WO2023204052A1 - Floating body and carbon dioxide recovery method - Google Patents

Floating body and carbon dioxide recovery method Download PDF

Info

Publication number
WO2023204052A1
WO2023204052A1 PCT/JP2023/014382 JP2023014382W WO2023204052A1 WO 2023204052 A1 WO2023204052 A1 WO 2023204052A1 JP 2023014382 W JP2023014382 W JP 2023014382W WO 2023204052 A1 WO2023204052 A1 WO 2023204052A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
liquefied
gas
floating body
combustible gas
Prior art date
Application number
PCT/JP2023/014382
Other languages
French (fr)
Japanese (ja)
Inventor
和也 安部
弘友希 ▲柳▼澤
晋介 森本
伸一 川又
諒平 久々津
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Publication of WO2023204052A1 publication Critical patent/WO2023204052A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/32Arrangements of propulsion power-unit exhaust uptakes; Funnels peculiar to vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like

Definitions

  • the present disclosure relates to a floating body and a carbon dioxide recovery method.
  • This application claims priority to Japanese Patent Application No. 2022-068232 filed in Japan on April 18, 2022, the contents of which are incorporated herein.
  • Patent Document 1 states that some of the fuel for combustion devices such as main engines and generators is reduced. As such, a technology has been proposed that uses boil-off gas of liquefied combustible gas such as liquefied natural gas stored in cargo tanks. Furthermore, in order to reduce carbon dioxide emissions, Patent Document 1 describes a technology that separates carbon dioxide contained in exhaust gas and refrigerates it as liquid carbon dioxide or solid carbon dioxide using the cold energy of liquefied natural gas. is proposed.
  • the floating body includes a combustion device that operates using liquefied combustible gas as fuel and discharges exhaust gas, a liquefied combustible gas storage section that stores the liquefied combustible gas, and a liquefied combustible gas a fuel supply line that supplies the liquefied combustible gas from the gas storage section to the combustion device; an absorption tower that absorbs carbon dioxide contained in the exhaust gas into an absorption liquid; and an absorption tower that absorbs the carbon dioxide.
  • the carbon dioxide liquefaction device includes a carbon dioxide liquefaction device that liquefies carbon dioxide discharged from the carbon dioxide recovery device as a source, and a liquefied carbon dioxide storage section that stores the carbon dioxide liquefied by the carbon dioxide liquefaction device.
  • the carbon dioxide recovery method is a carbon dioxide recovery method for recovering carbon dioxide from exhaust gas discharged by burning a liquefied combustible gas, the carbon dioxide contained in the exhaust gas. a step of separating gaseous carbon dioxide from the absorbing liquid that has absorbed the carbon dioxide; and a step of separating gaseous carbon dioxide from the absorbing liquid using the liquefied flammable gas as a cold heat source.
  • the method includes a step of liquefying the carbon dioxide, and a step of storing the liquefied carbon dioxide.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a floating body according to an embodiment of the present disclosure. It is a flow chart of a carbon dioxide recovery method in a first embodiment of the present disclosure.
  • 1 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body according to a first embodiment of the present disclosure. It is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body in a second embodiment of the present disclosure. It is a figure showing a schematic structure of a carbon dioxide recovery system provided in a floating body in a third embodiment of the present disclosure. It is a figure showing a schematic structure of a carbon dioxide recovery system provided in a floating body in a fourth embodiment of the present disclosure.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a floating body of this embodiment.
  • the floating body 1A includes a floating body main body 2, a combustion device 9, a carbon dioxide recovery system 10A (see FIG. 3), a liquefied carbon dioxide storage section 11, and a liquefied combustible gas. It includes at least a storage section 21, a fuel supply line 22, and a vaporizer 23.
  • the floating body 1A of the present embodiment will be described as an example of a ship that can be navigated by a main engine, but is not limited to a ship as long as it is a floating body that is equipped with at least a combustion device 9 that uses liquefied combustible gas F as fuel.
  • the type of ship is not limited to a specific ship type, and examples thereof include a liquefied gas carrier, a ferry, a RORO ship, a car carrier, and a passenger ship.
  • Examples of the floating body 1A that is not a ship include FSU (Floating Storage Unit), FSRU (Floating Storage and Regasification Unit), and the like.
  • the floating body 2 has a pair of sides 3A and 3B forming its outer shell, a bottom (not shown), and an upper deck 5.
  • the sides 3A and 3B have a pair of side skins forming port and starboard sides, respectively.
  • the bottom of the ship has a bottom shell plate that connects these sides 3A and 3B.
  • the outer shell of the floating body 2 has a U-shape in a cross section perpendicular to the bow and stern direction Da due to the pair of sides 3A, 3B and the bottom.
  • the upper deck 5 illustrated in this embodiment is a full deck exposed to the outside.
  • An upper structure 7 having a living area is formed on the upper deck 5 on the stern 2b side of the floating body 2.
  • a cargo loading section 8 (in other words, a cargo hold) is formed closer to the bow 2a than the upper structure 7.
  • the positions of the superstructure 7 and the cargo loading section 8 are merely examples; for example, the superstructure 7 may be arranged on the bow 2a side of the floating body 2, and the cargo loading section 8 may be arranged on the stern 2b side.
  • the combustion device 9 is arranged within the floating body body 2.
  • the combustion device 9 exhibits a required function by burning the liquefied combustible gas F.
  • Examples of the combustion device 9 include a main engine, a generator, and a boiler.
  • the main engine is an engine (internal combustion engine) that uses liquefied combustible gas F as fuel, and exerts propulsive force for propelling the floating body body 2.
  • the generator includes an engine (internal combustion engine) that uses liquefied combustible gas F as fuel, and generates electric power used within the floating body body 2 by the driving force of the engine.
  • the boiler generates steam used within the floating body body 2 by burning the liquefied combustible gas F.
  • FIG. 3 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body according to the first embodiment of the present disclosure.
  • the liquefied carbon dioxide storage section 11 is a tank that stores liquefied carbon dioxide recovered by the carbon dioxide recovery system 10A.
  • the liquefied carbon dioxide storage section 11 is configured to be able to store carbon dioxide in a liquid state.
  • the liquefied combustible gas storage section 21 stores liquefied combustible gas F.
  • the liquefied combustible gas F of this embodiment is a fuel used in the floating body 1A, and is burned in the combustion device 9. That is, the liquefied combustible gas storage section 21 is a fuel tank for storing fuel.
  • the liquid phase of the liquefied combustible gas F stored in the liquefied combustible gas storage section 21 has a lower temperature than the liquid phase of carbon dioxide C stored in the liquefied carbon dioxide storage section 11 .
  • Examples of the liquefied combustible gas F include liquefied natural gas (LNG), methane, and ethane. In this embodiment, a case where liquefied natural gas is used as the liquefied combustible gas F will be described as an example.
  • the fuel supply line 22 supplies the liquefied combustible gas F from the liquefied combustible gas storage section 21 to the combustion device 9 .
  • the vaporizer 23 is provided in the middle of the fuel supply line 22 and vaporizes the liquefied combustible gas F.
  • Combustible gas G obtained by vaporizing the liquefied combustible gas F is introduced into the combustion device 9 and burned.
  • the carbon dioxide recovery system 10A recovers carbon dioxide contained in the exhaust gas E of the combustion device 9 and liquefies it.
  • the carbon dioxide recovery system 10A includes a carbon dioxide recovery device 31, a carbon dioxide liquefaction device 32, and a liquefied carbon dioxide storage section 11.
  • the carbon dioxide recovery device 31 recovers carbon dioxide from the exhaust gas E discharged from the combustion device 9.
  • the carbon dioxide recovery device 31 includes an exhaust gas cooling tower 34, an absorption tower 35, and a regeneration tower 36.
  • the exhaust gas cooling tower 34 cools the exhaust gas E discharged from the combustion device 9.
  • the exhaust gas cooling tower 34 in this embodiment stores the exhaust gas E discharged from the combustion device 9 in seawater around the floating body 2 or in a fresh water tank (not shown) provided in the floating body 2. It is cooled (for example, cooled to about 40 degrees Celsius) using fresh water as a cold heat source. Note that the exhaust gas cooling tower 34 may be provided as necessary, and may be omitted, for example, when the temperature of the exhaust gas introduced into the absorption tower 35 is sufficiently lowered.
  • the absorption tower 35 causes an absorption liquid (not shown) to absorb carbon dioxide contained in the exhaust gas E.
  • the absorption tower 35 causes the absorption liquid to fall from the upper part of the absorption tower 35, and contacts the exhaust gas E introduced into the absorption tower 35, thereby causing the absorption liquid to absorb carbon dioxide contained in the exhaust gas E.
  • the exhaust gas E after carbon dioxide has been absorbed into the absorption liquid is discharged from the top of the absorption tower 35 and introduced into the exhaust gas cleaning tower 38 .
  • the exhaust gas cleaning tower 38 causes clean water to fall from the upper part of the exhaust gas cleaning tower 38 to wash away the absorption liquid contained in the exhaust gas E that has exited the absorption tower 35 .
  • the exhaust gas E exiting the exhaust gas cleaning tower 38 is led to, for example, an exhaust funnel (not shown) provided on the floating body 1A, and is released into the atmosphere.
  • Examples of liquids for absorbing carbon dioxide by chemical absorption include MEA (monoethanolamine).
  • the regeneration tower 36 separates gaseous carbon dioxide from the absorption liquid that has absorbed carbon dioxide in the absorption tower 35. More specifically, the regeneration tower 36 heats the absorption liquid sent into the regeneration tower 36 from the lower part of the absorption tower 35 using steam generated in a boiler (not shown) provided in the floating body body 2. do. As a result, gaseous carbon dioxide is separated from the absorption liquid in the regeneration tower 36 , and the separated gaseous carbon dioxide is introduced into the carbon dioxide liquefaction device 32 via the gaseous carbon dioxide introduction line 37 . On the other hand, the absorption liquid from which gaseous carbon dioxide has been separated and regenerated is returned to the absorption tower 35 and reused.
  • the carbon dioxide liquefaction device 32 liquefies gaseous carbon dioxide discharged from the carbon dioxide recovery device 31.
  • the carbon dioxide liquefier 32 includes a compressor 41 that compresses gaseous carbon dioxide, and a liquefier 42 that liquefies the gaseous carbon dioxide compressed by the compressor 41.
  • the carbon dioxide liquefaction device 32 of this embodiment uses the liquefied combustible gas F supplied from the liquefied combustible gas storage section 21 to the combustion device 9 via the fuel supply line 22 as a cold source used in the liquefier 42. . That is, the liquefier 42 is provided in the middle of the fuel supply line 22.
  • the carbon dioxide liquefied by the liquefier 42 is introduced into the liquefied carbon dioxide storage section 11 via the liquefied carbon dioxide discharge line 43 and is stored therein.
  • the temperature of the liquefied combustible gas F after being used as a cold heat source in the liquefier 42 rises higher than the liquid phase of the liquefied combustible gas F stored in the liquefied combustible gas storage section 21, but it is still a liquid phase.
  • the state includes.
  • the above-mentioned vaporizer 23 is provided in the fuel supply line 22 closer to the combustion device 9 than the liquefier 42, and heats the liquefied combustible gas F after being used as a cold heat source. It is vaporized.
  • the vaporizer 23 of this embodiment heats the liquefied combustible gas F using a heat medium such as steam from the boiler described above, for example.
  • FIG. 2 is a flowchart of the carbon dioxide recovery method in the first embodiment of the present disclosure.
  • step S01 carbon dioxide contained in the exhaust gas E is absorbed into an absorption liquid.
  • exhaust gas E discharged from a combustion device operating using liquefied combustible gas F as fuel is introduced into the absorption tower 35.
  • the gaseous carbon dioxide contained in the exhaust gas E is absorbed into the absorption liquid using the absorption tower 35.
  • gaseous carbon dioxide is separated from the absorption liquid in which carbon dioxide has been absorbed (step S02).
  • the absorption liquid that has absorbed carbon dioxide is introduced into the regeneration tower 36 to separate gaseous carbon dioxide from the absorption liquid.
  • the gaseous carbon dioxide separated from the absorption liquid is liquefied using the liquefied combustible gas as a cold heat source (step S03).
  • gaseous carbon dioxide is compressed by the compressor 41, and the compressed gaseous carbon dioxide is introduced into the liquefier 42.
  • the liquefier 42 exchanges heat with the liquefied combustible gas F, which is supplied as fuel from the liquefied combustible gas storage section 21 to the combustion device 9 via the fuel supply line 22, to liquefy the gaseous carbon dioxide.
  • the liquefied carbon dioxide is stored (step S04).
  • carbon dioxide liquefied by the liquefier 42 is stored in the liquefied carbon dioxide storage section 11 via the liquefied carbon dioxide discharge line 43.
  • gaseous carbon dioxide contained in the exhaust gas E discharged from the floating body body 2 can be efficiently separated by the absorption tower 35 and the regeneration tower 36 of the carbon dioxide recovery device 31. . Therefore, the energy required to separate and liquefy carbon dioxide from the exhaust gas E can be suppressed, and carbon dioxide can be efficiently recovered. Furthermore, since the volume of carbon dioxide can be reduced by liquefying the carbon dioxide separated by the carbon dioxide recovery device 31 in the carbon dioxide liquefaction device 32, the size of the container for storing the recovered carbon dioxide can be avoided. It can be suppressed.
  • the liquefied combustible gas F used as a cold source for the carbon dioxide liquefaction device 32 is further introduced into the vaporization device 23.
  • the liquefied combustible gas F which is the fuel for the combustion device 9
  • the energy required to vaporize the liquefied combustible gas F in the vaporizer 23 can be reduced, making it possible to recover carbon dioxide even more efficiently.
  • FIG. 4 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body in a second embodiment of the present disclosure. Similar to the floating body 1A of the first embodiment, the floating body 1B in the second embodiment includes a floating body main body 2, a combustion device 9, a carbon dioxide recovery system 10B (see FIG. 4), a liquefied carbon dioxide storage section 11, It includes at least a liquefied combustible gas storage section 21, a fuel supply line 22, and a vaporizer 23.
  • the carbon dioxide recovery system 10B of this second embodiment recovers and liquefies carbon dioxide contained in the exhaust gas E of the combustion device 9.
  • the carbon dioxide recovery system 10B includes a carbon dioxide recovery device 31, a carbon dioxide liquefaction device 32, and a liquefied carbon dioxide storage section 11.
  • the carbon dioxide recovery device 31 recovers carbon dioxide from the exhaust gas E discharged from the combustion device 9.
  • the carbon dioxide recovery device 31 includes an exhaust gas cooling tower 34, an absorption tower 35, and a regeneration tower 36.
  • the exhaust gas cooling tower 134 cools the exhaust gas E discharged from the combustion device 9, similar to the exhaust gas cooling tower 34 of the first embodiment.
  • the exhaust gas cooling tower 134 in this second embodiment uses the liquefied combustible gas F used as a cold source by the carbon dioxide liquefaction device 32 as a cold source to cool the exhaust gas E discharged from the combustion device 9 (e.g. (cool down to a certain degree).
  • the exhaust gas E cooled by the exhaust gas cooling tower 134 is introduced into the absorption tower 35. Then, the carbon dioxide absorbed into the absorption liquid in the absorption tower 35 is heated in the regeneration tower 36, separated from the absorption liquid, and introduced into the carbon dioxide liquefaction device 32.
  • the carbon dioxide liquefaction device 32 includes a compressor 41 and a liquefier 42 as in the first embodiment, and the liquefied combustible gas storage section 21 is connected to the liquefied combustible gas storage section 21 by the fuel supply line 22 as a cold heat source used in the liquefier 42.
  • the liquefied combustible gas F supplied to the combustion device 9 is utilized.
  • the fuel supply line 22 supplies the liquefied combustible gas F from the liquefied combustible gas storage section 21 to the combustion device 9.
  • the fuel supply line 22 of this second embodiment is connected to an exhaust gas cooling tower 130 in order to further use the liquefied combustible gas F used as a cold source in the liquefier 42 of the carbon dioxide liquefaction device 32 as a cold source. leading to.
  • the fuel supply line 22 guides the liquefied combustible gas F used as a cold source in the exhaust gas cooling tower 134 to the vaporizer 23 .
  • the vaporizer 23 of this second embodiment is provided in the fuel supply line 22 closer to the combustion device 9 than the exhaust gas cooling tower 134 .
  • the vaporizer 23 of this second embodiment is also provided in the middle of the fuel supply line 22 and vaporizes the liquefied combustible gas F, similarly to the first embodiment.
  • Combustible gas G obtained by vaporizing the liquefied combustible gas F is introduced into the combustion device 9 and burned as fuel.
  • gaseous carbon dioxide contained in the exhaust gas E discharged from the floating body body 2 is transferred to the absorption tower 35 and the regeneration tower 36 of the carbon dioxide recovery device 31.
  • This allows efficient separation. Therefore, the energy required to separate and liquefy carbon dioxide from the exhaust gas E can be suppressed, and carbon dioxide can be efficiently recovered.
  • the volume of carbon dioxide can be reduced by liquefying the carbon dioxide separated by the carbon dioxide recovery device 31 in the carbon dioxide liquefaction device 32, the size of the container for storing the recovered carbon dioxide can be avoided. It can be suppressed.
  • the liquefied combustible gas F used as a cold source for the carbon dioxide liquefier 32 is further used as a cold source for the exhaust gas cooling tower 34 and then introduced into the vaporizer 23.
