step, the stirring speed (peripheral speed) is preferably 2 to 5 m/s, more preferably 2.5 to 4 m/s.
Note that the stirring speed in the first coating step refers to the speed of stirring performed from the time when the negative electrode active material particles are placed in the universal mixer until the entire coating polymer compound solution is dropped.
第1被覆工程では、撹拌時間は、1~90分であることが好ましく、2~60分であることがより好ましい。
なお、第1被覆工程における撹拌時間とは、被覆用高分子化合物溶液、導電助剤等の第1被覆層を構成する材料を全て投入してから、脱溶剤のための昇温を開始するまでの時間を意味する。
In the first coating step, the stirring time is preferably 1 to 90 minutes, more preferably 2 to 60 minutes.
Note that the stirring time in the first coating step is the time from when all the materials constituting the first coating layer, such as the coating polymer compound solution and conductive agent, are added until the temperature starts to increase for solvent removal. means the time of
第1被覆工程では、乾燥時間は、3~7時間であることが好ましく、4~6時間であることがより好ましい。
なお、第1被覆工程における乾燥時間とは、脱溶剤のための昇温及び減圧を開始してから、脱溶剤が完了するまでの時間を意味する。
In the first coating step, the drying time is preferably 3 to 7 hours, more preferably 4 to 6 hours.
Note that the drying time in the first coating step means the time from the start of temperature increase and pressure reduction for solvent removal until the completion of solvent removal.
第2被覆工程では、撹拌速度(周速)は、1~5m/sであることが好ましく、2~4.5m/sであることがより好ましい。
なお、第2被覆工程における撹拌速度とは、第1被覆層を形成した負極活物質粒子を万能混合機に入れてから、被覆用高分子化合物溶液を全て滴下するまでに行う撹拌の速度を意味する。
In the second coating step, the stirring speed (peripheral speed) is preferably 1 to 5 m/s, more preferably 2 to 4.5 m/s.
Note that the stirring speed in the second coating step refers to the speed of stirring performed from the time when the negative electrode active material particles forming the first coating layer are placed in the universal mixer until the entire coating polymer compound solution is dropped. do.
第2被覆工程では、撹拌時間は、1~90分であることが好ましく、3~60分であることがより好ましい。
なお、第2被覆工程における撹拌時間とは、被覆用高分子化合物溶液、導電助剤等の第2被覆層を構成する材料を全て投入してから、脱溶剤のための昇温を開始するまでの時間を意味する。
In the second coating step, the stirring time is preferably 1 to 90 minutes, more preferably 3 to 60 minutes.
Note that the stirring time in the second coating step is the period from when all the materials constituting the second coating layer, such as the coating polymer compound solution and conductive agent, are added until the temperature starts to be raised for solvent removal. means the time of
第2被覆工程では、乾燥時間は、1.5~10時間であることが好ましく、2~9時間であることがより好ましい。
なお、第2被覆工程における乾燥時間とは、脱溶剤のための昇温及び減圧を開始してから、脱溶剤が完了するまでの時間を意味する。
In the second coating step, the drying time is preferably 1.5 to 10 hours, more preferably 2 to 9 hours.
Note that the drying time in the second coating step means the time from the start of temperature increase and pressure reduction for solvent removal until the completion of solvent removal.
第1被覆層を形成した負極活物質粒子(第2被覆工程前)は、BET比表面積が0.8~1.2m/gであることが好ましく、0.9~1.1m/gであることがより好ましい。
第1被覆層を形成した負極活物質粒子が、このようなBET比表面積を有することにより、第2被覆工程により被覆率を好適に充足することができる。
なお、BET比表面積は、後述する実施例に記載の方法により測定することができる。
The negative electrode active material particles on which the first coating layer is formed (before the second coating step) preferably have a BET specific surface area of 0.8 to 1.2 m 2 /g, and preferably 0.9 to 1.1 m 2 /g. It is more preferable that
When the negative electrode active material particles forming the first coating layer have such a BET specific surface area, the coverage can be suitably satisfied in the second coating step.
Incidentally, the BET specific surface area can be measured by the method described in Examples described later.
本発明のリチウムイオン電池用被覆負極活物質粒子の製造方法により製造された被覆負極活物質粒子は、BET比表面積が、0.25~0.8m/gであることが好ましく、0.3~0.75m/gであることがより好ましい。
被覆負極活物質粒子が、このようなBET比表面積を有することにより、被覆率を好適に充足することができる。
The coated negative electrode active material particles produced by the method for producing coated negative electrode active material particles for lithium ion batteries of the present invention preferably have a BET specific surface area of 0.25 to 0.8 m 2 /g, preferably 0.3 More preferably, it is 0.75 m 2 /g.
When the coated negative electrode active material particles have such a BET specific surface area, the coverage can be suitably satisfied.
このように第1被覆工程及び第2被覆工程を行うことにより、被覆率を好適に調整することができる。 By performing the first coating step and the second coating step in this manner, the coverage rate can be suitably adjusted.
有機溶剤としては、高分子化合物を溶解可能な有機溶剤であれば特に限定されず、公知の有機溶剤を適宜選択して用いることができる。 The organic solvent is not particularly limited as long as it is an organic solvent that can dissolve the polymer compound, and any known organic solvent can be appropriately selected and used.
<リチウムイオン電池用負極>
リチウムイオン電池用負極は、本発明の被覆負極活物質粒子と、電解質及び溶媒を含有する電解液とを含む負極活物質層と、負極集電体とを備えることが好ましい。
<Negative electrode for lithium ion batteries>
The negative electrode for a lithium ion battery preferably includes a negative electrode active material layer containing the coated negative electrode active material particles of the present invention, an electrolytic solution containing an electrolyte and a solvent, and a negative electrode current collector.
上述した電解質及び溶媒、並びに、負極集電体としては、公知のリチウムイオン電池で用いられている電解質及び溶媒、並びに、負極集電体を適宜選択して用いることができる。 As the electrolyte, solvent, and negative electrode current collector described above, electrolytes, solvents, and negative electrode current collectors used in known lithium ion batteries can be appropriately selected and used.
負極活物質層は、上述した被覆負極活物質粒子の被覆層中に含まれる導電助剤とは別に、導電助剤をさらに含んでもよい。被覆層中に含まれる導電助剤が被覆負極活物質粒子と一体であるのに対し、負極活物質層が含む導電助剤は被覆負極活物質粒子と別々に含まれている点で区別できる。
負極活物質層が含んでいてもよい導電助剤としては、上述したリチウムイオン電池用被覆負極活物質粒子で説明した導電助剤を用いることができる。
The negative electrode active material layer may further contain a conductive additive in addition to the conductive additive contained in the coating layer of the coated negative electrode active material particles described above. They can be distinguished from each other in that the conductive agent contained in the coating layer is integrated with the coated negative electrode active material particles, whereas the conductive agent contained in the negative electrode active material layer is contained separately from the coated negative electrode active material particles.
As the conductive additive that the negative electrode active material layer may contain, the conductive additive described in the above-mentioned coated negative electrode active material particles for lithium ion batteries can be used.
負極活物質層は、結着剤を含まないことが好ましい。
なお、本明細書において、結着剤とは、被覆負極活物質粒子同士及び被覆負極活物質粒子と集電体とを可逆的に固定することができない薬剤を意味し、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレンブタジエンゴム、ポリエチレン及びポリプロピレン等の公知の溶剤乾燥型のリチウムイオン電池用結着剤等が挙げられる。
これらの結着剤は、溶剤に溶解又は分散して用いられ、溶剤を揮発、留去することで固体化して、被覆負極活物質粒子同士及び被覆負極活物質粒子と集電体とを不可逆的に固定するものである。
Preferably, the negative electrode active material layer does not contain a binder.
In addition, in this specification, a binder means a drug that cannot reversibly fix coated negative electrode active material particles or coated negative electrode active material particles and a current collector, and includes starch, polyvinylidene fluoride, Examples include known solvent-dried binders for lithium ion batteries such as polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, and polypropylene.
These binders are used by being dissolved or dispersed in a solvent, and solidify by volatilizing or distilling off the solvent, thereby irreversibly binding the coated negative electrode active material particles to each other and the coated negative electrode active material particles to the current collector. It is to be fixed at
負極活物質層には、粘着性樹脂が含まれていてもよい。
粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性を有する樹脂を意味し、結着剤とは異なる材料であり、区別される。
また、被覆負極活物質粒子を構成する被覆層が負極活物質粒子の表面に固定されているのに対して、粘着性樹脂は負極活物質粒子の表面同士を可逆的に固定するものである。負極活物質粒子の表面から粘着性樹脂は容易に分離できるが、被覆層は容易に分離できない。
従って、上記被覆層と上記粘着性樹脂は異なる材料である。
The negative electrode active material layer may contain adhesive resin.
Adhesive resin refers to a resin that does not solidify even after drying after volatilizing a solvent component and remains adhesive, and is a different material from a binder and is distinguished from it.
Further, while the coating layer constituting the coated negative electrode active material particles is fixed to the surface of the negative electrode active material particles, the adhesive resin reversibly fixes the surfaces of the negative electrode active material particles to each other. Although the adhesive resin can be easily separated from the surface of the negative electrode active material particles, the coating layer cannot be easily separated.
Therefore, the coating layer and the adhesive resin are different materials.
粘着性樹脂としては、酢酸ビニル、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、ブチルアクリレート及びブチルメタクリレートからなる群から選択された少なくとも1種の低Tgモノマーを必須構成単量体として含み上記低Tgモノマーの合計重量割合が構成単量体の合計重量に基づいて45重量%以上である重合体が挙げられる。
粘着性樹脂を用いる場合、負極活物質粒子の合計重量に対して0.01~10重量%の粘着性樹脂を用いることが好ましい。
The adhesive resin contains as an essential constituent monomer at least one low Tg monomer selected from the group consisting of vinyl acetate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, butyl acrylate, and butyl methacrylate. Examples include polymers in which the total weight proportion of is 45% by weight or more based on the total weight of the constituent monomers.
When using a sticky resin, it is preferable to use 0.01 to 10% by weight of the sticky resin based on the total weight of the negative electrode active material particles.
負極活物質層の厚みは、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 From the viewpoint of battery performance, the thickness of the negative electrode active material layer is preferably 150 to 600 μm, more preferably 200 to 450 μm.
負極活物質層には、本発明の被覆負極活物質粒子以外に、他の種類の負極活物質粒子を含んでもよい。他の種類の負極活物質粒子としては、炭素系負極活物質粒子、珪素系負極活物質粒子等が挙げられる。これらの他の種類の負極活物質粒子は、電池のサイクル特性に影響のない範囲で配合させることができる。
また、上記他の種類の負極活物質粒子は、被覆負極活物質粒子であってもよい。
The negative electrode active material layer may contain other types of negative electrode active material particles in addition to the coated negative electrode active material particles of the present invention. Other types of negative electrode active material particles include carbon-based negative electrode active material particles, silicon-based negative electrode active material particles, and the like. These other types of negative electrode active material particles can be blended within a range that does not affect the cycle characteristics of the battery.
Further, the other types of negative electrode active material particles may be coated negative electrode active material particles.
負極集電体の厚さは、特に限定されないが、5~150μmであることが好ましい。 The thickness of the negative electrode current collector is not particularly limited, but is preferably 5 to 150 μm.
リチウムイオン電池用負極は、例えば、本発明の被覆負極活物質粒子及び必要に応じて導電助剤等を混合した粉体(負極前駆体)を負極集電体に塗布しプレス機でプレスして負極活物質層を形成した後に電解液を注液することによって作製することができる。
また、負極前駆体を離型フィルム上に塗布、プレスして負極活物質層を形成し、負極活物質層を負極集電体に転写した後、電解液を注液してもよい。
A negative electrode for a lithium ion battery can be produced, for example, by coating a negative electrode current collector with a powder (negative electrode precursor) mixed with the coated negative electrode active material particles of the present invention and, if necessary, a conductive agent, etc., and pressing the powder with a press machine. It can be produced by injecting an electrolytic solution after forming a negative electrode active material layer.
Alternatively, a negative electrode precursor may be applied and pressed onto a release film to form a negative electrode active material layer, and after the negative electrode active material layer is transferred to a negative electrode current collector, an electrolytic solution may be injected.
<リチウムイオン電池>
リチウムイオン電池は、上述したリチウムイオン電池用負極と、セパレータと、正極とを備えることが好ましい。
<Lithium ion battery>
The lithium ion battery preferably includes the above-described negative electrode for a lithium ion battery, a separator, and a positive electrode.
セパレータとしては、ポリエチレン又はポリプロピレン製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。 Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene films and porous polypropylene, nonwoven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces. Examples include known separators for lithium ion batteries, such as those to which fine ceramic particles of alumina, titania, etc. are attached.
正極としては特に限定されず、公知のリチウムイオン電池で用いられている正極を適宜選択して用いることができる。 The positive electrode is not particularly limited, and any positive electrode used in known lithium ion batteries can be appropriately selected and used.
リチウムイオン電池は、例えば、正極、セパレータ及び上述したリチウムイオン電池用負極をこの順に重ね合わせた後、必要に応じて電解液を注入することにより製造することができる。 A lithium ion battery can be manufactured, for example, by stacking a positive electrode, a separator, and the above-described negative electrode for lithium ion batteries in this order, and then injecting an electrolyte as necessary.
本明細書には以下の事項が開示されている。 The following items are disclosed in this specification.
本開示(5)は、リチウムイオン電池用負極活物質粒子が有する表面の少なくとも一部が高分子化合物と導電助剤とを含む被覆層により被覆されてなるリチウムイオン電池用被覆負極活物質粒子であって、前記導電助剤の重量割合が、前記リチウムイオン電池用被覆負極活物質粒子の重量を基準として6.1~10.5重量%であり、下記の計算式で得られる被覆率が80%以上であるリチウムイオン電池用被覆負極活物質粒子である。
被覆率(%)={1-[被覆負極活物質粒子のBET比表面積/(未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合)]}×100
The present disclosure (5) provides coated negative electrode active material particles for lithium ion batteries, in which at least a part of the surface of the negative electrode active material particles for lithium ion batteries is coated with a coating layer containing a polymer compound and a conductive additive. The weight ratio of the conductive additive is 6.1 to 10.5% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries, and the coverage obtained by the following formula is 80%. % or more of coated negative electrode active material particles for lithium ion batteries.
Coverage rate (%) = {1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles) + BET specific surface area of the conductive aid × weight ratio of the conductive aid contained in the coated negative electrode active material particles)]}×100
本開示(6)は、前記リチウムイオン電池用負極活物質粒子が、難黒鉛化性炭素、又は、難黒鉛化性炭素と珪素系材料との混合物である本開示(5)に記載のリチウムイオン電池用被覆負極活物質粒子である。 The present disclosure (6) provides the lithium ion battery according to the present disclosure (5), wherein the negative electrode active material particles for lithium ion batteries are non-graphitizable carbon or a mixture of non-graphitizable carbon and a silicon-based material. These are coated negative electrode active material particles for batteries.
本開示(7)は、前記高分子化合物が、(メタ)アクリル酸アルキルエステル単量体を含む単量体組成物を重合してなり、前記単量体組成物における(メタ)アクリル酸アルキルエステル単量体の重量割合が、前記単量体組成物の重量を基準として90重量%以上である本開示(5)又は(6)に記載のリチウムイオン電池用被覆負極活物質粒子である。 In the present disclosure (7), the polymer compound is formed by polymerizing a monomer composition containing an alkyl (meth)acrylate monomer, and the alkyl (meth)acrylate in the monomer composition is provided. The coated negative electrode active material particles for a lithium ion battery according to (5) or (6) of the present disclosure, wherein the weight ratio of the monomer is 90% by weight or more based on the weight of the monomer composition.
本開示(8)は、前記導電助剤が、アセチレンブラック及び/又は薄片状黒鉛である本開示(5)~(7)の何れかに記載のリチウムイオン電池用被覆負極活物質粒子である。 The present disclosure (8) is the coated negative electrode active material particle for a lithium ion battery according to any one of the present disclosure (5) to (7), wherein the conductive additive is acetylene black and/or flaky graphite.
本開示(9)は、タッピング法により測定される前記リチウムイオン電池用被覆負極活物質粒子のかため嵩密度に対する前記リチウムイオン電池用被覆負極活物質粒子のゆるめ嵩密度の比率が0.60~0.85である本開示(5)~(8)の何れかに記載のリチウムイオン電池用被覆負極活物質粒子である。 The present disclosure (9) provides that the ratio of the loose bulk density of the coated negative electrode active material particles for lithium ion batteries to the firm bulk density of the coated negative electrode active material particles for lithium ion batteries measured by a tapping method is 0.60 to 0. The coated negative electrode active material particles for a lithium ion battery according to any one of (5) to (8) of the present disclosure have a particle diameter of .85.
本開示(10)は、負極活物質粒子、高分子化合物、導電助剤及び有機溶剤を混合した後に脱溶剤して第1被覆負極活物質粒子を得る第1被覆工程と、前記第1被覆負極活物質粒子と高分子化合物、導電助剤及び有機溶剤を混合した後に脱溶剤する第2被覆工程とを有する本開示(5)~(9)の何れかに記載のリチウムイオン電池用被覆負極活物質粒子の製造方法である。
[実施例]
The present disclosure (10) includes a first coating step of mixing negative electrode active material particles, a polymer compound, a conductive aid, and an organic solvent and then removing the solvent to obtain first coated negative electrode active material particles; The coated negative electrode active for a lithium ion battery according to any one of the present disclosure (5) to (9), comprising a second coating step of removing the solvent after mixing the active material particles, a polymer compound, a conductive aid, and an organic solvent. This is a method for producing material particles.
[Example]
次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 EXAMPLES Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the examples unless it departs from the gist of the present invention. In addition, unless otherwise specified, parts mean parts by weight, and % means weight %.
(実施例201)
[負極活物質粒子を被覆する高分子化合物の作製]
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF150部を仕込み、75℃に昇温した。次いで、アクリル酸91部、メタクリル酸メチル9部及びDMF50部を配合した単量体組成物と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.3部及び2,2’-アゾビス(2-メチルブチロニトリル)0.8部をDMF30部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。
次いで、80℃に昇温して反応を3時間継続し、樹脂濃度30%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して150℃、0.01MPaで3時間の減圧乾燥を行い、DMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の高分子化合物を得た。
(Example 201)
[Preparation of polymer compound covering negative electrode active material particles]
150 parts of DMF was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 75°C. Next, a monomer composition containing 91 parts of acrylic acid, 9 parts of methyl methacrylate, and 50 parts of DMF, and 0.3 part of 2,2'-azobis(2,4-dimethylvaleronitrile) and 2,2'- An initiator solution prepared by dissolving 0.8 parts of azobis(2-methylbutyronitrile) in 30 parts of DMF was continuously added dropwise into a four-necked flask using a dropping funnel over 2 hours under stirring while blowing nitrogen. Radical polymerization was performed. After the dropwise addition was completed, the reaction was continued at 75°C for 3 hours.
Next, the temperature was raised to 80°C and the reaction was continued for 3 hours to obtain a copolymer solution with a resin concentration of 30%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 150° C. and 0.01 MPa for 3 hours, and DMF was distilled off to obtain a copolymer. This copolymer was roughly pulverized with a hammer, and then further pulverized in a mortar to obtain a powdery polymer compound.
[被覆負極活物質粒子の作製]
(第1被覆工程)
高分子化合物1部をDMF3部に溶解し、高分子化合物溶液を得た。
負極活物質粒子(ハードカーボン粉末、体積平均粒子径25μm、JFEケミカル(株)製)79.0部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、周速2.6m/sで撹拌した状態で、高分子化合物溶液21.80部(固形分換算で5.45部)を2分かけて滴下し、更に60分撹拌した。
次いで、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を4時間維持して揮発分を留去し、第1被覆層を形成した。
その後、撹拌した状態で導電助剤であるグラファイト(UP)[薄片状黒鉛、体積平均粒子径4.5μm]5.45部を分割しながら2分間で投入し、30分撹拌を継続した。
[Preparation of coated negative electrode active material particles]
(First coating step)
One part of the polymer compound was dissolved in 3 parts of DMF to obtain a polymer compound solution.
79.0 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 μm, manufactured by JFE Chemical Co., Ltd.) were placed in a universal mixer high-speed mixer FS25 [manufactured by Earth Technica Co., Ltd.] at room temperature and at a peripheral speed of 2. While stirring at a speed of .6 m/s, 21.80 parts of a polymer compound solution (5.45 parts in terms of solid content) was added dropwise over 2 minutes, and the mixture was further stirred for 60 minutes.
Next, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 4 hours to distill off volatile components. , a first coating layer was formed.
Thereafter, while stirring, 5.45 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 μm] as a conductive aid was added in portions over 2 minutes, and stirring was continued for 30 minutes.
(第2被覆工程)
第1被覆層を形成した負極活物質粒子に、撹拌した状態で高分子化合物溶液24.20部(固形分換算で6.05部)を2分かけて滴下し、更に5分撹拌した。次いで、周速2.6m/sで撹拌した状態で導電助剤であるアセチレンブラック(AB)[デンカ(株)製、商品名「デンカブラック」、体積平均粒子径35nm]4.04部を分割しながら2分間で投入し、60分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を2時間維持して揮発分を留去した。
得られた粉体を目開き106μmの篩いで分級し、表3に示す組成の被覆負極活物質粒子を作製した。
なお、表3に示す組成は、第1被覆層の形成及び第2被覆層の形成に用いた負極活物質粒子、高分子化合物、及び、導電助剤の使用量を「重量%」で表した値である。
(Second coating step)
24.20 parts (6.05 parts in terms of solid content) of the polymer compound solution was added dropwise to the negative electrode active material particles on which the first coating layer was formed over 2 minutes while stirring, and the mixture was further stirred for 5 minutes. Next, 4.04 parts of acetylene black (AB) (manufactured by Denka Co., Ltd., trade name "Denka Black", volume average particle diameter 35 nm), which is a conductive additive, was divided while stirring at a circumferential speed of 2.6 m/s. The mixture was added over 2 minutes while stirring, and stirring was continued for 60 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and reduced pressure, and the stirring, reduced pressure, and temperature were maintained for 2 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 106 μm to produce coated negative electrode active material particles having the compositions shown in Table 3.
In addition, the composition shown in Table 3 is expressed in "wt%" using the negative electrode active material particles, the polymer compound, and the conductive aid used in the formation of the first coating layer and the second coating layer. It is a value.
(実施例202~208、比較例201及び204)
負極活物質粒子、高分子化合物、導電助剤の使用量、並びに、撹拌時間、撹拌速度(周速)及び、乾燥時間を表3に記載の数値に変更したこと以外は、実施例201と同様にして被覆負極活物質粒子を作製した。
なお、第1被覆工程、及び第2被覆工程における撹拌時間、撹拌速度、及び、乾燥時間とは、本明細書に記載の撹拌時間、撹拌速度、及び、乾燥時間を意味する。
(Examples 202 to 208, Comparative Examples 201 and 204)
Same as Example 201 except that the amounts of negative electrode active material particles, polymer compound, and conductive aid used, as well as the stirring time, stirring speed (peripheral speed), and drying time were changed to the values listed in Table 3. coated negative electrode active material particles were prepared.
Note that the stirring time, stirring speed, and drying time in the first coating step and the second coating step mean the stirring time, stirring speed, and drying time described in this specification.
(比較例202)
[負極活物質粒子を被覆する高分子化合物の作製]
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸ブチル20.0部、アクリル酸55.0部、メタクリル酸メチル22.0部、アリルスルホン酸ナトリウム3部及びDMF20部を配合したモノマー配合液と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4部及び2,2’-アゾビス(2-メチルブチロニトリル)0.8部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行ってDMFを留去し、被覆用高分子化合物を得た。
(Comparative example 202)
[Preparation of polymer compound covering negative electrode active material particles]
70.0 parts of DMF was charged into a four-neck flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 75°C. Next, a monomer mixture containing 20.0 parts of butyl methacrylate, 55.0 parts of acrylic acid, 22.0 parts of methyl methacrylate, 3 parts of sodium allylsulfonate, and 20 parts of DMF, and 2,2'-azobis(2 , 4-dimethylvaleronitrile) and 0.8 parts of 2,2'-azobis(2-methylbutyronitrile) dissolved in 10.0 parts of DMF were placed in a four-necked flask under nitrogen gas. was continuously added dropwise over a period of 2 hours using a dropping funnel while stirring to carry out radical polymerization. After the dropwise addition was completed, the temperature was raised to 80°C and the reaction was continued for 5 hours to obtain a copolymer solution with a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120° C. and 0.01 MPa for 3 hours to distill off DMF and obtain a coating polymer.
[被覆負極活物質粒子の作製]
負極活物質粒である難黒鉛化性炭素粉末(体積平均粒子径20μm)87.6部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、実施例で得られた被覆用高分子化合物をイソプロパノールに19.8重量%の濃度で溶解して得られた被覆用高分子化合物溶液58.6部(固形分換算で11.6部)を2分かけて滴下し、さらに5分撹拌した。
次いで、撹拌した状態で導電助剤であるアセチレンブラック[電気化学工業(株)製 デンカブラック(登録商標)]0.8部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、比較例202に係る被覆負極活物質粒子を作製した。
なお、表3に示す組成は、被覆層の形成に用いた負極活物質粒子、高分子化合物、及び、導電助剤の使用量を「重量%」で表した値である。
また、表3では、撹拌時間、乾燥時間を「第1被覆工程」の欄に記載した。
[Preparation of coated negative electrode active material particles]
87.6 parts of non-graphitizable carbon powder (volume average particle diameter 20 μm), which is the negative electrode active material particles, was placed in a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.] and stirred at room temperature and 720 rpm. , 58.6 parts of the coating polymer compound solution obtained by dissolving the coating polymer compound obtained in the example in isopropanol at a concentration of 19.8% by weight (11.6 parts in solid content) The mixture was added dropwise over 2 minutes and stirred for an additional 5 minutes.
Next, while stirring, 0.8 part of acetylene black (Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive aid was added in portions over 2 minutes, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. . The obtained powder was classified using a sieve with an opening of 212 μm to produce coated negative electrode active material particles according to Comparative Example 202.
The compositions shown in Table 3 are values expressed in "wt%" of the amounts of the negative electrode active material particles, polymer compound, and conductive aid used to form the coating layer.
Furthermore, in Table 3, the stirring time and drying time are listed in the "first coating step" column.
(比較例203)
負極活物質粒子、高分子化合物、及び、導電助剤の使用量を表3に記載の数値に変更したこと以外は、比較例202と同様にして被覆負極活物質粒子を作製した。
(Comparative example 203)
Coated negative electrode active material particles were produced in the same manner as Comparative Example 202, except that the amounts of negative electrode active material particles, polymer compound, and conductive aid were changed to the values listed in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<嵩密度の測定>
得られた被覆負極活物質粒子のゆるめ嵩密度及びかため嵩密度について、本明細書に記載の方法を用いて測定し、かため嵩密度に対するゆるめ嵩密度の比率を算出した。結果を表4に示す。
<Measurement of bulk density>
The loose bulk density and hard bulk density of the obtained coated negative electrode active material particles were measured using the method described in this specification, and the ratio of the loose bulk density to the hard bulk density was calculated. The results are shown in Table 4.
<被覆率の測定>
未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合、及び、導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合を測定した。
次いで、実施例及び比較例で作製した被覆負極活物質粒子のBET比表面積を測定した。
その後、下記の計算式を用いて被覆率を算出した。
被覆率(%)={1-[被覆負極活物質粒子のBET比表面積/(未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合)]}×100
<Measurement of coverage>
BET specific surface area of negative electrode active material particles when uncoated × weight ratio of negative electrode active material particles contained in coated negative electrode active material particles, and BET specific surface area of conductive aid × conductivity contained in coated negative electrode active material particles The weight proportion of the auxiliary agent was measured.
