WO2023203984A1 - 情報処理システム、調整方法、およびプログラム - Google Patents

情報処理システム、調整方法、およびプログラム Download PDF

Info

Publication number
WO2023203984A1
WO2023203984A1 PCT/JP2023/013119 JP2023013119W WO2023203984A1 WO 2023203984 A1 WO2023203984 A1 WO 2023203984A1 JP 2023013119 W JP2023013119 W JP 2023013119W WO 2023203984 A1 WO2023203984 A1 WO 2023203984A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
joint
display device
area
led display
Prior art date
Application number
PCT/JP2023/013119
Other languages
English (en)
French (fr)
Inventor
敏洋 白石
博 小寺
貴之 堀田
幸則 濱田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023203984A1 publication Critical patent/WO2023203984A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information

Definitions

  • the present disclosure relates to an information processing system, an adjustment method, and a program, and particularly relates to an information processing system, an adjustment method, and a program that can display higher quality images.
  • Patent Document 1 discloses a driving device that can suppress band-like brightness unevenness in an image obtained by photographing an LED display with a camera.
  • An information processing system is based on an image obtained by photographing an LED display device in which a plurality of LED modules are arranged in a tile shape.
  • a contrast measurement unit that measures the brightness of a joint area including a boundary between modules and a background area outside the joint area, and measures the contrast of the joint area with respect to the background area;
  • a joint correction value calculation unit that calculates a joint correction value for adjusting the brightness at the boundary between the LED modules.
  • an adjustment method based on an image obtained by photographing an LED display device configured by a plurality of LED modules arranged in a tile shape, Measuring the brightness of a joint area including the boundary between adjacent LED modules and a background area outside the joint area, measuring the contrast of the joint area with respect to the background area, and applying the contrast measurement result to the joint area. Based on this, a process including calculating a joint correction value for adjusting the brightness at the boundary between the LED modules is performed.
  • a program allows a computer of an information processing system to capture an image of an LED display device configured by arranging a plurality of LED modules in a tile shape. measuring the brightness of a joint area including a boundary between the LED modules adjacent to each other and a background area outside the joint area, and measuring the contrast of the joint area with respect to the background area; and the measurement result of the contrast. Based on this, a process including calculating a joint correction value for adjusting the brightness at the boundary between the LED modules is executed.
  • boundaries between adjacent LED modules in an LED display device are determined based on an image obtained by photographing an LED display device in which a plurality of LED modules are arranged in a tile shape.
  • the brightness of the joint area containing the joint area and the background area outside the joint area is measured, the contrast of the joint area with respect to the background area is measured, and the brightness at the boundary between the LED modules is adjusted based on the contrast measurement result.
  • a correction value is calculated.
  • FIG. 1 is a diagram illustrating a configuration example of an embodiment of a display system to which the present technology is applied.
  • FIG. 2 is a block diagram illustrating a configuration example of an LED display adjustment processing section.
  • FIG. 3 is a diagram illustrating an adjustment target range and measurement markers.
  • FIG. 6 is a diagram illustrating a display example of a camera positioning processing screen. It is a figure explaining external light removal processing.
  • FIG. 3 is a diagram illustrating how joints become noticeable in an LED display device. It is a figure explaining detection of joint coordinates. It is a figure explaining detection of a measurement area. It is a figure explaining the joint area and the background area in a measurement area.
  • FIG. 3 is a diagram illustrating a signal level at which the contrast becomes 0.
  • FIG. 7 is a diagram showing a first display example of a uniformity adjustment processing screen in an OK state. It is a figure which shows the 2nd example of a display of the uniformity adjustment process screen in an NG state. It is a figure which shows the 2nd example of a display of the uniformity adjustment process screen in an OK state.
  • FIG. 2 is a diagram illustrating a posture estimation method for estimating the posture of a camera.
  • FIG. 3 is a diagram illustrating an external light reflection removal process.
  • FIG. 3 is a diagram illustrating a change in illuminance of external light reflected on an LED display device.
  • FIG. 3 is a diagram illustrating overlap photography.
  • FIG. 6 is a diagram illustrating a difference in brightness that occurs at the boundary with the cabinet.
  • FIG. 6 is a diagram illustrating a uniformity adjustment process for an adjustment target range that is being adjusted, which is performed based on an adjusted adjustment target range. It is a figure explaining an LED calibration table. It is a figure explaining the curve information of a round-shaped LED display device.
  • FIG. 3 is a diagram illustrating an external light reflection removal process.