  • the liquefied combustible gas F which is the fuel for the combustion device 9
  • the energy required to vaporize the liquefied combustible gas F in the vaporizer 23 can be It can be further reduced.
  • the third embodiment described below differs in configuration from the second embodiment in that the evaporated gas from which liquefied carbon dioxide has evaporated can be re-liquefied. Therefore, while referring to FIG. 1 and attaching the same reference numerals to the same parts as in the second embodiment, the same parts will be described with reference to FIG. 1, and redundant explanation will be omitted.
  • FIG. 5 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body in a third embodiment of the present disclosure.
  • the floating body 1C in the third embodiment like the floating body 1B in the second embodiment, includes a floating body body 2, a combustion device 9, and a carbon dioxide recovery system 10C (see FIG. 5).
  • a liquefied carbon dioxide storage section 11 a liquefied combustible gas storage section 21 , a fuel supply line 22 , and a vaporization device 23 .
  • the floating body 1C of the third embodiment includes a cargo tank 51 provided in the cargo loading section 8, an evaporative gas introduction line 52, a reliquefied carbon dioxide discharge line 53, and valve devices 54, 55, 59, and 57. , is equipped with.
  • the cargo tank 51 stores liquefied carbon dioxide as cargo. Inside the cargo tank 51, a gas phase exists in the upper part and a liquid phase exists in the lower part.
  • the gas phase mainly consists of evaporated gas (natural BOG) B that is evaporated due to natural heat input into the cargo tank 51.
  • the evaporative gas introduction line 52 guides the vapor phase gas (evaporative gas B) in the cargo tank 51 to the compressor 41 of the carbon dioxide recovery system 10C.
  • the evaporated gas introduction line 52 of this embodiment is connected to a gaseous carbon dioxide introduction line 37 that guides gaseous carbon dioxide discharged from the carbon dioxide recovery device 31 to the carbon dioxide liquefaction device 32 . That is, the evaporated gas B in the cargo tank 51 can be introduced into the carbon dioxide liquefaction device 32 via the evaporated gas introduction line 52 and the gaseous carbon dioxide introduction line 37.
  • the evaporated gas B in the cargo tank 51 is compressed by the compressor 41 of the carbon dioxide liquefaction device 32, and then cooled by the liquefier 42 using the liquefied combustible gas F as a cold source and re-liquefied.
  • the reliquefied carbon dioxide discharge line 53 introduces the liquefied carbon dioxide reliquefied by the carbon dioxide liquefaction device 32 into the cargo tank 51.
  • the reliquefied carbon dioxide discharge line 53 of this embodiment is branched and connected to the liquefied carbon dioxide discharge line 43.
  • the valve devices 54 and 55 are capable of switching the gaseous carbon dioxide introduced into the carbon dioxide liquefaction device 32 into carbon dioxide from the carbon dioxide recovery device 31 and carbon dioxide from the cargo tank 51. There is. Further, the valve devices 56 and 57 are capable of switching the location where the liquefied carbon dioxide liquefied by the carbon dioxide liquefier 32 is stored. That is, the liquefied carbon dioxide liquefied by the carbon dioxide liquefier 32 is stored in either the cargo tank 51 or the liquefied carbon dioxide storage section 11 .
  • the evaporated gas B generated in the cargo tank 51 can be reliquefied by the carbon dioxide liquefaction device 32 of the carbon dioxide recovery system 10C. can. Therefore, since there is no need to provide a dedicated reliquefaction device for reliquefying the evaporated gas B, it is possible to suppress the floating body 1 from increasing in size. Also, when re-liquefying the evaporated gas B, the liquefied combustible gas F can be used as a cold source, so further energy savings can be achieved.
  • liquefied carbon dioxide obtained by re-liquefying the evaporated gas B can be returned to the cargo tank 51. Furthermore, liquefied carbon dioxide collected and liquefied by the carbon dioxide recovery device 31 can be stored in the liquefied carbon dioxide storage section 11 . Therefore, if the liquefied carbon dioxide obtained by re-liquefying the evaporated gas B and the liquefied carbon dioxide recovered and liquefied by the carbon dioxide recovery device 31 have different compositions, the liquefied carbon dioxide recovered from the exhaust gas E may be added to the liquefied carbon dioxide as cargo. It is possible to suppress the contamination of liquefied carbon dioxide that has been liquefied.
  • the liquefied carbon dioxide discharged from the carbon dioxide liquefaction device 32 is stored separately in the cargo tank 51 and the liquefied carbon dioxide storage section 11, but the liquefied carbon dioxide
  • the liquefied carbon dioxide For example, by providing only one of the storage section 11 and the cargo tank 51, all of the liquefied carbon dioxide discharged from the carbon dioxide liquefaction device 32 is transferred to either the liquefied carbon dioxide storage section 11 or the cargo tank 51. It is also possible to store only the
  • the evaporated gas B generated in the cargo tank 51 is reliquefied by the carbon dioxide liquefaction device 32 of the carbon dioxide recovery system 10C.
  • the evaporated gas B is not limited to that generated in the cargo tank 51.
  • the evaporative gas B generated in the liquefied carbon dioxide storage section 11 is passed through the evaporative gas introduction line 152 to the carbon dioxide liquefier. 32 (the same applies to the fourth embodiment described later).
  • the evaporative gas B introduced into the carbon dioxide liquefaction device 32 may be selectable from the evaporative gas B of the cargo tank 51 and the evaporative gas B of the liquefied carbon dioxide storage section 11.
  • the cargo tank 51 and the evaporative gas introduction line 52 may be omitted, and the evaporative gas B generated in the liquefied carbon dioxide storage section 11 and the gaseous carbon dioxide discharged from the carbon dioxide recovery device 31 may be replaced with carbon dioxide. It may also be configured so that it can be introduced into the liquefaction device 32.
  • FIG. 6 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body in a fourth embodiment of the present disclosure.
  • the floating body 1D in the fourth embodiment like the floating body 1C in the third embodiment, includes a floating body main body 2, a combustion device 9, and a carbon dioxide recovery system 10D (see FIG. 6). , a liquefied carbon dioxide storage section 11 , a liquefied combustible gas storage section 21 , a fuel supply line 22 , and a vaporization device 23 .
  • the floating body 1D of the fourth embodiment also includes a cargo tank 51 provided in the cargo loading section 8, an evaporative gas introduction line 52, a reliquefied carbon dioxide discharge line 53, valve devices 56 and 57, and an introduction adjustment section. 61.
  • the introduction adjustment unit 61 adjusts the amount of carbon dioxide introduced from the carbon dioxide recovery device 31 to the carbon dioxide liquefaction device 32 and the amount of carbon dioxide introduced to the carbon dioxide liquefaction device 32 through the evaporative gas introduction line 52. do.
  • the introduction adjustment section 61 includes an inlet detection section 62, an outlet detection section 63, and a control valve 64.
  • the inlet detection unit 62 detects at least the temperature at the inlet of the compressor 41 and outputs the detection result to the control valve 64.
  • the outlet detection unit 63 detects at least the temperature at the outlet of the compressor 41 and outputs the detection result to the control valve 64.
  • the inlet detecting section 62 and the outlet detecting section 63 in this fourth embodiment detect pressure as well as temperature.
  • the control valve 64 adjusts the opening degree of the flow path in the evaporated gas introduction line 52 based on the detection results of the inlet detection section 62 and the outlet detection section 63. Furthermore, the control valve 64 adjusts the opening degree of the flow path in the gaseous carbon dioxide introduction line 37 based on the detection results of the inlet detection section 62 and the outlet detection section 63.
  • the control valve 64 controls the carbon dioxide introduced from the carbon dioxide recovery device 31 to the carbon dioxide liquefaction device 32 and the evaporated gas introduction line 52 so that the liquefaction of carbon dioxide carried out in the carbon dioxide liquefaction device 32 becomes optimally efficient. It is possible to adjust the mixing ratio at which carbon dioxide is mixed with the carbon dioxide introduced into the carbon dioxide liquefaction device 32.
  • a three-way flow rate adjustment valve is illustrated as the control valve 64, the control valve 64 is not limited to a three-way valve.
  • the introduction adjustment unit 61 suppresses the discharge temperature at the outlet of the compressor 41 from increasing more than necessary due to the high temperature of the carbon dioxide at the inlet of the compressor 41, and also suppresses the carbon dioxide at the inlet of the compressor 41. This also prevents the filling efficiency of the compressor 41 from decreasing due to an excessive rise in temperature. Further, the introduction adjustment section 61 detects the pressure at the inlet and the pressure at the outlet of the compressor 41 to set the pressure at the outlet of the compressor 41 to a desired pressure and to prevent the compression ratio of the compressor 41 from becoming excessive. In addition, the pressure of carbon dioxide on the inlet side is adjusted.
  • the carbon dioxide discharged from the regeneration tower 36 and flowing through the gaseous carbon dioxide introduction line 37 is, for example, at room temperature or slightly warmer than room temperature.
  • carbon dioxide discharged from the cargo tank 51 and flowing through the evaporative gas introduction line 52 has a temperature of about -20°C to -30°C, for example.
  • the gaseous carbon dioxide discharged from the cargo tank 51 is mixed with the carbon dioxide flowing through the gaseous carbon dioxide introduction line 37, so that the carbon dioxide that is heat exchanged in the liquefier 42 is The temperature difference between the carbon and the liquefied combustible gas F is increased to increase heat exchange efficiency.
  • the above-mentioned mixing ratio at which liquefaction in the liquefier 42 becomes optimally efficient can be determined in advance based on experiments, simulations, and the like.
  • the above-mentioned opening degree adjustment of the control valve 64 is performed, for example, by using a map of the flow rates of the evaporated gas introduction line 52 and the gaseous carbon dioxide introduction line 37 with respect to the detection results of the inlet detection section 62 and the outlet detection section 63 obtained through experiments, simulations, etc. , a table, a mathematical formula, etc.
  • a liquefied carbon dioxide storage section 11 and a cargo tank 51 are provided, and it is possible to distribute and store carbon dioxide liquefied by the liquefier 42 in each.
  • An example of how to allocate carbon dioxide to the liquefied carbon dioxide storage section 11 and the cargo tank 51 is to store liquefied carbon dioxide in the one with a larger free capacity.
  • only one of the liquefied carbon dioxide storage section 11 and the cargo tank 51 is provided, and for example, all of the liquefied carbon dioxide discharged from the carbon dioxide liquefaction device 32 is stored.
  • the liquefied carbon dioxide may be stored only in either the liquefied carbon dioxide storage section 11 or the cargo tank 51.
  • the evaporated gas B of the liquefied carbon dioxide storage section 11 may be introduced into the carbon dioxide liquefier 32.
  • the evaporated gas B generated in the cargo tank 51 can be re-liquefied by the carbon dioxide liquefaction device 32 of the carbon dioxide recovery system 10D. can. Therefore, since there is no need to provide a dedicated reliquefaction device for reliquefying the evaporated gas B, it is possible to suppress the floating body 1 from increasing in size. Also, when re-liquefying the evaporated gas B, the liquefied combustible gas F can be used as a cold source, so further energy savings can be achieved.
  • the evaporated gas B of the cargo tank 51 and the gaseous carbon dioxide discharged from the carbon dioxide recovery device 31 can be mixed and then introduced into the carbon dioxide liquefaction device 32, the discharge temperature at the outlet of the compressor 41 can be adjusted to improve the heat exchange efficiency in the liquefier 42, and the temperature at the inlet of the compressor 41 can be adjusted to improve the filling efficiency of the compressor 41. Therefore, the efficiency of liquefying carbon dioxide can be increased.
  • the present disclosure is not limited to the configurations of the embodiments described above, and design changes can be made without departing from the gist thereof.
  • the floating bodies 1A, 1B, 1C, and 1D are explained using ships as an example, but for example, floating bodies such as FSU (Floating Storage Unit), FSRU (Floating Storage and Regasification Unit), etc. Good too.
  • the inlet detection section 62 and the outlet detection section 63 each detect pressure, but the inlet detection section 62 and the outlet detection section 63 are designed to detect only temperature. You can also do this.
  • the floating bodies 1A, 1B, 1C, and 1D include a combustion device 9 that operates using liquefied combustible gas F as fuel and discharges exhaust gas E, and a liquefied combustible gas that stores the liquefied combustible gas F.
  • a carbon dioxide recovery device 31 includes an absorption tower 35 that absorbs the carbon dioxide into carbon dioxide, and a regeneration tower 36 that separates gaseous carbon dioxide from the absorption liquid that has absorbed the carbon dioxide in the absorption tower 35, and the fuel supply line 22.
  • a carbon dioxide liquefaction device 32 that liquefies carbon dioxide discharged from the carbon dioxide recovery device 31 using the liquefied combustible gas F supplied from the liquefied combustible gas storage section 21 to the combustion device 9 as a cold heat source;
  • a liquefied carbon dioxide storage section 11 that stores carbon dioxide liquefied by a carbon dioxide liquefaction device 32 is provided.
  • floating bodies include ships such as liquefied gas carriers, ferries, RORO ships, car carriers, passenger ships, FSUs (Floating Storage Units), FSRUs (Floating Storage and Regasification Units), and the like.
  • the combustion device 9 include an engine (internal combustion engine) for a main engine or a generator, and a boiler.
  • Examples of the liquefied combustible gas F include liquefied natural gas, methane, ethane, and hydrogen.
  • the floating body is the floating body of (1), and is connected to the fuel supply line 22 on the side of the combustion device 9 rather than the carbon dioxide liquefaction device 32 in the fuel supply line 22.
  • a vaporizer 23 is provided to vaporize the liquefied combustible gas F used as a cold source in the carbon dioxide liquefaction device 32.
  • the energy required to vaporize the liquefied combustible gas F in the vaporizer 23 can be reduced, making it possible to recover carbon dioxide even more efficiently.
  • the floating body is the floating body of (2)
  • the carbon dioxide recovery device 31 further includes an exhaust gas cooling tower 34 that cools the exhaust gas E discharged from the combustion device 9.
  • the exhaust gas cooling tower 34 cools the exhaust gas E using the liquefied combustible gas F used as a cold source by the carbon dioxide liquefaction device 32 as a cold source
  • the vaporizer 23 cools the exhaust gas E using the liquefied combustible gas F used as a cold source by the carbon dioxide liquefaction device 32.
  • the liquefied combustible gas F used as a cold heat source is vaporized.
  • the liquefied combustible gas F which is the fuel for the combustion device 9
  • the liquefied combustible gas F can be heated before being introduced into the vaporizer 23, so that the energy required to vaporize the liquefied combustible gas F in the vaporizer 23 can be It can be further reduced.
  • the floating body is any one of (1) to (3), and includes a cargo tank 51 that stores liquefied carbon dioxide as a cargo and carbon dioxide generated in the cargo tank 51.
  • the evaporative gas introduction line 52 introduces the evaporated gas B into the carbon dioxide liquefaction device 32, and the evaporative gas introduction line 52 introduces the carbon dioxide introduced from the carbon dioxide recovery device 31 into the carbon dioxide liquefaction device 32.
  • the carbon dioxide liquefier 32 includes a valve device that switches between carbon dioxide and carbon dioxide introduced into the carbon dioxide liquefaction device 32. This eliminates the need to provide a dedicated reliquefaction device for reliquefying the evaporated gas B, so it is possible to suppress the increase in size of the floating bodies 1C and 1D.
  • the floating body is the floating body of (4), in which carbon dioxide is introduced into the carbon dioxide liquefaction device 32 through the evaporative gas introduction line 52 and liquefied in the carbon dioxide liquefaction device 32.
  • a reliquefied carbon dioxide discharge line 53 is provided for returning carbon to the cargo tank 51.
  • liquefied carbon dioxide obtained by reliquefying the evaporated gas B can be returned to the cargo tank 51.
  • the floating body is any one of (1) to (3), and includes a cargo tank 51 that stores liquefied carbon dioxide as a cargo and carbon dioxide generated in the cargo tank 51.
  • the carbon dioxide is removed from the carbon dioxide recovery device 31 based on the temperature of the carbon dioxide at least at the inlet of the carbon dioxide liquefaction device 32.
  • the carbon dioxide liquefier 32 includes an introduction adjustment unit 61 that adjusts a mixing ratio for mixing carbon dioxide introduced into the liquefaction device 32 and carbon dioxide introduced into the carbon dioxide liquefaction device 32 through the evaporative gas introduction line 52. Thereby, the heat exchange efficiency in the carbon dioxide liquefaction device 32 can be increased.
  • the floating body is the floating body of (6), and includes a re-liquefied carbon dioxide discharge line 53 that returns the carbon dioxide liquefied in the carbon dioxide liquefaction device 32 to the cargo tank 51. .
  • the carbon dioxide recovery method is a carbon dioxide recovery method for recovering carbon dioxide from exhaust gas E discharged by burning liquefied combustible gas F, the carbon dioxide recovery method comprising: a step S01 in which carbon dioxide is absorbed into an absorption liquid; a step S02 in which gaseous carbon dioxide is separated from the absorption liquid that has absorbed the carbon dioxide; and a step S02 in which gaseous carbon dioxide is separated from the absorption liquid using the liquefied combustible gas F as a cold source.
  • the method includes a step S03 of liquefying the carbon dioxide gas, and a step S04 of storing the liquefied carbon dioxide.
  • Cargo tank 52 Evaporated gas introduction line 53... Reliquefied carbon dioxide discharge line 54, 55, 56 , 57...Valve device 61...Introduction adjustment unit 62...Inlet detection unit 63...Outlet detection unit 64...Control valve 152...Evaporative gas introduction line B...Evaporative gas E...Exhaust gas F...Liquefied combustible gas G...Combustible gas