Next, the BET specific surface areas of the coated negative electrode active material particles produced in Examples and Comparative Examples were measured.
Thereafter, the coverage was calculated using the following formula.
Coverage rate (%) = {1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles) + BET specific surface area of the conductive aid × weight ratio of the conductive aid contained in the coated negative electrode active material particles)]}×100
[BET比表面積の測定方法]
なお、BET比表面積は、JIS Z8830 ガス吸着による粉体(固体)の比表面積測定方法に準じ、以下の装置と測定条件で測定した。
 測定装置:マイクロメリテックス社 ASAP-2010
 吸着ガス:N
 死容積測定ガス:He
 吸着温度:77K
 測定前処理:100℃、10分間真空乾燥
 測定モード:等温での吸着過程及び脱着過程
 測定相対圧P/P0:約0~0.99
 平衡設定時間:1相対圧につき180sec
[Method of measuring BET specific surface area]
The BET specific surface area was measured using the following apparatus and measurement conditions in accordance with JIS Z8830 method for measuring the specific surface area of powder (solid) by gas adsorption.
Measuring device: Micromeritex ASAP-2010
Adsorbed gas: N2
Dead volume measuring gas: He
Adsorption temperature: 77K
Measurement pretreatment: Vacuum drying at 100°C for 10 minutes Measurement mode: Isothermal adsorption and desorption processes Measured relative pressure P/P0: Approximately 0 to 0.99
Equilibrium setting time: 180 seconds per relative pressure
表4に記載の「第1被覆工程後のBET比表面積」とは、実施例201~208、比較例201、204については、「第1被覆層を形成した負極活物質粒子のBET比表面積(第2被覆工程前)」を表し、「被覆BET比表面積」とは、「作製した被覆負極活物質粒子のBET比表面積」を表す。
なお、比較例202、203については、第2被覆工程を有さないので、第1被覆工程後のBET比表面積の欄は空欄とし、「被覆BET比表面積」のみを記載した。
"BET specific surface area after the first coating step" described in Table 4 means "BET specific surface area of the negative electrode active material particles forming the first coating layer ( "before the second coating step)" and "coated BET specific surface area" indicates "BET specific surface area of the prepared coated negative electrode active material particles."
Note that Comparative Examples 202 and 203 do not have the second coating step, so the column for the BET specific surface area after the first coating step is left blank, and only "coated BET specific surface area" is written.
<リチウムイオン電池の作製>
[電解液の作製]
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSO(LiFSI)を2mol/Lの割合で溶解させた溶液を電解液とした。
<Preparation of lithium ion battery>
[Preparation of electrolyte]
An electrolytic solution was prepared by dissolving LiN(FSO 2 ) 2 (LiFSI) at a ratio of 2 mol/L in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) (volume ratio 1:1).
[樹脂集電体の作製]
2軸押出機にて、ポリプロピレン[商品名「サンアロマーPL500A」、サンアロマー(株)製]70部、カーボンナノチューブ[商品名:「FloTube9000」、CNano社製]25部及び分散剤[商品名「ユーメックス1001」、三洋化成工業(株)製]5部を200℃、200rpmの条件で溶融混練して樹脂混合物を得た。
得られた樹脂混合物を、Tダイ押出しフィルム成形機に通して、それを延伸圧延することで、膜厚100μmの樹脂集電体用導電性フィルムを得た。次いで、得られた樹脂集電体用導電性フィルムを17.0cm×17.0cmとなるように切断し、片面にニッケル蒸着を施した後、電流取り出し用の端子(5mm×3cm)を接続した樹脂集電体を得た。
[Preparation of resin current collector]
In a twin-screw extruder, 70 parts of polypropylene [trade name: "Sun Allomer PL500A", manufactured by Sun Allomer Co., Ltd.], 25 parts of carbon nanotubes [trade name: "FloTube9000", manufactured by CNano], and a dispersant [trade name: "Umex 1001"] were added. '', manufactured by Sanyo Chemical Industries, Ltd.] were melt-kneaded at 200° C. and 200 rpm to obtain a resin mixture.
The obtained resin mixture was passed through a T-die extrusion film forming machine and stretched and rolled to obtain a conductive film for a resin current collector having a thickness of 100 μm. Next, the obtained conductive film for a resin current collector was cut into a size of 17.0 cm x 17.0 cm, nickel vapor deposition was performed on one side, and a terminal for current extraction (5 mm x 3 cm) was connected. A resin current collector was obtained.
[リチウムイオン電池用負極1~12の作製]
電解液42部とグラファイト(UP)[薄片状黒鉛、体積平均粒子径4.5μm]1.3部及び炭素繊維[大阪ガスケミカル(株)製ドナカーボ・ミルドS-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm]0.9部とを遊星撹拌型混合混練装置{あわとり練太郎(登録商標)[(株)シンキー製]}を用いて2000rpmで5分間混合し、続いて上記電解液30部と上記の被覆負極活物質粒子1~12をそれぞれ97.8部を追加した後、更にあわとり練太郎で2000rpmで2分間混合し、上記電解液20部を更に追加した後、あわとり練太郎による撹拌を2000rpmで1分間行い、更に上記電解液を2.3部追加した後あわとり練太郎による撹拌を2000rpmで2分間行い、負極活物質層用スラリーを作製した。
得られた負極活物質層用スラリーを目付量が80mg/cmとなるよう、上記樹脂集電体の片面に塗布し、1.4MPaの圧力で約10秒プレスし、リチウムイオン電池用負極1~12を作製した。リチウムイオン電池用負極1~12はそれぞれ、厚さが340μm、形状は190×90mmの長方形であった。
[Preparation of negative electrodes 1 to 12 for lithium ion batteries]
42 parts of electrolytic solution, 1.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 μm], and carbon fiber [Donna Carbo Milled S-243 manufactured by Osaka Gas Chemical Co., Ltd.: average fiber length 500 μm, average Fiber diameter 13 μm, electric conductivity 200 mS/cm] and 0.9 parts were mixed at 2000 rpm for 5 minutes using a planetary stirring type mixing and kneading device {Awatori Rentaro (registered trademark) [manufactured by Shinky Co., Ltd.]}, Subsequently, after adding 30 parts of the above electrolytic solution and 97.8 parts each of the above coated negative electrode active material particles 1 to 12, they were further mixed for 2 minutes at 2000 rpm with a foaming Rentaro, and 20 parts of the above electrolytic solution was further added. After that, stirring with a foaming Rentaro was performed at 2000 rpm for 1 minute, and after adding 2.3 parts of the above electrolyte solution, stirring was performed with a foaming Rentaro for 2 minutes at 2000 rpm to prepare a slurry for a negative electrode active material layer. .
The obtained slurry for negative electrode active material layer was applied to one side of the resin current collector so that the basis weight was 80 mg/cm 2 and pressed for about 10 seconds at a pressure of 1.4 MPa to form negative electrode 1 for lithium ion batteries. ~12 were made. Each of negative electrodes 1 to 12 for lithium ion batteries had a thickness of 340 μm and a rectangular shape of 190×90 mm.
[被覆正極活物質粒子の作製]
被覆用高分子化合物1部をDMF3部に溶解し、被覆用高分子化合物溶液を得た。
正極活物質粒子(LiNi0.8Co0.15Al0.05粉末、体積平均粒子径4μm)90.12部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、被覆用高分子化合物溶液12.56部(固形分換算3.14部)を2分かけて滴下し、更に5分撹拌した。
次いで、撹拌した状態で導電助剤であるアセチレンブラック[デンカ(株)製デンカブラック(登録商標)]3.14部及びガラスセラミック粒子(商品名「リチウムイオン伝導性ガラスセラミックスLICGCTMPW-01(1μm)」[株式会社オハラ製])2.10部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、被覆正極活物質粒子を得た。
[Preparation of coated positive electrode active material particles]
One part of the coating polymer compound was dissolved in 3 parts of DMF to obtain a coating polymer compound solution.
90.12 parts of positive electrode active material particles (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 μm) were placed in a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.]. While stirring at room temperature and 720 rpm, 12.56 parts of coating polymer compound solution (3.14 parts in terms of solid content) was added dropwise over 2 minutes, followed by further stirring for 5 minutes.
Next, in a stirred state, 3.14 parts of acetylene black (Denka Black (registered trademark) manufactured by Denka Co., Ltd.), which is a conductive aid, and glass ceramic particles (trade name: "Lithium ion conductive glass ceramics LICGC TM PW-01") were added. 1 μm)" [manufactured by OHARA Co., Ltd.]) was added in portions over 2 minutes, and stirring was continued for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated positive electrode active material particles.
[リチウムイオン電池用正極の作製]
電解液42部とケッチェンブラック[商品名「EC300J」、ライオン・スペシャリティ・ケミカルズ(株)製]0.5部及び炭素繊維[大阪ガスケミカル(株)製ドナカーボ・ミルドS-243]1.0部とを遊星撹拌型混合混練装置{あわとり練太郎[(株)シンキー製]}を用いて2000rpmで5分間混合し、続いて上記電解液30部と上記の被覆正極活物質粒子98.5部を追加した後、更にあわとり練太郎で2000rpmで2分間混合し、上記電解液20部を更に追加した後、あわとり練太郎による撹拌を2000rpmで1分間行い、更に上記電解液を2.3部更に追加した後あわとり練太郎による撹拌を2000rpmで2分間混合して、正極活物質層用スラリーを作製した。得られた正極活物質層用スラリーを目付量が80mg/cmとなるよう、上記樹脂集電体の片面に塗布し、1.4MPaの圧力で約10秒プレスし、厚さが340μmのリチウムイオン電池用正極(190cm×90cm)を作製した。
[Preparation of positive electrode for lithium ion battery]
42 parts of electrolyte, 0.5 part of Ketjenblack [trade name "EC300J", manufactured by Lion Specialty Chemicals Co., Ltd.], and 1.0 part of carbon fiber [Dona Carbo Milled S-243, manufactured by Osaka Gas Chemicals Co., Ltd.] 30 parts of the above electrolyte and 98.5 parts of the above coated positive electrode active material particles were mixed for 5 minutes at 2000 rpm using a planetary stirring type mixing and kneading device {Awatori Rentaro [manufactured by Shinky Co., Ltd.]}. After adding 1.0 parts of the electrolyte, the electrolyte was further mixed for 2 minutes at 2000 rpm with a foaming Rentaro, and 20 parts of the electrolyte was further added, and the electrolyte was stirred with a foaming Rentaro for 1 minute at 2000 rpm. After 3 more parts were added, the mixture was stirred by a foaming Rentaro for 2 minutes at 2000 rpm to prepare a slurry for a positive electrode active material layer. The obtained slurry for the positive electrode active material layer was applied to one side of the resin current collector so that the basis weight was 80 mg/cm 2 , and pressed at a pressure of 1.4 MPa for about 10 seconds to form a lithium layer with a thickness of 340 μm. A positive electrode (190 cm x 90 cm) for an ion battery was produced.
上記で作製したリチウムイオン電池用正極及びリチウムイオン電池用負極1~12のいずれかにセパレータを組み合わせて封止し、リチウムイオン電池1~12を作製した。セパレータとしては、セルガード製#3501を用いた。得られたリチウムイオン電池1~12について、容量維持率を測定した。結果を表4に示す。 Lithium ion batteries 1 to 12 were produced by combining and sealing a separator with any of the lithium ion battery positive electrode and lithium ion battery negative electrodes 1 to 12 produced above. As the separator, Celgard #3501 was used. The capacity retention rates of the obtained lithium ion batteries 1 to 12 were measured. The results are shown in Table 4.
[容量維持率(サイクル特性)の測定]
45℃下、充放電測定装置「HJ-SD8」[北斗電工(株)製]を用いて以下の方法によりリチウムイオン電池1~12につき充放電試験を行った。
定電流定電圧方式(0.1C)で4.2Vまで充電した後、10分間の休止後、定電流方式(0.1C)で2.6Vまで放電した。
このとき放電した容量を[放電容量(mAh)]とした。
10サイクルの繰り返し試験を行い、10サイクル容量維持率(%)を求めた。
[Measurement of capacity retention rate (cycle characteristics)]
A charge/discharge test was conducted on lithium ion batteries 1 to 12 at 45° C. using a charge/discharge measuring device "HJ-SD8" [manufactured by Hokuto Denko Co., Ltd.] according to the following method.
After charging to 4.2V using a constant current/constant voltage method (0.1C), after a 10 minute rest, the battery was discharged to 2.6V using a constant current method (0.1C).
The discharged capacity at this time was defined as [discharge capacity (mAh)].
A 10-cycle repeated test was conducted to determine the 10-cycle capacity retention rate (%).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
表4より、実施例201~208のリチウムイオン電池用負極活物質粒子は、リチウムイオン電池のサイクル特性を向上させることができることが確認された。 From Table 4, it was confirmed that the negative electrode active material particles for lithium ion batteries of Examples 201 to 208 could improve the cycle characteristics of lithium ion batteries.
 本発明はまた、以下に述べるリチウムイオン電池用被覆負極活物質粒子、リチウムイオン電池用負極及びリチウムイオン電池に関する。上述のリチウムイオン電池用電極組成物はこの負極活物質粒子を有していてもよい。 The present invention also relates to coated negative electrode active material particles for lithium ion batteries, negative electrodes for lithium ion batteries, and lithium ion batteries described below. The above-mentioned electrode composition for a lithium ion battery may have this negative electrode active material particle.
リチウムイオン電池は、高エネルギー密度、高出力密度が達成できる二次電池として、近年様々な用途に利用されており、また、各種電池部材の検討が進められている。
なかでも、負極活物質として使用される黒鉛、非晶質炭素などの炭素系材料は、低コストでありサイクル寿命に優れていることから広く検討されている。
Lithium ion batteries have been used in a variety of applications in recent years as secondary batteries that can achieve high energy density and high output density, and various battery components are being studied.
Among them, carbon-based materials such as graphite and amorphous carbon used as negative electrode active materials are being widely studied because they are low cost and have excellent cycle life.
炭素系材料からなる負極活物質は、充放電に伴い活物質の表面を反応場とする電解液の分解反応等の副反応を起こす。このため、電池の不可逆容量が大きくなったり、内部抵抗が増加したりといった電池性能の低下が見られた。
この副反応を抑制するために、負極活物質表面に被膜(SEI:Solid Electrolyte Interface、SEI表面被膜ともいう)を形成し、負極活物質が電解液と直接接触しないようにする手段が広く採用されている。例えば、特許文献4には、特定の酸価を有する高分子化合物を負極活物質の被覆用樹脂として用いて副反応を抑制する方法が開示されている。
A negative electrode active material made of a carbon-based material causes side reactions such as a decomposition reaction of an electrolytic solution using the surface of the active material as a reaction site during charging and discharging. As a result, a decrease in battery performance was observed, such as an increase in the irreversible capacity of the battery and an increase in internal resistance.
In order to suppress this side reaction, a widely adopted method is to form a film (SEI: Solid Electrolyte Interface, also referred to as SEI surface film) on the surface of the negative electrode active material to prevent the negative electrode active material from coming into direct contact with the electrolyte. ing. For example, Patent Document 4 discloses a method of suppressing side reactions by using a polymer compound having a specific acid value as a coating resin for a negative electrode active material.
しかしながら、特許文献4に開示されている、負極活物質の表面の少なくとも一部を高分子化合物で被覆した被覆負極活物質は、圧縮成形で電極を作製した時に電極強度が充分ではないという課題があった。特に、リチウムイオン電池の高容量化が求められ、高容量化を目的とした電極の厚膜化が進む昨今において、この課題は強く解決が望まれている。 However, the coated negative electrode active material disclosed in Patent Document 4, in which at least a portion of the surface of the negative electrode active material is coated with a polymer compound, has a problem that the electrode strength is not sufficient when the electrode is produced by compression molding. there were. Particularly in these days when lithium ion batteries are required to have higher capacities and electrodes are becoming thicker in order to achieve higher capacities, there is a strong desire to solve this problem.
本発明は、上記課題を解決するものであり、圧縮成形によって電極を作製するにあたり、初期内部抵抗値及び充放電後の抵抗上昇率が低く、容量維持率が高く、かつ電極強度に優れた電極を作製することができるリチウムイオン電池用被覆負極活物質粒子を提供することを目的とする。 The present invention solves the above-mentioned problems, and when producing an electrode by compression molding, the present invention provides an electrode that has a low initial internal resistance value and a low rate of increase in resistance after charging and discharging, has a high capacity retention rate, and has excellent electrode strength. An object of the present invention is to provide coated negative electrode active material particles for lithium ion batteries that can be used to produce lithium ion battery coated negative electrode active material particles.
本発明は、リチウムイオン電池用負極活物質粒子の表面の少なくとも一部を第一被覆層で被覆してなり、上記第一被覆層の表面の少なくとも一部を第二被覆層で被覆してなるリチウムイオン電池用被覆負極活物質粒子であって、上記第一被覆層は、炭素数1~12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a11)及びアニオン性単量体(a12)を含んでなる単量体組成物の重合体である高分子化合物(P1)と導電助剤(C1)とを含み、上記高分子化合物(P1)はガラス転移温度が20℃を超え、上記第二被覆層は、ガラス転移温度が20℃以下である高分子化合物(P2)と導電助剤(C2)とを含むリチウムイオン電池用被覆負極活物質粒子;上記リチウムイオン電池用被覆負極活物質粒子と導電性フィラーとを含む非結着体からなるリチウムイオン電池用負極;上記リチウムイオン電池用負極を備えるリチウムイオン電池に関する。 In the present invention, at least a part of the surface of negative electrode active material particles for lithium ion batteries is coated with a first coating layer, and at least a part of the surface of the first coating layer is coated with a second coating layer. Coated negative electrode active material particles for lithium ion batteries, wherein the first coating layer comprises an ester compound (a11) of a monovalent aliphatic alcohol having 1 to 12 carbon atoms and (meth)acrylic acid and an anionic monomer. The polymer compound (P1) has a glass transition temperature of 20° C. and a conductive additive (C1). above, the second coating layer comprises coated negative electrode active material particles for lithium ion batteries containing a polymer compound (P2) having a glass transition temperature of 20° C. or lower and a conductive agent (C2); the above coating for lithium ion batteries; The present invention relates to a lithium ion battery negative electrode comprising a non-binding body containing negative electrode active material particles and a conductive filler; and a lithium ion battery comprising the above lithium ion battery negative electrode.
本発明によれば、圧縮成形によって電極を作製するにあたり、初期内部抵抗値及び充放電後の抵抗上昇率が低く、容量維持率が高く、かつ電極強度に優れた電極を作製することができるリチウムイオン電池用被覆負極活物質粒子を提供することができる。 According to the present invention, when producing an electrode by compression molding, lithium can be used to produce an electrode that has a low initial internal resistance value and a low rate of increase in resistance after charging and discharging, has a high capacity retention rate, and has excellent electrode strength. Coated negative electrode active material particles for ion batteries can be provided.
以下、本発明を詳細に説明する。
本発明は、リチウムイオン電池用被覆負極活物質粒子に関する。
なお、本明細書において、リチウムイオン電池と記載する場合、リチウムイオン二次電池も含む概念とする。
The present invention will be explained in detail below.
The present invention relates to coated negative electrode active material particles for lithium ion batteries.
In addition, in this specification, when describing a lithium ion battery, it is a concept that also includes a lithium ion secondary battery.
本発明のリチウムイオン電池用被覆負極活物質粒子は、リチウムイオン電池用負極活物質粒子の表面の少なくとも一部を第一被覆層で被覆してなり、上記第一被覆層の表面の少なくとも一部を第二被覆層で被覆してなる。第一被覆層は、リチウムイオン電池用負極活物質粒子と電解液との副反応を抑制することを主な目的として設けられている。第二被覆層は、本発明のリチウムイオン電池用被覆負極活物質粒子で電極を形成する場合、電極の強度を保持することを主な目的として設けられている。 The coated negative electrode active material particles for lithium ion batteries of the present invention are obtained by coating at least a part of the surface of the negative electrode active material particles for lithium ion batteries with a first coating layer, and at least a part of the surface of the first coating layer. is coated with a second coating layer. The first coating layer is provided primarily to suppress side reactions between the negative electrode active material particles for lithium ion batteries and the electrolyte. The second coating layer is provided mainly for the purpose of maintaining the strength of the electrode when the electrode is formed using the coated negative electrode active material particles for lithium ion batteries of the present invention.
負極活物質粒子としては、炭素系材料[黒鉛(グラファイト)、難黒鉛化性炭素(ハードカーボン)、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiO)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
上記負極活物質粒子のうち、内部にリチウム又はリチウムイオンを含まないものについては、予め負極活物質粒子の一部又は全部にリチウム又はリチウムイオンを含ませるプレドープ処理を施してもよい。
As the negative electrode active material particles, carbon-based materials [graphite, non-graphitizable carbon (hard carbon), amorphous carbon, fired resin bodies (for example, those obtained by firing and carbonizing phenol resin and furan resin, etc.), Cokes (e.g. pitch coke, needle coke, petroleum coke, etc.) and carbon fibers], silicon-based materials [silicon, silicon oxide (SiO x ), silicon-carbon composites (carbon particles whose surfaces are made of silicon and/or silicon carbide) silicon particles or silicon oxide particles coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloy, silicon- conductive polymers (e.g. polyacetylene, polypyrrole, etc.), metals (tin, aluminum, zirconium, titanium, etc.) , metal oxides (titanium oxide and lithium titanium oxide, etc.), metal alloys (for example, lithium-tin alloy, lithium-aluminum alloy, lithium-aluminum-manganese alloy, etc.), and mixtures of these with carbon-based materials, etc. can be mentioned.
Among the negative electrode active material particles, those that do not contain lithium or lithium ions inside may be subjected to a pre-doping treatment in which part or all of the negative electrode active material particles contain lithium or lithium ions.
負極活物質粒子の体積平均粒子径は、電池の電気特性の観点から、0.01~100μmであることが好ましく、0.1~60μmであることがより好ましく、2~40μmであることが更に好ましい。
本明細書において体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。
The volume average particle diameter of the negative electrode active material particles is preferably from 0.01 to 100 μm, more preferably from 0.1 to 60 μm, and even more preferably from 2 to 40 μm, from the viewpoint of the electrical characteristics of the battery. preferable.
In this specification, the volume average particle diameter means the particle diameter (Dv50) at 50% of the integrated value in the particle size distribution determined by the Microtrack method (laser diffraction/scattering method). The microtrack method is a method of determining particle size distribution using scattered light obtained by irradiating particles with laser light. Note that, for measuring the volume average particle diameter, a Microtrack manufactured by Nikkiso Co., Ltd., etc. can be used.
(第一被覆層)
上記第一被覆層は、高分子化合物(P1)と導電助剤(C1)とを含む。
高分子化合物(P1)は、炭素数1~12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a11)及びアニオン性単量体(a12)を含んでなる単量体組成物の重合体であり、ガラス転移温度(Tg)が20℃を超える。なお、本明細書において(メタ)アクリル酸は、メタクリル酸又はアクリル酸を意味する。
(First coating layer)
The first coating layer includes a polymer compound (P1) and a conductive aid (C1).
The polymer compound (P1) has a monomer composition comprising an ester compound (a11) of a monovalent aliphatic alcohol having 1 to 12 carbon atoms and (meth)acrylic acid and an anionic monomer (a12). It is a polymer of substances, and its glass transition temperature (Tg) exceeds 20°C. Note that (meth)acrylic acid in this specification means methacrylic acid or acrylic acid.
本明細書において、Tgは、ASTM D3418-82に規定の方法(DSC法)で測定した値である。高分子化合物(P1)のTgは、副反応抑制の観点から好ましくは40℃以上、更に好ましくは60℃以上である。 In this specification, Tg is a value measured by the method specified in ASTM D3418-82 (DSC method). The Tg of the polymer compound (P1) is preferably 40°C or higher, more preferably 60°C or higher from the viewpoint of suppressing side reactions.
まず、エステル化合物(a11)について説明する。
エステル化合物(a11)は炭素数1~12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物である。炭素数1~12の1価の脂肪族アルコールとしては、炭素数1~12の1価の分岐又は直鎖脂肪族アルコールが挙げられ、メタノール、エタノール、プロパノール(n-プロパノール、iso-プロパノール)、ブチルアルコール(n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール)、ペンチルアルコール(n-ペンチルアルコール、2-ペンチルアルコール及びネオペンチルアルコール等)、ヘキシルアルコール(1-ヘキサノール、2-ヘキサノール及び3-ヘキサノール等)、ヘプチルアルコール(n-ヘプチルアルコール、1-メチルヘキシルアルコール及び2-メチルヘキシルアルコール等)、オクチルアルコール(n-オクチルアルコール、1-メチルヘプタノール、1-エチルヘキサノール、2-メチルヘプタノール及び2-エチルヘキサノール等)、ノニルアルコール(n-ノニルアルコール、1-メチルオクタノール、1-エチルヘプタノール、1-プロピルヘキサノール及び2-エチルヘプチルアルコール等)、デシルアルコール(n-デシルアルコール、1-メチルノニルアルコール、2-メチルノニルアルコール及び2-エチルオクチルアルコール等)、ウンデシルアルコール(n-ウンデシルアルコール、1-メチルデシルアルコール、2-メチルデシルアルコール及び2-エチルノニルアルコール等)、ラウリルアルコール(n-ラウリルアルコール、1-メチルウンデシルアルコール、2-メチルウンデシルアルコール、2-エチルデシルアルコール及び2-ブチルオクチルアルコール等)等が挙げられる。
First, the ester compound (a11) will be explained.
The ester compound (a11) is an ester compound of a monovalent aliphatic alcohol having 1 to 12 carbon atoms and (meth)acrylic acid. Examples of monovalent aliphatic alcohols having 1 to 12 carbon atoms include monovalent branched or straight chain aliphatic alcohols having 1 to 12 carbon atoms, such as methanol, ethanol, propanol (n-propanol, iso-propanol), Butyl alcohol (n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol), pentyl alcohol (n-pentyl alcohol, 2-pentyl alcohol, neopentyl alcohol, etc.), hexyl alcohol (1-hexanol, 2-hexanol and 3-hexanol) -hexanol, etc.), heptyl alcohol (n-heptyl alcohol, 1-methylhexyl alcohol, 2-methylhexyl alcohol, etc.), octyl alcohol (n-octyl alcohol, 1-methylheptanol, 1-ethylhexanol, 2-methylheptyl alcohol) alcohol and 2-ethylhexanol), nonyl alcohol (n-nonyl alcohol, 1-methyloctanol, 1-ethylheptanol, 1-propylhexanol, 2-ethylheptyl alcohol, etc.), decyl alcohol (n-decyl alcohol, - Methylnonyl alcohol, 2-methylnonyl alcohol, 2-ethyloctyl alcohol, etc.), undecyl alcohol (n-undecyl alcohol, 1-methyldecyl alcohol, 2-methyldecyl alcohol, 2-ethylnonyl alcohol, etc.), lauryl Examples include alcohols (n-lauryl alcohol, 1-methylundecyl alcohol, 2-methylundecyl alcohol, 2-ethyldecyl alcohol, 2-butyloctyl alcohol, etc.).
エステル化合物(a11)として好ましいものとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-メチルヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ドデシルが挙げられ、なかでもメタクリル酸メチル、メタクリル酸ブチル、メタクリル酸ドデシル、メタクリル酸2-エチルヘキシルが更に好ましい。 Preferred ester compounds (a11) include methyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-methylhexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. , dodecyl (meth)acrylate, among which methyl methacrylate, butyl methacrylate, dodecyl methacrylate, and 2-ethylhexyl methacrylate are more preferred.