  • FIG. 3 is a diagram illustrating a change in illuminance of external light reflected on an LED display device.
  • FIG. 3 is a diagram illustrating overlap photography.
  • FIG. 6 is a diagram illustrating
  • FIG. 3 is a diagram illustrating positioning of a camera with respect to a round shape. It is a figure explaining the uniformity adjustment process with respect to a round shape. It is a figure explaining viewing point mode.
  • 1 is a block diagram showing a configuration example of an embodiment of a computer to which the present technology is applied.
  • FIG. 1 is a diagram illustrating a configuration example of an embodiment of a display system to which the present technology is applied.
  • the display system 11 includes an LED display device 12, a camera 13, an information processing device 14, and a display controller 15.
  • the LED display device 12 is composed of a plurality of LED modules 21 arranged in a tile shape, and the LED modules 21 can display an image up to the edge of the surface. Therefore, by installing adjacent LED modules 21 without any gaps between them, the LED display device 12 can display an image as a whole in which no physical joints appear at the boundaries between the LED modules 21. I can do it.
  • a process for adjusting the brightness (hereinafter referred to as a joint adjustment processing section) is performed in order to avoid the joints of the LED display device 12 from becoming conspicuous. Further, in the display system 11, a process of adjusting the brightness (hereinafter referred to as a uniformity adjustment process) is performed in order to display an image having uniformity as a whole of the LED display device 12.
  • the camera 13 is installed in front of the LED display device 12, and photographs the LED display device 12 under the control of the information processing device 14 when the joint adjustment processing section and uniformity adjustment processing are performed.
  • the information processing device 14 can use, for example, a personal computer, and performs joint adjustment processing and uniformity adjustment processing on the LED display device 12 using an image of the LED display device 12 taken by the camera 13. Run the adjustment software.
  • the information processing device 14 outputs various instructions, commands, setting values, etc. to the display controller 15.
  • the information processing device 14 may also serve as a personal computer that executes control software that controls the display controller 15, or in addition to the information processing device 14, a personal computer that executes control software may also be used. You can prepare it.
  • the display controller 15 divides a frame-by-frame video signal supplied from a video server (not shown) according to the positions of the plurality of LED modules 21 included in the LED display device 12, and controls light emission for each LED module 21. conduct. Further, the display controller 15 controls the light emission of the measurement area 26 (FIG. 8), the marker 29 (FIG. 14), etc. according to instructions from the information processing device 14, and supplies setting values and the like to the LED display device 12, for example. or Note that the display system 11 may be configured by incorporating (integrating) the display controller 15 into the LED display device 12.
  • the display system 11 is configured in this way, and when the LED display device 12 is installed or the LED module 21 is maintained or replaced, the worker who performs these operations can execute the joint adjustment processing section and the uniformity adjustment processing. I can do it. Thereby, the display system 11 can display higher quality images on the LED display device 12.
  • FIG. 2 is a block diagram showing a configuration example of the information processing device 14.
  • the information processing device 14 includes a display control section 31, a camera control section 32, a screen display control section 33, and an LED display adjustment processing section 34.
  • the display control unit 31 can control the display of the LED display device 12 according to instructions from the LED display adjustment processing unit 34.
  • the camera control unit 32 controls photographing by the camera 13 according to instructions from the LED display adjustment processing unit 34, acquires an image of the LED display device 12 taken by the camera 13, and supplies it to the LED display adjustment processing unit 34.
  • the screen display control unit 33 controls the screen display on the display unit of the information processing device 14 according to instructions from the LED display adjustment processing unit 34.
  • the screen display control unit 33 displays a camera positioning processing screen 71 shown in FIG. 4 described later, a joint adjustment processing screen 81 shown in FIGS. 11 and 12 described later, and a uniformity adjustment processing screen shown in FIGS. 15 to 18 described later. Controls the display of 91, etc.
  • the LED display adjustment processing unit 34 includes a camera positioning processing unit 41, an external light removal processing unit 42, a joint adjustment processing unit 43, and a uniformity adjustment processing unit 44.
  • the camera positioning processing unit 41 performs camera positioning processing to accurately install the camera 13 at a position in front of the LED display device 12 and at the center of the adjustment target range 22 (FIG. 3).
  • the external light removal processing unit 42 performs external light removal processing to remove the influence of external light when photographing the LED display device 12 with the camera 13.
  • the joint adjustment processing unit 43 performs joint adjustment processing based on an image obtained by photographing the LED display device 12, and includes a joint coordinate detection unit 51, a measurement area detection unit 52, a contrast measurement unit 53, and a joint correction value calculation unit 54. , and a joint correction value setting section 55.
