WO2023203994A1 - State change tracing method and state change tracing system - Google Patents

State change tracing method and state change tracing system Download PDF

Info

Publication number
WO2023203994A1
WO2023203994A1 PCT/JP2023/013645 JP2023013645W WO2023203994A1 WO 2023203994 A1 WO2023203994 A1 WO 2023203994A1 JP 2023013645 W JP2023013645 W JP 2023013645W WO 2023203994 A1 WO2023203994 A1 WO 2023203994A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
talbot
state change
electronic component
change tracking
Prior art date
Application number
PCT/JP2023/013645
Other languages
French (fr)
Japanese (ja)
Inventor
宏元 井
康敏 伊藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023203994A1 publication Critical patent/WO2023203994A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter

Definitions

  • the present invention relates to a state change tracking method and a state change tracking system. More specifically, the present invention relates to a method for tracking changes in the state of electronic components that enables non-destructive life estimation of electronic components with high accuracy and in a short time.
  • Electronic components are used in a variety of situations, and many require protection from sudden malfunctions.
  • power semiconductors used in Shinkansen trains, electric vehicles, refrigerators/freezers, air conditioners, etc. support social life, and it is essential to prevent them from suddenly malfunctioning.
  • a non-destructive life estimation technology for electronic components is required. As a technique related to this, the following technique has been disclosed.
  • Patent Document 1 and Patent Document 2 by performing non-destructive inspection using X-ray absorption images while energizing electronic components or applying physical loads, defects and breakage behavior can be grasped and the reliability of electronic components can be improved. Techniques for improving sexual performance have been disclosed. However, X-ray absorption images have a problem in that detailed internal changes cannot be captured and the accuracy of life estimation is not sufficient.
  • Patent Document 3 discloses an imaging X-ray microscope technology with high resolution in order to non-destructively capture detailed internal changes in a structure on a semiconductor substrate.
  • imaging X-ray microscopy technology when the resolution is increased, the area that can be photographed becomes extremely narrow, so it takes time to identify and visualize the desired location of electronic components, and it takes a long time to make measurements. There was a problem that it was necessary.
  • the present invention has been made in view of the above-mentioned problems and circumstances, and the object to be solved is to provide a method for tracking changes in the state of electronic components and a method for tracking changes in the state of electronic components that enable non-destructive life estimation of electronic components in a short time. is to provide a tracking system.
  • the present inventors have investigated the causes of the above problems, and as a result, the present inventor has developed a non-destructive method that uses Talbot images of electronic components to track changes in the state of electronic components according to the energization time. We have discovered that it is possible to estimate the lifespan of electronic components with high accuracy and in a short time, leading to the present invention. That is, the above-mentioned problems related to the present invention are solved by the following means.
  • a method for tracking changes in the state of electronic components comprising: Using a Talbot image, which is an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstructed image generated based on the interference fringe image, A state change tracking method, characterized in that the state change of the electronic component is tracked according to the energization time.
  • a photographing step of photographing an interference fringe image of the electronic component using a Talbot photographing device 2. The method according to item 1, wherein in the photographing step, the interference fringe image is photographed while suppressing the influence of radiation or heat generated from at least one of the Talbot imaging device or the electronic component on the photographing. How to track state changes.
  • a state change tracking system for electronic components comprising: Using a Talbot image, which is an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstructed image generated based on the interference fringe image, A state change tracking system, characterized in that the state change of the electronic component is tracked according to the energization time.
  • FIG. 2 is a block diagram showing a configuration example of a state change tracking system.
  • 1 is a schematic diagram illustrating the overall configuration of a Talbot imaging device.
  • FIG. 2 is an explanatory diagram showing the principle of a Talbot imaging device.
  • FIG. 3 is an explanatory diagram of a first grating and a second grating of the Talbot photographing device. It is a flowchart of the first database generation process (an example of state change tracking).
  • FIG. 3 is an explanatory diagram showing a concept in which a state change tracking unit of a CPU of a state change tracking device extracts a feature amount correlated with energization time.
  • FIG. 6 is an explanatory diagram showing a graph of a calibration curve for the state change tracking unit of the CPU of the state change tracking device to derive a threshold value of a feature amount corresponding to the lifespan of an object to be inspected.
  • 12 is a flowchart showing a process of estimating the lifespan of an object to be inspected by the lifespan estimating unit of the CPU of the state change tracking device.
  • FIG. 7 is an explanatory diagram showing a graph of a calibration curve on which the life estimation unit of the CPU of the state change tracking device estimates the life of a new test object.
  • the state change tracking method of the present invention is a state change tracking method of an electronic component, and includes an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstruction generated based on the interference fringe image.
  • the present invention is characterized in that a change in the state of the electronic component is tracked according to the energization time using a Talbot image, which is an image. This feature is a technical feature common to or corresponding to the embodiments described below.
  • the power density of the electronic component is within the range of 1 to 1000 W/cc from the viewpoint of significantly obtaining the effects of the present invention.
  • the allowable current of the electronic component is within the range of 200 to 800 A, and the allowable voltage is within the range of 600 to 3300 V. It is preferable from the viewpoint of obtaining remarkable effects.
  • An embodiment of the state change tracking method of the present invention includes a photographing step of photographing an interference fringe image of the electronic component using a Talbot photographing device, and in the photographing step, at least one of the Talbot photographing device or the electronic component. From the viewpoint of obtaining a clear image, it is preferable to capture the interference fringe image while suppressing the influence of radiation or heat generated from one side on the imaging.
  • the state change tracking method of the present invention it is preferable to suppress the influence of the heat on imaging by heat radiation or cooling from the viewpoint of obtaining clear images.
  • the influence of the heat on imaging can be suppressed by shielding the grid located between the light source and the detector of the Talbot imaging device with a heat shielding cover. , is preferable from the viewpoint of obtaining a clear image.
  • the state change tracking method of the present invention it is preferable from the viewpoint of obtaining a clear image to correct the Talbot image of the electronic component using a background Talbot image without the electronic component.
  • the Talbot image of the electronic component whose energization time is 0 is used to correct the Talbot image of the electronic component whose energization time is not 0, so that a clear image can be obtained. It is preferable from the viewpoint of the obtained results. Note that in order to use the state in which the electronic component is present as a reference, it is preferable that the positions match.
  • the Talbot image of the electronic component is corrected by using the Talbot image of the electronic component and the Talbot image of the electronic component whose energization time is different from the Talbot image of the electronic component. It is preferable from the viewpoint of the obtained results. Note that in order to use the state in which the electronic component is present as a reference, it is preferable that the positions match.
  • the state change tracking method of the present invention it is preferable to track the state change of the electronic component according to the energization time by using a plurality of Talbot images of the electronic component with different energization times. This allows the state of electronic components to be compared between each Talbot image, enabling more detailed tracking.
  • a moiré image as the interference fringe image from the viewpoint of performing state change tracking and life estimation with higher accuracy.
  • the state change tracking method of the present invention it is preferable to use a reconstructed image generated based on the interference fringe image as the Talbot image, from the viewpoint that state change tracking and life estimation can be performed with higher accuracy. preferable.
  • At least one of a differential phase image and a small-angle scattering image is used as the reconstructed image, and tracking degeneration of the material surrounding the defect as the state change is more advanced. This is preferable from the viewpoint of enabling accurate life estimation.
  • the state change tracking system of the present invention is a state change tracking system of an electronic component, and includes an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstruction generated based on the interference fringe image.
  • the present invention is characterized in that a change in the state of the electronic component is tracked according to the energization time using a Talbot image, which is an image.
  • is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • the state change tracking method of the present invention is a state change tracking method of an electronic component, and includes an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstruction generated based on the interference fringe image.
  • the present invention is characterized in that a change in the state of the electronic component is tracked according to the energization time using a Talbot image, which is an image.
  • the electronic components whose state changes are to be tracked are not particularly limited, and may be any of active components, passive components, and mechanical components.
  • Examples of electronic components include batteries, resistors, coils, capacitors, transistors, sensors, diodes, connectors, relays, switches, antennas, IC chips, inductors, capacitors, thermistors, etc., and they may be combined or packaged. It may also be something you have.
  • power semiconductors such as insulated gate bipolar transistors (IGBT) in particular support social life as mentioned above, and it is essential to avoid sudden malfunctions. , there is a strong need for life estimation.
  • the state change tracking method of the present invention is particularly effective for electronic components with high power density.
  • the power density of the electronic component according to the present invention is preferably within the range of 1 to 1000 W/cc. Further, when the electronic component is a power semiconductor, it is more preferably within the range of 10 to 1000 W/cc, and even more preferably within the range of 100 to 1000 W/cc. When the electronic component is a battery, it is more preferably within the range of 1 to 8 W/cc, and even more preferably within the range of 2 to 8 W/cc.
  • the power density [W/cc] of an electronic component can be calculated as (allowable current [A] x allowable voltage [V])/volume [cc].
  • the allowable current and allowable voltage will be described later.
  • the volume can be calculated as width W x depth D x height H from the external dimensions (width W, depth D, height H) of the target electronic component not including the terminal portion.
  • the state change tracking method of the present invention is characterized by the use of Talbot images that can capture a relatively wide area with high precision, so it is particularly effective when targeting large electronic components. do.
  • the allowable current of the electronic component according to the present invention is preferably within the range of 200 to 800 A, more preferably within the range of 400 to 800 A.
  • the allowable voltage is preferably within the range of 600 to 3300V, more preferably within the range of 1200 to 3300V.
  • the allowable current of electronic components can be calculated by multiplying the maximum current value that can be safely used by a safety factor. Allowable voltage can be similarly calculated by multiplying the maximum voltage value that can be safely used by a safety factor. Each value used in the calculation can be determined from various electrical characteristics of the electronic component.
  • values such as the maximum current value that can be safely used for the power semiconductor can be determined from various electrical characteristics measured using Agilent B1506A manufactured by Agilent Technologies. By using this, the allowable current and allowable voltage can be calculated.
  • change in state of an electronic component refers to a change in state that occurs in an electronic component due to energization. Examples include generation and growth of defects such as cracks and voids, deformation, degeneration, melting, and corrosion. More specifically, cracks include changes in length, width, depth, number, etc. Regarding voids, in addition to changes in size, number, etc., deformation, denaturation, melting, corrosion of the material surrounding the void, crack growth starting from the void, etc. can be cited. By capturing these changes as changes in the signal magnitude of the feature quantity, state changes can be tracked. The state change tracking method of the present invention can track these state changes with higher precision and in a shorter time than conventional methods.
  • the state change tracking method of the present invention can also track deterioration of material around defects in electronic components, which could not be tracked using conventional methods.
  • “Defect surrounding material” refers to material surrounding defects such as cracks and voids. Tracking the degeneration of the material around the defect enables more accurate life estimation, so an embodiment in which the degeneration of the material around the defect is tracked as a state change is preferred as an embodiment of the present invention. It is also particularly preferred to track the modification of the material surrounding the void.
  • degeneration of the material around the defect can be detected from any Talbot image, it can be clearly detected by using at least one of a differential phase image and a small-angle scattering image. Therefore, using at least one of the differential phase image and the small-angle scattering image among the reconstructed images as the Talbot image and tracking the degeneration of the material surrounding the void as a state change enables more accurate life estimation. Particularly preferred from this point of view.
  • tracking changes in the state of electronic components according to the energization time refers to comparing the states of electronic components with different energization times. Note that it is not essential to use a plurality of Talbot images of electronic components subjected to different energization times in order to compare state changes of electronic components subjected to different energization times. If a plurality of Talbot images of electronic components with different energization times are used, changes in the state of the electronic component can be tracked by comparing the Talbot images with each other. Even when only one Talbot image is used, state changes can be tracked by, for example, referring to an already accumulated database or simulation data.
  • the data obtained by tracking changes in the state of electronic components according to the energization time can be used, for example, to create a calibration curve, and the calibration curve can be used to estimate the lifespan of electronic components of the same type.
  • the conditions for energizing electronic components that track state changes are set based on the conditions under which the electronic components subject to life estimation are actually energized.
  • the conditions may be adapted to accelerated testing to predict the results at an early stage.
  • a "Talbot image” refers to an interference fringe image photographed using a Talbot imaging device or a reconstructed image generated based on the interference fringe image.
  • Talbot images can capture a relatively wide area with high precision. Therefore, by tracking changes in the state of electronic components using Talbot images, it becomes possible to track changes in state with high precision and in a short time. Furthermore, since the photographing process for estimating the lifespan can be performed using the Talbot imaging device, the estimation of the lifespan can be performed with high precision and in a short time. Note that from the viewpoint of tracking state changes and estimating lifespan with higher accuracy, it is preferable to use a reconstructed image as the Talbot image.
  • the interference fringe image according to the present invention is an interference fringe image photographed using a Talbot photographing device.
  • a "Talbot photographing device” is a device that photographs an interference fringe image using the Talbot effect.
  • the interference fringe image according to the present invention is an interference fringe image generated by the Talbot effect.
  • the interference fringe image may be a moire image or a non-moire image. Note that from the viewpoint of tracking state changes and estimating lifespan with higher accuracy, it is preferable to use a moiré image as the interference fringe image.
  • "Moire" in a moire image is a pattern of interference fringes that visually appears due to a shift in the period when multiple regularly repeating patterns are layered, and is a fringe pattern of brightness and darkness caused by phase difference. say.
  • the reconstructed image according to the present invention is a reconstructed image generated based on an interference fringe image captured using the above-mentioned Talbot imaging device.
  • the reconstructed images include a differential phase image that images the phase information of interference fringes, a small-angle scattering image that images the visibility (sharpness) of interference fringes, and an absorption image that images the average component of interference fringes. Furthermore, more types of images can be generated by recombining these three types of reconstructed images.
  • the state change tracking method of the present invention requires the use of Talbot images of electronic components, but includes a photographing process of photographing interference fringe images of electronic components using a Talbot imaging device, and reconstruction based on interference fringe images.
  • the step of generating an image is not essential.
  • FIG. 1 is a block diagram showing a configuration example of a state change tracking system 100 that performs the state change tracking method of the present invention.
  • the state change tracking system 100 includes a Talbot imaging device 1, a controller 19, an image processing device 2, and a state change tracking device 20.
  • the Talbot imaging device 1 is communicably connected to an image processing device 2 and a state change tracking device 20 via a controller 19 and a bus.
  • the state change tracking system of the present invention only needs to include a state change tracking device that tracks state changes of electronic components using Talbot images, and a Talbot imaging device or the like is not essential.
  • Talbot image refers to an interference fringe image photographed using a Talbot imaging device or a reconstructed image generated based on the interference fringe image, as described above.
  • the "Talbot photographing device” is a device that photographs interference fringe images using the Talbot effect, and includes the Talbot-Lau photographing device.
  • FIG. 2 is a schematic diagram illustrating the overall configuration of the Talbot photographing device 1.
  • the Talbot imaging apparatus 1 shown in FIG. It is configured with.
  • the Talbot imaging apparatus 1 shown in FIG. 2 includes a source grating (also referred to as multi-grating, multi-slit, G0 grating, etc.) 12, a first grating (also referred to as G1 grating) 14, and a second grating (also referred to as G2 grating). ) 15.
  • the Talbot imaging apparatus 1 may be a Talbot imaging apparatus that does not include the source grating 12 and only includes the first grating 14 and the second grating 15 as gratings.
  • FIG. 3 is an explanatory diagram showing the principle of the Talbot imaging device. Note that although FIG. 3 shows the case of a Talbot photographing device, the case of a Talbot-Lau photographing device is also basically explained in the same way.
  • the z direction in FIGS. 3 and 4 corresponds to the vertical direction in the Talbot imaging device 1 in FIG. 2, and the x and y directions in FIGS. direction).
  • a plurality of slits S are arranged at a predetermined period d in the x direction perpendicular to the z direction, which is the radiation irradiation direction. has been formed.
  • Such an arrangement of slits S is a one-dimensional lattice, and an arrangement of slits S in the x and y directions is a two-dimensional lattice.
  • the radiation source grating 12 (see FIG. 2) is formed by arranging a plurality of slits S at a predetermined period d in the x direction perpendicular to the z direction, which is the radiation irradiation direction. be done.
  • one-dimensional gratings are employed as an example for the source grating 12, the first grating 14, and the second grating 15, but two-dimensional gratings may be employed.
  • the transmitted radiation forms images at regular intervals in the z direction. tie.
  • This image is called a self-image (also called a lattice image, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
  • the "Talbot effect” means that when coherent radiation passes through the first grating 14 in which slits S are provided at a constant period d as shown in FIG. It refers to the phenomenon of forming one's self-image at intervals.
  • the radiation emitted from the radiation source 11a (see FIG. 1) of the radiation generator 11 is converted into multiple sources by the source grid 12 (see FIG. 1), and Transmits through the grating 14.
  • the "Talbot imaging device” is a device that takes an interference fringe image using the Talbot effect as described above, so it is not only a Talbot imaging device in a narrow sense that uses only the Talbot effect, but also the Talbot effect and the The term is also used to include Talbot-Law photography equipment that uses a combination of effects.
  • a second grating 15 provided with slits S like the first grating 14 is arranged at a position where the self-image of the first grating 14 focuses.
  • the extending direction of the slits S of the second grating 15 that is, the x-axis direction in FIG. 3
  • the second A moire image Mo is obtained on the grid 15.
  • a subject H (electronic component in the present invention) exists between the radiation source 11a of the radiation generating device 11 (not shown in FIG. 3) and the first grating 14. Then, since the phase of the radiation shifts depending on the subject H, the interference fringes of the interference fringe image are disturbed with the edge of the subject H as a boundary. On the other hand, although not shown, if the subject H does not exist between the radiation source 11a of the radiation generating device 11 and the first grating 14, an interference fringe image consisting only of interference fringes appears.
  • the Talbot photographing device 1 of the embodiment shown in FIG. A second grating 15 is placed at the position where the image is focused. Furthermore, as described above, when the second grating 15 and the detector 16 (see FIG. 1) are separated, the moire image Mo becomes blurred (see FIG. 2). 2. It is arranged directly below the grid 15.
  • the second grating 15 may be made of a scintillator or a luminescent material such as amorphous selenium, and the second grating 15 and the detector 16 may be integrated.
  • the second cover unit 130 is provided to prevent people or objects from hitting or touching the first grating 14, the second grating 15, or the detector 16, and to protect the detector 16.
  • the detector 16 is configured such that conversion elements that generate electric signals according to the irradiated radiation are arranged in a two-dimensional form (matrix form), and the electric signals generated by the conversion elements are read as image signals. has been done. Then, the detector 16 captures the moire image Mo, which is a radiation image formed on the second grating 15, as an image signal for each conversion element.
  • the pixel size of the detector 16 is, for example, within the range of 10 to 300 ⁇ m, and more preferably within the range of 50 to 200 ⁇ m.
  • an FPD flat panel detector
  • D flat panel detector
  • D direct conversion type
  • a photoelectric conversion element is arranged two-dimensionally together with a TFT (thin film transistor) under a scintillator plate such as CsI or Gd 2 O 2 S to form each pixel.
  • a scintillator plate such as CsI or Gd 2 O 2 S to form each pixel.
  • an amorphous selenium film with a film thickness of, for example, 100 to 1000 ⁇ m is formed on glass by thermal evaporation of amorphous selenium, and the amorphous selenium film and electrodes are deposited on an array of TFTs arranged in a two-dimensional manner. Ru.
  • the amorphous selenium film absorbs radiation, a voltage is liberated within the material in the form of electron-hole pairs, and the voltage signal between the electrodes is read by the TFT.
  • the detector 16 may be a CCD (charge coupled device) or a radiation camera.
  • the Talbot photographing device 1 shown in FIG. 2 is capable of photographing a plurality of moiré images Mo using the stripe scanning method. That is, the Talbot imaging device 1 shown in FIG. 2 changes the relative positions of the first grating 14 and the second grating 15 from the position in FIG. A plurality of moiré images Mo can be taken while shifting in a direction (orthogonal to the axial direction).
  • the Talbot photographing device 1 can move the first grating 14 by a predetermined amount in the x-axis direction when photographing a plurality of moiré images Mo using the fringe scanning method described below.
  • the second grating 15 may be moved, or both the first grating 14 and the second grating 15 may be moved.
  • the interference fringe image according to the present invention includes a moire image, but is not limited to a moire image. Since the interference fringe image according to the present invention may be an interference fringe image photographed using a Talbot photographing device, an interference fringe image photographed without using the second grating 15, which is not an essential component of the Talbot photographing device. are also included in the interference fringe image according to the present invention. Note that from the viewpoint of tracking state changes and estimating lifespan with higher accuracy, it is preferable to use a moiré image as the interference fringe image.
  • the detector 16 When photographing an interference fringe image that is not a moire image, the second grating 15 is not used, the detector 16 is placed at the position of the second grating 15, and the self-image of the first grating 14 is directly photographed. In this case, the pixel size of the detector 16 needs to be sufficiently smaller than the period of the self-image of the first grating 14. Further, in order to accurately capture the self-image of the first grating 14, it is preferable to use a high resolution array detector or the like as the detector 16, which can detect information on interference fringes.
  • an X-ray sCMOS camera C12849-111U manufactured by Hamamatsu Photonics As a high-resolution array detector that can detect interference fringe information in an array, for example, an X-ray sCMOS camera C12849-111U manufactured by Hamamatsu Photonics, a high-resolution X-ray imaging unit M11427, etc. can be used.
  • the Talbot imaging apparatus 1 shown in FIG. 2 is a so-called vertical type, in which a radiation generator 11, a source grating 12, a subject stage 13, a first grating 14, a second grating 15, and a detector 16 are arranged in this order in the direction of gravity. It is arranged in a certain z direction. That is, in the Talbot imaging apparatus 1 shown in FIG. 2, the z direction is the irradiation direction of the radiation from the radiation generator 11.
  • the radiation generating device 11 includes a radiation source 11a, and the radiation source 11a generates radiation and irradiates the radiation in the z direction (gravitational direction). "Radiation” means radiation in a broad sense and includes all electromagnetic waves and particle beams.
  • the radiation generator 11 irradiates radiation from a focal point in the form of a cone beam. That is, as shown in FIG. 2, the radiation is irradiated with the radiation irradiation axis Ca that coincides with the z direction as the central axis, and the radiation spreads as the distance from the radiation generator 11 increases.
  • the range irradiated by this radiation generating device 11 is referred to as a radiation irradiation range.
  • an X-ray tube can be used as the radiation source 11a.
  • the X-ray tube for example, a Coolidge X-ray tube or a rotating anode X-ray tube can be used. Tungsten or molybdenum can be used as the anode.
  • the focal diameter of the radiation source 11a is preferably within the range of 0.03 to 3 mm, and more preferably outside the range of 0.1 to 1 mm.
  • the radiation source 11a functions as an irradiation device.
  • a radiation source grating 12 is provided below the radiation generator 11.
  • the Talbot imaging apparatus 1 shown in FIG. It is attached to the fixing member 12a of the section 18.
  • the fixed member 12a includes, in addition to the source grating 12, a filtration filter (also referred to as an additional filter) 112 for changing the quality of radiation transmitted through the source grating 12. , an irradiation field aperture 113 for narrowing down the irradiation field of radiation to be irradiated, and an irradiation field lamp 114 for irradiating the subject with visible light instead of radiation to perform positioning before irradiating the radiation. .
  • a filtration filter also referred to as an additional filter
  • the source grating 12, the filtration filter 112, and the irradiation field aperture 113 do not necessarily need to be provided in this order. Further, in the Talbot imaging apparatus 1 shown in FIG. 2, a first cover unit 120 is arranged around the radiation source grating 12 to protect it.
  • the subject table 13 is a table on which the subject H is placed.
  • the subject stage 13 functions as a rotation stage that rotates the subject H around the z-axis.
  • the Talbot photographing device 1 photographs a plurality of moire images Mo while rotating the subject stage 13 at different angles.
  • the image processing device 2 that generates a reconstructed image based on the interference fringe image captured by the Talbot imaging device 1 will be described.
  • the image processing device 2 shown in FIG. 1 receives image signals of one or more interference fringes transmitted from the Talbot imaging device 1, and generates a reconstructed image based on the received interference fringes.
  • the reconstructed image includes a differential phase image that images the phase information of the interference fringe, a small-angle scattering image that images the visibility (sharpness) of the interference fringe, and an absorption image that images the average component of the interference fringe. There is an image. Further, it is also possible to generate more types of images by recombining these three types of reconstructed images.
  • the "fringe scanning method” means that one of multiple gratings is scanned at 1/M of the slit period of the grating (M is a positive integer, M>2 for absorption images, M>2 for differential phase images and small-angle scattering images). 3) This is a method of performing reconstruction using moiré images taken M times by moving each moiré image in the slit period direction to generate a high-definition reconstructed image.
  • the "Fourier transform method” is a process in which a single moire image is taken with a Talbot camera in the presence of a subject, and during image processing, the moire image is reconstructed by Fourier transform and analysis. This is a method of generating a reconstructed image. In the case of the Fourier transform method, a reconstructed image can be generated even from an interference fringe image that is not a moiré image.
  • the image processing device 2 After generating the reconstructed image, the image processing device 2 transmits the reconstructed image to the state change tracking device 20.
  • the controller 19 that performs general control over the Talbot imaging device 1 will be explained.
  • the controller 19 is connected to the radiation generating device 11 of the Talbot imaging apparatus 1, and can be configured to set the tube voltage, tube current, irradiation time, etc. of the radiation source 11a. Further, the controller 19 may be configured to relay transmission and reception of signals and data between the radiation detector 16 and the external image processing device 2 and the like. That is, the controller 19 functions as a control unit that causes the interference fringe image of the subject H to be photographed.
  • the controller 19 shown in FIGS. 1 and 2 may be composed of a computer in which a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), an input/output interface, etc. (not shown) are connected to a bus. Note that the controller 19 may be configured as a dedicated control device instead of a general-purpose computer.
  • the controller 19 is provided with appropriate means and devices such as input means including an operation section, output means, storage means, and communication means.
  • the output means includes a display section (not shown) that displays information necessary for performing various operations of the Talbot imaging device 1 and reconstructed images generated by the image processing device 2.
  • the electronic component When capturing an interference fringe image of an electronic component used for status change tracking, the electronic component may or may not be energized. Considering the influence of noise caused by energization on the interference fringe image, it is preferable not to energize, so from the viewpoint of image quality, it is preferable to temporarily interrupt energization during photographing. In addition, if the electronic component that is the subject of life estimation cannot be temporarily interrupted when being energized, it is possible to capture interference fringe images of the electronic component used to track state changes without temporarily interrupting the energization. , is preferable from the viewpoint of further increasing the accuracy of life estimation by matching the energization conditions.
  • a photographing means that takes a long time to photograph is used, the state change will progress during the photographing process, making it difficult to track the state change according to the energization time.
  • a Talbot photographing device is used, which allows photographing to be performed in a relatively short period of time, so even when performing the photographing process without temporarily interrupting the energization, highly accurate state change tracking is possible. and life estimation is possible.
  • the photographing step it is preferable to photograph the interference fringe image while suppressing the influence of radiation or heat generated from at least one of the Talbot imaging device or the electronic components on the photographing. With this, a clearer image can be obtained.
  • the effects of radiation or heat on imaging include the detector of the Talbot imaging device, the fringe scanning piezo element included in the grating drive unit, the PLC (programmable logic controller) included in the control unit, the grating located between the light source and the detector, and the grid located between the light source and the detector.
  • Possible causes include noise caused by radiation or heat acting on parts that hold the grid.
  • Possible sources of radiation include the radiation source of the Talbot imaging device and electronic components that are the subject.
  • An example of a means for suppressing the influence of radiation on imaging is to install a conductive part by installing a conductive film or coating with conductive paint in the part of the Talbot imaging device that you want to protect from radiation. There is a way to ground through the
  • Possible sources of heat include the radiation source, detector, electrical equipment, and electronic components of the Talbot imaging device.
  • the temperature of the chip portion of the power semiconductor may reach 150 to 200° C. due to the energization.
  • the subject is an electronic component that easily heats up to high temperatures when energized, it is particularly important to suppress the effects of heat on photography.
  • Measures to suppress the influence of heat on photography include means to radiate or cool the heat generated from the Talbot imaging device or electronic components, and to insulate the grid located between the light source and the detector of the Talbot imaging device with a heat shield cover. There are means to reduce the influence of heat on the Talbot photographing device by attaching the electrical equipment outside the Talbot photographing device.
  • Means for dissipating or cooling the heat generated from the Talbot imaging device or electronic components include means for dissipating heat generated from the radiation source, etc. using an exterior upper fan, and for cooling the radiation source using a cooling water circulation cable connected from outside the device. There are methods for cooling the heat generated from the detector, and methods for sealing the detector other than the detection surface and radiating the heat generated from the detector from the closed space using an external fan.
  • Heat radiation or cooling is preferably carried out so that the temperature is within the range of 15 to 30°C. Further, it is preferable that the temperature fluctuation rate during the photographing process is small, specifically, it is preferably 10% or less, more preferably 5% or less, and even more preferably 2% or less. preferable.
  • photographing process for tracking state changes can be performed in parallel with state change tracking (for example, first database generation processing), which will be described later.
  • the state change tracking device 20 shown in FIG. 1 is composed of, for example, a general-purpose computer (control PC). Note that the state change tracking device 20 is not limited to this, and a part of the functions of the state change tracking device 20 may be provided on a network (not shown) so that each process can be executed by sending and receiving data through communication. You can also do this. Further, the functions of the state change tracking device 20 described below may be provided in the image processing device 2 or the controller 19.
  • the state change tracking device 20 shown in FIG. 1 includes a CPU 21, a RAM 22, a storage section 23, an input section 24, an external data input section 25, a display section 26, and a communication section 27.
  • the communication section 27 is not necessarily essential when the external data input section 25 fulfills its function.
  • the CPU 21 reads out various programs such as system programs and processing programs stored in the storage unit 23, expands them to the RAM 22, and implements each functional unit by executing the expanded programs.
  • the CPU 21 embodies the image acquisition section 211, the image correction section 212, the alignment section 213, the state change tracking section 214, and the life estimation section 215 by executing the program. The functions of each functional section will be described later.
  • the RAM 22 functions as a work area that temporarily stores various programs, input or output data, parameters, etc. that are read from the storage unit 23 and executable by the CPU 21 during various processes that are executed and controlled by the CPU 21.
  • the storage unit 23 includes a first database 23a and a second database 23b.
  • the storage unit 23 is configured of, for example, an HDD (hard disk drive) or a semiconductor nonvolatile memory.
  • the storage unit 23 stores various programs and data.
  • the first database 23a includes Talbot images, actual measured values (referred to as feature amount data) that are associated with the energization time of feature quantities at each position extracted from the Talbot images by the state change tracking unit 214, and approximations of the actual measured values into a straight line.
  • This is a database that stores the calibration curves.
  • the first database 23a also stores the position of the Talbot image related to the feature amount correlated with the energization time, the slope of the calibration curve related to this feature amount, and the threshold value corresponding to the lifespan of the inspection object.
  • the second database 23b is a database that stores a calibration curve (referred to as calibration curve data) generated by the life estimation section 215 based on the feature amount of a predetermined position of a new object to be inspected.
  • the life estimation unit 215 can estimate the energization time until the life of a new test object by using the calibration curve stored in the second database 23b and extrapolating the calibration curve until it reaches a threshold value. Details of life estimation will be described later using FIG. 9.
  • the input unit 24 includes a keyboard with cursor keys, numeric input keys, various function keys, etc., and a pointing device such as a mouse.
  • the input unit 24 outputs a press signal of a key pressed on a keyboard or an operation signal from a mouse to the CPU 21 as an input signal.
  • the CPU 21 executes various processes based on operation signals from the input unit 24. Note that the input unit 24 only needs to be capable of inputting input signals, and a touch panel or the like can be used instead.
  • the external data input unit 25 is for inputting data acquired from an external device (including the controller 19) to the state change tracking device 20.
  • the external data input unit 25 is, for example, a USB (universal serial Various devices can be employed, such as a bus (registered trademark) port, Bluetooth (registered trademark), and a drive that reads data from a recording medium corresponding to an external device.
  • the display unit 26 includes a monitor such as a CRT (cathode ray tube) or an LCD (liquid crystal display).
  • the display unit 26 displays various screens according to instructions from display signals input from the CPU 21.
  • the display unit 26 displays the interference fringe image received from the Talbot imaging device 1 or the reconstructed image received from the image processing device 2.
  • the display section 26 also has the function of the input section 24.
  • the communication unit 27 includes a communication interface and communicates with external devices on the network, such as the Talbot image device 1 and the image processing device 2. Furthermore, the communication section 27 may be shared with the external data input section 25 described above.
  • the state change tracking device 20 shown in FIG. 1 includes an image acquisition section 211, an image correction section 212, a position alignment section 213, a state change tracking section 214, and a life estimation section 215 in the CPU 21, and each processing
  • the execution of each process is not limited to this.
  • the image processing device 2 is configured with the functions of an image acquisition section 211, an image correction section 212, a position alignment section 213, and a life estimation section 215, and the state change tracking device 20 is configured with the functions of a state change tracking section 214.
  • the configuration may include only the following.
  • the state change tracking unit 214 may, for example, manually extract the value of the feature amount (signal intensity or signal intensity distribution) from the Talbot image and manually plot the feature amount.
  • FIG. 5 is a flowchart showing the process of generating the first database 23a in the state change tracking device 20.
  • the image acquisition section 211 of the CPU 21 of the state change tracking device 20 transmits the Talbot image of the inspection object (subject H) photographed by the Talbot photographing device 1 to the Talbot photographing device 1 or image processing via the communication section 27.
  • the information is acquired from the device 2, and the energization time is also acquired (step S001).
  • the "energization time” refers to the time that has elapsed from when the object to be inspected is energized to when the Talbot imaging device 1 photographs the object to be inspected.
  • the number of Talbot images used in the state change tracking method of the present invention is not particularly limited. If a plurality of Talbot images of electronic components with different energization times are used, changes in the state of the electronic component can be tracked by comparing the Talbot images with each other. Even when using only one Talbot image, state changes can be tracked by, for example, referring to an already accumulated database. Note that it is preferable to use a plurality of Talbot images of the electronic component with different energization times from the viewpoint of being able to compare the state of the electronic component between the respective Talbot images and enabling more detailed tracking.
  • the image correction unit 212 corrects the Talbot image of the electronic component using the correction image (step S003). With this, a clearer image can be obtained.
  • a Talbot image of a background without an electronic component a Talbot image of the electronic component whose energization time is 0, a Talbot image of an electronic component with a different energization time, etc. can be used.
  • a correction image is used to calculate the radiation dose caused by changing the slit direction of the source grating, first grating, and second grating at the time of imaging from the Talbot image of the electronic component.
  • This includes processing for removing image unevenness (artifacts) including unevenness in distribution, unevenness in dose distribution due to manufacturing variations in the slit, and unevenness mainly due to reflection of the subject table into the image.
  • Image unevenness can be removed by subtracting or dividing the signal value of each pixel of the Talbot image of the electronic component by the signal value of the corresponding pixel of the correction image.
  • the Talbot image of an electronic component when it is a differential phase image, it can be corrected, for example, by the processing described in the following known document (A) or known document (B). Further, when the Talbot image of the electronic component is an absorption image or a small-angle scattering image, correction can be performed by, for example, the processing described in the following known document (C).
  • the image for correction used by the image correction unit 212 can be acquired by the image acquisition unit 211 from the Talbot imaging device 1 or the image processing device 2, similarly to the Talbot image of the electronic component that is the target of status change tracking.
  • the alignment unit 213 aligns the Talbot images of a plurality of electronic components having different energization times (step S005).
  • “Positioning” refers to aligning each position of electronic components in each Talbot image between Talbot images, and based on the shape etc. of the electronic component in the first Talbot image, the second and subsequent Talbot images This can be done by correcting the inclination, position, and size of. Also, you are not limited to the first card, you may use any one card as a reference and match the others to it. Note that the alignment unit 213 does not need to align the first Talbot image.
  • the alignment unit 213 aligns the second and subsequent Talbot images, for example, using the first Talbot image as a reference.
  • the state change tracking unit 214 of the CPU 21 non-destructively tracks the state change of the inspection object using the plurality of Talbot images of the electronic component and their energization times.
  • the state change tracking unit 214 extracts the value of the feature amount at each position of the Talbot image using the plurality of Talbot images of electronic components having different energization times and their energization times (step S007).
  • the state change tracking unit 214 first extracts the value of the feature amount at each position of the first Talbot image.
  • the state change tracking unit 214 stores the value of the feature amount at each position of the first Talbot image in the first database 23a.
  • the state change tracking unit 214 sequentially stores the value of the feature amount at each position of the second and subsequent reconstructed images in the first database 23a.
  • the "feature amount of each position" of the Talbot image includes, for example, the signal intensity and signal intensity distribution of each position of the Talbot image.
  • “Signal intensity at each position of the Talbot image” means the magnitude of the signal value at each pixel of the Talbot image.
  • “signal intensity distribution of a Talbot image” means the degree of variation in signal intensity in a certain area of a Talbot image, and can be indicated by, for example, a statistical amount such as a standard deviation. Note that the signal intensity and signal intensity distribution at each position of the Talbot image are examples of the feature amount, and the feature amount is not limited to these.
  • the state change tracking unit 214 plots the value of the feature amount at each position of the extracted Talbot image on the vertical axis of the graph and the energization time when the Talbot image was captured on the horizontal axis, and calculates the value using the least squares method or the like.
  • a calibration curve is created (step S009). That is, the state change tracking unit 214 plots the signal strength or signal strength distribution value indicating the feature amount of each position of the Talbot image against the energization time, and creates a graph by approximating this to a straight line using the least squares method or the like. , created for each position and each feature.
  • the state change tracking unit 214 determines whether the object to be inspected has reached the end of its lifespan from the start of leakage until the next time the object to be inspected is photographed. If the leak has started (Yes in step S011), the state change tracking unit 214 proceeds to step S013. On the other hand, if the leak has not started (No in step S011), the state change tracking unit 214 returns to step S001. Then, the image acquisition unit 211 of the CPU 21 acquires the next Talbot image and the energization time, and repeats the processes from step S003 to step S011 for the second and subsequent Talbot images.
  • the state change tracking unit 214 extracts the signal intensity or signal intensity distribution value of the Talbot image from the Talbot image acquired next, and plots the signal intensity or signal intensity distribution value of the Talbot image on the vertical axis of the graph.
  • the energization time By plotting the energization time on the horizontal axis of the graph and approximating it to a straight line using the least squares method, a calibration curve up to just before leakage starts is created for each position and each feature.
  • step S013 the state change tracking unit 214 identifies a position where the feature amount changes in correlation with the energization time from the calibration curve of each position, and extracts the feature amount related to this position.
  • FIG. 6 is an explanatory diagram showing a concept in which the state change tracking unit 214 of the CPU 21 of the state change tracking device 20 extracts a feature amount correlated with the energization time.
  • the state change tracking unit 214 sequentially monitors the signal strength (feature amount example).
  • the leak starts at energization time t7 (not shown).
  • the X-ray absorption image shown in FIG. 6 is a normal X-ray absorption image of a portion of an electronic component that includes the region of interest, and the Talbot image is a corresponding differential phase image or small-angle scattering image of the same electronic component. ing. As shown in FIG. 6, for example, no change appears in a normal X-ray absorption image even after the energization times t1, t2, . . . , t6 have elapsed.
  • the Talbot image shows a change in the value of the feature amount at point P2
  • the Talbot image at the energization time t6 shows a change in the value of the feature amount at point P2 immediately before the start of leakage.
  • the state change tracking unit 214 identifies a position in the Talbot image where a change in the value of the feature amount occurs (for example, point P2 in FIG. 6), and extracts the feature amount related to this position.
  • step S015 the state change tracking unit 214 extrapolates the calibration curve up to just before the leak starts to the energization time at the time the leak starts, and sets the feature value corresponding to the lifespan of the test object to the threshold value. , and the generation process of the first database 23a is completed.
  • FIG. 7 is an explanatory diagram showing a graph of a calibration curve for the state change tracking unit 214 of the CPU 21 of the state change tracking device 20 to derive the threshold value of the feature amount corresponding to the life span of the inspection object.
  • the horizontal axis of the graph shows the energization time
  • the vertical axis of the graph shows the value of the feature amount at a predetermined position of the Talbot image (for example, point P2 in FIG. 6).
  • the state change tracking unit 214 of the CPU 21 sequentially extracts the value of the feature amount of the Talbot image from time t0 in 24-hour (equivalent to one day) increments until energization times t1, t2, ..., t6.
  • the graph is plotted with a circle, and the lifetime energization time t7 at which leakage started is also written.
  • the state change tracking unit 214 creates this graph and derives a calibration curve for the feature amount at each position of the Talbot image, and extracts a feature amount that has a high correlation with the energization time based on the slope of this calibration curve. do.
  • the state change tracking unit 214 extrapolates the calibration curve of the value of the feature at this predetermined position up to the energization time t7, and sets the value of the feature at the predetermined position of the Talbot image at the time when the leak starts at the energization time t7 to a threshold value. It is derived as Th.
  • the state change tracking unit 214 uses a plurality of regularly taken Talbot images to extract the feature amount of each position in the reconstructed image where the inspection object changes continuously until the end of its life. .
  • the state change tracking unit 214 can generate the first database 23a.
  • the state change tracking unit 214 create a calibration curve for each object to be tested, and also create a calibration curve for each energization condition.
  • FIG. 8 is a flowchart showing a process in which the life estimation unit 215 estimates the life of the inspection object (subject H). In this embodiment, it is assumed that the object to be inspected is energized, for example.
  • the image acquisition unit 211 of the CPU 21 of the state change tracking device 20 sends a new Talbot image of the inspection object photographed by the Talbot imaging device 1 to the Talbot imaging device 1 or the image processing device 2 via the communication unit 27. (Step S101).
  • the image correction unit 212 of the CPU 21 corrects the Talbot image of the new inspection object in the same manner as in step S003 (step S103).
  • the alignment unit 213 of the CPU 21 aligns the Talbot image of the new inspection object with reference to the first Talbot image during the generation process of the first database 23a shown in FIG. 5 (step S105 ).
  • the life can be estimated if at least one Talbot image is taken, and it is desirable to have a plurality of Talbot images. Further, the plurality of Talbot images with different energization times do not need to be photographed regularly, and may be captured at any energization time.
  • the life estimation unit 215 of the CPU 21 extracts the feature amount at a predetermined position from the Talbot image of the new inspection object.
  • This predetermined position is extracted by the feature data generation process shown in Figure 5, and indicates that voids or cracks occur in this inspection object, the insulating material no longer maintains insulation, and leaks begin. It is an easy location (for example, point P2 in FIG. 6).
  • the life estimation unit 215 applies the slope of the calibration curve stored in the first database 23a to the feature quantity at this predetermined position, extrapolates the calibration curve until it reaches the threshold value, and calculates the slope of the calibration curve until it reaches the threshold value.
  • the lifespan of the new inspection object is estimated from the time (step S107).
  • the life estimation unit 215 can estimate the life with high accuracy.
  • lifespan estimation index can be quantified, and compared to human sensory evaluation (qualitative evaluation), electronic evaluation is more objective and accurate. The lifespan of parts can be estimated.
  • the life estimation unit 215 refers to the first database 23a and extracts a new calibration value of the feature amount at a predetermined position of the new inspection object. Create a curve (calibration curve data).
  • the life estimation unit 215 creates a new calibration curve related to the feature amount at a predetermined position from the feature amount at a predetermined position of the Talbot image of the new inspection object, and continues to deviate this calibration curve until it reaches a threshold value. Then, the energization time until the threshold value of the feature amount at a predetermined position is reached is estimated as the lifespan. Then, the life estimation unit 215 stores the created new calibration curve data in the second database 23b.
  • step S107 the life estimation unit 215 ends the life estimation process after estimating the energization time, which is the life of the new inspection object.
  • FIG. 9 is an explanatory diagram showing a graph of a calibration curve on which the life estimation unit 215 of the CPU 21 of the state change tracking device 20 estimates the life of the new test object.
  • the horizontal axis of the graph shows the energization time
  • the vertical axis of the graph shows the value of the feature amount of the Talbot image.
  • the life estimation unit 215 uses the slope of the calibration curve stored in the first database 23a as the feature value.
  • a new calibration curve is created by applying it to the quantity value F1.
  • the calibration curve is extrapolated until the threshold value Th is reached.
  • the current application time tx until the feature amount reaches the threshold Th can be derived from a new calibration curve until the feature amount reaches the threshold Th. It can be estimated that the energization time up to the energization time t x is the remaining life of the new test object. In this way, when using only one Talbot image for a new inspection object, the test time for life estimation can be shortened compared to when multiple Talbot images with different energization times are used. can.
  • a new Talbot image of the inspection object is acquired after a predetermined time (predetermined number of days) by continuing to energize, and the value F2 of the feature amount at a predetermined position of the Talbot image is extracted, the life estimation unit 215 , a new calibration curve is created based on the displacement of the feature values F1 and F2 of the Talbot image. Furthermore, the calibration curve is extrapolated until the threshold value Th is reached.
  • the current application time tx until the feature amount reaches the threshold Th can be derived from a new calibration curve until the feature amount reaches the threshold Th. It can be estimated that the energization time up to the energization time t x is the remaining life of the new test object. In this way, when a plurality of Talbot images with different energization times are used for a new inspection object, the lifespan can be estimated with higher accuracy than when only one Talbot image is used.
  • IGBT power module 1 An IGBT power module described in the following known document (D) was manufactured to have a volume of 2400 cc (24 cm x 20 cm x 5 cm) and a power density of 100 W/cc. This IGBT power module will be referred to as IGBT power module 1 hereinafter.
  • the allowable current of the manufactured IGBT power module 1 was 320A, and the allowable voltage was 750V.
  • the produced IGBT power module 1 was energized with a current value of 320 A and a voltage value of 750 V, and interference fringe images were taken when the energization time was 10 hours, 100 hours, 500 hours, and 1000 hours.
  • Example 1-1 an interference fringe image (moiré image) was photographed using an X-ray Talbot-Lau imaging device equipped with a second grating, as shown in FIG.
  • a background interference fringe image (moiré image) without the IGBT power module 1 was also photographed. It should be noted that, assuming that the new photographing of the test object in the life estimation process can only be performed while the test object is energized, the photographing here is also performed while the IGBT power module 1 is energized. Ta.
  • the signal value of each pixel is subtracted by the signal value of the corresponding pixel of the correction image (reconstructed image of the background without the IGBT power module 1). Corrections were made by doing this.
  • the differential phase image and small-angle scattering image had particularly clear image quality.
  • differential phase images it is possible to accurately determine the values of the features of voids and cracks based on the refractive index difference between air and resin, and by comparing differential phase images with different energization times, the values of the features of voids and cracks can be changed. I was able to clearly capture what happened.
  • small-angle scattering images it is possible to understand the state of the resin material from small-angle scattered X-rays, and by comparing small-angle scattering images obtained with different energization times, we can see how the resin material changes around voids and cracks after 100 hours. I was able to capture it. By tracking the deterioration of the resin material around the voids and cracks, we were able to effectively capture how the IGBT power module 1 undergoes dielectric breakdown.
  • Example 1-2 a non-moiré image was taken as an interference fringe image using an X-ray Talbot-Lau imaging device not equipped with a second grating. Changes in the feature values of voids and cracks of IGBT power module 1 (power density 100 W/cc), the vicinity of voids and the vicinity of cracks were carried out in the same manner as in Example 1-1 except that a non-moiré image was used as the interference fringe image. The degeneration and dielectric breakdown of the resin material were tracked according to the current application time.
  • the reconstructed image generated from the non-moire image in Example 1-2 is slightly inferior in image quality compared to the reconstructed image generated from the moire image in Example 1-1, but Roughly similar tracking results were obtained with -1. Furthermore, there was no difference in the time required to take the Talbot image between Example 1-2 and Example 1-1.
  • Example 1-3 the radiation source grating, first grating, and second grating of the X-ray Talbot-Lau imaging device are isolated with a heat shield cover, and interference fringe images are obtained while suppressing the influence of heat on imaging. was photographed.
  • Example 1-1 the same procedure as in Example 1-1 was carried out, including changes in the characteristic values of voids and cracks of the IGBT power module 1 (power density 100 W/cc), modification of the resin material around the voids and cracks, and insulation. Destruction was tracked as a function of energization time.
  • Example 1-3 it was possible to capture a clearer interference fringe image than in Example 1-1. From this result, it can be inferred that by shielding the grid located between the light source and the detector of the Talbot imaging device with a heat shielding cover, more accurate life estimation becomes possible.
  • Example 1-4 a reconstructed image of the IGBT power module 1 before energization (energization time is 0) was used as a correction image instead of a reconstructed image of the background without the IGBT power module 1.
  • the same procedure as in Example 1-1 was carried out, including changes in the characteristic values of voids and cracks of the IGBT power module 1 (power density 100 W/cc), modification of the resin material around the voids and cracks, and insulation. Destruction was tracked as a function of energization time.
  • Example 1-4 it was possible to obtain an even clearer corrected image than in Example 1-1. From this result, it can be inferred that by correcting the Talbot image of the electronic component for each energization time using the Talbot image of the electronic component for which the energization time is 0, more accurate life estimation becomes possible. Further, life estimation was also possible by correcting the Talbot image of the electronic component at each energization time using the Talbot image of the electronic component for which the energization time was not 0.
  • Example 1-5 Comparative example>
  • an absorption image of the IGBT power module 1 (power density 100 W/cc) was photographed using an X-ray CT device (MICROTOM800, manufactured by Carl Zeiss) as the image photographing device.
  • MICROTOM800 X-ray CT device
  • the state change of the IGBT power module 1 was tracked according to the energization time in the same manner as in Example 1-1.
  • Example 1-5 had poor image quality compared to the Talbot image used in Example 1-1. Further, from the absorption images used in Examples 1-5, it was not possible to trace the modification of the resin material around voids or cracks. From these results, it can be seen that when an X-ray CT device is used, lifespan cannot be estimated with high accuracy compared to when a Talbot imaging device is used.
  • Example 1-5 using an X-ray CT device CT reconstruction took a long time, and state change tracking took more time than Example 1-1.
  • an X-ray CT device is used to track state changes, it is also necessary to use the same X-ray CT device in the life estimation process. Therefore, it can be seen that when an X-ray CT device is used to track state changes, it takes more time to perform life estimation processing than when a Talbot imaging device is used.
  • Example 1-6 which is a comparative example, an interference fringe image of IGBT power module 1 (power density 100 W/cc) was obtained using an imaging X-ray microscope described in Japanese Patent Application Laid-open No. 2001-305077 as an image capturing device. (non-moire image) was taken. Further, a differential phase image and an absorption image were generated from the photographed interference fringe image (non-moiré image). Other than that, the state change of the IGBT power module 1 was tracked according to the energization time in the same manner as in Example 1-1.
  • Example 1-6 had less clear image quality than the Talbot image used in Example 1-1. Further, from the differential phase images and absorption images used in Examples 1-6, degeneration of the resin material around voids and cracks could not be traced. From these results, it can be seen that when using an X-ray microscope, it is not possible to estimate the lifespan with higher accuracy than when using a Talbot imaging device.
  • Example 1-6 since the imaging X-ray microscope has a narrow imaging area, in Example 1-6, it took a long time to image a wide range, and it took more time to track state changes than in Example 1-1. If an imaging X-ray microscope is used to track state changes, it is also necessary to use the imaging X-ray microscope for life estimation processing. Therefore, it can be seen that when an X-ray microscope is used to track state changes, it takes more time to perform life estimation processing than when a Talbot imaging device is used.
  • Example 2-1 An IGBT power module was produced in the same manner as in Example 1-1 except that the volume was 3960 cc (39.6 cm x 20 cm x 5 cm) and the power density was 1000 W/cc. This IGBT power module will be referred to as an IGBT power module 2 hereinafter.
  • the allowable current of the manufactured IGBT power module 2 was 1200A, and the allowable voltage was 3300V.
  • Interference fringe images of the IGBT power module 2 at each energization time were photographed in the same manner as in Example 1-1 except that the energization current value was changed to 1200A and the voltage value was changed to 3300V.
  • Example 3-1 An IGBT power module was produced in the same manner as in Example 1-1 except that the volume was 2640 cc (26.4 cm x 20 cm x 5 cm) and the power density was 1000 W/cc. This IGBT power module will be referred to as an IGBT power module 3 hereinafter.
  • the allowable current of the produced IGBT power module 3 was 800A, and the allowable voltage was 3300V.
  • Interference fringe images of the IGBT power module 3 at each energization time were photographed in the same manner as in Example 1-1 except that the current value was changed to 800 A and the voltage value was changed to 3300 V.
  • Example 1-1 From the changes in the signals of these extracted feature quantities, changes in the value of the feature quantities of voids and cracks, degeneration of the resin material around the voids and cracks, and When dielectric breakdown was tracked according to the current application time, the same tracking as in Example 1-1 could be performed.
  • Example 4-1 An all-solid-state lithium secondary battery of Fabrication Example 1 described in Japanese Patent No. 5428545 was fabricated to have a volume of 2.5 cc (external dimensions: 5 cm x 5 cm x 0.1 cm) and a power density of 2 W/cc.
  • the permissible current of the produced secondary battery was 1A and the permissible voltage was 5V.
  • the prepared secondary battery was charged and discharged, and interference fringe images (moiré images) were taken at 100 cycles, 500 cycles, 1000 cycles, 2000 cycles, 5000 cycles, and 10000 cycles of charging and discharging, respectively.
  • CV discharge was first performed at 100°C with a current density of 12.8 mA/cm 2 to 0 V, and then charging and discharging was performed in the range of 0 V to 3 V under the same conditions. Ta. Note that the current application time for one cycle of charging and discharging was 1 hour.
  • Example 1-1 The same X-ray Talbot-Rho imaging device as in Example 1-1 was used to take the interference fringe image (moiré image). An interference fringe image (moiré image) of the background without the secondary battery was also taken.
  • the deterioration of the positive electrode active material was tracked as a change in the state of the secondary battery (power density 2 W/cc) according to the current application time.
  • the state of the secondary battery power density 2 W/cc
  • Tables I to III list the configuration and evaluation results of each example. Note that the evaluation of image quality and time is a relative evaluation, and is good in the order of ⁇ , ⁇ , ⁇ -, ⁇ , and ⁇ ( ⁇ is the best).
  • the state change tracking method of the present invention improves the non-destructive life estimation of electronic components by tracking the state changes of electronic components according to the energization time using Talbot images of electronic components. It can be seen that this is possible with precision and in a short time.
  • the present invention can be used for a state change tracking method and a state change tracking system that enable nondestructive life estimation of electronic components with high accuracy and in a short time.
  • Imaging device 11 Radiation generator 11a Radiation source 112 Filtration filter 113 Irradiation field aperture 114 Irradiation field lamp 12 Source grating (G0 grating) 120 First cover unit 12a Fixing member 13 Subject stage 130 Second cover unit 14 First grid (G1 grid) 15 Second lattice (G2 lattice) 16 Radiation detector 17 Support column 17a Buffer member 18 Base part 19 Controller 2 Image processing device 20 State change tracking device 21 CPU 211 Image acquisition section 212 Image correction section 213 Positioning section 214 State change tracking section 215 Life estimation section 22 RAM 23 Storage section 23a First database 23b Second database 24 Input section 25 External data input section 26 Display section 27 Communication section 100 Status change tracking system