アニオン性単量体(a12)について説明する。
アニオン性単量体(a12)はラジカル重合性を有する重合性基とアニオン性基を有する単量体であり、ラジカル重合性基として好ましいものとしては、ビニル基、アリル基、スチレニル基及び(メタ)アクリロイル基等が挙げられ、アニオン性基として好ましいものとしては、ホスホン酸基、スルホン酸基及びカルボキシル基等が挙げられる。
The anionic monomer (a12) will be explained.
The anionic monomer (a12) is a monomer having a radically polymerizable polymerizable group and an anionic group, and preferable radically polymerizable groups include a vinyl group, an allyl group, a styrenyl group, and a (meth) ) Acryloyl group, etc., and preferred anionic groups include phosphonic acid group, sulfonic acid group, carboxyl group, etc.
アニオン性単量体(a12)として好ましいものとしては、炭素数3~9のラジカル重合性不飽和カルボン酸、炭素数2~8のラジカル重合性不飽和スルホン酸及び炭素数2~9のラジカル重合性不飽和ホスホン酸からなる群から選ばれる少なくとも1種が挙げられる。 Preferred examples of the anionic monomer (a12) include radically polymerizable unsaturated carboxylic acids having 3 to 9 carbon atoms, radically polymerizable unsaturated sulfonic acids having 2 to 8 carbon atoms, and radically polymerizable unsaturated carboxylic acids having 2 to 9 carbon atoms. At least one selected from the group consisting of sexually unsaturated phosphonic acids is mentioned.
炭素数3~9のラジカル重合性不飽和カルボン酸としては、炭素数3~9のラジカル重合性不飽和脂肪族モノカルボン酸及び炭素数9のラジカル重合性不飽和芳香族モノカルボン酸が挙げられる。炭素数3~9のラジカル重合性不飽和脂肪族モノカルボン酸としては、(メタ)アクリル酸、ブタン酸(2-メチルブタン酸及び3-メチルブタン酸等の置換ブタン酸を含む)、ペンテン酸(2-メチルペンテン酸及び3-メチルペンテン酸等の置換ペンテン酸を含む。)、ヘキセン酸(2-メチルヘキセン酸及び3-メチルヘキセン酸等の置換ヘキセン酸を含む。)、ヘプテン酸(2-メチルヘプテン酸及び3-メチルヘプテン酸等の置換ヘプテン酸を含む。)及びオクテン酸(2-メチルオクテン酸及び3-メチルオクテン酸等の置換オクテン酸を含む。)等が挙げられる。
炭素数9のラジカル重合性不飽和芳香族モノカルボン酸としては、3-フェニルプロペン酸及びビニル安息香酸等が挙げられる。
Examples of the radically polymerizable unsaturated carboxylic acid having 3 to 9 carbon atoms include radically polymerizable unsaturated aliphatic monocarboxylic acids having 3 to 9 carbon atoms and radically polymerizable unsaturated aromatic monocarboxylic acids having 9 carbon atoms. . Examples of radically polymerizable unsaturated aliphatic monocarboxylic acids having 3 to 9 carbon atoms include (meth)acrylic acid, butanoic acid (including substituted butanoic acids such as 2-methylbutanoic acid and 3-methylbutanoic acid), and pentenoic acid (2-methylbutanoic acid and substituted butanoic acid such as 3-methylbutanoic acid). - including substituted pentenoic acids such as methylpentenoic acid and 3-methylpentenoic acid), hexenoic acid (including substituted hexenoic acids such as 2-methylhexenoic acid and 3-methylhexenoic acid), heptenoic acid (including substituted hexenoic acids such as 2-methylhexenoic acid and 3-methylhexenoic acid), (including substituted heptenoic acids such as 3-methylheptenoic acid) and octenoic acid (including substituted octenoic acids such as 2-methyloctenoic acid and 3-methyloctenoic acid).
Examples of the radically polymerizable unsaturated aromatic monocarboxylic acid having 9 carbon atoms include 3-phenylpropenoic acid and vinylbenzoic acid.
炭素数2~8のラジカル重合性不飽和スルホン酸としては、炭素数2~8のラジカル重合性不飽和脂肪族モノスルホン酸及び炭素数8のラジカル重合性不飽和芳香族モノスルホン酸が挙げられる。
炭素数2~8のラジカル重合性不飽和脂肪族モノスルホン酸としては、ビニルスルホン酸(1-メチルビニルスルホン酸及び2-メチルビニルスルホン酸等の置換ビニルスルホン酸を含む)、アリルスルホン酸 (1-メチルアリルスルホン酸及び2-メチルアリルスルホン酸アニオン等の置換アリルスルホン酸を含む。)、ブテンスルホン酸(1-メチルブテンスルホン酸及び2-メチルブテンスルホン酸等の置換ブテンスルホン酸を含む。)、ペンテンスルホン酸(1-メチルペンテンスルホン酸及び2-メチルペンテンスルホン酸等の置換ペンテンスルホン酸を含む。)ヘキセンスルホン酸(1-メチルヘキセンスルホン酸及び2-メチルヘキセンスルホン酸等の置換ヘキセンスルホン酸を含む。)及びヘプテンスルホン酸(1-メチルヘプテンスルホン酸及び2-メチルヘプテンスルホン酸等の置換ヘプテンスルホン酸を含む。)等が挙げられる。
炭素数8のラジカル重合性不飽和芳香族モノスルホン酸としては、スチレンスルホン酸が挙げられる。
Examples of radically polymerizable unsaturated sulfonic acids having 2 to 8 carbon atoms include radically polymerizable unsaturated aliphatic monosulfonic acids having 2 to 8 carbon atoms and radically polymerizable unsaturated aromatic monosulfonic acids having 8 carbon atoms. .
Examples of radically polymerizable unsaturated aliphatic monosulfonic acids having 2 to 8 carbon atoms include vinylsulfonic acid (including substituted vinylsulfonic acids such as 1-methylvinylsulfonic acid and 2-methylvinylsulfonic acid), allylsulfonic acid ( (including substituted allylsulfonic acids such as 1-methylallylsulfonic acid and 2-methylallylsulfonic acid anion), butenesulfonic acid (including substituted butenesulfonic acids such as 1-methylbutenesulfonic acid and 2-methylbutenesulfonic acid) ), pentensulfonic acid (including substituted pentensulfonic acids such as 1-methylpentensulfonic acid and 2-methylpentensulfonic acid), hexenesulfonic acid (substituted pentensulfonic acids such as 1-methylhexenesulfonic acid and 2-methylhexenesulfonic acid) (including hexenesulfonic acid) and heptenesulfonic acid (including substituted heptenesulfonic acids such as 1-methylheptensulfonic acid and 2-methylheptensulfonic acid).
Examples of the radically polymerizable unsaturated aromatic monosulfonic acid having 8 carbon atoms include styrene sulfonic acid.
炭素数2~9のラジカル重合性不飽和ホスホン酸としては、ビニルホスホン酸、アリルホスホン酸、ビニルベンジルホスホン酸、1-又は2-フェニルエテニルホスホン酸、(メタ)アクリルアミドアルキルホスホン酸、アクリルアミドアルキルジホスホン酸、ホスホノメチル化ビニルアミン及び(メタ)アクリルホスホン酸等が挙げられる。
これらのアニオン性単量体は混合物であってもよい。
なお、アニオン性単量体を含有することで、高分子化合物(P1)の靭性が向上し、充放電時のリチウムイオンの脱挿入反応に伴う負極活物質粒子の膨張収縮によるストレスを受けにくくなる。
Examples of radically polymerizable unsaturated phosphonic acids having 2 to 9 carbon atoms include vinylphosphonic acid, allylphosphonic acid, vinylbenzylphosphonic acid, 1- or 2-phenylethenylphosphonic acid, (meth)acrylamidoalkylphosphonic acid, and acrylamidealkylphosphonic acid. Diphosphonic acid, phosphonomethylated vinylamine, (meth)acrylicphosphonic acid, and the like can be mentioned.
These anionic monomers may be a mixture.
In addition, by containing the anionic monomer, the toughness of the polymer compound (P1) is improved, making it less susceptible to stress due to expansion and contraction of the negative electrode active material particles associated with lithium ion deintercalation reactions during charging and discharging. .
これらのアニオン性単量体は1種を単独で用いてもよく、2種以上併用してもよい。中でも重合体の酸価が30~500である場合には、アニオン性単量体(a12)は、炭素数3~9のラジカル重合性不飽和カルボン酸、炭素数2~8のラジカル重合性不飽和スルホン酸及び炭素数2~9のラジカル重合性不飽和ホスホン酸からなる群から選ばれる少なくとも2種を併用することが好ましく、炭素数3~9のラジカル重合性不飽和カルボン酸と炭素数2~8のラジカル重合性不飽和スルホン酸又は炭素数2~9のラジカル重合性不飽和ホスホン酸とを併用することが更に好ましい。 These anionic monomers may be used alone or in combination of two or more. Among them, when the acid value of the polymer is 30 to 500, the anionic monomer (a12) is a radically polymerizable unsaturated carboxylic acid having 3 to 9 carbon atoms or a radically polymerizable unsaturated carboxylic acid having 2 to 8 carbon atoms. It is preferable to use in combination at least two selected from the group consisting of saturated sulfonic acids and radically polymerizable unsaturated phosphonic acids having 2 to 9 carbon atoms, and radically polymerizable unsaturated carboxylic acids having 3 to 9 carbon atoms and 2 to 9 carbon atoms. It is more preferable to use a radically polymerizable unsaturated sulfonic acid having 1 to 8 carbon atoms or a radically polymerizable unsaturated phosphonic acid having 2 to 9 carbon atoms in combination.
単量体組成物に含まれるエステル化合物(a11)の含有量は、負極活物質粒子との接着性等の観点から、エステル化合物(a11)及びアニオン性単量体(a12)の合計重量に基づいて1~99重量%であることが好ましく、より好ましくは20~80重量%であり、更に好ましくは30~70重量%である。 The content of the ester compound (a11) contained in the monomer composition is based on the total weight of the ester compound (a11) and the anionic monomer (a12) from the viewpoint of adhesiveness with the negative electrode active material particles. The amount is preferably 1 to 99% by weight, more preferably 20 to 80% by weight, and even more preferably 30 to 70% by weight.
単量体組成物に含まれるアニオン性単量体(a12)の含有量は、イオン導電性の観点から、エステル化合物(a11)及びアニオン性単量体(a12)合計重量に基づいて1~99重量%であることが好ましく、より好ましくは20~80重量%であり、更に好ましくは30~70重量%である。 From the viewpoint of ionic conductivity, the content of the anionic monomer (a12) contained in the monomer composition is 1 to 99% based on the total weight of the ester compound (a11) and the anionic monomer (a12). It is preferably % by weight, more preferably 20-80% by weight, even more preferably 30-70% by weight.
上記単量体組成物は、更にアニオン性単量体の塩(a13)を含むことが好ましい。単量体組成物がアニオン性単量体の塩(a13)を含有することで、リチウムイオン電池の内部抵抗を低減することが出来る。 Preferably, the monomer composition further includes a salt of an anionic monomer (a13). When the monomer composition contains the anionic monomer salt (a13), the internal resistance of the lithium ion battery can be reduced.
アニオン性単量体の塩(a13)について説明する。
アニオン性単量体の塩(a13)を構成するアニオン性単量体のアニオンとしては、前記のアニオン性単量体(a12)で例示したものと同じアニオン性単量体のアニオンが挙げられ、ビニルスルホン酸アニオン、アリルスルホン酸アニオン、スチレンスルホン酸アニオン及び(メタ)アクリル酸アニオンからなる群から選ばれる少なくとも1種のアニオンが好ましい。
アニオン性単量体の塩(a13)を構成するカチオンとしては、1価の無機カチオンが挙げられ、アルカリ金属カチオン及びアンモニウムイオンが好ましく、リチウムイオン、ナトリウムイオン、カリウムイオン及びアンモニウムイオンがより好ましく、リチウムイオンが更に好ましい。
アニオン性単量体の塩(a13)は1種類を用いても複数を併用しても良く、アニオン性単量体の塩(a13)が複数のアニオンを有する場合、カチオンはリチウムイオン、ナトリウムイオン、カリウムイオン及びアンモニウムイオンからなる群から選ばれる少なくとも1種のカチオンであることが好ましい。
The anionic monomer salt (a13) will be explained.
Examples of the anion of the anionic monomer constituting the anionic monomer salt (a13) include the same anion of the anionic monomer as exemplified for the anionic monomer (a12), At least one anion selected from the group consisting of vinylsulfonate anion, allylsulfonate anion, styrenesulfonate anion, and (meth)acrylate anion is preferred.
The cation constituting the anionic monomer salt (a13) includes monovalent inorganic cations, preferably alkali metal cations and ammonium ions, more preferably lithium ions, sodium ions, potassium ions and ammonium ions, Lithium ions are more preferred.
The anionic monomer salt (a13) may be used alone or in combination, and when the anionic monomer salt (a13) has multiple anions, the cations are lithium ions, sodium ions. The cation is preferably at least one selected from the group consisting of , potassium ion, and ammonium ion.
上記単量体組成物がアニオン性単量体の塩(a13)を含む場合、単量体組成物に含まれる前記エステル化合物(a11)の含有量は、活物質との接着性等の観点から、エステル化合物(a11)、アニオン性単量体(a12)及びアニオン性単量体の塩(a13)の合計重量に基づいて5~95重量%であることが好ましく、より好ましくは20~80重量%であり、更に好ましくは30~70重量%である。 When the monomer composition contains the anionic monomer salt (a13), the content of the ester compound (a11) contained in the monomer composition is determined from the viewpoint of adhesion to the active material, etc. , preferably 5 to 95% by weight, more preferably 20 to 80% by weight, based on the total weight of the ester compound (a11), the anionic monomer (a12) and the salt of the anionic monomer (a13). %, more preferably 30 to 70% by weight.
上記単量体組成物がアニオン性単量体の塩(a13)を含む場合、単量体組成物に含まれるアニオン性単量体(a12)の含有量は、イオン導電性の観点から、エステル化合物(a11)、アニオン性単量体(a12)及びアニオン性単量体の塩(a13)の合計重量に基づいて10~90重量%であることが好ましく、より好ましくは20~80重量%であり、更に好ましくは30~70重量%である。 When the monomer composition contains a salt of an anionic monomer (a13), the content of the anionic monomer (a12) contained in the monomer composition is determined from the viewpoint of ionic conductivity. It is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, based on the total weight of the compound (a11), the anionic monomer (a12) and the salt of the anionic monomer (a13). The content is more preferably 30 to 70% by weight.
上記単量体組成物がアニオン性単量体の塩(a13)を含む場合、単量体組成物に含まれるアニオン性単量体の塩(a13)の含有量は、内部抵抗等の観点から、エステル化合物(a11)、アニオン性単量体(a12)及びアニオン性単量体の塩(a13)の合計重量に基づいて0.1~10重量%であることが好ましく、より好ましくは0.5~10重量%であり、更に好ましくは1~10重量%である。 When the monomer composition contains an anionic monomer salt (a13), the content of the anionic monomer salt (a13) contained in the monomer composition is determined from the viewpoint of internal resistance, etc. , the ester compound (a11), the anionic monomer (a12) and the salt of the anionic monomer (a13) are preferably 0.1 to 10% by weight, more preferably 0. The amount is 5 to 10% by weight, more preferably 1 to 10% by weight.
高分子化合物(P1)の重量平均分子量は、活物質との接着性等の観点から、20,000~96,000であることが好ましく、後述する重合体を得る方法において、その重合条件を好ましい範囲とすることで重量平均分子量を好ましい範囲にすることができる。
なお、本明細書における高分子化合物(P1)の重量平均分子量は、以下の条件で測定したゲルパーミエーションクロマトグラフィ(以下、GPCと略記する)により測定される。
<GPCの測定条件>
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン
標準物質:ポリスチレン
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED-B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃
The weight average molecular weight of the polymer compound (P1) is preferably from 20,000 to 96,000 from the viewpoint of adhesion to the active material, and in the method for obtaining the polymer described below, the polymerization conditions are preferably set. By setting the weight average molecular weight within this range, the weight average molecular weight can be set within a preferable range.
Note that the weight average molecular weight of the polymer compound (P1) in this specification is measured by gel permeation chromatography (hereinafter abbreviated as GPC) measured under the following conditions.
<GPC measurement conditions>
Equipment: Alliance GPC V2000 (manufactured by Waters)
Solvent: Orthodichlorobenzene Standard material: Polystyrene Sample concentration: 3mg/ml
Column stationary phase: PLgel 10μm, MIXED-B 2 in series (manufactured by Polymer Laboratories)
Column temperature: 135℃
単量体組成物には、エステル化合物(a11)、アニオン性単量体(a12)及びアニオン性単量体の塩(a13)の他に、活性水素を含有しない共重合性ビニルモノマー(c)「以下、共重合性ビニルモノマー(c)と記載する」が含まれていてもよい。 In addition to the ester compound (a11), the anionic monomer (a12), and the salt of the anionic monomer (a13), the monomer composition includes a copolymerizable vinyl monomer (c) that does not contain active hydrogen. "Hereinafter, referred to as copolymerizable vinyl monomer (c)" may be included.
共重合性ビニルモノマー(c)としては、下記(c1)~(c5)が挙げられる。 Examples of the copolymerizable vinyl monomer (c) include the following (c1) to (c5).
(c1)炭素数13~20の分岐又は直鎖脂肪族モノオール、炭素数5~20の脂環式モノオール又は炭素数7~20の芳香脂肪族モノオールと(メタ)アクリル酸から形成されるカルビル(メタ)アクリレート
上記モノオールとしては、(i)炭素数13~20の分岐又は直鎖脂肪族モノオール(トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、セチルアルコール、ヘプタデシルアルコール、ステアリルアルコール、イソステアリルアルコール、ノナデシルアルコール、アラキジルアルコール等)、(ii)炭素数5~20の脂環式モノオール(シクロヘキシルアルコール等)、(iii)炭素数7~20の芳香脂肪族モノオール(ベンジルアルコール等)及びこれらの2種以上の混合物が挙げられる。
(c1) Formed from a branched or straight-chain aliphatic monool having 13 to 20 carbon atoms, an alicyclic monool having 5 to 20 carbon atoms, or an aromatic aliphatic monool having 7 to 20 carbon atoms, and (meth)acrylic acid. The monools mentioned above include (i) branched or straight-chain aliphatic monools having 13 to 20 carbon atoms (tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, isostearyl alcohol, nonadecyl alcohol, arachidyl alcohol, etc.), (ii) alicyclic monool having 5 to 20 carbon atoms (cyclohexyl alcohol, etc.), (iii) aromatic aliphatic monool having 7 to 20 carbon atoms (benzyl alcohol, etc.) and mixtures of two or more thereof.
(c2)ポリ(n=2~30)オキシアルキレン(炭素数2~4)アルキル(炭素数1~18)エーテル(メタ)アクリレート[メタノールのエチレンオキシド(以下EOと略記)10モル付加物(メタ)アクリレート、メタノールのプロピレンオキシド(以下POと略記)10モル付加物(メタ)アクリレート等]。 (c2) Poly(n=2-30) oxyalkylene (2-4 carbon atoms) alkyl (1-18 carbon atoms) ether (meth)acrylate [10 mole adduct of methanol with ethylene oxide (hereinafter abbreviated as EO) (meth) acrylate, 10 mole adduct of methanol with propylene oxide (hereinafter abbreviated as PO) (meth)acrylate, etc.].
(c3)窒素含有ビニル化合物
(c3-1)アミド基含有ビニル化合物
(i)炭素数3~30の(メタ)アクリルアミド化合物、例えばN,N-ジアルキル(炭素数1~6)又はジアラルキル(炭素数7~15)(メタ)アクリルアミド(N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミド等)及びジアセトンアクリルアミド。
(ii)上記(メタ)アクリルアミド化合物を除く、炭素数4~20のアミド基含有ビニル化合物、例えばN-メチル-N-ビニルアセトアミド、環状アミド[炭素数6~13のピロリドン化合物(N-ビニルピロリドン等)]。
(c3) Nitrogen-containing vinyl compound (c3-1) Amide group-containing vinyl compound (i) (meth)acrylamide compound having 3 to 30 carbon atoms, such as N,N-dialkyl (1 to 6 carbon atoms) or dialkyl (carbon number 7-15) (meth)acrylamide (N,N-dimethylacrylamide, N,N-dibenzylacrylamide, etc.) and diacetone acrylamide.
(ii) Vinyl compounds containing an amide group having 4 to 20 carbon atoms, excluding the above (meth)acrylamide compounds, such as N-methyl-N-vinylacetamide, cyclic amides [pyrrolidone compounds having 6 to 13 carbon atoms (N-vinylpyrrolidone)] etc)].
(c3-2)(メタ)アクリレート化合物
(i)ジアルキル(炭素数1~4)アミノアルキル(炭素数1~4)(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート及びモルホリノエチル(メタ)アクリレート等]。
(ii)4級アンモニウム基含有(メタ)アクリレート{3級アミノ基含有(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート及びN,N-ジエチルアミノエチル(メタ)アクリレート等]をハロゲン化アルキル等の4級化剤を用いて4級化した4級化物等}。
(c3-2) (meth)acrylate compound (i) dialkyl (1 to 4 carbon atoms) aminoalkyl (1 to 4 carbon atoms) (meth)acrylate [N,N-dimethylaminoethyl (meth)acrylate, N,N -diethylaminoethyl (meth)acrylate, t-butylaminoethyl (meth)acrylate, morpholinoethyl (meth)acrylate, etc.].
(ii) Halogenating quaternary ammonium group-containing (meth)acrylate {tertiary amino group-containing (meth)acrylate [N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, etc.] Quaternized products etc. that have been quaternized using a quaternizing agent such as alkyl}.
(c3-3)複素環含有ビニル化合物
炭素数7~14のピリジン化合物(2-又は4-ビニルピリジン等)、炭素数5~12のイミダゾール化合物(N-ビニルイミダゾール等)、炭素数6~13のピロール化合物(N-ビニルピロール等)及び炭素数6~13のピロリドン化合物(N-ビニル-2-ピロリドン等)。
(c3-3) Heterocycle-containing vinyl compounds Pyridine compounds with 7 to 14 carbon atoms (2- or 4-vinylpyridine, etc.), imidazole compounds with 5 to 12 carbon atoms (N-vinylimidazole, etc.), 6 to 13 carbon atoms pyrrole compounds (such as N-vinylpyrrole) and pyrrolidone compounds having 6 to 13 carbon atoms (such as N-vinyl-2-pyrrolidone).
(c3-4)ニトリル基含有ビニル化合物
炭素数3~15のニトリル基含有ビニル化合物[(メタ)アクリロニトリル、シアノスチレン及びシアノアルキル(炭素数1~4)アクリレート等]。
(c3-4) Nitrile group-containing vinyl compound A nitrile group-containing vinyl compound having 3 to 15 carbon atoms [(meth)acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate, etc.].
(c3-5)その他ビニル化合物
炭素数8~16のニトロ基含有ビニル化合物(ニトロスチレン等)等。
(c3-5) Other vinyl compounds Nitro group-containing vinyl compounds having 8 to 16 carbon atoms (nitrostyrene, etc.), etc.
(c4)ビニル炭化水素
(c4-1)脂肪族ビニル炭化水素
炭素数2~18又はそれ以上のオレフィン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等)、炭素数4~10又はそれ以上のジエン(ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエン及び1,7-オクタジエン等)等。
(c4) vinyl hydrocarbon (c4-1) aliphatic vinyl hydrocarbon olefin having 2 to 18 carbon atoms or more (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), Dienes having 4 to 10 or more carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.), etc.
(c4-2)脂環式ビニル炭化水素
炭素数4~18又はそれ以上の環状不飽和化合物{シクロアルケン(シクロヘキセン等)、(ジ)シクロアルカジエン[(ジ)シクロペンタジエン等]、テルペン(ピネン、リモネン及びインデン等)}。
(c4-2) Alicyclic vinyl hydrocarbon Cyclic unsaturated compounds having 4 to 18 carbon atoms or more {cycloalkenes (cyclohexene, etc.), (di)cycloalkadienes [(di)cyclopentadiene, etc.], terpenes (pinene, etc.) , limonene and indene, etc.)}.
(c4-3)芳香族ビニル炭化水素
炭素数8~20又はそれ以上の芳香族不飽和化合物及びそれらの誘導体(スチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン及びベンジルスチレン等)等。
(c4-3) Aromatic vinyl hydrocarbon Aromatic unsaturated compounds having 8 to 20 carbon atoms or more and derivatives thereof (styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropyl styrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene, etc.).
(c5)ビニルエステル、ビニルエーテル、ビニルケトン及び不飽和ジカルボン酸ジエステル
(c5-1)ビニルエステル
脂肪族ビニルエステル[炭素数4~15の脂肪族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルアジペート、イソプロペニルアセテート及びビニルメトキシアセテート等)等]。
芳香族ビニルエステル[炭素数9~20の芳香族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(ビニルベンゾエート、ジアリルフタレート及びメチル-4-ビニルベンゾエート等)及び脂肪族カルボン酸の芳香環含有エステル(アセトキシスチレン等)等]。
(c5) Vinyl ester, vinyl ether, vinyl ketone and unsaturated dicarboxylic acid diester (c5-1) Vinyl ester aliphatic vinyl ester [alkenyl ester of aliphatic carboxylic acid (mono- or dicarboxylic acid) having 4 to 15 carbon atoms (vinyl acetate) , vinyl propionate, vinyl butyrate, diallyl adipate, isopropenyl acetate, vinyl methoxy acetate, etc.).
Aromatic vinyl esters [alkenyl esters of aromatic carboxylic acids (mono- or dicarboxylic acids) having 9 to 20 carbon atoms (vinyl benzoate, diallyl phthalate, methyl-4-vinyl benzoate, etc.) and aromatic ring-containing esters of aliphatic carboxylic acids (acetoxystyrene, etc.)].
(c5-2)ビニルエーテル
脂肪族ビニルエーテル[炭素数3~15のビニルアルキル(炭素数1~10)エーテル(ビニルメチルエーテル、ビニルブチルエーテル及びビニル2-エチルヘキシルエーテル等)、ビニルアルコキシ(炭素数1~6)アルキル(炭素数1~4)エーテル(ビニル-2-メトキシエチルエーテル、メトキシブタジエン、3,4-ジヒドロ-1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル及びビニル-2-エチルメルカプトエチルエーテル等)、ポリ(2~4)(メタ)アリロキシアルカン(炭素数2~6)(ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシブタン及びテトラメタアリロキシエタン等)等]。
炭素数8~20の芳香族ビニルエーテル(ビニルフェニルエーテル及びフェノキシスチレン等)。
(c5-2) Vinyl ether aliphatic vinyl ether [vinyl alkyl having 3 to 15 carbon atoms (1 to 10 carbon atoms) ether (vinyl methyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, etc.), vinyl alkoxy (having 1 to 6 carbon atoms) ) Alkyl (1-4 carbon atoms) ethers (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether and vinyl-2- ethyl mercaptoethyl ether, etc.), poly(2-4)(meth)allyloxyalkanes (2-6 carbon atoms) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetramethallyloxyethane, etc.), etc. ].
Aromatic vinyl ethers having 8 to 20 carbon atoms (vinylphenyl ether, phenoxystyrene, etc.).
(c5-3)ビニルケトン
炭素数4~25の脂肪族ビニルケトン(ビニルメチルケトン及びビニルエチルケトン等)。
炭素数9~21の芳香族ビニルケトン(ビニルフェニルケトン等)。
(c5-3) Vinyl ketone Aliphatic vinyl ketone having 4 to 25 carbon atoms (vinyl methyl ketone, vinyl ethyl ketone, etc.).
