WO2023204157A1 - Thermoplastic polyurethane elastic fiber - Google Patents

Thermoplastic polyurethane elastic fiber Download PDF

Info

Publication number
WO2023204157A1
WO2023204157A1 PCT/JP2023/015215 JP2023015215W WO2023204157A1 WO 2023204157 A1 WO2023204157 A1 WO 2023204157A1 JP 2023015215 W JP2023015215 W JP 2023015215W WO 2023204157 A1 WO2023204157 A1 WO 2023204157A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyurethane
polyurethane elastic
elastic fiber
metal
less
Prior art date
Application number
PCT/JP2023/015215
Other languages
French (fr)
Japanese (ja)
Inventor
宗 大内
英之 後藤
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2023204157A1 publication Critical patent/WO2023204157A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products

Definitions

  • the present invention relates to thermoplastic polyurethane elastic fibers.
  • Polyurethane elastic fibers are generally used in clothing and sanitary materials. Polyurethane elastic fibers used in clothing and sanitary materials are required to have yellowing resistance and heat resistance.
  • Patent Document 1 discloses that a polyurethane elastic fiber obtained by dry spinning containing a hindered amine compound can improve the resistance to NOx gas yellowing.
  • Patent Document 2 discloses that the NOx gas yellowing resistance of polyurethane resin can be improved by using a phenolic antioxidant, a hindered amine light stabilizer, a polyester compound, and a benzotriazole light stabilizer in combination. There is.
  • Patent Document 3 describes a prepolymer with isocyanate groups at both ends obtained by reacting a polyol and a diisocyanate, and a prepolymer with hydroxyl groups at both ends obtained by reacting a polyol, a diisocyanate, and a low molecular weight diol. It is disclosed that the heat resistance of polyurethane elastic fibers can be improved by melt spinning a thermoplastic polyurethane resin. Patent Document 4 below discloses that the heat resistance of polyurethane elastic fibers can be improved by using an oil agent made of polydimethylsiloxane in combination with a phenolic antioxidant.
  • JP2006-342448A Japanese Patent Application Publication No. 2009-19062 Japanese Patent Application Publication No. 2006-307409 Japanese Patent Application Publication No. 2003-20521
  • Cited Documents 1 to 4 do not disclose thermoplastic polyurethane elastic fibers that are resistant to NOx gas yellowing and heat resistant.
  • the problem to be solved by the present invention is to provide a thermoplastic polyurethane elastic fiber having excellent resistance to NOx gas yellowing and heat resistance.
  • the inventors of the present application have conducted extensive studies and repeated experiments, and as a result, they have found that 0.05wt of at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides. % or more and 5.00 wt% or less, and the metal compound contains an alkali metal or an alkaline earth metal.It was unexpectedly discovered that the above problem can be solved by a thermoplastic polyurethane elastic fiber, and the present invention This is what we have come to complete.
  • the present invention is as follows.
  • [1] Contains at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides in an amount of 0.05 wt% or more and 5.00 wt% or less, and the metal compound is an alkali metal or A thermoplastic polyurethane elastic fiber characterized by containing an alkaline earth metal.
  • [2] The thermoplastic polyurethane elastic fiber according to [1] above, wherein the metal compound contains an alkaline earth metal.
  • [3] The thermoplastic polyurethane elastic fiber according to [2] above, wherein the alkaline earth metal is magnesium.
  • thermoplastic polyurethane elastic fiber according to any one of [1] to [3] above, wherein the metal compound is magnesium hydroxide.
  • the polyurethane constituting the thermoplastic polyurethane elastic fiber is a polyurethane polymerized from a chain extender consisting of a polymer polyol, a diisocyanate, and an active hydrogen compound, according to any one of [1] to [4] above.
  • thermoplastic polyurethane elastic fiber [6] The thermoplastic polyurethane elastic fiber according to [5] above, wherein the chain extender is a diol having a molecular weight of 60 or more and 120 or less.
  • thermoplastic polyurethane elastic fiber according to [5] or [6], wherein the diisocyanate is 4,4'-diphenylmethane diisocyanate (MDI).
  • MDI 4,4'-diphenylmethane diisocyanate
  • thermoplastic polyurethane elastic fiber according to any one of [5] to [7], wherein the ratio of the hard segment (Mh fraction) consisting of the chain extender and the diisocyanate is 20% or more and 40% or less.
  • Mh fraction hard segment
  • thermoplastic polyurethane elastic fiber according to any one of [1] to [9] above which has a total fineness of 160 dtex or more and 2000 dtex or less.
  • thermoplastic polyurethane elastic fiber according to any one of [1] to [10] above which is a multifilament.
  • thermoplastic polyurethane elastic fiber according to any one of [1] to [11] above which has a coefficient of variation in fineness unevenness in the yarn length direction of 3.0% or more and 10.0% or less.
  • thermoplastic polyurethane elastic fiber according to any one of [1] to [12], wherein the difference between the maximum fineness and the minimum fineness in the yarn length direction is 10 dtex or more and 150 dtex or less.
  • thermoplastic polyurethane elastic fiber that is one embodiment of the present invention is a thermoplastic polyurethane elastic fiber that has the above structure and has excellent NOx gas yellowing resistance and heat resistance.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • the present invention is not limited to the following embodiment, but can be modified and implemented within the scope of the gist.
  • the thermoplastic polyurethane elastic fiber of the present embodiment contains at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides at 0.05 wt% or more and 5.00 wt% or less, preferably 0. It is characterized by containing .10 wt% or more and 1.00 wt% or less, more preferably 0.30 wt% or more and 0.50 wt% or less.
  • metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides in an amount of 0.05 wt% or more and 5.00 wt% or less, NOx gas yellowing resistance and heat resistance are improved. It will be excellent.
  • the metal element preferably contains an alkali metal or an alkaline earth metal. Moreover, it is more preferable that an alkaline earth metal is included. Further, the alkaline earth metal is preferably calcium or magnesium, and more preferably magnesium. If the metal element is an alkali metal or an alkaline earth metal, the effect of improving NOx gas yellowing resistance will be even higher. The reason why the NOx gas yellowing resistance can be improved by using an alkaline earth metal as the metal element of the metal compound is not yet clear, but the inventors speculate as follows.
  • alkaline earth metals Since alkaline earth metals have a large electric charge, they easily adsorb NOx gas and suppress the attack of NOx gas on thermoplastic polyurethane elastic fibers, which is estimated to improve the NOx gas yellowing resistance of thermoplastic polyurethane elastic fibers. ing.
  • the metal compound is magnesium hydroxide because the effect of improving the NOx gas yellowing resistance is further increased.
  • the reason why the NOx gas yellowing resistance can be improved by using magnesium hydroxide as the metal compound is not yet clear, but the inventors speculate as follows. Magnesium hydroxide is a solid base with high base strength and easily reacts with acidic NOx gas, so it is estimated that the NOx gas yellowing resistance is improved.
  • thermoplastic polyurethane constituting the thermoplastic polyurethane elastic fiber may have a structure polymerized from diisocyanates, polymer polyols, diols, diamines, etc., and has thermoplasticity, in particular. It is not limited. Moreover, the polymerization method is not particularly limited either.
  • the thermoplastic polyurethane may be, for example, a polyurethane polymerized from a low molecular weight diamine as a chain extender consisting of a diisocyanate, a polymer polyol, and an active hydrogen compound; It may also be a polyurethane (hereinafter also referred to as "polyurethane urethane") polymerized from a low molecular weight diol as a chain extender consisting of. Trifunctional or higher functional glycols and isocyanates may be used as long as they do not interfere with the desired effects of the present invention.
  • thermoplastic means that it can be melted by heating below the decomposition temperature, exhibits plastic flow while in a molten state, and has the reversible property of solidifying upon cooling. means. Generally, polyurethane resins begin to decompose at temperatures above 230°C.
  • polymer polyol examples include, but are not limited to, polymer diols such as polyether diols, polyester diols, and polycarbonate diols. From the viewpoint of hydrolysis resistance, the polymer polyol is preferably a polyether polyol.
  • polyether polyols examples include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, copolymer diols that are copolymers of tetrahydrofuran (THF) and neopentyl glycol, and copolymers of THF and 3-methyltetrahydrofuran. Certain copolymer diols are mentioned. These polyether polyols may be used alone or in combination of two or more. Further, from the viewpoint of easily obtaining elastic fibers with excellent elongation, stretch recovery properties, and heat resistance, the number average molecular weight of the polymer diol is preferably 1000 or more and 8000 or less.
  • the polyether polyol is preferably polytetramethylene ether glycol, a copolymerized diol that is a copolymer of THF and neopentyl glycol, and a polyol that is a blend of these.
  • diisocyanates examples include aromatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates.
  • aromatic diisocyanates include, but are not limited to, diphenylmethane diisocyanate (hereinafter also referred to as "MDI"), tolylene diisocyanate, 1,4-diisocyanate benzene, xylylene diisocyanate, 2,6-naphthalene diisocyanate, and the like. It will be done.
  • alicyclic diisocyanates and aliphatic diisocyanates include methylene bis(cyclohexyl isocyanate) (hereinafter also referred to as "H12MDI”), isophorone diisocyanate, methylcyclohexane 2,4-diisocyanate, methylcyclohexane 2,6-diisocyanate, and cyclohexane.
  • H12MDI methylene bis(cyclohexyl isocyanate)
  • isophorone diisocyanate methylcyclohexane 2,4-diisocyanate
  • methylcyclohexane 2,6-diisocyanate methylcyclohexane 2,6-diisocyanate
  • cyclohexane examples include 1,4-diisocyanate, hexahydroxylylene diisocyanate, hexahydrotolylene diisocyanate, and octahydro 1,5-na
  • the diisocyanate is preferably an aromatic diisocyanate, and more preferably MDI. Further, by using MDI, a cyclic structure is introduced into the polymer skeleton, thereby increasing rigidity and improving heat resistance.
  • the chain extender made of an active hydrogen compound is preferably at least one selected from the group consisting of low molecular weight diamines and low molecular weight diols. Note that the chain extender may have both a hydroxyl group and an amino group in its molecule, such as ethanolamine. From the viewpoint of obtaining a thermoplastic polyurethane suitable for melt spinning, the active hydrogen compound is preferably a low molecular weight diol.
  • Examples of the low molecular weight diamine as a chain extender made of an active hydrogen compound include hydrazine, ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 2-methyl-1,5-pentanediamine, 1,2 -diaminobutane, 1,3-diaminobutane, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane, 2,2-dimethyl-1,3-diaminopropane, 1,3-diamino-2, 2-dimethylbutane, 2,4-diamino-1-methylcyclohexane, 1,3-pentanediamine, 1,3-cyclohexanediamine, bis(4-aminophenyl)phosphine oxide, hexamethylenediamine, 1,3-cyclohexyldiamine , hexahydrometaphenylenediamine, 2-methylpentamethylenediamine, bis(4-
  • Examples of the low molecular weight diol as a chain extender consisting of an active hydrogen compound include ethylene glycol, 1,3-propanediol, 1,4-butanediol, bishydroxyethoxybenzene, bishydroxyethylene terephthalate, 1-methyl-1 , 2-ethanediol, 1,6-hexanediol, 1,8-octanediol and the like. These low molecular weight diols may be used alone or in combination of two or more.
  • the chain extender is preferably a diol with a molecular weight of 60 or more and 120 or less, from the viewpoint of stretch recovery of elastic fibers and from the viewpoint of improving heat resistance and NOx gas yellowing resistance.
  • the active hydrogen compound which is a diol with a molecular weight of 60 or more and 120 or less is preferably ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, More preferred are 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol, and most preferred is 1,4-butanediol.
  • Thermoplastic polyurethane can be obtained using a known polyurethanization reaction technique, and may be produced by either a one-shot method or a prepolymer method.
  • the prepolymer method the polymer polyol and diisocyanate are placed in a reaction tank equipped with a nitrogen purge, a hot water jacket, and a stirrer in a molar ratio of preferably 1.0:1.8 to 3.0, more preferably 1.0: By adding at a concentration of 2.0 to 2.5 and reacting, a prepolymer having isocyanate groups at both ends is obtained.
  • a chain extender is added to this prepolymer with isocyanate groups at both ends to perform a chain extension reaction.
  • solid phase polymerization is performed to obtain polyurethane having a predetermined molecular weight.
  • the polymer may be obtained continuously or semi-continuously using a cylindrical pipe or a twin-screw extruder, followed by solid phase polymerization.
  • the total number of moles of the chain extender and the polymer polyol is 1.001 times or more and 1.100 times or less of the number of moles of the diisocyanate, since heat resistance and NOx gas yellowing resistance can be achieved at the same time.
  • the reason why resistance to NOx gas yellowing and heat resistance can be improved by setting the total number of moles of the chain extender and polymer polyol to 1.001 times or more and 1.100 times or less relative to the number of moles of diisocyanate is still unclear. However, the inventors estimate as follows.
  • the total number of moles of the chain extender and polymer polyol is 1.001 times or more of the number of moles of diisocyanate, it is possible to reduce the amount of diisocyanate-derived structures in the molecule that easily adsorb NOx gas, thereby improving NOx resistance. Gas yellowing is improved.
  • the total number of moles of the chain extender and the polymer polyol is 1.100 times or less of the number of moles of the diisocyanate, ligand exchange between the hydroxyl group of the thermoplastic polyurethane and the metal salt becomes difficult to occur, and the metal salt Since it becomes easier to exhibit the NOx gas yellowing resistance effect, the NOx gas yellowing resistance is improved.
  • the molecular weight of the thermoplastic polyurethane tends to increase, thereby improving heat resistance.
  • the spinning method is not particularly limited as long as the desired physical properties can be obtained; for example, in addition to the method of feeding thermoplastic polyurethane chips into an extruder, heating, and melt-spinning, After that, a method of mixing and spinning a polyisocyanate compound, adding a reaction product of a prepolymer with isocyanate groups at both ends and an active hydrogen compound to the prepolymer with isocyanate groups at both ends, and continuously producing it without going through chipping.
  • An example is a spinning method.
  • the polyurethane charged into the extruder is metered by a metering pump and introduced into the spinning head. If necessary, foreign matter is removed by filtration using a wire mesh or glass beads in the spinning head, and then it is discharged from the spinneret, air-cooled in a cold air chamber, and treated with a treatment agent, and then passed through a godet roll. It is wound up.
  • the temperature of the die, cold air speed, cold air temperature, focusing position, and spinning speed are adjusted to precisely control the fiber temperature profile and spinning tension.
  • the temperature of the die is preferably 180°C to 220°C, more preferably 200°C to 210°C.
  • a common melt spinning cooling method such as applying cold air perpendicularly to the running direction of the yarn from directly below the spinneret is used, and the wind speed of the cold air is preferably 0.2 m/s to 2.0 m/s, more preferably 0.5 m/s to 1.2 m/s, and the cold air temperature is preferably 5°C to 20°C, more preferably 7°C to 15°C.
  • One way to focus multifilaments is to install a false twister between the spinneret and the godet roll, propagate the twist from the bottom depending on the strength of the twist, focus the filaments together, and control the height of the focus point.
  • a general method can be selected, such as air false twisting using an air nozzle or a ring false twisting machine that brings the material into contact with a rotating ring.
  • the method of containing at least one metal compound consisting of a metal hydroxide, a metal carbonate, and a metal oxide in an amount of 0.05 wt% or more and 5.00 wt% or less is particularly limited.
  • there is a method in which it is added during the preparation of raw materials before the prepolymer reaction between a polymer polyol and diisocyanate a method in which it is added in the middle of the chain extension reaction process between a prepolymer and an active hydrogen compound, and a masterbatch containing a metal compound.
  • a method of adding 100% during spinning can be mentioned.
  • thermoplastic polyurethane elastic fiber of this embodiment may contain polymers other than polyurethane and additives, such as antioxidants, light stabilizers, ultraviolet absorbers, gas discoloration prevention agents, as long as the desired effects of the present invention are not lost. It may contain agents, dyes, activators, matting agents, pigments, lubricants, etc.
  • the thermoplastic polyurethane elastic fiber of this embodiment may contain a processing agent such as an oil agent from the viewpoint of unwinding property, processability, etc.
  • a processing agent such as an oil agent from the viewpoint of unwinding property, processability, etc.
  • the processing agent include, but are not limited to, silicone oils such as dimethyl silicone, mineral oils, and combinations thereof.
  • the method of applying the treatment agent is not particularly limited, and examples thereof include a method of applying the treatment agent using an oiling roller or the like.