Landscapes

  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The present invention addresses the problem of providing a state change tracing method and a state change tracing system capable of estimating nondestructively the lifetime of an electronic component highly accurately within a short time. A state change tracing method according to the present invention is for tracing a state change of an electronic component, and is characterized in that the state change of the electronic component is traced in accordance with energization time by using a Talbot image which is an interference fringe image of the electronic component captured by using a Talbot imaging device or a reconfiguration image generated on the basis of the interference fringe image.

Description

状態変化追跡方法、及び状態変化追跡システムState change tracking method and state change tracking system
 本発明は、状態変化追跡方法、及び状態変化追跡システムに関する。
 より詳しくは、非破壊による電子部品の寿命推定を高精度かつ短時間で可能とする電子部品の状態変化追跡方法等に関する。
The present invention relates to a state change tracking method and a state change tracking system.
More specifically, the present invention relates to a method for tracking changes in the state of electronic components that enables non-destructive life estimation of electronic components with high accuracy and in a short time.
 電子部品は、あらゆる場面で使われており、突然の機能不全を避けることが求められるものも多い。例えば、新幹線、電気自動車、冷蔵・冷凍庫、空調機などに使われるパワー半導体は、社会生活を支えており、突然の機能不全を避けることが必須となっている。このような社会的ニーズを満たすために、非破壊による電子部品の寿命推定技術が求められている。これに関する技術として、以下のような技術が開示されている。 Electronic components are used in a variety of situations, and many require protection from sudden malfunctions. For example, power semiconductors used in Shinkansen trains, electric vehicles, refrigerators/freezers, air conditioners, etc. support social life, and it is essential to prevent them from suddenly malfunctioning. In order to meet such social needs, a non-destructive life estimation technology for electronic components is required. As a technique related to this, the following technique has been disclosed.
 特許文献1及び特許文献2では、電子部品に通電しながら、又は物理的な負荷をかけながらX線吸収画像で非破壊検査を行うことで、欠陥や破壊の挙動を把握し、電子部品の信頼性を向上する技術が開示されている。しかしながら、X線吸収画像では、詳細な内部変化を捉えることができず、寿命推定の精度が十分でないという問題があった。 In Patent Document 1 and Patent Document 2, by performing non-destructive inspection using X-ray absorption images while energizing electronic components or applying physical loads, defects and breakage behavior can be grasped and the reliability of electronic components can be improved. Techniques for improving sexual performance have been disclosed. However, X-ray absorption images have a problem in that detailed internal changes cannot be captured and the accuracy of life estimation is not sufficient.
 特許文献3では、半導体基板上の構造の詳細な内部変化を非破壊で捉えるべく、高い分解能を有する結像型X線顕微鏡技術が開示されている。しかしながら、結像型X線顕微鏡技術では、分解能を高くしたときに、撮影できる領域が非常に狭くなってしまうため、電子部品の注目したい場所の特定と可視化に手間がかかり、測定に長時間を要するという問題があった。 Patent Document 3 discloses an imaging X-ray microscope technology with high resolution in order to non-destructively capture detailed internal changes in a structure on a semiconductor substrate. However, with imaging X-ray microscopy technology, when the resolution is increased, the area that can be photographed becomes extremely narrow, so it takes time to identify and visualize the desired location of electronic components, and it takes a long time to make measurements. There was a problem that it was necessary.
特開2009-162703号公報Japanese Patent Application Publication No. 2009-162703 特開2019-90802号公報JP2019-90802A 特開2001-305077号公報Japanese Patent Application Publication No. 2001-305077
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、非破壊による電子部品の寿命推定を高精度かつ短時間で可能とする電子部品の状態変化追跡方法及び状態変化追跡システムを提供することである。 The present invention has been made in view of the above-mentioned problems and circumstances, and the object to be solved is to provide a method for tracking changes in the state of electronic components and a method for tracking changes in the state of electronic components that enable non-destructive life estimation of electronic components in a short time. is to provide a tracking system.
 本発明者は、上記課題を解決すべく、上記課題の原因等について検討した結果、電子部品のタルボ画像を用いて、電子部品の状態変化を通電時間に応じて追跡することで、非破壊による電子部品の寿命推定を高精度かつ短時間でできることを見いだし、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problems, the present inventors have investigated the causes of the above problems, and as a result, the present inventor has developed a non-destructive method that uses Talbot images of electronic components to track changes in the state of electronic components according to the energization time. We have discovered that it is possible to estimate the lifespan of electronic components with high accuracy and in a short time, leading to the present invention.
That is, the above-mentioned problems related to the present invention are solved by the following means.
 1.電子部品の状態変化追跡方法であって、
 前記電子部品の、タルボ撮影装置を用いて撮影された干渉縞画像又は当該干渉縞画像に基づいて生成された再構成画像である、タルボ画像を用いて、
 前記電子部品の状態変化を通電時間に応じて追跡する
 ことを特徴とする状態変化追跡方法。
1. A method for tracking changes in the state of electronic components, the method comprising:
Using a Talbot image, which is an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstructed image generated based on the interference fringe image,
A state change tracking method, characterized in that the state change of the electronic component is tracked according to the energization time.
 2.前記電子部品のパワー密度が、1~1000W/ccの範囲内である
 ことを特徴とする第1項に記載の状態変化追跡方法。
2. 2. The state change tracking method according to claim 1, wherein the electronic component has a power density in a range of 1 to 1000 W/cc.
 3.前記電子部品の許容電流が、200~800Aの範囲内であり、かつ、許容電圧が、600~3300Vの範囲内である
 ことを特徴とする第1項又は第2項に記載の状態変化追跡方法。
3. The state change tracking method according to item 1 or 2, wherein the allowable current of the electronic component is within the range of 200 to 800 A, and the allowable voltage is within the range of 600 to 3,300 V. .
 4.タルボ撮影装置を用いて前記電子部品の干渉縞画像を撮影する撮影工程を有し、
 当該撮影工程において、前記タルボ撮影装置又は前記電子部品の少なくとも一方から発生する放射線又は熱による撮影への影響を抑制しながら、前記干渉縞画像を撮影する
 ことを特徴とする第1項に記載の状態変化追跡方法。
4. a photographing step of photographing an interference fringe image of the electronic component using a Talbot photographing device,
2. The method according to item 1, wherein in the photographing step, the interference fringe image is photographed while suppressing the influence of radiation or heat generated from at least one of the Talbot imaging device or the electronic component on the photographing. How to track state changes.
 5.放熱又は冷却により、前記熱による撮影への影響を抑制する
 ことを特徴とする第4項に記載の状態変化追跡方法。
5. 5. The state change tracking method according to item 4, wherein the influence of the heat on imaging is suppressed by heat radiation or cooling.
 6.前記タルボ撮影装置の光源とディテクターの間に位置する格子を遮熱カバーで遮熱することにより、前記熱による撮影への影響を抑制する
 ことを特徴とする第4項に記載の状態変化追跡方法。
6. The state change tracking method according to item 4, characterized in that the influence of the heat on imaging is suppressed by shielding a grid located between the light source and the detector of the Talbot imaging device with a heat shielding cover. .
 7.前記電子部品がないバックグラウンドのタルボ画像を用いて、前記電子部品のタルボ画像を補正する
 ことを特徴とする第1項に記載の状態変化追跡方法。
7. 2. The state change tracking method according to claim 1, wherein the Talbot image of the electronic component is corrected using a background Talbot image without the electronic component.
 8.通電時間が0である前記電子部品のタルボ画像を用いて、通電時間が0でない前記電子部品のタルボ画像を補正する
 ことを特徴とする第1項に記載の状態変化追跡方法。
8. 2. The state change tracking method according to claim 1, wherein the Talbot image of the electronic component whose energization time is 0 is used to correct the Talbot image of the electronic component whose energization time is not 0.
 9.前記電子部品のタルボ画像を用いて、前記電子部品のタルボ画像と通電時間の異なる前記電子部品のタルボ画像を補正する
 ことを特徴とする第1項に記載の状態変化追跡方法。
9. 2. The state change tracking method according to claim 1, wherein the Talbot image of the electronic component is used to correct a Talbot image of the electronic component whose energization time is different from that of the electronic component.
 10.通電時間の異なる前記電子部品のタルボ画像を複数用いることで、前記電子部品の状態変化を通電時間に応じて追跡する
 ことを特徴とする第1項に記載の状態変化追跡方法。
10. 2. The state change tracking method according to claim 1, wherein a state change of the electronic component is tracked according to the energization time by using a plurality of Talbot images of the electronic component having different energization times.
 11.前記干渉縞画像として、モアレ画像を用いる
 ことを特徴とする第1項に記載の状態変化追跡方法。
11. 2. The state change tracking method according to claim 1, wherein a moiré image is used as the interference fringe image.
 12.前記タルボ画像として、前記干渉縞画像に基づいて生成された再構成画像を用いる
 ことを特徴とする第1項に記載の状態変化追跡方法。
12. 2. The state change tracking method according to claim 1, wherein a reconstructed image generated based on the interference fringe image is used as the Talbot image.
 13.前記再構成画像として、微分位相画像及び小角散乱画像の少なくとも一方を用い、
 前記状態変化として、欠陥周辺材料の変性を追跡する
 ことを特徴とする第12項に記載の状態変化追跡方法。
13. Using at least one of a differential phase image and a small-angle scattering image as the reconstructed image,
13. The state change tracking method according to item 12, wherein the state change includes tracking degeneration of material surrounding the defect.
 14.電子部品の状態変化追跡システムであって、
 前記電子部品の、タルボ撮影装置を用いて撮影された干渉縞画像又は当該干渉縞画像に基づいて生成された再構成画像である、タルボ画像を用いて、
 前記電子部品の状態変化を通電時間に応じて追跡する
 ことを特徴とする状態変化追跡システム。
14. A state change tracking system for electronic components, the system comprising:
Using a Talbot image, which is an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstructed image generated based on the interference fringe image,
A state change tracking system, characterized in that the state change of the electronic component is tracked according to the energization time.
 本発明の上記手段により、非破壊による電子部品の寿命推定を高精度かつ短時間で可能とする状態変化追跡方法及び状態変化追跡システムを提供することができる。 By means of the above means of the present invention, it is possible to provide a state change tracking method and a state change tracking system that enable non-destructive life estimation of electronic components with high accuracy and in a short time.
状態変化追跡システムの構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a state change tracking system. タルボ撮影装置の全体構成を例示する概略図である。1 is a schematic diagram illustrating the overall configuration of a Talbot imaging device. タルボ撮影装置の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of a Talbot imaging device. タルボ撮影装置の第1格子及び第2格子の説明図である。FIG. 3 is an explanatory diagram of a first grating and a second grating of the Talbot photographing device. 第1データベースの生成処理(状態変化追跡の一例)のフローチャートである。It is a flowchart of the first database generation process (an example of state change tracking). 状態変化追跡装置のCPUの状態変化追跡部が、通電時間と相関する特徴量を抽出する概念を示した説明図である。FIG. 3 is an explanatory diagram showing a concept in which a state change tracking unit of a CPU of a state change tracking device extracts a feature amount correlated with energization time. 状態変化追跡装置のCPUの状態変化追跡部が、検査対象物の寿命に対応する特徴量の閾値を導出するための検量線のグラフを示す説明図である。FIG. 6 is an explanatory diagram showing a graph of a calibration curve for the state change tracking unit of the CPU of the state change tracking device to derive a threshold value of a feature amount corresponding to the lifespan of an object to be inspected. 状態変化追跡装置のCPUの寿命推定部が、検査対象物の寿命を推定する処理を示したフローチャートである。12 is a flowchart showing a process of estimating the lifespan of an object to be inspected by the lifespan estimating unit of the CPU of the state change tracking device. 状態変化追跡装置のCPUの寿命推定部が、新たな検査対象物の寿命を推定した検量線のグラフを示す説明図である。FIG. 7 is an explanatory diagram showing a graph of a calibration curve on which the life estimation unit of the CPU of the state change tracking device estimates the life of a new test object.
 本発明の状態変化追跡方法は、電子部品の状態変化追跡方法であって、前記電子部品の、タルボ撮影装置を用いて撮影された干渉縞画像又は当該干渉縞画像に基づいて生成された再構成画像である、タルボ画像を用いて、前記電子部品の状態変化を通電時間に応じて追跡することを特徴とする。
 この特徴は、下記実施形態に共通する又は対応する技術的特徴である。
The state change tracking method of the present invention is a state change tracking method of an electronic component, and includes an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstruction generated based on the interference fringe image. The present invention is characterized in that a change in the state of the electronic component is tracked according to the energization time using a Talbot image, which is an image.
This feature is a technical feature common to or corresponding to the embodiments described below.
 本発明の状態変化追跡方法の実施形態としては、前記電子部品のパワー密度が、1~1000W/ccの範囲内であることが、本発明の効果を顕著に得られる観点から好ましい。 In an embodiment of the state change tracking method of the present invention, it is preferable that the power density of the electronic component is within the range of 1 to 1000 W/cc from the viewpoint of significantly obtaining the effects of the present invention.
 本発明の状態変化追跡方法の実施形態としては、前記電子部品の許容電流が、200~800Aの範囲内であり、かつ、許容電圧が、600~3300Vの範囲内であることが、本発明の効果を顕著に得られる観点から好ましい。 As an embodiment of the state change tracking method of the present invention, the allowable current of the electronic component is within the range of 200 to 800 A, and the allowable voltage is within the range of 600 to 3300 V. It is preferable from the viewpoint of obtaining remarkable effects.
 本発明の状態変化追跡方法の実施形態としては、タルボ撮影装置を用いて前記電子部品の干渉縞画像を撮影する撮影工程を有し、当該撮影工程において、前記タルボ撮影装置又は前記電子部品の少なくとも一方から発生する放射線又は熱による撮影への影響を抑制しながら、前記干渉縞画像を撮影することが、鮮明な画像が得られる観点から好ましい。 An embodiment of the state change tracking method of the present invention includes a photographing step of photographing an interference fringe image of the electronic component using a Talbot photographing device, and in the photographing step, at least one of the Talbot photographing device or the electronic component. From the viewpoint of obtaining a clear image, it is preferable to capture the interference fringe image while suppressing the influence of radiation or heat generated from one side on the imaging.
 本発明の状態変化追跡方法の実施形態としては、放熱又は冷却により、前記熱による撮影への影響を抑制することが、鮮明な画像が得られる観点から好ましい。 As an embodiment of the state change tracking method of the present invention, it is preferable to suppress the influence of the heat on imaging by heat radiation or cooling from the viewpoint of obtaining clear images.
 本発明の状態変化追跡方法の実施形態としては、前記タルボ撮影装置の光源とディテクターの間に位置する格子を遮熱カバーで遮熱することにより、前記熱による撮影への影響を抑制することが、鮮明な画像が得られる観点から好ましい。 In an embodiment of the state change tracking method of the present invention, the influence of the heat on imaging can be suppressed by shielding the grid located between the light source and the detector of the Talbot imaging device with a heat shielding cover. , is preferable from the viewpoint of obtaining a clear image.
 本発明の状態変化追跡方法の実施形態としては、前記電子部品がないバックグラウンドのタルボ画像を用いて、前記電子部品のタルボ画像を補正することが、鮮明な画像が得られる観点から好ましい。 As an embodiment of the state change tracking method of the present invention, it is preferable from the viewpoint of obtaining a clear image to correct the Talbot image of the electronic component using a background Talbot image without the electronic component.
 本発明の状態変化追跡方法の実施形態としては、通電時間が0である前記電子部品のタルボ画像を用いて、通電時間が0でない前記電子部品のタルボ画像を補正することが、鮮明な画像が得られる観点から好ましい。なお、電子部品がある状態を基準とするために、位置が一致することが好ましい。 In an embodiment of the state change tracking method of the present invention, the Talbot image of the electronic component whose energization time is 0 is used to correct the Talbot image of the electronic component whose energization time is not 0, so that a clear image can be obtained. It is preferable from the viewpoint of the obtained results. Note that in order to use the state in which the electronic component is present as a reference, it is preferable that the positions match.
 本発明の状態変化追跡方法の実施形態としては、前記電子部品のタルボ画像を用いて、前記電子部品のタルボ画像と通電時間の異なる前記電子部品のタルボ画像を補正することが、鮮明な画像が得られる観点から好ましい。なお、電子部品がある状態を基準とするために、位置が一致することが好ましい。 In an embodiment of the state change tracking method of the present invention, the Talbot image of the electronic component is corrected by using the Talbot image of the electronic component and the Talbot image of the electronic component whose energization time is different from the Talbot image of the electronic component. It is preferable from the viewpoint of the obtained results. Note that in order to use the state in which the electronic component is present as a reference, it is preferable that the positions match.
 本発明の状態変化追跡方法の実施形態としては、通電時間の異なる前記電子部品のタルボ画像を複数用いることで、前記電子部品の状態変化を通電時間に応じて追跡することが好ましい。これによって、電子部品の状態を各タルボ画像同士で比較でき、より詳細な追跡が可能となる。 In an embodiment of the state change tracking method of the present invention, it is preferable to track the state change of the electronic component according to the energization time by using a plurality of Talbot images of the electronic component with different energization times. This allows the state of electronic components to be compared between each Talbot image, enabling more detailed tracking.
 本発明の状態変化追跡方法の実施形態としては、前記干渉縞画像として、モアレ画像を用いることが、状態変化追跡や寿命推定をより高精度で行える観点から好ましい。 In an embodiment of the state change tracking method of the present invention, it is preferable to use a moiré image as the interference fringe image from the viewpoint of performing state change tracking and life estimation with higher accuracy.
 本発明の状態変化追跡方法の実施形態としては、前記タルボ画像として、前記干渉縞画像に基づいて生成された再構成画像を用いることが、状態変化追跡や寿命推定をより高精度で行える観点から好ましい。 In an embodiment of the state change tracking method of the present invention, it is preferable to use a reconstructed image generated based on the interference fringe image as the Talbot image, from the viewpoint that state change tracking and life estimation can be performed with higher accuracy. preferable.
 本発明の状態変化追跡方法の実施形態としては、前記再構成画像として、微分位相画像及び小角散乱画像の少なくとも一方を用い、前記状態変化として、欠陥周辺材料の変性を追跡することが、より高精度な寿命推定を可能とする観点から好ましい。 In an embodiment of the state change tracking method of the present invention, at least one of a differential phase image and a small-angle scattering image is used as the reconstructed image, and tracking degeneration of the material surrounding the defect as the state change is more advanced. This is preferable from the viewpoint of enabling accurate life estimation.
 本発明の状態変化追跡システムは、電子部品の状態変化追跡システムであって、前記電子部品の、タルボ撮影装置を用いて撮影された干渉縞画像又は当該干渉縞画像に基づいて生成された再構成画像である、タルボ画像を用いて、前記電子部品の状態変化を通電時間に応じて追跡することを特徴とする。 The state change tracking system of the present invention is a state change tracking system of an electronic component, and includes an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstruction generated based on the interference fringe image. The present invention is characterized in that a change in the state of the electronic component is tracked according to the energization time using a Talbot image, which is an image.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and forms and aspects for carrying out the present invention will be described in detail. In this application, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
<1.状態変化追跡方法の概要>
 本発明の状態変化追跡方法は、電子部品の状態変化追跡方法であって、前記電子部品の、タルボ撮影装置を用いて撮影された干渉縞画像又は当該干渉縞画像に基づいて生成された再構成画像である、タルボ画像を用いて、前記電子部品の状態変化を通電時間に応じて追跡することを特徴とする。
<1. Overview of status change tracking method>
The state change tracking method of the present invention is a state change tracking method of an electronic component, and includes an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstruction generated based on the interference fringe image. The present invention is characterized in that a change in the state of the electronic component is tracked according to the energization time using a Talbot image, which is an image.
 本発明において、状態変化を追跡する対象となる電子部品は、特に限定されず、能動部品、受動部品及び機構部品のいずれであってもよい。電子部品としては、例えば電池、抵抗器、コイル、コンデンサ、トランジスタ、センサー、ダイオード、コネクタ、リレー、スイッチ、アンテナ、ICチップ、インダクタ、キャパシタ、サーミスタ等が挙げられ、これらの組み合わせや、パッケージ化されたものでもよい。電子部品のうち、特に絶縁ゲート型バイポーラトランジスタ(IGBT:insulated gate bipolar transistor)等のパワー半導体は、上述のとおり、社会生活を支えており、突然の機能不全を避けることが必須となっているため、寿命推定の必要性が高い。 In the present invention, the electronic components whose state changes are to be tracked are not particularly limited, and may be any of active components, passive components, and mechanical components. Examples of electronic components include batteries, resistors, coils, capacitors, transistors, sensors, diodes, connectors, relays, switches, antennas, IC chips, inductors, capacitors, thermistors, etc., and they may be combined or packaged. It may also be something you have. Among electronic components, power semiconductors such as insulated gate bipolar transistors (IGBT) in particular support social life as mentioned above, and it is essential to avoid sudden malfunctions. , there is a strong need for life estimation.
 通電に伴う電子部品の劣化原因の一つとして、通電による発熱がある。そのため、パワー密度が大きい電子部品のような発熱しやすいものほど、発熱による劣化が問題となりやすく、寿命推定の必要性も高い。そのため、本発明の状態変化追跡方法は、パワー密度が高い電子部品に対して特に効果を発揮する。この観点から、本発明に係る電子部品のパワー密度は、1~1000W/ccの範囲内であることが好ましい。また、電子部品がパワー半導体の場合は、10~1000W/ccの範囲内であることがより好ましく、100~1000W/ccの範囲内であることがさらに好ましい。電子部品が電池の場合は、1~8W/ccの範囲内であることがより好ましく、2~8W/ccの範囲内であることがさらに好ましい。 One of the causes of deterioration of electronic components due to energization is heat generation due to energization. Therefore, the more easily heat is generated, such as an electronic component with a higher power density, the more likely deterioration due to heat generation becomes a problem, and the need for life estimation becomes greater. Therefore, the state change tracking method of the present invention is particularly effective for electronic components with high power density. From this point of view, the power density of the electronic component according to the present invention is preferably within the range of 1 to 1000 W/cc. Further, when the electronic component is a power semiconductor, it is more preferably within the range of 10 to 1000 W/cc, and even more preferably within the range of 100 to 1000 W/cc. When the electronic component is a battery, it is more preferably within the range of 1 to 8 W/cc, and even more preferably within the range of 2 to 8 W/cc.
 電子部品のパワー密度[W/cc]は、(許容電流[A]×許容電圧[V])/体積[cc]で算出できる。許容電流及び許容電圧については後述する。体積は、対象とする電子部品の端子部分を含まない外形寸法(幅W、奥行D、高さH)より、幅W×奥行D×高さHで算出できる。 The power density [W/cc] of an electronic component can be calculated as (allowable current [A] x allowable voltage [V])/volume [cc]. The allowable current and allowable voltage will be described later. The volume can be calculated as width W x depth D x height H from the external dimensions (width W, depth D, height H) of the target electronic component not including the terminal portion.
 また、状態変化を追跡する対象となる電子部品は、許容電流や許容電圧が大きい電子部品のような、大型のものほど、状態変化が起きている箇所の特定が難しい。これに対し、本発明の状態変化追跡方法は、比較的広い領域を高精度で写すことができるタルボ画像を用いることを特徴としているため、大型の電子部品を対象とした場合に特に効果を発揮する。この観点から、本発明に係る電子部品の許容電流は、200~800Aの範囲内であることが好ましく、400~800Aの範囲内であることがより好ましい。また、許容電圧が、600~3300Vの範囲内であることが好ましく、1200~3300Vの範囲内であることがより好ましい。 Furthermore, the larger the electronic component whose state change is to be tracked, such as an electronic component with a large allowable current or voltage, the more difficult it is to identify the location where the state change is occurring. In contrast, the state change tracking method of the present invention is characterized by the use of Talbot images that can capture a relatively wide area with high precision, so it is particularly effective when targeting large electronic components. do. From this point of view, the allowable current of the electronic component according to the present invention is preferably within the range of 200 to 800 A, more preferably within the range of 400 to 800 A. Further, the allowable voltage is preferably within the range of 600 to 3300V, more preferably within the range of 1200 to 3300V.
 電子部品の許容電流は、安全に使用できる最大の電流値に安全率を掛け合わせて算出できる。許容電圧も同様に、安全に使用できる最大の電圧値に安全率を掛け合わせて算出できる。計算に用いる各値は、電子部品の各種電気特性から求めることができる。 The allowable current of electronic components can be calculated by multiplying the maximum current value that can be safely used by a safety factor. Allowable voltage can be similarly calculated by multiplying the maximum voltage value that can be safely used by a safety factor. Each value used in the calculation can be determined from various electrical characteristics of the electronic component.
 例えばパワー半導体の場合は、アジレントテクノロジー社のAgilent B1506Aを用いて測定した各種電気特性から、パワー半導体の安全に使用できる最大の電流値等の各値を求めることができ、この求めた各値を用いることで、許容電流及び許容電圧を算出できる。 For example, in the case of power semiconductors, values such as the maximum current value that can be safely used for the power semiconductor can be determined from various electrical characteristics measured using Agilent B1506A manufactured by Agilent Technologies. By using this, the allowable current and allowable voltage can be calculated.
 本発明において、「電子部品の状態変化」とは、通電によって電子部品に生じる状態変化のことをいう。例えば、クラック、ボイド等の欠陥の発生や成長、変形、変性、溶融、腐食などが挙げられる。より詳細には、クラックについては、長さ、幅、深さ、本数等の変化が挙げられる。また、ボイドについては、サイズ、個数等の変化の他に、ボイド周辺材料の変形、変性、溶融、腐食、ボイドを起点とするクラック進展等が挙げられる。これらの変化を特徴量の信号の大きさの変化として捉えることで状態変化の追跡ができる。本発明の状態変化追跡方法では、これらの状態変化を従来の方法よりも高精度かつ短時間で追跡できる。 In the present invention, "change in state of an electronic component" refers to a change in state that occurs in an electronic component due to energization. Examples include generation and growth of defects such as cracks and voids, deformation, degeneration, melting, and corrosion. More specifically, cracks include changes in length, width, depth, number, etc. Regarding voids, in addition to changes in size, number, etc., deformation, denaturation, melting, corrosion of the material surrounding the void, crack growth starting from the void, etc. can be cited. By capturing these changes as changes in the signal magnitude of the feature quantity, state changes can be tracked. The state change tracking method of the present invention can track these state changes with higher precision and in a shorter time than conventional methods.