Aromatic vinyl ketones having 9 to 21 carbon atoms (vinylphenyl ketones, etc.).
(c5-4)不飽和ジカルボン酸ジエステル
炭素数4~34の不飽和ジカルボン酸ジエステル[ジアルキルフマレート(2個のアルキル基は、炭素数1~22の、直鎖、分枝鎖もしくは脂環式の基)及びジアルキルマレエート(2個のアルキル基は、炭素数1~22の、直鎖、分岐鎖もしくは脂環式の基)]。
(c5-4) Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms [dialkyl fumarate (two alkyl groups are linear, branched, or alicyclic, having 1 to 22 carbon atoms) ) and dialkyl maleate (the two alkyl groups are linear, branched, or alicyclic groups having 1 to 22 carbon atoms)].
単量体組成物が共重合性ビニルモノマー(c)を含む場合、共重合性ビニルモノマー(c)の含有量は、単量体組成物に含まれる単量体成分の合計重量に基づいて4.5~6.5重量%であることが好ましい。なお、本発明において、単量体成分とは、エステル化合物(a11)、アニオン性単量体(a12)及びアニオン性単量体の塩(a13)等の重合性を有する単量体成分を意味し、単量体組成物が共重合性ビニルモノマー(c)を含む場合、単量体成分の合計重量には共重合性ビニルモノマー(c)の重量も含む。 When the monomer composition contains a copolymerizable vinyl monomer (c), the content of the copolymerizable vinyl monomer (c) is 4% based on the total weight of the monomer components contained in the monomer composition. It is preferably .5 to 6.5% by weight. In the present invention, the monomer component refers to a monomer component having polymerizability such as an ester compound (a11), an anionic monomer (a12), and a salt of an anionic monomer (a13). However, when the monomer composition contains the copolymerizable vinyl monomer (c), the total weight of the monomer components also includes the weight of the copolymerizable vinyl monomer (c).
高分子化合物(P1)の酸価は、活物質の体積変化抑制等の観点から、30~700である。酸価が30より小さくても700より大きくても被覆活物質間の界面抵抗が上昇し良好な電気特性を発揮できない。酸価は使用する活物質及び電解液の種類に応じて調整することができるが、電気特性等の観点から500~700が更に好ましい。
なお、本明細書における高分子化合物(P1)の酸価は、JIS K 0070-1992の方法で測定され、高分子化合物(P1)の酸価は単量体組成物に含まれるアニオン性単量体(a12)の含有量を調整することで前記の範囲とすることができる。
The acid value of the polymer compound (P1) is 30 to 700 from the viewpoint of suppressing volume change of the active material. If the acid value is lower than 30 or higher than 700, the interfacial resistance between the coated active materials increases and good electrical properties cannot be exhibited. Although the acid value can be adjusted depending on the type of active material and electrolyte used, it is more preferably 500 to 700 from the viewpoint of electrical properties.
In addition, the acid value of the polymer compound (P1) in this specification is measured by the method of JIS K 0070-1992, and the acid value of the polymer compound (P1) is determined by the amount of anionic monomer contained in the monomer composition. The above range can be achieved by adjusting the content of body (a12).
高分子化合物(P1)は、エステル化合物(a11)及びアニオン性単量体(a12)並びに必要により用いるアニオン性単量体の塩(a13)及び共重合性ビニルモノマー(c)を構成成分とする単量体組成物を重合することで得ることができ、重合方法としては、公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合等)を用いることができる。
重合に際しては、公知の重合開始剤{アゾ系開始剤[2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)及び2,2’-アゾビス(2-メチルブチロニトリル)等]、パーオキシド系開始剤(ベンゾイルパーオキシド、ジ-t-ブチルパーオキシド及びラウリルパーオキシド等)等}を使用して行うことができる。
重合開始剤の使用量は、単量体組成物に含まれる単量体成分の合計重量に基づいて好ましくは0.01~5重量%、より好ましくは0.05~2重量%である。
The polymer compound (P1) consists of an ester compound (a11), an anionic monomer (a12), a salt of the anionic monomer (a13) used as necessary, and a copolymerizable vinyl monomer (c). It can be obtained by polymerizing a monomer composition, and known polymerization methods (bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.) can be used as the polymerization method.
During polymerization, known polymerization initiators {azo initiators [2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2,4-dimethylvaleronitrile) and 2,2' -azobis(2-methylbutyronitrile), etc.], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc.).
The amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of monomer components contained in the monomer composition.
溶液重合の場合に使用される溶媒としては、エステル溶剤[好ましくは炭素数2~8のエステル化合物(例えば酢酸エチル及び酢酸ブチル)]、アルコール[好ましくは炭素数1~8の脂肪族アルコール(例えばメタノール、エタノール、イソプロパノール及びオクタノール)]、炭素数5~8の直鎖、分岐又は環状構造を持つ炭化水素(例えばペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、トルエン及びキシレン)、アミド溶剤[例えばN,N-ジメチルホルムアミド(以下、DMFと略記)及びジメチルアセトアミド]及びケトン溶剤[好ましくは炭素数3~9のケトン化合物(例えばメチルエチルケトン)]等が挙げられ、使用量は単量体組成物に含まれる単量体成分の合計重量に基づいて通常50~200重量%であり、単量体組成物の濃度としては、通常30~70重量%である。 Solvents used in solution polymerization include ester solvents [preferably ester compounds having 2 to 8 carbon atoms (e.g. ethyl acetate and butyl acetate)], alcohols [preferably aliphatic alcohols having 1 to 8 carbon atoms (e.g. methanol, ethanol, isopropanol and octanol)], hydrocarbons with a linear, branched or cyclic structure having 5 to 8 carbon atoms (e.g. pentane, hexane, heptane, octane, cyclohexane, toluene and xylene), amide solvents [e.g. N-dimethylformamide (hereinafter abbreviated as DMF) and dimethylacetamide] and ketone solvents [preferably a ketone compound having 3 to 9 carbon atoms (for example, methyl ethyl ketone)], etc., and the amount used is included in the monomer composition. It is usually 50 to 200% by weight based on the total weight of the monomer components, and the concentration of the monomer composition is usually 30 to 70% by weight.
乳化重合及び懸濁重合の場合に使用される溶媒(分散媒)としては、水、アルコール(例えばエタノール)、エステル溶剤(例えばプロピオン酸エチル)及び軽ナフサ等が挙げられ、乳化剤としては、高級脂肪酸(炭素数10~24)金属塩(例えばオレイン酸ナトリウム及びステアリン酸ナトリウム)、高級アルコール(炭素数10~24)硫酸エステル金属塩(例えばラウリル硫酸ナトリウム)、エトキシ化テトラメチルデシンジオール、メタクリル酸スルホエチルナトリウム及びメタクリル酸ジメチルアミノメチル等が挙げられる。更に安定剤としてポリビニルアルコール及びポリビニルピロリドン等を加えてもよい。
乳化重合又は懸濁重合における単量体組成物の濃度は通常5~95重量%、重合開始剤の使用量は、単量体組成物の合計重量に基づいて通常0.01~5重量%、粘着力及び凝集力の観点から好ましくは0.05~2重量%である。
重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン及びn-ブチルメルカプタン等)及びハロゲン化炭化水素(四塩化炭素、四臭化炭素及び塩化ベンジル等)を使用することができる。使用量は単量体組成物に含まれる単量体成分の合計重量に基づいて通常2重量%以下、樹脂強度等の観点から好ましくは0.5重量%以下である。
Examples of solvents (dispersion media) used in emulsion polymerization and suspension polymerization include water, alcohol (e.g. ethanol), ester solvents (e.g. ethyl propionate), light naphtha, etc., and examples of emulsifiers such as higher fatty acids (C10-24) metal salts (e.g. sodium oleate and sodium stearate), higher alcohol (C10-24) sulfate ester metal salts (e.g. sodium lauryl sulfate), ethoxylated tetramethyldecynediol, methacrylic acid sulfonate. Examples include ethyl sodium and dimethylaminomethyl methacrylate. Furthermore, polyvinyl alcohol, polyvinylpyrrolidone, etc. may be added as a stabilizer.
The concentration of the monomer composition in emulsion polymerization or suspension polymerization is usually 5 to 95% by weight, and the amount of polymerization initiator used is usually 0.01 to 5% by weight based on the total weight of the monomer composition. From the viewpoint of adhesive strength and cohesive strength, it is preferably 0.05 to 2% by weight.
In the polymerization, known chain transfer agents such as mercapto compounds (dodecyl mercaptan, n-butyl mercaptan, etc.) and halogenated hydrocarbons (carbon tetrachloride, carbon tetrabromide, benzyl chloride, etc.) can be used. The amount used is usually 2% by weight or less based on the total weight of the monomer components contained in the monomer composition, and preferably 0.5% by weight or less from the viewpoint of resin strength.
また、重合反応における系内温度は通常-5~150℃、好ましくは30~120℃、反応時間は通常0.1~50時間、好ましくは2~24時間であり、重合反応の終点は、未反応単量体の量が、単量体組成物に含まれる単量体成分の合計重量に基づいて通常5重量%以下、好ましくは1重量%以下となる点であり、未反応単量体の量はガスクロマトグラフィー等の公知の単量体含有量の定量方法により確認できる。 In addition, the temperature in the system during the polymerization reaction is usually -5 to 150°C, preferably 30 to 120°C, the reaction time is usually 0.1 to 50 hours, preferably 2 to 24 hours, and the end point of the polymerization reaction is The amount of reacted monomer is usually 5% by weight or less, preferably 1% by weight or less based on the total weight of monomer components contained in the monomer composition, and the amount of unreacted monomer is The amount can be confirmed by a known method for quantifying monomer content such as gas chromatography.
リチウムイオン電池用被覆負極活物質粒子における高分子化合物(P1)の重量割合は、リチウムイオン電池用被覆負極活物質粒子の重量を基準として0.7~9.0重量%であることが好ましい。高分子化合物(P1)の重量割合が上記範囲内であると、電極の内部抵抗上昇率が低く抑えられる。高分子化合物(P1)の重量割合は、より好ましくは1.0~9.0重量%、更に好ましくは2.0~6.0重量%である。 The weight proportion of the polymer compound (P1) in the coated negative electrode active material particles for lithium ion batteries is preferably 0.7 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries. When the weight ratio of the polymer compound (P1) is within the above range, the internal resistance increase rate of the electrode can be suppressed to a low level. The weight proportion of the polymer compound (P1) is more preferably 1.0 to 9.0% by weight, even more preferably 2.0 to 6.0% by weight.
導電助剤(C1)としては特に限定されず、粒子状、繊維状のものが挙げられ、例えば、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、カーボン[グラファイト(薄片状黒鉛(UP))、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック及びサーマルランプブラック等)及びカーボンナノファイバー(CNF)等]、及びこれらの混合物等が挙げられる。導電助剤(C1)は、1種単独で用いてもよいし、2種以上を併用してもよい。 The conductive aid (C1) is not particularly limited, and examples thereof include particles and fibers, such as metals [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite (flake carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanofiber (CNF), etc.], and mixtures thereof. The conductive aid (C1) may be used alone or in combination of two or more.
第一被覆層を構成する高分子化合物(P1)と導電助剤(C1)の比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で被覆層を構成する高分子化合物(P1)(樹脂固形分重量):導電助剤(C1)が1:0.01~1:50であることが好ましく、1:0.1~1:3.0であることがより好ましい。 The ratio of the polymer compound (P1) and the conductive agent (C1) constituting the first coating layer is not particularly limited, but from the viewpoint of internal resistance of the battery, etc. The ratio of molecular compound (P1) (resin solid content weight) to conductive aid (C1) is preferably 1:0.01 to 1:50, more preferably 1:0.1 to 1:3.0. preferable.
第一被覆層は、高分子化合物(P1)及び導電助剤(C1)の他に、更にセラミック粒子を含んでいてもよい。
セラミック粒子としては、金属炭化物粒子、金属酸化物粒子、ガラスセラミック粒子等が挙げられる。
The first coating layer may further contain ceramic particles in addition to the polymer compound (P1) and the conductive aid (C1).
Examples of the ceramic particles include metal carbide particles, metal oxide particles, glass ceramic particles, and the like.
金属炭化物粒子としては、例えば、炭化ケイ素(SiC)、炭化タングステン(WC)、炭化モリブデン(MoC)、炭化チタン(TiC)、炭化タンタル(TaC)、炭化ニオブ(NbC)、炭化バナジウム(VC)、炭化ジルコニウム(ZrC)等が挙げられる。 Examples of metal carbide particles include silicon carbide (SiC), tungsten carbide (WC), molybdenum carbide ( Mo2C ), titanium carbide (TiC), tantalum carbide (TaC), niobium carbide (NbC), and vanadium carbide (VC). ), zirconium carbide (ZrC), and the like.
金属酸化物粒子としては、例えば、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)、酸化スズ(SnO)、チタニア(TiO)、ジルコニア(ZrO)、酸化インジウム(In)、Li、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiOや、ABO(但し、Aは、Ca、Sr、Ba、La、Pr及びYからなる群より選択される少なくとも1種であり、Bは、Ni、Ti、V、Cr、Mn、Fe、Co、Mo、Ru、Rh、Pd及びReからなる群より選択される少なくとも1種である)で表されるペロブスカイト型酸化物粒子等が挙げられる。
金属酸化物粒子としては、電解液と被覆負極活物質粒子との間で起こる副反応を好適に抑制する観点から、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)、及び、四ほう酸リチウム(Li)が好ましい。
Examples of metal oxide particles include zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), tin oxide (SnO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), Indium oxide ( In2O3 ) , Li2B4O7 , Li4Ti5O12 , Li2Ti2O5 , LiTaO3 , LiNbO3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li 2 TiO 3 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 and ABO 3 (However, A is Ca, Sr, Ba, La, Pr and Y, and B is at least one selected from the group consisting of Ni, Ti, V, Cr, Mn, Fe, Co, Mo, Ru, Rh, Pd, and Re. Examples include perovskite-type oxide particles represented by (species).
As the metal oxide particles, zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ) and lithium tetraborate (Li 2 B 4 O 7 ) are preferred.
ガラスセラミック粒子としては、菱面体晶系を有するリチウム含有リン酸化合物であることが好ましく、その化学式は、LiM”12(X=1~1.7)で表される。
ここでM”はZr、Ti、Fe、Mn、Co、Cr、Ca、Mg、Sr、Y、Sc、Sn、La、Ge、Nb、Alからなる群より選ばれた1種以上の元素である。また、Pの一部をSi又はBに、Oの一部をF、Cl等で置換してもよい。例えば、Li1.15Ti1.85Al0.15Si0.052.9512、Li1.2Ti1.8Al0.1Ge0.1Si0.052.9512等を用いることができる。
また、異なる組成の材料を混合又は複合してもよく、ガラス電解質等で表面をコートしてもよい。又は、熱処理によりNASICON型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスセラミック粒子を用いることが好ましい。
ガラス電解質としては、特開2019-96478号公報に記載のガラス電解質等が挙げられる。
The glass ceramic particles are preferably lithium-containing phosphoric acid compounds having a rhombohedral crystal system, and the chemical formula thereof is represented by Li x M'' 2 P 3 O 12 (X=1 to 1.7).
Here, M" is one or more elements selected from the group consisting of Zr, Ti, Fe, Mn, Co, Cr, Ca, Mg, Sr, Y, Sc, Sn, La, Ge, Nb, and Al. Also, part of P may be replaced with Si or B, and part of O may be replaced with F, Cl, etc. For example, Li 1.15 Ti 1.85 Al 0.15 Si 0.05 P 2. 95 O 12 , Li 1.2 Ti 1.8 Al 0.1 Ge 0.1 Si 0.05 P 2.95 O 12 , etc. can be used.
Furthermore, materials with different compositions may be mixed or composited, and the surface may be coated with a glass electrolyte or the like. Alternatively, it is preferable to use glass ceramic particles that precipitate a crystalline phase of a lithium-containing phosphate compound having a NASICON type structure by heat treatment.
Examples of the glass electrolyte include the glass electrolyte described in JP-A-2019-96478.
ここで、ガラスセラミック粒子におけるLiOの配合割合は酸化物換算で8質量%以下であることが好ましい。
NASICON型構造でなくとも、Li、La、Mg、Ca、Fe、Co、Cr、Mn、Ti、Zr、Sn、Y、Sc、P、Si、O、In、Nb、Fからなり、LISICON型、ペロブスカイト型、β-Fe(SO型、LiIn(PO型の結晶構造を持ち、Liイオンを室温で1×10-5S/cm以上伝導する固体電解質を用いても良い。
Here, the blending ratio of Li 2 O in the glass ceramic particles is preferably 8% by mass or less in terms of oxide.
Even if it is not a NASICON type structure, it is composed of Li, La, Mg, Ca, Fe, Co, Cr, Mn, Ti, Zr, Sn, Y, Sc, P, Si, O, In, Nb, F, and LISICON type, Using a solid electrolyte that has a perovskite type, β-Fe 2 (SO 4 ) 3 type, and Li 3 In 2 (PO 4 ) 3 type crystal structure and conducts Li ions at a rate of 1 × 10 -5 S/cm or more at room temperature. It's okay.
上述したセラミック粒子は、1種単独で用いてもよいし、2種以上を併用してもよい。 The above-mentioned ceramic particles may be used alone or in combination of two or more.
セラミック粒子の体積平均粒子径は、エネルギー密度の観点及び電気抵抗値の観点から、1~1000nmであることが好ましく、1~500nmであることがより好ましく、1~150nmであることが更に好ましい。 The volume average particle diameter of the ceramic particles is preferably from 1 to 1000 nm, more preferably from 1 to 500 nm, even more preferably from 1 to 150 nm, from the viewpoint of energy density and electrical resistance value.
セラミック粒子の重量割合は、被覆負極活物質粒子の重量を基準として0.5~5.0重量%であることが好ましい。
セラミック粒子を上記範囲で含有することにより、電解液と被覆負極活物質粒子との間で起こる副反応を抑制することができる。
The weight proportion of the ceramic particles is preferably 0.5 to 5.0% by weight based on the weight of the coated negative electrode active material particles.
By containing the ceramic particles in the above range, side reactions occurring between the electrolytic solution and the coated negative electrode active material particles can be suppressed.
(第二被覆層)
上記第二被覆層は、高分子化合物(P2)と導電助剤(C2)とを含む。
高分子化合物(P2)は、ガラス転移温度(Tg)が20℃以下である。
(Second coating layer)
The second coating layer includes a polymer compound (P2) and a conductive aid (C2).
The polymer compound (P2) has a glass transition temperature (Tg) of 20°C or lower.
高分子化合物(P2)としては、Tgが20℃以下の粘着性樹脂が挙げられる。粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性を有する樹脂を意味し、結着剤とは異なる材料であり、これらは区別される。第二被覆層は被覆負極活物質粒子の最表面であり、第二被覆層に含まれる粘着性樹脂により、被覆負極活物質粒子の表面同士が可逆的に固定される。負極活物質粒子の表面から粘着性樹脂は容易に分離できるが、結着剤は通常、容易に分離できない。従って、結着剤と上記粘着性樹脂は異なる材料である。
高分子化合物(P2)としては、ウレタン樹脂、(メタ)アクリル酸アルキルエステル共重合体及びスチレン-ブタジエンゴムからなる群から選択される少なくとも1種であることが好ましい。
Examples of the polymer compound (P2) include adhesive resins having a Tg of 20°C or less. Adhesive resin refers to a resin that does not solidify even when a solvent component is evaporated and is dried, but remains adhesive, and is a different material from a binder, and these are distinguished from each other. The second coating layer is the outermost surface of the coated negative electrode active material particles, and the surfaces of the coated negative electrode active material particles are reversibly fixed to each other by the adhesive resin contained in the second coating layer. Although the adhesive resin can be easily separated from the surface of the negative electrode active material particles, the binder usually cannot be easily separated. Therefore, the binder and the adhesive resin are different materials.
The polymer compound (P2) is preferably at least one selected from the group consisting of urethane resin, (meth)acrylic acid alkyl ester copolymer, and styrene-butadiene rubber.
ウレタン樹脂は、活性水素成分(b1)及びイソシアネート成分(b2)とを反応させて得られるウレタン樹脂であることが好ましい。
ウレタン樹脂は柔軟性を有するため、負極活物質粒子をウレタン樹脂で被覆することにより電極の体積変化を緩和し、電極の膨脹を抑制することができる。
The urethane resin is preferably a urethane resin obtained by reacting the active hydrogen component (b1) and the isocyanate component (b2).
Since the urethane resin has flexibility, by covering the negative electrode active material particles with the urethane resin, the volume change of the electrode can be alleviated and the expansion of the electrode can be suppressed.
活性水素成分(b1)としては、ポリエーテルジオール、ポリカーボネートジオール及びポリエステルジオールからなる群から選ばれる少なくとも1種を含むことが好ましい。 The active hydrogen component (b1) preferably contains at least one selected from the group consisting of polyether diol, polycarbonate diol, and polyester diol.
ポリエーテルジオールとしては、ポリオキシエチレングリコール(以下、PEGと略記)、ポリオキシエチレンオキシプロピレンブロック共重合ジオール、ポリオキシエチレンオキシテトラメチレンブロック共重合ジオール;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサメチレングリコール、ネオペンチルグリコール、ビス(ヒドロキシメチル)シクロヘキサン、4,4’-ビス(2-ヒドロキシエトキシ)-ジフェニルプロパンなどの低分子グリコールのエチレンオキシド付加物、数平均分子量2,000以下のPEGとジカルボン酸[炭素数4~10の脂肪族ジカルボン酸(例えばコハク酸、アジピン酸、セバシン酸など)、炭素数8~15の芳香族ジカルボン酸(例えばテレフタル酸、イソフタル酸など)など]の1種以上とを反応させて得られる縮合ポリエーテルエステルジオール及びこれら2種以上の混合物が挙げられる。
これらのうち、好ましくはPEG、ポリオキシエチレンオキシプロピレンブロック共重合ジオール及びポリオキシエチレンオキシテトラメチレンブロック共重合ジオールであり、特に好ましくはPEGである。
Examples of polyether diols include polyoxyethylene glycol (hereinafter abbreviated as PEG), polyoxyethylene oxypropylene block copolymer diol, polyoxyethylene oxytetramethylene block copolymer diol; ethylene glycol, propylene glycol, 1,4-butane. Ethylene oxide adducts of low molecular weight glycols such as diol, 1,6-hexamethylene glycol, neopentyl glycol, bis(hydroxymethyl)cyclohexane, 4,4'-bis(2-hydroxyethoxy)-diphenylpropane, number average molecular weight 2 ,000 or less and dicarboxylic acids [aliphatic dicarboxylic acids with 4 to 10 carbon atoms (e.g. succinic acid, adipic acid, sebacic acid, etc.), aromatic dicarboxylic acids with 8 to 15 carbon atoms (e.g. terephthalic acid, isophthalic acid, etc.) ) etc.] and mixtures of two or more of these.
Among these, PEG, polyoxyethylene oxypropylene block copolymer diol and polyoxyethylene oxytetramethylene block copolymer diol are preferred, and PEG is particularly preferred.
ポリカーボネートジオールとしては、炭素数4~12、好ましくは炭素数6~10、更に好ましくは炭素数6~9のアルキレン基を有するアルキレンジオールの1種又は2種以上と、低分子カーボネート化合物(例えば、アルキル基の炭素数1~6のジアルキルカーボネート、炭素数2~6のアルキレン基を有するアルキレンカーボネート及び炭素数6~9のアリール基を有するジアリールカーボネートなど)から、脱アルコール反応させながら縮合させることによって製造されるポリカーボネートポリオール(例えばポリヘキサメチレンカーボネートジオール)が挙げられる。 The polycarbonate diol includes one or more alkylene diols having an alkylene group having 4 to 12 carbon atoms, preferably 6 to 10 carbon atoms, and more preferably 6 to 9 carbon atoms, and a low-molecular carbonate compound (for example, By condensing a dialkyl carbonate having an alkyl group with 1 to 6 carbon atoms, an alkylene carbonate having an alkylene group having 2 to 6 carbon atoms, and a diaryl carbonate having an aryl group having 6 to 9 carbon atoms while performing a dealcoholization reaction. Polycarbonate polyols (e.g. polyhexamethylene carbonate diol) produced are mentioned.
ポリエステルジオールとしては、低分子ジオール及び/又は数平均分子量1,000以下のポリエーテルジオールと前述のジカルボン酸の1種以上とを反応させて得られる縮合ポリエステルジオールや、炭素数4~12のラクトンの開環重合により得られるポリラクトンジオールなどが挙げられる。上記低分子ジオールとして上記ポリエーテルジオールの項で例示した低分子グリコールなどが挙げられる。上記数平均分子量1,000以下のポリエーテルジオールとしてはポリオキシプロピレングリコール、ポリテトラメチレンエーテルグリコールなどが挙げられる。上記ラクトンとしては、例えばε-カプロラクトン、γ-バレロラクトンなどが挙げられる。該ポリエステルジオールの具体例としては、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリネオペンチレンアジペートジオール、ポリ(3-メチル-1,5-ペンチレンアジペート)ジオール、ポリヘキサメチレンアジペートジオール、ポリカプロラクトンジオール及びこれらの2種以上の混合物が挙げられる。 Examples of polyester diols include condensed polyester diols obtained by reacting low-molecular diols and/or polyether diols with a number average molecular weight of 1,000 or less with one or more of the aforementioned dicarboxylic acids, and lactones having 4 to 12 carbon atoms. Examples include polylactone diol obtained by ring-opening polymerization of . Examples of the low-molecular diol include the low-molecular glycols exemplified in the section of the polyether diol. Examples of the polyether diol having a number average molecular weight of 1,000 or less include polyoxypropylene glycol and polytetramethylene ether glycol. Examples of the lactone include ε-caprolactone and γ-valerolactone. Specific examples of the polyester diol include polyethylene adipate diol, polybutylene adipate diol, polyneopentylene adipate diol, poly(3-methyl-1,5-pentylene adipate) diol, polyhexamethylene adipate diol, and polycaprolactone diol. and mixtures of two or more thereof.
また、活性水素成分(b1)は上記ポリエーテルジオール、ポリカーボネートジオール及びポリエステルジオールのうちの2種以上の混合物であってもよい。 Moreover, the active hydrogen component (b1) may be a mixture of two or more of the above polyether diol, polycarbonate diol, and polyester diol.
活性水素成分(b1)は数平均分子量2,500~15,000の高分子ジオール(b11)を必須成分とすることが望ましい。高分子ジオール(b11)としては上述したポリエーテルジオール、ポリカーボネートジオール及びポリエステルジオール等が挙げられる。
高分子ジオール(b11)は、ウレタン樹脂の硬さが適度に柔らかく、また、被膜の強度が強くなるため好ましい。
また、高分子ジオール(b11)の数平均分子量が3,000~12,500であることがより望ましく、4,000~10,000であることが更に望ましい。
高分子ジオール(b11)の数平均分子量は、高分子ジオールの水酸基価から算出することができる。
また、水酸基価は、JIS K1557-1の記載に準じて測定できる。
The active hydrogen component (b1) desirably contains a polymeric diol (b11) having a number average molecular weight of 2,500 to 15,000 as an essential component. Examples of the polymer diol (b11) include the above-mentioned polyether diol, polycarbonate diol, and polyester diol.
The polymer diol (b11) is preferable because the hardness of the urethane resin is moderately soft and the strength of the coating is strong.
Further, the number average molecular weight of the polymer diol (b11) is more preferably 3,000 to 12,500, and even more preferably 4,000 to 10,000.
The number average molecular weight of the polymer diol (b11) can be calculated from the hydroxyl value of the polymer diol.