  • the ratio of hard segments consisting of a chain extender and diisocyanate (hereinafter referred to as Mh fraction) is preferably 20% or more and 40% or less, more preferably 20% or more and 35%. Below, it is more preferably 22% or more and 30% or less.
  • Mh fraction is 20% or more and 40% or less, both heat resistance and NOx gas yellowing resistance can be improved. The reason why the NOx gas yellowing resistance and heat resistance can be improved by setting the Mh fraction to 20% or more and 40% or less is not yet clear, but the inventors speculate as follows.
  • the Mh fraction When the Mh fraction is 20% or more, hydrogen bonds between urethane bonds increase, heat resistance improves, and the presence of metal salts around the hard segment increases, improving NOx gas yellowing resistance. do.
  • the Mh fraction when the Mh fraction is 40% or less, when the diisocyanate contains aromatic rings, the amount of aromatic rings that yellow due to adsorption of NOx gas decreases, thereby improving resistance to NOx gas yellowing. Note that a detailed method for calculating the Mh fraction will be described later.
  • the total fineness of the polyurethane elastic fiber of this embodiment is preferably 160 dtex or more and 2000 dtex or less, more preferably 300 dtex or more and 1500 dtex or less, and even more preferably 600 dtex or more and 1000 dtex or less.
  • the polyurethane elastic fiber of this embodiment may be either a monofilament or a multifilament, but is preferably a multifilament.
  • the number of single yarns is preferably 14 or more and 140 or less.
  • the coefficient of variation in fineness unevenness in the yarn length direction of the thermoplastic polyurethane elastic fiber of the present embodiment is preferably 3.0% or more and 10.0% or less, more preferably 3.0% or more and 9.5% or less, and even more preferably It is 3.5% or more and 9.0% or less. If the variation coefficient of fineness unevenness is 3% or more and 10% or less, both NOx gas yellowing resistance and heat resistance can be improved. Although it is not yet clear why the NOx gas yellowing resistance and heat resistance are improved by having a fineness unevenness variation coefficient of 3.0% or more and 10.0% or less, the inventors estimate as follows. There is.
  • variation coefficient of fineness unevenness is 3.0% or more, light is likely to be diffusely reflected on the fiber surface, making the fiber appear opaque, making it difficult to visually recognize yellowing inside the fiber, and making the yellowing appear faint. If the unevenness variation coefficient of fineness is 10.0% or less, yarn breakage due to heat reception at fine fineness points can be suppressed, and heat resistance is improved.
  • the method of controlling the variation coefficient of fineness unevenness is not particularly limited as long as the desired physical properties can be obtained; for example, a method of enlarging the diameter of the spinneret used for melt spinning to generate draw resonance, Examples include a method of increasing the amount of yarn to cause shark skin or melt fracture, and a method of changing the cooling intensity during the spinning process to cause yarn shaking.
  • the difference between the maximum fineness and the minimum fineness in the yarn length direction of the thermoplastic polyurethane elastic fiber of this embodiment is preferably 10 dtex or more and 150 dtex or less, more preferably 15 dtex or more and 100 dtex or less, and even more preferably 20 dtex or 80 dtex or less. If the difference between the maximum fineness and the minimum fineness is 10 dtex or more and 150 dtex or less, both NOx gas yellowing resistance and heat resistance can be improved. The reason why the NOx gas yellowing resistance and heat resistance are improved due to the difference between the maximum fineness and the minimum fineness of 10 dtex or more and 150 dtex or less is not yet clear, but the inventors speculate as follows.
  • the difference between the maximum fineness and the minimum fineness is 10 dtex or more, light is likely to be diffusely reflected on the fiber surface, making the fiber appear opaque, making it difficult to visually recognize the yellowing inside the fiber, making the yellowing appear faint. If the difference between the maximum fineness and the minimum fineness is 150 dtex or less, yarn breakage due to heat reception at fine fineness points can be suppressed, and heat resistance is improved.
  • the method of controlling the difference in fineness is not particularly limited as long as the desired physical properties can be obtained. For example, there may be a method of enlarging the diameter of the spinneret used for melt spinning to generate draw resonance, or a method of increasing the discharge amount. Examples include a method of increasing the number of yarns, causing shark skin or melt fracture, and a method of changing the cooling intensity during the spinning process to cause yarn shaking.
  • the thermoplastic polyurethane elastic fiber of this embodiment preferably has an outflow start temperature measured by a flow tester of 150°C or more and 220°C or less, more preferably 150°C or more. The temperature is below 200°C.
  • the reason why heat resistance and NOx gas yellowing resistance can be improved by setting the outflow start temperature to 150° C. or more and 220° C. or less is not yet clear, but the inventors estimate as follows.
  • the outflow start temperature By setting the outflow start temperature to 150°C or higher, the structural change of the thermoplastic polyurethane due to heat reception is reduced, so heat resistance can be improved.On the other hand, by setting the outflow start temperature to 220°C or lower, the viscosity at the time of melting is reduced. By improving wettability, metal salts are uniformly dispersed, and NOx gas yellowing resistance is improved.
  • thermoplastic polyurethane ⁇ Quantification of constituent components of thermoplastic polyurethane>
  • the structure of the chain extender consisting of an active hydrogen compound and the diisocyanate constituting the thermoplastic polyurethane contained in the thermoplastic polyurethane elastic fiber was specified using NMR. Specifically, NMR was measured under the following conditions to identify the structures of the diisocyanate and chain extender. The structures of the diisocyanate and chain extender can be determined from the peak positions determined by NMR measurement.
  • Measuring device Bruker Biospin Avance600 Measurement nucleus: 1H Resonance frequency: 600MHz Number of accumulations: 256 times Measurement temperature: Room temperature Solvent: Deuterated dimethylformamide Measurement concentration: 1.5% by weight Chemical shift standard: dimethylformamide (8.0233ppm)
  • Hh Integral value derived from the methylene group of the active hydrogen compound adjacent to the urethane bond
  • Hs Integral value derived from the methylene group of the polymer polyol adjacent to the urethane bond
  • Hi Integral value derived from the hydrogen compound in the diisocyanate x: Total hydrogen of the diisocyanate is the number of
  • Ms number average molecular weight of soft segment portion
  • Mdo number average molecular weight of polymer polyol
  • Mdi molecular weight of isocyanate
  • N1 molar ratio of isocyanate to polymer polyol N0: molar ratio of unreacted isocyanate to polymer polyol
  • Mh number of hard segment portions
  • Average molecular weight Mda Molecular weight of chain extender (number average molecular weight when using a mixture of two or more types)
  • Mdi Molecular weight of isocyanate.
  • Thermoplastic polyurethane elastic fibers are wrapped around a glass plate and analyzed by XRD (Rigaku Ultima-IV), and the chemical composition of the metal compound contained can be identified by comparing the analyzed spectrum with data on the database.
  • XRD Ribonuclear Resonance Desorption spectroscopy
  • a sample is prepared by wrapping thermoplastic polyurethane elastic fibers tightly around a PP film with holes in the center, and analyzed by XRF (Rigaku ZSX-100e) to determine the composition of the metal compound.
  • the content of the metal compound can be determined from the detection intensity of the element.
  • a calibration curve using the same metal compound as the contained metal compound may be used, if necessary.
  • thermoplastic polyurethane elastic fibers ⁇ Measurement of outflow start temperature of thermoplastic polyurethane elastic fibers>
  • the outflow start temperature of the thermoplastic polyurethane elastic fiber is measured using a flow tester model CFT-500D (manufactured by Shimadzu Corporation).
  • the thermoplastic polyurethane elastic fibers are not pre-treated to remove processing agents such as oil agents, and 1.5 g of the thermoplastic polyurethane elastic fibers are sampled per measurement to measure the outflow start temperature.
  • a die (nozzle) with a diameter of 0.5 mm and a thickness of 1.0 mm was used, an extrusion load of 49 N was applied, and after a preheating time of 240 seconds at an initial setting temperature of 120 °C, the temperature was increased to 250 °C at a rate of 3 °C/min. Find a curve of stroke length (mm) and temperature when the temperature increases rapidly. As the temperature increases, the polymer within the toner heats up and begins to flow out of the die. The temperature at this time is defined as the outflow start temperature.
  • ⁇ Measurement method of fineness unevenness variation coefficient> The measurement of the variation coefficient of fineness unevenness is carried out by adjusting the rotational speed of two godet rolls so that the thermoplastic polyurethane elastic fiber is stretched twice, and by setting the following device between the godet rolls.
  • the outer diameter of the elastic fiber was measured from two directions perpendicular to each other using a laser, and the ratio of the average deviation of the diagonal length calculated from the Pythagorean theorem to the average value was defined as the coefficient of variation in fineness unevenness.
  • the measurement data used was the average value of 50,000 points of data measured at 160 points/second.
  • thermoplastic polyurethane elastic fibers are cut vertically, the yarn cross section is observed using the following equipment and conditions, and the total cross-sectional area of the yarn is calculated by automatic area measurement, and the fineness per unit length is calculated.
  • the following formula (6): d D ⁇ 1.1(g/cm 3 ) ⁇ 10 6 ...Formula (6) ⁇ where d is the fineness (dtex) and D is the total cross-sectional area (cm 2 ) of the yarn. ⁇ Calculated using.
  • Measuring device VHX-7000 (manufactured by Keyence Corporation) Lens used: VH-Z100R Magnification: 500x Measurement: Automatic area measurement Extraction method: Brightness ⁇ Method for measuring the difference between the maximum and minimum fineness of polyurethane elastic fibers> To measure the difference between the maximum fineness and the minimum fineness, the thermoplastic polyurethane elastic fiber is cut vertically, the yarn cross section is observed using the following equipment and conditions, and the total cross-sectional area of the yarn is calculated by automatic area measurement. The fineness per unit length was calculated from the difference between the maximum fineness and the minimum fineness when the fineness per unit length was calculated at 10 points using the above formula (6) at intervals of 5 mm in the yarn length direction.
  • thermoplastic polyurethane elastic fiber was held in a state of being stretched to twice its original size, and when it was pressed against a heat source of 110° C., the time until the fiber broke (the number of seconds for thermal cutting) was evaluated as an index of heat resistance.
  • thermoplastic polyurethane elastic fibers yellowed by the method 1 above were compared with the color code and evaluated on a 10-point scale. Specifically, a total of 18 people, 10 in their 20s and 2 in their 30s to 60s, were asked to select the color code closest to the color of yellowed thermoplastic polyurethane elastic fibers, and the average The points were taken as the evaluation score for yellowing visibility.
  • the color codes and evaluation scores used are as follows, and the higher the evaluation score, the less likely it is to yellow.
  • Both the ⁇ YI value and yellowing visibility evaluation are evaluations of NOx gas yellowing resistance.
  • the ⁇ YI value is not affected by human visibility, and conversely, the yellowing visibility is affected by the human visibility, so by comparing the yellowing visibility of samples with the same ⁇ YI value, it is possible to determine the human visibility.
  • the NOx gas yellowing resistance can be evaluated based on the following.
  • thermoplastic polyurethane resin > 2400 g of polytetramethylene ether diol having a number average molecular weight of 1800 and 750.78 g of 4,4'-diphenylmethane diisocyanate were reacted with stirring at 60° C. for 3 hours in a dry nitrogen atmosphere to obtain a terminal capped product with isocyanate. A polyurethane prepolymer was obtained. 151.20 g of 1,4-butanediol was added to this polyurethane prepolymer and stirred for 15 minutes to obtain a polyurethane with a viscosity of 2000 poise (30° C.).
  • thermoplastic polyurethane resin Thereafter, it was dispensed onto a Teflon (registered trademark) tray, and the polyurethane was annealed in a hot air oven at 110° C. for 16 hours while remaining in the tray to obtain a thermoplastic polyurethane resin.
  • thermoplastic polyurethane resin thus obtained was pulverized into a powder of approximately 3 mm using a UG-280 pulverizer manufactured by Horai. After drying the crushed chips in a dehumidifying dryer at a temperature of 110°C to a moisture content of 100 ppm, polyurethane resin powder and magnesium hydroxide were put into a hopper at a predetermined ratio, melted into strands in an extruder, and heated at a temperature of 20°C. The mixture was cooled in a water bath at 10°C and pelletized using a plastic processing machine SCF-100 manufactured by Isuzu Kakoki to obtain a masterbatch of magnesium hydroxide containing 10 wt% of the active ingredient.
  • thermoplastic polyurethane elastic fiber ⁇ Preparation of thermoplastic polyurethane elastic fiber>
  • Magnesium hydroxide-containing polyurethane resin powder which is a mixture of thermoplastic polyurethane resin powder and magnesium hydroxide masterbatch at a weight ratio of 95:5, is weighed and pressurized using a gear pump installed in the head, filtered through a filter, and then passed through a die. The liquid was discharged at a temperature of 210° C. from a nozzle with a diameter of 0.23 mm and 60 holes at a discharge rate of 620 dtex.
  • melt spinning was performed by blowing cold air from a cold air chamber whose temperature was adjusted to 15 to 17°C and the speed of the cold air to 0.8 to 1.0 m/s, and applying it perpendicularly to the fibers. Thereafter, the multifilament is twisted using a ring-type false twisting machine, and wound into a paper tube while applying a treatment agent mainly composed of polydimethylsiloxane and mineral oil to a 620 dtex/60 A spool of filament thermoplastic polyurethane elastic fiber was obtained.
  • thermoplastic polyurethane elastic fiber Magnesium hydroxide contained in this thermoplastic polyurethane elastic fiber is 0.50wt%, Mh fraction is 24%, fineness variation coefficient is 4.0%, OH/NCO is 1.010, and thermal cutting time is 600%.
  • the thermoplastic polyurethane elastic fiber had a ⁇ YI value of 8, a difference between the maximum fineness and the minimum fineness of 30 dtex, an outflow start temperature of 160° C., and a yellowing visibility evaluation of 10 points. The results are also shown in Table 1 below.
  • Examples 2 to 6 Thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1, except that the ratio of the polyurethane resin and masterbatch was adjusted to increase or decrease the amount of magnesium hydroxide contained in the polyurethane elastic fibers. The results are shown in Table 1 below.
  • Example 7 The metal compounds were magnesium carbonate (Example 7), magnesium oxide (Example 8), calcium hydroxide (Example 9), calcium carbonate (Example 10), sodium carbonate (Example 11), and potassium carbonate (Example 12).
  • a thermoplastic polyurethane elastic fiber was obtained in the same manner as in Example 1 except that The results are shown in Table 1 below.
  • Example 18 Thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1, except that methylene bis(cyclohexyl isocyanate) (H12MDI) (Example 18) and 1,6-hexamethylene diisocyanate (HDI) (Example 19) were used. .
  • H12MDI methylene bis(cyclohexyl isocyanate)
  • HDI 1,6-hexamethylene diisocyanate
  • Example 20 to 26 Thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1, except that the Mh fraction of the thermoplastic polyurethane elastic fibers was increased or decreased by adjusting the molar ratio of polymer polyol and diisocyanate. The results are shown in Table 1 below.
  • thermoplastic polyurethane elastic fiber was obtained in the same manner as in Example 1, except that the molar ratio of the polymer polyol, diisocyanate, and diol was adjusted to change the OH/NCO of the thermoplastic polyurethane elastic fiber. The results are shown in Table 2 below.
  • Examples 34-41 Thermoplastic polyurethane elastic fibers were produced in the same manner as in Example 1, except that the spinning temperature, spinneret diameter, discharge rate, cooling conditions, and winding conditions during spinning were adjusted to change the variation coefficient of fineness unevenness of the thermoplastic polyurethane elastic fibers. I got it. The results are shown in Table 2 below.
  • Example 42 to 49 The same method as in Example 1 was used except that the spinning temperature, spinneret diameter, discharge rate, cooling conditions, and winding conditions during spinning were adjusted to change the fineness difference (maximum fineness - minimum fineness) of the thermoplastic polyurethane elastic fibers. A thermoplastic polyurethane elastic fiber was obtained. The results are shown in Table 2 below.
  • thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1, except that the molecular weight of the thermoplastic polyurethane was adjusted by adjusting the molecular weight of the polymer polyol, and the outflow start temperature of the thermoplastic polyurethane elastic fibers was changed. The results are shown in Table 3 below.
  • thermoplastic polyurethane elastic fiber according to the present invention can be suitably used for clothing such as innerwear, stockings, and compression wear, and sanitary materials such as gather members and diapers.