 また、従来の方法では追跡できなかった、電子部品における欠陥周辺材料の変性についても、本発明の状態変化追跡方法では追跡することができる。「欠陥周辺材料」とは、クラック、ボイド等の欠陥の周辺材料のことをいう。欠陥周辺材料の変性の追跡は、より高精度な寿命推定を可能とするため、状態変化として欠陥周辺材料の変性を追跡する実施形態は、本発明の実施形態として好ましい。また、ボイド周辺材料の変性を追跡することが特に好ましい。 Furthermore, the state change tracking method of the present invention can also track deterioration of material around defects in electronic components, which could not be tracked using conventional methods. "Defect surrounding material" refers to material surrounding defects such as cracks and voids. Tracking the degeneration of the material around the defect enables more accurate life estimation, so an embodiment in which the degeneration of the material around the defect is tracked as a state change is preferred as an embodiment of the present invention. It is also particularly preferred to track the modification of the material surrounding the void.
 欠陥周辺材料の変性は、いずれのタルボ画像からでも検出し得るが、微分位相画像及び小角散乱画像の少なくとも一方を用いることで、鮮明に検出できる。そのため、タルボ画像として、再構成画像のうち、微分位相画像及び小角散乱画像の少なくとも一方を用い、状態変化として、ボイド周辺材料の変性を追跡することが、より高精度な寿命推定を可能とする観点から特に好ましい。 Although degeneration of the material around the defect can be detected from any Talbot image, it can be clearly detected by using at least one of a differential phase image and a small-angle scattering image. Therefore, using at least one of the differential phase image and the small-angle scattering image among the reconstructed images as the Talbot image and tracking the degeneration of the material surrounding the void as a state change enables more accurate life estimation. Particularly preferred from this point of view.
 本発明において、「電子部品の状態変化を通電時間に応じて追跡する」とは、通電時間の異なる電子部品の状態を比較することをいう。なお、通電時間の異なる電子部品の状態変化を比較するために、通電時間の異なる電子部品のタルボ画像を複数用いることは必須ではない。通電時間の異なる電子部品のタルボ画像を複数用いる場合は、電子部品の状態を各タルボ画像同士で比較することで、状態変化を追跡できる。タルボ画像を1枚のみ用いる場合でも、例えば既に蓄積されたデータベース又はシミュレーションデータを参照する等の方法を用いることで、状態変化を追跡できる。 In the present invention, "tracking changes in the state of electronic components according to the energization time" refers to comparing the states of electronic components with different energization times. Note that it is not essential to use a plurality of Talbot images of electronic components subjected to different energization times in order to compare state changes of electronic components subjected to different energization times. If a plurality of Talbot images of electronic components with different energization times are used, changes in the state of the electronic component can be tracked by comparing the Talbot images with each other. Even when only one Talbot image is used, state changes can be tracked by, for example, referring to an already accumulated database or simulation data.
 電子部品の状態変化を通電時間に応じて追跡して取得したデータは、例えば検量線の作成に用いることができ、当該検量線は、同種の電子部品の寿命推定に用いることができる。 The data obtained by tracking changes in the state of electronic components according to the energization time can be used, for example, to create a calibration curve, and the calibration curve can be used to estimate the lifespan of electronic components of the same type.
 状態変化を追跡する電子部品への通電の条件(電流、電圧、温度など)は、寿命推定の精度をより高めるために、寿命推定の対象となる電子部品が実際に通電されるときの条件でもよいし、結果を早期に予測するために加速試験を適応した条件でもよい。 In order to further increase the accuracy of life estimation, the conditions for energizing electronic components that track state changes (current, voltage, temperature, etc.) are set based on the conditions under which the electronic components subject to life estimation are actually energized. Alternatively, the conditions may be adapted to accelerated testing to predict the results at an early stage.
 本発明において、「タルボ画像」とは、タルボ撮影装置を用いて撮影された干渉縞画像又は当該干渉縞画像に基づいて生成された再構成画像のことをいう。タルボ画像は、比較的広い領域を高精度で写すことができる。そのため、タルボ画像を用いて電子部品の状態変化を追跡することで、状態変化追跡が高精度かつ短時間で可能となる。また、寿命推定の際の撮影工程もタルボ撮影装置を用いて行うことができるようになるため、寿命推定も高精度かつ短時間で可能となる。なお、状態変化の追跡や寿命推定をより高精度で行える観点からは、タルボ画像として、再構成画像を用いることが好ましい。 In the present invention, a "Talbot image" refers to an interference fringe image photographed using a Talbot imaging device or a reconstructed image generated based on the interference fringe image. Talbot images can capture a relatively wide area with high precision. Therefore, by tracking changes in the state of electronic components using Talbot images, it becomes possible to track changes in state with high precision and in a short time. Furthermore, since the photographing process for estimating the lifespan can be performed using the Talbot imaging device, the estimation of the lifespan can be performed with high precision and in a short time. Note that from the viewpoint of tracking state changes and estimating lifespan with higher accuracy, it is preferable to use a reconstructed image as the Talbot image.
 本発明に係る干渉縞画像は、タルボ撮影装置を用いて撮影された干渉縞画像である。「タルボ撮影装置」とは、タルボ効果を利用して干渉縞画像を撮影する装置である。すなわち、本発明に係る干渉縞画像は、タルボ効果によって生成される干渉縞画像であると換言できる。 The interference fringe image according to the present invention is an interference fringe image photographed using a Talbot photographing device. A "Talbot photographing device" is a device that photographs an interference fringe image using the Talbot effect. In other words, the interference fringe image according to the present invention is an interference fringe image generated by the Talbot effect.
 干渉縞画像は、モアレ画像であっても非モアレ画像であってもよい。なお、状態変化の追跡や寿命推定をより高精度で行える観点からは、干渉縞画像として、モアレ画像を用いることが好ましい。モアレ画像の「モアレ」とは、規則正しい繰り返し模様を複数重ねたときに、それらの周期のずれにより視覚的に発生する干渉縞の模様のことであり、位相差によって生じる明暗の縞模様のことをいう。 The interference fringe image may be a moire image or a non-moire image. Note that from the viewpoint of tracking state changes and estimating lifespan with higher accuracy, it is preferable to use a moiré image as the interference fringe image. "Moire" in a moire image is a pattern of interference fringes that visually appears due to a shift in the period when multiple regularly repeating patterns are layered, and is a fringe pattern of brightness and darkness caused by phase difference. say.
 本発明に係る再構成画像は、上述のタルボ撮影装置を用いて撮影された干渉縞画像に基づいて生成された再構成画像である。再構成画像には、干渉縞の位相情報を画像化した微分位相画像、干渉縞のVisibility(鮮明度)を画像化した小角散乱画像、及び干渉縞の平均成分を画像化した吸収画像がある。また、これらの3種類の再構成画像を再合成する等してさらに多くの種類の画像を生成することもできる。 The reconstructed image according to the present invention is a reconstructed image generated based on an interference fringe image captured using the above-mentioned Talbot imaging device. The reconstructed images include a differential phase image that images the phase information of interference fringes, a small-angle scattering image that images the visibility (sharpness) of interference fringes, and an absorption image that images the average component of interference fringes. Furthermore, more types of images can be generated by recombining these three types of reconstructed images.
 本発明の状態変化追跡方法は、電子部品のタルボ画像を用いることを必須とするが、タルボ撮影装置を用いて電子部品の干渉縞画像を撮影する撮影工程や、干渉縞画像を基に再構成画像を生成する工程は必須ではない。 The state change tracking method of the present invention requires the use of Talbot images of electronic components, but includes a photographing process of photographing interference fringe images of electronic components using a Talbot imaging device, and reconstruction based on interference fringe images. The step of generating an image is not essential.
<2.状態変化追跡システムの全体構成>
 図1は、本発明の状態変化追跡方法を行う状態変化追跡システム100の構成例を示すブロック図である。図1に示すように、状態変化追跡システム100は、タルボ撮影装置1、コントローラー19、画像処理装置2、及び状態変化追跡装置20を備えて構成されている。タルボ撮影装置1は、コントローラー19とバスを介して、画像処理装置2、及び状態変化追跡装置20に、通信可能に接続されている。
<2. Overall configuration of status change tracking system>
FIG. 1 is a block diagram showing a configuration example of a state change tracking system 100 that performs the state change tracking method of the present invention. As shown in FIG. 1, the state change tracking system 100 includes a Talbot imaging device 1, a controller 19, an image processing device 2, and a state change tracking device 20. The Talbot imaging device 1 is communicably connected to an image processing device 2 and a state change tracking device 20 via a controller 19 and a bus.
 なお、本発明の状態変化追跡システムは、タルボ画像を用いて電子部品の状態変化を追跡する状態変化追跡装置が含んでいればよく、タルボ撮影装置等は必須ではない。 Note that the state change tracking system of the present invention only needs to include a state change tracking device that tracks state changes of electronic components using Talbot images, and a Talbot imaging device or the like is not essential.
<3.タルボ画像>
 本発明の状態変化追跡方法は、タルボ画像を用いることを特徴とする。本発明において、「タルボ画像」とは、上述のとおり、タルボ撮影装置を用いて撮影された干渉縞画像又は当該干渉縞画像に基づいて生成された再構成画像のことをいう。
<3. Talbot image>
The state change tracking method of the present invention is characterized by using Talbot images. In the present invention, a "Talbot image" refers to an interference fringe image photographed using a Talbot imaging device or a reconstructed image generated based on the interference fringe image, as described above.
 「タルボ撮影装置」とは、上述のとおり、タルボ効果を利用して干渉縞画像を撮影する装置であり、タルボ・ロー撮影装置も含む。 As mentioned above, the "Talbot photographing device" is a device that photographs interference fringe images using the Talbot effect, and includes the Talbot-Lau photographing device.
 図2は、タルボ撮影装置1の全体構成を例示する概略図である。図2に示すタルボ撮影装置1は、放射線発生装置11、線源格子12、被写体台13、第1格子14、第2格子15、ディテクター(放射線検出器)16、支柱17、及び基台部18を備えて構成されている。 FIG. 2 is a schematic diagram illustrating the overall configuration of the Talbot photographing device 1. The Talbot imaging apparatus 1 shown in FIG. It is configured with.
 図2に示すタルボ撮影装置1は、線源格子(マルチ格子、マルチスリット、G0格子等ともいう。)12、第1格子(G1格子ともいう。)14及び第2格子(G2格子ともいう。)15を備えるタルボ・ロー撮影装置である。なお、タルボ撮影装置1は、線源格子12を備えず、格子として第1格子14及び第2格子15のみを備えるタルボ撮影装置であってもよい。 The Talbot imaging apparatus 1 shown in FIG. 2 includes a source grating (also referred to as multi-grating, multi-slit, G0 grating, etc.) 12, a first grating (also referred to as G1 grating) 14, and a second grating (also referred to as G2 grating). ) 15. Note that the Talbot imaging apparatus 1 may be a Talbot imaging apparatus that does not include the source grating 12 and only includes the first grating 14 and the second grating 15 as gratings.
 ここで、タルボ撮影装置及びタルボ・ロー撮影装置に共通する原理について、図3及び図4を用いて説明する。 Here, the principles common to the Talbot imaging device and the Talbot-Lau imaging device will be explained using FIGS. 3 and 4.
 図3は、タルボ撮影装置の原理を示す説明図である。なお、図3では、タルボ撮影装置の場合が示されているが、タルボ・ロー撮影装置の場合も基本的に同様に説明される。 FIG. 3 is an explanatory diagram showing the principle of the Talbot imaging device. Note that although FIG. 3 shows the case of a Talbot photographing device, the case of a Talbot-Lau photographing device is also basically explained in the same way.
 図3及び図4におけるz方向は、図2のタルボ撮影装置1における鉛直方向に対応し、図3及び図4におけるx、y方向は、図2のタルボ撮影装置1における水平方向(前後、左右方向)に対応する。 The z direction in FIGS. 3 and 4 corresponds to the vertical direction in the Talbot imaging device 1 in FIG. 2, and the x and y directions in FIGS. direction).
 図4に示すように、線源格子12、第1格子14及び第2格子15には、放射線の照射方向であるz方向と直交するx方向に、所定の周期dで複数のスリットSが配列されて形成されている。このようなスリットSの配列は、一次元格子とされており、また、x方向及びy方向にスリットSが配列されて形成されたものは二次元格子とされている。 As shown in FIG. 4, in the source grating 12, the first grating 14, and the second grating 15, a plurality of slits S are arranged at a predetermined period d in the x direction perpendicular to the z direction, which is the radiation irradiation direction. has been formed. Such an arrangement of slits S is a one-dimensional lattice, and an arrangement of slits S in the x and y directions is a two-dimensional lattice.
 タルボ・ロー撮影装置の場合には、線源格子12(図2参照。)が放射線の照射方向であるz方向と直交するx方向に、所定の周期dで複数のスリットSが配列されて形成される。 In the case of the Talbot-Lau imaging device, the radiation source grating 12 (see FIG. 2) is formed by arranging a plurality of slits S at a predetermined period d in the x direction perpendicular to the z direction, which is the radiation irradiation direction. be done.
 なお、図4では、線源格子12、第1格子14、及び第2格子15について、一例として、一次元格子が採用されているが、二次元格子が採用されてもよい。 Note that in FIG. 4, one-dimensional gratings are employed as an example for the source grating 12, the first grating 14, and the second grating 15, but two-dimensional gratings may be employed.
 また、図3に示すように、放射線発生装置11の放射線源11a(図示せず)から照射された放射線が第1格子14を透過すると、透過した放射線は、z方向に一定の間隔で像を結ぶ。この像を自己像(格子像等ともいう。)といい、このように自己像がz方向に一定の間隔をおいて形成される現象をタルボ効果という。 Further, as shown in FIG. 3, when radiation emitted from the radiation source 11a (not shown) of the radiation generating device 11 passes through the first grating 14, the transmitted radiation forms images at regular intervals in the z direction. tie. This image is called a self-image (also called a lattice image, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
 すなわち、「タルボ効果」とは、図4に示すように一定の周期dでスリットSが設けられた第1格子14を可干渉性(コヒーレント)の放射線が透過すると、放射線の進行方向に一定の間隔でその自己像を結ぶ現象をいう。 In other words, the "Talbot effect" means that when coherent radiation passes through the first grating 14 in which slits S are provided at a constant period d as shown in FIG. It refers to the phenomenon of forming one's self-image at intervals.
 なお、タルボ・ロー撮影装置の場合、放射線発生装置11の放射線源11a(図1参照。)から照射された放射線は、線源格子12(図1参照。)で多線源化され、第1格子14を透過する。 In the case of the Talbot-Lau imaging device, the radiation emitted from the radiation source 11a (see FIG. 1) of the radiation generator 11 is converted into multiple sources by the source grid 12 (see FIG. 1), and Transmits through the grating 14.
 本発明において、「タルボ撮影装置」は、上述のとおりタルボ効果を利用して干渉縞画像を撮影する装置であるため、タルボ効果のみを利用した狭義のタルボ撮影装置のみならず、タルボ効果及びロー効果を合わせた効果を利用したタルボ・ロー撮影装置も兼ねて含む語として用いる。 In the present invention, the "Talbot imaging device" is a device that takes an interference fringe image using the Talbot effect as described above, so it is not only a Talbot imaging device in a narrow sense that uses only the Talbot effect, but also the Talbot effect and the The term is also used to include Talbot-Law photography equipment that uses a combination of effects.
 また、図3に示す説明図では、第1格子14の自己像が像を結ぶ位置に、第1格子14と同様にスリットSが設けられた第2格子15を配置している。このとき、第2格子15のスリットSの延在方向(すなわち図3ではx軸方向)が、第1格子14のスリットSの延在方向に対して略平行になるように配置すると、第2格子15上でモアレ画像Moが得られる。 Furthermore, in the explanatory diagram shown in FIG. 3, a second grating 15 provided with slits S like the first grating 14 is arranged at a position where the self-image of the first grating 14 focuses. At this time, if the extending direction of the slits S of the second grating 15 (that is, the x-axis direction in FIG. 3) is arranged so as to be approximately parallel to the extending direction of the slit S of the first grating 14, the second A moire image Mo is obtained on the grid 15.
 図3では、モアレ画像Moを第2格子15上に記載すると、モアレ縞とスリットSとが混在し、視覚的に分かりにくくなるため、便宜的にモアレ画像Moを第2格子15から離して記載している。しかし、実際は、第2格子15上及びその下流側にモアレ画像Moが形成される。このモアレ画像Moは、第2格子15の直下に配置されるディテクター16により撮影される。 In FIG. 3, if the moire image Mo is written on the second lattice 15, moire fringes and slits S will coexist, making it difficult to understand visually, so the moire image Mo is shown separated from the second lattice 15 for convenience. are doing. However, in reality, the moire image Mo is formed on the second grating 15 and on the downstream side thereof. This moire image Mo is photographed by a detector 16 placed directly below the second grating 15.
 また、図2及び図3に示すように、放射線発生装置11の放射線源11a(図3では図示せず。)と第1格子14との間に被写体H(本発明においては電子部品)が存在すると、被写体Hによって放射線の位相がずれるため、干渉縞画像の干渉縞が被写体Hの辺縁を境界に乱れる。一方、図示を省略するが、放射線発生装置11の放射線源11aと第1格子14との間に被写体Hが存在しなければ、干渉縞のみの干渉縞画像が現れる。 Further, as shown in FIGS. 2 and 3, a subject H (electronic component in the present invention) exists between the radiation source 11a of the radiation generating device 11 (not shown in FIG. 3) and the first grating 14. Then, since the phase of the radiation shifts depending on the subject H, the interference fringes of the interference fringe image are disturbed with the edge of the subject H as a boundary. On the other hand, although not shown, if the subject H does not exist between the radiation source 11a of the radiation generating device 11 and the first grating 14, an interference fringe image consisting only of interference fringes appears.
 この原理に基づいて、図2に示す、第2格子15を備えてモアレ画像Moを撮影する実施形態のタルボ撮影装置1は、第2のカバーユニット130内において、第1格子14の自己像が像を結ぶ位置に、第2格子15が配置されている。また、上述したように、第2格子15とディテクター16(図1参照)とが離れるとモアレ画像Moがぼやけるため(図2参照)、図2に示すタルボ撮影装置1では、ディテクター16は、第2格子15の直下に配置されている。 Based on this principle, the Talbot photographing device 1 of the embodiment shown in FIG. A second grating 15 is placed at the position where the image is focused. Furthermore, as described above, when the second grating 15 and the detector 16 (see FIG. 1) are separated, the moire image Mo becomes blurred (see FIG. 2). 2. It is arranged directly below the grid 15.
 第2格子15を、シンチレーター又はアモルファスセレンなどの発光材料で構成し、第2格子15とディテクター16とを一体化させてもよい。 The second grating 15 may be made of a scintillator or a luminescent material such as amorphous selenium, and the second grating 15 and the detector 16 may be integrated.
 第2のカバーユニット130は、人又は物が、第1格子14、第2格子15、又はディテクター16にぶつかったり又は触れたりしないようにするとともに、ディテクター16を防護するために設けられる。 The second cover unit 130 is provided to prevent people or objects from hitting or touching the first grating 14, the second grating 15, or the detector 16, and to protect the detector 16.
 ここで、ディテクター16は、照射された放射線に応じて電気信号を生成する変換素子が、二次元状(マトリクス状)に配置され、変換素子により生成された電気信号を画像信号として読み取るように構成されている。そして、ディテクター16は、第2格子15上に形成される放射線の像である上記のモアレ画像Moを変換素子ごとの画像信号として撮影する。なお、ディテクター16の画素サイズは、例えば、10~300μmの範囲内であり、さらに好ましくは50~200μmの範囲内である。 Here, the detector 16 is configured such that conversion elements that generate electric signals according to the irradiated radiation are arranged in a two-dimensional form (matrix form), and the electric signals generated by the conversion elements are read as image signals. has been done. Then, the detector 16 captures the moire image Mo, which is a radiation image formed on the second grating 15, as an image signal for each conversion element. Note that the pixel size of the detector 16 is, for example, within the range of 10 to 300 μm, and more preferably within the range of 50 to 200 μm.
 ディテクター16には、FPD(flat panel detector)を用いることができる。FP
Dは、検出された放射線を、光電変換素子を介して電気信号に変換する間接変換型と、検出された放射線を直接的に電気信号に変換する直接変換型とがあり、何れの変換型を用いてもよい。
As the detector 16, an FPD (flat panel detector) can be used. F.P.
There are two types of D: an indirect conversion type that converts the detected radiation into an electrical signal via a photoelectric conversion element, and a direct conversion type that converts the detected radiation directly into an electrical signal. May be used.
 間接変換型は、CsIやGdS等のシンチレータプレートの下に、光電変換素子がTFT(薄膜トランジスタ)とともに2次元状に配置されて各画素を構成する。ディテクター16に入射した放射線がシンチレータプレートに吸収されると、シンチレータプレートが発光する。この発光した光により、各光電変換素子に電荷が蓄積され、蓄積された電荷は画像信号として読み出される。 In the indirect conversion type, a photoelectric conversion element is arranged two-dimensionally together with a TFT (thin film transistor) under a scintillator plate such as CsI or Gd 2 O 2 S to form each pixel. When the radiation incident on the detector 16 is absorbed by the scintillator plate, the scintillator plate emits light. This emitted light causes charge to be accumulated in each photoelectric conversion element, and the accumulated charge is read out as an image signal.
 直接変換型は、アモルファスセレンの熱蒸着により、例えば100~1000μmの膜圧のアモルファスセレン膜がガラス上に形成され、2次元状に配置されたTFTのアレイ上にアモルファスセレン膜と電極が蒸着される。アモルファスセレン膜が放射線を吸収するとき、電子正孔対の形で物質内に電圧が遊離され、電極間の電圧信号がTFTにより読み取られる。 In the direct conversion type, an amorphous selenium film with a film thickness of, for example, 100 to 1000 μm is formed on glass by thermal evaporation of amorphous selenium, and the amorphous selenium film and electrodes are deposited on an array of TFTs arranged in a two-dimensional manner. Ru. When the amorphous selenium film absorbs radiation, a voltage is liberated within the material in the form of electron-hole pairs, and the voltage signal between the electrodes is read by the TFT.
 また、ディテクター16には、CCD(charge coupled device)、又は放射線カメラ
を用いてもよい。
Further, the detector 16 may be a CCD (charge coupled device) or a radiation camera.
 また、図2に示すタルボ撮影装置1は、縞走査法を用いてモアレ画像Moを複数枚撮影できるようになっている。すなわち、図2に示すタルボ撮影装置1は、第1格子14と第2格子15との相対位置を、図2の位置から、図3におけるx軸方向(すなわち、スリットSの延在方向(y軸方向)に直交する方向)にずらしながら、モアレ画像Moを複数枚撮影できる。 Furthermore, the Talbot photographing device 1 shown in FIG. 2 is capable of photographing a plurality of moiré images Mo using the stripe scanning method. That is, the Talbot imaging device 1 shown in FIG. 2 changes the relative positions of the first grating 14 and the second grating 15 from the position in FIG. A plurality of moiré images Mo can be taken while shifting in a direction (orthogonal to the axial direction).
 このように、タルボ撮影装置1は、後述の縞走査法によりモアレ画像Moを複数枚撮影する場合には、第1格子14をx軸方向に所定量ずつ移動させることができる。なお、第1格子14を移動させる代わりに、第2格子15を移動させてもよく、又は、第1格子14と第2格子15の両方を移動させてもよい。 In this manner, the Talbot photographing device 1 can move the first grating 14 by a predetermined amount in the x-axis direction when photographing a plurality of moiré images Mo using the fringe scanning method described below. Note that instead of moving the first grating 14, the second grating 15 may be moved, or both the first grating 14 and the second grating 15 may be moved.
 なお、上述のとおり、本発明に係る干渉縞画像は、モアレ画像を含むが、モアレ画像に限定されない。本発明に係る干渉縞画像は、タルボ撮影装置を用いて撮影された干渉縞画像であればよいため、タルボ撮影装置に必須の構成ではない第2格子15を用いずに撮影された干渉縞画像も、本発明に係る干渉縞画像に含まれる。なお、状態変化の追跡や寿命推定をより高精度で行える観点からは、干渉縞画像として、モアレ画像を用いることが好ましい。 Note that, as described above, the interference fringe image according to the present invention includes a moire image, but is not limited to a moire image. Since the interference fringe image according to the present invention may be an interference fringe image photographed using a Talbot photographing device, an interference fringe image photographed without using the second grating 15, which is not an essential component of the Talbot photographing device. are also included in the interference fringe image according to the present invention. Note that from the viewpoint of tracking state changes and estimating lifespan with higher accuracy, it is preferable to use a moiré image as the interference fringe image.
 モアレ画像でない干渉縞画像を撮影する場合は、第2格子15を用いず、ディテクター16を第2格子15の位置に配置し、第1格子14の自己像を直接撮影する。この場合のディテクター16の画素サイズは、第1格子14の自己像の周期より十分小さい必要がある。また、第1格子14の自己像を精度よく捉えるために、ディテクター16として、干渉縞の情報を検出できる高解像アレイ検出器等を用いることが好ましい。干渉縞の情報をアレイ検出できる高解像アレイ検出器としては、例えば浜松ホトニクス社製X線sCMOSカメラC12849-111Uや高解像度X線イメージングユニットM11427などを用いることができる。 When photographing an interference fringe image that is not a moire image, the second grating 15 is not used, the detector 16 is placed at the position of the second grating 15, and the self-image of the first grating 14 is directly photographed. In this case, the pixel size of the detector 16 needs to be sufficiently smaller than the period of the self-image of the first grating 14. Further, in order to accurately capture the self-image of the first grating 14, it is preferable to use a high resolution array detector or the like as the detector 16, which can detect information on interference fringes. As a high-resolution array detector that can detect interference fringe information in an array, for example, an X-ray sCMOS camera C12849-111U manufactured by Hamamatsu Photonics, a high-resolution X-ray imaging unit M11427, etc. can be used.
 次に、タルボ撮影装置1における他の部分の構成について説明する。図2に示すタルボ撮影装置1は、いわゆる縦型であり、放射線発生装置11、線源格子12、被写体台13、第1格子14、第2格子15及びディテクター16が、この順序で重力方向であるz方向に配置されている。すなわち、図2に示すタルボ撮影装置1では、z方向が放射線発生装置11からの放射線の照射方向になっている。 Next, the configuration of other parts of the Talbot photographing device 1 will be explained. The Talbot imaging apparatus 1 shown in FIG. 2 is a so-called vertical type, in which a radiation generator 11, a source grating 12, a subject stage 13, a first grating 14, a second grating 15, and a detector 16 are arranged in this order in the direction of gravity. It is arranged in a certain z direction. That is, in the Talbot imaging apparatus 1 shown in FIG. 2, the z direction is the irradiation direction of the radiation from the radiation generator 11.
 放射線発生装置11は、放射線源11aを備え、当該放射線源11aにより放射線を発生させてz方向(重力方向)に放射線を照射する。「放射線」とは、広義の放射線を意味し、すべての電磁波及び粒子線を含むものとする。 The radiation generating device 11 includes a radiation source 11a, and the radiation source 11a generates radiation and irradiates the radiation in the z direction (gravitational direction). "Radiation" means radiation in a broad sense and includes all electromagnetic waves and particle beams.
 放射線発生装置11は、焦点から放射線をコーンビーム状に照射する。つまり、図2に示すように、z方向と一致する放射線照射軸Caを中心軸として、放射線発生装置11から離れるほど放射線が広がるように照射される。この放射線発生装置11によって照射される範囲を、放射線照射範囲という。 The radiation generator 11 irradiates radiation from a focal point in the form of a cone beam. That is, as shown in FIG. 2, the radiation is irradiated with the radiation irradiation axis Ca that coincides with the z direction as the central axis, and the radiation spreads as the distance from the radiation generator 11 increases. The range irradiated by this radiation generating device 11 is referred to as a radiation irradiation range.