Abstract

This floating body is provided with: a combustion device that operates using a liquefied flammable gas as a fuel and discharges an exhaust gas; a liquefied flammable gas storage unit in which the liquefied flammable gas is stored; a fuel supply line through which the liquefied flammable gas is supplied to the combustion device from the liquefied flammable gas storage unit; a carbon dioxide recovery device equipped with an absorption column in which carbon dioxide contained in the exhaust gas is absorbed in an absorption solution and a regeneration column in which carbon dioxide in a gaseous form is separated from the absorption solution in which carbon dioxide has been absorbed in the absorption column; a carbon dioxide liquefaction device for liquefying carbon dioxide discharged from the carbon dioxide recovery device using, as a cooling heat source, the liquefied flammable gas supplied to the combustion device from the liquefied flammable gas storage unit through the fuel supply line; and a liquefied carbon dioxide storage unit in which carbon dioxide that has been liquefied by the carbon dioxide liquefaction device is stored.

Description

浮体及び二酸化炭素回収方法Floating body and carbon dioxide recovery method
 本開示は、浮体及び二酸化炭素回収方法に関する。
 本願は、2022年4月18日に日本に出願された特願2022-068232号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to a floating body and a carbon dioxide recovery method.
This application claims priority to Japanese Patent Application No. 2022-068232 filed in Japan on April 18, 2022, the contents of which are incorporated herein.
 船舶等の浮体においては、エンジン等から排出される排ガスの窒素酸化物等を削減することが要望されており、例えば、特許文献1には、主機や発電機等の燃焼装置の燃料の一部として、カーゴタンクに貯留された液化天然ガスなどの液化可燃性ガスのボイルオフガスを用いる技術が提案されている。さらに、特許文献1には、二酸化炭素の排出量を削減するために、排ガスに含まれる二酸化炭素を分離して、液化天然ガスの冷熱を利用して液体二酸化炭素又は固体二酸化炭素として冷蔵する技術が提案されている。 In floating bodies such as ships, there is a need to reduce nitrogen oxides in exhaust gas emitted from engines, etc. For example, Patent Document 1 states that some of the fuel for combustion devices such as main engines and generators is reduced. As such, a technology has been proposed that uses boil-off gas of liquefied combustible gas such as liquefied natural gas stored in cargo tanks. Furthermore, in order to reduce carbon dioxide emissions, Patent Document 1 describes a technology that separates carbon dioxide contained in exhaust gas and refrigerates it as liquid carbon dioxide or solid carbon dioxide using the cold energy of liquefied natural gas. is proposed.
特開2011-245995号公報Japanese Patent Application Publication No. 2011-245995
 特許文献1に記載されているような船舶では、排ガスから二酸化炭素を分離して液化するためにエネルギーが必要となるが、このようなエネルギーを浮体上で発生させるためにはエンジン等を駆動する必要があり二酸化炭素が排出されてしまう。そのため、排ガスから二酸化炭素を分離して液化する際に必要となるエネルギーを抑えることが望まれている。
 本開示は、上記事情に鑑みてなされたものであり、排ガスから二酸化炭素を分離して液化する際に必要となるエネルギーを抑えて、効率よく二酸化炭素を回収することが可能な浮体及び二酸化炭素回収方法を提供するものである。
In a ship like the one described in Patent Document 1, energy is required to separate and liquefy carbon dioxide from exhaust gas, but in order to generate such energy on a floating body, an engine etc. must be driven. This is necessary and carbon dioxide is emitted. Therefore, it is desired to reduce the energy required to separate and liquefy carbon dioxide from exhaust gas.
The present disclosure has been made in view of the above circumstances, and provides a floating body and carbon dioxide that can efficiently recover carbon dioxide by suppressing the energy required to separate and liquefy carbon dioxide from exhaust gas. It provides a collection method.
 上記の課題を解決するために以下の構成を採用する。
 本開示の第一態様によれば、浮体は、液化可燃性ガスを燃料として作動し排ガスを排出する燃焼装置と、前記液化可燃性ガスを貯留する液化可燃性ガス貯留部と、前記液化可燃性ガス貯留部から前記燃焼装置に向けて前記液化可燃性ガスを供給する燃料供給ラインと、前記排ガスに含まれる二酸化炭素を吸収液に吸収させる吸収塔、及び、前記吸収塔で前記二酸化炭素を吸収させた前記吸収液から気体の二酸化炭素を分離させる再生塔を有する二酸化炭素回収装置と、前記燃料供給ラインによって前記液化可燃性ガス貯留部から前記燃焼装置に供給される前記液化可燃性ガスを冷熱源として前記二酸化炭素回収装置から排出される二酸化炭素を液化する二酸化炭素液化装置と、前記二酸化炭素液化装置で液化した二酸化炭素を貯留する液化二酸化炭素貯留部と、を備える。
In order to solve the above problems, the following configuration is adopted.
According to a first aspect of the present disclosure, the floating body includes a combustion device that operates using liquefied combustible gas as fuel and discharges exhaust gas, a liquefied combustible gas storage section that stores the liquefied combustible gas, and a liquefied combustible gas a fuel supply line that supplies the liquefied combustible gas from the gas storage section to the combustion device; an absorption tower that absorbs carbon dioxide contained in the exhaust gas into an absorption liquid; and an absorption tower that absorbs the carbon dioxide. a carbon dioxide recovery device having a regeneration tower that separates gaseous carbon dioxide from the absorbed liquid; The carbon dioxide liquefaction device includes a carbon dioxide liquefaction device that liquefies carbon dioxide discharged from the carbon dioxide recovery device as a source, and a liquefied carbon dioxide storage section that stores the carbon dioxide liquefied by the carbon dioxide liquefaction device.
 本開示の第二態様によれば、二酸化炭素回収方法は、液化可燃性ガスを燃焼させることで排出された排ガスから二酸化炭素を回収する二酸化炭素回収方法であって、前記排ガスに含まれる二酸化炭素を吸収液に吸収させる工程と前記二酸化炭素を吸収させた前記吸収液から気体の二酸化炭素を分離させる工程と、前記液化可燃性ガスを冷熱源として前記吸収液から分離された気体の二酸化炭素を液化させる工程と、液化した前記二酸化炭素を貯留させる工程と、を含む。 According to a second aspect of the present disclosure, the carbon dioxide recovery method is a carbon dioxide recovery method for recovering carbon dioxide from exhaust gas discharged by burning a liquefied combustible gas, the carbon dioxide contained in the exhaust gas. a step of separating gaseous carbon dioxide from the absorbing liquid that has absorbed the carbon dioxide; and a step of separating gaseous carbon dioxide from the absorbing liquid using the liquefied flammable gas as a cold heat source. The method includes a step of liquefying the carbon dioxide, and a step of storing the liquefied carbon dioxide.
 本開示に係る浮体及び二酸化炭素回収方法によれば、排ガスから二酸化炭素を分離して液化する際に必要となるエネルギーを抑えて、効率よく二酸化炭素を回収することができる。 According to the floating body and carbon dioxide recovery method according to the present disclosure, it is possible to efficiently recover carbon dioxide by suppressing the energy required to separate and liquefy carbon dioxide from exhaust gas.
本開示の実施形態の浮体の概略構成を示す構成図である。FIG. 1 is a configuration diagram showing a schematic configuration of a floating body according to an embodiment of the present disclosure. 本開示の第一実施形態における二酸化炭素回収方法のフローチャートである。It is a flow chart of a carbon dioxide recovery method in a first embodiment of the present disclosure. 本開示の第一実施形態に係る浮体に設けられた二酸化炭素回収システムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body according to a first embodiment of the present disclosure. 本開示の第二実施形態における浮体に設けられた二酸化炭素回収システムの概略構成を示す図である。It is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body in a second embodiment of the present disclosure. 本開示の第三実施形態における浮体に設けられた二酸化炭素回収システムの概略構成を示す図である。It is a figure showing a schematic structure of a carbon dioxide recovery system provided in a floating body in a third embodiment of the present disclosure. 本開示の第四実施形態における浮体に設けられた二酸化炭素回収システムの概略構成を示す図である。It is a figure showing a schematic structure of a carbon dioxide recovery system provided in a floating body in a fourth embodiment of the present disclosure.
《第一実施形態》
 次に、本開示の第一実施形態における浮体及び二酸化炭素回収方法を図面に基づき説明する。
 図1は、この実施形態の浮体の概略構成を示す構成図である。
(船舶の構成)
 図1に示すように、この実施形態において、浮体1Aは、浮体本体2と、燃焼装置9と、二酸化炭素回収システム10A(図3参照)と、液化二酸化炭素貯留部11と、液化可燃性ガス貯留部21と、燃料供給ライン22と、気化装置23と、を少なくとも備えている。なお、本実施形態の浮体1Aは、主機等により航行可能な船舶を一例として説明するが、少なくとも液化可燃性ガスFを燃料とする燃焼装置9を備える浮体であれば船舶に限られない。浮体1Aが船舶である場合の船種は、特定の船種に限られず、例えば、液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等を例示できる。船舶では無い浮体1Aとしては、FSU(Floating Storage Unit)、FSRU(Floating Storage and Regasification Unit)等を例示できる。
《First embodiment》
Next, a floating body and a carbon dioxide recovery method in the first embodiment of the present disclosure will be described based on the drawings.
FIG. 1 is a configuration diagram showing a schematic configuration of a floating body of this embodiment.
(Ship configuration)
As shown in FIG. 1, in this embodiment, the floating body 1A includes a floating body main body 2, a combustion device 9, a carbon dioxide recovery system 10A (see FIG. 3), a liquefied carbon dioxide storage section 11, and a liquefied combustible gas. It includes at least a storage section 21, a fuel supply line 22, and a vaporizer 23. The floating body 1A of the present embodiment will be described as an example of a ship that can be navigated by a main engine, but is not limited to a ship as long as it is a floating body that is equipped with at least a combustion device 9 that uses liquefied combustible gas F as fuel. When the floating body 1A is a ship, the type of ship is not limited to a specific ship type, and examples thereof include a liquefied gas carrier, a ferry, a RORO ship, a car carrier, and a passenger ship. Examples of the floating body 1A that is not a ship include FSU (Floating Storage Unit), FSRU (Floating Storage and Regasification Unit), and the like.
(浮体の構成)
 浮体本体2は、その外殻をなす、一対の舷側3A,3Bと、船底(図示せず)と、上甲板5と、を有している。舷側3A,3Bは、左右舷側をそれぞれ形成する一対の舷側外板を有する。船底は、これら舷側3A,3Bを接続する船底外板を有する。これら一対の舷側3A,3B及び船底により、浮体本体2の外殻は、船首尾方向Daに直交する断面において、U字状を成している。この実施形態で例示する上甲板5は、外部に露出する全通甲板である。浮体本体2には、船尾2b側の上甲板5上に、居住区を有する上部構造7が形成されている。さらに、本実施形態で例示する浮体本体2には、上部構造7よりも船首2a側に貨物搭載区画8(言い換えれば、カーゴホールド)が形成されている。なお、上部構造7や貨物搭載区画8の位置は一例に過ぎず、例えば浮体本体2の船首2a側に上部構造7を配置して貨物搭載区画8を船尾2b側に配置してもよい。
(Composition of floating body)
The floating body 2 has a pair of sides 3A and 3B forming its outer shell, a bottom (not shown), and an upper deck 5. The sides 3A and 3B have a pair of side skins forming port and starboard sides, respectively. The bottom of the ship has a bottom shell plate that connects these sides 3A and 3B. The outer shell of the floating body 2 has a U-shape in a cross section perpendicular to the bow and stern direction Da due to the pair of sides 3A, 3B and the bottom. The upper deck 5 illustrated in this embodiment is a full deck exposed to the outside. An upper structure 7 having a living area is formed on the upper deck 5 on the stern 2b side of the floating body 2. Further, in the floating body body 2 illustrated in this embodiment, a cargo loading section 8 (in other words, a cargo hold) is formed closer to the bow 2a than the upper structure 7. Note that the positions of the superstructure 7 and the cargo loading section 8 are merely examples; for example, the superstructure 7 may be arranged on the bow 2a side of the floating body 2, and the cargo loading section 8 may be arranged on the stern 2b side.
 燃焼装置9は、浮体本体2内に配置されている。燃焼装置9は、液化可燃性ガスFを燃焼させることで所要の機能を発揮する。燃焼装置9としては、例えば、主機、発電機、ボイラーが挙げられる。主機は、液化可燃性ガスFを燃料とするエンジン(内燃機関)であり、浮体本体2を推進させるための推進力を発揮する。発電機は、液化可燃性ガスFを燃料とするエンジン(内燃機関)を備え、エンジンの駆動力によって、浮体本体2内で使用される電力を発生させる。ボイラーは、液化可燃性ガスFを燃焼させることで、浮体本体2内で使用される蒸気を発生させる。 The combustion device 9 is arranged within the floating body body 2. The combustion device 9 exhibits a required function by burning the liquefied combustible gas F. Examples of the combustion device 9 include a main engine, a generator, and a boiler. The main engine is an engine (internal combustion engine) that uses liquefied combustible gas F as fuel, and exerts propulsive force for propelling the floating body body 2. The generator includes an engine (internal combustion engine) that uses liquefied combustible gas F as fuel, and generates electric power used within the floating body body 2 by the driving force of the engine. The boiler generates steam used within the floating body body 2 by burning the liquefied combustible gas F.
 図3は、本開示の第一実施形態に係る浮体に設けられた二酸化炭素回収システムの概略構成を示す図である。
 図1、図3に示すように、液化二酸化炭素貯留部11は、二酸化炭素回収システム10Aによって回収された液化二酸化炭素を貯留するタンクである。言い換えれば、液化二酸化炭素貯留部11は、二酸化炭素を液体の状態で貯留可能に構成されている。
FIG. 3 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body according to the first embodiment of the present disclosure.
As shown in FIGS. 1 and 3, the liquefied carbon dioxide storage section 11 is a tank that stores liquefied carbon dioxide recovered by the carbon dioxide recovery system 10A. In other words, the liquefied carbon dioxide storage section 11 is configured to be able to store carbon dioxide in a liquid state.
 液化可燃性ガス貯留部21は、液化可燃性ガスFを貯留する。本実施形態の液化可燃性ガスFは、浮体1Aで使用される燃料であり、燃焼装置9で燃焼される。つまり、液化可燃性ガス貯留部21は、燃料を貯留するための燃料タンクである。液化可燃性ガス貯留部21に貯留される液化可燃性ガスFの液相は、液化二酸化炭素貯留部11に貯留される二酸化炭素Cの液相よりも温度が低い。液化可燃性ガスFとしては、液化天然ガス(LNG)、メタン、エタンが挙げられる。本実施形態では、液化可燃性ガスFとして、液化天然ガスを用いる場合を一例に説明する。 The liquefied combustible gas storage section 21 stores liquefied combustible gas F. The liquefied combustible gas F of this embodiment is a fuel used in the floating body 1A, and is burned in the combustion device 9. That is, the liquefied combustible gas storage section 21 is a fuel tank for storing fuel. The liquid phase of the liquefied combustible gas F stored in the liquefied combustible gas storage section 21 has a lower temperature than the liquid phase of carbon dioxide C stored in the liquefied carbon dioxide storage section 11 . Examples of the liquefied combustible gas F include liquefied natural gas (LNG), methane, and ethane. In this embodiment, a case where liquefied natural gas is used as the liquefied combustible gas F will be described as an example.
 燃料供給ライン22は、液化可燃性ガス貯留部21から燃焼装置9に向けて液化可燃性ガスFを供給する。
 気化装置23は、燃料供給ライン22の途中に設けられて、液化可燃性ガスFを気化させる。この液化可燃性ガスFを気化させた可燃性ガスGは、燃焼装置9に導入されて燃焼される。
The fuel supply line 22 supplies the liquefied combustible gas F from the liquefied combustible gas storage section 21 to the combustion device 9 .
The vaporizer 23 is provided in the middle of the fuel supply line 22 and vaporizes the liquefied combustible gas F. Combustible gas G obtained by vaporizing the liquefied combustible gas F is introduced into the combustion device 9 and burned.
 二酸化炭素回収システム10Aは、燃焼装置9の排ガスEに含まれる二酸化炭素を回収して液化する。二酸化炭素回収システム10Aは、二酸化炭素回収装置31と、二酸化炭素液化装置32と、液化二酸化炭素貯留部11と、を備えている。
 二酸化炭素回収装置31は、燃焼装置9から排出される排ガスEから二酸化炭素を回収する。二酸化炭素回収装置31は、排ガス冷却塔34と、吸収塔35と、再生塔36と、を備えている。
The carbon dioxide recovery system 10A recovers carbon dioxide contained in the exhaust gas E of the combustion device 9 and liquefies it. The carbon dioxide recovery system 10A includes a carbon dioxide recovery device 31, a carbon dioxide liquefaction device 32, and a liquefied carbon dioxide storage section 11.
The carbon dioxide recovery device 31 recovers carbon dioxide from the exhaust gas E discharged from the combustion device 9. The carbon dioxide recovery device 31 includes an exhaust gas cooling tower 34, an absorption tower 35, and a regeneration tower 36.
 排ガス冷却塔34は、燃焼装置9から排出された排ガスEを冷却する。本実施形態における排ガス冷却塔34は、燃焼装置9から排出された排ガスEを、浮体本体2の浮かぶ周囲の海水や、浮体本体2内に設けられた清水タンク(図示せず)に貯留されている清水を冷熱源として冷却(例えば、40℃程度まで冷却)している。なお、排ガス冷却塔34は、必要に応じて設ければ良く、例えば、吸収塔35に導入される排ガス温度が十分に低下している場合には省略してもよい。 The exhaust gas cooling tower 34 cools the exhaust gas E discharged from the combustion device 9. The exhaust gas cooling tower 34 in this embodiment stores the exhaust gas E discharged from the combustion device 9 in seawater around the floating body 2 or in a fresh water tank (not shown) provided in the floating body 2. It is cooled (for example, cooled to about 40 degrees Celsius) using fresh water as a cold heat source. Note that the exhaust gas cooling tower 34 may be provided as necessary, and may be omitted, for example, when the temperature of the exhaust gas introduced into the absorption tower 35 is sufficiently lowered.