Abstract

The present invention addresses the problem of providing a thermoplastic polyurethane elastic fiber having excellent NOx gas-induced yellowing resistance and heat resistance. The present invention relates to a thermoplastic polyurethane elastic fiber characterized by comprising 0.05 wt% to 5.00 wt% of at least one metal compound selected from the group consisting of a metal hydroxide, a metal carbonate, and a metal oxide, wherein the metal compound includes an alkali metal or an alkaline earth metal.

Description

熱可塑性ポリウレタン弾性繊維thermoplastic polyurethane elastic fiber
 本発明は、熱可塑性ポリウレタン弾性繊維に関する。 The present invention relates to thermoplastic polyurethane elastic fibers.
 一般的にポリウレタン弾性繊維は衣料や衛生材料に使用されている。衣料や衛生材料に用いられるポリウレタン弾性繊維には耐黄変性と、耐熱性が求められる。
 以下の特許文献1には、ヒンダードアミン系化合物を含有させ、乾式紡糸して得られたポリウレタン弾性繊維が耐NOxガス黄変性を改善できることが開示されている。
 以下の特許文献2には、フェノール系酸化防止剤とヒンダードアミン系光安定剤、ポリエステル系化合物、及びベンゾトリアゾール系光安定剤の併用により、ポリウレタン樹脂の耐NOxガス黄変性を改善できることが開示されている。
 以下の特許文献3には、ポリオールとジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマー、及びポリオールとジイソシアネートと低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーを反応させて得られる熱可塑性ポリウレタン樹脂を溶融紡糸することでポリウレタン弾性繊維の耐熱性が改善できることが開示されている。
 以下の特許文献4には、ポリジメチルシロキサンからなる油剤とフェノール系酸化防止剤の併用によりポリウレタン弾性繊維の耐熱性が改善できることが開示されている。
Polyurethane elastic fibers are generally used in clothing and sanitary materials. Polyurethane elastic fibers used in clothing and sanitary materials are required to have yellowing resistance and heat resistance.
Patent Document 1 below discloses that a polyurethane elastic fiber obtained by dry spinning containing a hindered amine compound can improve the resistance to NOx gas yellowing.
Patent Document 2 below discloses that the NOx gas yellowing resistance of polyurethane resin can be improved by using a phenolic antioxidant, a hindered amine light stabilizer, a polyester compound, and a benzotriazole light stabilizer in combination. There is.
Patent Document 3 below describes a prepolymer with isocyanate groups at both ends obtained by reacting a polyol and a diisocyanate, and a prepolymer with hydroxyl groups at both ends obtained by reacting a polyol, a diisocyanate, and a low molecular weight diol. It is disclosed that the heat resistance of polyurethane elastic fibers can be improved by melt spinning a thermoplastic polyurethane resin.
Patent Document 4 below discloses that the heat resistance of polyurethane elastic fibers can be improved by using an oil agent made of polydimethylsiloxane in combination with a phenolic antioxidant.
特開2006-342448号公報JP2006-342448A 特開2009-19062号公報Japanese Patent Application Publication No. 2009-19062 特開2006-307409号公報Japanese Patent Application Publication No. 2006-307409 特開2003-20521号公報Japanese Patent Application Publication No. 2003-20521
 しかしながら、引用文献1~4には、耐NOxガス黄変性と耐熱性を有する熱可塑性ポリウレタン弾性繊維は開示されていない。 However, Cited Documents 1 to 4 do not disclose thermoplastic polyurethane elastic fibers that are resistant to NOx gas yellowing and heat resistant.
 前記した従来技術の問題点に鑑み、本発明が解決しようとする課題は、優れた耐NOxガス黄変性、及び耐熱性を有する熱可塑性ポリウレタン弾性繊維を提供することである。 In view of the problems of the prior art described above, the problem to be solved by the present invention is to provide a thermoplastic polyurethane elastic fiber having excellent resistance to NOx gas yellowing and heat resistance.
 本願発明者らは、前記課題を解決すべく、鋭意検討し実験を重ねた結果、金属水酸化物、金属炭酸塩、及び金属酸化物からなる群から選ばれる少なくとも1つの金属化合物を0.05wt%以上5.00wt%以下で含み、かつ、該金属化合物がアルカリ金属又はアルカリ土類金属を含むことを特徴とする熱可塑性ポリウレタン弾性繊維が前記課題を解決できることを予想外に発見し、本発明を完成するに至ったものである。 In order to solve the above problems, the inventors of the present application have conducted extensive studies and repeated experiments, and as a result, they have found that 0.05wt of at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides. % or more and 5.00 wt% or less, and the metal compound contains an alkali metal or an alkaline earth metal.It was unexpectedly discovered that the above problem can be solved by a thermoplastic polyurethane elastic fiber, and the present invention This is what we have come to complete.
 すなわち、本発明は以下のとおりのものである。
 [1]金属水酸化物、金属炭酸塩、及び金属酸化物からなる群から選ばれる少なくとも1つの金属化合物を0.05wt%以上5.00wt%以下で含み、かつ、該金属化合物がアルカリ金属又はアルカリ土類金属を含むことを特徴とする、熱可塑性ポリウレタン弾性繊維。
 [2]前記金属化合物がアルカリ土類金属を含む、前記[1]に記載の熱可塑性ポリウレタン弾性繊維。
 [3]前記アルカリ土類金属がマグネシウムである、前記[2]に記載の熱可塑性ポリウレタン弾性繊維。
 [4]前記金属化合物が水酸化マグネシウムである、前記[1]~[3]のいずれかに記載の熱可塑性ポリウレタン弾性繊維。
 [5]前記熱可塑性ポリウレタン弾性繊維を構成するポリウレタンは、ポリマーポリオール、ジイソシアネート、及び活性水素化合物からなる鎖延長剤から重合されるポリウレタンである、前記[1]~[4]のいずれかに記載の熱可塑性ポリウレタン弾性繊維。
 [6]前記鎖延長剤が分子量60以上120以下のジオールである、前記[5]に記載の熱可塑性ポリウレタン弾性繊維。
 [7]前記ジイソシアネートが4,4’―ジフェニルメタンジイソシアネート(MDI)である、前記[5]又は[6]に記載の熱可塑性ポリウレタン弾性繊維。
 [8]前記鎖延長剤と前記ジイソシアネートからなるハードセグメントの割合(Mh分率)が20%以上40%以下である、前記[5]~[7]のいずれかに記載の熱可塑性ポリウレタン弾性繊維。
 [9]前記鎖延長剤と前記ポリマーポリオールの合計モル数が、前記ジイソシアネートのモル数に対し、1.001倍以上1.100倍以下である、前記[5]~[8]のいずれかに記載の熱可塑性ポリウレタン弾性繊維。
 [10]総繊度が160dtex以上2000dtex以下である、前記[1]~[9]のいずれかに記載の熱可塑性ポリウレタン弾性繊維。
 [11]マルチフィラメントである、前記[1]~[10]のいずれかに記載の熱可塑性ポリウレタン弾性繊維。
 [12]糸長方向における繊度斑変動係数が3.0%以上10.0%以下である、前記[1]~[11]のいずれかに記載の熱可塑性ポリウレタン弾性繊維。
 [13]糸長方向における最大繊度と最小繊度の差が10dtex以上150dtex以下である、前記[1]~[12]のいずれか1項に記載の熱可塑性ポリウレタン弾性繊維。
 [14]前記熱可塑性ポリウレタン弾性繊維のフローテスターによる流出開始温度が150℃以上220℃以下である、前記[1]~[13]のいずれかに記載の熱可塑性ポリウレタン弾性繊維。
That is, the present invention is as follows.
[1] Contains at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides in an amount of 0.05 wt% or more and 5.00 wt% or less, and the metal compound is an alkali metal or A thermoplastic polyurethane elastic fiber characterized by containing an alkaline earth metal.
[2] The thermoplastic polyurethane elastic fiber according to [1] above, wherein the metal compound contains an alkaline earth metal.
[3] The thermoplastic polyurethane elastic fiber according to [2] above, wherein the alkaline earth metal is magnesium.
[4] The thermoplastic polyurethane elastic fiber according to any one of [1] to [3] above, wherein the metal compound is magnesium hydroxide.
[5] The polyurethane constituting the thermoplastic polyurethane elastic fiber is a polyurethane polymerized from a chain extender consisting of a polymer polyol, a diisocyanate, and an active hydrogen compound, according to any one of [1] to [4] above. thermoplastic polyurethane elastic fiber.
[6] The thermoplastic polyurethane elastic fiber according to [5] above, wherein the chain extender is a diol having a molecular weight of 60 or more and 120 or less.
[7] The thermoplastic polyurethane elastic fiber according to [5] or [6], wherein the diisocyanate is 4,4'-diphenylmethane diisocyanate (MDI).
[8] The thermoplastic polyurethane elastic fiber according to any one of [5] to [7], wherein the ratio of the hard segment (Mh fraction) consisting of the chain extender and the diisocyanate is 20% or more and 40% or less. .
[9] Any one of [5] to [8] above, wherein the total number of moles of the chain extender and the polymer polyol is 1.001 times or more and 1.100 times or less relative to the number of moles of the diisocyanate. The thermoplastic polyurethane elastic fibers described.
[10] The thermoplastic polyurethane elastic fiber according to any one of [1] to [9] above, which has a total fineness of 160 dtex or more and 2000 dtex or less.
[11] The thermoplastic polyurethane elastic fiber according to any one of [1] to [10] above, which is a multifilament.
[12] The thermoplastic polyurethane elastic fiber according to any one of [1] to [11] above, which has a coefficient of variation in fineness unevenness in the yarn length direction of 3.0% or more and 10.0% or less.
[13] The thermoplastic polyurethane elastic fiber according to any one of [1] to [12], wherein the difference between the maximum fineness and the minimum fineness in the yarn length direction is 10 dtex or more and 150 dtex or less.
[14] The thermoplastic polyurethane elastic fiber according to any one of [1] to [13], wherein the thermoplastic polyurethane elastic fiber has an outflow start temperature of 150° C. or more and 220° C. or less as measured by a flow tester.
 本発明の一態様である熱可塑性ポリウレタン弾性繊維は、上記構成を有することによって、優れた耐NOxガス黄変性と耐熱性を有する熱可塑性ポリウレタン弾性繊維である。 The thermoplastic polyurethane elastic fiber that is one embodiment of the present invention is a thermoplastic polyurethane elastic fiber that has the above structure and has excellent NOx gas yellowing resistance and heat resistance.
 以下、本発明を実施するための形態(以下、「本実施形態」という)について、詳細に説明する。本発明は以下の本実施形態に限定されるものではなく、その要旨の範囲内で変形して実施できる。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. The present invention is not limited to the following embodiment, but can be modified and implemented within the scope of the gist.
[金属化合物]
 本実施形態の熱可塑性ポリウレタン弾性繊維は、金属水酸化物、金属炭酸塩、及び金属酸化物からなる群から選ばれる少なくとも1つの金属化合物を0.05wt%以上5.00wt%以下、好ましくは0.10wt%以上1.00wt%以下、より好ましくは0.30wt%以上0.50wt%以下で含むことを特徴とする。金属水酸化物、金属炭酸塩、及び金属酸化物からなる群から選ばれる少なくとも1つの金属化合物を0.05wt%以上5.00wt%以下で含有することによって、耐NOxガス黄変性と耐熱性が優れたものとなる。金属水酸化物、金属炭酸塩、及び金属酸化物からなる群から選ばれる少なくとも1つの金属化合物を0.05wt%以上5.00wt%以下で含有することによって、耐NOxガス黄変性と耐熱性を向上できる原因は未だ明らかではないが、発明者らは以下のように推定している。金属水酸化物、金属炭酸塩、及び金属酸化物からなる群から選ばれる少なくとも1つの金属化合物を、0.05wt%以上で含有させることで、効果的な耐NOxガス黄変性を発揮し、また、5.00wt%以下で含有させることで、ポリウレタン弾性繊維中のポリマー比率が下がりすぎず、耐熱性を維持することができる。
[Metal compound]
The thermoplastic polyurethane elastic fiber of the present embodiment contains at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides at 0.05 wt% or more and 5.00 wt% or less, preferably 0. It is characterized by containing .10 wt% or more and 1.00 wt% or less, more preferably 0.30 wt% or more and 0.50 wt% or less. By containing at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides in an amount of 0.05 wt% or more and 5.00 wt% or less, NOx gas yellowing resistance and heat resistance are improved. It will be excellent. By containing at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides in an amount of 0.05 wt% or more and 5.00 wt% or less, NOx gas yellowing resistance and heat resistance are improved. Although the reason for the improvement is not yet clear, the inventors estimate as follows. By containing at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides in an amount of 0.05 wt% or more, effective NOx gas yellowing resistance is exhibited, and , 5.00 wt% or less, the polymer ratio in the polyurethane elastic fibers does not drop too much and heat resistance can be maintained.
 前記金属化合物は、金属元素が、アルカリ金属又はアルカリ土類金属を含むことが好ましい。またアルカリ土類金属を含むことがより好ましい。また、アルカリ土類金属としてはカルシウム又はマグネシウムであることが好ましく、マグネシウムであることがより好ましい。金属元素がアルカリ金属又はアルカリ土類金属であれば、耐NOxガス黄変性の向上効果が一層高くなる。金属化合物の金属元素をアルカリ土類金属とすることによって、耐NOxガス黄変性を向上できる原因は未だ明らかではないが、発明者らは以下のように推定している。アルカリ土類金属は大きな電荷を有するため、NOxガスを吸着しやすく、熱可塑性ポリウレタン弾性繊維へのNOxガスの攻撃を抑制するため、熱可塑性ポリウレタン弾性繊維の耐NOxガス黄変性が向上すると推定している。 In the metal compound, the metal element preferably contains an alkali metal or an alkaline earth metal. Moreover, it is more preferable that an alkaline earth metal is included. Further, the alkaline earth metal is preferably calcium or magnesium, and more preferably magnesium. If the metal element is an alkali metal or an alkaline earth metal, the effect of improving NOx gas yellowing resistance will be even higher. The reason why the NOx gas yellowing resistance can be improved by using an alkaline earth metal as the metal element of the metal compound is not yet clear, but the inventors speculate as follows. Since alkaline earth metals have a large electric charge, they easily adsorb NOx gas and suppress the attack of NOx gas on thermoplastic polyurethane elastic fibers, which is estimated to improve the NOx gas yellowing resistance of thermoplastic polyurethane elastic fibers. ing.
 前記金属化合物が水酸化マグネシウムであれば、耐NOxガス黄変性の向上効果が一層高くなるため特に好ましい。金属化合物を水酸化マグネシウムとすることによって、耐NOxガス黄変性を向上できる原因は未だ明らかではないが、発明者らは以下のように推定している。水酸化マグネシウムは塩基強度の大きい固体塩基であり、酸性のNOxガスと反応しやすいため、耐NOxガス黄変性が向上すると推定している。 It is particularly preferable that the metal compound is magnesium hydroxide because the effect of improving the NOx gas yellowing resistance is further increased. The reason why the NOx gas yellowing resistance can be improved by using magnesium hydroxide as the metal compound is not yet clear, but the inventors speculate as follows. Magnesium hydroxide is a solid base with high base strength and easily reacts with acidic NOx gas, so it is estimated that the NOx gas yellowing resistance is improved.
[熱可塑性ポリウレタン]
 本実施形態において、熱可塑性ポリウレタン弾性繊維を構成する熱可塑性ポリウレタンとしては、例えば、ジイソシアネート、ポリマーポリオール、ジオール、及びジアミン等から重合される構造を有し、熱可塑性を有するものであれば、特に限定されるものではない。また、その重合方法も特に限定されるものではない。熱可塑性ポリウレタンとしては、例えば、ジイソシアネート、ポリマーポリオール、及び活性水素化合物からなる鎖延長剤としての低分子量ジアミン等から重合されるポリウレタンであってもよく、また、ジイソシアネート、ポリマーポリオール、及び活性水素化合物からなる鎖延長剤としての低分子量ジオール等から重合されるポリウレタン(以下、「ポリウレタンウレタン」ともいう。)であってもよい。本発明の所望の効果を妨げない範囲で3官能性以上のグリコールやイソシアネートを用いてもよい。尚、本明細書中、「熱可塑性」とは、分解温度以下で加熱することにより溶融することができ、溶融状態にある間に塑性流動を示し、冷却により固化するという可逆的性質を有することを意味する。一般にポリウレタン樹脂は、230℃以上では分解が始まる。
[Thermoplastic polyurethane]
In the present embodiment, the thermoplastic polyurethane constituting the thermoplastic polyurethane elastic fiber may have a structure polymerized from diisocyanates, polymer polyols, diols, diamines, etc., and has thermoplasticity, in particular. It is not limited. Moreover, the polymerization method is not particularly limited either. The thermoplastic polyurethane may be, for example, a polyurethane polymerized from a low molecular weight diamine as a chain extender consisting of a diisocyanate, a polymer polyol, and an active hydrogen compound; It may also be a polyurethane (hereinafter also referred to as "polyurethane urethane") polymerized from a low molecular weight diol as a chain extender consisting of. Trifunctional or higher functional glycols and isocyanates may be used as long as they do not interfere with the desired effects of the present invention. In this specification, "thermoplastic" means that it can be melted by heating below the decomposition temperature, exhibits plastic flow while in a molten state, and has the reversible property of solidifying upon cooling. means. Generally, polyurethane resins begin to decompose at temperatures above 230°C.
[ポリマーポリオール]
 ポリマーポリオールとしては、以下に限定されないが、ポリエーテル系ジオール、ポリエステル系ジオール、ポリカーボネート系ジオール等のポリマージオールが挙げられる。耐加水分解性の観点から、ポリマーポリオールとしては、ポリエーテル系ポリオールであることが好ましい。
[Polymer polyol]
Examples of the polymer polyol include, but are not limited to, polymer diols such as polyether diols, polyester diols, and polycarbonate diols. From the viewpoint of hydrolysis resistance, the polymer polyol is preferably a polyether polyol.
 ポリエーテル系ポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、テトラヒドロフラン(THF)とネオペンチルグリコールの共重合体である共重合ジオール、THFと3-メチルテトラヒドロフランの共重合体である共重合体ジオールが挙げられる。これらのポリエーテル系ポリオールは、1種を単独で用いてもよく、2種以上を併用してもよい。また、伸度、伸縮回復性、耐熱性に優れた弾性繊維を容易に得ることができるという観点から、ポリマージオールの数平均分子量は1000以上8000以下のものが好ましい。光脆化性の観点から、ポリエーテル系ポリオールとしては、ポリテトラメチレンエーテルグリコール、THFとネオペンチルグリコールの共重合体である共重合ジオール、及びこれらをブレンドしたポリオールであることが好ましい。 Examples of polyether polyols include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, copolymer diols that are copolymers of tetrahydrofuran (THF) and neopentyl glycol, and copolymers of THF and 3-methyltetrahydrofuran. Certain copolymer diols are mentioned. These polyether polyols may be used alone or in combination of two or more. Further, from the viewpoint of easily obtaining elastic fibers with excellent elongation, stretch recovery properties, and heat resistance, the number average molecular weight of the polymer diol is preferably 1000 or more and 8000 or less. From the viewpoint of light embrittlement, the polyether polyol is preferably polytetramethylene ether glycol, a copolymerized diol that is a copolymer of THF and neopentyl glycol, and a polyol that is a blend of these.