 放射線としてX線を用いる場合、放射線源11aにはX線管を用いることができる。X線管としては、例えばクーリッジX線管や回転陽極X線管を用いることができる。陽極としては、タングステンやモリブデンを用いることができる。 When using X-rays as radiation, an X-ray tube can be used as the radiation source 11a. As the X-ray tube, for example, a Coolidge X-ray tube or a rotating anode X-ray tube can be used. Tungsten or molybdenum can be used as the anode.
 放射線源11aの焦点径は、0.03~3mmの範囲内が好ましく、0.1~1mmの範囲外がより好ましい。 The focal diameter of the radiation source 11a is preferably within the range of 0.03 to 3 mm, and more preferably outside the range of 0.1 to 1 mm.
 また、当該放射線源11aは、照射装置として機能する。 Additionally, the radiation source 11a functions as an irradiation device.
 また、図2に示すタルボ撮影装置1では、放射線発生装置11の下方に、線源格子12が設けられている。ここで、放射線源11aの陽極の回転により生じる放射線発生装置11の振動が線源格子12に伝わらないようにするために、図2に示すタルボ撮影装置1では、線源格子12は、基台部18の固定部材12aに取り付けられている。 Further, in the Talbot imaging apparatus 1 shown in FIG. 2, a radiation source grating 12 is provided below the radiation generator 11. Here, in order to prevent the vibration of the radiation generating device 11 caused by the rotation of the anode of the radiation source 11a from being transmitted to the source grating 12, in the Talbot imaging apparatus 1 shown in FIG. It is attached to the fixing member 12a of the section 18.
 また、図2に示すタルボ撮影装置1では、放射線発生装置11の振動が支柱17のタルボ撮影装置1の他の部分に伝播しないようにするために、放射線発生装置11と支柱17との間に緩衝部材17aが設けられている。これにより、放射線発生装置11の振動は、支柱17に伝播することが抑制されている。 In addition, in the Talbot imaging apparatus 1 shown in FIG. A buffer member 17a is provided. Thereby, the vibration of the radiation generating device 11 is suppressed from propagating to the support column 17.
 なお、図2に示すタルボ撮影装置1では、固定部材12aには、線源格子12の他、線源格子12を透過した放射線の線質を変えるためのろ過フィルター(付加フィルターともいう。)112、照射される放射線の照射野を絞るための照射野絞り113、放射線を照射する前に放射線の代わりに可視光を被写体に照射して位置合わせを行うための照射野ランプ114が取り付けられている。 In addition, in the Talbot imaging apparatus 1 shown in FIG. 2, the fixed member 12a includes, in addition to the source grating 12, a filtration filter (also referred to as an additional filter) 112 for changing the quality of radiation transmitted through the source grating 12. , an irradiation field aperture 113 for narrowing down the irradiation field of radiation to be irradiated, and an irradiation field lamp 114 for irradiating the subject with visible light instead of radiation to perform positioning before irradiating the radiation. .
 線源格子12、ろ過フィルター112、及び照射野絞り113は、必ずしもこの順番に設けられる必要はない。また、図2に示すタルボ撮影装置1では、線源格子12の周囲には、それらを保護するための第1のカバーユニット120が配置されている。 The source grating 12, the filtration filter 112, and the irradiation field aperture 113 do not necessarily need to be provided in this order. Further, in the Talbot imaging apparatus 1 shown in FIG. 2, a first cover unit 120 is arranged around the radiation source grating 12 to protect it.
 被写体台13は、被写体Hが載置される台である。被写体台13は、被写体Hをz軸回りに回転させる回転ステージとして機能する。縞走査法を用いてモアレ画像Moを複数枚撮影する場合、タルボ撮影装置1は、被写体台13を異なる角度に回転させつつ、モアレ画像Moを複数枚撮影する。 The subject table 13 is a table on which the subject H is placed. The subject stage 13 functions as a rotation stage that rotates the subject H around the z-axis. When photographing a plurality of moire images Mo using the striped scanning method, the Talbot photographing device 1 photographs a plurality of moire images Mo while rotating the subject stage 13 at different angles.
 続いて、タルボ撮影装置1で撮影した干渉縞画像に基づいて再構成画像を生成する画像処理装置2について説明する。 Next, the image processing device 2 that generates a reconstructed image based on the interference fringe image captured by the Talbot imaging device 1 will be described.
 図1に示す画像処理装置2は、タルボ撮影装置1から送信された、1枚又は複数枚の干渉縞の画像信号を受信し、受信した干渉縞に基づいて、再構成画像を生成する。 The image processing device 2 shown in FIG. 1 receives image signals of one or more interference fringes transmitted from the Talbot imaging device 1, and generates a reconstructed image based on the received interference fringes.
 上述したとおり、再構成画像には、干渉縞の位相情報を画像化した微分位相画像、干渉縞のVisibility(鮮明度)を画像化した小角散乱画像、及び干渉縞の平均成分を画像化した吸収画像がある。また、これらの3種類の再構成画像を再合成するなどしてさらに多くの種類の画像を生成することもできる。 As mentioned above, the reconstructed image includes a differential phase image that images the phase information of the interference fringe, a small-angle scattering image that images the visibility (sharpness) of the interference fringe, and an absorption image that images the average component of the interference fringe. There is an image. Further, it is also possible to generate more types of images by recombining these three types of reconstructed images.
 なお、「縞走査法」とは、複数の格子のうちのひとつを格子のスリット周期の1/M(Mは正の整数、吸収画像はM>2、微分位相画像と小角散乱画像はM>3)ずつスリット周期方向に移動させてM回撮影したモアレ画像を用いて再構成を行い、高精細の再構成画像を生成する方法である。 The "fringe scanning method" means that one of multiple gratings is scanned at 1/M of the slit period of the grating (M is a positive integer, M>2 for absorption images, M>2 for differential phase images and small-angle scattering images). 3) This is a method of performing reconstruction using moiré images taken M times by moving each moiré image in the slit period direction to generate a high-definition reconstructed image.
 また、「フーリエ変換法」とは、被写体が存在する状態で、タルボ撮影装置でモアレ画像を1枚撮影し、画像処理において、そのモアレ画像をフーリエ変換して解析することにより再構成を行い、再構成画像を生成する方法である。フーリエ変換法の場合は、モアレ画像ではない干渉縞画像からでも、再構成画像を生成できる。 In addition, the "Fourier transform method" is a process in which a single moire image is taken with a Talbot camera in the presence of a subject, and during image processing, the moire image is reconstructed by Fourier transform and analysis. This is a method of generating a reconstructed image. In the case of the Fourier transform method, a reconstructed image can be generated even from an interference fringe image that is not a moiré image.
 画像処理装置2は、再構成画像を生成した後、再構成画像を状態変化追跡装置20に送信する。 After generating the reconstructed image, the image processing device 2 transmits the reconstructed image to the state change tracking device 20.
 続いて、タルボ撮影装置1に対する全般的な制御を行うコントローラー19について説明する。コントローラー19は、タルボ撮影装置1の放射線発生装置11に接続され、放射線源11aの管電圧、管電流、照射時間等を設定するように構成することができる。また、コントローラー19が、放射線検出器16と外部の画像処理装置2等との信号やデータの送受信を中継するように構成することもできる。すなわち、コントローラー19は、被写体Hの干渉縞画像の撮影を行わせる制御部として機能する。 Next, the controller 19 that performs general control over the Talbot imaging device 1 will be explained. The controller 19 is connected to the radiation generating device 11 of the Talbot imaging apparatus 1, and can be configured to set the tube voltage, tube current, irradiation time, etc. of the radiation source 11a. Further, the controller 19 may be configured to relay transmission and reception of signals and data between the radiation detector 16 and the external image processing device 2 and the like. That is, the controller 19 functions as a control unit that causes the interference fringe image of the subject H to be photographed.
 図1及び図2に示すコントローラー19は図示しないCPU(central processing unit)やROM(read only memory)、RAM(random access memory)、入出力インター
フェース等がバスに接続されたコンピューターで構成され得る。なお、コントローラー19は、汎用のコンピューターではなく、専用の制御装置として構成されてもよい。
The controller 19 shown in FIGS. 1 and 2 may be composed of a computer in which a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), an input/output interface, etc. (not shown) are connected to a bus. Note that the controller 19 may be configured as a dedicated control device instead of a general-purpose computer.
 また、コントローラー19には、図示はしないが、操作部を含む入力手段や出力手段、記憶手段、通信手段等の適宜の手段や装置が設けられている。出力手段には、タルボ撮影装置1の各種操作を行うために必要な情報や、画像処理装置2で生成された再構成画像を表示する表示部(図示省略)が含まれている。 Although not shown, the controller 19 is provided with appropriate means and devices such as input means including an operation section, output means, storage means, and communication means. The output means includes a display section (not shown) that displays information necessary for performing various operations of the Talbot imaging device 1 and reconstructed images generated by the image processing device 2.
<4.撮影工程>
 本発明の状態変化追跡方法が有し得る撮影工程について説明する。なお、撮影工程で用いるタルボ撮影装置や撮影工程の基本的な操作については上述のとおりであるため、以下、電子部品の状態変化を追跡する本発明において好ましい実施形態等を説明する。
<4. Photography process>
An imaging process that may be included in the state change tracking method of the present invention will be described. The Talbot photographing device used in the photographing process and the basic operations of the photographing process are as described above, and therefore preferred embodiments of the present invention for tracking changes in the state of electronic components will be described below.
 状態変化追跡に用いる電子部品の干渉縞画像を撮影する際、電子部品は通電中であってもよく、通電中でなくてもよい。干渉縞画像への通電によるノイズの影響を考慮すると、通電中でない方が好ましいため、画質の観点からは撮影時には通電を一時中断することが好ましい。また、寿命推定の対象となる電子部品が、撮影時に通電を一時中断できないものである場合は、状態変化追跡に用いる電子部品の干渉縞画像の撮影も、通電を一時中断せずに行うことが、通電条件を合わせて寿命推定の精度をより高める観点から好ましい。 When capturing an interference fringe image of an electronic component used for status change tracking, the electronic component may or may not be energized. Considering the influence of noise caused by energization on the interference fringe image, it is preferable not to energize, so from the viewpoint of image quality, it is preferable to temporarily interrupt energization during photographing. In addition, if the electronic component that is the subject of life estimation cannot be temporarily interrupted when being energized, it is possible to capture interference fringe images of the electronic component used to track state changes without temporarily interrupting the energization. , is preferable from the viewpoint of further increasing the accuracy of life estimation by matching the energization conditions.
 通電を一時中断せずに行う場合、撮影に長時間かかってしまう撮影手段を用いると、撮影工程中に状態変化が進行してしまい、状態変化を通電時間に応じて追跡することが難しくなる。しかし、本発明に係る撮影工程では、タルボ撮影装置を用いており、これによって比較的短時間で撮影ができるため、通電を一時中断せずに行う場合であっても、高精度な状態変化追跡及び寿命推定が可能である。 When energization is performed without temporary interruption, if a photographing means that takes a long time to photograph is used, the state change will progress during the photographing process, making it difficult to track the state change according to the energization time. However, in the photographing process according to the present invention, a Talbot photographing device is used, which allows photographing to be performed in a relatively short period of time, so even when performing the photographing process without temporarily interrupting the energization, highly accurate state change tracking is possible. and life estimation is possible.
 また、撮影工程においては、タルボ撮影装置又は電子部品の少なくとも一方から発生する放射線又は熱による撮影への影響を抑制しながら、干渉縞画像を撮影することが好ましい。これによって、より鮮明な画像を得ることができる。 Furthermore, in the photographing step, it is preferable to photograph the interference fringe image while suppressing the influence of radiation or heat generated from at least one of the Talbot imaging device or the electronic components on the photographing. With this, a clearer image can be obtained.
 放射線又は熱による撮影への影響としては、タルボ撮影装置のディテクター、格子の駆動部が備える縞走査ピエゾ素子、制御部が備えるPLC(programmable logic controller)、光源とディテクターの間に位置する格子、当該格子を保持する部品等に放射線又は
熱が作用することによって生じるノイズ等が考えられる。
The effects of radiation or heat on imaging include the detector of the Talbot imaging device, the fringe scanning piezo element included in the grating drive unit, the PLC (programmable logic controller) included in the control unit, the grating located between the light source and the detector, and the grid located between the light source and the detector. Possible causes include noise caused by radiation or heat acting on parts that hold the grid.
 放射線の発生源としては、タルボ撮影装置の放射線源や、被写体となる電子部品などが考えられる。 Possible sources of radiation include the radiation source of the Talbot imaging device and electronic components that are the subject.
 放射線による撮影への影響を抑制する手段の例としては、タルボ撮影装置において放射線から守りたい箇所に、導電性フィルムを設置したり導電性塗料を塗装したりすることによって導電部を設け、当該導電部を通じてアースする手段がある。 An example of a means for suppressing the influence of radiation on imaging is to install a conductive part by installing a conductive film or coating with conductive paint in the part of the Talbot imaging device that you want to protect from radiation. There is a way to ground through the
 熱の発生源としては、タルボ撮影装置の放射線源、ディテクター、電装部、被写体となる電子部品などが考えられる。例えば通電中のパワー半導体の場合、パワー半導体のチップ部が通電により150~200℃になることもある。このように通電により高温になりやすい電子部品を被写体とする場合は、熱による撮影への影響を抑制することが特に重要である。 Possible sources of heat include the radiation source, detector, electrical equipment, and electronic components of the Talbot imaging device. For example, in the case of a power semiconductor that is being energized, the temperature of the chip portion of the power semiconductor may reach 150 to 200° C. due to the energization. When the subject is an electronic component that easily heats up to high temperatures when energized, it is particularly important to suppress the effects of heat on photography.
 熱による撮影への影響を抑制する手段としては、タルボ撮影装置又は電子部品から発生する熱を放熱又は冷却する手段、タルボ撮影装置の光源とディテクターの間に位置する格子を遮熱カバーで遮熱する手段、電装部をタルボ撮影装置外に取り付けし、タルボ撮影装置への熱の影響を低減する手段などがある。 Measures to suppress the influence of heat on photography include means to radiate or cool the heat generated from the Talbot imaging device or electronic components, and to insulate the grid located between the light source and the detector of the Talbot imaging device with a heat shield cover. There are means to reduce the influence of heat on the Talbot photographing device by attaching the electrical equipment outside the Talbot photographing device.
 タルボ撮影装置又は電子部品から発生する熱を放熱又は冷却する手段としては、外装上部ファンを用いて放射線源等から発生する熱を放熱する手段、装置外から繋がる冷却水循環用ケーブルを用いて放射線源等から発生する熱を冷却する手段、ディテクターの検出面以外を密閉して、ディテクターから発生する熱を外部ファンを用いて密閉空間から放熱する手段などがある Means for dissipating or cooling the heat generated from the Talbot imaging device or electronic components include means for dissipating heat generated from the radiation source, etc. using an exterior upper fan, and for cooling the radiation source using a cooling water circulation cable connected from outside the device. There are methods for cooling the heat generated from the detector, and methods for sealing the detector other than the detection surface and radiating the heat generated from the detector from the closed space using an external fan.
 タルボ撮影装置の光源とディテクターの間に位置する格子を遮熱カバーで遮熱する手段では、線源格子、第1格子、又は第2格子を遮熱カバーで隔離するなどして、電子部品やタルボ撮影装置の放射線源等から発生する熱を遮熱する。これらの格子は、数μm周期の格子構造になっており、熱膨張によってピッチが変動してしまうことがある。ピッチが変動すると画質に影響するため、これらの格子を遮熱カバーで遮熱する効果は特に大きい。 In the method of insulating the grating located between the light source and the detector of Talbot imaging equipment with a heat shielding cover, electronic components and It shields the heat generated from the radiation source of the Talbot imaging device. These gratings have a grating structure with a period of several μm, and the pitch may fluctuate due to thermal expansion. Since variations in pitch affect image quality, it is particularly effective to insulate these grids from heat with a heat shield cover.
 熱の放熱又は冷却は、温度が15~30℃の範囲内となるように行うことが好ましい。また、撮影工程中の温度変動率が小さいことが好ましく、具体的には温度変動率が10%以下であることが好ましく、5%以下であることがより好ましく、2%以下であることがさらに好ましい。 Heat radiation or cooling is preferably carried out so that the temperature is within the range of 15 to 30°C. Further, it is preferable that the temperature fluctuation rate during the photographing process is small, specifically, it is preferably 10% or less, more preferably 5% or less, and even more preferably 2% or less. preferable.
 なお、状態変化追跡のための撮影工程は、後述の状態変化追跡(例えば第1データベースの生成処理)と並行して行うことができる。 Note that the photographing process for tracking state changes can be performed in parallel with state change tracking (for example, first database generation processing), which will be described later.
<5.状態変化追跡方法>
 タルボ画像を用いて電子部品の状態変化を通電時間に応じて追跡する方法について、図1に示す状態変化追跡装置20を用いる場合を例に説明する。
<5. Status change tracking method>
A method of tracking changes in the state of electronic components according to the energization time using Talbot images will be described using an example of using the state change tracking device 20 shown in FIG. 1.
[状態変化追跡装置の概要]
 図1に示す状態変化追跡装置20は、例えば、汎用のコンピューター(制御PC)で構成される。なお、状態変化追跡装置20は、これに限定されるものではなく、状態変化追跡装置20の機能の一部を図示しないネットワーク上に設け、通信によりデータを授受することで各処理を実行できるようにしてもよい。また、下記に示す状態変化追跡装置20の機能を、画像処理装置2又はコントローラー19に設けてもよい。
[Overview of state change tracking device]
The state change tracking device 20 shown in FIG. 1 is composed of, for example, a general-purpose computer (control PC). Note that the state change tracking device 20 is not limited to this, and a part of the functions of the state change tracking device 20 may be provided on a network (not shown) so that each process can be executed by sending and receiving data through communication. You can also do this. Further, the functions of the state change tracking device 20 described below may be provided in the image processing device 2 or the controller 19.
 図1に示す状態変化追跡装置20は、CPU21、RAM22、記憶部23、入力部24、外部データ入力部25、表示部26、及び通信部27を備えて構成されている。通信部27は、外部データ入力部25がその機能を果たすときには必ずしも必須ではない。 The state change tracking device 20 shown in FIG. 1 includes a CPU 21, a RAM 22, a storage section 23, an input section 24, an external data input section 25, a display section 26, and a communication section 27. The communication section 27 is not necessarily essential when the external data input section 25 fulfills its function.
 CPU21は、記憶部23に記憶されているシステムプログラムや処理プログラム等の各種プログラムを読み出してRAM22に展開し、展開されたプログラムを実行することにより、各機能部を具現化する。具体的には、CPU21は、プログラムを実行することにより、画像取得部211、画像補正部212、位置合わせ部213、状態変化追跡部214、及び寿命推定部215を具現化する。各機能部の機能は後述する。 The CPU 21 reads out various programs such as system programs and processing programs stored in the storage unit 23, expands them to the RAM 22, and implements each functional unit by executing the expanded programs. Specifically, the CPU 21 embodies the image acquisition section 211, the image correction section 212, the alignment section 213, the state change tracking section 214, and the life estimation section 215 by executing the program. The functions of each functional section will be described later.
 RAM22は、CPU21により実行制御される各種処理において、記憶部23から読み出され、CPU21で実行可能な各種プログラム、入力又は出力データ、及びパラメータ等を一時的に記憶するワークエリアとして機能する。 The RAM 22 functions as a work area that temporarily stores various programs, input or output data, parameters, etc. that are read from the storage unit 23 and executable by the CPU 21 during various processes that are executed and controlled by the CPU 21.
 記憶部23は、第1データベース23a及び第2データベース23bを備えて構成されている。記憶部23は、例えば、HDD(hard disk drive)や半導体の不揮発性メモリ
により構成される。記憶部23には、各種プログラムや各種データが記憶されている。
The storage unit 23 includes a first database 23a and a second database 23b. The storage unit 23 is configured of, for example, an HDD (hard disk drive) or a semiconductor nonvolatile memory. The storage unit 23 stores various programs and data.
 第1データベース23aは、タルボ画像と、状態変化追跡部214によってタルボ画像から抽出した各位置の特徴量を通電時間に関連付けた実測値(特徴量データという。)と、この実測値を直線に近似した検量線を格納するデータベースである。また、第1データベース23aには、通電時間と相関する特徴量に係るタルボ画像の位置と、この特徴量に係る検量線の傾きと、検査対象物の寿命に対応する閾値も格納される。 The first database 23a includes Talbot images, actual measured values (referred to as feature amount data) that are associated with the energization time of feature quantities at each position extracted from the Talbot images by the state change tracking unit 214, and approximations of the actual measured values into a straight line. This is a database that stores the calibration curves. Further, the first database 23a also stores the position of the Talbot image related to the feature amount correlated with the energization time, the slope of the calibration curve related to this feature amount, and the threshold value corresponding to the lifespan of the inspection object.
 第2データベース23bは、新たな検査対象物の所定位置の特徴量に基づいて寿命推定部215が生成した検量線(検量線データという。)を格納するデータベースである。寿命推定部215は、第2データベース23bに格納した検量線を用いて、当該検量線を閾値に達するまで外挿することにより、新たな検査対象物の寿命までの通電時間を推定できる。寿命の推定の詳細は、図9を用いて後述する。 The second database 23b is a database that stores a calibration curve (referred to as calibration curve data) generated by the life estimation section 215 based on the feature amount of a predetermined position of a new object to be inspected. The life estimation unit 215 can estimate the energization time until the life of a new test object by using the calibration curve stored in the second database 23b and extrapolating the calibration curve until it reaches a threshold value. Details of life estimation will be described later using FIG. 9.
 入力部24は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成される。入力部24は、キーボードで押下操作されたキーの押下信号やマウスによる操作信号を、入力信号としてCPU21に出力する。CPU21は、入力部24からの操作信号に基づいて、各種処理を実行する。なお、入力部24は入力信号を入力できればよく、タッチパネルなどでも代用できる。 The input unit 24 includes a keyboard with cursor keys, numeric input keys, various function keys, etc., and a pointing device such as a mouse. The input unit 24 outputs a press signal of a key pressed on a keyboard or an operation signal from a mouse to the CPU 21 as an input signal. The CPU 21 executes various processes based on operation signals from the input unit 24. Note that the input unit 24 only needs to be capable of inputting input signals, and a touch panel or the like can be used instead.
 外部データ入力部25は、外部装置(コントローラー19を含む)から取得したデータを状態変化追跡装置20に入力するためのものである。外部データ入力部25は、例えば、外部装置との有線又は無線によるデータ送受信を可能とするUSB(universal serial
bus:登録商標)ポート、Bluetooth(登録商標)、外部装置に相当する記録媒体からデータを読み込むドライブなど、様々なものを採用することができる。
The external data input unit 25 is for inputting data acquired from an external device (including the controller 19) to the state change tracking device 20. The external data input unit 25 is, for example, a USB (universal serial
Various devices can be employed, such as a bus (registered trademark) port, Bluetooth (registered trademark), and a drive that reads data from a recording medium corresponding to an external device.
 表示部26は、例えばCRT(cathode ray tube)やLCD(liquid crystal display)等のモニターを備えて構成されている。表示部26は、CPU21から入力される表示信号の指示に従って、各種画面を表示する。例えば、表示部26は、タルボ画像装置1から受信した干渉縞画像や、画像処理装置2から受信した再構成画像を表示する。また、表示部26として、タッチパネルを採用する場合、表示部26は、入力部24としての機能も併せ持つ。 The display unit 26 includes a monitor such as a CRT (cathode ray tube) or an LCD (liquid crystal display). The display unit 26 displays various screens according to instructions from display signals input from the CPU 21. For example, the display unit 26 displays the interference fringe image received from the Talbot imaging device 1 or the reconstructed image received from the image processing device 2. Furthermore, when a touch panel is used as the display section 26, the display section 26 also has the function of the input section 24.
 通信部27は、通信インターフェースを備えており、ネットワーク上の外部装置、例えば、タルボ画像装置1や画像処理装置2と通信する。また、通信部27は、上述した外部データ入力部25と共用されるものとしてもよい。 The communication unit 27 includes a communication interface and communicates with external devices on the network, such as the Talbot image device 1 and the image processing device 2. Furthermore, the communication section 27 may be shared with the external data input section 25 described above.
 なお、図1に示す状態変化追跡装置20は、CPU21において、画像取得部211、画像補正部212、位置合わせ部213、状態変化追跡部214、及び寿命推定部215を備えて構成され、各処理を実行するが、各処理の実行は、これに限定されるものではない。 The state change tracking device 20 shown in FIG. 1 includes an image acquisition section 211, an image correction section 212, a position alignment section 213, a state change tracking section 214, and a life estimation section 215 in the CPU 21, and each processing However, the execution of each process is not limited to this.
 例えば、画像処理装置2が、画像取得部211、画像補正部212、位置合わせ部213、及び寿命推定部215の機能を備えて構成され、状態変化追跡装置20は、状態変化追跡部214の機能のみを備えて構成されていてもよい。この場合、状態変化追跡部214は、例えば、手動によりタルボ画像から特徴量(信号強度又は信号強度分布)の値を抽出して、手動により特徴量をプロットしてもよい。 For example, the image processing device 2 is configured with the functions of an image acquisition section 211, an image correction section 212, a position alignment section 213, and a life estimation section 215, and the state change tracking device 20 is configured with the functions of a state change tracking section 214. The configuration may include only the following. In this case, the state change tracking unit 214 may, for example, manually extract the value of the feature amount (signal intensity or signal intensity distribution) from the Talbot image and manually plot the feature amount.
[第1データベースの生成処理]
 状態変化追跡方法の一例として、第1データベース23aを生成する処理について、図1を参照しながら、図5のフローチャートを用いて説明する。以下の例では、電子部品にボイドやクラックが発生し、絶縁材料が絶縁性を保てなくなり、リークが開始した時点を、電子部品の寿命としている。
[First database generation process]
As an example of the state change tracking method, the process of generating the first database 23a will be described using the flowchart of FIG. 5 with reference to FIG. 1. In the example below, the life of an electronic component is defined as the point in time when voids or cracks occur in the electronic component, the insulating material no longer maintains its insulation properties, and leakage begins.
 図5は、状態変化追跡装置20における第1データベース23aを生成する処理を示したフローチャートである。 FIG. 5 is a flowchart showing the process of generating the first database 23a in the state change tracking device 20.