 吸収塔35は、排ガスEに含まれる二酸化炭素を吸収液(図示せず)に吸収させる。吸収塔35は、例えば、吸収塔35内の上部から吸収液を降らせて、吸収塔35内に導入された排ガスEに接触させることで、排ガスEに含まれる二酸化炭素を吸収液に吸収させる。二酸化炭素を吸収液に吸収させた後の排ガスEは、吸収塔35の塔頂部より排出されて、排ガス洗浄塔38に導入される。排ガス洗浄塔38は、排ガス洗浄塔38内の上部から清水を降らせて、吸収塔35を出た排ガスEに含まれる吸収液を洗い流す。排ガス洗浄塔38を出た排ガスEは、例えば、浮体1Aに設けられた排気用のファンネル(図示せず)等に導かれて大気放出される。二酸化炭素を化学吸収法で吸収させる液としては、MEA(モノエタノールアミン)などがある。 The absorption tower 35 causes an absorption liquid (not shown) to absorb carbon dioxide contained in the exhaust gas E. For example, the absorption tower 35 causes the absorption liquid to fall from the upper part of the absorption tower 35, and contacts the exhaust gas E introduced into the absorption tower 35, thereby causing the absorption liquid to absorb carbon dioxide contained in the exhaust gas E. The exhaust gas E after carbon dioxide has been absorbed into the absorption liquid is discharged from the top of the absorption tower 35 and introduced into the exhaust gas cleaning tower 38 . The exhaust gas cleaning tower 38 causes clean water to fall from the upper part of the exhaust gas cleaning tower 38 to wash away the absorption liquid contained in the exhaust gas E that has exited the absorption tower 35 . The exhaust gas E exiting the exhaust gas cleaning tower 38 is led to, for example, an exhaust funnel (not shown) provided on the floating body 1A, and is released into the atmosphere. Examples of liquids for absorbing carbon dioxide by chemical absorption include MEA (monoethanolamine).
 再生塔36は、吸収塔35で二酸化炭素を吸収させた吸収液から気体の二酸化炭素を分離させる。より具体的には、再生塔36は、吸収塔35の下部から再生塔36内に送られた吸収液を、浮体本体2内に設けられたボイラー(図示せず)で生成した蒸気等により加熱する。これにより再生塔36内において吸収液から気体の二酸化炭素が分離され、この分離された気体の二酸化炭素が、気体二酸化炭素導入ライン37を介して二酸化炭素液化装置32に導入される。その一方で、気体の二酸化炭素が分離されて再生された吸収液は、吸収塔35に戻されて再利用される。 The regeneration tower 36 separates gaseous carbon dioxide from the absorption liquid that has absorbed carbon dioxide in the absorption tower 35. More specifically, the regeneration tower 36 heats the absorption liquid sent into the regeneration tower 36 from the lower part of the absorption tower 35 using steam generated in a boiler (not shown) provided in the floating body body 2. do. As a result, gaseous carbon dioxide is separated from the absorption liquid in the regeneration tower 36 , and the separated gaseous carbon dioxide is introduced into the carbon dioxide liquefaction device 32 via the gaseous carbon dioxide introduction line 37 . On the other hand, the absorption liquid from which gaseous carbon dioxide has been separated and regenerated is returned to the absorption tower 35 and reused.
 二酸化炭素液化装置32は、二酸化炭素回収装置31から排出される気体の二酸化炭素を液化する。この二酸化炭素液化装置32は、気体の二酸化炭素を圧縮する圧縮機41と、圧縮機41で圧縮された気体の二酸化炭素を液化させる液化器42と、を備えている。本実施形態の二酸化炭素液化装置32は、液化器42で用いる冷熱源として、燃料供給ライン22によって液化可燃性ガス貯留部21から燃焼装置9に供給される液化可燃性ガスFを利用している。つまり、燃料供給ライン22の途中に液化器42が設けられている。液化器42によって液化された二酸化炭素は、液化二酸化炭素排出ライン43を介して、液化二酸化炭素貯留部11に導入されて貯留される。 The carbon dioxide liquefaction device 32 liquefies gaseous carbon dioxide discharged from the carbon dioxide recovery device 31. The carbon dioxide liquefier 32 includes a compressor 41 that compresses gaseous carbon dioxide, and a liquefier 42 that liquefies the gaseous carbon dioxide compressed by the compressor 41. The carbon dioxide liquefaction device 32 of this embodiment uses the liquefied combustible gas F supplied from the liquefied combustible gas storage section 21 to the combustion device 9 via the fuel supply line 22 as a cold source used in the liquefier 42. . That is, the liquefier 42 is provided in the middle of the fuel supply line 22. The carbon dioxide liquefied by the liquefier 42 is introduced into the liquefied carbon dioxide storage section 11 via the liquefied carbon dioxide discharge line 43 and is stored therein.
 ここで、液化器42で冷熱源として利用した後の液化可燃性ガスFは、液化可燃性ガス貯留部21に貯留されている液化可燃性ガスFの液相よりも温度上昇するが、未だ液体を含む状態となっている。そして、上述した気化装置23は、燃料供給ライン22のうち、液化器42よりも燃焼装置9側の燃料供給ライン22に設けられ、冷熱源として利用された後の液化可燃性ガスFを加熱して気化させている。本実施形態の気化装置23は、例えば、上述したボイラーの蒸気等の熱媒によって液化可燃性ガスFを加熱している。 Here, the temperature of the liquefied combustible gas F after being used as a cold heat source in the liquefier 42 rises higher than the liquid phase of the liquefied combustible gas F stored in the liquefied combustible gas storage section 21, but it is still a liquid phase. The state includes. The above-mentioned vaporizer 23 is provided in the fuel supply line 22 closer to the combustion device 9 than the liquefier 42, and heats the liquefied combustible gas F after being used as a cold heat source. It is vaporized. The vaporizer 23 of this embodiment heats the liquefied combustible gas F using a heat medium such as steam from the boiler described above, for example.
(二酸化炭素回収方法)
 次に、本開示の実施形態における二酸化炭素回収方法について図面を参照しながら説明する。図2は、本開示の第一実施形態における二酸化炭素回収方法のフローチャートである。
 まず、図2に示すように、排ガスEに含まれる二酸化炭素を吸収液に吸収させる(ステップS01)。本実施形態では、液化可燃性ガスFを燃料として作動している燃焼装置から排出された排ガスEを吸収塔35へ導入させる。そして、排ガスEに含まれる気体の二酸化炭素を、吸収塔35を用いて吸収液に吸収させる。
(Carbon dioxide recovery method)
Next, a carbon dioxide recovery method in an embodiment of the present disclosure will be described with reference to the drawings. FIG. 2 is a flowchart of the carbon dioxide recovery method in the first embodiment of the present disclosure.
First, as shown in FIG. 2, carbon dioxide contained in the exhaust gas E is absorbed into an absorption liquid (step S01). In this embodiment, exhaust gas E discharged from a combustion device operating using liquefied combustible gas F as fuel is introduced into the absorption tower 35. Then, the gaseous carbon dioxide contained in the exhaust gas E is absorbed into the absorption liquid using the absorption tower 35.
 次いで、二酸化炭素が吸収されている吸収液から気体の二酸化炭素を分離させる(ステップS02)。本実施形態では、二酸化炭素を吸収した状態の吸収液を再生塔36へ導入させて、吸収液から気体の二酸化炭素を分離させる。
 さらに、液化可燃性ガスを冷熱源として吸収液から分離された気体の二酸化炭素を液化させる(ステップS03)。本実施形態では、気体の二酸化炭素を圧縮機41により圧縮して、この圧縮された気体の二酸化炭素を液化器42に導入する。そして、液化器42によって液化可燃性ガス貯留部21から燃料供給ライン22を介して燃料として燃焼装置9へ供給される液化可燃性ガスFと熱交換させて、気体の二酸化炭素を液化させる。
 その後、液化した二酸化炭素を貯留させる(ステップS04)。本実施形態では、液化器42によって液化させた二酸化炭素を、液化二酸化炭素排出ライン43を介して液化二酸化炭素貯留部11に貯留させる。
Next, gaseous carbon dioxide is separated from the absorption liquid in which carbon dioxide has been absorbed (step S02). In this embodiment, the absorption liquid that has absorbed carbon dioxide is introduced into the regeneration tower 36 to separate gaseous carbon dioxide from the absorption liquid.
Further, the gaseous carbon dioxide separated from the absorption liquid is liquefied using the liquefied combustible gas as a cold heat source (step S03). In this embodiment, gaseous carbon dioxide is compressed by the compressor 41, and the compressed gaseous carbon dioxide is introduced into the liquefier 42. Then, the liquefier 42 exchanges heat with the liquefied combustible gas F, which is supplied as fuel from the liquefied combustible gas storage section 21 to the combustion device 9 via the fuel supply line 22, to liquefy the gaseous carbon dioxide.
After that, the liquefied carbon dioxide is stored (step S04). In this embodiment, carbon dioxide liquefied by the liquefier 42 is stored in the liquefied carbon dioxide storage section 11 via the liquefied carbon dioxide discharge line 43.
(作用効果)
 上記第一実施形態によれば、浮体本体2で排出される排ガスEに含まれている気体の二酸化炭素を、二酸化炭素回収装置31の吸収塔35及び再生塔36により効率よく分離することができる。したがって、排ガスEから二酸化炭素を分離して液化する際に必要となるエネルギーを抑えて、効率よく二酸化炭素を回収することができる。
 さらに、二酸化炭素回収装置31によって分離した二酸化炭素を、二酸化炭素液化装置32によって液化することで二酸化炭素の体積を減少させることができるため、回収した二酸化炭素を貯留する容器が大型化することを抑制できる。
(effect)
According to the first embodiment, gaseous carbon dioxide contained in the exhaust gas E discharged from the floating body body 2 can be efficiently separated by the absorption tower 35 and the regeneration tower 36 of the carbon dioxide recovery device 31. . Therefore, the energy required to separate and liquefy carbon dioxide from the exhaust gas E can be suppressed, and carbon dioxide can be efficiently recovered.
Furthermore, since the volume of carbon dioxide can be reduced by liquefying the carbon dioxide separated by the carbon dioxide recovery device 31 in the carbon dioxide liquefaction device 32, the size of the container for storing the recovered carbon dioxide can be avoided. It can be suppressed.
 上記第一実施形態によれば、更に、二酸化炭素液化装置32の冷熱源として用いた液化可燃性ガスFを気化装置23へ導入させている。これにより、燃焼装置9の燃料である液化可燃性ガスFを気化装置23へ導入する前に加熱することができる。したがって、気化装置23で液化可燃性ガスFを気化させるために必要なエネルギーを減少させることができるため、より一層、効率よく二酸化炭素を回収することが可能となる。 According to the first embodiment, the liquefied combustible gas F used as a cold source for the carbon dioxide liquefaction device 32 is further introduced into the vaporization device 23. Thereby, the liquefied combustible gas F, which is the fuel for the combustion device 9, can be heated before being introduced into the vaporization device 23. Therefore, the energy required to vaporize the liquefied combustible gas F in the vaporizer 23 can be reduced, making it possible to recover carbon dioxide even more efficiently.
《第二実施形態》
 次に、本開示に係る浮体の第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態と燃料供給ライン22による燃料供給系統の構成が異なる。そのため、図1を援用し、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
《Second embodiment》
Next, a second embodiment of the floating body according to the present disclosure will be described. In the second embodiment described below, the configuration of the fuel supply system including the fuel supply line 22 differs from the first embodiment. Therefore, while referring to FIG. 1 and giving the same reference numerals to the same parts as those in the first embodiment, the explanation will be omitted, and redundant explanation will be omitted.
 図4は、本開示の第二実施形態における浮体に設けられた二酸化炭素回収システムの概略構成を示す図である。
 第二実施形態における浮体1Bは、第一実施形態の浮体1Aと同様に、浮体本体2と、燃焼装置9と、二酸化炭素回収システム10B(図4参照)と、液化二酸化炭素貯留部11と、液化可燃性ガス貯留部21と、燃料供給ライン22と、気化装置23と、を少なくとも備えている。
FIG. 4 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body in a second embodiment of the present disclosure.
Similar to the floating body 1A of the first embodiment, the floating body 1B in the second embodiment includes a floating body main body 2, a combustion device 9, a carbon dioxide recovery system 10B (see FIG. 4), a liquefied carbon dioxide storage section 11, It includes at least a liquefied combustible gas storage section 21, a fuel supply line 22, and a vaporizer 23.
 この第二実施形態の二酸化炭素回収システム10Bは、燃焼装置9の排ガスEに含まれる二酸化炭素を回収して液化する。図4に示すように、二酸化炭素回収システム10Bは、二酸化炭素回収装置31と、二酸化炭素液化装置32と、液化二酸化炭素貯留部11と、を備えている。
 二酸化炭素回収装置31は、燃焼装置9から排出される排ガスEから二酸化炭素を回収する。二酸化炭素回収装置31は、排ガス冷却塔34と、吸収塔35と、再生塔36と、を備えている。
The carbon dioxide recovery system 10B of this second embodiment recovers and liquefies carbon dioxide contained in the exhaust gas E of the combustion device 9. As shown in FIG. 4, the carbon dioxide recovery system 10B includes a carbon dioxide recovery device 31, a carbon dioxide liquefaction device 32, and a liquefied carbon dioxide storage section 11.
The carbon dioxide recovery device 31 recovers carbon dioxide from the exhaust gas E discharged from the combustion device 9. The carbon dioxide recovery device 31 includes an exhaust gas cooling tower 34, an absorption tower 35, and a regeneration tower 36.
 排ガス冷却塔134は、第一実施形態の排ガス冷却塔34と同様に、燃焼装置9から排出された排ガスEを冷却する。この第二実施形態における排ガス冷却塔134は、二酸化炭素液化装置32によって冷熱源として用いられた液化可燃性ガスFを冷熱源として、燃焼装置9から排出された排ガスEを冷却(例えば、40℃程度まで冷却)する。この排ガス冷却塔134によって冷却された排ガスEが、吸収塔35へ導入される。そして、吸収塔35で吸収液に吸収された二酸化炭素が、再生塔36で加熱されて吸収液から分離され、二酸化炭素液化装置32へ導入される。 The exhaust gas cooling tower 134 cools the exhaust gas E discharged from the combustion device 9, similar to the exhaust gas cooling tower 34 of the first embodiment. The exhaust gas cooling tower 134 in this second embodiment uses the liquefied combustible gas F used as a cold source by the carbon dioxide liquefaction device 32 as a cold source to cool the exhaust gas E discharged from the combustion device 9 (e.g. (cool down to a certain degree). The exhaust gas E cooled by the exhaust gas cooling tower 134 is introduced into the absorption tower 35. Then, the carbon dioxide absorbed into the absorption liquid in the absorption tower 35 is heated in the regeneration tower 36, separated from the absorption liquid, and introduced into the carbon dioxide liquefaction device 32.
 二酸化炭素液化装置32は、第一実施形態と同様に圧縮機41と、液化器42と、を備えており、液化器42で用いる冷熱源として、燃料供給ライン22によって液化可燃性ガス貯留部21から燃焼装置9に供給される液化可燃性ガスFを利用している。 The carbon dioxide liquefaction device 32 includes a compressor 41 and a liquefier 42 as in the first embodiment, and the liquefied combustible gas storage section 21 is connected to the liquefied combustible gas storage section 21 by the fuel supply line 22 as a cold heat source used in the liquefier 42. The liquefied combustible gas F supplied to the combustion device 9 is utilized.
 燃料供給ライン22は、液化可燃性ガス貯留部21から燃焼装置9に向けて液化可燃性ガスFを供給する。その一方で、この第二実施形態の燃料供給ライン22は、二酸化炭素液化装置32の液化器42で冷熱源として用いられた液化可燃性ガスFを、更に冷熱源として用いるために排ガス冷却塔134へ導いている。そして、燃料供給ライン22は、排ガス冷却塔134で冷熱源として用いられた液化可燃性ガスFを、気化装置23へ導いている。言い換えれば、この第二実施形態の気化装置23は、排ガス冷却塔134よりも燃焼装置9側の燃料供給ライン22に設けられている。この第二実施形態の気化装置23も、第一実施形態と同様に、燃料供給ライン22の途中に設けられて、液化可燃性ガスFを気化させる。この液化可燃性ガスFを気化させた可燃性ガスGは、燃焼装置9に導入されて燃料として燃焼される。 The fuel supply line 22 supplies the liquefied combustible gas F from the liquefied combustible gas storage section 21 to the combustion device 9. On the other hand, the fuel supply line 22 of this second embodiment is connected to an exhaust gas cooling tower 130 in order to further use the liquefied combustible gas F used as a cold source in the liquefier 42 of the carbon dioxide liquefaction device 32 as a cold source. leading to. The fuel supply line 22 guides the liquefied combustible gas F used as a cold source in the exhaust gas cooling tower 134 to the vaporizer 23 . In other words, the vaporizer 23 of this second embodiment is provided in the fuel supply line 22 closer to the combustion device 9 than the exhaust gas cooling tower 134 . The vaporizer 23 of this second embodiment is also provided in the middle of the fuel supply line 22 and vaporizes the liquefied combustible gas F, similarly to the first embodiment. Combustible gas G obtained by vaporizing the liquefied combustible gas F is introduced into the combustion device 9 and burned as fuel.
(作用効果)
 上記第二実施形態によれば、第一実施形態と同様に、浮体本体2で排出される排ガスEに含まれている気体の二酸化炭素を、二酸化炭素回収装置31の吸収塔35及び再生塔36により効率よく分離することができる。したがって、排ガスEから二酸化炭素を分離して液化する際に必要となるエネルギーを抑えて、効率よく二酸化炭素を回収することができる。さらに、二酸化炭素回収装置31によって分離した二酸化炭素を、二酸化炭素液化装置32によって液化することで二酸化炭素の体積を減少させることができるため、回収した二酸化炭素を貯留する容器が大型化することを抑制できる。
(effect)
According to the second embodiment, similarly to the first embodiment, gaseous carbon dioxide contained in the exhaust gas E discharged from the floating body body 2 is transferred to the absorption tower 35 and the regeneration tower 36 of the carbon dioxide recovery device 31. This allows efficient separation. Therefore, the energy required to separate and liquefy carbon dioxide from the exhaust gas E can be suppressed, and carbon dioxide can be efficiently recovered. Furthermore, since the volume of carbon dioxide can be reduced by liquefying the carbon dioxide separated by the carbon dioxide recovery device 31 in the carbon dioxide liquefaction device 32, the size of the container for storing the recovered carbon dioxide can be avoided. It can be suppressed.
 また、第二実施形態では、二酸化炭素液化装置32の冷熱源として用いた液化可燃性ガスFを、更に排ガス冷却塔34の冷熱源として用いた後に気化装置23へ導入させている。これにより、燃焼装置9の燃料である液化可燃性ガスFを気化装置23へ導入する前に加熱することができるため、気化装置23で液化可燃性ガスFを気化させるために必要なエネルギーを、より一層、減少させることができる。 Furthermore, in the second embodiment, the liquefied combustible gas F used as a cold source for the carbon dioxide liquefier 32 is further used as a cold source for the exhaust gas cooling tower 34 and then introduced into the vaporizer 23. As a result, the liquefied combustible gas F, which is the fuel for the combustion device 9, can be heated before being introduced into the vaporizer 23, so that the energy required to vaporize the liquefied combustible gas F in the vaporizer 23 can be It can be further reduced.
《第三実施形態》
 次に、本開示に係る浮体の第三実施形態について説明する。以下に説明する第三実施形態においては、液化二酸化炭素が蒸発した蒸発ガスを再液化可能にした点で第二実施形態と構成が異なる。そのため、図1を援用し、第二実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
《Third embodiment》
Next, a third embodiment of the floating body according to the present disclosure will be described. The third embodiment described below differs in configuration from the second embodiment in that the evaporated gas from which liquefied carbon dioxide has evaporated can be re-liquefied. Therefore, while referring to FIG. 1 and attaching the same reference numerals to the same parts as in the second embodiment, the same parts will be described with reference to FIG. 1, and redundant explanation will be omitted.