Furthermore, the hydroxyl value can be measured according to the description in JIS K1557-1.
また、活性水素成分(b1)が高分子ジオール(b11)を必須成分とし、上記高分子ジオール(b11)の含有量が上記ウレタン樹脂の重量を基準として20~80重量%であることが望ましい。高分子ジオール(b11)の含有量は30~70重量%であることがより望ましく、40~65重量%であることが更に望ましい。
高分子ジオール(b11)の含有量が20~80重量%であると、ウレタン樹脂の電解液の吸液の点で好ましい。
Further, it is preferable that the active hydrogen component (b1) contains a polymeric diol (b11) as an essential component, and the content of the polymeric diol (b11) is 20 to 80% by weight based on the weight of the urethane resin. The content of the polymeric diol (b11) is more preferably 30 to 70% by weight, and even more preferably 40 to 65% by weight.
It is preferable that the content of the polymeric diol (b11) is 20 to 80% by weight in terms of absorption of the electrolyte by the urethane resin.
また、活性水素成分(b1)が数平均分子量2,500~15,000の高分子ジオール(b11)及び鎖伸長剤(b13)を必須成分とすることが望ましい。
鎖伸長剤(b13)としては、例えば炭素数2~10の低分子ジオール[例えばエチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキサメチレングリコールなど];ジアミン類[炭素数2~6の脂肪族ジアミン(例えばエチレンジアミン、1,2-プロピレンジアミンなど)、炭素数6~15の脂環式ジアミン(例えばイソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタンなど)、炭素数6~15の芳香族ジアミン(例えば4,4’-ジアミノジフェニルメタンなど)など];モノアルカノールアミン(例えばモノエタノールアミンなど);ヒドラジンもしくはその誘導体(例えばアジピン酸ジヒドラジドなど)及びこれらの2種以上の混合物が挙げられる。これらのうち好ましいものは低分子ジオールであり、特に好ましいものはエチレングリコール、ジエチレングリコール及び1,4-ブタンジオールである。
高分子ジオール(b11)及び鎖伸長剤(b13)の組み合わせとしては、高分子ジオール(b11)としてのPEGと鎖伸長剤(b13)としてのエチレングリコールの組み合わせ、又は、高分子ジオール(b11)としてのポリカーボネートジオールと鎖伸長剤(b13)としてのエチレングリコールの組み合わせが好ましい。
Further, it is desirable that the active hydrogen component (b1) contains a polymeric diol (b11) having a number average molecular weight of 2,500 to 15,000 and a chain extender (b13) as essential components.
Examples of the chain extender (b13) include low-molecular diols having 2 to 10 carbon atoms [e.g., ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexamethylene glycol, etc.]; diamines [carbon Aliphatic diamines having 2 to 6 carbon atoms (e.g. ethylene diamine, 1,2-propylene diamine, etc.), alicyclic diamines having 6 to 15 carbon atoms (e.g. isophorone diamine, 4,4'-diaminodicyclohexylmethane, etc.), 6 carbon atoms ~15 aromatic diamines (e.g., 4,4'-diaminodiphenylmethane, etc.); monoalkanolamines (e.g., monoethanolamine, etc.); hydrazine or derivatives thereof (e.g., adipic acid dihydrazide, etc.), and mixtures of two or more of these. can be mentioned. Among these, preferred are low molecular weight diols, and particularly preferred are ethylene glycol, diethylene glycol and 1,4-butanediol.
The combination of polymer diol (b11) and chain extender (b13) is a combination of PEG as polymer diol (b11) and ethylene glycol as chain extender (b13), or a combination of polymer diol (b11) as PEG and ethylene glycol as chain extender (b13). A combination of polycarbonate diol and ethylene glycol as chain extender (b13) is preferred.
イソシアネート成分(b2)としては、従来からポリウレタン製造に使用されているものが使用できる。このようなイソシアネートには、炭素数(NCO基中の炭素を除く、以下同様)6~20の芳香族ジイソシアネート、炭素数2~18の脂肪族ジイソシアネート、炭素数4~15の脂環式ジイソシアネート、炭素数8~15の芳香脂肪族ジイソシアネート、これらのジイソシアネートの変性体(カーボジイミド変性体、ウレタン変性体、ウレトジオン変性体など)及びこれらの2種以上の混合物が含まれる。 As the isocyanate component (b2), those conventionally used in polyurethane production can be used. Such isocyanates include aromatic diisocyanates having 6 to 20 carbon atoms (excluding the carbon in the NCO group, the same applies hereinafter), aliphatic diisocyanates having 2 to 18 carbon atoms, alicyclic diisocyanates having 4 to 15 carbon atoms, Included are aromatic aliphatic diisocyanates having 8 to 15 carbon atoms, modified products of these diisocyanates (carbodiimide modified products, urethane modified products, uretdione modified products, etc.), and mixtures of two or more thereof.
上記芳香族ジイソシアネートの具体例としては、1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、2,4’-又は4,4’-ジフェニルメタンジイソシアネート(以下、ジフェニルメタンジイソシアネートをMDIと略記)、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネートなどが挙げられる。 Specific examples of the aromatic diisocyanate include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate, and 2,4'- or 4,4'-diphenylmethane diisocyanate (hereinafter referred to as , diphenylmethane diisocyanate is abbreviated as MDI), 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocya Examples include natodiphenylmethane and 1,5-naphthylene diisocyanate.
上記脂肪族ジイソシアネートの具体例としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエートなどが挙げられる。 Specific examples of the aliphatic diisocyanate include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethyl caproate, Bis(2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate, and the like.
上記脂環式ジイソシアネートの具体例としては、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロヘキシレン-1,2-ジカルボキシレート、2,5-又は2,6-ノルボルナンジイソシアネートなどが挙げられる。 Specific examples of the alicyclic diisocyanate include isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis(2-isocyanatoethyl)-4-cyclohexylene-1,2 -dicarboxylate, 2,5- or 2,6-norbornane diisocyanate, and the like.
上記芳香脂肪族ジイソシアネートの具体例としては、m-又はp-キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネートなどが挙げられる。 Specific examples of the araliphatic diisocyanate include m- or p-xylylene diisocyanate, α, α, α', α'-tetramethylxylylene diisocyanate, and the like.
これらのうち好ましいものは芳香族ジイソシアネート及び脂環式ジイソシアネートであり、更に好ましいものは芳香族ジイソシアネートであり、特に好ましいのはMDIである。 Among these, aromatic diisocyanates and alicyclic diisocyanates are preferred, aromatic diisocyanates are more preferred, and MDI is particularly preferred.
ウレタン樹脂が高分子ジオール(b11)及びイソシアネート成分(b2)を含む場合、好ましい(b2)/(b11)の当量比は10~30/1であり、より好ましくは11~28/1である。イソシアネート成分(b2)の比率が30当量を超えると硬い塗膜となる。
ウレタン樹脂の数平均分子量は、40,000~500,000であることが好ましく、より好ましくは50,000~400,000である。ウレタン樹脂の数平均分子量が40,000未満では被膜の強度が低くなり、500,000を超えると溶液粘度が高くなって、均一な被膜が得られないことがある。
When the urethane resin contains the polymeric diol (b11) and the isocyanate component (b2), the preferred equivalent ratio of (b2)/(b11) is 10 to 30/1, more preferably 11 to 28/1. If the ratio of the isocyanate component (b2) exceeds 30 equivalents, a hard coating will result.
The number average molecular weight of the urethane resin is preferably 40,000 to 500,000, more preferably 50,000 to 400,000. If the number average molecular weight of the urethane resin is less than 40,000, the strength of the coating will be low, and if it exceeds 500,000, the solution viscosity will be high and a uniform coating may not be obtained.
ウレタン樹脂の数平均分子量は、DMFを溶剤として用い、ポリオキシプロピレングリコールを標準物質としてゲルパーミエーションクロマトグラフィー(以下、GPCと略記)により測定される。サンプル濃度は0.25重量%、カラム固定相はTSKgel SuperH2000、TSKgel SuperH3000、TSKgel SuperH4000(いずれも東ソー株式会社製)を各1本連結したもの、カラム温度は40℃とすればよい。 The number average molecular weight of the urethane resin is measured by gel permeation chromatography (hereinafter abbreviated as GPC) using DMF as a solvent and polyoxypropylene glycol as a standard substance. The sample concentration is 0.25% by weight, the column stationary phase is one each of TSKgel Super H2000, TSKgel Super H3000, and TSKgel Super H4000 (all manufactured by Tosoh Corporation) connected together, and the column temperature is 40°C.
ウレタン樹脂は活性水素成分(b1)とイソシアネート成分(b2)を反応させて製造することができる。
例えば、活性水素成分(b1)として高分子ジオール(b11)と鎖伸長剤(b13)を用い、イソシアネート成分(b2)と高分子ジオール(b11)と鎖伸長剤(b13)とを同時に反応させるワンショット法や、高分子ジオール(b11)とイソシアネート成分(b2)とを先に反応させた後に鎖伸長剤(b13)を続けて反応させるプレポリマー法が挙げられる。
また、ウレタン樹脂の製造は、イソシアネート基に対して不活性な溶媒の存在下又は溶媒[DMF、ジメチルアセトアミドなど]、スルホキシド系溶媒(ジメチルスルホキシドなど)、ケトン系溶媒[メチルエチルケトン、メチルイソブチルケトンなど]、芳香族系溶媒(トルエン、キシレンなど)、エーテル系溶媒(ジオキサン、テトラヒドロフランなど)、エステル系溶媒(酢酸エチル、酢酸ブチルなど)及びこれらの2種以上の混合物が挙げられる。これらのうち好ましいものはアミド系溶媒、ケトン系溶媒、芳香族系溶媒及びこれらの2種以上の混合物である。
The urethane resin can be produced by reacting the active hydrogen component (b1) and the isocyanate component (b2).
For example, a method in which a polymer diol (b11) and a chain extender (b13) are used as the active hydrogen component (b1), and the isocyanate component (b2), the polymer diol (b11), and the chain extender (b13) are simultaneously reacted. Examples include the shot method and the prepolymer method in which the polymer diol (b11) and the isocyanate component (b2) are first reacted and then the chain extender (b13) is reacted.
In addition, urethane resins are manufactured in the presence of solvents that are inert to isocyanate groups, such as solvents [DMF, dimethylacetamide, etc.], sulfoxide-based solvents (dimethylsulfoxide, etc.), ketone-based solvents [methyl ethyl ketone, methyl isobutyl ketone, etc.] , aromatic solvents (toluene, xylene, etc.), ether solvents (dioxane, tetrahydrofuran, etc.), ester solvents (ethyl acetate, butyl acetate, etc.), and mixtures of two or more of these. Among these, preferred are amide solvents, ketone solvents, aromatic solvents, and mixtures of two or more thereof.
ウレタン樹脂の製造の際の反応温度は、溶媒を使用する場合は20~100℃、無溶媒の場合は20~220℃であることが好ましい。
ウレタン樹脂の製造は当該業界において通常採用されている製造装置で行うことができる。また溶媒を使用しない場合はニーダーやエクストルーダーなどの製造装置を用いることができる。このようにして製造されるウレタン樹脂は、30重量%(固形分)DMF溶液として測定した溶液粘度が通常10~10,000ポイズ/20℃であり、実用上好ましいのは100~2,000ポイズ/20℃である。
The reaction temperature during the production of urethane resin is preferably 20 to 100°C when a solvent is used, and 20 to 220°C when no solvent is used.
The urethane resin can be manufactured using manufacturing equipment commonly employed in the industry. Moreover, when a solvent is not used, a manufacturing device such as a kneader or an extruder can be used. The solution viscosity of the urethane resin produced in this way, measured as a 30% by weight (solid content) DMF solution, is usually 10 to 10,000 poise/20°C, and practically preferred is 100 to 2,000 poise. /20℃.
(メタ)アクリル酸アルキルエステル共重合体は、(メタ)アクリル酸アルキルエステル単量体由来の構成単位を必須とするアクリル系重合体であり、(メタ)アクリル酸アルキルエステル共重合体を構成する単量体中における(メタ)アクリル酸アルキルエステル単量体の重量割合が単量体の合計重量を基準として50重量%以上である。
(メタ)アクリル酸アルキルエステル単量体の重量割合(重量%)は、超臨界流体中に重合体を溶解させ、得られたオリゴマー成分をガスクロマトグラフィー質量分析(GC-MS)法で解析する等の方法で測定することができる。
(メタ)アクリル酸アルキルエステル共重合体を構成する単量体中における(メタ)アクリル酸アルキルエステル単量体の重量割合が単量体の合計重量を基準として50重量%未満であると、適度な粘着力を有さず、電極形状の安定性が低くなる。
(Meth)acrylic acid alkyl ester copolymer is an acrylic polymer that essentially has a constituent unit derived from (meth)acrylic acid alkyl ester monomer, and constitutes (meth)acrylic acid alkyl ester copolymer. The weight proportion of the (meth)acrylic acid alkyl ester monomer in the monomer is 50% by weight or more based on the total weight of the monomers.
The weight ratio (wt%) of the (meth)acrylic acid alkyl ester monomer is determined by dissolving the polymer in a supercritical fluid and analyzing the resulting oligomer component by gas chromatography-mass spectrometry (GC-MS). It can be measured by the following methods.
If the weight ratio of the (meth)acrylic acid alkyl ester monomer in the monomers constituting the (meth)acrylic acid alkyl ester copolymer is less than 50% by weight based on the total weight of the monomers, it is suitable. It does not have a strong adhesive force, and the stability of the electrode shape becomes low.
上記(メタ)アクリル酸アルキルエステル単量体としては、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、iso-ブチルメタクリレート、メタクリル酸メチル、アクリル酸メチル、またアルキル鎖の末端に水酸基を含有する2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等が挙げられる。
また、多官能アクリレートも上記(メタ)アクリル酸アルキルエステル単量体に含まれる。上記多官能アクリレートとしては、1,6-ヘキサンジオールメタクリレート、エチレングリコールジメタクリレート等が挙げられる。電極形状の安定性の観点から、上記多官能アクリレートの重量割合は単量体の合計重量を基準としては0.1~3重量%であることが好ましい。
Examples of the (meth)acrylic acid alkyl ester monomers include 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, n-butyl acrylate, n-butyl methacrylate, iso-butyl methacrylate, methyl methacrylate, methyl acrylate, and alkyl chains. Examples include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate containing a hydroxyl group at the terminal thereof.
Further, polyfunctional acrylates are also included in the above (meth)acrylic acid alkyl ester monomers. Examples of the polyfunctional acrylate include 1,6-hexanediol methacrylate and ethylene glycol dimethacrylate. From the viewpoint of stability of the electrode shape, the weight proportion of the polyfunctional acrylate is preferably 0.1 to 3% by weight based on the total weight of the monomers.
(メタ)アクリル酸アルキルエステル共重合体は2種類以上の(メタ)アクリル酸アルキルエステル単量体を構成単量体として含み、その合計含有量が構成単量体の合計重量を基準として50重量%以上であることが好ましい。上記(メタ)アクリル酸アルキルエステル単量体の好ましい組合せとして、n-ブチルアクリレートと2-ヒドロキシエチルアクリレートとアクリロニトリルの組み合わせ、2-エチルヘキシルメタクリレートと2-エチルヘキシルアクリレートの組み合わせ、n-ブチルアクリレートと2-エチルヘキシルアクリレートの組合せ、アクリル酸メチルとn-ブチルアクリレートの組合せ、又は、メタクリル酸メチルとiso-ブチルメタクリレートの組合せが挙げられる。 The (meth)acrylic acid alkyl ester copolymer contains two or more types of (meth)acrylic acid alkyl ester monomers as constituent monomers, and the total content thereof is 50% by weight based on the total weight of the constituent monomers. % or more. Preferred combinations of the above (meth)acrylic acid alkyl ester monomers include a combination of n-butyl acrylate, 2-hydroxyethyl acrylate and acrylonitrile, a combination of 2-ethylhexyl methacrylate and 2-ethylhexyl acrylate, and a combination of n-butyl acrylate and 2-ethylhexyl acrylate. Examples include a combination of ethylhexyl acrylate, a combination of methyl acrylate and n-butyl acrylate, or a combination of methyl methacrylate and iso-butyl methacrylate.
(メタ)アクリル酸アルキルエステル共重合体は、上記(メタ)アクリル酸アルキルエステル単量体以外の単量体として、(メタ)アクリル酸単量体を構成単量体として含むことが好ましい。(メタ)アクリル酸単量体を構成単量体として含むと電池内で生成する水酸化リチウム等の副生成物を中和し、電極の腐食を防止することができる。
(メタ)アクリル酸単量体の重量割合は構成単量体の合計重量を基準として0.1~15重量%であることが好ましい。
The (meth)acrylic acid alkyl ester copolymer preferably contains (meth)acrylic acid monomer as a constituent monomer as a monomer other than the above-mentioned (meth)acrylic acid alkyl ester monomer. When (meth)acrylic acid monomer is included as a constituent monomer, it is possible to neutralize by-products such as lithium hydroxide generated within the battery and prevent corrosion of the electrodes.
The weight proportion of the (meth)acrylic acid monomer is preferably 0.1 to 15% by weight based on the total weight of the constituent monomers.
(メタ)アクリル酸アルキルエステル共重合体は、(メタ)アクリル酸アルキルエステル単量体と共重合可能なモノビニル単量体を構成単量体として含んでいてもよい。
モノビニル単量体としては、フルオロ基、シロキサン等を含有したモノビニル単量体(ジメチルシロキサン等)を使用することができる。
The (meth)acrylic acid alkyl ester copolymer may contain a monovinyl monomer copolymerizable with the (meth)acrylic acid alkyl ester monomer as a constituent monomer.
As the monovinyl monomer, a monovinyl monomer containing a fluoro group, siloxane, etc. (dimethylsiloxane, etc.) can be used.
(メタ)アクリル酸アルキルエステル共重合体の重量平均分子量の好ましい下限は10,000、より好ましくは50,000、更に好ましくは100,000であり、好ましい上限は1,000,000、より好ましくは800,000、更に好ましくは500,000、特に好ましくは400,000である。 The preferable lower limit of the weight average molecular weight of the (meth)acrylic acid alkyl ester copolymer is 10,000, more preferably 50,000, still more preferably 100,000, and the preferable upper limit is 1,000,000, more preferably 800,000, more preferably 500,000, particularly preferably 400,000.
(メタ)アクリル酸アルキルエステル共重合体の製造は、上述の高分子化合物(P1)と同様の方法で行うことができる。 The (meth)acrylic acid alkyl ester copolymer can be produced in the same manner as for the above-mentioned polymer compound (P1).
スチレン-ブタジエンゴムとしては、例えば電池バインダー用として市販されているもの等を用いることができる。スチレン-ブタジエンゴムの市販品としては、例えば、製品名:TRD104A(JSR社製)、BM-400B(日本ゼオン社製)等が挙げられる。
スチレン-ブタジエンゴムの結合スチレン量は、特に限定されないが、電極の強度を向上させる観点から、例えば10~60質量%であり、好ましくは15~55質量%である。
なお、結合スチレン量は、H-NMRにより測定することができる。
As the styrene-butadiene rubber, for example, those commercially available for use as a battery binder can be used. Commercial products of styrene-butadiene rubber include, for example, product names: TRD104A (manufactured by JSR Corporation), BM-400B (manufactured by Nippon Zeon Corporation), and the like.
The amount of bound styrene in the styrene-butadiene rubber is not particularly limited, but from the viewpoint of improving the strength of the electrode, it is, for example, 10 to 60% by mass, preferably 15 to 55% by mass.
Note that the amount of bound styrene can be measured by 1 H-NMR.
リチウムイオン電池用被覆負極活物質粒子における高分子化合物(P2)の重量割合は、リチウムイオン電池用被覆負極活物質粒子の重量を基準として0.3~9.0重量%であることが好ましい。高分子化合物(P2)の重量割合が上記範囲内であると、電極の強度を向上させることができる。高分子化合物(P2)の重量割合は、より好ましくは0.5~9.0重量%、更に好ましくは3.0~6.0重量%である。 The weight proportion of the polymer compound (P2) in the coated negative electrode active material particles for lithium ion batteries is preferably 0.3 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries. When the weight ratio of the polymer compound (P2) is within the above range, the strength of the electrode can be improved. The weight proportion of the polymer compound (P2) is more preferably 0.5 to 9.0% by weight, and still more preferably 3.0 to 6.0% by weight.
導電助剤(C2)としては特に限定されず、導電助剤(C1)として例示したもの等を用いることができる。導電助剤(C2)は、1種単独で用いてもよいし、2種以上を併用してもよい。 The conductive aid (C2) is not particularly limited, and those exemplified as the conductive aid (C1) can be used. The conductive aid (C2) may be used alone or in combination of two or more.
第二被覆層を構成する高分子化合物(P2)と導電助剤(C2)の比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で被覆層を構成する高分子化合物(P2)(樹脂固形分重量):導電助剤(C2)が1:0.01~1:50であることが好ましく、1:0.1~1:3.0であることがより好ましい。 The ratio of the polymer compound (P2) and the conductive agent (C2) constituting the second coating layer is not particularly limited, but from the viewpoint of internal resistance of the battery, etc., the proportion of the polymer compound (P2) constituting the second coating layer is The ratio of molecular compound (P2) (resin solid content weight) to conductive aid (C2) is preferably 1:0.01 to 1:50, more preferably 1:0.1 to 1:3.0. preferable.
第二被覆層は、高分子化合物(P2)及び導電助剤(C2)の他に、更にセラミック粒子を含んでいてもよい。セラミック粒子としては、第一被覆層に任意で用いるセラミック粒子と同じもの等が挙げられる。 The second coating layer may further contain ceramic particles in addition to the polymer compound (P2) and the conductive aid (C2). Examples of the ceramic particles include the same ceramic particles that are optionally used in the first coating layer.
本発明のリチウムイオン電池用被覆負極活物質粒子は、高分子化合物(P1)の重量割合が、リチウムイオン電池用被覆負極活物質粒子の重量を基準として0.7~9.0重量%であり、かつ高分子化合物(P2)の重量割合が、リチウムイオン電池用被覆負極活物質粒子の重量を基準として0.3~9.0重量%であることが好ましい。高分子化合物(P1)及び高分子化合物(P2)の重量割合が上記の範囲であると、得られる電極の強度が高く、内部抵抗上昇率を抑制することができる。 In the coated negative electrode active material particles for lithium ion batteries of the present invention, the weight proportion of the polymer compound (P1) is 0.7 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries. , and the weight proportion of the polymer compound (P2) is preferably 0.3 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries. When the weight ratio of the polymer compound (P1) and the polymer compound (P2) is within the above range, the strength of the obtained electrode is high and the rate of increase in internal resistance can be suppressed.
負極活物質粒子は、表面の少なくとも一部が第一被覆層で被覆されている。
負極活物質粒子は、サイクル特性の観点から、下記計算式で得られる第一被覆層の被覆率が30~95%であることが好ましい。
被覆率(%)={1-[第一被覆層で被覆された負極活物質粒子のBET比表面積/(未被覆時の負極活物質粒子のBET比表面積×第一被覆層で被覆された負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤(C1)のBET比表面積×第一被覆層で被覆された負極活物質粒子中に含まれる導電助剤(C1)の重量割合+任意で含まれるセラミック粒子のBET比表面積×第一被覆層で被覆された負極活物質粒子中に任意で含まれるセラミック粒子の重量割合)]}×100
At least a portion of the surface of the negative electrode active material particles is coated with a first coating layer.
From the viewpoint of cycle characteristics, the negative electrode active material particles preferably have a first coating layer coverage of 30 to 95%, which is obtained by the following calculation formula.
Coverage rate (%) = {1 - [BET specific surface area of negative electrode active material particles coated with the first coating layer / (BET specific surface area of negative electrode active material particles when not coated x negative electrode coated with the first coating layer) Weight ratio of the negative electrode active material particles contained in the active material particles + BET specific surface area of the conductive agent (C1) x weight of the conductive agent (C1) contained in the negative electrode active material particles coated with the first coating layer ratio + BET specific surface area of optionally included ceramic particles × weight ratio of ceramic particles optionally included in the negative electrode active material particles coated with the first coating layer)]}×100
本発明の被覆負極活物質粒子は、第一被覆層の表面の少なくとも一部が第二被覆層で被覆されている。
本発明の被覆負極活物質粒子は、電極の強度の観点から、第一被覆層に対する第二被覆層の被覆率が30~95%であることが好ましい。第二被覆層の被覆率は、第一被覆層で被覆後のサンプルのBET比表面積と第二被覆層のBET比表面積から計算により得ることができる。
被覆率(%)={1-[第二被覆層で被覆された負極活物質粒子のBET比表面積/(第一被覆層で被覆された負極活物質粒子のBET比表面積×第二被覆層で被覆された負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤(C1)のBET比表面積×第二被覆層で被覆された負極活物質粒子中に含まれる導電助剤(C1)の重量割合+任意で含まれるセラミック粒子のBET比表面積×第二被覆層で被覆された負極活物質粒子中に任意で含まれるセラミック粒子の重量割合)]}×100
In the coated negative electrode active material particles of the present invention, at least a portion of the surface of the first coating layer is coated with the second coating layer.
In the coated negative electrode active material particles of the present invention, from the viewpoint of electrode strength, the coverage ratio of the second coating layer to the first coating layer is preferably 30 to 95%. The coverage of the second coating layer can be obtained by calculation from the BET specific surface area of the sample coated with the first coating layer and the BET specific surface area of the second coating layer.
Coverage rate (%) = {1 - [BET specific surface area of negative electrode active material particles covered with second coating layer / (BET specific surface area of negative electrode active material particles covered with first coating layer x second coating layer) Weight proportion of the negative electrode active material particles contained in the coated negative electrode active material particles + BET specific surface area of the conductive aid (C1) × conductive aid contained in the negative electrode active material particles coated with the second coating layer ( Weight ratio of C1) + BET specific surface area of optionally included ceramic particles x weight ratio of ceramic particles optionally included in the negative electrode active material particles coated with the second coating layer)}×100
本発明の被覆負極活物質粒子は、負極活物質粒子の表面に第一被覆層が形成されない部分があってもよく、負極活物質粒子の表面に第二被覆層が被覆してなる部分があってもよい。 The coated negative electrode active material particles of the present invention may have a portion on the surface of the negative electrode active material particle where the first coating layer is not formed, and a portion where the surface of the negative electrode active material particle is coated with the second coating layer. You can.
本発明の被覆負極活物質粒子を製造する方法は特に限定されないが、例えば、負極活物質粒子、高分子化合物(P1)、導電助剤(C1)、任意で使用するセラミック粒子を混合して第一被覆層を形成する工程、及び、第一被覆層が形成された負極活物質粒子、高分子化合物(P2)、導電助剤(C2)、任意で使用するセラミック粒子を混合して第二被覆層を形成する工程を有することが好ましい。 The method for producing the coated negative electrode active material particles of the present invention is not particularly limited, but for example, the negative electrode active material particles, the polymer compound (P1), the conductive agent (C1), and optionally used ceramic particles are mixed and then the coated negative electrode active material particles are mixed. A step of forming a first coating layer, and a second coating by mixing the negative electrode active material particles on which the first coating layer has been formed, a polymer compound (P2), a conductive agent (C2), and optionally used ceramic particles. It is preferable to include a step of forming a layer.