 まず、状態変化追跡装置20のCPU21の画像取得部211は、タルボ撮影装置1によって撮影された検査対象物(被写体H)のタルボ画像を、通信部27を介して、タルボ撮影装置1又は画像処理装置2から取得し、更に通電時間を取得する(ステップS001)。「通電時間」とは、この検査対象物が通電されてから、タルボ撮影装置1が検査対象物を撮影した時点までに経過した時間のことをいう。 First, the image acquisition section 211 of the CPU 21 of the state change tracking device 20 transmits the Talbot image of the inspection object (subject H) photographed by the Talbot photographing device 1 to the Talbot photographing device 1 or image processing via the communication section 27. The information is acquired from the device 2, and the energization time is also acquired (step S001). The "energization time" refers to the time that has elapsed from when the object to be inspected is energized to when the Talbot imaging device 1 photographs the object to be inspected.
 本発明の状態変化追跡方法において用いるタルボ画像の枚数は、特に限定されない。通電時間の異なる電子部品のタルボ画像を複数用いる場合は、電子部品の状態を各タルボ画像同士で比較することで、状態変化を追跡できる。タルボ画像を1枚のみ用いる場合でも、例えば既に蓄積されたデータベースを参照する等の方法を用いることで、状態変化を追跡できる。なお、電子部品の状態を各タルボ画像同士で比較でき、より詳細な追跡が可能となる観点から、通電時間の異なる前記電子部品のタルボ画像を複数用いることが好ましい。 The number of Talbot images used in the state change tracking method of the present invention is not particularly limited. If a plurality of Talbot images of electronic components with different energization times are used, changes in the state of the electronic component can be tracked by comparing the Talbot images with each other. Even when using only one Talbot image, state changes can be tracked by, for example, referring to an already accumulated database. Note that it is preferable to use a plurality of Talbot images of the electronic component with different energization times from the viewpoint of being able to compare the state of the electronic component between the respective Talbot images and enabling more detailed tracking.
 以下、通電時間の異なる電子部品のタルボ画像を複数用いる実施形態を例に説明する。なお、当該実施形態の場合は、画像取得部211によって複数のタルボ画像を取得する必要がある。 Hereinafter, an embodiment using a plurality of Talbot images of electronic components with different energization times will be described as an example. Note that in the case of this embodiment, it is necessary for the image acquisition unit 211 to acquire a plurality of Talbot images.
 画像補正部212は、補正用の画像を用いて、電子部品のタルボ画像を補正する(ステップS003)。これによって、より鮮明な画像を得ることができる。補正用の画像には、電子部品がないバックグラウンドのタルボ画像、通電時間が0である前記電子部品のタルボ画像、通電時間の異なる電子部品のタルボ画像等を用いることができる。 The image correction unit 212 corrects the Talbot image of the electronic component using the correction image (step S003). With this, a clearer image can be obtained. As the image for correction, a Talbot image of a background without an electronic component, a Talbot image of the electronic component whose energization time is 0, a Talbot image of an electronic component with a different energization time, etc. can be used.
 電子部品のタルボ画像の補正には、補正用の画像を用いて、電子部品のタルボ画像から、撮影時の線源格子、第1格子、及び第2格子のスリット方向変更に起因する放射線の線量分布のムラ、当該スリットの製造バラつき起因の線量分布のムラ、及び、主に被写体台の画像への写り込みによるムラ、を含む画像ムラ(アーチファクト)を除去するための処理が含まれる。 To correct the Talbot image of the electronic component, a correction image is used to calculate the radiation dose caused by changing the slit direction of the source grating, first grating, and second grating at the time of imaging from the Talbot image of the electronic component. This includes processing for removing image unevenness (artifacts) including unevenness in distribution, unevenness in dose distribution due to manufacturing variations in the slit, and unevenness mainly due to reflection of the subject table into the image.
 画像ムラの除去は、電子部品のタルボ画像の各画素の信号値を、補正用の画像の対応する画素の信号値で減算又は除算することによってできる。 Image unevenness can be removed by subtracting or dividing the signal value of each pixel of the Talbot image of the electronic component by the signal value of the corresponding pixel of the correction image.
 具体的には、電子部品のタルボ画像が微分位相画像である場合には、例えば以下の公知文献(A)又は公知文献(B)に記載されている処理によって補正ができる。また、電子部品のタルボ画像が吸収画像又は小角散乱画像である場合には、例えば以下の公知文献(C)に記載されている処理によって補正ができる。 Specifically, when the Talbot image of an electronic component is a differential phase image, it can be corrected, for example, by the processing described in the following known document (A) or known document (B). Further, when the Talbot image of the electronic component is an absorption image or a small-angle scattering image, correction can be performed by, for example, the processing described in the following known document (C).
 公知文献(A);Timm Weitkamp, Ana Diazand, Christian David, franz Pfeiffer and Marco Stampanoni, Peter Cloetens and Eric Ziegler, X-ray Phase Imaging with a grating interferometer, OPTICSEXPRESS, Vol.13, No.16, p.6296-6004(2005)
 公知文献(B);Atsushi Momose, Wataru Yashiro, Yoshihiro Takeda, Yoshio Suzuki and Tadashi Hattori, Phase Tomography by X-ray Talbot Interferometry for Biological Imaging, Japanese Journal of Applied Physics, Vol.45, No.6A, 2006, p.5254-5262(2006)
 公知文献(C);F.Pfeiffer, M.Bech, O.Bunk, P.Kraft, E.F.Eikenberry, CH.Broennimann,C.Grunzweig, and C.David, Hard-X-ray dark-field imaging using a grating interferometer, nature materials Vol.7, p.134-137(2008)
Publicly known literature (A): Timm Weitkamp, Ana Diazand, Christian David, franz Pfeiffer and Marco Stampanoni, Peter Cloetens and Eric Ziegler, X-ray Phase Imaging with a grating interferometer, OPTICSEXPRESS, Vol.13, No.16, p.6296 -6004(2005)
Publicly known literature (B): Atsushi Momose, Wataru Yashiro, Yoshihiro Takeda, Yoshio Suzuki and Tadashi Hattori, Phase Tomography by X-ray Talbot Interferometry for Biological Imaging, Japanese Journal of Applied Physics, Vol.45, No.6A, 2006, p .5254-5262 (2006)
Publication (C): F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, EFEikenberry, CH. Broennimann, C. Grunzweig, and C. David, Hard-X-ray dark-field imaging using a grating interferometer , nature materials Vol.7, p.134-137 (2008)
 上記処理では、線源格子、第1格子、及び第2格子の各格子のスリット方向変更や被写体台特性に起因する放射線の線量分布のムラだけでなく、タルボ撮影装置のディテクターの個々の画素の特性にバラツキがあっても、この影響を除去することができる。 In the above processing, not only unevenness in the radiation dose distribution due to changes in the slit direction of each of the source grating, first grating, and second grating and characteristics of the object table, but also individual pixels of the detector of the Talbot imaging device. Even if there are variations in characteristics, this influence can be removed.
 なお、画像補正部212で用いる補正用の画像は、状態変化追跡の対象となる電子部品のタルボ画像と同様に、タルボ撮影装置1又は画像処理装置2から画像取得部211によって取得できる。 Note that the image for correction used by the image correction unit 212 can be acquired by the image acquisition unit 211 from the Talbot imaging device 1 or the image processing device 2, similarly to the Talbot image of the electronic component that is the target of status change tracking.
 位置合わせ部213は、複数ある通電時間の異なる電子部品のタルボ画像の位置合わせを行う(ステップS005)。「位置合わせ」とは、タルボ画像間で、各タルボ画像における電子部品の各位置を合わせることをいい、1枚目のタルボ画像の電子部品の形状等に基づいて、2枚目以降のタルボ画像の傾き、位置、大きさを補正することによって行える。また、1枚目に限らず、どれか1枚を基準にして、それに対して他をあわせても良い。なお、位置合わせ部213は、1枚目のタルボ画像については、位置合わせを行う必要がない。位置合わせ部213は、2枚目以降のタルボ画像について、例えば、1枚目のタルボ画像を基準として、位置合わせを行う。 The alignment unit 213 aligns the Talbot images of a plurality of electronic components having different energization times (step S005). "Positioning" refers to aligning each position of electronic components in each Talbot image between Talbot images, and based on the shape etc. of the electronic component in the first Talbot image, the second and subsequent Talbot images This can be done by correcting the inclination, position, and size of. Also, you are not limited to the first card, you may use any one card as a reference and match the others to it. Note that the alignment unit 213 does not need to align the first Talbot image. The alignment unit 213 aligns the second and subsequent Talbot images, for example, using the first Talbot image as a reference.
 次に、CPU21の状態変化追跡部214は、電子部品の複数のタルボ画像とその通電時間により、検査対象物の状態変化を非破壊にて追跡する。状態変化追跡部214は、複数ある通電時間の異なる電子部品のタルボ画像とその通電時間を用いて、タルボ画像の各位置の特徴量の値を抽出する(ステップS007)。 Next, the state change tracking unit 214 of the CPU 21 non-destructively tracks the state change of the inspection object using the plurality of Talbot images of the electronic component and their energization times. The state change tracking unit 214 extracts the value of the feature amount at each position of the Talbot image using the plurality of Talbot images of electronic components having different energization times and their energization times (step S007).
 状態変化追跡部214は、まず、1枚目のタルボ画像の各位置の特徴量の値を抽出する。状態変化追跡部214は、1枚目のタルボ画像の各位置の特徴量の値を第1データベース23aに格納する。状態変化追跡部214は、2枚目以降の再構成画像の各位置の特徴量の値を、順次、第1データベース23aに格納する。 The state change tracking unit 214 first extracts the value of the feature amount at each position of the first Talbot image. The state change tracking unit 214 stores the value of the feature amount at each position of the first Talbot image in the first database 23a. The state change tracking unit 214 sequentially stores the value of the feature amount at each position of the second and subsequent reconstructed images in the first database 23a.
 ここで、タルボ画像の「各位置の特徴量」としては、例えば、タルボ画像の各位置の信号強度や信号強度分布などが挙げられる。「タルボ画像の各位置の信号強度」とは、タルボ画像の各画素における信号値の大小を意味する。また、「タルボ画像の信号強度分布」とは、タルボ画像のある領域にける信号強度のバラツキの程度を意味し、例えば、標準偏差などの統計量によって示すことができる。なお、タルボ画像の各位置の信号強度や信号強度分布は、特徴量の一例であり、特徴量は、これらに限定されるものではない。 Here, the "feature amount of each position" of the Talbot image includes, for example, the signal intensity and signal intensity distribution of each position of the Talbot image. "Signal intensity at each position of the Talbot image" means the magnitude of the signal value at each pixel of the Talbot image. Further, "signal intensity distribution of a Talbot image" means the degree of variation in signal intensity in a certain area of a Talbot image, and can be indicated by, for example, a statistical amount such as a standard deviation. Note that the signal intensity and signal intensity distribution at each position of the Talbot image are examples of the feature amount, and the feature amount is not limited to these.
 また、状態変化追跡部214は、抽出したタルボ画像の各位置の特徴量の値をグラフの縦軸に、タルボ画像の撮影時の通電時間を横軸にプロットし、最小二乗法などを用いて検量線を作成する(ステップS009)。すなわち、状態変化追跡部214は、通電時間に対して、タルボ画像の各位置の特徴量を示す信号強度又は信号強度分布の値をプロットし、これを最小二乗法などで直線に近似したグラフを、各位置及び各特徴量ごとに作成する。 In addition, the state change tracking unit 214 plots the value of the feature amount at each position of the extracted Talbot image on the vertical axis of the graph and the energization time when the Talbot image was captured on the horizontal axis, and calculates the value using the least squares method or the like. A calibration curve is created (step S009). That is, the state change tracking unit 214 plots the signal strength or signal strength distribution value indicating the feature amount of each position of the Talbot image against the energization time, and creates a graph by approximating this to a straight line using the least squares method or the like. , created for each position and each feature.
 状態変化追跡部214は、検査対象物を次に撮影するまでの間に、リークの開始より検査対象物が寿命を迎えたか否かを判定する。状態変化追跡部214は、リークが開始した場合(ステップS011のYes)、ステップS013に進む。一方、リークが開始していない場合(ステップS011のNo)、状態変化追跡部214は、ステップS001に戻る。そして、CPU21の画像取得部211は、次のタルボ画像と通電時間とを取得し、2枚目以降のタルボ画像に対してステップS003からステップS011までの処理を繰り返す。 The state change tracking unit 214 determines whether the object to be inspected has reached the end of its lifespan from the start of leakage until the next time the object to be inspected is photographed. If the leak has started (Yes in step S011), the state change tracking unit 214 proceeds to step S013. On the other hand, if the leak has not started (No in step S011), the state change tracking unit 214 returns to step S001. Then, the image acquisition unit 211 of the CPU 21 acquires the next Talbot image and the energization time, and repeats the processes from step S003 to step S011 for the second and subsequent Talbot images.
 すなわち、状態変化追跡部214は、次に取得したタルボ画像から、タルボ画像の信号強度又は信号強度分布の値を抽出し、タルボ画像の信号強度又は信号強度分布の値をグラフの縦軸に、通電時間をグラフの横軸にプロットして、最小二乗法などで直線に近似することにより、リークが開始する直前までの検量線を、各位置及び各特徴量ごとに作成する。 That is, the state change tracking unit 214 extracts the signal intensity or signal intensity distribution value of the Talbot image from the Talbot image acquired next, and plots the signal intensity or signal intensity distribution value of the Talbot image on the vertical axis of the graph. By plotting the energization time on the horizontal axis of the graph and approximating it to a straight line using the least squares method, a calibration curve up to just before leakage starts is created for each position and each feature.
 ステップS013では、状態変化追跡部214は、各位置の検量線から、通電時間と相関して特徴量が変化している位置を特定し、この位置に係る特徴量を抽出する。 In step S013, the state change tracking unit 214 identifies a position where the feature amount changes in correlation with the energization time from the calibration curve of each position, and extracts the feature amount related to this position.
 図6は、状態変化追跡装置20のCPU21の状態変化追跡部214が、通電時間と相関する特徴量を抽出する概念を示した説明図である。ステップS013において、状態変化追跡部214は、例えば、通電時間t0から順次、24時間(1日相当)刻みで、通電時間t1,t2,・・・,t6まで、タルボ画像の信号強度(特徴量の一例)を抽出する。なお、図6では、図示しない通電時間t7において、リークが開始したものとする。 FIG. 6 is an explanatory diagram showing a concept in which the state change tracking unit 214 of the CPU 21 of the state change tracking device 20 extracts a feature amount correlated with the energization time. In step S013, the state change tracking unit 214 sequentially monitors the signal strength (feature amount example). In addition, in FIG. 6, it is assumed that the leak starts at energization time t7 (not shown).
 図6に示すX線吸収画像は、ある電子部品の注目領域を含む部分の通常のX線吸収画像示しており、タルボ画像は、同一の電子部品の対応する微分位相画像又は小角散乱画像を示している。図6に示すように、例えば、通常のX線吸収画像には、通電時間t1,t2,・・・,t6と時間が経過しても、変化は何も現れていない。 The X-ray absorption image shown in FIG. 6 is a normal X-ray absorption image of a portion of an electronic component that includes the region of interest, and the Talbot image is a corresponding differential phase image or small-angle scattering image of the same electronic component. ing. As shown in FIG. 6, for example, no change appears in a normal X-ray absorption image even after the energization times t1, t2, . . . , t6 have elapsed.
 これに対して、タルボ画像には、地点P1では通電時間t1からt6まで通電しても、変化は何も現れていないが、地点P2では、通電時間t2からt6まで通電することで、通電時間と相関する信号強度(特徴量の一例)の値の変化が発生している。 On the other hand, in the Talbot image, no change appears even if the current is applied from t1 to t6 at point P1, but at point P2, no change appears even if the current is applied from t2 to t6. A change in the value of signal strength (an example of a feature quantity) that correlates with
 すなわち、タルボ画像は、地点P2の特徴量の値の変化を示しており、特に通電時間t6のタルボ画像は、リーク開始直前の地点P2の特徴量の値の変化を示している。 That is, the Talbot image shows a change in the value of the feature amount at point P2, and in particular, the Talbot image at the energization time t6 shows a change in the value of the feature amount at point P2 immediately before the start of leakage.
 このように、リークが発生する場合、電子部品の状態変化が起きている位置に相当するタルボ画像内の位置に、通電時間と相関する特徴量の値の変化が発生する。このため、状態変化追跡部214は、タルボ画像内の特徴量の値に変化が発生している位置を特定し(例えば図6の地点P2)、この位置に係る特徴量を抽出する。 In this manner, when a leak occurs, a change in the value of the feature amount that correlates with the energization time occurs at a position in the Talbot image that corresponds to the position where the state change of the electronic component occurs. Therefore, the state change tracking unit 214 identifies a position in the Talbot image where a change in the value of the feature amount occurs (for example, point P2 in FIG. 6), and extracts the feature amount related to this position.
 図5に戻り、ステップS015において、状態変化追跡部214は、リークが開始する直前までの検量線を、リーク開始時点の通電時間まで外挿して、検査対象物の寿命に対応する特徴量を閾値として導出し、第1データベース23aの生成処理を終了する。 Returning to FIG. 5, in step S015, the state change tracking unit 214 extrapolates the calibration curve up to just before the leak starts to the energization time at the time the leak starts, and sets the feature value corresponding to the lifespan of the test object to the threshold value. , and the generation process of the first database 23a is completed.
 図7は、状態変化追跡装置20のCPU21の状態変化追跡部214が、検査対象物の寿命に対応する特徴量の閾値を導出するための検量線のグラフを示す説明図である。 FIG. 7 is an explanatory diagram showing a graph of a calibration curve for the state change tracking unit 214 of the CPU 21 of the state change tracking device 20 to derive the threshold value of the feature amount corresponding to the life span of the inspection object.
 図7に示す検量線のグラフは、グラフの横軸に通電時間を示し、グラフの縦軸にタルボ画像の所定位置(例えば図6における地点P2)の特徴量の値を示している。図7では、CPU21の状態変化追跡部214は、時間t0から順次、24時間(1日相当)刻みで、通電時間t1,t2,・・・,t6まで、タルボ画像の特徴量の値を抽出して丸印でプロットし、更にリークが開始した寿命の通電時間t7を記入している。状態変化追跡部214は、タルボ画像の各位置の特徴量について、このグラフを作成して検量線を導出し、この検量線の傾きに基づいて、通電時間との相関性が高い特徴量を抽出する。 In the graph of the calibration curve shown in FIG. 7, the horizontal axis of the graph shows the energization time, and the vertical axis of the graph shows the value of the feature amount at a predetermined position of the Talbot image (for example, point P2 in FIG. 6). In FIG. 7, the state change tracking unit 214 of the CPU 21 sequentially extracts the value of the feature amount of the Talbot image from time t0 in 24-hour (equivalent to one day) increments until energization times t1, t2, ..., t6. The graph is plotted with a circle, and the lifetime energization time t7 at which leakage started is also written. The state change tracking unit 214 creates this graph and derives a calibration curve for the feature amount at each position of the Talbot image, and extracts a feature amount that has a high correlation with the energization time based on the slope of this calibration curve. do.
 ここで、通電時間t7では、タルボ画像の地点P2(図6)においてリークが開始している。リークが開始した位置の近傍の特徴量の値は、通電時間に相関して変化していることが多い。そのため、リークが開始した位置の近傍が、所定位置となる(例えば、図6の地点P2)。 Here, at energization time t7, leakage has started at point P2 (FIG. 6) in the Talbot image. The value of the feature amount near the position where leakage starts often changes in correlation with the energization time. Therefore, the vicinity of the position where the leak starts becomes the predetermined position (for example, point P2 in FIG. 6).
 状態変化追跡部214は、この所定位置の特徴量の値の検量線を通電時間t7まで外挿して、通電時間t7でリークが開始した時点のタルボ画像の当該所定位置の特徴量の値を閾値Thとして導出する。 The state change tracking unit 214 extrapolates the calibration curve of the value of the feature at this predetermined position up to the energization time t7, and sets the value of the feature at the predetermined position of the Talbot image at the time when the leak starts at the energization time t7 to a threshold value. It is derived as Th.
 これにより、以降の検査対象物のタルボ画像の当該位置の特徴量の値がこの閾値Thに到達するときは、この検査対象物の寿命であると推定できる。 Thereby, when the value of the feature amount at the relevant position in the subsequent Talbot image of the object to be inspected reaches this threshold Th, it can be estimated that this object to be inspected has reached the end of its lifespan.
 このように、状態変化追跡部214は、定期的に撮影された複数のタルボ画像を用いて、検査対象物が寿命に至るまで連続的に変化する再構成画像の各位置の特徴量を抽出する。 In this way, the state change tracking unit 214 uses a plurality of regularly taken Talbot images to extract the feature amount of each position in the reconstructed image where the inspection object changes continuously until the end of its life. .
 これにより、状態変化追跡部214は、第1データベース23aを生成できる。 Thereby, the state change tracking unit 214 can generate the first database 23a.
 なお、検査対象物ごとにタルボ画像の特徴が異なり、また、通電条件の違い、具体的には、電流、電圧、温度などの違いによってもタルボ画像の特徴が異なることが想定される。そのため、状態変化追跡部214は、検査対象物ごとにそれぞれ検量線を作成するとともに、通電条件ごとにそれぞれ検量線を作成することが望ましい。 Note that the characteristics of the Talbot image differ for each object to be inspected, and it is also assumed that the characteristics of the Talbot image differ depending on differences in energization conditions, specifically, differences in current, voltage, temperature, etc. Therefore, it is desirable that the state change tracking unit 214 create a calibration curve for each object to be tested, and also create a calibration curve for each energization condition.
<6.検査対象物の寿命推定処理>
 次に、寿命推定部215が、検査対象物(被写体H)の寿命を推定する処理について、図1を参照しながら、図8のフローチャートを用いて説明する。
<6. Life estimation process of inspection object>
Next, the process of estimating the lifespan of the inspection object (subject H) by the lifespan estimating unit 215 will be described using the flowchart of FIG. 8 with reference to FIG.
 図8は、寿命推定部215が、検査対象物(被写体H)の寿命を推定する処理を示したフローチャートである。なお、本実施形態では、検査対象物は、例えば、通電されているものとする。 FIG. 8 is a flowchart showing a process in which the life estimation unit 215 estimates the life of the inspection object (subject H). In this embodiment, it is assumed that the object to be inspected is energized, for example.
 まず、状態変化追跡装置20のCPU21の画像取得部211は、タルボ撮影装置1によって撮影された新たな検査対象物のタルボ画像を、通信部27を介して、タルボ撮影装置1又は画像処理装置2から取得する(ステップS101)。 First, the image acquisition unit 211 of the CPU 21 of the state change tracking device 20 sends a new Talbot image of the inspection object photographed by the Talbot imaging device 1 to the Talbot imaging device 1 or the image processing device 2 via the communication unit 27. (Step S101).
 次に、CPU21の画像補正部212は、ステップS003と同様にして、新たな検査対象物のタルボ画像を補正する(ステップS103)。 Next, the image correction unit 212 of the CPU 21 corrects the Talbot image of the new inspection object in the same manner as in step S003 (step S103).
 次に、CPU21の位置合わせ部213は、新たな検査対象物のタルボ画像を、図5で示した第1データベース23aの生成処理時の1枚目のタルボ画像を基準として位置合わせする(ステップS105)。 Next, the alignment unit 213 of the CPU 21 aligns the Talbot image of the new inspection object with reference to the first Talbot image during the generation process of the first database 23a shown in FIG. 5 (step S105 ).
 なお、検査対象物の寿命推定処理では、タルボ画像の撮影枚数は、少なくとも1枚あれば寿命を推定でき、また、複数枚あることが望ましい。また、通電時間の異なる複数のタルボ画像は、定期的に撮影される必要はなく、任意の通電時間に撮影されてもよい。 In addition, in the life estimation process of the inspection object, the life can be estimated if at least one Talbot image is taken, and it is desirable to have a plurality of Talbot images. Further, the plurality of Talbot images with different energization times do not need to be photographed regularly, and may be captured at any energization time.
 CPU21の寿命推定部215は、新たな検査対象物のタルボ画像から、所定位置の特徴量を抽出する。この所定位置は、図5に示す特徴量データの生成処理によって抽出されたものであり、この検査対象物において、ボイドやクラックが発生し、絶縁材料が絶縁性を保てなくなり、リークが開始しやすい位置である(例えば、図6の地点P2)。 The life estimation unit 215 of the CPU 21 extracts the feature amount at a predetermined position from the Talbot image of the new inspection object. This predetermined position is extracted by the feature data generation process shown in Figure 5, and indicates that voids or cracks occur in this inspection object, the insulating material no longer maintains insulation, and leaks begin. It is an easy location (for example, point P2 in FIG. 6).
 寿命推定部215は、第1データベース23aに格納された検量線の傾きを、この所定位置の特徴量に適用して、検量線を閾値に達するまで外挿し、この検量線が閾値に達するまでの時間から当該新たな検査対象物の寿命を推定する(ステップS107)。 The life estimation unit 215 applies the slope of the calibration curve stored in the first database 23a to the feature quantity at this predetermined position, extrapolates the calibration curve until it reaches the threshold value, and calculates the slope of the calibration curve until it reaches the threshold value. The lifespan of the new inspection object is estimated from the time (step S107).
 タルボ画像を用いて作成した検量線は精度が高いため、当該検量線を用いることによって、寿命推定部215は、高精度で寿命を推定できる。また、タルボ画像の特徴量の値の変化に基づいて寿命を推定しているので、寿命推定の指標を定量化でき、人間の官能評価(定性評価)に比べて、客観的かつ高精度に電子部品の寿命を推定できる。 Since the calibration curve created using the Talbot image has high accuracy, by using the calibration curve, the life estimation unit 215 can estimate the life with high accuracy. In addition, since lifespan is estimated based on changes in the feature values of Talbot images, the lifespan estimation index can be quantified, and compared to human sensory evaluation (qualitative evaluation), electronic evaluation is more objective and accurate. The lifespan of parts can be estimated.
 寿命推定部215は、例えば、新たな検査対象物の1枚のタルボ画像から特徴量を抽出した場合、第1データベース23aを参照し、新たな検査対象物の所定位置の特徴量の新たな検量線(検量線データ)を作成する。 For example, when a feature amount is extracted from one Talbot image of a new inspection object, the life estimation unit 215 refers to the first database 23a and extracts a new calibration value of the feature amount at a predetermined position of the new inspection object. Create a curve (calibration curve data).
 このように、寿命推定部215は、新たな検査対象物のタルボ画像の所定位置の特徴量から、所定位置の特徴量に係る新たな検量線を作成し、この検量線を閾値に達するまで外挿して、所定位置の特徴量の閾値に到達するまでの通電時間を寿命として推定する。そして、寿命推定部215は、作成した新たな検量線データを第2データベース23bに格納する。 In this way, the life estimation unit 215 creates a new calibration curve related to the feature amount at a predetermined position from the feature amount at a predetermined position of the Talbot image of the new inspection object, and continues to deviate this calibration curve until it reaches a threshold value. Then, the energization time until the threshold value of the feature amount at a predetermined position is reached is estimated as the lifespan. Then, the life estimation unit 215 stores the created new calibration curve data in the second database 23b.
 ステップS107において、寿命推定部215は、新たな検査対象物の寿命である通電時間を推定すると、寿命推定処理を終了する。 In step S107, the life estimation unit 215 ends the life estimation process after estimating the energization time, which is the life of the new inspection object.
 図9は、状態変化追跡装置20のCPU21の寿命推定部215が、新たな検査対象物の寿命を推定した検量線のグラフを示す説明図である。 FIG. 9 is an explanatory diagram showing a graph of a calibration curve on which the life estimation unit 215 of the CPU 21 of the state change tracking device 20 estimates the life of the new test object.