[ジイソシアネート]
 ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂環族ジイソシアネート、及び脂肪族ジイソシアネート等が挙げられる。芳香族ジイソシアネートとしては、以下に限定されないが、例えばジフェニルメタンジイソシアネート(以下、「MDI」ともいう。)、トリレンジイソシアネート、1,4-ジイソシアネートベンゼン、キシリレンジイソシアネート、2,6-ナフタレンジイソシアネート等が挙げられる。脂環族ジイソシアネート、及び脂肪族ジイソシアネートとしては、例えば、メチレンビス(シクロヘキシルイソシアネート)(以下、「H12MDI」ともいう。)、イソホロンジイソシアネート、メチルシクロヘキサン2,4-ジイソシアネート、メチルシクロヘキサン2,6-ジイソシアネート、シクロヘキサン1,4-ジイソシアネート、ヘキサヒドロキシリレンジイソシアネート、ヘキサヒドロトリレンジイソシアネート、オクタヒドロ1,5-ナフタレンジイソシアネート等が挙げられる。これらのジイソシアネートは単独で使用してもよく、2種以上を併用してもよい。特に、弾性繊維の伸縮回復性の観点から、ジイソシアネートは、芳香族ジイソシアネートであることが好ましく、MDIであることがさらに好ましい。また、MDIとすることによって、ポリマー骨格に環状構造が導入されることで剛直性が高くなり、耐熱性が向上する。
[Diisocyanate]
Examples of diisocyanates include aromatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates. Examples of aromatic diisocyanates include, but are not limited to, diphenylmethane diisocyanate (hereinafter also referred to as "MDI"), tolylene diisocyanate, 1,4-diisocyanate benzene, xylylene diisocyanate, 2,6-naphthalene diisocyanate, and the like. It will be done. Examples of alicyclic diisocyanates and aliphatic diisocyanates include methylene bis(cyclohexyl isocyanate) (hereinafter also referred to as "H12MDI"), isophorone diisocyanate, methylcyclohexane 2,4-diisocyanate, methylcyclohexane 2,6-diisocyanate, and cyclohexane. Examples include 1,4-diisocyanate, hexahydroxylylene diisocyanate, hexahydrotolylene diisocyanate, and octahydro 1,5-naphthalene diisocyanate. These diisocyanates may be used alone or in combination of two or more. In particular, from the viewpoint of elastic fiber recovery properties, the diisocyanate is preferably an aromatic diisocyanate, and more preferably MDI. Further, by using MDI, a cyclic structure is introduced into the polymer skeleton, thereby increasing rigidity and improving heat resistance.
[鎖延長剤]
 活性水素化合物からなる鎖延長剤としては、低分子量ジアミン、及び低分子量ジオールからなる群から選択される少なくとも1種であることが好ましい。尚、鎖延長剤としては、エタノールアミンのように、水酸基とアミノ基の両方を分子中に有するものであってもよい。溶融紡糸に適した熱可塑性ポリウレタンを得る観点から、活性水素化合物としては、低分子量ジオールであることが好ましい。
[Chain extender]
The chain extender made of an active hydrogen compound is preferably at least one selected from the group consisting of low molecular weight diamines and low molecular weight diols. Note that the chain extender may have both a hydroxyl group and an amino group in its molecule, such as ethanolamine. From the viewpoint of obtaining a thermoplastic polyurethane suitable for melt spinning, the active hydrogen compound is preferably a low molecular weight diol.
 活性水素化合物からなる鎖延長剤としての低分子量ジアミンとしては、例えば、ヒドラジン、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、2-メチル-1,5-ペンタンジアミン、1,2-ジアミノブタン、1,3-ジアミノブタン、1-アミノ-3,3,5-トリメチル-5-アミノメチルシクロヘキサン、2,2-ジメチル-1,3-ジアミノプロパン、1,3-ジアミノ-2,2-ジメチルブタン、2,4-ジアミノ-1-メチルシクロヘキサン、1,3-ペンタンジアミン、1,3-シクロヘキサンジアミン、ビス(4-アミノフェニル)ホスフィンオキシド、ヘキサメチレンジアミン、1,3-シクロヘキシルジアミン、ヘキサヒドロメタフェニレンジアミン、2-メチルペンタメチレンジアミン、ビス(4-アミノフェニル)ホスフィンオキシド等が挙げられる。 Examples of the low molecular weight diamine as a chain extender made of an active hydrogen compound include hydrazine, ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 2-methyl-1,5-pentanediamine, 1,2 -diaminobutane, 1,3-diaminobutane, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane, 2,2-dimethyl-1,3-diaminopropane, 1,3-diamino-2, 2-dimethylbutane, 2,4-diamino-1-methylcyclohexane, 1,3-pentanediamine, 1,3-cyclohexanediamine, bis(4-aminophenyl)phosphine oxide, hexamethylenediamine, 1,3-cyclohexyldiamine , hexahydrometaphenylenediamine, 2-methylpentamethylenediamine, bis(4-aminophenyl)phosphine oxide, and the like.
 活性水素化合物からなる鎖延長剤としての低分子量ジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ビスヒドロキシエトキシベンゼン、ビスヒドロキシエチレンテレフタレート、1-メチル-1,2-エタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール等が挙げられる。これら低分子量ジオールは1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the low molecular weight diol as a chain extender consisting of an active hydrogen compound include ethylene glycol, 1,3-propanediol, 1,4-butanediol, bishydroxyethoxybenzene, bishydroxyethylene terephthalate, 1-methyl-1 , 2-ethanediol, 1,6-hexanediol, 1,8-octanediol and the like. These low molecular weight diols may be used alone or in combination of two or more.
 前記鎖延長剤は、弾性繊維の伸縮回復性の観点、及び耐熱性と耐NOxガス黄変性を向上させる観点から、分子量が60以上120以下のジオールであることが好ましい。分子量が60以上120以下のジオールである活性水素化合物は、好ましくはエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオールであり、より好ましくは1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオールであり、最も好ましくは1,4-ブタンジオールである。 The chain extender is preferably a diol with a molecular weight of 60 or more and 120 or less, from the viewpoint of stretch recovery of elastic fibers and from the viewpoint of improving heat resistance and NOx gas yellowing resistance. The active hydrogen compound which is a diol with a molecular weight of 60 or more and 120 or less is preferably ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, More preferred are 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol, and most preferred is 1,4-butanediol.
[熱可塑性ポリウレタンの合成方法]
 熱可塑性ポリウレタンは、公知のポリウレタン化反応の技術を用いて得ることができ、ワンショット法、プレポリマー法どちらのプロセスで製造されてもよい。プレポリマー法の場合、窒素パージ、温水ジャケット、及び攪拌機を有する反応タンクにポリマーポリオールとジイソシアネートを、モル比で好ましくは1.0:1.8~3.0、より好ましくは、1.0:2.0~2.5で添加し、反応させることで、両末端イソシアネート基プレポリマーを得る。次いで、この両末端イソシアネート基プレポリマーに対し、鎖延長剤を添加し、鎖延長反応を行う。その後、固相重合を行い、所定分子量のポリウレタンを得ることができる。プレポリマーと鎖延長剤とを均一に混合した後、円筒状パイプ形態や二軸押出機を用いて連続又は半連続的にポリマーを得た後、固相重合を行ってもよい。
[Method of synthesizing thermoplastic polyurethane]
Thermoplastic polyurethane can be obtained using a known polyurethanization reaction technique, and may be produced by either a one-shot method or a prepolymer method. In the case of the prepolymer method, the polymer polyol and diisocyanate are placed in a reaction tank equipped with a nitrogen purge, a hot water jacket, and a stirrer in a molar ratio of preferably 1.0:1.8 to 3.0, more preferably 1.0: By adding at a concentration of 2.0 to 2.5 and reacting, a prepolymer having isocyanate groups at both ends is obtained. Next, a chain extender is added to this prepolymer with isocyanate groups at both ends to perform a chain extension reaction. Thereafter, solid phase polymerization is performed to obtain polyurethane having a predetermined molecular weight. After uniformly mixing the prepolymer and the chain extender, the polymer may be obtained continuously or semi-continuously using a cylindrical pipe or a twin-screw extruder, followed by solid phase polymerization.
 鎖延長剤とポリマーポリオールの合計モル数が、ジイソシアネートのモル数に対し、1.001倍以上1.100倍以下であれば、耐熱性と耐NOxガス黄変性を両立することができるため好ましい。鎖延長剤とポリマーポリオールの合計モル数が、ジイソシアネートのモル数に対し、1.001倍以上1.100倍以下であることによって、耐NOxガス黄変性及び耐熱性を向上できる原因は未だ明らかではないが、発明者らは以下のように推定している。鎖延長剤とポリマーポリオールの合計モル数が、ジイソシアネートのモル数に対し、1.001倍以上であれば、NOxガスが吸着しやすい分子内のジイソシアネート由来の構造の量を少なくできるため、耐NOxガス黄変性が向上する。他方、鎖延長剤とポリマーポリオールの合計モル数がジイソシアネートのモル数に対し、1.100倍以下であれば、熱可塑性ポリウレタンの水酸基と金属塩との配位子交換が起きにくくなり、金属塩の耐NOxガス黄変効果を発揮しやすくなるため、耐NOxガス黄変性が向上する。また、鎖延長剤とポリマーポリオールの合計モル数が、ジイソシアネートのモル数に対し、1.001倍以上であれば、熱可塑性ポリウレタンの分子量が増大しやすくなることで、耐熱性も向上する。 It is preferable that the total number of moles of the chain extender and the polymer polyol is 1.001 times or more and 1.100 times or less of the number of moles of the diisocyanate, since heat resistance and NOx gas yellowing resistance can be achieved at the same time. The reason why resistance to NOx gas yellowing and heat resistance can be improved by setting the total number of moles of the chain extender and polymer polyol to 1.001 times or more and 1.100 times or less relative to the number of moles of diisocyanate is still unclear. However, the inventors estimate as follows. If the total number of moles of the chain extender and polymer polyol is 1.001 times or more of the number of moles of diisocyanate, it is possible to reduce the amount of diisocyanate-derived structures in the molecule that easily adsorb NOx gas, thereby improving NOx resistance. Gas yellowing is improved. On the other hand, if the total number of moles of the chain extender and the polymer polyol is 1.100 times or less of the number of moles of the diisocyanate, ligand exchange between the hydroxyl group of the thermoplastic polyurethane and the metal salt becomes difficult to occur, and the metal salt Since it becomes easier to exhibit the NOx gas yellowing resistance effect, the NOx gas yellowing resistance is improved. Further, if the total number of moles of the chain extender and the polymer polyol is 1.001 times or more the number of moles of the diisocyanate, the molecular weight of the thermoplastic polyurethane tends to increase, thereby improving heat resistance.
[熱可塑性ポリウレタン弾性繊維の製造方法]
 紡糸の方式については、所望の物性が得られる限り、特に制限されるものではなく、例えば、熱可塑性ポリウレタンのチップを押出機に投入し、加熱し、溶融紡糸する方法の他に、チップを溶融した後、ポリイソシアネート化合物を混合して紡糸する方法、両末端イソシアネート基プレポリマーに対し、両末端イソシアネート基プレポリマーと活性水素化合物との反応物を添加し、チップ化を経由せず連続的に紡糸する方法が挙げられる。
[Method for producing thermoplastic polyurethane elastic fiber]
The spinning method is not particularly limited as long as the desired physical properties can be obtained; for example, in addition to the method of feeding thermoplastic polyurethane chips into an extruder, heating, and melt-spinning, After that, a method of mixing and spinning a polyisocyanate compound, adding a reaction product of a prepolymer with isocyanate groups at both ends and an active hydrogen compound to the prepolymer with isocyanate groups at both ends, and continuously producing it without going through chipping. An example is a spinning method.
 押出機に投入されたポリウレタンは、計量ポンプによって、計量され、紡糸ヘッドに導入される。必要に応じて、紡糸ヘッド内で金網やガラスビーズ等を用いたろ過により、異物を除去した後、口金から、吐出され、冷風チャンバーで空冷され、処理剤が付与された後、ゴデットロールを経由して巻き取られる。 The polyurethane charged into the extruder is metered by a metering pump and introduced into the spinning head. If necessary, foreign matter is removed by filtration using a wire mesh or glass beads in the spinning head, and then it is discharged from the spinneret, air-cooled in a cold air chamber, and treated with a treatment agent, and then passed through a godet roll. It is wound up.
 紡糸工程では、ダイの温度、冷風風速、冷風温度、集束位置、紡糸速度を調整し、繊維の温度プロファイルと紡糸張力を緻密にコントロールする。ダイの温度は180℃~220℃が好ましく、より好ましくは200℃~210℃である。冷風は紡口直下から糸の走行方向に対して垂直にあてる方法などの一般的な溶融紡糸の冷却方法を用い、冷風風速は0.2m/s~2.0m/sが好ましく、より好ましくは0.5m/s~1.2m/s、冷風温度は5℃~20℃が好ましく、より好ましくは7℃~15℃である。マルチフィラメントを集束させる方法としては、口金からゴデットロールの間に仮撚り機を設置し、撚りの強弱により下部から撚りを伝播させ、フィラメント相互を集束させ、その集束点の高さをコントロールする手法が挙げられる。仮撚りの方法は一般的な方法を選択でき、エアノズルによる空気仮撚りや、回転するリングに接触させるリング仮撚り機などを用いることができる。 In the spinning process, the temperature of the die, cold air speed, cold air temperature, focusing position, and spinning speed are adjusted to precisely control the fiber temperature profile and spinning tension. The temperature of the die is preferably 180°C to 220°C, more preferably 200°C to 210°C. A common melt spinning cooling method such as applying cold air perpendicularly to the running direction of the yarn from directly below the spinneret is used, and the wind speed of the cold air is preferably 0.2 m/s to 2.0 m/s, more preferably 0.5 m/s to 1.2 m/s, and the cold air temperature is preferably 5°C to 20°C, more preferably 7°C to 15°C. One way to focus multifilaments is to install a false twister between the spinneret and the godet roll, propagate the twist from the bottom depending on the strength of the twist, focus the filaments together, and control the height of the focus point. Can be mentioned. As the false twisting method, a general method can be selected, such as air false twisting using an air nozzle or a ring false twisting machine that brings the material into contact with a rotating ring.
 本実施形態の熱可塑性ポリウレタン弾性繊維において、金属水酸化物、金属炭酸塩、及び金属酸化物からなる少なくとも1つの金属化合物を0.05wt%以上5.00wt%以下で含有させる方法は、特に限定されないが、例えば、ポリマーポリオールとジイソシアネートにおけるプレポリマー反応前の原料仕込み時に添加する手法や、プレポリマーと活性水素化合物との鎖延長反応の工程の途中で添加する方法、金属化合物を含んだマスターバッチを紡糸中に添加する手法などが挙げられる。 In the thermoplastic polyurethane elastic fiber of this embodiment, the method of containing at least one metal compound consisting of a metal hydroxide, a metal carbonate, and a metal oxide in an amount of 0.05 wt% or more and 5.00 wt% or less is particularly limited. However, for example, there is a method in which it is added during the preparation of raw materials before the prepolymer reaction between a polymer polyol and diisocyanate, a method in which it is added in the middle of the chain extension reaction process between a prepolymer and an active hydrogen compound, and a masterbatch containing a metal compound. For example, a method of adding 100% during spinning can be mentioned.
 本実施形態の熱可塑性ポリウレタン弾性繊維は、本発明の所望の効果を失わない程度であれば、ポリウレタン以外のポリマーや、添加剤、例えば、酸化防止剤、耐光剤、紫外線吸収剤、ガス変色防止剤、染料、活性剤、艶消剤、顔料、滑剤等を含有するものであってもよい。 The thermoplastic polyurethane elastic fiber of this embodiment may contain polymers other than polyurethane and additives, such as antioxidants, light stabilizers, ultraviolet absorbers, gas discoloration prevention agents, as long as the desired effects of the present invention are not lost. It may contain agents, dyes, activators, matting agents, pigments, lubricants, etc.
 本実施形態の熱可塑性ポリウレタン弾性繊維は、解舒性、工程性等の観点から、油剤等の処理剤を含有してもよい。処理剤としては、以下に限定されないが、例えば、ジメチルシリコーンなどのシリコーン系オイル、鉱物油系オイル、及びこれらの組み合わせが挙げられる。処理剤の塗布方法は、特に限定されず、例えば、オイリングローラー等により塗布する方法が挙げられる。 The thermoplastic polyurethane elastic fiber of this embodiment may contain a processing agent such as an oil agent from the viewpoint of unwinding property, processability, etc. Examples of the processing agent include, but are not limited to, silicone oils such as dimethyl silicone, mineral oils, and combinations thereof. The method of applying the treatment agent is not particularly limited, and examples thereof include a method of applying the treatment agent using an oiling roller or the like.
 本実施形態の熱可塑性ポリウレタン弾性繊維は、鎖延長剤とジイソシアネートからなるハードセグメントの割合(以下、Mh分率と表記する)が好ましくは20%以上40%以下、より好ましくは20%以上35%以下、さらに好ましくは22%以上30%以下である。Mh分率が20%以上40%以下であれば、耐熱性と耐NOxガス黄変性を共に向上することができる。Mh分率を20%以上40%以下にすることによって、耐NOxガス黄変性と耐熱性を向上できる原因は未だ明らかではないが、発明者らは以下のように推定している。Mh分率が20%以上であると、ウレタン結合同士の水素結合が増加し、耐熱性が向上し、また、ハードセグメントの周辺の金属塩の存在率が増大し、耐NOxガス黄変性が向上する。他方、Mh分率が40%以下であると、ジイソシアネートが芳香環を含む場合、NOxガスが吸着して黄変する芳香環の量が減少することで耐NOxガス黄変性が向上する。尚、Mh分率の詳細な算出方法は後述する。 In the thermoplastic polyurethane elastic fiber of the present embodiment, the ratio of hard segments consisting of a chain extender and diisocyanate (hereinafter referred to as Mh fraction) is preferably 20% or more and 40% or less, more preferably 20% or more and 35%. Below, it is more preferably 22% or more and 30% or less. When the Mh fraction is 20% or more and 40% or less, both heat resistance and NOx gas yellowing resistance can be improved. The reason why the NOx gas yellowing resistance and heat resistance can be improved by setting the Mh fraction to 20% or more and 40% or less is not yet clear, but the inventors speculate as follows. When the Mh fraction is 20% or more, hydrogen bonds between urethane bonds increase, heat resistance improves, and the presence of metal salts around the hard segment increases, improving NOx gas yellowing resistance. do. On the other hand, when the Mh fraction is 40% or less, when the diisocyanate contains aromatic rings, the amount of aromatic rings that yellow due to adsorption of NOx gas decreases, thereby improving resistance to NOx gas yellowing. Note that a detailed method for calculating the Mh fraction will be described later.