 図5は、本開示の第三実施形態における浮体に設けられた二酸化炭素回収システムの概略構成を示す図である。
 図1、図5に示すように、第三実施形態における浮体1Cは、第二実施形態の浮体1Bと同様に、浮体本体2と、燃焼装置9と、二酸化炭素回収システム10C(図5参照)と、液化二酸化炭素貯留部11と、液化可燃性ガス貯留部21と、燃料供給ライン22と、気化装置23と、を少なくとも備えている。また、第三実施形態の浮体1Cは、貨物搭載区画8に設けられたカーゴタンク51と、蒸発ガス導入ライン52と、再液化二酸化炭素排出ライン53と、弁装置54,55,59,57と、を備えている。
FIG. 5 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body in a third embodiment of the present disclosure.
As shown in FIGS. 1 and 5, the floating body 1C in the third embodiment, like the floating body 1B in the second embodiment, includes a floating body body 2, a combustion device 9, and a carbon dioxide recovery system 10C (see FIG. 5). , a liquefied carbon dioxide storage section 11 , a liquefied combustible gas storage section 21 , a fuel supply line 22 , and a vaporization device 23 . Furthermore, the floating body 1C of the third embodiment includes a cargo tank 51 provided in the cargo loading section 8, an evaporative gas introduction line 52, a reliquefied carbon dioxide discharge line 53, and valve devices 54, 55, 59, and 57. , is equipped with.
 カーゴタンク51は、積荷としての液化二酸化炭素を貯留する。カーゴタンク51内には、上部に気相が存在し、下部に液相が存在する。気相は、主にカーゴタンク51への自然入熱により蒸発した蒸発ガス(Natural BOG)Bからなる。 The cargo tank 51 stores liquefied carbon dioxide as cargo. Inside the cargo tank 51, a gas phase exists in the upper part and a liquid phase exists in the lower part. The gas phase mainly consists of evaporated gas (natural BOG) B that is evaporated due to natural heat input into the cargo tank 51.
 蒸発ガス導入ライン52は、カーゴタンク51の気相の気体(蒸発ガスB)を、二酸化炭素回収システム10Cの圧縮機41に導く。本実施形態の蒸発ガス導入ライン52は、二酸化炭素回収装置31から排出される気体の二酸化炭素を二酸化炭素液化装置32へ導く気体二酸化炭素導入ライン37に合流接続されている。つまり、カーゴタンク51内の蒸発ガスBは、蒸発ガス導入ライン52及び気体二酸化炭素導入ライン37を介して二酸化炭素液化装置32へ導入可能となっている。カーゴタンク51の蒸発ガスBは、二酸化炭素液化装置32の圧縮機41により圧縮された後、液化器42によって液化可燃性ガスFを冷熱源として冷却されて再液化される。 The evaporative gas introduction line 52 guides the vapor phase gas (evaporative gas B) in the cargo tank 51 to the compressor 41 of the carbon dioxide recovery system 10C. The evaporated gas introduction line 52 of this embodiment is connected to a gaseous carbon dioxide introduction line 37 that guides gaseous carbon dioxide discharged from the carbon dioxide recovery device 31 to the carbon dioxide liquefaction device 32 . That is, the evaporated gas B in the cargo tank 51 can be introduced into the carbon dioxide liquefaction device 32 via the evaporated gas introduction line 52 and the gaseous carbon dioxide introduction line 37. The evaporated gas B in the cargo tank 51 is compressed by the compressor 41 of the carbon dioxide liquefaction device 32, and then cooled by the liquefier 42 using the liquefied combustible gas F as a cold source and re-liquefied.
 再液化二酸化炭素排出ライン53は、二酸化炭素液化装置32によって再液化された液化二酸化炭素をカーゴタンク51に導入する。本実施形態の再液化二酸化炭素排出ライン53は、液化二酸化炭素排出ライン43に分岐接続されている。 The reliquefied carbon dioxide discharge line 53 introduces the liquefied carbon dioxide reliquefied by the carbon dioxide liquefaction device 32 into the cargo tank 51. The reliquefied carbon dioxide discharge line 53 of this embodiment is branched and connected to the liquefied carbon dioxide discharge line 43.
 弁装置54,55は、二酸化炭素液化装置32へ導入される気体の二酸化炭素を、二酸化炭素回収装置31からの二酸化炭素と、カーゴタンク51からの二酸化炭素とに、切り替えることが可能となっている。また、弁装置56,57は、二酸化炭素液化装置32によって液化された液化二酸化炭素を貯留する場所を切り替えることが可能とされている。つまり、二酸化炭素液化装置32によって液化された液化二酸化炭素は、カーゴタンク51と液化二酸化炭素貯留部11との何れか一方に貯留される。 The valve devices 54 and 55 are capable of switching the gaseous carbon dioxide introduced into the carbon dioxide liquefaction device 32 into carbon dioxide from the carbon dioxide recovery device 31 and carbon dioxide from the cargo tank 51. There is. Further, the valve devices 56 and 57 are capable of switching the location where the liquefied carbon dioxide liquefied by the carbon dioxide liquefier 32 is stored. That is, the liquefied carbon dioxide liquefied by the carbon dioxide liquefier 32 is stored in either the cargo tank 51 or the liquefied carbon dioxide storage section 11 .
(作用効果)
 上記第三実施形態によれば、第一、第二実施形態の作用効果に加えて、カーゴタンク51で発生した蒸発ガスBを二酸化炭素回収システム10Cの二酸化炭素液化装置32により再液化することができる。したがって、蒸発ガスBを再液化するための専用の再液化装置を設ける必要が無くなるため、浮体1の大型化を抑制できる。また、蒸発ガスBを再液化する際にも、液化可燃性ガスFを冷熱源として利用できるため、更なる省エネルギー化を図ることができる。
(effect)
According to the third embodiment, in addition to the effects of the first and second embodiments, the evaporated gas B generated in the cargo tank 51 can be reliquefied by the carbon dioxide liquefaction device 32 of the carbon dioxide recovery system 10C. can. Therefore, since there is no need to provide a dedicated reliquefaction device for reliquefying the evaporated gas B, it is possible to suppress the floating body 1 from increasing in size. Also, when re-liquefying the evaporated gas B, the liquefied combustible gas F can be used as a cold source, so further energy savings can be achieved.
 また、蒸発ガスBを再液化した液化二酸化炭素をカーゴタンク51に戻すことができる。さらに、二酸化炭素回収装置31により回収して液化した液化二酸化炭素を液化二酸化炭素貯留部11に貯留することができる。したがって、蒸発ガスBを再液化した液化二酸化炭素と、二酸化炭素回収装置31により回収して液化した液化二酸化炭素とのそれぞれ組成が異なる場合に、積荷としての液化二酸化炭素に、排ガスEから回収して液化した液化二酸化炭素が混入することを抑制できる。 Additionally, liquefied carbon dioxide obtained by re-liquefying the evaporated gas B can be returned to the cargo tank 51. Furthermore, liquefied carbon dioxide collected and liquefied by the carbon dioxide recovery device 31 can be stored in the liquefied carbon dioxide storage section 11 . Therefore, if the liquefied carbon dioxide obtained by re-liquefying the evaporated gas B and the liquefied carbon dioxide recovered and liquefied by the carbon dioxide recovery device 31 have different compositions, the liquefied carbon dioxide recovered from the exhaust gas E may be added to the liquefied carbon dioxide as cargo. It is possible to suppress the contamination of liquefied carbon dioxide that has been liquefied.
(第三実施形態の変形例)
 上述した第三実施形態では、排ガスEから回収した二酸化炭素を液化するための二酸化炭素液化装置32を、カーゴタンク51の蒸発ガスBの再液化装置として兼用する場合を一例に説明した。しかし、この構成に限られるものではない。例えば、二酸化炭素液化装置32の圧縮機41と液化器42とのうち、何れか一方のみを蒸発ガスBの再液化に用いるようにしてもよい。この場合も、再液化のための圧縮機41又は液化器42を削減することが可能となる。
(Modified example of third embodiment)
In the third embodiment described above, an example has been described in which the carbon dioxide liquefaction device 32 for liquefying carbon dioxide recovered from the exhaust gas E is also used as a reliquefaction device for the evaporated gas B of the cargo tank 51. However, the configuration is not limited to this. For example, only one of the compressor 41 and the liquefier 42 of the carbon dioxide liquefaction device 32 may be used to re-liquefy the evaporated gas B. Also in this case, it is possible to reduce the number of compressors 41 or liquefiers 42 for reliquefaction.
 また、上述した第三実施形態では、二酸化炭素液化装置32から排出される液化二酸化炭素を、カーゴタンク51と液化二酸化炭素貯留部11とにそれぞれ分けて貯留する場合について説明したが、液化二酸化炭素貯留部11とカーゴタンク51との何れか一方のみを設けて、例えば、二酸化炭素液化装置32から排出される液化二酸化炭素を、全て液化二酸化炭素貯留部11とカーゴタンク51との何れか一方にのみ貯留するようにしてもよい。 Furthermore, in the third embodiment described above, a case has been described in which the liquefied carbon dioxide discharged from the carbon dioxide liquefaction device 32 is stored separately in the cargo tank 51 and the liquefied carbon dioxide storage section 11, but the liquefied carbon dioxide For example, by providing only one of the storage section 11 and the cargo tank 51, all of the liquefied carbon dioxide discharged from the carbon dioxide liquefaction device 32 is transferred to either the liquefied carbon dioxide storage section 11 or the cargo tank 51. It is also possible to store only the
 さらに、上述した第三実施形態では、カーゴタンク51で発生した蒸発ガスBを二酸化炭素回収システム10Cの二酸化炭素液化装置32により再液化する場合について説明した。しかし、蒸発ガスBは、カーゴタンク51で発生したものに限られない。例えば、図4に破線で示すように、カーゴタンク51で発生した蒸発ガスBに加えて、液化二酸化炭素貯留部11で発生した蒸発ガスBを、蒸発ガス導入ライン152を介して二酸化炭素液化装置32へ導入可能としてもよい(後述する第四実施形態も同様)。この場合、二酸化炭素液化装置32へ導入させる蒸発ガスBを、カーゴタンク51の蒸発ガスBと液化二酸化炭素貯留部11の蒸発ガスBとから選択可能としてもよい。また例えば、上記のカーゴタンク51及び蒸発ガス導入ライン52を省略して、液化二酸化炭素貯留部11で発生した蒸発ガスBと、二酸化炭素回収装置31から排出される気体の二酸化炭素とを二酸化炭素液化装置32へ導入可能な構成としてもよい。 Furthermore, in the third embodiment described above, a case has been described in which the evaporated gas B generated in the cargo tank 51 is reliquefied by the carbon dioxide liquefaction device 32 of the carbon dioxide recovery system 10C. However, the evaporated gas B is not limited to that generated in the cargo tank 51. For example, as shown by the broken line in FIG. 4, in addition to the evaporative gas B generated in the cargo tank 51, the evaporative gas B generated in the liquefied carbon dioxide storage section 11 is passed through the evaporative gas introduction line 152 to the carbon dioxide liquefier. 32 (the same applies to the fourth embodiment described later). In this case, the evaporative gas B introduced into the carbon dioxide liquefaction device 32 may be selectable from the evaporative gas B of the cargo tank 51 and the evaporative gas B of the liquefied carbon dioxide storage section 11. Alternatively, for example, the cargo tank 51 and the evaporative gas introduction line 52 may be omitted, and the evaporative gas B generated in the liquefied carbon dioxide storage section 11 and the gaseous carbon dioxide discharged from the carbon dioxide recovery device 31 may be replaced with carbon dioxide. It may also be configured so that it can be introduced into the liquefaction device 32.
《第四実施形態》
 次に、本開示に係る浮体の第四実施形態について説明する。以下に説明する第四実施形態においては、カーゴタンク51の蒸発ガスBと二酸化炭素回収装置31から排出される二酸化炭素とを混合してから二酸化炭素液化装置32へ導入する点で第三実施形態と構成が異なる。そのため、図1を援用し、第二実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
《Fourth embodiment》
Next, a fourth embodiment of the floating body according to the present disclosure will be described. In the fourth embodiment described below, the evaporated gas B of the cargo tank 51 and the carbon dioxide discharged from the carbon dioxide recovery device 31 are mixed and then introduced into the carbon dioxide liquefaction device 32. The configuration is different. Therefore, while referring to FIG. 1 and attaching the same reference numerals to the same parts as in the second embodiment, the same parts will be described with reference to FIG. 1, and redundant explanation will be omitted.
 図6は、本開示の第四実施形態における浮体に設けられた二酸化炭素回収システムの概略構成を示す図である。
 図1、図6に示すように、第四実施形態における浮体1Dは、第三実施形態の浮体1Cと同様に、浮体本体2と、燃焼装置9と、二酸化炭素回収システム10D(図6参照)と、液化二酸化炭素貯留部11と、液化可燃性ガス貯留部21と、燃料供給ライン22と、気化装置23と、を少なくとも備えている。また、第四実施形態の浮体1Dは、貨物搭載区画8に設けられたカーゴタンク51と、蒸発ガス導入ライン52と、再液化二酸化炭素排出ライン53と、弁装置56,57と、導入調整部61と、を備えている。
FIG. 6 is a diagram showing a schematic configuration of a carbon dioxide recovery system provided in a floating body in a fourth embodiment of the present disclosure.
As shown in FIGS. 1 and 6, the floating body 1D in the fourth embodiment, like the floating body 1C in the third embodiment, includes a floating body main body 2, a combustion device 9, and a carbon dioxide recovery system 10D (see FIG. 6). , a liquefied carbon dioxide storage section 11 , a liquefied combustible gas storage section 21 , a fuel supply line 22 , and a vaporization device 23 . The floating body 1D of the fourth embodiment also includes a cargo tank 51 provided in the cargo loading section 8, an evaporative gas introduction line 52, a reliquefied carbon dioxide discharge line 53, valve devices 56 and 57, and an introduction adjustment section. 61.
 導入調整部61は、二酸化炭素回収装置31から二酸化炭素液化装置32へ導入される二酸化炭素の量と、蒸発ガス導入ライン52により二酸化炭素液化装置32へ導入される二酸化炭素の量と、を調整する。導入調整部61は、入口検出部62と、出口検出部63と、制御弁64と、を備えている。入口検出部62は、圧縮機41の入口における温度を少なくとも検出して、その検出結果を制御弁64へ出力する。出口検出部63は、圧縮機41の出口における温度を少なくとも検出して、その検出結果を制御弁64へ出力する。この第四実施形態における入口検出部62と出口検出部63とは、温度に加えて圧力も検出している。 The introduction adjustment unit 61 adjusts the amount of carbon dioxide introduced from the carbon dioxide recovery device 31 to the carbon dioxide liquefaction device 32 and the amount of carbon dioxide introduced to the carbon dioxide liquefaction device 32 through the evaporative gas introduction line 52. do. The introduction adjustment section 61 includes an inlet detection section 62, an outlet detection section 63, and a control valve 64. The inlet detection unit 62 detects at least the temperature at the inlet of the compressor 41 and outputs the detection result to the control valve 64. The outlet detection unit 63 detects at least the temperature at the outlet of the compressor 41 and outputs the detection result to the control valve 64. The inlet detecting section 62 and the outlet detecting section 63 in this fourth embodiment detect pressure as well as temperature.
 制御弁64は、入口検出部62及び出口検出部63の各検出結果に基づいて、蒸発ガス導入ライン52内の流路の開度調整をする。さらに、制御弁64は、入口検出部62及び出口検出部63の各検出結果に基づいて、気体二酸化炭素導入ライン37内の流路の開度調整をする。制御弁64は、二酸化炭素液化装置32で行われる二酸化炭素の液化が最適効率となるように、二酸化炭素回収装置31から二酸化炭素液化装置32へ導入される二酸化炭素と、蒸発ガス導入ライン52から二酸化炭素液化装置32へ導入される二酸化炭素と、を混合させる混合率を調整することが可能となっている。なお、この第四実施形態では、制御弁64として三方流量調整弁を例示しているが、制御弁64は、三方弁に限られない。 The control valve 64 adjusts the opening degree of the flow path in the evaporated gas introduction line 52 based on the detection results of the inlet detection section 62 and the outlet detection section 63. Furthermore, the control valve 64 adjusts the opening degree of the flow path in the gaseous carbon dioxide introduction line 37 based on the detection results of the inlet detection section 62 and the outlet detection section 63. The control valve 64 controls the carbon dioxide introduced from the carbon dioxide recovery device 31 to the carbon dioxide liquefaction device 32 and the evaporated gas introduction line 52 so that the liquefaction of carbon dioxide carried out in the carbon dioxide liquefaction device 32 becomes optimally efficient. It is possible to adjust the mixing ratio at which carbon dioxide is mixed with the carbon dioxide introduced into the carbon dioxide liquefaction device 32. In addition, in this fourth embodiment, although a three-way flow rate adjustment valve is illustrated as the control valve 64, the control valve 64 is not limited to a three-way valve.
 さらに、導入調整部61は、圧縮機41の入口における二酸化炭素の温度が高くて、圧縮機41の出口の吐出温度が必要以上に上昇することを抑制すると共に、圧縮機41の入口の二酸化炭素温度が上昇し過ぎて圧縮機41の充填効率が低下することも抑制している。さらに、導入調整部61は、圧縮機41の入口の圧力及び出口の圧力を検出することで、圧縮機41出口の圧力を所望の圧力とし、且つ、圧縮機41による圧縮比が過大とならないように、入口側の二酸化炭素の圧力を調整している。 Furthermore, the introduction adjustment unit 61 suppresses the discharge temperature at the outlet of the compressor 41 from increasing more than necessary due to the high temperature of the carbon dioxide at the inlet of the compressor 41, and also suppresses the carbon dioxide at the inlet of the compressor 41. This also prevents the filling efficiency of the compressor 41 from decreasing due to an excessive rise in temperature. Further, the introduction adjustment section 61 detects the pressure at the inlet and the pressure at the outlet of the compressor 41 to set the pressure at the outlet of the compressor 41 to a desired pressure and to prevent the compression ratio of the compressor 41 from becoming excessive. In addition, the pressure of carbon dioxide on the inlet side is adjusted.
 ここで、再生塔36から排出されて気体二酸化炭素導入ライン37を流れる二酸化炭素は、例えば常温又は常温よりも僅かに温かい。一方で、カーゴタンク51から排出されて蒸発ガス導入ライン52を流れる二酸化炭素は、例えば-20℃~-30℃程度となる。この第四実施形態の導入調整部61では、カーゴタンク51から排出された気体の二酸化炭素を、気体二酸化炭素導入ライン37を流れる二酸化炭素に混合させることで、液化器42で熱交換される二酸化炭素と、液化可燃性ガスFとの温度差を大きくして熱交換効率を上げている。液化器42における液化が最適効率となる上記混合率は、予め実験やシミュレーション等に基づいて求めることができる。上述した制御弁64の開度調整は、例えば、実験やシミュレーション等により求められた入口検出部62及び出口検出部63の検出結果に対する蒸発ガス導入ライン52及び気体二酸化炭素導入ライン37の流量のマップ、テーブル、数式等に基づいて行うようにしてもよい。 Here, the carbon dioxide discharged from the regeneration tower 36 and flowing through the gaseous carbon dioxide introduction line 37 is, for example, at room temperature or slightly warmer than room temperature. On the other hand, carbon dioxide discharged from the cargo tank 51 and flowing through the evaporative gas introduction line 52 has a temperature of about -20°C to -30°C, for example. In the introduction adjustment section 61 of this fourth embodiment, the gaseous carbon dioxide discharged from the cargo tank 51 is mixed with the carbon dioxide flowing through the gaseous carbon dioxide introduction line 37, so that the carbon dioxide that is heat exchanged in the liquefier 42 is The temperature difference between the carbon and the liquefied combustible gas F is increased to increase heat exchange efficiency. The above-mentioned mixing ratio at which liquefaction in the liquefier 42 becomes optimally efficient can be determined in advance based on experiments, simulations, and the like. The above-mentioned opening degree adjustment of the control valve 64 is performed, for example, by using a map of the flow rates of the evaporated gas introduction line 52 and the gaseous carbon dioxide introduction line 37 with respect to the detection results of the inlet detection section 62 and the outlet detection section 63 obtained through experiments, simulations, etc. , a table, a mathematical formula, etc.