 図9に示す検量線のグラフは、グラフの横軸に通電時間を示し、グラフの縦軸に、タルボ画像の特徴量の値を示している。例えば、新たな検査対象物であるタルボ画像の特徴量の値が、特徴量の値F1の1つのみの場合、寿命推定部215は、第1データベース23aに格納された検量線の傾きを特徴量の値F1に適用して、新たな検量線を作成する。さらに、検量線を閾値Thに到達するまで外挿する。 In the graph of the calibration curve shown in FIG. 9, the horizontal axis of the graph shows the energization time, and the vertical axis of the graph shows the value of the feature amount of the Talbot image. For example, if the Talbot image that is a new inspection object has only one feature value F1, the life estimation unit 215 uses the slope of the calibration curve stored in the first database 23a as the feature value. A new calibration curve is created by applying it to the quantity value F1. Furthermore, the calibration curve is extrapolated until the threshold value Th is reached.
 特徴量が閾値Thに到達するまでの新たな検量線から、特徴量が閾値Thに到達するまでの通電時間tが導出できる。当該通電時間tまでの通電時間が、新たな検査対象物の残りの寿命であると推定できる。このように、新たな検査対象物について、1枚のタルボ画像のみ用いた場合は、通電時間の異なる複数のタルボ画像を用いた場合と比べて、寿命推定のための試験時間を短くすることができる。 The current application time tx until the feature amount reaches the threshold Th can be derived from a new calibration curve until the feature amount reaches the threshold Th. It can be estimated that the energization time up to the energization time t x is the remaining life of the new test object. In this way, when using only one Talbot image for a new inspection object, the test time for life estimation can be shortened compared to when multiple Talbot images with different energization times are used. can.
 また、例えば、通電を続けて所定時間(所定日数)後の新たな検査対象物のタルボ画像を取得し、当該タルボ画像の所定位置の特徴量の値F2を抽出した場合、寿命推定部215は、タルボ画像の特徴量の値F1,F2の変位に基づいて、新たな検量線を作成する。さらに、検量線を閾値Thに到達するまで外挿する。 Further, for example, if a new Talbot image of the inspection object is acquired after a predetermined time (predetermined number of days) by continuing to energize, and the value F2 of the feature amount at a predetermined position of the Talbot image is extracted, the life estimation unit 215 , a new calibration curve is created based on the displacement of the feature values F1 and F2 of the Talbot image. Furthermore, the calibration curve is extrapolated until the threshold value Th is reached.
 特徴量が閾値Thに到達するまでの新たな検量線から、特徴量が閾値Thに到達するまでの通電時間tが導出できる。当該通電時間tまでの通電時間が、新たな検査対象物の残りの寿命であると推定できる。このように、新たな検査対象物について、通電時間の異なる複数のタルボ画像を用いた場合は、1枚のタルボ画像のみ用いた場合と比べて、より高精度に寿命を推定できる。 The current application time tx until the feature amount reaches the threshold Th can be derived from a new calibration curve until the feature amount reaches the threshold Th. It can be estimated that the energization time up to the energization time t x is the remaining life of the new test object. In this way, when a plurality of Talbot images with different energization times are used for a new inspection object, the lifespan can be estimated with higher accuracy than when only one Talbot image is used.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。 The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. In addition, in the following examples, unless otherwise specified, operations were performed at room temperature (25° C.). Further, unless otherwise specified, "%" and "parts" mean "% by mass" and "parts by mass", respectively.
<実施例1-1>
 以下の公知文献(D)に記載のIGBTパワーモジュールを、体積が2400cc(24cm×20cm×5cm)、パワー密度が100W/ccになるように作製した。このIGBTパワーモジュールを以下IGBTパワーモジュール1とする。
<Example 1-1>
An IGBT power module described in the following known document (D) was manufactured to have a volume of 2400 cc (24 cm x 20 cm x 5 cm) and a power density of 100 W/cc. This IGBT power module will be referred to as IGBT power module 1 hereinafter.
 公知文献(D);福田典子、「高耐圧・大電流パワー半導体モジュールの総合的な劣化評価」、鉄道総研報告、公益財団法人 鉄道総合技術研究所、2013年12月発行、第27巻、第12号、p.41-46 Publicly known document (D): Noriko Fukuda, “Comprehensive deterioration evaluation of high voltage and large current power semiconductor modules”, Railway Research Institute report, Railway Research Institute, Public Interest Incorporated Foundation, published December 2013, Vol. 27, No. No. 12, p. 41-46
 作製したIGBTパワーモジュール1の許容電流は320Aであり、許容電圧は750Vであった。 The allowable current of the manufactured IGBT power module 1 was 320A, and the allowable voltage was 750V.
 作製したIGBTパワーモジュール1に電流値320A、電圧値750Vで通電し、通電時間が10時間、100時間、500時間、及び1000時間のときの干渉縞画像を撮影した。 The produced IGBT power module 1 was energized with a current value of 320 A and a voltage value of 750 V, and interference fringe images were taken when the energization time was 10 hours, 100 hours, 500 hours, and 1000 hours.
 実施例1-1では、図2に示す、第2格子を備えるX線タルボ・ロー撮影装置を用い、干渉縞画像(モアレ画像)を撮影した。また、IGBTパワーモジュール1がないバックグラウンドの干渉縞画像(モアレ画像)も撮影した。なお、寿命推定処理における新たな検査対象物の撮影が、検査対象物に通電しながらの状態でしか行えない場合を想定し、ここでの撮影もIGBTパワーモジュール1に通電しながらの状態で行った。 In Example 1-1, an interference fringe image (moiré image) was photographed using an X-ray Talbot-Lau imaging device equipped with a second grating, as shown in FIG. In addition, a background interference fringe image (moiré image) without the IGBT power module 1 was also photographed. It should be noted that, assuming that the new photographing of the test object in the life estimation process can only be performed while the test object is energized, the photographing here is also performed while the IGBT power module 1 is energized. Ta.
 このとき、X線タルボ・ロー撮影装置のディテクターの検出面以外の面に導電性フィルムを設置し、当該導電性フィルムを通じてアースすることで、X線源から発生する放射線(X線)による撮影への影響を抑制した。また、外装上部ファンを用いてX線源から発生する熱を放熱することで、熱による撮影への影響を抑制した。 At this time, by installing a conductive film on the surface other than the detection surface of the detector of the X-ray Talbot-Rho imaging device and grounding through the conductive film, imaging using radiation (X-rays) generated from the X-ray source is possible. The impact of this was suppressed. Additionally, by using a fan on the top of the exterior to dissipate the heat generated from the X-ray source, we suppressed the effects of heat on imaging.
 次いで、撮影した各干渉縞画像に基づいて、再構成画像として、微分位相画像、小角散乱画像及び吸収画像を、フーリエ変換法を用いて生成した。 Next, based on each photographed interference fringe image, a differential phase image, a small-angle scattering image, and an absorption image were generated as reconstructed images using the Fourier transform method.
 次いで、各通電時間のIGBTパワーモジュール1の再構成画像について、各画素の信号値を、補正用の画像(IGBTパワーモジュール1がないバックグラウンドの再構成画像)の対応する画素の信号値で減算することによって、補正を行った。 Next, for the reconstructed image of the IGBT power module 1 for each energization time, the signal value of each pixel is subtracted by the signal value of the corresponding pixel of the correction image (reconstructed image of the background without the IGBT power module 1). Corrections were made by doing this.
 次いで、各通電時間のIGBTパワーモジュール1の補正後の再構成画像について、位置合わせを行った。 Next, the corrected reconstructed images of the IGBT power module 1 for each energization time were aligned.
 次いで、各通電時間のIGBTパワーモジュール1の補正後の再構成画像について、各位置の信号強度及び信号強度分布を抽出した。 Next, the signal intensity and signal intensity distribution at each position were extracted for the corrected reconstructed image of the IGBT power module 1 for each energization time.
 これらの各位置の信号強度及び信号強度分布の変化から、IGBTパワーモジュール1(パワー密度100W/cc)の状態変化としてボイドやクラックの特徴量の値の変化、ボイド周辺やクラック周辺の樹脂材料の変性、及び絶縁破壊を、通電時間に応じて追跡した。 From the changes in the signal strength and signal strength distribution at each of these positions, changes in the characteristic values of voids and cracks, and changes in the values of the resin material around the voids and cracks are determined as changes in the state of the IGBT power module 1 (power density 100W/cc). Denaturation and dielectric breakdown were tracked according to the current application time.
 用いた画像のうち微分位相画像と小角散乱画像が特に画質が鮮明であった。微分位相画像では、空気と樹脂の屈折率差からボイドやクラックの特徴量の値を正確に把握でき、通電時間の異なる微分位相画像を比較することで、ボイドやクラックの特徴量の値が変化する様子を鮮明に捉えることができた。また、小角散乱画像では、小角散乱したX線から樹脂材料の様子を把握でき、通電時間の異なる小角散乱画像を比較することで、100時間からボイド周辺やクラック周辺の樹脂材料が変性する様子を捉えることができた。このボイド周辺やクラック周辺の樹脂材料の変性を追跡することで、IGBTパワーモジュール1が絶縁破壊する様子を有効に捉えることができた。 Among the images used, the differential phase image and small-angle scattering image had particularly clear image quality. With differential phase images, it is possible to accurately determine the values of the features of voids and cracks based on the refractive index difference between air and resin, and by comparing differential phase images with different energization times, the values of the features of voids and cracks can be changed. I was able to clearly capture what happened. In addition, with small-angle scattering images, it is possible to understand the state of the resin material from small-angle scattered X-rays, and by comparing small-angle scattering images obtained with different energization times, we can see how the resin material changes around voids and cracks after 100 hours. I was able to capture it. By tracking the deterioration of the resin material around the voids and cracks, we were able to effectively capture how the IGBT power module 1 undergoes dielectric breakdown.
<実施例1-2>
 実施例1-2では、第2格子を備えないX線タルボ・ロー撮影装置を用い、干渉縞画像として非モアレ画像を撮影した。干渉縞画像として非モアレ画像を用いた以外は実施例1-1と同様にして、IGBTパワーモジュール1(パワー密度100W/cc)のボイドやクラックの特徴量の値の変化、ボイド周辺やクラック周辺の樹脂材料の変性、及び絶縁破壊を、通電時間に応じて追跡した。
<Example 1-2>
In Example 1-2, a non-moiré image was taken as an interference fringe image using an X-ray Talbot-Lau imaging device not equipped with a second grating. Changes in the feature values of voids and cracks of IGBT power module 1 (power density 100 W/cc), the vicinity of voids and the vicinity of cracks were carried out in the same manner as in Example 1-1 except that a non-moiré image was used as the interference fringe image. The degeneration and dielectric breakdown of the resin material were tracked according to the current application time.
 実施例1-2で非モアレ画像から生成した再構成画像は、実施例1-1でモアレ画像から生成した再構成画像と比較して画質がやや劣るが、実施例1-2と実施例1-1でおおよそ同様の追跡結果が得られた。また、タルボ画像の撮影に要した時間は、実施例1-2と実施例1-1で違いはなかった。 The reconstructed image generated from the non-moire image in Example 1-2 is slightly inferior in image quality compared to the reconstructed image generated from the moire image in Example 1-1, but Roughly similar tracking results were obtained with -1. Furthermore, there was no difference in the time required to take the Talbot image between Example 1-2 and Example 1-1.
<実施例1-3>
 実施例1-3では、X線タルボ・ロー撮影装置の線源格子、第1格子、及び第2格子を遮熱カバーで隔離して、熱による撮影への影響を抑制しながら、干渉縞画像を撮影した。それ以外は、実施例1-1と同様にして、IGBTパワーモジュール1(パワー密度100W/cc)のボイドやクラックの特徴量の値の変化、ボイド周辺やクラック周辺の樹脂材料の変性、及び絶縁破壊を、通電時間に応じて追跡した。
<Example 1-3>
In Example 1-3, the radiation source grating, first grating, and second grating of the X-ray Talbot-Lau imaging device are isolated with a heat shield cover, and interference fringe images are obtained while suppressing the influence of heat on imaging. was photographed. Other than that, the same procedure as in Example 1-1 was carried out, including changes in the characteristic values of voids and cracks of the IGBT power module 1 (power density 100 W/cc), modification of the resin material around the voids and cracks, and insulation. Destruction was tracked as a function of energization time.
 実施例1-3では、実施例1-1よりもさらに鮮明な干渉縞画像を撮影することができた。この結果から、タルボ撮影装置の光源とディテクターの間に位置する格子を遮熱カバーで遮熱することによって、より高精度な寿命推定が可能になることが推測できる。 In Example 1-3, it was possible to capture a clearer interference fringe image than in Example 1-1. From this result, it can be inferred that by shielding the grid located between the light source and the detector of the Talbot imaging device with a heat shielding cover, more accurate life estimation becomes possible.
<実施例1-4>
 実施例1-4では、補正用の画像として、IGBTパワーモジュール1がないバックグラウンドの再構成画像の代わりに、通電前(通電時間が0)のIGBTパワーモジュール1の再構成画像を用いた。それ以外は、実施例1-1と同様にして、IGBTパワーモジュール1(パワー密度100W/cc)のボイドやクラックの特徴量の値の変化、ボイド周辺やクラック周辺の樹脂材料の変性、及び絶縁破壊を、通電時間に応じて追跡した。
<Example 1-4>
In Example 1-4, a reconstructed image of the IGBT power module 1 before energization (energization time is 0) was used as a correction image instead of a reconstructed image of the background without the IGBT power module 1. Other than that, the same procedure as in Example 1-1 was carried out, including changes in the characteristic values of voids and cracks of the IGBT power module 1 (power density 100 W/cc), modification of the resin material around the voids and cracks, and insulation. Destruction was tracked as a function of energization time.
 実施例1-4では、実施例1-1よりもさらに鮮明な補正後の画像を得ることができた。この結果から、通電時間が0である電子部品のタルボ画像を用いて、各通電時間の電子部品のタルボ画像を補正することによって、より高精度な寿命推定が可能になることが推測できる。また、通電時間が0でない電子部品のタルボ画像を用いて、各通電時間の電子部品のタルボ画像の補正を行っても寿命推定が可能であった。 In Example 1-4, it was possible to obtain an even clearer corrected image than in Example 1-1. From this result, it can be inferred that by correcting the Talbot image of the electronic component for each energization time using the Talbot image of the electronic component for which the energization time is 0, more accurate life estimation becomes possible. Further, life estimation was also possible by correcting the Talbot image of the electronic component at each energization time using the Talbot image of the electronic component for which the energization time was not 0.
<実施例1-5 比較例>
 比較例である実施例1-5では、画像撮影装置にX線CT装置(カールツァイス社製、MICROTOM800)を用いて、IGBTパワーモジュール1(パワー密度100W/cc)の吸収画像を撮影した。それ以外は、実施例1-1と同様にして、IGBTパワーモジュール1の状態変化を、通電時間に応じて追跡した。
<Example 1-5 Comparative example>
In Example 1-5, which is a comparative example, an absorption image of the IGBT power module 1 (power density 100 W/cc) was photographed using an X-ray CT device (MICROTOM800, manufactured by Carl Zeiss) as the image photographing device. Other than that, the state change of the IGBT power module 1 was tracked according to the energization time in the same manner as in Example 1-1.
 実施例1-5で用いた吸収画像は、実施例1-1で用いたタルボ画像と比べて画質が不鮮明であった。また、実施例1-5で用いた吸収画像からは、ボイド周辺やクラック周辺の樹脂材料の変性は追跡できなかった。これらの結果から、X線CT装置を用いた場合は、タルボ撮影装置を用いた場合と比べて、高精度な寿命推定ができないことが分かる。 The absorption image used in Example 1-5 had poor image quality compared to the Talbot image used in Example 1-1. Further, from the absorption images used in Examples 1-5, it was not possible to trace the modification of the resin material around voids or cracks. From these results, it can be seen that when an X-ray CT device is used, lifespan cannot be estimated with high accuracy compared to when a Talbot imaging device is used.
 また、X線CT装置を用いた実施例1-5では、CT再構成に長時間がかかり、実施例1-1よりも状態変化追跡に時間がかかった。状態変化追跡にX線CT装置を用いた場合は、寿命推定処理でも同じくX線CT装置を用いる必要がある。そのため、状態変化追跡にX線CT装置を用いた場合は、タルボ撮影装置を用いた場合と比べて、寿命推定処理においても時間がかかることが分かる。 Furthermore, in Example 1-5 using an X-ray CT device, CT reconstruction took a long time, and state change tracking took more time than Example 1-1. When an X-ray CT device is used to track state changes, it is also necessary to use the same X-ray CT device in the life estimation process. Therefore, it can be seen that when an X-ray CT device is used to track state changes, it takes more time to perform life estimation processing than when a Talbot imaging device is used.
<実施例1-6 比較例>
 比較例である実施例1-6では、画像撮影装置に特開2001-305077号公報に記載の結像型X線顕微鏡を用いて、IGBTパワーモジュール1(パワー密度100W/cc)の干渉縞画像(非モアレ画像)を撮影した。また、撮影した干渉縞画像(非モアレ画像)から、微分位相画像及び吸収画像を生成した。それ以外は、実施例1-1と同様にして、IGBTパワーモジュール1の状態変化を通電時間に応じて追跡した。
<Example 1-6 Comparative example>
In Example 1-6, which is a comparative example, an interference fringe image of IGBT power module 1 (power density 100 W/cc) was obtained using an imaging X-ray microscope described in Japanese Patent Application Laid-open No. 2001-305077 as an image capturing device. (non-moire image) was taken. Further, a differential phase image and an absorption image were generated from the photographed interference fringe image (non-moiré image). Other than that, the state change of the IGBT power module 1 was tracked according to the energization time in the same manner as in Example 1-1.
 実施例1-6で用いた微分位相画像及び吸収画像は、実施例1-1で用いたタルボ画像と比べて画質が不鮮明であった。また、実施例1-6で用いた微分位相画像及び吸収画像からは、ボイド周辺やクラック周辺の樹脂材料の変性は追跡できなかった。これらの結果から、X線顕微鏡を用いた場合は、タルボ撮影装置を用いた場合と比べて、高精度な寿命推定ができないことが分かる。 The differential phase image and absorption image used in Example 1-6 had less clear image quality than the Talbot image used in Example 1-1. Further, from the differential phase images and absorption images used in Examples 1-6, degeneration of the resin material around voids and cracks could not be traced. From these results, it can be seen that when using an X-ray microscope, it is not possible to estimate the lifespan with higher accuracy than when using a Talbot imaging device.
 また、結像型X線顕微鏡は撮影できる領域が狭いため、実施例1-6では、広範囲の撮影に長時間がかかり、実施例1-1よりも状態変化追跡に時間がかかった。状態変化追跡に結像型X線顕微鏡を用いた場合は、寿命推定処理でも同じく結像型X線顕微鏡を用いる必要がある。そのため、状態変化追跡にX線顕微鏡を用いた場合は、タルボ撮影装置を用いた場合と比べて、寿命推定処理においても時間がかかることが分かる。 Furthermore, since the imaging X-ray microscope has a narrow imaging area, in Example 1-6, it took a long time to image a wide range, and it took more time to track state changes than in Example 1-1. If an imaging X-ray microscope is used to track state changes, it is also necessary to use the imaging X-ray microscope for life estimation processing. Therefore, it can be seen that when an X-ray microscope is used to track state changes, it takes more time to perform life estimation processing than when a Talbot imaging device is used.
<実施例2-1>
 体積が3960cc(39.6cm×20cm×5cm)、パワー密度が1000W/ccになるようにした以外は実施例1-1と同様にして、IGBTパワーモジュールを作製した。このIGBTパワーモジュールを以下IGBTパワーモジュール2とする。
<Example 2-1>
An IGBT power module was produced in the same manner as in Example 1-1 except that the volume was 3960 cc (39.6 cm x 20 cm x 5 cm) and the power density was 1000 W/cc. This IGBT power module will be referred to as an IGBT power module 2 hereinafter.
 作製したIGBTパワーモジュール2の許容電流は1200Aであり、許容電圧は3300Vであった。 The allowable current of the manufactured IGBT power module 2 was 1200A, and the allowable voltage was 3300V.
 通電の電流値を1200Aに、電圧値を3300Vに変更した以外は実施例1-1と同様にして、各通電時間でのIGBTパワーモジュール2の干渉縞画像を撮影した。 Interference fringe images of the IGBT power module 2 at each energization time were photographed in the same manner as in Example 1-1 except that the energization current value was changed to 1200A and the voltage value was changed to 3300V.
 次いで、再構成画像生成、画像補正、位置合わせ、各位置の特徴量抽出も、実施例1-1と同様に行った。 Next, reconstructed image generation, image correction, alignment, and feature quantity extraction at each position were performed in the same manner as in Example 1-1.
 これらの抽出した特徴量の値の変化から、IGBTパワーモジュール2(パワー密度1000W/cc)の状態変化としてボイドやクラックの特徴量の値の変化、ボイド周辺やクラック周辺の樹脂材料の変性、及び絶縁破壊を、通電時間に応じて追跡したところ、実施例1-1と同様の追跡を行うことができた。 From the changes in the extracted feature values, changes in the feature values of voids and cracks, denaturation of the resin material around the voids and cracks, and changes in the state of the IGBT power module 2 (power density 1000 W/cc) are determined. When dielectric breakdown was tracked according to the current application time, the same tracking as in Example 1-1 could be performed.
<実施例3-1>
 体積が2640cc(26.4cm×20cm×5cm)、パワー密度が1000W/ccになるようにした以外は実施例1-1と同様にして、IGBTパワーモジュールを作製した。このIGBTパワーモジュールを以下IGBTパワーモジュール3とする。
<Example 3-1>
An IGBT power module was produced in the same manner as in Example 1-1 except that the volume was 2640 cc (26.4 cm x 20 cm x 5 cm) and the power density was 1000 W/cc. This IGBT power module will be referred to as an IGBT power module 3 hereinafter.
 作製したIGBTパワーモジュール3の許容電流は800Aであり、許容電圧は3300Vであった。 The allowable current of the produced IGBT power module 3 was 800A, and the allowable voltage was 3300V.
 電流値を800Aに、電圧値を3300Vに変更した以外は実施例1-1と同様にして、各通電時間でのIGBTパワーモジュール3の干渉縞画像を撮影した。 Interference fringe images of the IGBT power module 3 at each energization time were photographed in the same manner as in Example 1-1 except that the current value was changed to 800 A and the voltage value was changed to 3300 V.
 次いで、再構成画像生成、画像補正、位置合わせ、各位置の特徴量抽出も、実施例1-1と同様に行った。 Next, reconstructed image generation, image correction, alignment, and feature quantity extraction at each position were performed in the same manner as in Example 1-1.
 これらの抽出した特徴量の信号の変化から、IGBTパワーモジュール3(パワー密度1000W/cc)の状態変化としてボイドやクラックの特徴量の値の変化、ボイド周辺やクラック周辺の樹脂材料の変性、及び絶縁破壊を、通電時間に応じて追跡したところ、実施例1-1と同様の追跡を行うことができた。 From the changes in the signals of these extracted feature quantities, changes in the value of the feature quantities of voids and cracks, degeneration of the resin material around the voids and cracks, and When dielectric breakdown was tracked according to the current application time, the same tracking as in Example 1-1 could be performed.
<実施例4-1>
 特許第5428545号に記載の作製例1の全固体リチウム二次電池を、体積が2.5cc(外形寸法が5cm×5cm×0.1cm)、パワー密度が2W/ccになるように作製した。
<Example 4-1>
An all-solid-state lithium secondary battery of Fabrication Example 1 described in Japanese Patent No. 5428545 was fabricated to have a volume of 2.5 cc (external dimensions: 5 cm x 5 cm x 0.1 cm) and a power density of 2 W/cc.
 作製した二次電池の許容電流は1A、許容電圧は5Vであった。 The permissible current of the produced secondary battery was 1A and the permissible voltage was 5V.
 作製した二次電池に、充放電を行い、充放電が100サイクル、500サイクル、1000サイクル、2000サイクル、5000サイクル、及び10000サイクルのときの干渉縞画像(モアレ画像)をそれぞれ撮影した。充放電条件は、特許第5428545号公報を参考に、まず100℃で12.8mA/cmの電流密度で0VまでCV放電を行い、その後、同じ条件で0V-3Vの範囲で充放電を行った。なお、充放電の1サイクルの通電時間は1時間であった。 The prepared secondary battery was charged and discharged, and interference fringe images (moiré images) were taken at 100 cycles, 500 cycles, 1000 cycles, 2000 cycles, 5000 cycles, and 10000 cycles of charging and discharging, respectively. Regarding the charging/discharging conditions, referring to Japanese Patent No. 5428545, CV discharge was first performed at 100°C with a current density of 12.8 mA/cm 2 to 0 V, and then charging and discharging was performed in the range of 0 V to 3 V under the same conditions. Ta. Note that the current application time for one cycle of charging and discharging was 1 hour.
 干渉縞画像(モアレ画像)の撮影には実施例1-1と同様のX線タルボ・ロー撮影装置を用いた。また、二次電池がないバックグラウンドの干渉縞画像(モアレ画像)も撮影した。 The same X-ray Talbot-Rho imaging device as in Example 1-1 was used to take the interference fringe image (moiré image). An interference fringe image (moiré image) of the background without the secondary battery was also taken.
 次いで、再構成画像生成、画像補正、位置合わせ、各位置の特徴量抽出も、実施例1-1と同様に行った。 Next, reconstructed image generation, image correction, alignment, and feature quantity extraction at each position were performed in the same manner as in Example 1-1.
 これらの抽出した特徴量の値の変化から、二次電池(パワー密度2W/cc)の状態変化として、正極活物質の変質を、通電時間に応じて追跡した。その結果、正極活物質の変質する様子を画像として鮮明に捉えることができ、非破壊で内部の状態変化を有効に追跡できた。 Based on the changes in the values of these extracted feature quantities, the deterioration of the positive electrode active material was tracked as a change in the state of the secondary battery (power density 2 W/cc) according to the current application time. As a result, we were able to clearly capture images of the deterioration of the cathode active material, and were able to effectively track internal state changes in a non-destructive manner.
 表I~IIIに、各実施例の構成及び評価結果を記載する。なお、画質と時間の評価は相対評価であり、◎、○、○-、△、×の順で良好(◎が最も良好)である。 Tables I to III list the configuration and evaluation results of each example. Note that the evaluation of image quality and time is a relative evaluation, and is good in the order of ◎, ○, ○-, △, and × (◎ is the best).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の実施例から、本発明の状態変化追跡方法は、電子部品のタルボ画像を用いて、電子部品の状態変化を通電時間に応じて追跡することによって、非破壊による電子部品の寿命推定を高精度かつ短時間で可能とすることが分かる。 From the above embodiments, the state change tracking method of the present invention improves the non-destructive life estimation of electronic components by tracking the state changes of electronic components according to the energization time using Talbot images of electronic components. It can be seen that this is possible with precision and in a short time.
 本発明は、非破壊による電子部品の寿命推定を高精度かつ短時間で可能とする状態変化追跡方法及び状態変化追跡システムに利用できる。 The present invention can be used for a state change tracking method and a state change tracking system that enable nondestructive life estimation of electronic components with high accuracy and in a short time.
1 タルボ撮影装置
11 放射線発生装置
11a 放射線源
112 ろ過フィルター
113 照射野絞り
114 照射野ランプ
12 線源格子(G0格子)
120 第1のカバーユニット
12a 固定部材
13 被写体台
130 第2のカバーユニット
14 第1格子(G1格子)
15 第2格子(G2格子)
16 放射線検出器
17 支柱
17a 緩衝部材
18 基台部
19 コントローラー
2 画像処理装置
20 状態変化追跡装置
21 CPU
211 画像取得部
212 画像補正部
213 位置合わせ部
214 状態変化追跡部
215 寿命推定部
22 RAM
23 記憶部
23a 第1データベース
23b 第2データベース
24 入力部
25 外部データ入力部
26 表示部
27 通信部
100 状態変化追跡システム
1 Talbot imaging device 11 Radiation generator 11a Radiation source 112 Filtration filter 113 Irradiation field aperture 114 Irradiation field lamp 12 Source grating (G0 grating)
120 First cover unit 12a Fixing member 13 Subject stage 130 Second cover unit 14 First grid (G1 grid)
15 Second lattice (G2 lattice)
16 Radiation detector 17 Support column 17a Buffer member 18 Base part 19 Controller 2 Image processing device 20 State change tracking device 21 CPU
211 Image acquisition section 212 Image correction section 213 Positioning section 214 State change tracking section 215 Life estimation section 22 RAM
23 Storage section 23a First database 23b Second database 24 Input section 25 External data input section 26 Display section 27 Communication section 100 Status change tracking system