  • the joint coordinate detection unit 51 detects the joint coordinates on the image captured by the camera 13 of the LED display device 12 in the joint adjustment process.
  • the measurement area detection unit 52 detects the measurement area 26 (FIG. 8) on the image captured by the camera 13 of the LED display device 12.
  • the contrast measurement unit 53 measures the brightness of the joint area 27 (FIG. 9) and the background area 28 (FIG. 9) of the measurement area 26 on the image taken by the camera 13 of the LED display device 12. Then, the contrast of the joint area 27 with respect to the background area 28 is measured.
  • the joint correction value calculation unit 54 calculates a joint correction value based on the contrast measurement result of the measurement area 26 by the contrast measurement unit 53.
  • the joint correction value setting unit 55 writes the joint correction value appropriately determined by the joint correction value calculation unit 54 into the storage unit of the LED display device 12, and stores it in a register or a rewritable nonvolatile memory, for example. and set the joint correction value.
  • the uniformity adjustment processing unit 44 performs uniformity adjustment processing based on an image obtained by photographing the LED display device 12, and includes a marker display unit 61, a monochrome display unit 62, a brightness data calculation unit 63, a uniformity correction value calculation unit 64, and a uniformity correction value setting section 65.
  • the marker display unit 61 detects the marker 29 (FIG. 14) on the image captured by the camera 13 of the LED display device 12.
  • the monochrome display unit 62 causes the LED display device 12 to display a monochrome red image, a monochrome green image, and a monochrome blue image, and captures a photo of the LED display device 12 displaying these monochrome images.
  • the two images are acquired and supplied to the brightness data calculation unit 63.
  • the individual LED elements of the LED display device 12 can express a variety of colors by adjusting the brightness of a plurality of emitted colors (for example, the three primary colors of red, green, and blue), and the monochrome display section 62 can display a variety of colors. , causes the LED display device 12 to display a monochromatic image corresponding to those emitted colors.
  • the brightness data calculation unit 63 calculates brightness data of the area of the marker 29 in three images taken of the LED display device 12 displaying a red monochrome image, a green monochrome image, and a blue monochrome image. calculate.
  • the uniformity correction value calculation unit 64 calculates the uniformity correction value for each color by comparing the reference brightness data for each color with the brightness data for each color calculated by the brightness data calculation unit 63. Calculate.
  • the uniformity correction value setting unit 65 writes the uniformity correction value for each color appropriately determined by the uniformity correction value calculation unit 64 into the register or rewritable nonvolatile memory of the LED display device 12, Set the uniformity correction value for each color.
  • the camera 13 when performing joint adjustment processing and uniformity adjustment processing using images taken by the camera 13, the camera 13 is installed accurately in the center of the LED module 21, which is the adjustment target range of the LED display device 12. There is a need to.
  • the display system 11 in addition to setting the entire LED display device 12, that is, all the LED modules 21 as the adjustment target range, an arbitrary number of LED modules 21 can be set as the adjustment target range.
  • the LED display device 12 is composed of LED modules 21 (1, 1) to 21 (6, 12) arranged in a tile shape so that the length x width is 6 x 12. , the range surrounded by broken lines is set as the adjustment target range 22. That is, in the example shown in FIG. (5, 2) to 21 (5, 7) are set as the adjustment target range 22.
  • the worker temporarily installs the camera 13 at a position in front of the LED display device 12 and at the center of the adjustment target range 22. Then, when the operator operates the information processing device 14 to designate the adjustment target range 22, the camera positioning processing unit 41 receives the designation of the adjustment target range 22, and based on the specified adjustment target range 22. and execute camera positioning processing.
  • the camera positioning processing unit 41 instructs the display control unit 31 to display positioning markers 23-1 to 23-4 at the four corners of the adjustment target range 22.
  • the display control unit 31 displays the positioning marker 23-1 at the lower left corner of the LED module 21 (3, 2), and displays the positioning marker 23-1 at the lower right corner of the LED module 21 (3, 7).
  • a positioning marker 23-3 is displayed on the upper left corner of the LED module 21 (5, 2)
  • a positioning marker 23-4 is displayed on the upper right corner of the LED module 21 (5, 7).
  • the LED display device 12 is controlled.
  • the camera positioning processing section 41 instructs the camera control section 32 so that the LED display device 12 is photographed by the camera 13, and the camera control section 32 controls the camera 13.