 本実施形態のポリウレタン弾性繊維の総繊度は、好ましくは160dtex以上2000dtex以下、より好ましくは300dtex以上1500dtex以下、さらに好ましくは600dtex以上1000dtex以下である。 The total fineness of the polyurethane elastic fiber of this embodiment is preferably 160 dtex or more and 2000 dtex or less, more preferably 300 dtex or more and 1500 dtex or less, and even more preferably 600 dtex or more and 1000 dtex or less.
 本実施形態のポリウレタン弾性繊維は、モノフィラメント及びマルチフィラメントのいずれであってもよいが、マルチフィラメントであることが好ましい。ポリウレタン弾性繊維がマルチフィラメントである場合、単糸数は14本以上140本以下であることが好ましい。 The polyurethane elastic fiber of this embodiment may be either a monofilament or a multifilament, but is preferably a multifilament. When the polyurethane elastic fiber is a multifilament, the number of single yarns is preferably 14 or more and 140 or less.
 本実施形態の熱可塑性ポリウレタン弾性繊維の糸長方向における繊度斑変動係数は、好ましくは3.0%以上10.0%以下、より好ましくは3.0%以上9.5%以下、さらに好ましくは3.5%以上9.0%以下である。繊度斑変動係数が3%以上10%以下であれば、耐NOxガス黄変性と、耐熱性を共に向上させることができる。繊度斑変動係数が3.0%以上10.0%以下であることにより、耐NOxガス黄変性と耐熱性が向上する原因は未だ明らかではないが、発明者らは以下の様に推定している。繊度斑変動係数が3.0%以上であれば、繊維表面で光が乱反射しやすくなり、繊維が不透明に見えることで繊維内部の黄変を視認しにくく、黄変が薄く見える。繊度斑変動係数が10.0%以下であれば、細繊度箇所での受熱による糸切れを抑制でき、耐熱性が向上する。繊度斑変動係数を制御する方法については、所望の物性が得られる限り、特に制限されるものではなく、例えば、溶融紡糸に使用する紡口の口径を拡大し、ドローレゾナンスを発生させる方法、吐出量を増やし、シャークスキンやメルトフラクチャーを発生させる方法、紡糸工程中の冷却強度を変化させ、糸揺れを引き起こす方法が挙げられる。 The coefficient of variation in fineness unevenness in the yarn length direction of the thermoplastic polyurethane elastic fiber of the present embodiment is preferably 3.0% or more and 10.0% or less, more preferably 3.0% or more and 9.5% or less, and even more preferably It is 3.5% or more and 9.0% or less. If the variation coefficient of fineness unevenness is 3% or more and 10% or less, both NOx gas yellowing resistance and heat resistance can be improved. Although it is not yet clear why the NOx gas yellowing resistance and heat resistance are improved by having a fineness unevenness variation coefficient of 3.0% or more and 10.0% or less, the inventors estimate as follows. There is. If the variation coefficient of fineness unevenness is 3.0% or more, light is likely to be diffusely reflected on the fiber surface, making the fiber appear opaque, making it difficult to visually recognize yellowing inside the fiber, and making the yellowing appear faint. If the unevenness variation coefficient of fineness is 10.0% or less, yarn breakage due to heat reception at fine fineness points can be suppressed, and heat resistance is improved. The method of controlling the variation coefficient of fineness unevenness is not particularly limited as long as the desired physical properties can be obtained; for example, a method of enlarging the diameter of the spinneret used for melt spinning to generate draw resonance, Examples include a method of increasing the amount of yarn to cause shark skin or melt fracture, and a method of changing the cooling intensity during the spinning process to cause yarn shaking.
 本実施形態の熱可塑性ポリウレタン弾性繊維の糸長方向における最大繊度と最小繊度の差は、好ましくは10dtex以上150dtex以下、より好ましくは15dtex以上100dtex以下、さらに好ましくは20dtex80dtex以下である。最大繊度と最小繊度の差が10dtex以上150dtex以下であれば、耐NOxガス黄変性と耐熱性を共に向上させることができる。最大繊度と最小繊度の差が10dtex以上150dtex以下であることにより、耐NOxガス黄変性と耐熱性が向上する原因は未だ明らかではないが、発明者らは以下の様に推定している。最大繊度と最小繊度の差が10dtex以上であれば繊維表面で光が乱反射しやすくなり、繊維が不透明に見えることで繊維内部の黄変を視認しにくく、黄変が薄く見える。最大繊度と最小繊度の差が150dtex以下であれば、細繊度箇所での受熱による糸切れを抑制でき、耐熱性が向上する。繊度差を制御する方法については、所望の物性が得られる限り、特に制限されるものではなく、例えば、溶融紡糸に使用する紡口の口径を拡大し、ドローレゾナンスを発生させる方法、吐出量を増やし、シャークスキンやメルトフラクチャーを発生させる方法、紡糸工程中の冷却強度を変化させ、糸揺れを引き起こす方法が挙げられる。 The difference between the maximum fineness and the minimum fineness in the yarn length direction of the thermoplastic polyurethane elastic fiber of this embodiment is preferably 10 dtex or more and 150 dtex or less, more preferably 15 dtex or more and 100 dtex or less, and even more preferably 20 dtex or 80 dtex or less. If the difference between the maximum fineness and the minimum fineness is 10 dtex or more and 150 dtex or less, both NOx gas yellowing resistance and heat resistance can be improved. The reason why the NOx gas yellowing resistance and heat resistance are improved due to the difference between the maximum fineness and the minimum fineness of 10 dtex or more and 150 dtex or less is not yet clear, but the inventors speculate as follows. If the difference between the maximum fineness and the minimum fineness is 10 dtex or more, light is likely to be diffusely reflected on the fiber surface, making the fiber appear opaque, making it difficult to visually recognize the yellowing inside the fiber, making the yellowing appear faint. If the difference between the maximum fineness and the minimum fineness is 150 dtex or less, yarn breakage due to heat reception at fine fineness points can be suppressed, and heat resistance is improved. The method of controlling the difference in fineness is not particularly limited as long as the desired physical properties can be obtained. For example, there may be a method of enlarging the diameter of the spinneret used for melt spinning to generate draw resonance, or a method of increasing the discharge amount. Examples include a method of increasing the number of yarns, causing shark skin or melt fracture, and a method of changing the cooling intensity during the spinning process to cause yarn shaking.
 本実施形態の熱可塑性ポリウレタン弾性繊維は、耐熱性及び耐NOxガス黄変性を向上させる観点より、フローテスターによる流出開始温度が150℃以上220℃以下であることが好ましく、より好ましくは150℃以上200℃以下である。流出開始温度を150℃以上220℃以下にすることによって、耐熱性及び耐NOxガス黄変性を向上できる原因は未だ明らかではないが、発明者らは以下のように推定している。流出開始温度を150℃以上にすることによって受熱による熱可塑性ポリウレタンの構造変化が少なくなるため、耐熱性が向上でき、他方、流出開始温度を220℃以下にすることによって溶融時の粘度が低下し、ぬれ性が向上することで金属塩が均一に分散するため耐NOxガス黄変性が向上する。 From the viewpoint of improving heat resistance and NOx gas yellowing resistance, the thermoplastic polyurethane elastic fiber of this embodiment preferably has an outflow start temperature measured by a flow tester of 150°C or more and 220°C or less, more preferably 150°C or more. The temperature is below 200°C. The reason why heat resistance and NOx gas yellowing resistance can be improved by setting the outflow start temperature to 150° C. or more and 220° C. or less is not yet clear, but the inventors estimate as follows. By setting the outflow start temperature to 150°C or higher, the structural change of the thermoplastic polyurethane due to heat reception is reduced, so heat resistance can be improved.On the other hand, by setting the outflow start temperature to 220°C or lower, the viscosity at the time of melting is reduced. By improving wettability, metal salts are uniformly dispersed, and NOx gas yellowing resistance is improved.
 以下の実施例、比較例により本発明を具体的に説明するが、本発明の範囲は、実施例により限定されるものではない。
 まず、実施例、比較例で使用した物性等の評価方法について説明する。
The present invention will be specifically explained using the following Examples and Comparative Examples, but the scope of the present invention is not limited by the Examples.
First, methods for evaluating physical properties and the like used in Examples and Comparative Examples will be explained.
<熱可塑性ポリウレタンの構成成分の定量>
 熱可塑性ポリウレタン弾性繊維に含まれる熱可塑性ポリウレタンを構成する活性水素化合物からなる鎖延長剤、及びジイソシアネートの構造は、NMRを用いて特定した。具体的には、下記条件でNMRを測定し、ジイソシアネートと鎖延長剤の構造の特定を行った。ジイソシアネート及び鎖延長剤の構造はNMR測定によるピーク位置から判断できる。
  測定装置:Bruker Biospin Avance600
  測定核:
  共鳴周波数:600MHz
  積算回数:256回
  測定温度:室温
  溶媒:重水素化ジメチルホルムアミド
  測定濃度:1.5重量%
  化学シフト基準:ジメチルホルムアミド(8.0233ppm)
<Quantification of constituent components of thermoplastic polyurethane>
The structure of the chain extender consisting of an active hydrogen compound and the diisocyanate constituting the thermoplastic polyurethane contained in the thermoplastic polyurethane elastic fiber was specified using NMR. Specifically, NMR was measured under the following conditions to identify the structures of the diisocyanate and chain extender. The structures of the diisocyanate and chain extender can be determined from the peak positions determined by NMR measurement.
Measuring device: Bruker Biospin Avance600
Measurement nucleus: 1H
Resonance frequency: 600MHz
Number of accumulations: 256 times Measurement temperature: Room temperature Solvent: Deuterated dimethylformamide Measurement concentration: 1.5% by weight
Chemical shift standard: dimethylformamide (8.0233ppm)
<ジイソシアネートのモル数に対する鎖延長剤とポリマーポリオールの合計モル数の比率(以下、OH/NCOと表記)算出方法>
 熱可塑性ポリウレタン弾性繊維のOH/NCOはNMR測定による該当ピークの積分値によって下記式(1):
   OH/NCO={(Hh+Hs)/4}/(Hi/x) …式(1)
により算出した。
 式中、
 Hh:ウレタン結合に隣接する活性水素化合物のメチレン基由来の積分値
 Hs:ウレタン結合に隣接するポリマーポリオールのメチレン基由来の積分値
 Hi:ジイソシアネート中の水素化合物由来の積分値
 x:ジイソシアネートの全水素の数
である。
<How to calculate the ratio of the total number of moles of chain extender and polymer polyol to the number of moles of diisocyanate (hereinafter expressed as OH/NCO)>
The OH/NCO of thermoplastic polyurethane elastic fiber is determined by the following formula (1) based on the integral value of the corresponding peak by NMR measurement:
OH/NCO={(Hh+Hs)/4}/(Hi/x)...Formula (1)
Calculated by.
During the ceremony,
Hh: Integral value derived from the methylene group of the active hydrogen compound adjacent to the urethane bond Hs: Integral value derived from the methylene group of the polymer polyol adjacent to the urethane bond Hi: Integral value derived from the hydrogen compound in the diisocyanate x: Total hydrogen of the diisocyanate is the number of
<ハードセグメントの割合(Mh分率)の定量方法>
 熱可塑性ポリウレタン弾性繊維のMh分率は、下記式(2)~(5):
   Ms={Mdo+Mdi(N1-N0)}/(N1-N0-1)-2Mdi …式(2)
   Mh={Mda(N1-1)+Mdi×N0}/(N1-N0-1)+2Mdi …式(3)
   N0=0.03806N1-0.3997N1+1.617N1-2.144N1+0.8795 …式(4)
   Mh分率(%)={Mh/(Ms+Mh)}×100 …式(5)
の連立方程式を解くことにより計算される。
 式中、
 Ms:ソフトセグメント部分の数平均分子量
 Mdo:ポリマーポリオールの数平均分子量
 Mdi:イソシアネートの分子量
 N1:イソシアネートのポリマーポリオールに対するモル比
 N0:未反応のイソシアネートのポリマーポリオールに対するモル比
 Mh:ハードセグメント部分の数平均分子量
 Mda:鎖延長剤の分子量(2種類以上を混合して使用する場合はその数平均分子量)
 Mdi:イソシアネートの分子量
である。
<Method for quantifying the ratio of hard segments (Mh fraction)>
The Mh fraction of the thermoplastic polyurethane elastic fiber is expressed by the following formulas (2) to (5):
Ms={Mdo+Mdi(N1-N0)}/(N1-N0-1)-2Mdi...Formula (2)
Mh={Mda(N1-1)+Mdi×N0}/(N1-N0-1)+2Mdi...Formula (3)
N0=0.03806N1 4 -0.3997N1 3 +1.617N1 2 -2.144N1 1 +0.8795...Formula (4)
Mh fraction (%) = {Mh/(Ms+Mh)}×100...Equation (5)
It is calculated by solving simultaneous equations.
During the ceremony,
Ms: number average molecular weight of soft segment portion Mdo: number average molecular weight of polymer polyol Mdi: molecular weight of isocyanate N1: molar ratio of isocyanate to polymer polyol N0: molar ratio of unreacted isocyanate to polymer polyol Mh: number of hard segment portions Average molecular weight Mda: Molecular weight of chain extender (number average molecular weight when using a mixture of two or more types)
Mdi: Molecular weight of isocyanate.
<金属化合物の同定及び定量方法>
 熱可塑性ポリウレタン弾性繊維をガラス板に巻き付け、XRD(リガクUltima-IV)にて分析し、分析したスペクトルとデータベース上のデータの照合により含有する金属化合物の化学組成を同定することができる。XRDによる金属化合物の同定が完了したら、熱可塑性ポリウレタン弾性繊維を中心に穴の空いたPPフィルムに隙間なく巻き付けたサンプルを作製し、XRF(リガクZSX-100e)にて分析し、金属化合物を構成する元素の検出強度から金属化合物の含有量を定量することができる。定量する際には必要に応じて、含有している金属化合物と同じ金属化合物を用いた検量線を使用してもよい。
<Identification and quantitative method of metal compounds>
Thermoplastic polyurethane elastic fibers are wrapped around a glass plate and analyzed by XRD (Rigaku Ultima-IV), and the chemical composition of the metal compound contained can be identified by comparing the analyzed spectrum with data on the database. Once the identification of the metal compound by XRD is completed, a sample is prepared by wrapping thermoplastic polyurethane elastic fibers tightly around a PP film with holes in the center, and analyzed by XRF (Rigaku ZSX-100e) to determine the composition of the metal compound. The content of the metal compound can be determined from the detection intensity of the element. When quantifying, a calibration curve using the same metal compound as the contained metal compound may be used, if necessary.
<熱可塑性ポリウレタン弾性繊維の流出開始温度測定>
 熱可塑性ポリウレタン弾性繊維の流出開始温度は、フローテスターCFT-500D型((株)島津製作所製)を使用して測定する。熱可塑性ポリウレタン弾性繊維は、油剤などの処理剤を除去する等の事前処理を行わず、一回の測定に1.5gサンプリングして、流出開始温度を測定する。ダイ(ノズル)は直径0.5mm、厚み1.0mmのものを使用し、49Nの押出荷重を加え、初期設定温度120℃で予熱時間240秒後、3℃/分の速度で250℃まで等速昇温した時のストローク長(mm)と温度の曲線を求める。温度上昇に伴い、トナー内のポリマーが加熱され、ダイからポリマーが流出し始める。この時の温度を流出開始温度とする。
<Measurement of outflow start temperature of thermoplastic polyurethane elastic fibers>
The outflow start temperature of the thermoplastic polyurethane elastic fiber is measured using a flow tester model CFT-500D (manufactured by Shimadzu Corporation). The thermoplastic polyurethane elastic fibers are not pre-treated to remove processing agents such as oil agents, and 1.5 g of the thermoplastic polyurethane elastic fibers are sampled per measurement to measure the outflow start temperature. A die (nozzle) with a diameter of 0.5 mm and a thickness of 1.0 mm was used, an extrusion load of 49 N was applied, and after a preheating time of 240 seconds at an initial setting temperature of 120 °C, the temperature was increased to 250 °C at a rate of 3 °C/min. Find a curve of stroke length (mm) and temperature when the temperature increases rapidly. As the temperature increases, the polymer within the toner heats up and begins to flow out of the die. The temperature at this time is defined as the outflow start temperature.
<繊度斑変動係数の測定方法>
 繊度斑変動係数の測定は、熱可塑性ポリウレタン弾性繊維が2倍延伸された状態になるように2つのゴデットロールの回転数を調整し、ゴデットロール間に以下の装置をセットして実施する。レーザーにより、弾性繊維の外径を互いに垂直な2方向から測定し、三平方の定理から算出した対角線長の平均偏差と平均値の比を繊度斑変動係数とした。測定データは160点/秒で測定した50000点のデータの平均値を使用した。
  測定装置:LS9006D(キーエンス社製)
  測定種別:外 径
  最小表示単位:0.0001mm
  測定点数:50000
  蓄積周期:×100
<Measurement method of fineness unevenness variation coefficient>
The measurement of the variation coefficient of fineness unevenness is carried out by adjusting the rotational speed of two godet rolls so that the thermoplastic polyurethane elastic fiber is stretched twice, and by setting the following device between the godet rolls. The outer diameter of the elastic fiber was measured from two directions perpendicular to each other using a laser, and the ratio of the average deviation of the diagonal length calculated from the Pythagorean theorem to the average value was defined as the coefficient of variation in fineness unevenness. The measurement data used was the average value of 50,000 points of data measured at 160 points/second.
Measuring device: LS9006D (manufactured by Keyence Corporation)
Measurement type: Outer diameter Minimum display unit: 0.0001mm
Number of measurement points: 50000
Accumulation cycle: ×100