 この第四実施形態では、液化二酸化炭素貯留部11とカーゴタンク51とが設けられており、液化器42によって液化された二酸化炭素をそれぞれに振り分けて貯留することが可能となっている。これら液化二酸化炭素貯留部11とカーゴタンク51とへの二酸化炭素の振り分け方としては、空き容量の大きい方へ液化された二酸化炭素を貯留させることが例示できる。なお、第三実施形態の変形例と同様に、液化二酸化炭素貯留部11とカーゴタンク51との何れか一方のみを設けて、例えば、二酸化炭素液化装置32から排出される液化二酸化炭素を、全て液化二酸化炭素貯留部11とカーゴタンク51との何れか一方にのみ貯留するようにしてもよい。また、第三実施形態の変形例と同様に、液化二酸化炭素貯留部11の蒸発ガスBを二酸化炭素液化装置32へ導入可能としてもよい。 In this fourth embodiment, a liquefied carbon dioxide storage section 11 and a cargo tank 51 are provided, and it is possible to distribute and store carbon dioxide liquefied by the liquefier 42 in each. An example of how to allocate carbon dioxide to the liquefied carbon dioxide storage section 11 and the cargo tank 51 is to store liquefied carbon dioxide in the one with a larger free capacity. Note that, similarly to the modification of the third embodiment, only one of the liquefied carbon dioxide storage section 11 and the cargo tank 51 is provided, and for example, all of the liquefied carbon dioxide discharged from the carbon dioxide liquefaction device 32 is stored. The liquefied carbon dioxide may be stored only in either the liquefied carbon dioxide storage section 11 or the cargo tank 51. Further, similarly to the modification of the third embodiment, the evaporated gas B of the liquefied carbon dioxide storage section 11 may be introduced into the carbon dioxide liquefier 32.
(作用効果)
 上記第四実施形態によれば、第一、第二実施形態の作用効果に加えて、カーゴタンク51で発生した蒸発ガスBを二酸化炭素回収システム10Dの二酸化炭素液化装置32により再液化することができる。したがって、蒸発ガスBを再液化するための専用の再液化装置を設ける必要が無くなるため、浮体1の大型化を抑制できる。また、蒸発ガスBを再液化する際にも、液化可燃性ガスFを冷熱源として利用できるため、更なる省エネルギー化を図ることができる。
(effect)
According to the fourth embodiment, in addition to the effects of the first and second embodiments, the evaporated gas B generated in the cargo tank 51 can be re-liquefied by the carbon dioxide liquefaction device 32 of the carbon dioxide recovery system 10D. can. Therefore, since there is no need to provide a dedicated reliquefaction device for reliquefying the evaporated gas B, it is possible to suppress the floating body 1 from increasing in size. Also, when re-liquefying the evaporated gas B, the liquefied combustible gas F can be used as a cold source, so further energy savings can be achieved.
 さらに、カーゴタンク51の蒸発ガスBと二酸化炭素回収装置31から排出される気体の二酸化炭素とを混合してから二酸化炭素液化装置32へ導入させることができるため、圧縮機41の出口の吐出温度を調整して液化器42における熱交換効率を高めることができると共に、圧縮機41の入口の温度を調整して圧縮機41の充填効率を向上することができる。したがって、二酸化炭素の液化効率を高めることができる。 Furthermore, since the evaporated gas B of the cargo tank 51 and the gaseous carbon dioxide discharged from the carbon dioxide recovery device 31 can be mixed and then introduced into the carbon dioxide liquefaction device 32, the discharge temperature at the outlet of the compressor 41 can be adjusted to improve the heat exchange efficiency in the liquefier 42, and the temperature at the inlet of the compressor 41 can be adjusted to improve the filling efficiency of the compressor 41. Therefore, the efficiency of liquefying carbon dioxide can be increased.
《他の実施形態》
 本開示は上述した各実施形態の構成に限られるものではなく、その要旨を逸脱しない範囲で設計変更可能である。
 例えば、上述した各実施形態では、浮体1A,1B,1C,1Dとして船舶を一例にして説明したが、例えば、FSU(Floating Storage Unit)、FSRU(Floating Storage and Regasification Unit)等の浮体であってもよい。
《Other embodiments》
The present disclosure is not limited to the configurations of the embodiments described above, and design changes can be made without departing from the gist thereof.
For example, in each of the above embodiments, the floating bodies 1A, 1B, 1C, and 1D are explained using ships as an example, but for example, floating bodies such as FSU (Floating Storage Unit), FSRU (Floating Storage and Regasification Unit), etc. Good too.
 また、上述した第四実施形態では、入口検出部62と出口検出部63とがそれぞれ圧力を検出する場合について説明したが、入口検出部62と出口検出部63とは、温度のみを検出するようにしてもよい。 Further, in the fourth embodiment described above, a case has been described in which the inlet detection section 62 and the outlet detection section 63 each detect pressure, but the inlet detection section 62 and the outlet detection section 63 are designed to detect only temperature. You can also do this.
<付記>
 実施形態に記載の浮体は、例えば以下のように把握される。
<Additional notes>
The floating body described in the embodiment is understood as follows, for example.
(1)第1の態様によれば浮体1A,1B,1C,1Dは、液化可燃性ガスFを燃料として作動し排ガスEを排出する燃焼装置9と、前記液化可燃性ガスFを貯留する液化可燃性ガス貯留部21と、前記液化可燃性ガス貯留部21から前記燃焼装置9に向けて前記液化可燃性ガスFを供給する燃料供給ライン22と、前記排ガスEに含まれる二酸化炭素を吸収液に吸収させる吸収塔35、及び、前記吸収塔35で前記二酸化炭素を吸収させた前記吸収液から気体の二酸化炭素を分離させる再生塔36を有する二酸化炭素回収装置31と、前記燃料供給ライン22によって前記液化可燃性ガス貯留部21から前記燃焼装置9に供給される前記液化可燃性ガスFを冷熱源として前記二酸化炭素回収装置31から排出される二酸化炭素を液化する二酸化炭素液化装置32と、前記二酸化炭素液化装置32で液化した二酸化炭素を貯留する液化二酸化炭素貯留部11と、を備える。
 浮体の例としては、液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等の船舶、FSU(Floating Storage Unit)、FSRU(Floating Storage and Regasification Unit)等が挙げられる。燃焼装置9の例としては、主機や発電機用のエンジン(内燃機関)、ボイラーが挙げられる。液化可燃性ガスFの例としては、液化天然ガス、メタン、エタン、水素が挙げられる。
(1) According to the first aspect, the floating bodies 1A, 1B, 1C, and 1D include a combustion device 9 that operates using liquefied combustible gas F as fuel and discharges exhaust gas E, and a liquefied combustible gas that stores the liquefied combustible gas F. a combustible gas storage section 21; a fuel supply line 22 that supplies the liquefied combustible gas F from the liquefied combustible gas storage section 21 to the combustion device 9; A carbon dioxide recovery device 31 includes an absorption tower 35 that absorbs the carbon dioxide into carbon dioxide, and a regeneration tower 36 that separates gaseous carbon dioxide from the absorption liquid that has absorbed the carbon dioxide in the absorption tower 35, and the fuel supply line 22. a carbon dioxide liquefaction device 32 that liquefies carbon dioxide discharged from the carbon dioxide recovery device 31 using the liquefied combustible gas F supplied from the liquefied combustible gas storage section 21 to the combustion device 9 as a cold heat source; A liquefied carbon dioxide storage section 11 that stores carbon dioxide liquefied by a carbon dioxide liquefaction device 32 is provided.
Examples of floating bodies include ships such as liquefied gas carriers, ferries, RORO ships, car carriers, passenger ships, FSUs (Floating Storage Units), FSRUs (Floating Storage and Regasification Units), and the like. Examples of the combustion device 9 include an engine (internal combustion engine) for a main engine or a generator, and a boiler. Examples of the liquefied combustible gas F include liquefied natural gas, methane, ethane, and hydrogen.
 これにより、排ガスEから二酸化炭素を分離して液化する際に必要となるエネルギーを抑えて、効率よく二酸化炭素を回収することができる。 Thereby, the energy required to separate and liquefy carbon dioxide from the exhaust gas E can be suppressed, and carbon dioxide can be efficiently recovered.
(2)第2の態様によれば浮体は、(1)の浮体であって、前記燃料供給ライン22のうち、前記二酸化炭素液化装置32よりも前記燃焼装置9側の前記燃料供給ライン22に設けられ、前記二酸化炭素液化装置32で冷熱源として用いられた前記液化可燃性ガスFを気化させる気化装置23を備える。
 これにより、気化装置23で液化可燃性ガスFを気化させるために必要なエネルギーを減少させることができるため、より一層、効率よく二酸化炭素を回収することが可能となる。
(2) According to the second aspect, the floating body is the floating body of (1), and is connected to the fuel supply line 22 on the side of the combustion device 9 rather than the carbon dioxide liquefaction device 32 in the fuel supply line 22. A vaporizer 23 is provided to vaporize the liquefied combustible gas F used as a cold source in the carbon dioxide liquefaction device 32.
As a result, the energy required to vaporize the liquefied combustible gas F in the vaporizer 23 can be reduced, making it possible to recover carbon dioxide even more efficiently.
(3)第3の態様によれば浮体は、(2)の浮体であって、前記二酸化炭素回収装置31は、前記燃焼装置9から排出された前記排ガスEを冷却する排ガス冷却塔34を更に備え、前記排ガス冷却塔34は、前記二酸化炭素液化装置32によって冷熱源として用いられた前記液化可燃性ガスFを冷熱源として前記排ガスEを冷却し、前記気化装置23は、前記排ガス冷却塔34によって冷熱源として用いられた前記液化可燃性ガスFを気化させる。
 これにより、燃焼装置9の燃料である液化可燃性ガスFを気化装置23へ導入する前に加熱することができるため、気化装置23で液化可燃性ガスFを気化させるために必要なエネルギーを、より一層、減少させることができる。
(3) According to a third aspect, the floating body is the floating body of (2), and the carbon dioxide recovery device 31 further includes an exhaust gas cooling tower 34 that cools the exhaust gas E discharged from the combustion device 9. The exhaust gas cooling tower 34 cools the exhaust gas E using the liquefied combustible gas F used as a cold source by the carbon dioxide liquefaction device 32 as a cold source, and the vaporizer 23 cools the exhaust gas E using the liquefied combustible gas F used as a cold source by the carbon dioxide liquefaction device 32. The liquefied combustible gas F used as a cold heat source is vaporized.
As a result, the liquefied combustible gas F, which is the fuel for the combustion device 9, can be heated before being introduced into the vaporizer 23, so that the energy required to vaporize the liquefied combustible gas F in the vaporizer 23 can be It can be further reduced.
(4)第4の態様によれば浮体は、(1)から(3)の何れか一つの浮体であって、積荷としての液化二酸化炭素を貯留するカーゴタンク51と、前記カーゴタンク51で発生した蒸発ガスBを前記二酸化炭素液化装置32へ導入させる蒸発ガス導入ライン52と、前記二酸化炭素回収装置31から前記二酸化炭素液化装置32へ導入される二酸化炭素と、前記蒸発ガス導入ライン52により前記二酸化炭素液化装置32へ導入される二酸化炭素と、を切り替える弁装置と、を備える。
 これにより、蒸発ガスBを再液化するための専用の再液化装置を設ける必要が無くなるため、浮体1C,1Dの大型化を抑制できる。
(4) According to the fourth aspect, the floating body is any one of (1) to (3), and includes a cargo tank 51 that stores liquefied carbon dioxide as a cargo and carbon dioxide generated in the cargo tank 51. The evaporative gas introduction line 52 introduces the evaporated gas B into the carbon dioxide liquefaction device 32, and the evaporative gas introduction line 52 introduces the carbon dioxide introduced from the carbon dioxide recovery device 31 into the carbon dioxide liquefaction device 32. The carbon dioxide liquefier 32 includes a valve device that switches between carbon dioxide and carbon dioxide introduced into the carbon dioxide liquefaction device 32.
This eliminates the need to provide a dedicated reliquefaction device for reliquefying the evaporated gas B, so it is possible to suppress the increase in size of the floating bodies 1C and 1D.
(5)第5の態様によれば浮体は、(4)の浮体であって、前記蒸発ガス導入ライン52により前記二酸化炭素液化装置32へ導入されて前記二酸化炭素液化装置32で液化された二酸化炭素を前記カーゴタンク51に戻す再液化二酸化炭素排出ライン53を備える。
 これにより、例えば、蒸発ガスBを再液化した液化二酸化炭素をカーゴタンク51に戻すことができる。
(5) According to the fifth aspect, the floating body is the floating body of (4), in which carbon dioxide is introduced into the carbon dioxide liquefaction device 32 through the evaporative gas introduction line 52 and liquefied in the carbon dioxide liquefaction device 32. A reliquefied carbon dioxide discharge line 53 is provided for returning carbon to the cargo tank 51.
Thereby, for example, liquefied carbon dioxide obtained by reliquefying the evaporated gas B can be returned to the cargo tank 51.
(6)第6の態様によれば浮体は、(1)から(3)の何れか一つの浮体であって、積荷としての液化二酸化炭素を貯留するカーゴタンク51と、前記カーゴタンク51で発生した蒸発ガスBを前記二酸化炭素液化装置32へ導入させる蒸発ガス導入ライン52と、少なくとも前記二酸化炭素液化装置32の入口における前記二酸化炭素の温度に基づいて、前記二酸化炭素回収装置31から前記二酸化炭素液化装置32へ導入される二酸化炭素と、前記蒸発ガス導入ライン52により前記二酸化炭素液化装置32へ導入される二酸化炭素と、を混合させる混合率を調整する導入調整部61と、を備える。
 これにより、二酸化炭素液化装置32における熱交換効率を高めることができる。
(6) According to the sixth aspect, the floating body is any one of (1) to (3), and includes a cargo tank 51 that stores liquefied carbon dioxide as a cargo and carbon dioxide generated in the cargo tank 51. The carbon dioxide is removed from the carbon dioxide recovery device 31 based on the temperature of the carbon dioxide at least at the inlet of the carbon dioxide liquefaction device 32. The carbon dioxide liquefier 32 includes an introduction adjustment unit 61 that adjusts a mixing ratio for mixing carbon dioxide introduced into the liquefaction device 32 and carbon dioxide introduced into the carbon dioxide liquefaction device 32 through the evaporative gas introduction line 52.
Thereby, the heat exchange efficiency in the carbon dioxide liquefaction device 32 can be increased.
(7)第7の態様によれば浮体は、(6)の浮体であって、前記二酸化炭素液化装置32で液化された二酸化炭素を前記カーゴタンク51に戻す再液化二酸化炭素排出ライン53を備える。
 これにより、蒸発ガスBを再液化するための専用の再液化装置を設ける必要が無くなるため、浮体1C,1Dの大型化を抑制できる。
(7) According to the seventh aspect, the floating body is the floating body of (6), and includes a re-liquefied carbon dioxide discharge line 53 that returns the carbon dioxide liquefied in the carbon dioxide liquefaction device 32 to the cargo tank 51. .
This eliminates the need to provide a dedicated reliquefaction device for reliquefying the evaporated gas B, so it is possible to suppress the increase in size of the floating bodies 1C and 1D.
(8)第8の態様によれば二酸化炭素回収方法は、液化可燃性ガスFを燃焼させることで排出された排ガスEから二酸化炭素を回収する二酸化炭素回収方法であって、前記排ガスEに含まれる二酸化炭素を吸収液に吸収させる工程S01と、前記二酸化炭素を吸収させた前記吸収液から気体の二酸化炭素を分離させる工程S02と、前記液化可燃性ガスFを冷熱源として前記吸収液から分離された気体の二酸化炭素を液化させる工程S03と、液化した前記二酸化炭素を貯留させる工程S04と、を含む。 (8) According to the eighth aspect, the carbon dioxide recovery method is a carbon dioxide recovery method for recovering carbon dioxide from exhaust gas E discharged by burning liquefied combustible gas F, the carbon dioxide recovery method comprising: a step S01 in which carbon dioxide is absorbed into an absorption liquid; a step S02 in which gaseous carbon dioxide is separated from the absorption liquid that has absorbed the carbon dioxide; and a step S02 in which gaseous carbon dioxide is separated from the absorption liquid using the liquefied combustible gas F as a cold source. The method includes a step S03 of liquefying the carbon dioxide gas, and a step S04 of storing the liquefied carbon dioxide.
 本開示に係る浮体及び二酸化炭素回収方法によれば、排ガスから二酸化炭素を分離して液化する際に必要となるエネルギーを抑えて、効率よく二酸化炭素を回収することができる。 According to the floating body and carbon dioxide recovery method according to the present disclosure, it is possible to efficiently recover carbon dioxide by suppressing the energy required to separate and liquefy carbon dioxide from exhaust gas.
1A,1B,1C,1D…浮体 2…浮体本体 2a…船首 2b…船尾 3A,3B…舷側 7…上部構造 8…貨物搭載区画 9…燃焼装置 10A,10B,10C,10D…二酸化炭素回収システム 11…液化二酸化炭素貯留部 21…液化可燃性ガス貯留部 22…燃料供給ライン 23…気化装置 31…二酸化炭素回収装置 32…二酸化炭素液化装置 34,134…排ガス冷却塔 35…吸収塔 36…再生塔 37…気体二酸化炭素導入ライン 38…排ガス洗浄塔 41…圧縮機 42…液化器 43…液化二酸化炭素排出ライン 51…カーゴタンク 52…蒸発ガス導入ライン 53…再液化二酸化炭素排出ライン 54,55,56,57…弁装置 61…導入調整部 62…入口検出部 63…出口検出部 64…制御弁 152…蒸発ガス導入ライン B…蒸発ガス E…排ガス F…液化可燃性ガス G…可燃性ガス 1A, 1B, 1C, 1D... Floating body 2... Floating body main body 2a... Bow 2b... Stern 3A, 3B... Broad side 7... Upper structure 8... Cargo loading compartment 9... Combustion device 10A, 10B, 10C, 10D... Carbon dioxide recovery system 11 ...Liquefied carbon dioxide storage unit 21...Liquefied combustible gas storage unit 22...Fuel supply line 23...Vaporization device 31...Carbon dioxide recovery device 32...Carbon dioxide liquefaction device 34,134...Exhaust gas cooling tower 35...Absorption tower 36...Regeneration tower 37... Gaseous carbon dioxide introduction line 38... Exhaust gas cleaning tower 41... Compressor 42... Liquefier 43... Liquefied carbon dioxide discharge line 51... Cargo tank 52... Evaporated gas introduction line 53... Reliquefied carbon dioxide discharge line 54, 55, 56 , 57...Valve device 61...Introduction adjustment unit 62...Inlet detection unit 63...Outlet detection unit 64...Control valve 152...Evaporative gas introduction line B...Evaporative gas E...Exhaust gas F...Liquefied combustible gas G...Combustible gas