Claims (14)

  1.  電子部品の状態変化追跡方法であって、
     前記電子部品の、タルボ撮影装置を用いて撮影された干渉縞画像又は当該干渉縞画像に基づいて生成された再構成画像である、タルボ画像を用いて、
     前記電子部品の状態変化を通電時間に応じて追跡する
     ことを特徴とする状態変化追跡方法。
    A method for tracking changes in the state of electronic components, the method comprising:
    Using a Talbot image, which is an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstructed image generated based on the interference fringe image,
    A state change tracking method, characterized in that the state change of the electronic component is tracked according to the energization time.
  2.  前記電子部品のパワー密度が、1~1000W/ccの範囲内である
     ことを特徴とする請求項1に記載の状態変化追跡方法。
    The state change tracking method according to claim 1, wherein the power density of the electronic component is within a range of 1 to 1000 W/cc.
  3.  前記電子部品の許容電流が、200~800Aの範囲内であり、かつ、許容電圧が、600~3300Vの範囲内である
     ことを特徴とする請求項1又は請求項2に記載の状態変化追跡方法。
    The state change tracking method according to claim 1 or 2, wherein the allowable current of the electronic component is within the range of 200 to 800 A, and the allowable voltage is within the range of 600 to 3,300 V. .
  4.  タルボ撮影装置を用いて前記電子部品の干渉縞画像を撮影する撮影工程を有し、
     当該撮影工程において、前記タルボ撮影装置又は前記電子部品の少なくとも一方から発生する放射線又は熱による撮影への影響を抑制しながら、前記干渉縞画像を撮影する
     ことを特徴とする請求項1に記載の状態変化追跡方法。
    a photographing step of photographing an interference fringe image of the electronic component using a Talbot photographing device,
    2. In the photographing process, the interference fringe image is photographed while suppressing the influence of radiation or heat generated from at least one of the Talbot imaging device or the electronic component on the photographing. How to track state changes.
  5.  放熱又は冷却により、前記熱による撮影への影響を抑制する
     ことを特徴とする請求項4に記載の状態変化追跡方法。
    The state change tracking method according to claim 4, wherein the influence of the heat on imaging is suppressed by heat radiation or cooling.
  6.  前記タルボ撮影装置の光源とディテクターの間に位置する格子を遮熱カバーで遮熱することにより、前記熱による撮影への影響を抑制する
     ことを特徴とする請求項4に記載の状態変化追跡方法。
    The state change tracking method according to claim 4, wherein the effect of the heat on imaging is suppressed by shielding a grid located between a light source and a detector of the Talbot imaging device with a heat shielding cover. .
  7.  前記電子部品がないバックグラウンドのタルボ画像を用いて、前記電子部品のタルボ画像を補正する
     ことを特徴とする請求項1に記載の状態変化追跡方法。
    The state change tracking method according to claim 1, wherein the Talbot image of the electronic component is corrected using a background Talbot image without the electronic component.
  8.  通電時間が0である前記電子部品のタルボ画像を用いて、通電時間が0でない前記電子部品のタルボ画像を補正する
     ことを特徴とする請求項1に記載の状態変化追跡方法。
    The state change tracking method according to claim 1, wherein the Talbot image of the electronic component whose energization time is 0 is used to correct the Talbot image of the electronic component whose energization time is not 0.
  9.  前記電子部品のタルボ画像を用いて、前記電子部品のタルボ画像と通電時間の異なる前記電子部品のタルボ画像を補正する
     ことを特徴とする請求項1に記載の状態変化追跡方法。
    The state change tracking method according to claim 1, wherein a Talbot image of the electronic component having a different energization time from the Talbot image of the electronic component is corrected using the Talbot image of the electronic component.
  10.  通電時間の異なる前記電子部品のタルボ画像を複数用いることで、前記電子部品の状態変化を通電時間に応じて追跡する
     ことを特徴とする請求項1に記載の状態変化追跡方法。
    The state change tracking method according to claim 1, wherein a change in the state of the electronic component is tracked according to the energization time by using a plurality of Talbot images of the electronic component having different energization times.
  11.  前記干渉縞画像として、モアレ画像を用いる
     ことを特徴とする請求項1に記載の状態変化追跡方法。
    The state change tracking method according to claim 1, wherein a moiré image is used as the interference fringe image.
  12.  前記タルボ画像として、前記干渉縞画像に基づいて生成された再構成画像を用いる
     ことを特徴とする請求項1に記載の状態変化追跡方法。
    The state change tracking method according to claim 1, wherein a reconstructed image generated based on the interference fringe image is used as the Talbot image.
  13.  前記再構成画像として、微分位相画像及び小角散乱画像の少なくとも一方を用い、
     前記状態変化として、欠陥周辺材料の変性を追跡する
     ことを特徴とする請求項12に記載の状態変化追跡方法。
    Using at least one of a differential phase image and a small-angle scattering image as the reconstructed image,
    The state change tracking method according to claim 12, characterized in that, as the state change, degeneration of a material surrounding the defect is tracked.
  14.  電子部品の状態変化追跡システムであって、
     前記電子部品の、タルボ撮影装置を用いて撮影された干渉縞画像又は当該干渉縞画像に基づいて生成された再構成画像である、タルボ画像を用いて、
     前記電子部品の状態変化を通電時間に応じて追跡する
     ことを特徴とする状態変化追跡システム。
    A state change tracking system for electronic components, the system comprising:
    Using a Talbot image, which is an interference fringe image of the electronic component taken using a Talbot imaging device or a reconstructed image generated based on the interference fringe image,
    A state change tracking system, characterized in that the state change of the electronic component is tracked according to the energization time.
PCT/JP2023/013645 2022-04-19 2023-03-31 State change tracing method and state change tracing system WO2023203994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-068574 2022-04-19
JP2022068574 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023203994A1 true WO2023203994A1 (en) 2023-10-26