<繊度の測定方法>
 繊度の測定は、熱可塑性ポリウレタン弾性繊維を垂直に割断し、糸断面を以下の装置・条件を使用して観察し、自動面積測定により糸の総断面積を算出し、単位長さ当たりの繊度を下記式(6):
   d=D×1.1(g/cm)×10 …式(6)
{式中、dは繊度(dtex)、Dは糸の総断面積(cm)である。}
を使用して算出した。
  測定装置:VHX-7000(キーエンス社製)
  使用レンズ:VH-Z100R
  倍率:500倍
  計測:自動面積測定
  抽出方法:明るさ
<ポリウレタン弾性繊維の最大繊度と最小繊度の差の測定方法>
 最大繊度と最小繊度の差の測定は、熱可塑性ポリウレタン弾性繊維を垂直に割断し、糸断面を以下の装置・条件を使用して観察し、自動面積測定により糸の総断面積を算出し、単位長さ当たりの繊度を糸長方向5mm間隔で上記式(6)によって10点算出した際の最大繊度と最小繊度の差から算出した。
  測定装置:VHX-7000(キーエンス社製)
  使用レンズ:VH-Z100R
  倍率:500倍
  計測:自動面積測定
  抽出方法:明るさ
<How to measure fineness>
To measure fineness, thermoplastic polyurethane elastic fibers are cut vertically, the yarn cross section is observed using the following equipment and conditions, and the total cross-sectional area of the yarn is calculated by automatic area measurement, and the fineness per unit length is calculated. The following formula (6):
d=D×1.1(g/cm 3 )×10 6 ...Formula (6)
{where d is the fineness (dtex) and D is the total cross-sectional area (cm 2 ) of the yarn. }
Calculated using.
Measuring device: VHX-7000 (manufactured by Keyence Corporation)
Lens used: VH-Z100R
Magnification: 500x Measurement: Automatic area measurement Extraction method: Brightness <Method for measuring the difference between the maximum and minimum fineness of polyurethane elastic fibers>
To measure the difference between the maximum fineness and the minimum fineness, the thermoplastic polyurethane elastic fiber is cut vertically, the yarn cross section is observed using the following equipment and conditions, and the total cross-sectional area of the yarn is calculated by automatic area measurement. The fineness per unit length was calculated from the difference between the maximum fineness and the minimum fineness when the fineness per unit length was calculated at 10 points using the above formula (6) at intervals of 5 mm in the yarn length direction.
Measuring device: VHX-7000 (manufactured by Keyence Corporation)
Lens used: VH-Z100R
Magnification: 500x Measurement: Automatic area measurement Extraction method: Brightness
<耐熱性の評価方法>
 熱可塑性ポリウレタン弾性繊維を2倍に延伸した状態で保持し、110℃の熱源に押し当てた際に糸切れするまでの時間(熱切断秒数)を耐熱性の指標として評価した。
<Heat resistance evaluation method>
The thermoplastic polyurethane elastic fiber was held in a state of being stretched to twice its original size, and when it was pressed against a heat source of 110° C., the time until the fiber broke (the number of seconds for thermal cutting) was evaluated as an index of heat resistance.
<耐NOxガス黄変性の評価方法>
1.ΔYI値
 熱可塑性ポリウレタン弾性繊維を用いて、JIS-L-0855酸化窒素ガスに対する染色堅牢度試験方法、弱試験方法に準じて黄変性の評価を行った。判定はマクベス測色機(マクベス社製)による黄色度YI値を未処理サンプルYI0と比較して下記式(7):
   ΔYI=YI-YI0 …式(7)
によって求められるΔYI値で評価した。
 ΔYI値が小さいほど黄変しにくく、大きいほど黄変しやすい。
<Evaluation method for NOx gas yellowing resistance>
1. ΔYI value Using thermoplastic polyurethane elastic fibers, yellowing was evaluated according to JIS-L-0855 color fastness test method to nitrogen oxide gas and weak test method. Judgment is made by comparing the yellowness YI value using a Macbeth colorimeter (manufactured by Macbeth) with the untreated sample YI0 using the following formula (7):
ΔYI=YI−YI0…Formula (7)
Evaluation was made using the ΔYI value obtained by.
The smaller the ΔYI value, the less yellowing occurs, and the larger the ΔYI value, the more likely it is to yellow.
2.黄変視認性
 前記1の方法で黄変させた熱可塑性ポリウレタン弾性繊維をカラーコードと比較して、10段階で評価点数をつけた。具体的には、20歳台10人、30歳台~60歳台各2人の計18人に黄変した熱可塑性ポリウレタン弾性繊維の色と最も近いカラーコードをそれぞれ選択してもらい、その平均点を黄変視認性の評価点数とした。使用したカラーコードと評価点は以下の通りであり、評価点が大きいほど黄変しにくいことを示す。
#FFD500:1点
#FFD91A:2点
#FFDD33:3点
#FFE14D:4点
#FFE666:5点
#FFEA80:6点
#FFEE99:7点
#FFF2B3:8点
#FFF7CC:9点
#FFFBE6:10点
2. Yellowing Visibility The thermoplastic polyurethane elastic fibers yellowed by the method 1 above were compared with the color code and evaluated on a 10-point scale. Specifically, a total of 18 people, 10 in their 20s and 2 in their 30s to 60s, were asked to select the color code closest to the color of yellowed thermoplastic polyurethane elastic fibers, and the average The points were taken as the evaluation score for yellowing visibility. The color codes and evaluation scores used are as follows, and the higher the evaluation score, the less likely it is to yellow.
#FFD500: 1 point #FFD91A: 2 points #FFDD33: 3 points #FFE14D: 4 points #FFE666: 5 points #FFEA80: 6 points #FFEE99: 7 points #FFF2B3: 8 points #FFF7CC: 9 points #FFFBE6: 10 points
 ΔYI値と黄変視認性の評価はともに耐NOxガス黄変性の評価である。ΔYI値は人間の視認性の影響を受けず、逆に黄変視認性は人間の視認性の影響を受けるため、同ΔYI値のサンプルの黄変視認性を比較することで、人間の視認性に基づく耐NOxガス黄変性を評価することができる。 Both the ΔYI value and yellowing visibility evaluation are evaluations of NOx gas yellowing resistance. The ΔYI value is not affected by human visibility, and conversely, the yellowing visibility is affected by the human visibility, so by comparing the yellowing visibility of samples with the same ΔYI value, it is possible to determine the human visibility. The NOx gas yellowing resistance can be evaluated based on the following.
[実施例1]
<熱可塑性ポリウレタン樹脂の合成>
 数平均分子量1800のポリテトラメチレンエーテルジオール2400gと、4,4’-ジフェニルメタンジイソシアネート750.78gとを、乾燥窒素雰囲気下、60℃で3時間、攪拌下で反応させて、末端イソシアネートでキャップされたポリウレタンプレポリマーを得た。このポリウレタンプレポリマーに、1,4-ブタンジオール151.20gを添加して、15分撹拌し、粘度2000ポイズ(30℃)のポリウレタンを得た。
 その後、テフロン(登録商標)トレイに払い出し、このポリウレタンをトレイに入れたまま、110℃の熱風オーブン中で16時間アニーリングして熱可塑性ポリウレタン樹脂を得た。
[Example 1]
<Synthesis of thermoplastic polyurethane resin>
2400 g of polytetramethylene ether diol having a number average molecular weight of 1800 and 750.78 g of 4,4'-diphenylmethane diisocyanate were reacted with stirring at 60° C. for 3 hours in a dry nitrogen atmosphere to obtain a terminal capped product with isocyanate. A polyurethane prepolymer was obtained. 151.20 g of 1,4-butanediol was added to this polyurethane prepolymer and stirred for 15 minutes to obtain a polyurethane with a viscosity of 2000 poise (30° C.).
Thereafter, it was dispensed onto a Teflon (registered trademark) tray, and the polyurethane was annealed in a hot air oven at 110° C. for 16 hours while remaining in the tray to obtain a thermoplastic polyurethane resin.
<マスターバッチの作製>
 こうして得られた熱可塑性ポリウレタン樹脂を、ホーライ社製粉砕機UG-280型にて、3mm程度の粉末に粉砕した。粉砕したチップを除湿乾燥機で110℃の温度条件下で水分率100ppmまで乾燥した後、ホッパーにポリウレタン樹脂粉末と水酸化マグネシウムを所定比率で投入し、押出機内で溶融させてストランドとし、温度20℃の水浴に通して冷却を行い、いすず化工機製プラスチック用加工機械SCF-100型でペレタイズして有効成分10wt%の水酸化マグネシウムのマスターバッチを得た。
<Preparation of masterbatch>
The thermoplastic polyurethane resin thus obtained was pulverized into a powder of approximately 3 mm using a UG-280 pulverizer manufactured by Horai. After drying the crushed chips in a dehumidifying dryer at a temperature of 110°C to a moisture content of 100 ppm, polyurethane resin powder and magnesium hydroxide were put into a hopper at a predetermined ratio, melted into strands in an extruder, and heated at a temperature of 20°C. The mixture was cooled in a water bath at 10°C and pelletized using a plastic processing machine SCF-100 manufactured by Isuzu Kakoki to obtain a masterbatch of magnesium hydroxide containing 10 wt% of the active ingredient.
<熱可塑性ポリウレタン弾性繊維の作製>
 熱可塑性ポリウレタン樹脂粉末と水酸化マグネシウムのマスターバッチを重量比で95:5の比率で混合させた水酸化マグネシウム含有ポリウレタン樹脂粉末をヘッドに設置したギアポンプにより計量、加圧し、フィルターでろ過後、ダイの温度210℃で、径0.23mm、60ホールのノズルから620dtexとなる吐出量で、吐出させた。その後、冷風温度15~17℃、冷風風速を0.8~1.0m/sに調節した冷風チャンバーから冷風を吹き出し、繊維に垂直にあてることで、溶融紡糸した。その後、リング式仮撚り機を用いて、マルチフィラメントに撚りを伝播させて、ポリジメチルシロキサンと鉱物油を主成分とする処理剤を付与しながら、紙製の紙管に巻き取り、620dtex/60フィラメントの熱可塑性ポリウレタン弾性繊維の巻糸体を得た。この熱可塑性ポリウレタン弾性繊維に含まれる水酸化マグネシウムは0.50wt%、Mh分率は24%、繊度斑変動係数は4.0%、OH/NCOは1.010、また熱切断秒数は600秒以上、熱可塑性ポリウレタン弾性繊維のΔYI値は8、最大繊度と最小繊度の差は30dtex、流出開始温度は160℃、黄変視認性評価は10点であった。結果を以下の表1にも示す。
<Preparation of thermoplastic polyurethane elastic fiber>
Magnesium hydroxide-containing polyurethane resin powder, which is a mixture of thermoplastic polyurethane resin powder and magnesium hydroxide masterbatch at a weight ratio of 95:5, is weighed and pressurized using a gear pump installed in the head, filtered through a filter, and then passed through a die. The liquid was discharged at a temperature of 210° C. from a nozzle with a diameter of 0.23 mm and 60 holes at a discharge rate of 620 dtex. Thereafter, melt spinning was performed by blowing cold air from a cold air chamber whose temperature was adjusted to 15 to 17°C and the speed of the cold air to 0.8 to 1.0 m/s, and applying it perpendicularly to the fibers. Thereafter, the multifilament is twisted using a ring-type false twisting machine, and wound into a paper tube while applying a treatment agent mainly composed of polydimethylsiloxane and mineral oil to a 620 dtex/60 A spool of filament thermoplastic polyurethane elastic fiber was obtained. Magnesium hydroxide contained in this thermoplastic polyurethane elastic fiber is 0.50wt%, Mh fraction is 24%, fineness variation coefficient is 4.0%, OH/NCO is 1.010, and thermal cutting time is 600%. The thermoplastic polyurethane elastic fiber had a ΔYI value of 8, a difference between the maximum fineness and the minimum fineness of 30 dtex, an outflow start temperature of 160° C., and a yellowing visibility evaluation of 10 points. The results are also shown in Table 1 below.
[実施例2~6]
 ポリウレタン樹脂とマスターバッチの比率を調整して、ポリウレタン弾性繊維に含まれる水酸化マグネシウムの量を増減させた以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表1に示す。
[Examples 2 to 6]
Thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1, except that the ratio of the polyurethane resin and masterbatch was adjusted to increase or decrease the amount of magnesium hydroxide contained in the polyurethane elastic fibers. The results are shown in Table 1 below.
[実施例7~12]
 金属化合物を炭酸マグネシウム(実施例7)、酸化マグネシウム(実施例8)、水酸化カルシウム(実施例9)、炭酸カルシウム(実施例10)、炭酸ナトリウム(実施例11)、炭酸カリウム(実施例12)に変更させた以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表1に示す。
[Examples 7 to 12]
The metal compounds were magnesium carbonate (Example 7), magnesium oxide (Example 8), calcium hydroxide (Example 9), calcium carbonate (Example 10), sodium carbonate (Example 11), and potassium carbonate (Example 12). ) A thermoplastic polyurethane elastic fiber was obtained in the same manner as in Example 1 except that The results are shown in Table 1 below.
[実施例13~17]
 活性水素化合物からなる鎖延長剤をエチレングリコール(実施例13)、1,3-プロパンジオール(実施例14)、1,6-ヘキサンジオール(実施例15)、1,8-オクタンジオール(実施例16)、1,10-デカンジオール(実施例17)に変更させた以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表1に示す。
[Examples 13 to 17]
Chain extenders consisting of active hydrogen compounds were used as ethylene glycol (Example 13), 1,3-propanediol (Example 14), 1,6-hexanediol (Example 15), and 1,8-octanediol (Example 15). 16), thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1 except that 1,10-decanediol (Example 17) was used. The results are shown in Table 1 below.
[実施例18、19]
 メチレンビス(シクロヘキシルイソシアネート)(H12MDI)(実施例18)、1,6-ヘキサメチレンジイソシアネート(HDI)(実施例19)に変更した以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表1に示す。
[Example 18, 19]
Thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1, except that methylene bis(cyclohexyl isocyanate) (H12MDI) (Example 18) and 1,6-hexamethylene diisocyanate (HDI) (Example 19) were used. . The results are shown in Table 1 below.
[実施例20~26]
 ポリマーポリオールとジイソシアネートのモル比を調整して熱可塑性ポリウレタン弾性繊維のMh分率を増減させた以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表1に示す。
[Examples 20 to 26]
Thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1, except that the Mh fraction of the thermoplastic polyurethane elastic fibers was increased or decreased by adjusting the molar ratio of polymer polyol and diisocyanate. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例27~33]
 ポリマーポリオール、ジイソシアネート、ジオールのモル比を調整して熱可塑性ポリウレタン弾性繊維のOH/NCOを変えた以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表2に示す。
[Examples 27 to 33]
A thermoplastic polyurethane elastic fiber was obtained in the same manner as in Example 1, except that the molar ratio of the polymer polyol, diisocyanate, and diol was adjusted to change the OH/NCO of the thermoplastic polyurethane elastic fiber. The results are shown in Table 2 below.
[実施例34~41]
 紡糸時の紡糸温度、紡口径、吐出量、冷却条件、巻取条件を調整して熱可塑性ポリウレタン弾性繊維の繊度斑変動係数を変えた以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表2に示す。
[Examples 34-41]
Thermoplastic polyurethane elastic fibers were produced in the same manner as in Example 1, except that the spinning temperature, spinneret diameter, discharge rate, cooling conditions, and winding conditions during spinning were adjusted to change the variation coefficient of fineness unevenness of the thermoplastic polyurethane elastic fibers. I got it. The results are shown in Table 2 below.
[実施例42~49]
 紡糸時の紡糸温度、紡口径、吐出量、冷却条件、巻取条件を調整して熱可塑性ポリウレタン弾性繊維の繊度差(最大繊度―最小繊度)を変えた以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表2に示す。
[Examples 42 to 49]
The same method as in Example 1 was used except that the spinning temperature, spinneret diameter, discharge rate, cooling conditions, and winding conditions during spinning were adjusted to change the fineness difference (maximum fineness - minimum fineness) of the thermoplastic polyurethane elastic fibers. A thermoplastic polyurethane elastic fiber was obtained. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例50~54]
 ポリマーポリオールの分子量を調整することにより熱可塑性ポリウレタンの分子量を調整し、熱可塑性ポリウレタン弾性繊維の流出開始温度を変えた以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表3に示す。
[Examples 50 to 54]
Thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1, except that the molecular weight of the thermoplastic polyurethane was adjusted by adjusting the molecular weight of the polymer polyol, and the outflow start temperature of the thermoplastic polyurethane elastic fibers was changed. The results are shown in Table 3 below.
[比較例1]
 金属化合物を添加しなかった以外は、実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表3に示す。
[Comparative example 1]
Thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1 except that no metal compound was added. The results are shown in Table 3 below.
[比較例2]
 マスターバッチの添加量を調整して、ポリウレタン弾性繊維に含まれる水酸化マグネシウムの量を10.0wt%に変えた以外は実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表3に示す。
[Comparative example 2]
Thermoplastic polyurethane elastic fibers were obtained in the same manner as in Example 1, except that the amount of masterbatch added was adjusted and the amount of magnesium hydroxide contained in the polyurethane elastic fibers was changed to 10.0 wt%. The results are shown in Table 3 below.
[比較例3~6]
 金属化合物をステアリン酸マグネシウム(比較例3)、ステアリン酸カルシウム(比較例4)、酸化亜鉛(比較例5)、水酸化アルミニウム(比較例6)に変更した以外は、実施例1と同様の方法で熱可塑性ポリウレタン弾性繊維を得た。結果を以下の表3に示す。
[Comparative Examples 3 to 6]
In the same manner as in Example 1, except that the metal compounds were changed to magnesium stearate (Comparative Example 3), calcium stearate (Comparative Example 4), zinc oxide (Comparative Example 5), and aluminum hydroxide (Comparative Example 6). A thermoplastic polyurethane elastic fiber was obtained. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明に係る熱可塑性ポリウレタン弾性繊維は、インナー、ストッキング、コンプレッションウェアなどの衣料、及びギャザー部材やおむつなどの衛生材料に好適に利用可能である。 The thermoplastic polyurethane elastic fiber according to the present invention can be suitably used for clothing such as innerwear, stockings, and compression wear, and sanitary materials such as gather members and diapers.