Claims (8)

  1.  液化可燃性ガスを燃料として作動し排ガスを排出する燃焼装置と、
     前記液化可燃性ガスを貯留する液化可燃性ガス貯留部と、
     前記液化可燃性ガス貯留部から前記燃焼装置に向けて前記液化可燃性ガスを供給する燃料供給ラインと、
     前記排ガスに含まれる二酸化炭素を吸収液に吸収させる吸収塔、及び、前記吸収塔で前記二酸化炭素を吸収させた前記吸収液から気体の二酸化炭素を分離させる再生塔を有する二酸化炭素回収装置と、
     前記燃料供給ラインによって前記液化可燃性ガス貯留部から前記燃焼装置に供給される前記液化可燃性ガスを冷熱源として前記二酸化炭素回収装置から排出される二酸化炭素を液化する二酸化炭素液化装置と、
     前記二酸化炭素液化装置で液化した二酸化炭素を貯留する液化二酸化炭素貯留部と、を備える浮体。
    a combustion device that operates using liquefied combustible gas as fuel and discharges exhaust gas;
    a liquefied combustible gas storage section that stores the liquefied combustible gas;
    a fuel supply line that supplies the liquefied combustible gas from the liquefied combustible gas storage section to the combustion device;
    a carbon dioxide recovery device having an absorption tower that causes an absorption liquid to absorb carbon dioxide contained in the exhaust gas; and a regeneration tower that separates gaseous carbon dioxide from the absorption liquid that has absorbed the carbon dioxide in the absorption tower;
    a carbon dioxide liquefaction device that liquefies carbon dioxide discharged from the carbon dioxide recovery device using the liquefied combustible gas supplied from the liquefied combustible gas storage section to the combustion device through the fuel supply line as a cold heat source;
    A floating body comprising: a liquefied carbon dioxide storage section that stores carbon dioxide liquefied by the carbon dioxide liquefaction device.
  2.  前記燃料供給ラインのうち、前記二酸化炭素液化装置よりも前記燃焼装置側の前記燃料供給ラインに設けられ、前記二酸化炭素液化装置で冷熱源として用いられた前記液化可燃性ガスを気化させる気化装置を備える
    請求項1に記載の浮体。
    Among the fuel supply lines, a vaporizer is provided in the fuel supply line closer to the combustion device than the carbon dioxide liquefaction device, and vaporizes the liquefied combustible gas used as a cold source in the carbon dioxide liquefaction device. The floating body according to claim 1.
  3.  前記二酸化炭素回収装置は、前記燃焼装置から排出された前記排ガスを冷却する排ガス冷却塔を更に備え、
     前記排ガス冷却塔は、前記二酸化炭素液化装置によって冷熱源として用いられた前記液化可燃性ガスを冷熱源として前記排ガスを冷却し、
     前記気化装置は、前記排ガス冷却塔によって冷熱源として用いられた前記液化可燃性ガスを気化させる
    請求項2に記載の浮体。
    The carbon dioxide recovery device further includes an exhaust gas cooling tower that cools the exhaust gas discharged from the combustion device,
    The exhaust gas cooling tower cools the exhaust gas using the liquefied combustible gas used as a cold source by the carbon dioxide liquefaction device as a cold source,
    The floating body according to claim 2, wherein the vaporizer vaporizes the liquefied combustible gas used as a cold source by the exhaust gas cooling tower.
  4.  積荷としての液化二酸化炭素を貯留するカーゴタンクと、
     前記カーゴタンクで発生した蒸発ガスを前記二酸化炭素液化装置へ導入させる蒸発ガス導入ラインと、
     前記二酸化炭素回収装置から前記二酸化炭素液化装置へ導入される二酸化炭素と、前記蒸発ガス導入ラインにより前記二酸化炭素液化装置へ導入される二酸化炭素と、を切り替える弁装置と、を備える
    請求項1から3の何れか一項に記載の浮体。
    A cargo tank that stores liquefied carbon dioxide as cargo;
    an evaporative gas introduction line that introduces evaporative gas generated in the cargo tank to the carbon dioxide liquefaction device;
    From claim 1, comprising a valve device that switches between carbon dioxide introduced from the carbon dioxide recovery device to the carbon dioxide liquefaction device and carbon dioxide introduced into the carbon dioxide liquefaction device through the evaporative gas introduction line. The floating body according to any one of 3.
  5.  前記蒸発ガス導入ラインにより前記二酸化炭素液化装置へ導入されて前記二酸化炭素液化装置で液化された二酸化炭素を前記カーゴタンクに戻す再液化二酸化炭素排出ラインを備える
    請求項4に記載の浮体。
    5. The floating body according to claim 4, further comprising a re-liquefied carbon dioxide discharge line for returning the carbon dioxide introduced into the carbon dioxide liquefaction device by the evaporated gas introduction line and liquefied by the carbon dioxide liquefaction device to the cargo tank.
  6.  積荷としての液化二酸化炭素を貯留するカーゴタンクと、
     前記カーゴタンクで発生した蒸発ガスを前記二酸化炭素液化装置へ導入させる蒸発ガス導入ラインと、
     少なくとも前記二酸化炭素液化装置の入口における前記二酸化炭素の温度に基づいて、前記二酸化炭素回収装置から前記二酸化炭素液化装置へ導入される二酸化炭素と、前記蒸発ガス導入ラインにより前記二酸化炭素液化装置へ導入される二酸化炭素と、を混合させる混合率を調整する導入調整部と、
    を備える
    請求項1から3の何れか一項に記載の浮体。
    A cargo tank that stores liquefied carbon dioxide as cargo;
    an evaporative gas introduction line that introduces evaporative gas generated in the cargo tank to the carbon dioxide liquefaction device;
    Carbon dioxide is introduced from the carbon dioxide recovery device into the carbon dioxide liquefaction device based on the temperature of the carbon dioxide at least at the inlet of the carbon dioxide liquefaction device, and carbon dioxide is introduced into the carbon dioxide liquefaction device through the evaporated gas introduction line. an introduction adjustment unit that adjusts a mixing ratio to mix the carbon dioxide;
    The floating body according to any one of claims 1 to 3, comprising:
  7.  前記二酸化炭素液化装置で液化された二酸化炭素を前記カーゴタンクに戻す再液化二酸化炭素排出ラインを備える
    請求項6に記載の浮体。
    The floating body according to claim 6, further comprising a re-liquefied carbon dioxide discharge line that returns the carbon dioxide liquefied by the carbon dioxide liquefaction device to the cargo tank.
  8.  液化可燃性ガスを燃焼させることで排出された排ガスから二酸化炭素を回収する二酸化炭素回収方法であって、
     前記排ガスに含まれる二酸化炭素を吸収液に吸収させる工程と、
     前記二酸化炭素を吸収させた前記吸収液から気体の二酸化炭素を分離させる工程と、
     前記液化可燃性ガスを冷熱源として前記吸収液から分離された気体の二酸化炭素を液化させる工程と、
     液化した前記二酸化炭素を貯留させる工程と、
    を含む二酸化炭素回収方法。
    A carbon dioxide recovery method for recovering carbon dioxide from exhaust gas emitted by burning liquefied combustible gas,
    a step of absorbing carbon dioxide contained in the exhaust gas into an absorption liquid;
    separating gaseous carbon dioxide from the absorption liquid that has absorbed the carbon dioxide;
    liquefying the gaseous carbon dioxide separated from the absorption liquid using the liquefied flammable gas as a cold heat source;
    a step of storing the liquefied carbon dioxide;
    carbon capture methods including;
PCT/JP2023/014382 2022-04-18 2023-04-07 Floating body and carbon dioxide recovery method WO2023204052A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022068232A JP2023158417A (en) 2022-04-18 2022-04-18 Floating body and carbon dioxide recovery method
JP2022-068232 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023204052A1 true WO2023204052A1 (en) 2023-10-26