Family

ID=88419647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013645 WO2023203994A1 (en) 2022-04-19 2023-03-31 State change tracing method and state change tracing system

Country Status (2)

Country Link
TW (1) TW202407335A (en)
WO (1) WO2023203994A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200212A (en) * 1997-01-13 1998-07-31 Toshiba Corp Semiconductor light-emitting element, and its manufacture
JP2001305077A (en) * 2000-02-14 2001-10-31 Leica Microsystems Lithography Gmbh Method of inspecting structure on semiconductor substrate
JP2012021942A (en) * 2010-07-16 2012-02-02 Toyota Industries Corp Radiation inspection device of joint, radiation inspection method of joint, and production device of electronic component
JP5831614B2 (en) * 2014-11-18 2015-12-09 コニカミノルタ株式会社 X-ray imaging system
JP2016048751A (en) * 2014-08-28 2016-04-07 三菱電機株式会社 Semiconductor device and inspection method of the same
JP2019100861A (en) * 2017-12-04 2019-06-24 コニカミノルタ株式会社 X-ray imaging system
JP2019100860A (en) * 2017-12-04 2019-06-24 コニカミノルタ株式会社 X-ray imaging system
JP2020187088A (en) * 2019-05-17 2020-11-19 コニカミノルタ株式会社 Inspection device and method for generating image
JP2021150560A (en) * 2020-03-23 2021-09-27 パナソニックIpマネジメント株式会社 Mounting board manufacturing system and mounting board manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200212A (en) * 1997-01-13 1998-07-31 Toshiba Corp Semiconductor light-emitting element, and its manufacture
JP2001305077A (en) * 2000-02-14 2001-10-31 Leica Microsystems Lithography Gmbh Method of inspecting structure on semiconductor substrate
JP2012021942A (en) * 2010-07-16 2012-02-02 Toyota Industries Corp Radiation inspection device of joint, radiation inspection method of joint, and production device of electronic component
JP2016048751A (en) * 2014-08-28 2016-04-07 三菱電機株式会社 Semiconductor device and inspection method of the same
JP5831614B2 (en) * 2014-11-18 2015-12-09 コニカミノルタ株式会社 X-ray imaging system
JP2019100861A (en) * 2017-12-04 2019-06-24 コニカミノルタ株式会社 X-ray imaging system
JP2019100860A (en) * 2017-12-04 2019-06-24 コニカミノルタ株式会社 X-ray imaging system
JP2020187088A (en) * 2019-05-17 2020-11-19 コニカミノルタ株式会社 Inspection device and method for generating image
JP2021150560A (en) * 2020-03-23 2021-09-27 パナソニックIpマネジメント株式会社 Mounting board manufacturing system and mounting board manufacturing method

Also Published As

Publication number Publication date
TW202407335A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
US10140697B2 (en) Radiation imaging system and image processing device
KR20170009909A (en) X-ray method for measurement, characterization, and analysis of periodic structures
KR102094573B1 (en) Method and system for adaptively scanning a sample during electron beam inspection
JP6187298B2 (en) X-ray imaging system and image processing method
WO2016104557A1 (en) X-ray diagnostic imaging device, monitoring server, and anomaly detection method
CN106290414B (en) A kind of X-ray grating phase contrast imaging device and imaging method
Butler et al. Spatial response of synthetic microDiamond and diode detectors measured with kilovoltage synchrotron radiation
Sun et al. A reference sample for investigating the stability of the imaging system of x-ray computed tomography
JP7452722B2 (en) Inspection device and image generation method
JP2015021784A (en) Two-dimensional image detection system
CN103037607A (en) Method and device for determining the wear of an X-ray anode
JP6686939B2 (en) X-ray inspection device
WO2023203994A1 (en) State change tracing method and state change tracing system
KR20230142591A (en) High-resolution X-ray spectroscopy surface material analysis
JP6643271B2 (en) X-ray inspection equipment
Padgett et al. Assessment of the effects of pixel loss on image quality in direct digital radiography
Flay An investigation of the factors associated with the X-ray tube and their influence on dimensional measurement in micro-focus cane-beam industrial X-ray computed tomography systems
Welkenhuyzen et al. Accuracy study of a 450 kV CT system with a calibrated test object
Tian et al. A new physical model for life time prediction of Pb-free solder joints in electromigration tests
Kim et al. Inter-plane artifact suppression in tomosynthesis using 3D CT image data
Farrier et al. High energy micron scale pixel hybrid detector
Chen et al. Research on temperature measurement by X-ray transmission intensity
Zhang et al. THERMAL analysis of high-power x-ray target: scaling effects
JP6253299B2 (en) X-ray tube apparatus and X-ray imaging apparatus
Moock et al. Photothermal effect in X-ray images for computed tomography of metallic parts: Stainless steel spheres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024516162

Country of ref document: JP

Kind code of ref document: A