Claims (14)

  1.  金属水酸化物、金属炭酸塩、及び金属酸化物からなる群から選ばれる少なくとも1つの金属化合物を0.05wt%以上5.00wt%以下で含み、かつ、該金属化合物がアルカリ金属又はアルカリ土類金属を含むことを特徴とする、熱可塑性ポリウレタン弾性繊維。 Contains at least one metal compound selected from the group consisting of metal hydroxides, metal carbonates, and metal oxides in an amount of 0.05 wt% or more and 5.00 wt% or less, and the metal compound is an alkali metal or alkaline earth metal compound. A thermoplastic polyurethane elastic fiber characterized by containing metal.
  2.  前記金属化合物がアルカリ土類金属を含む、請求項1に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to claim 1, wherein the metal compound contains an alkaline earth metal.
  3.  前記アルカリ土類金属がマグネシウムである、請求項2に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to claim 2, wherein the alkaline earth metal is magnesium.
  4.  前記金属化合物が水酸化マグネシウムである、請求項1~3のいずれか1項に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to any one of claims 1 to 3, wherein the metal compound is magnesium hydroxide.
  5.  前記熱可塑性ポリウレタン弾性繊維を構成するポリウレタンは、ポリマーポリオール、ジイソシアネート、及び活性水素化合物からなる鎖延長剤から重合されるポリウレタンである、請求項1~3のいずれか1項に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane according to any one of claims 1 to 3, wherein the polyurethane constituting the thermoplastic polyurethane elastic fiber is a polyurethane polymerized from a chain extender consisting of a polymer polyol, a diisocyanate, and an active hydrogen compound. elastic fiber.
  6.  前記鎖延長剤が分子量60以上120以下のジオールである、請求項5に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to claim 5, wherein the chain extender is a diol with a molecular weight of 60 or more and 120 or less.
  7.  前記ジイソシアネートが4,4’―ジフェニルメタンジイソシアネート(MDI)である、請求項5に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to claim 5, wherein the diisocyanate is 4,4'-diphenylmethane diisocyanate (MDI).
  8.  前記鎖延長剤と前記ジイソシアネートからなるハードセグメントの割合(Mh分率)が20%以上40%以下である、請求項5に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to claim 5, wherein the ratio of the hard segment (Mh fraction) consisting of the chain extender and the diisocyanate is 20% or more and 40% or less.
  9.  前記鎖延長剤と前記ポリマーポリオールの合計モル数が、前記ジイソシアネートのモル数に対し、1.001倍以上1.100倍以下である、請求項5に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to claim 5, wherein the total number of moles of the chain extender and the polymer polyol is from 1.001 times to 1.100 times the number of moles of the diisocyanate.
  10.  前記熱可塑性ポリウレタン弾性繊維の総繊度が160dtex以上2000dtex以下である、請求項1~3のいずれかに記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to any one of claims 1 to 3, wherein the total fineness of the thermoplastic polyurethane elastic fiber is 160 dtex or more and 2000 dtex or less.
  11.  マルチフィラメントである、請求項1~3のいずれか1項に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to any one of claims 1 to 3, which is a multifilament.
  12.  糸長方向における繊度斑変動係数が3.0%以上10.0%以下である、請求項1~3のいずれか1項に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to any one of claims 1 to 3, which has a coefficient of variation in fineness unevenness in the yarn length direction of 3.0% or more and 10.0% or less.
  13.  糸長方向における最大繊度と最小繊度の差が10dtex以上150dtex以下である、請求項1~3のいずれか1項に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to any one of claims 1 to 3, wherein the difference between the maximum fineness and the minimum fineness in the yarn length direction is 10 dtex or more and 150 dtex or less.
  14.  前記熱可塑性ポリウレタン弾性繊維のフローテスターによる流出開始温度が150℃以上220℃以下である、請求項1~3のいずれか1項に記載の熱可塑性ポリウレタン弾性繊維。 The thermoplastic polyurethane elastic fiber according to any one of claims 1 to 3, wherein the thermoplastic polyurethane elastic fiber has a flow start temperature of 150° C. or more and 220° C. or less as measured by a flow tester.
PCT/JP2023/015215 2022-04-22 2023-04-14 Thermoplastic polyurethane elastic fiber WO2023204157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022071050 2022-04-22
JP2022-071050 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023204157A1 true WO2023204157A1 (en) 2023-10-26