各工程において、負極活物質粒子、高分子化合物(P1)、(P2)、導電助剤(C1)、(C2)及び任意で使用するセラミック粒子を混合する順番は特に限定されず、例えば、事前に混合した高分子化合物と導電助剤とセラミック粒子とからなる樹脂組成物を、負極活物質粒子と更に混合してもよいし、負極活物質粒子、高分子化合物、導電助剤及びセラミック粒子を同時に混合してもよいし、負極活物質粒子に高分子化合物を混合し、更に導電助剤及びセラミック粒子を混合してもよい。 In each step, the order in which negative electrode active material particles, polymer compounds (P1), (P2), conductive aids (C1), (C2), and optionally used ceramic particles are mixed is not particularly limited. A resin composition consisting of a polymer compound, a conductive agent, and ceramic particles mixed in the above may be further mixed with negative electrode active material particles, or a resin composition consisting of a polymer compound, a conductive agent, and ceramic particles mixed with negative electrode active material particles, a polymer compound, a conductive agent, and ceramic particles may be further mixed with They may be mixed at the same time, or the polymer compound may be mixed with the negative electrode active material particles, and then the conductive additive and ceramic particles may be mixed.
第一被覆層を形成する工程、及び、第二被覆層を形成する工程において、高分子化合物(P1)、高分子化合物(P2)は、それぞれ有機溶剤に溶解して樹脂溶液の状態で添加する方法、当該樹脂溶液をスプレー方式で添加する方法、高分子化合物(P1)、高分子化合物(P2)を粉体で用いる方法等が挙げられる。
有機溶剤としては高分子化合物(P1)、高分子化合物(P2)を溶解可能な有機溶剤であれば特に限定されず、公知の有機溶剤を適宜選択して用いることができる。
樹脂溶液をスプレー方式で添加する場合、例えばWA-101-102P(アネスト岩田社製)のノズルを使用したスプレーシステム等を用いることができる。
高分子化合物(P1)、高分子化合物(P2)を粉体で用いる場合、粉体の粒子径は特に限定されない。粉体の粒子径は、所望する被覆層の厚さに応じて変更すればよい。
In the step of forming the first coating layer and the step of forming the second coating layer, the polymer compound (P1) and the polymer compound (P2) are each dissolved in an organic solvent and added in the form of a resin solution. Examples include a method in which the resin solution is added by a spray method, a method in which the polymer compound (P1) and the polymer compound (P2) are used in powder form, and the like.
The organic solvent is not particularly limited as long as it can dissolve the polymer compound (P1) and the polymer compound (P2), and any known organic solvent can be appropriately selected and used.
When adding the resin solution by a spray method, a spray system using a nozzle of WA-101-102P (manufactured by Anest Iwata Co., Ltd.) can be used, for example.
When the polymer compound (P1) and the polymer compound (P2) are used in powder form, the particle size of the powder is not particularly limited. The particle size of the powder may be changed depending on the desired thickness of the coating layer.
第一被覆層を形成する工程、及び、第二被覆層を形成する工程において、高分子化合物(P1)、高分子化合物(P2)を添加する方法は、同じであってもよいし異なっていてもよい。具体的には、下記の(i)~(iv)の組み合わせが挙げられる。
(i)負極活物質粒子、高分子化合物(P1)溶液を混合機に入れて混合し、脱溶剤した後、導電助剤(C1)を混合して第一被覆層を形成し、更に、導電助剤(C2)を入れ、高分子化合物(P2)溶液を入れて混合し、脱溶剤する方法
(ii)負極活物質粒子、粉末状の高分子化合物(P1)を混合機に入れて加熱混合した後、導電助剤(C1)を混合して第一被覆層を形成し、更に、導電助剤(C2)を入れ、高分子化合物(P2)溶液を入れて混合し、脱溶剤する方法
(iii)負極活物質粒子、高分子化合物(P1)溶液を混合機に入れて混合し、脱溶剤した後、導電助剤(C1)を混合して第一被覆層を形成し、更に、導電助剤(C2)を入れ、高分子化合物(P2)溶液をスプレー方式で入れて混合し、脱溶剤する方法
(iv)負極活物質粒子、粉末状の高分子化合物(P1)を混合機に入れて加熱混合した後、導電助剤(C1)を混合して第一被覆層を形成し、更に、導電助剤(C2)を入れ、高分子化合物(P2)溶液をスプレー方式で入れて混合し、脱溶剤する方法
In the step of forming the first coating layer and the step of forming the second coating layer, the methods of adding the polymer compound (P1) and the polymer compound (P2) may be the same or different. Good too. Specifically, the following combinations (i) to (iv) may be mentioned.
(i) Put the negative electrode active material particles and the polymer compound (P1) solution into a mixer, mix them, remove the solvent, and then mix the conductive aid (C1) to form a first coating layer, and further conductive Method of adding the auxiliary agent (C2), adding the polymer compound (P2) solution, mixing, and removing the solvent. (ii) Putting the negative electrode active material particles and the powdered polymer compound (P1) in a mixer and heating and mixing. After that, a conductive additive (C1) is mixed to form a first coating layer, and a conductive additive (C2) is further added, a polymer compound (P2) solution is added and mixed, and the solvent is removed ( iii) After putting the negative electrode active material particles and the polymer compound (P1) solution into a mixer and mixing them and removing the solvent, the conductive additive (C1) is mixed to form a first coating layer, and then the conductive additive (C1) is mixed. (iv) Put the negative electrode active material particles and the powdered polymer compound (P1) into a mixer. After heating and mixing, the conductive additive (C1) is mixed to form a first coating layer, and the conductive additive (C2) is further added, and the polymer compound (P2) solution is added by a spray method and mixed. How to remove solvent
例えば、高分子化合物(P1)、高分子化合物(P2)を、それぞれ有機溶剤に溶解して樹脂溶液で添加する場合、負極活物質粒子を万能混合機に入れて30~500rpmで撹拌した状態で、第一被覆層を構成する高分子化合物(P1)を含む樹脂溶液を1~90分かけて滴下混合し、導電助剤(C1)及び任意で使用するセラミック粒子を混合し、撹拌したまま50~200℃に昇温し、0.007~0.04MPaまで減圧した後に10~150分保持して脱溶剤することにより、負極活物質粒子の表面の少なくとも一部が第一被覆層で被覆された粒子を得ることができる。第二被覆層は、上記と同じ手順で形成することにより、第一被覆層の上に第二被覆層が設けられた被覆負極活物質粒子を得ることができる。 For example, when the polymer compound (P1) and the polymer compound (P2) are dissolved in an organic solvent and added as a resin solution, the negative electrode active material particles are placed in a universal mixer and stirred at 30 to 500 rpm. , the resin solution containing the polymer compound (P1) constituting the first coating layer was mixed dropwise over 1 to 90 minutes, the conductive agent (C1) and optionally used ceramic particles were mixed, and the mixture was stirred for 50 minutes. By raising the temperature to ~200°C, reducing the pressure to 0.007~0.04 MPa, and holding it for 10~150 minutes to remove the solvent, at least a part of the surface of the negative electrode active material particles is covered with the first coating layer. particles can be obtained. By forming the second coating layer using the same procedure as described above, coated negative electrode active material particles in which the second coating layer is provided on the first coating layer can be obtained.
スプレー方式の場合は、上記の樹脂溶液をWA-101-102P(アネスト岩田社製)のノズルを使用したスプレーシステム等を用いて添加することができる。樹脂溶液をスプレー方式で添加する方法の一例として、例えば固形分濃度を10%程度にした樹脂溶液を40℃に温調して上記のスプレーシステムを用いる方法等が挙げられる。樹脂溶液の粘度が高い場合は、濃度を薄めて使用することが好ましい。
粉末状の高分子化合物(P1)、(P2)を用いる場合は、例えば乳鉢(大阪ケミカル社製、フォースミル等の解砕機も使用可能)等で固形の高分子化合物(P1)、(P2)を解砕し、200メッシュ(目開き75μm)を通過させて粉末状の高分子化合物(P1)、(P2)を添加することができる。
In the case of a spray method, the above resin solution can be added using a spray system using a nozzle of WA-101-102P (manufactured by Anest Iwata Co., Ltd.). An example of a method for adding a resin solution by spraying is a method in which a resin solution with a solid content concentration of about 10% is heated to 40° C. and the above-mentioned spray system is used. When the viscosity of the resin solution is high, it is preferable to use it at a diluted concentration.
When using powdered polymeric compounds (P1) and (P2), for example, the solid polymeric compounds (P1) and (P2) are crushed in a mortar (manufactured by Osaka Chemical Co., Ltd., a crusher such as Force Mill can also be used). The powdered polymer compounds (P1) and (P2) can be added by crushing and passing through a 200 mesh (opening 75 μm).
[リチウムイオン電池用負極]
本発明のリチウムイオン電池用負極(以下、単に「負極」ともいう)は、本発明のリチウムイオン電池用被覆負極活物質粒子と導電性フィラーとを含む非結着体からなることを特徴とする。
[Negative electrode for lithium ion batteries]
The negative electrode for lithium ion batteries of the present invention (hereinafter also simply referred to as "negative electrode") is characterized by being composed of a non-binding body containing coated negative electrode active material particles for lithium ion batteries of the present invention and a conductive filler. .
ここで、非結着体とは、リチウムイオン電池用被覆負極活物質粒子と導電性フィラーとが結着剤(バインダともいう)により位置を固定されていないことを意味する。すなわち、リチウムイオン電池用被覆負極活物質粒子と導電性フィラーは、それぞれ外力に応じて移動できる状態である。 Here, a non-bound body means that the coated negative electrode active material particles for lithium ion battery and the conductive filler are not fixed in position by a binder (also referred to as a binder). That is, the coated negative electrode active material particles for a lithium ion battery and the conductive filler are in a state where they can each move in response to an external force.
負極が非結着体からなる場合、被覆負極活物質粒子と導電性フィラーとが結着剤によって不可逆的に固定されていない。不可逆的な固定とは、被覆負極活物質粒子と導電性フィラーとが下記の公知の溶剤乾燥型のリチウムイオン電池用結着剤によって接着固定されていることを意味し、接着固定された被覆負極活物質粒子と導電性フィラーが分離するためには被覆負極活物質粒子と導電性フィラーの界面を機械的に破壊する必要がある。一方、非結着体の場合は、被覆負極活物質粒子と導電性フィラーは不可逆的な接着固定がされていないため、被覆負極活物質粒子と導電性フィラーの界面を機械的に破壊することなく分離することができる。 When the negative electrode is made of a non-binder, the coated negative electrode active material particles and the conductive filler are not irreversibly fixed by the binder. Irreversible fixation means that the coated negative electrode active material particles and the conductive filler are adhesively fixed using the following known solvent drying binder for lithium ion batteries, and the coated negative electrode that has been adhesively fixed is In order to separate the active material particles and the conductive filler, it is necessary to mechanically destroy the interface between the coated negative electrode active material particles and the conductive filler. On the other hand, in the case of a non-binding body, the coated negative electrode active material particles and the conductive filler are not irreversibly adhesively fixed, so the interface between the coated negative electrode active material particles and the conductive filler is not mechanically destroyed. Can be separated.
本発明の負極においては、溶剤乾燥型結着剤を含まないことが好ましい。
溶剤乾燥型結着剤としてはデンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン及びポリプロピレン等の公知のリチウムイオン電池用結着剤等が挙げられる。これらの結着剤は溶剤に溶解又は分散して用いられ、溶剤を揮発、留去することで表面が粘着性を示すことなく固体化して、被覆負極活物質粒子と導電性フィラー同士、及び、被覆負極活物質粒子と導電性フィラーと集電体とを強固に固定するものである。
The negative electrode of the present invention preferably does not contain a solvent-drying binder.
Examples of the solvent-drying binder include known binders for lithium ion batteries such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and by volatilizing or distilling off the solvent, the surface becomes solid without exhibiting stickiness, and the coated negative electrode active material particles and the conductive filler are bonded to each other, and This is to firmly fix the coated negative electrode active material particles, the conductive filler, and the current collector.
本発明の負極は、被覆負極活物質粒子と、導電性フィラーと、電解質及び溶媒を含有する電解液とを含む負極活物質層を備えていることが好ましい。 The negative electrode of the present invention preferably includes a negative electrode active material layer containing coated negative electrode active material particles, a conductive filler, and an electrolytic solution containing an electrolyte and a solvent.
電解質としては、公知の電解液に用いられている電解質が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF、LiClO及びLiN(FSO等の無機アニオンのリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機アニオンのリチウム塩が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiN(FSOである。 As the electrolyte, electrolytes used in known electrolytes can be used, such as lithium salts of inorganic anions such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 and LiN(FSO 2 ) 2 , LiN Examples include lithium salts of organic anions such as (CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 and LiC(CF 3 SO 2 ) 3 . Among these, LiN(FSO 2 ) 2 is preferred from the viewpoint of battery output and charge/discharge cycle characteristics.
溶媒としては、公知の電解液に用いられている非水溶媒が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン及びこれらの混合物を用いることができる。 As the solvent, nonaqueous solvents used in known electrolyte solutions can be used, such as lactone compounds, cyclic or chain carbonates, chain carboxylic esters, cyclic or chain ethers, phosphate esters, and nitrile compounds. , amide compounds, sulfones, sulfolanes and mixtures thereof can be used.
ラクトン化合物としては、5員環(γ-ブチロラクトン及びγ-バレロラクトン等)及び6員環(δ-バレロラクトン等)のラクトン化合物等が挙げられる。 Examples of the lactone compound include lactone compounds with a 5-membered ring (such as γ-butyrolactone and γ-valerolactone) and a 6-membered ring (such as δ-valerolactone).
環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)及びブチレンカーボネート(BC)等が挙げられる。
鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート及びジ-n-プロピルカーボネート等が挙げられる。
Examples of the cyclic carbonate ester include propylene carbonate, ethylene carbonate (EC), and butylene carbonate (BC).
Examples of chain carbonate esters include dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate. .
鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。 Examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン及び1,4-ジオキサン等が挙げられる。鎖状エーテルとしては、ジメトキシメタン及び1,2-ジメトキシエタン等が挙げられる。 Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, and 1,4-dioxane. Examples of chain ethers include dimethoxymethane and 1,2-dimethoxyethane.
リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、2-エトキシ-1,3,2-ジオキサホスホラン-2-オン、2-トリフルオロエトキシ-1,3,2-ジオキサホスホラン-2-オン及び2-メトキシエトキシ-1,3,2-ジオキサホスホラン-2-オン等が挙げられる。 Phosphate esters include trimethyl phosphate, triethyl phosphate, ethyldimethyl phosphate, diethylmethyl phosphate, tripropyl phosphate, tributyl phosphate, tri(trifluoromethyl) phosphate, tri(trichloromethyl) phosphate, Tri(trifluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2-dioxaphosphoran-2-one and 2 -methoxyethoxy-1,3,2-dioxaphosphorane-2-one and the like.
ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、DMF等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等が挙げられる。 Examples of the nitrile compound include acetonitrile and the like. Examples of the amide compound include DMF and the like. Examples of the sulfone include dimethylsulfone and diethylsulfone.
これらの溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。 These solvents may be used alone or in combination of two or more.
電解液中の電解質の濃度は、1.2~5.0mol/Lであることが好ましく、1.5~4.5mol/Lであることがより好ましく、1.8~4.0mol/Lであることが更に好ましく、2.0~3.5mol/Lであることが特に好ましい。
このような電解液は、適当な粘性を有するので、被覆負極活物質粒子間に液膜を形成することができ、被覆負極活物質粒子に潤滑効果(被覆活物質粒子の位置調整能力)を付与することができる。
The concentration of electrolyte in the electrolytic solution is preferably 1.2 to 5.0 mol/L, more preferably 1.5 to 4.5 mol/L, and 1.8 to 4.0 mol/L. It is more preferable that the amount is 2.0 to 3.5 mol/L, and particularly preferably 2.0 to 3.5 mol/L.
Since such an electrolytic solution has an appropriate viscosity, it can form a liquid film between the coated negative electrode active material particles, and provides a lubricating effect (ability to adjust the position of the coated active material particles) to the coated negative electrode active material particles. can do.
本発明の負極は、上述した被覆負極活物質粒子の第一被覆層及び第二被覆層中に含まれる導電助剤(C1)及び導電助剤(C2)とは別に、導電性フィラーを含んでいる。第一被覆層及び第二被覆層中に含まれる導電助剤(C1)及び導電助剤(C2)が被覆負極活物質粒子と一体であるのに対し、導電性フィラーは被覆負極活物質粒子と別々に含まれている点で区別できる。
導電性フィラーは、第一被覆層に含まれる導電助剤(C1)及び第二被覆層に含まれる導電助剤(C2)と同じであってもよいし、異なっていてもよい。
本発明の負極が含んでいてもよい導電性フィラーとしては、導電助剤(C1)として例示したものと同じものを用いることができる。
The negative electrode of the present invention contains a conductive filler in addition to the conductive additive (C1) and the conductive additive (C2) contained in the first coating layer and the second coating layer of the coated negative electrode active material particles described above. There is. The conductive additive (C1) and conductive additive (C2) contained in the first coating layer and the second coating layer are integrated with the coated negative electrode active material particles, whereas the conductive filler is integrated with the coated negative electrode active material particles. They can be distinguished by being included separately.
The conductive filler may be the same as or different from the conductive additive (C1) contained in the first coating layer and the conductive additive (C2) contained in the second coating layer.
As the conductive filler that may be included in the negative electrode of the present invention, the same one as exemplified as the conductive aid (C1) can be used.
負極活物質層が導電性フィラーを含む場合、負極中に含まれる導電性フィラーと第一被覆層中に含まれる導電助剤(C1)及び第二被覆層中に含まれる導電助剤(C2)の合計含有量は、特に限定されないが、負極活物質層から電解液を除いた重量を基準として0.5~20重量%であることが好ましい。 When the negative electrode active material layer contains a conductive filler, the conductive filler contained in the negative electrode, the conductive agent (C1) contained in the first coating layer, and the conductive agent (C2) contained in the second coating layer. Although the total content of is not particularly limited, it is preferably 0.5 to 20% by weight based on the weight of the negative electrode active material layer excluding the electrolyte.
本発明の負極において、負極活物質層の厚みは、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 In the negative electrode of the present invention, the thickness of the negative electrode active material layer is preferably 150 to 600 μm, more preferably 200 to 450 μm, from the viewpoint of battery performance.
本発明の負極は、例えば、被覆負極活物質粒子と、導電性フィラーと、電解液とを含む負極スラリーを集電体に塗布した後、乾燥させることによって作製することができる。具体的には、負極スラリーを、集電体上にバーコーター等の塗工装置で塗布後、不織布を活物質上に静置して吸液すること等で、溶媒を除去し、必要によりプレス機でプレスする方法等が挙げられる。 The negative electrode of the present invention can be produced, for example, by applying a negative electrode slurry containing coated negative electrode active material particles, a conductive filler, and an electrolytic solution to a current collector, and then drying the slurry. Specifically, after applying the negative electrode slurry onto the current collector using a coating device such as a bar coater, the solvent is removed by placing a nonwoven fabric on the active material and absorbing the liquid, and then pressing if necessary. Examples include a method of pressing with a machine.
本発明の負極において、集電体を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。
集電体の形状は特に限定されず、上記の材料からなるシート状の集電体、及び、上記の材料で構成された微粒子からなる堆積層であってもよい。
集電体の厚さは、特に限定されないが、50~500μmであることが好ましい。
In the negative electrode of the present invention, materials constituting the current collector include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, as well as calcined carbon, conductive polymer materials, conductive glass, etc. can be mentioned.
The shape of the current collector is not particularly limited, and may be a sheet-like current collector made of the above-mentioned material or a deposited layer made of fine particles made of the above-mentioned material.
The thickness of the current collector is not particularly limited, but is preferably 50 to 500 μm.
このように、本発明の負極は、集電体を更に備え、上記集電体の表面に上記負極活物質層が設けられていることが好ましい。例えば、本発明の負極は、導電性高分子材料からなる樹脂集電体を備え、上記樹脂集電体の表面に上記負極活物質層が設けられていることが好ましい。 As described above, the negative electrode of the present invention preferably further includes a current collector, and the negative electrode active material layer is provided on the surface of the current collector. For example, the negative electrode of the present invention preferably includes a resin current collector made of a conductive polymer material, and the negative electrode active material layer is provided on the surface of the resin current collector.
樹脂集電体を構成する導電性高分子材料としては例えば、樹脂に導電剤を添加したものを用いることができる。
導電性高分子材料を構成する導電剤としては、第一被覆層の導電助剤(C1)と同様のものを好適に用いることができる。
導電性高分子材料を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。
電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、更に好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
樹脂集電体は、特開2012-150905号公報及び再表2015/005116号等に記載された公知の方法で得ることができる。
As the conductive polymer material constituting the resin current collector, for example, a resin containing a conductive agent can be used.
As the conductive agent constituting the conductive polymer material, the same conductive agent (C1) of the first coating layer can be suitably used.
Examples of resins constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyethernitrile (PEN), and polyethylene terephthalate (PET). Tetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin, or these Examples include mixtures.
From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferred, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferred. (PMP).
The resin current collector can be obtained by a known method described in JP-A No. 2012-150905, Re-Table No. 2015/005116, and the like.
[リチウムイオン電池]
本発明のリチウムイオン電池は、本発明のリチウムイオン電池用負極を備えることを特徴とする。
[Lithium ion battery]
The lithium ion battery of the present invention is characterized by comprising the negative electrode for lithium ion batteries of the present invention.
本発明のリチウムイオン電池は、対極となる電極を組み合わせて、セパレータと共にセル容器に収納し、電解液を注入し、セル容器を密封することで得られる。
また、集電体の一方の面に正極を形成し、もう一方の面に負極を形成してバイポーラ(双極)型電極を作製し、バイポーラ(双極)型電極をセパレータと積層してセル容器に収納し、電解液を注入し、セル容器を密封することでも得られる。
本発明の負極を用いることにより、本発明のリチウムイオン電池が得られる。
The lithium ion battery of the present invention is obtained by combining an electrode serving as a counter electrode, housing the cell container together with a separator in a cell container, injecting an electrolytic solution, and sealing the cell container.
In addition, a positive electrode is formed on one side of the current collector and a negative electrode is formed on the other side to create a bipolar (bipolar) type electrode, and the bipolar (bipolar) type electrode is laminated with a separator to form a cell container. It can also be obtained by storing the cell, injecting electrolyte, and sealing the cell container.
By using the negative electrode of the present invention, the lithium ion battery of the present invention can be obtained.
セパレータとしては、ポリエチレン又はポリプロピレン製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。 Separators include porous films made of polyethylene or polypropylene, laminated films of porous polyethylene films and porous polypropylene, nonwoven fabrics made of synthetic fibers (polyester fibers, aramid fibers, etc.) or glass fibers, and silica on their surfaces. Examples include known separators for lithium ion batteries, such as those to which fine ceramic particles of alumina, titania, etc. are attached.
なお、本明細書には以下の発明が記載されている。
〔11〕リチウムイオン電池用負極活物質粒子の表面の少なくとも一部を第一被覆層で被覆してなり、上記第一被覆層の表面の少なくとも一部を第二被覆層で被覆してなるリチウムイオン電池用被覆負極活物質粒子であって、上記第一被覆層は、炭素数1~12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a11)及びアニオン性単量体(a12)を含んでなる単量体組成物の重合体である高分子化合物(P1)と導電助剤(C1)とを含み、上記高分子化合物(P1)はガラス転移温度が20℃を超え、上記第二被覆層は、ガラス転移温度が20℃以下である高分子化合物(P2)と導電助剤(C2)とを含むリチウムイオン電池用被覆負極活物質粒子。
〔12〕上記リチウムイオン電池用被覆負極活物質粒子における上記高分子化合物(P1)の重量割合が、上記リチウムイオン電池用被覆負極活物質粒子の重量を基準として0.7~9.0重量%であり、上記リチウムイオン電池用被覆負極活物質粒子における上記高分子化合物(P2)の重量割合が、上記リチウムイオン電池用被覆負極活物質粒子の重量を基準として0.3~9.0重量%である上記〔11〕に記載のリチウムイオン電池用被覆負極活物質粒子。
〔13〕上記高分子化合物(P2)が、ウレタン樹脂、(メタ)アクリル酸アルキルエステル共重合体及びスチレン‐ブタジエンゴムからなる群から選択される少なくとも1種である上記〔11〕又は〔12〕に記載のリチウムイオン電池用被覆負極活物質粒子。
〔14〕上記〔11〕~〔13〕のいずれか一項に記載のリチウムイオン電池用被覆負極活物質粒子と導電性フィラーとを含む非結着体からなるリチウムイオン電池用負極。
〔15〕上記〔14〕に記載のリチウムイオン電池用負極を備えるリチウムイオン電池。
[実施例]
Note that the following inventions are described in this specification.
[11] Lithium obtained by coating at least a part of the surface of negative electrode active material particles for lithium ion batteries with a first coating layer, and at least a part of the surface of the first coating layer by coating with a second coating layer. Coated negative electrode active material particles for ion batteries, wherein the first coating layer comprises an ester compound (a11) of a monovalent aliphatic alcohol having 1 to 12 carbon atoms and (meth)acrylic acid, and an anionic monomer. The polymer compound (P1) is a polymer of a monomer composition containing (a12) and a conductive additive (C1), and the polymer compound (P1) has a glass transition temperature of more than 20°C. , the second coating layer is a coated negative electrode active material particle for a lithium ion battery containing a polymer compound (P2) having a glass transition temperature of 20° C. or lower and a conductive additive (C2).
[12] The weight proportion of the polymer compound (P1) in the coated negative electrode active material particles for lithium ion batteries is 0.7 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries. and the weight proportion of the polymer compound (P2) in the coated negative electrode active material particles for lithium ion batteries is 0.3 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries. The coated negative electrode active material particles for lithium ion batteries according to [11] above.
[13] [11] or [12] above, wherein the polymer compound (P2) is at least one selected from the group consisting of urethane resin, (meth)acrylic acid alkyl ester copolymer, and styrene-butadiene rubber. The coated negative electrode active material particles for lithium ion batteries as described in .
[14] A negative electrode for a lithium ion battery comprising a non-binding body comprising the coated negative electrode active material particles for a lithium ion battery according to any one of [11] to [13] above and a conductive filler.
[15] A lithium ion battery comprising the negative electrode for a lithium ion battery according to [14] above.
[Example]
次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。
<Tg測定法>
セイコー電子工業(株)製DSC20、SSC/580を用いて、ASTM D3418-82に規定の方法(DSC法)で測定した。
EXAMPLES Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the examples unless it departs from the gist of the present invention. In addition, unless otherwise specified, "part" means "part by weight" and "%" means percent by weight.
<Tg measurement method>
The measurement was performed using DSC20 and SSC/580 manufactured by Seiko Electronics Co., Ltd. according to the method specified in ASTM D3418-82 (DSC method).
[第一被覆層に用いる高分子化合物(P1)の作製]
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF150部を仕込み、75℃に昇温した。次いで、アクリル酸91部、メタクリル酸メチル9部及びDMF50部を配合した単量体組成物と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.3部及び2,2’-アゾビス(2-メチルブチロニトリル)0.8部をDMF30部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。
次いで、80℃に昇温して反応を3時間継続し、樹脂濃度30%の共重合体溶液を得た。
得られた共重合体溶液はテフロン(登録商標)製のバットに移して150℃、0.01MPaで3時間の減圧乾燥を行い、DMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の高分子化合物(P1)を得た。得られた高分子化合物(P1)のTgを測定したところ、105℃であった。
[Preparation of polymer compound (P1) used for first coating layer]
150 parts of DMF was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 75°C. Next, a monomer composition containing 91 parts of acrylic acid, 9 parts of methyl methacrylate, and 50 parts of DMF, and 0.3 part of 2,2'-azobis(2,4-dimethylvaleronitrile) and 2,2'- An initiator solution prepared by dissolving 0.8 parts of azobis(2-methylbutyronitrile) in 30 parts of DMF was continuously added dropwise into a four-necked flask using a dropping funnel over 2 hours under stirring while blowing nitrogen. Radical polymerization was performed. After the dropwise addition was completed, the reaction was continued at 75°C for 3 hours.