Family

ID=88419871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014382 WO2023204052A1 (en) 2022-04-18 2023-04-07 Floating body and carbon dioxide recovery method

Country Status (2)

Country Link
JP (1) JP2023158417A (en)
WO (1) WO2023204052A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245995A (en) * 2010-05-27 2011-12-08 Ihi Corp Liquefied gas carrier
JP2017176954A (en) * 2016-03-29 2017-10-05 株式会社Ihi Carbon dioxide recovery apparatus and natural gas combustion system
KR101903104B1 (en) * 2017-07-14 2018-10-01 삼성중공업 주식회사 Crude Oil Tanker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245995A (en) * 2010-05-27 2011-12-08 Ihi Corp Liquefied gas carrier
JP2017176954A (en) * 2016-03-29 2017-10-05 株式会社Ihi Carbon dioxide recovery apparatus and natural gas combustion system
KR101903104B1 (en) * 2017-07-14 2018-10-01 삼성중공업 주식회사 Crude Oil Tanker

Also Published As

Publication number Publication date
JP2023158417A (en) 2023-10-30

Similar Documents

Publication Publication Date Title
EP3112249B1 (en) Boil-off gas treatment system
ES2646601T3 (en) Method for processing liquefied gas on a ship
JP6412565B2 (en) Evaporative gas treatment system for ship and evaporative gas treatment method
KR101356003B1 (en) System for treating boil-off gas for a ship
KR20200096064A (en) Gas treatment system and ship having the same
KR20190105841A (en) Liquefied Petroleum Gas Fueled Ship and Fuel Supply Method of LPG Fueled Ship
KR20140138015A (en) Hybrid fuel supply system for a ship engine
KR102450533B1 (en) Volatile organic compounds treatment system and ship having the same
JP2016507705A (en) Ship liquefied gas treatment system
KR101788751B1 (en) A vessel with an engine in a hull
KR101519537B1 (en) System for treating boil-off gas for a ship
KR102253379B1 (en) Boil-Off Gas Treatment System and Method for Ship
KR20200007444A (en) Hydrogen-Enriched Compressed Natural Gas Fuel Supply System and Method for Low Pressure Gas Engine of a Ship
WO2023204052A1 (en) Floating body and carbon dioxide recovery method
KR101356004B1 (en) Method for treating boil-off gas for a ship
KR101503276B1 (en) Fuel gas supply system and method for an arctic ship
KR102157962B1 (en) Volatile organic compounds treatment system and ship having the same
KR101775053B1 (en) Nitrogenous compound emission reduction apparatus and operation method in ship and offshore structure
KR102320565B1 (en) Gas treatment system and ship having the same
KR102474931B1 (en) Boil-off gas re-liquefaction system and ship having the same
KR102455320B1 (en) Reliquefaction system of lpg and vessel including the same
KR20230028666A (en) Ship Operation System Using Carbonless Fuel
KR20200009719A (en) BOG Reliquefaction System and Method for Vessels
KR20210059829A (en) Boil-Off Gas Treatment System and Method for Ship
KR20220013107A (en) Combined Gas Generating System And Method For Ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791701

Country of ref document: EP

Kind code of ref document: A1