Family

ID=88419804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015215 WO2023204157A1 (en) 2022-04-22 2023-04-14 Thermoplastic polyurethane elastic fiber

Country Status (2)

Country Link
TW (1) TW202346668A (en)
WO (1) WO2023204157A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113303A (en) * 2001-10-04 2003-04-18 Toyobo Co Ltd Polyurethane composition and polyurethane elastic fiber
JP2003268629A (en) * 2002-03-12 2003-09-25 Nisshinbo Ind Inc Method for producing ion-radiating polyurethane elastic fiber and ion-radiating polyurethane elastic fiber
JP2005048316A (en) * 2003-07-28 2005-02-24 Nisshinbo Ind Inc Method for producing polyurethane elastic fiber
JP2006028453A (en) * 2004-07-21 2006-02-02 Nisshinbo Ind Inc Polyurethane elastomer and elastic fiber
JP2012132130A (en) * 2010-12-24 2012-07-12 Toray Opelontex Co Ltd Polyurethane elastic yarn and method for producing the same
JP2014095162A (en) * 2012-11-08 2014-05-22 Asahi Kasei Fibers Corp Polyurethane elastic fiber and fiber product thereof
WO2019103013A1 (en) * 2017-11-21 2019-05-31 旭化成株式会社 Polyurethane elastic fiber and wound body thereof
JP2022514184A (en) * 2018-11-12 2022-02-10 ザ ライクラ カンパニー ユーケー リミテッド Spandex fiber with reduced visibility

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113303A (en) * 2001-10-04 2003-04-18 Toyobo Co Ltd Polyurethane composition and polyurethane elastic fiber
JP2003268629A (en) * 2002-03-12 2003-09-25 Nisshinbo Ind Inc Method for producing ion-radiating polyurethane elastic fiber and ion-radiating polyurethane elastic fiber
JP2005048316A (en) * 2003-07-28 2005-02-24 Nisshinbo Ind Inc Method for producing polyurethane elastic fiber
JP2006028453A (en) * 2004-07-21 2006-02-02 Nisshinbo Ind Inc Polyurethane elastomer and elastic fiber
JP2012132130A (en) * 2010-12-24 2012-07-12 Toray Opelontex Co Ltd Polyurethane elastic yarn and method for producing the same
JP2014095162A (en) * 2012-11-08 2014-05-22 Asahi Kasei Fibers Corp Polyurethane elastic fiber and fiber product thereof
WO2019103013A1 (en) * 2017-11-21 2019-05-31 旭化成株式会社 Polyurethane elastic fiber and wound body thereof
JP2022514184A (en) * 2018-11-12 2022-02-10 ザ ライクラ カンパニー ユーケー リミテッド Spandex fiber with reduced visibility

Also Published As

Publication number Publication date
TW202346668A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6133254B2 (en) 2 component spandex
JP5168401B2 (en) Polyurethane elastic yarn and method for producing the same
JP5467466B2 (en) Polyurethane elastic yarn and method for producing the same
US9567694B2 (en) Elastic fabric comprising a polyurethane elastic fiber made from a polyether based polyol
TWI610957B (en) Polyurethane elastic yarn and production method thereof
MXPA05014237A (en) Melt spun monofilament or elastic tape and process.
JP5168672B2 (en) Polyurethane elastic yarn and method for producing the same
TWI758322B (en) Melt spun multifilaments based on thermoplastic polyurethane, their production and use
WO2018066592A1 (en) Method for producing polyurethane elastic fiber
KR20130132937A (en) Elastomer resins, fibers and fabrics thereof, and uses thereof
WO2008075605A1 (en) Polyurethane elastic yarn and method for production thereof
JP7467648B2 (en) Polyurethane elastic fiber, and gathered member and sanitary material containing same
KR20180014766A (en) Polyurethane fibers comprising copolymer polyols
JP5659781B2 (en) Polyurethane elastic yarn and method for producing the same
WO2023204157A1 (en) Thermoplastic polyurethane elastic fiber
JP3826377B2 (en) Polyurethane yarn and method for producing the same
JP7470229B1 (en) Dope additives and fibers
JP5141975B2 (en) Polyurethane elastic yarn and method for producing the same
JP2023097202A (en) Thermoplastic polyurethane elastic fiber, wound yarn body containing the same, and sanitary material
EP4232622A1 (en) Polyurethane urea elastic fiber and production method therefor
JP6075036B2 (en) Polyurethane elastic yarn and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791805

Country of ref document: EP

Kind code of ref document: A1