Next, the temperature was raised to 80°C and the reaction was continued for 3 hours to obtain a copolymer solution with a resin concentration of 30%.
The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 150° C. and 0.01 MPa for 3 hours, and DMF was distilled off to obtain a copolymer. This copolymer was roughly pulverized with a hammer, and then further pulverized in a mortar to obtain a powdery polymer compound (P1). The Tg of the obtained polymer compound (P1) was measured and found to be 105°C.
[第二被覆層に用いる高分子化合物(P2-1)]
第二被覆層に用いる高分子化合物(P2-1)としては、ウレタンエマルション(製品名:ユーコート、三洋化成工業株式会社製、Tg:-70℃)を用いた。
[Polymer compound (P2-1) used for second coating layer]
As the polymer compound (P2-1) used for the second coating layer, a urethane emulsion (product name: Ucoat, manufactured by Sanyo Chemical Industries, Ltd., Tg: -70°C) was used.
[第二被覆層に用いる高分子化合物(P2-2)の作製]
攪拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口コルベンに、2-エチルヘキシルアクリレート30部、2-エチルヘキシルメタクリレート60部、アクリル酸5部、n-ブチルメタクリレート4.5部、1,6-ヘキサンジオールジメタクリレート0.5部、トルエン390部を仕込み75℃に昇温した。トルエン10部及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.200部及び2,2’-アゾビス(2-メチルブチロニトリル)0.200部を混合した。得られた単量体混合液をコルベン内に窒素を吹き込みながら、重合開始剤混合液を滴下ロートで4時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.800部をトルエン12.4部に溶解した溶液を滴下ロートを用いて、重合を開始してから6~8時間目にかけて連続的に追加した。更に、重合を2時間継続し、トルエンを488部加えて樹脂濃度10重量%の高分子化合物(P2-2)溶液を得た。得られた高分子化合物(P2-2)の分子量をGPCにて測定したところ、Mwは510,000であった。得られた高分子化合物(P2-2)のTgを測定したところ、-21℃であった。
[Preparation of polymer compound (P2-2) used for second coating layer]
In a four-necked colben equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, 30 parts of 2-ethylhexyl acrylate, 60 parts of 2-ethylhexyl methacrylate, 5 parts of acrylic acid, and 4.0 parts of n-butyl methacrylate were added. 5 parts of 1,6-hexanediol dimethacrylate, 0.5 parts of toluene, and 390 parts of toluene were charged and the temperature was raised to 75°C. 10 parts of toluene, 0.200 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) and 0.200 parts of 2,2'-azobis(2-methylbutyronitrile) were mixed. Radical polymerization was carried out by continuously dropping the polymerization initiator mixture into the obtained monomer mixture using a dropping funnel over a period of 4 hours while blowing nitrogen into a Kolben. After dropping, a solution of 0.800 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) dissolved in 12.4 parts of toluene was added using a dropping funnel for 6 to 8 hours after starting polymerization. I added it continuously. Further, polymerization was continued for 2 hours, and 488 parts of toluene was added to obtain a polymer compound (P2-2) solution with a resin concentration of 10% by weight. The molecular weight of the obtained polymer compound (P2-2) was measured by GPC, and the Mw was 510,000. The Tg of the obtained polymer compound (P2-2) was measured and found to be -21°C.
[第二被覆層に用いる高分子化合物(P2-3)]
第二被覆層に用いる高分子化合物(P2-3)としては、スチレン‐ブタジエンゴム(製品名:TRD104A、JSR株式会社製、Tg:7℃)を用いた。
[Polymer compound used for second coating layer (P2-3)]
As the polymer compound (P2-3) used for the second coating layer, styrene-butadiene rubber (product name: TRD104A, manufactured by JSR Corporation, Tg: 7° C.) was used.
[第二被覆層に用いる高分子化合物(P2-4)の作製]
攪拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口コルベンに、n-ブチルアクリレート30部、2-ヒドロキシエチルアクリレート20部、アクリロニトリル50部、トルエン390部を仕込み75℃に昇温した。トルエン10部及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.200部及び2,2’-アゾビス(2-メチルブチロニトリル)0.200部を混合した。得られた単量体混合液をコルベン内に窒素を吹き込みながら、滴下ロートで4時間かけて連続的に重合開始剤を滴下してラジカル重合を行った。滴下終了後、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.800部をトルエン12.4部に溶解した溶液を滴下ロートを用いて、重合を開始してから6~8時間目にかけて連続的に追加した。更に、重合を2時間継続し、トルエンを488部加えて樹脂濃度10重量%の高分子化合物(P2-4)溶液を得た。得られた高分子化合物(P2-4)の分子量をGPCにて測定したところ、Mwは460,000であった。得られた高分子化合物(P2-4)のTgを測定したところ、16℃であった。
[Preparation of polymer compound (P2-4) used for second coating layer]
Into a four-necked colben equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, 30 parts of n-butyl acrylate, 20 parts of 2-hydroxyethyl acrylate, 50 parts of acrylonitrile, and 390 parts of toluene were charged. The temperature was raised to ℃. 10 parts of toluene, 0.200 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) and 0.200 parts of 2,2'-azobis(2-methylbutyronitrile) were mixed. While blowing nitrogen into the resulting monomer mixture, a polymerization initiator was continuously added dropwise using a dropping funnel over a period of 4 hours to carry out radical polymerization. After dropping, a solution of 0.800 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) dissolved in 12.4 parts of toluene was added using a dropping funnel for 6 to 8 hours after starting polymerization. I added it continuously. Furthermore, polymerization was continued for 2 hours, and 488 parts of toluene was added to obtain a polymer compound (P2-4) solution with a resin concentration of 10% by weight. The molecular weight of the obtained polymer compound (P2-4) was measured by GPC, and the Mw was 460,000. The Tg of the obtained polymer compound (P2-4) was measured and found to be 16°C.
[電解液の作製]
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSOを2.0mol/Lの割合で溶解させて電解液を作製した。
[Preparation of electrolyte]
An electrolytic solution was prepared by dissolving LiN(FSO 2 ) 2 at a ratio of 2.0 mol/L in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) (volume ratio 1:1).
実施例301[被覆負極活物質粒子1の作製]
(第一被覆層の形成)
高分子化合物(P1)1部をDMF3部に溶解し、高分子化合物(P1)溶液を得た。
負極活物質粒子(ハードカーボン粉末、体積平均粒子径25μm)77.3部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、高分子化合物(P1)溶液21.2部(固形分換算で5.3部)を2分かけて滴下し、更に5分撹拌した。次いで、撹拌した状態で導電助剤(C1)であるグラファイト(UP)[薄片状黒鉛、体積平均粒子径4.5μm]5.3部を分割しながら2分間で投入し、30分撹拌を継続した。
Example 301 [Preparation of coated negative electrode active material particles 1]
(Formation of first coating layer)
1 part of polymer compound (P1) was dissolved in 3 parts of DMF to obtain a polymer compound (P1) solution.
77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 μm) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, a polymer compound was added. 21.2 parts of the (P1) solution (5.3 parts in terms of solid content) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, while stirring, 5.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 μm], which is a conductive additive (C1), was added in portions over 2 minutes, and stirring was continued for 30 minutes. did.
(第二被覆層の形成)
更に、撹拌した状態で、高分子化合物(P2-1)23.6部(固形分換算で5.9部)を2分かけて滴下し、更に5分撹拌した。次いで、撹拌した状態で導電助剤(C2)であるアセチレンブラック(AB)[デンカ(株)製、商品名「デンカブラック」、体積平均粒子径35nm]4.0部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、表5に示す組成の被覆負極活物質粒子1を得た。
(Formation of second coating layer)
Further, while stirring, 23.6 parts (5.9 parts in terms of solid content) of the polymer compound (P2-1) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, in a stirred state, 4.0 parts of acetylene black (AB) (manufactured by Denka Co., Ltd., trade name "Denka Black", volume average particle diameter 35 nm), which is a conductive aid (C2), was added in portions for 2 minutes. and continued stirring for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated negative electrode active material particles 1 having the composition shown in Table 5.
実施例302[被覆負極活物質粒子2の作製]
高分子化合物(P2-1)の代わりに高分子化合物(P2-2)溶液59.0部(固形分換算で5.9部)を用いた以外は実施例301と同様にして、表5に示す組成の被覆負極活物質粒子2を得た。
Example 302 [Preparation of coated negative electrode active material particles 2]
Table 5 shows the results in the same manner as in Example 301 except that 59.0 parts (5.9 parts in terms of solid content) of the polymer compound (P2-2) solution was used instead of the polymer compound (P2-1). Coated negative electrode active material particles 2 having the composition shown were obtained.
実施例303[被覆負極活物質粒子3の作製]
高分子化合物(P2-1)の代わりに、樹脂濃度25重量%となるように超純水で希釈した高分子化合物(P2-3)水溶液23.6部(固形分換算で5.9部)を用いた以外は実施例301と同様にして、表5に示す組成の被覆負極活物質粒子3を得た。
Example 303 [Preparation of coated negative electrode active material particles 3]
Instead of the polymer compound (P2-1), 23.6 parts of an aqueous solution of the polymer compound (P2-3) diluted with ultrapure water to a resin concentration of 25% by weight (5.9 parts in terms of solid content) Coated negative electrode active material particles 3 having the compositions shown in Table 5 were obtained in the same manner as in Example 301 except that .
実施例304[被覆負極活物質粒子4の作製]
高分子化合物(P2-1)溶液の代わりに高分子化合物(P2-4)溶液59.0部(固形分換算で5.9部)を用いた以外は実施例301と同様にして、表5に示す組成の被覆負極活物質粒子4を得た。
Example 304 [Preparation of coated negative electrode active material particles 4]
Table 5 was carried out in the same manner as in Example 301, except that 59.0 parts of polymer compound (P2-4) solution (5.9 parts in terms of solid content) was used instead of polymer compound (P2-1) solution. Coated negative electrode active material particles 4 having the composition shown below were obtained.
実施例305[被覆負極活物質粒子5の作製]
(粉末状の高分子化合物P1の作成)
高分子化合物P1溶液を140℃の減圧乾燥機に入れ、溶剤を完全に揮発させP1固体を得た。得られたP1固体を乳鉢(大阪ケミカル社製)で解砕し、200メッシュ(目開き75μm)を通過させて粉末状の高分子化合物P1を作成した。
(第一被覆層の形成)
負極活物質粒子(ハードカーボン粉末、体積平均粒子径25μm)77.3部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、粉末状の高分子化合物(P1)5.3部を投入し、140℃に加熱して更に60分撹拌した。次いで、撹拌した状態で導電助剤(C1)であるグラファイト(UP)[薄片状黒鉛、体積平均粒子径4.5μm]5.3部を分割しながら2分間で投入し、30分撹拌を継続した。
Example 305 [Preparation of coated negative electrode active material particles 5]
(Creation of powdered polymer compound P1)
The polymer compound P1 solution was placed in a vacuum dryer at 140°C, and the solvent was completely volatilized to obtain a P1 solid. The obtained P1 solid was crushed in a mortar (manufactured by Osaka Chemical Co., Ltd.) and passed through a 200 mesh (opening 75 μm) to create a powdery polymer compound P1.
(Formation of first coating layer)
77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 μm) were placed in a multipurpose mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, powdered 5.3 parts of the polymer compound (P1) was added, heated to 140°C, and further stirred for 60 minutes. Next, while stirring, 5.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 μm], which is a conductive additive (C1), was added in portions over 2 minutes, and stirring was continued for 30 minutes. did.
(第二被覆層の形成)
更に、撹拌した状態で、高分子化合物(P2-2)溶液59.0部(固形分換算で5.9部)を2分かけて滴下し、更に5分撹拌した。次いで、撹拌した状態で導電助剤(C2)であるアセチレンブラック(AB)[デンカ(株)製、商品名「デンカブラック」、体積平均粒子径35nm]4.0部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、表5に示す組成の被覆負極活物質粒子5を得た。
(Formation of second coating layer)
Further, while stirring, 59.0 parts of the polymer compound (P2-2) solution (5.9 parts in terms of solid content) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, in a stirred state, 4.0 parts of acetylene black (AB) (manufactured by Denka Co., Ltd., trade name "Denka Black", volume average particle diameter 35 nm), which is a conductive aid (C2), was added in portions for 2 minutes. and continued stirring for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated negative electrode active material particles 5 having the composition shown in Table 5.
実施例306[被覆負極活物質粒子6の作製]
(第一被覆層の形成)
高分子化合物(P1)1部をDMF3部に溶解し、高分子化合物(P1)溶液を得た。
負極活物質粒子(ハードカーボン粉末、体積平均粒子径25μm)77.3部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、高分子化合物(P1)溶液21.2部(固形分換算で5.3部)を2分かけて滴下し、更に5分撹拌した。次いで、撹拌した状態で導電助剤(C1)であるグラファイト(UP)[薄片状黒鉛、体積平均粒子径4.5μm]5.3部を分割しながら2分間で投入し、30分撹拌を継続した。
Example 306 [Preparation of coated negative electrode active material particles 6]
(Formation of first coating layer)
1 part of polymer compound (P1) was dissolved in 3 parts of DMF to obtain a polymer compound (P1) solution.
77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 μm) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, a polymer compound was added. 21.2 parts (5.3 parts in terms of solid content) of the (P1) solution was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, while stirring, 5.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 μm], which is a conductive additive (C1), was added in portions over 2 minutes, and stirring was continued for 30 minutes. did.
(第二被覆層の形成)
更に、撹拌した状態で、WA-101-102P(アネスト岩田社製)のノズルを使用したスプレーシステムで40℃の高分子化合物(P2-2)溶液59.0部(固形分換算で5.9部)を2分かけてスプレー方式で添加し(噴出量100ml/min)、更に5分撹拌した。次いで、撹拌した状態で導電助剤(C2)であるアセチレンブラック(AB)[デンカ(株)製、商品名「デンカブラック」、体積平均粒子径35nm]4.0部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、表5に示す組成の被覆負極活物質粒子6を得た。
(Formation of second coating layer)
Furthermore, in a stirred state, 59.0 parts of the polymer compound (P2-2) solution at 40°C (5.9 parts in terms of solid content) was sprayed with a spray system using a WA-101-102P (manufactured by Anest Iwata) nozzle. ) was added by spraying over 2 minutes (spray amount: 100 ml/min), and the mixture was further stirred for 5 minutes. Next, in a stirred state, 4.0 parts of acetylene black (AB) (manufactured by Denka Co., Ltd., trade name "Denka Black", volume average particle diameter 35 nm), which is a conductive aid (C2), was added in portions for 2 minutes. and continued stirring for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated negative electrode active material particles 6 having the composition shown in Table 5.
実施例307[被覆負極活物質粒子7の作製]
(第一被覆層の形成)
負極活物質粒子(ハードカーボン粉末、体積平均粒子径25μm)77.3部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、粉末状の高分子化合物(P1)5.3部を投入し、140℃に加熱して更に60分撹拌した。次いで、撹拌した状態で導電助剤(C1)であるグラファイト(UP)[薄片状黒鉛、体積平均粒子径4.5μm]5.3部を分割しながら2分間で投入し、30分撹拌を継続した。
Example 307 [Preparation of coated negative electrode active material particles 7]
(Formation of first coating layer)
77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 μm) were placed in a multipurpose mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, powdered 5.3 parts of the polymer compound (P1) was added, heated to 140°C, and further stirred for 60 minutes. Next, while stirring, 5.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 μm], which is a conductive additive (C1), was added in portions over 2 minutes, and stirring was continued for 30 minutes. did.
(第二被覆層の形成)
更に、撹拌した状態で、WA-101-102P(アネスト岩田社製)のノズルを使用したスプレーシステムで40℃の高分子化合物(P2-2)溶液59.0部(固形分換算で5.9部)を2分かけてスプレー方式で添加し(噴出量100ml/min)、更に5分撹拌した。次いで、撹拌した状態で導電助剤(C2)であるアセチレンブラック(AB)[デンカ(株)製、商品名「デンカブラック」、体積平均粒子径35nm]4.0部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、表5に示す組成の被覆負極活物質粒子7を得た。
(Formation of second coating layer)
Furthermore, in a stirred state, 59.0 parts of the polymer compound (P2-2) solution (5.9 parts in terms of solid content) at 40°C was sprayed with a spray system using a WA-101-102P (manufactured by Anest Iwata) nozzle. ) was added by spraying over 2 minutes (spray amount: 100 ml/min), and the mixture was further stirred for 5 minutes. Next, in a stirred state, 4.0 parts of acetylene black (AB) (manufactured by Denka Co., Ltd., trade name "Denka Black", volume average particle diameter 35 nm), which is a conductive aid (C2), was added in portions for 2 minutes. and continued stirring for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated negative electrode active material particles 7 having the composition shown in Table 5.
実施例308[被覆負極活物質粒子8の作製]
負極活物質粒子を80.9部、高分子化合物(P1)溶液を4.0部(固形分換算で1.0部)、導電助剤(C1)を5.5部、高分子化合物(P2-2)溶液を62.0部(固形分換算で6.2部)、導電助剤(C2)を4.2部に変更した以外は実施例302と同様にして、表5に示す組成の被覆負極活物質粒子8を得た。
Example 308 [Preparation of coated negative electrode active material particles 8]
80.9 parts of negative electrode active material particles, 4.0 parts of polymer compound (P1) solution (1.0 parts in terms of solid content), 5.5 parts of conductive aid (C1), and polymer compound (P2). -2) The composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 62.0 parts (6.2 parts in terms of solid content) and the conductive aid (C2) was changed to 4.2 parts. Coated negative electrode active material particles 8 were obtained.
実施例309[被覆負極活物質粒子9の作製]
負極活物質粒子を74.5部、高分子化合物(P1)溶液を34.8部(固形分換算で8.7部)、導電助剤(C1)を5.1部、高分子化合物(P2-2)溶液を57.0部(固形分換算で5.7部)、導電助剤(C2)を3.9部に変更した以外は実施例302と同様にして、表5に示す組成の被覆負極活物質粒子9を得た。
Example 309 [Preparation of coated negative electrode active material particles 9]
74.5 parts of negative electrode active material particles, 34.8 parts of polymer compound (P1) solution (8.7 parts in terms of solid content), 5.1 parts of conductive aid (C1), and polymer compound (P2). -2) The composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 57.0 parts (5.7 parts in terms of solid content) and the conductive aid (C2) was changed to 3.9 parts. Coated negative electrode active material particles 9 were obtained.
実施例310[被覆負極活物質粒子10の作製]
負極活物質粒子を81.8部、高分子化合物(P1)溶液を22.4部(固形分換算で5.6部)、導電助剤(C1)を5.6部、高分子化合物(P2-2)溶液を5.0部(固形分換算で0.5部)、導電助剤(C2)を4.2部に変更した以外は実施例302と同様にして、表5に示す組成の被覆負極活物質粒子10を得た。
Example 310 [Preparation of coated negative electrode active material particles 10]
81.8 parts of negative electrode active material particles, 22.4 parts of polymer compound (P1) solution (5.6 parts in terms of solid content), 5.6 parts of conductive aid (C1), and polymer compound (P2). -2) The composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 5.0 parts (0.5 parts in terms of solid content) and the conductive aid (C2) was changed to 4.2 parts. Coated negative electrode active material particles 10 were obtained.
実施例311[被覆負極活物質粒子11の作製]
負極活物質粒子を79.7部、高分子化合物(P1)溶液を22.0部(固形分換算で5.5部)、導電助剤(C1)を5.5部、高分子化合物(P2-2)溶液を31.0部(固形分換算で3.1部)、導電助剤(C2)を4.1部に変更した以外は実施例302と同様にして、表5に示す組成の被覆負極活物質粒子11を得た。
Example 311 [Preparation of coated negative electrode active material particles 11]
79.7 parts of negative electrode active material particles, 22.0 parts of polymer compound (P1) solution (5.5 parts in terms of solid content), 5.5 parts of conductive aid (C1), and polymer compound (P2). -2) The composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 31.0 parts (3.1 parts in terms of solid content) and the conductive aid (C2) was changed to 4.1 parts. Coated negative electrode active material particles 11 were obtained.
実施例312[被覆負極活物質粒子12の作製]
負極活物質粒子を74.9部、高分子化合物(P1)溶液を20.4部(固形分換算で5.1部)、導電助剤(C1)を5.1部、高分子化合物(P2-2)溶液を87.0部(固形分換算で8.7部)、導電助剤(C2)を3.9部に変更した以外は実施例302と同様にして、表5に示す組成の被覆負極活物質粒子12を得た。
Example 312 [Preparation of coated negative electrode active material particles 12]
74.9 parts of negative electrode active material particles, 20.4 parts of polymer compound (P1) solution (5.1 parts in terms of solid content), 5.1 parts of conductive aid (C1), and polymer compound (P2). -2) The composition shown in Table 5 was prepared in the same manner as in Example 302, except that the solution was changed to 87.0 parts (8.7 parts in terms of solid content) and the conductive aid (C2) was changed to 3.9 parts. Coated negative electrode active material particles 12 were obtained.
比較例301[被覆負極活物質粒子13の作製]
高分子化合物(P1)1部をDMF3部に溶解し、高分子化合物(P1)溶液を得た。
負極活物質粒子(ハードカーボン粉末、体積平均粒子径25μm)86.0部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、高分子化合物(P1)溶液23.6部(固形分換算で5.9部)を2分かけて滴下し、更に5分撹拌した。次いで、撹拌した状態でグラファイト(UP)[薄片状黒鉛、体積平均粒子径4.5μm]5.9部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、表6に示す組成の被覆負極活物質粒子13を得た。
Comparative Example 301 [Preparation of coated negative electrode active material particles 13]
1 part of polymer compound (P1) was dissolved in 3 parts of DMF to obtain a polymer compound (P1) solution.
86.0 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 μm) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, a polymer compound was added. 23.6 parts of the (P1) solution (5.9 parts in terms of solid content) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, while stirring, 5.9 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 μm] was added in portions over 2 minutes, and stirring was continued for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated negative electrode active material particles 13 having the composition shown in Table 6.
比較例302[被覆負極活物質粒子14の作製]
負極活物質粒子(ハードカーボン粉末、体積平均粒子径25μm)86.7部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、高分子化合物(P2-2)溶液66.0部(固形分換算で6.6部)を2分かけて滴下し、更に5分撹拌した。次いで、アセチレンブラック(AB)[デンカ(株)製、商品名「デンカブラック」、体積平均粒子径35nm]4.5部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、表6に示す組成の被覆負極活物質粒子14を得た。
Comparative Example 302 [Preparation of coated negative electrode active material particles 14]
86.7 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 μm) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, a polymer compound was added. 66.0 parts of the (P2-2) solution (6.6 parts in terms of solid content) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, 4.5 parts of acetylene black (AB) [manufactured by Denka Co., Ltd., trade name "Denka Black", volume average particle diameter 35 nm] was added in portions over 2 minutes, and stirring was continued for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated negative electrode active material particles 14 having the composition shown in Table 6.
比較例303[被覆負極活物質粒子15の作製]
高分子化合物(P1)1部をDMF3部に溶解し、高分子化合物(P1)溶液を得た。
負極活物質粒子(ハードカーボン粉末、体積平均粒子径25μm)77.3部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、高分子化合物(P1)溶液23.6部(固形分換算で5.9部)、及び、高分子化合物(P2-2)溶液59.0部(固形分換算で5.9部)を同時に2分かけて滴下し、更に5分撹拌した。次いで、撹拌した状態でグラファイト(UP)[薄片状黒鉛、体積平均粒子径4.5μm]5.3部、及び、アセチレンブラック(AB)[デンカ(株)製、商品名「デンカブラック」、体積平均粒子径35nm]4.0部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、表6に示す組成の被覆負極活物質粒子15を得た。
Comparative Example 303 [Preparation of coated negative electrode active material particles 15]
1 part of polymer compound (P1) was dissolved in 3 parts of DMF to obtain a polymer compound (P1) solution.
77.3 parts of negative electrode active material particles (hard carbon powder, volume average particle diameter 25 μm) were placed in a universal mixer, High Speed Mixer FS25 [manufactured by Earth Technica Co., Ltd.], and while stirring at room temperature and 720 rpm, a polymer compound was added. (P1) solution 23.6 parts (5.9 parts in terms of solid content) and polymer compound (P2-2) solution 59.0 parts (5.9 parts in terms of solid content) were added simultaneously for 2 minutes. It was added dropwise and further stirred for 5 minutes. Next, in a stirred state, 5.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 μm] and acetylene black (AB) [manufactured by Denka Co., Ltd., trade name "Denka Black", volume 4.0 parts (average particle diameter: 35 nm) were added in portions over 2 minutes, and stirring was continued for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated negative electrode active material particles 15 having the composition shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[樹脂集電体の作製]
2軸押出機にて、ポリプロピレン[商品名「サンアロマーPL500A」、サンアロマー(株)製]70部、カーボンナノチューブ[商品名:「FloTube9000」、CNano社製]25部及び分散剤[商品名「ユーメックス1001」、三洋化成工業(株)製]5部を200℃、200rpmの条件で溶融混練して樹脂混合物を得た。
得られた樹脂混合物を、Tダイ押出しフィルム成形機に通して、それを延伸圧延することで、膜厚100μmの樹脂集電体用導電性フィルムを得た。次いで、得られた樹脂集電体用導電性フィルムを17.0cm×17.0cmとなるように切断し、片面にニッケル蒸着を施した後、電流取り出し用の端子(5mm×3cm)を接続した樹脂集電体を得た。
[Preparation of resin current collector]
In a twin-screw extruder, 70 parts of polypropylene [trade name: "Sun Allomer PL500A", manufactured by Sun Allomer Co., Ltd.], 25 parts of carbon nanotubes [trade name: "FloTube9000", manufactured by CNano], and a dispersant [trade name: "Umex 1001"] were added. '', manufactured by Sanyo Chemical Industries, Ltd.] were melt-kneaded at 200° C. and 200 rpm to obtain a resin mixture.
The obtained resin mixture was passed through a T-die extrusion film forming machine and stretched and rolled to obtain a conductive film for a resin current collector having a film thickness of 100 μm. Next, the obtained conductive film for a resin current collector was cut into a size of 17.0 cm x 17.0 cm, nickel vapor deposition was performed on one side, and a terminal (5 mm x 3 cm) for current extraction was connected. A resin current collector was obtained.
[リチウムイオン電池用負極1~15の作製]
作製した被覆負極活物質粒子1~15をそれぞれ97.8部とグラファイト(UP)[薄片状黒鉛、体積平均粒子径4.5μm]1.3部及び炭素繊維[大阪ガスケミカル(株)製ドナカーボ・ミルドS-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm]0.9部とを混合して負極前駆体を作製した。
作製した負極前駆体を、Φ16の金型上に負極活物質目付量が23.4mg/cmになるように充填し、プレス機(HANDTAB-100T15、市橋精機(株)製)で1ton/cmの圧力で打錠成形して負極活物質層(厚さが300μm)を形成し、上記樹脂集電体の片面に積層してリチウムイオン電池用負極(直径16mmの円形)を作製した。
[Preparation of negative electrodes 1 to 15 for lithium ion batteries]
97.8 parts each of the prepared coated negative electrode active material particles 1 to 15, 1.3 parts of graphite (UP) [flake graphite, volume average particle diameter 4.5 μm], and carbon fiber [Donna Carbo manufactured by Osaka Gas Chemicals Co., Ltd.] Milled S-243: average fiber length 500 μm, average fiber diameter 13 μm, electrical conductivity 200 mS/cm] was mixed with 0.9 part to prepare a negative electrode precursor.
The prepared negative electrode precursor was filled into a Φ16 mold so that the basis weight of the negative electrode active material was 23.4 mg/cm 2 , and then pressed to a pressure of 1 ton/cm using a press machine (HANDTAB-100T15, manufactured by Ichihashi Seiki Co., Ltd.). A negative electrode active material layer (thickness: 300 μm) was formed by compression molding at a pressure of 2 , and was laminated on one side of the resin current collector to produce a negative electrode for a lithium ion battery (circular with a diameter of 16 mm).
(電極強度)
上記で得られたリチウムイオン電池用負極1~15について、強度の測定は下記の通り行った。
得られたリチウムイオン電池用負極1~15(サンプルサイズ:直径16mmの円形)の降伏応力をISO178(プラスチック-曲げ特性の求め方)に準拠して、オートグラフ[(株)島津製作所製]を用いて測定し、以下の基準で電極強度を評価した。
まず、リチウムイオン電池用負極の各サンプルを支点間距離5mmの治具にセットし、オートグラフにセットされたロードセル(定格荷重:20N)を1mm/minの速度で電極に向かって降下させ、降伏点での降伏応力を算出した。結果を表7に示す。
(electrode strength)
The strengths of the lithium ion battery negative electrodes 1 to 15 obtained above were measured as follows.
The yield stress of the obtained lithium ion battery negative electrodes 1 to 15 (sample size: circular with a diameter of 16 mm) was measured using Autograph [manufactured by Shimadzu Corporation] in accordance with ISO178 (Plastic - How to determine bending properties). The electrode strength was evaluated using the following criteria.
First, each sample of negative electrode for lithium ion batteries was set in a jig with a distance between supporting points of 5 mm, and a load cell (rated load: 20 N) set in an autograph was lowered toward the electrode at a speed of 1 mm/min until it yielded. The yield stress at the point was calculated. The results are shown in Table 7.
[内部抵抗上昇率の測定]
25℃下、充放電測定装置「HJ-SD8」[北斗電工(株)製]を用いて以下の方法によりリチウムイオン電池用負極1~15の評価を行った。
定電流定電圧方式(0.1C)で4.2Vまで充電した後、10分間の休止後、定電流方式(0.1C)で2.5Vまで放電した。定電流定電圧方式(CCCVモードともいう)で0.1Cにおける放電0秒後の電圧及び電流並びに0.1Cにおける放電10秒後の電圧及び電流を測定し、以下の式で内部抵抗を算出した。内部抵抗が小さいほど優れた電池特性を有することを意味する。
なお、放電0秒後の電圧とは、放電したと同時に計測される電圧(放電時電圧ともいう)である。
[内部抵抗(Ω・cm)]=[(0.1Cにおける放電0秒後の電圧)-(0.1Cにおける放電10秒後の電圧)]÷[(0.1Cにおける放電0秒後の電流)-(0.1Cにおける放電10秒後の電流)]×[電極の対向面積(cm)]内部抵抗の測定につき、20サイクルの繰り返し試験を行い、2サイクル目の内部抵抗(初期内部抵抗)と20サイクル目の内部抵抗を比較して(20サイクル目の内部抵抗/2サイクル目の内部抵抗)、「内部抵抗上昇率(%)」を求めた。結果を表7に示す。
[Measurement of internal resistance increase rate]
Negative electrodes 1 to 15 for lithium ion batteries were evaluated by the following method at 25° C. using a charge/discharge measuring device "HJ-SD8" [manufactured by Hokuto Denko Co., Ltd.].
After charging to 4.2V using a constant current/constant voltage method (0.1C), after a 10 minute break, the battery was discharged to 2.5V using a constant current method (0.1C). The voltage and current after 0 seconds of discharge at 0.1C and the voltage and current after 10 seconds of discharge at 0.1C were measured using the constant current constant voltage method (also referred to as CCCV mode), and the internal resistance was calculated using the following formula. . It means that the smaller the internal resistance, the better the battery characteristics.
Note that the voltage after 0 seconds of discharge is the voltage measured at the same time as discharge (also referred to as voltage during discharge).
[Internal resistance (Ω cm 2 )] = [(Voltage after 0 seconds of discharge at 0.1C) - (Voltage after 10 seconds of discharge at 0.1C)] ÷ [(Voltage after 0 seconds of discharge at 0.1C) Current) - (Current after 10 seconds of discharge at 0.1C)] x [Opposing area of electrodes (cm 2 )] To measure the internal resistance, a 20-cycle repeated test was carried out, and the internal resistance (initial internal The "internal resistance increase rate (%)" was determined by comparing the internal resistance at the 20th cycle (internal resistance at the 20th cycle/internal resistance at the 2nd cycle). The results are shown in Table 7.
[被覆正極活物質粒子の作製]
高分子化合物(P1)1部をDMF3部に溶解し、高分子化合物(P1)溶液を得た。
正極活物質粒子(LiNi0.8Co0.15Al0.05粉末、体積平均粒子径4μm)90.12部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、高分子化合物(P1)溶液12.56部(固形分換算3.14部)を2分かけて滴下し、更に5分撹拌した。
次いで、撹拌した状態で導電助剤であるアセチレンブラック[デンカ(株)製デンカブラック(登録商標)]3.14部及びセラミック粒子(SiO)2.10部を分割しながら2分間で投入し、30分撹拌を継続した。
その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。
得られた粉体を目開き200μmの篩いで分級し、被覆正極活物質粒子を得た。
[Preparation of coated positive electrode active material particles]
1 part of polymer compound (P1) was dissolved in 3 parts of DMF to obtain a polymer compound (P1) solution.
90.12 parts of positive electrode active material particles (LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, volume average particle diameter 4 μm) were placed in a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.]. While stirring at room temperature and 720 rpm, 12.56 parts of polymer compound (P1) solution (3.14 parts in terms of solid content) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes.
Next, while stirring, 3.14 parts of acetylene black (Denka Black (registered trademark) manufactured by Denka Co., Ltd.), which is a conductive additive, and 2.10 parts of ceramic particles (SiO 2 ) were added in portions for 2 minutes. , stirring was continued for 30 minutes.
Thereafter, the pressure was reduced to 0.01 MPa while maintaining stirring, and then the temperature was raised to 140°C while maintaining stirring and the degree of vacuum, and the stirring, degree of vacuum, and temperature were maintained for 8 hours to distill off volatile components. .
The obtained powder was classified using a sieve with an opening of 200 μm to obtain coated positive electrode active material particles.
[リチウムイオン電池用正極の作製]
作製した被覆正極活物質粒子98.5部と、炭素繊維[大阪ガスケミカル(株)製ドナカーボ・ミルドS-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm]1.0部とケッチェンブラック[ライオン・スペシャリティ・ケミカルズ(株)製EC300J]0.5部とを混合して正極前駆体を作製した。
作製した正極前駆体を、Φ15の金型上に正極活物質目付量が50mg/cmになるように充填し、プレス機(HANDTAB-100T15、市橋精機(株)製)で1ton/cmの圧力で打錠成形して正極活物質層(厚さが213μm)を形成し、上記樹脂集電体の片面に積層してリチウムイオン電池用正極(直径15mmの円形)を作製した。
[Preparation of positive electrode for lithium ion battery]
98.5 parts of the prepared coated positive electrode active material particles and carbon fiber [Dona Carbo Milled S-243 manufactured by Osaka Gas Chemical Co., Ltd.: average fiber length 500 μm, average fiber diameter 13 μm: electrical conductivity 200 mS/cm] 1.0 and 0.5 part of Ketjen Black [EC300J manufactured by Lion Specialty Chemicals Co., Ltd.] to prepare a positive electrode precursor.
The prepared positive electrode precursor was filled into a mold of Φ15 so that the basis weight of the positive electrode active material was 50 mg/cm 2 , and then pressed with a press machine (HANDTAB-100T15, manufactured by Ichihashi Seiki Co., Ltd.) at 1 ton/cm 2 . A positive electrode active material layer (thickness: 213 μm) was formed by compression molding under pressure, and was laminated on one side of the resin current collector to produce a positive electrode for a lithium ion battery (circular shape with a diameter of 15 mm).
[リチウムイオン電池の作製]
上記で作製したリチウムイオン電池用正極及びリチウムイオン電池用負極1~15のいずれかにセパレータを組み合わせ、電解液を入れて封止し、リチウムイオン電池1~15を作製した。電解液は正極、負極、セパレータそれぞれの空隙体積の合計に対して160%になるように入れた。セパレータとしては、セルガード製#3501を用いた。得られたリチウムイオン電池1~15について、容量維持率を測定した。結果を表8に示す。
[Fabrication of lithium ion battery]
A separator was combined with any of the positive electrode for lithium ion battery and negative electrode for lithium ion battery 1 to 15 produced above, and an electrolytic solution was added and sealed to produce lithium ion batteries 1 to 15. The electrolytic solution was added so as to account for 160% of the total void volume of each of the positive electrode, negative electrode, and separator. As the separator, Celgard #3501 was used. The capacity retention rates of the obtained lithium ion batteries 1 to 15 were measured. The results are shown in Table 8.
[容量維持率の測定]
25℃下、充放電測定装置「HJ-SD8」[北斗電工(株)製]を用いて以下の方法によりリチウムイオン電池1~15につき充放電試験を行った。
定電流定電圧方式(0.1C)で4.2Vまで充電した後、10分間の休止後、定電流方式(0.1C)で2.5Vまで放電した。
このとき放電した容量を[放電容量(mAh)]とした。
20サイクルの繰り返し試験を行い、20サイクル容量維持率(%)を求めた。
[Measurement of capacity retention rate]
A charge/discharge test was conducted on lithium ion batteries 1 to 15 at 25° C. using a charge/discharge measuring device "HJ-SD8" [manufactured by Hokuto Denko Co., Ltd.] according to the following method.
After charging to 4.2V using a constant current/constant voltage method (0.1C), after a 10 minute rest, the battery was discharged to 2.5V using a constant current method (0.1C).
The discharged capacity at this time was defined as [discharge capacity (mAh)].
A 20-cycle repeated test was conducted to determine the 20-cycle capacity retention rate (%).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例301~312のリチウムイオン電池用被覆負極活物質粒子1~12を用いて得られた負極及び電池は、比較例301~303の被覆負極活物質粒子13~15を用いた場合と比較して、電極強度が優れ、初期内部抵抗が低く、内部抵抗上昇率が低く、容量維持率が高かった。
比較例301及び303の被覆負極活物質粒子13及び15は電極に成形することができず、かつ内部抵抗上昇率も高かった。比較例302の被覆負極活物質粒子14は、内部抵抗上昇率が高かった。
高分子化合物(P2-3)を用いた実施例303の電極は、高分子化合物(P2)の種類のみが異なる実施例301、302及び304と比較して電極強度が高かった。
実施例305~307では、高分子化合物の仕込み方法を変える以外は実施例302と同じ処方でリチウムイオン電池用被覆負極活物質粒子を作製したが、実施例302と比較して内部抵抗上昇率がわずかに高かった以外は、大きな差はみられなかった。
高分子化合物(P1)の配合量を変えた実施例302、308及び309では、高分子化合物(P1)が多いほど内部抵抗上昇率が低かった。
高分子化合物(P2-2)の配合量を変えた実施例302、310~312では、高分子化合物(P2-2)が多いほど電極強度が高かった。
The negative electrodes and batteries obtained using coated negative electrode active material particles 1 to 12 for lithium ion batteries of Examples 301 to 312 were compared with those obtained using coated negative electrode active material particles 13 to 15 of Comparative Examples 301 to 303. Therefore, the electrode strength was excellent, the initial internal resistance was low, the rate of increase in internal resistance was low, and the capacity retention rate was high.
The coated negative electrode active material particles 13 and 15 of Comparative Examples 301 and 303 could not be formed into electrodes, and the rate of increase in internal resistance was also high. The coated negative electrode active material particles 14 of Comparative Example 302 had a high internal resistance increase rate.
The electrode of Example 303 using the polymer compound (P2-3) had higher electrode strength than Examples 301, 302, and 304, which differed only in the type of polymer compound (P2).
In Examples 305 to 307, coated negative electrode active material particles for lithium ion batteries were produced using the same formulation as in Example 302 except for changing the method of preparing the polymer compound, but the internal resistance increase rate was lower than that in Example 302. No major differences were observed, except for a slightly higher value.
In Examples 302, 308, and 309 in which the blending amount of the polymer compound (P1) was changed, the rate of increase in internal resistance was lower as the amount of the polymer compound (P1) increased.
In Examples 302 and 310 to 312 in which the amount of the polymer compound (P2-2) was changed, the electrode strength increased as the amount of the polymer compound (P2-2) increased.
本発明のリチウムイオン電池用電極組成物、リチウムイオン電池用被覆負極活物質粒子、及び、リチウムイオン電池用負極は、特に、定置用電源、携帯電話、パーソナルコンピューター、ハイブリッド自動車及び電気自動車等に用いられるリチウムイオン電池を作製するために有用である。本発明のリチウムイオン電池は、特に、携帯電話、パーソナルコンピューター、ハイブリッド自動車及び電気自動車用のリチウムイオン電池として有用である。 The electrode composition for lithium ion batteries, the coated negative electrode active material particles for lithium ion batteries, and the negative electrode for lithium ion batteries of the present invention can be used particularly for stationary power supplies, mobile phones, personal computers, hybrid vehicles, electric vehicles, etc. It is useful for producing lithium-ion batteries. The lithium ion battery of the present invention is particularly useful as a lithium ion battery for mobile phones, personal computers, hybrid vehicles, and electric vehicles.

Claims (15)

  1. 導電性フィラーを含有するリチウムイオン電池用電極組成物であって、
    前記導電性フィラーは、異なるアスペクト比を有する2種以上からなり、
    前記導電性フィラーのアスペクト比は、いずれも2.00~7.00である
    リチウムイオン電池用電極組成物。
    An electrode composition for a lithium ion battery containing a conductive filler,
    The conductive filler is composed of two or more types having different aspect ratios,
    An electrode composition for a lithium ion battery, wherein the conductive filler has an aspect ratio of 2.00 to 7.00.
  2. 前記導電性フィラーが、薄片状黒鉛と繊維状黒鉛とからなる請求項1に記載のリチウムイオン電池用電極組成物。 The electrode composition for a lithium ion battery according to claim 1, wherein the conductive filler comprises flaky graphite and fibrous graphite.
  3. 前記導電性フィラーの重量割合が、前記リチウムイオン電池用電極組成物の重量を基準として1~6重量%である請求項1又は2に記載のリチウムイオン電池用電極組成物。 The electrode composition for a lithium ion battery according to claim 1, wherein the weight percentage of the conductive filler is 1 to 6% by weight based on the weight of the electrode composition for a lithium ion battery.
  4. 電極活物質粒子の表面の少なくとも一部が高分子化合物を含む被覆層で被覆された被覆電極活物質粒子を含有し、
    前記導電性フィラーが、前記被覆層中と前記被覆層外とに含有されている請求項1又は2に記載のリチウムイオン電池用電極組成物。
    Containing coated electrode active material particles in which at least a portion of the surface of the electrode active material particles is coated with a coating layer containing a polymer compound,
    The electrode composition for a lithium ion battery according to claim 1 or 2, wherein the conductive filler is contained in the coating layer and outside the coating layer.
  5. 請求項1に記載のリチウムイオン電池用電極組成物は負極活物質粒子を有し、
    前記負極活物質粒子が有する表面の少なくとも一部が高分子化合物と導電助剤とを含む被覆層により被覆されてなるリチウムイオン電池用被覆負極活物質粒子であって、
    前記導電助剤の重量割合が、前記リチウムイオン電池用被覆負極活物質粒子の重量を基準として6.1~10.5重量%であり、
    下記の計算式で得られる被覆率が80%以上であるリチウムイオン電池用被覆負極活物質粒子。
    被覆率(%)={1-[被覆負極活物質粒子のBET比表面積/(未被覆時の負極活物質粒子のBET比表面積×被覆負極活物質粒子中に含まれる負極活物質粒子の重量割合+導電助剤のBET比表面積×被覆負極活物質粒子中に含まれる導電助剤の重量割合)]}×100
    The electrode composition for a lithium ion battery according to claim 1 has negative electrode active material particles,
    Coated negative electrode active material particles for lithium ion batteries, in which at least a part of the surface of the negative electrode active material particles is covered with a coating layer containing a polymer compound and a conductive additive,
    The weight ratio of the conductive additive is 6.1 to 10.5% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries,
    Coated negative electrode active material particles for lithium ion batteries having a coverage rate of 80% or more obtained by the following calculation formula.
    Coverage rate (%) = {1-[BET specific surface area of coated negative electrode active material particles/(BET specific surface area of negative electrode active material particles when uncoated x weight percentage of negative electrode active material particles contained in coated negative electrode active material particles) + BET specific surface area of the conductive aid × weight ratio of the conductive aid contained in the coated negative electrode active material particles)]}×100
  6. 前記リチウムイオン電池用負極活物質粒子が、難黒鉛化性炭素、又は、難黒鉛化性炭素と珪素系材料との混合物である請求項5に記載のリチウムイオン電池用被覆負極活物質粒子。 The coated negative electrode active material particles for a lithium ion battery according to claim 5, wherein the negative electrode active material particles for a lithium ion battery are non-graphitizable carbon or a mixture of non-graphitizable carbon and a silicon-based material.
  7. 前記高分子化合物が、(メタ)アクリル酸アルキルエステル単量体を含む単量体組成物を重合してなり、前記単量体組成物における(メタ)アクリル酸アルキルエステル単量体の重量割合が、前記単量体組成物の重量を基準として90重量%以上である請求項5又は6に記載のリチウムイオン電池用被覆負極活物質粒子。 The polymer compound is obtained by polymerizing a monomer composition containing an alkyl (meth)acrylate monomer, and the weight ratio of the alkyl (meth)acrylate monomer in the monomer composition is The coated negative electrode active material particles for a lithium ion battery according to claim 5 or 6, wherein the amount is 90% by weight or more based on the weight of the monomer composition.
  8. 前記導電助剤が、アセチレンブラック及び/又は薄片状黒鉛である請求項5又は6に記載のリチウムイオン電池用被覆負極活物質粒子。 The coated negative electrode active material particles for a lithium ion battery according to claim 5 or 6, wherein the conductive additive is acetylene black and/or flaky graphite.
  9. タッピング法により測定される前記リチウムイオン電池用被覆負極活物質粒子のかため嵩密度に対する前記リチウムイオン電池用被覆負極活物質粒子のゆるめ嵩密度の比率が0.60~0.85である請求項5又は6に記載のリチウムイオン電池用被覆負極活物質粒子。 Claim 5, wherein the ratio of the loose bulk density of the coated negative electrode active material particles for lithium ion batteries to the firm bulk density of the coated negative electrode active material particles for lithium ion batteries measured by a tapping method is 0.60 to 0.85. or 6. The coated negative electrode active material particles for lithium ion batteries according to 6.
  10. 負極活物質粒子、高分子化合物、導電助剤及び有機溶剤を混合した後に脱溶剤して第1被覆負極活物質粒子を得る第1被覆工程と、
    前記第1被覆負極活物質粒子と高分子化合物、導電助剤及び有機溶剤を混合した後に脱溶剤する第2被覆工程とを有する請求項5又は6に記載のリチウムイオン電池用被覆負極活物質粒子の製造方法。
    A first coating step in which the negative electrode active material particles, the polymer compound, the conductive agent, and the organic solvent are mixed and then the solvent is removed to obtain first coated negative electrode active material particles;
    The coated negative electrode active material particles for a lithium ion battery according to claim 5 or 6, further comprising a second coating step of removing the solvent after mixing the first coated negative electrode active material particles with a polymer compound, a conductive aid, and an organic solvent. manufacturing method.
  11. 請求項1に記載のリチウムイオン電池用電極組成物は負極活物質粒子を有し、
    前記負極活物質粒子の表面の少なくとも一部を第一被覆層で被覆してなり、前記第一被覆層の表面の少なくとも一部を第二被覆層で被覆してなるリチウムイオン電池用被覆負極活物質粒子であって、
    前記第一被覆層は、炭素数1~12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a11)及びアニオン性単量体(a12)を含んでなる単量体組成物の重合体である高分子化合物(P1)と導電助剤(C1)とを含み、前記高分子化合物(P1)はガラス転移温度が20℃を超え、
    前記第二被覆層は、ガラス転移温度が20℃以下である高分子化合物(P2)と導電助剤(C2)とを含むリチウムイオン電池用被覆負極活物質粒子。
    The electrode composition for a lithium ion battery according to claim 1 has negative electrode active material particles,
    A coated negative electrode active for a lithium ion battery, wherein at least a part of the surface of the negative electrode active material particles is coated with a first coating layer, and at least a part of the surface of the first coating layer is coated with a second coating layer. A material particle,
    The first coating layer is a monomer composition comprising an ester compound (a11) of a monovalent aliphatic alcohol having 1 to 12 carbon atoms and (meth)acrylic acid and an anionic monomer (a12). a polymer compound (P1) which is a polymer of
    The second coating layer is a coated negative electrode active material particle for a lithium ion battery containing a polymer compound (P2) having a glass transition temperature of 20° C. or lower and a conductive additive (C2).
  12. 前記リチウムイオン電池用被覆負極活物質粒子における前記高分子化合物(P1)の重量割合が、前記リチウムイオン電池用被覆負極活物質粒子の重量を基準として0.7~9.0重量%であり、
    前記リチウムイオン電池用被覆負極活物質粒子における前記高分子化合物(P2)の重量割合が、前記リチウムイオン電池用被覆負極活物質粒子の重量を基準として0.3~9.0重量%である請求項11に記載のリチウムイオン電池用被覆負極活物質粒子。
    The weight proportion of the polymer compound (P1) in the coated negative electrode active material particles for lithium ion batteries is 0.7 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries,
    A weight ratio of the polymer compound (P2) in the coated negative electrode active material particles for lithium ion batteries is 0.3 to 9.0% by weight based on the weight of the coated negative electrode active material particles for lithium ion batteries. Item 12. The coated negative electrode active material particles for lithium ion batteries according to item 11.
  13. 前記高分子化合物(P2)が、ウレタン樹脂、(メタ)アクリル酸アルキルエステル共重合体及びスチレン-ブタジエンゴムからなる群から選択される少なくとも1種である請求項11又は12に記載のリチウムイオン電池用被覆負極活物質粒子。 The lithium ion battery according to claim 11 or 12, wherein the polymer compound (P2) is at least one selected from the group consisting of urethane resin, (meth)acrylic acid alkyl ester copolymer, and styrene-butadiene rubber. coated negative electrode active material particles.
  14. 請求項11又は12に記載のリチウムイオン電池用被覆負極活物質粒子と導電性フィラーとを含む非結着体からなるリチウムイオン電池用負極。 A negative electrode for a lithium ion battery comprising a non-binding body comprising the coated negative electrode active material particles for a lithium ion battery according to claim 11 or 12 and a conductive filler.
  15. 請求項14に記載のリチウムイオン電池用負極を備えるリチウムイオン電池。 A lithium ion battery comprising the negative electrode for a lithium ion battery according to claim 14.
PCT/JP2023/015512 2022-04-18 2023-04-18 Electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, method for producing coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery WO2023204215A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022068283A JP2023158439A (en) 2022-04-18 2022-04-18 Electrode composition for lithium-ion battery
JP2022-068283 2022-04-18
JP2022-068282 2022-04-18
JP2022068282A JP2023158438A (en) 2022-04-18 2022-04-18 Coated negative electrode active material particle for lithium ion battery, and manufacturing method of coated negative electrode active material particle for lithium ion battery
JP2022074585A JP2023163593A (en) 2022-04-28 2022-04-28 Coated negative electrode active material particle for lithium-ion battery, negative electrode for lithium-ion battery, and lithium-ion battery
JP2022-074585 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023204215A1 true WO2023204215A1 (en) 2023-10-26

Family

ID=88419797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015512 WO2023204215A1 (en) 2022-04-18 2023-04-18 Electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, method for producing coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery

Country Status (1)

Country Link
WO (1) WO2023204215A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (en) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd Organic electrolyte secondary battery
JP2001213615A (en) * 2000-01-31 2001-08-07 Mitsui Mining Co Ltd Consolidated graphite particles, production process thereof and anode material for lithium secondary battery
JP2008034378A (en) * 2006-06-27 2008-02-14 Kao Corp Method for manufacturing composite material for positive electrode of lithium battery
JP2012216532A (en) * 2011-03-29 2012-11-08 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery
JP2017188452A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery
WO2019187129A1 (en) * 2018-03-30 2019-10-03 株式会社 東芝 Electrode, battery, and battery pack
JP2020009751A (en) * 2018-06-29 2020-01-16 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery, negative electrode slurry for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147862A (en) * 1995-11-22 1997-06-06 Hitachi Maxell Ltd Organic electrolyte secondary battery
JP2001213615A (en) * 2000-01-31 2001-08-07 Mitsui Mining Co Ltd Consolidated graphite particles, production process thereof and anode material for lithium secondary battery
JP2008034378A (en) * 2006-06-27 2008-02-14 Kao Corp Method for manufacturing composite material for positive electrode of lithium battery
JP2012216532A (en) * 2011-03-29 2012-11-08 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery
JP2017188452A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery
WO2019187129A1 (en) * 2018-03-30 2019-10-03 株式会社 東芝 Electrode, battery, and battery pack
JP2020009751A (en) * 2018-06-29 2020-01-16 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery, negative electrode slurry for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery

Similar Documents

Publication Publication Date Title
EP3358659B1 (en) Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
US11870075B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN110073522B (en) Electrode for secondary battery and secondary battery
JP2017188451A (en) Coated negative electrode active material for lithium ion battery
JP6896478B2 (en) Coating active material for lithium-ion batteries
JP6793585B2 (en) Coated positive electrode active material for lithium-ion batteries
WO2018117088A1 (en) Lithium-ion battery negative electrode
EP4203099A1 (en) Coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, lithium ion battery, and method for producing coated negative electrode active material particles for lithium ion batteries
EP4023688A1 (en) Binder composition for nonaqueous secondary batteries, method for producing same, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
EP3764431B1 (en) Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
EP3951939A1 (en) Lithium ion battery
EP4080601A1 (en) Coated positive electrode active material particles for lithium ion batteries, positive electrode for lithium ion batteries, and method for producing coated positive electrode active material particles for lithium ion batteries
JP6896479B2 (en) Coated positive electrode active material for lithium-ion batteries
WO2023204215A1 (en) Electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, method for producing coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery
KR20200116921A (en) Binder composition for electrochemical device, slurry composition for electrochemical device, functional layer for electrochemical device, and electrochemical device
EP3950750B1 (en) Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2017188452A (en) Coated negative electrode active material for lithium ion battery
JP2021150281A (en) Coated positive electrode active material particles for lithium-ion battery, positive electrode for lithium-ion battery, and manufacturing method of coated positive electrode active material particles for lithium-ion battery
JP2023163593A (en) Coated negative electrode active material particle for lithium-ion battery, negative electrode for lithium-ion battery, and lithium-ion battery
JP2024007216A (en) Coated negative electrode active material particles for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP2023158439A (en) Electrode composition for lithium-ion battery
WO2024147345A1 (en) Coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, lithium ion battery, and method for producing coated negative electrode active material particles for lithium ion batteries
WO2022270488A1 (en) Method for manufacturing electrode composition for lithium ion battery
JP2024097161A (en) Coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, lithium ion battery, and method for producing coated negative electrode active material particles for lithium ion batteries
JP6802745B2 (en) Coated positive electrode active material for lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791863

Country of ref document: EP

Kind code of ref document: A1