  • the camera control section 32 acquires the image and supplies it to the camera positioning processing section 41.
  • the camera positioning processing unit 41 can acquire the position coordinate data of the positioning markers 23-1 to 23-4 on the image photographed by the camera 13.
  • the camera positioning processing section 41 instructs the screen display control section 33 to display a camera positioning processing screen 71 as shown in FIG. control the display of the section.
  • the camera positioning processing screen 71 is provided with an image display area 72, an angle adjustment display area 73, and a position adjustment display area 74.
  • the image display area 72 includes an image taken by the camera 13 of the LED display device 12, that is, an image of the LED display device 12 displaying positioning markers 23-1 to 23-4 at the four corners of the adjustment target range 22. is displayed. In the example shown in FIG. 4, the positions of the positioning markers 23-1 to 23-4 on the image taken by the camera 13 are shown in the image display area 72.
  • the angle adjustment display area 73 adjusts the angle (Pan, Tilt, Roll) of the camera 13 in order to match the positioning markers 23-1 to 23-4 on the image with the reference position coordinate data of the target marker.
  • the angle adjustment amount is shown. Furthermore, an icon is displayed next to each angle adjustment amount so that the operator can easily understand the direction in which the camera 13 should be moved according to the angle adjustment amount.
  • the position adjustment display area 74 displays the position of the camera 13 (X direction, Y direction, Z direction) in order to match the positioning markers 23-1 to 23-4 on the image with the reference position coordinate data of the target marker. ) is shown. Further, next to each position adjustment amount, an icon is displayed so that the operator can easily understand the direction in which the camera 13 should be moved according to the position adjustment amount.
  • the four corners of each LED module 21 are set as target marker positions, and the reference position coordinate data is simulated at which position on the image actually photographed by the camera 13. things are done. That is, with the four corners of each LED module 21 lit, the camera 13 actually takes a picture. Thereby, the camera positioning processing unit 41 can obtain in advance, as reference information, the reference position coordinate data of the target marker on the image taken with the four corners of each LED module 21 lit. .
  • the camera positioning processing unit 41 uses the reference position coordinate data corresponding to the positioning markers 23-1 to 23-4 in the reference information and the positioning markers 23-1 to 23- in the image acquired by the camera positioning process.
  • the angle adjustment amount and the position adjustment amount can be determined by comparing the position coordinate data of No. 4 and calculating the deviation thereof.
  • the operator can adjust the angle and position of the camera 13 according to the angle adjustment amount displayed in the angle adjustment display area 73 and the position adjustment amount displayed in the position adjustment display area 74, thereby adjusting the LED display.
  • the camera 13 can be accurately installed at the front of the device 12 and at the center of the adjustment target range 22.
  • the external light removal processing section 42 needs to perform an external light removal process.
  • B of FIG. 13 instructs the camera control unit 32 to photograph the LED display device 12.
  • B in FIG. 5 shows a state in which a white image is displayed on the entire surface of the LED display device 12.
  • the external light removal processing unit 42 performs a calculation to subtract the image taken with the black image displayed from the image taken with the white image displayed, thereby obtaining D in FIG. As shown, an image in which only the white image of the LED display device 12 remains can be obtained.
  • the external light removal processing unit 42 limits the area corresponding to the white image of the LED display device 12 on this image as a processing target range when performing joint adjustment processing and uniformity adjustment processing. Thereby, even if the illumination device 16 is placed in the photographing range photographed by the camera 13, the influence of the illumination device 16 can be removed and the joint adjustment process and the uniformity adjustment process can be performed.
  • the external light removal process can be performed by displaying a white image in the adjustment target range 22 or by displaying an image of a predetermined color other than black. Furthermore, in the external light removal process, a black image may be displayed on the entire surface of the LED display device 12, or the entire surface of the LED display device 12 may be in a state where the light is turned off.
  • FIG. 6 shows a 3 ⁇ 6 array of LED modules 21 set as the adjustment target range 22 as described with reference to FIG. 3. Further, in FIG. 6, the boundary portions between the four LED modules 21a to 21d arranged in a 2 ⁇ 2 matrix are shown in an enlarged manner. Moreover, in FIG. 6, the boundaries between the LED modules 21 that are arranged adjacent to each other are illustrated with broken lines.
  • a plurality of LED pixels 24 are arranged in a matrix at equal intervals D in the X direction and the Y direction, respectively.
  • the external shape of the LED module 21 is formed such that the boundary interval Dy between the arranged LED pixels 24 matches the interval D.
  • the boundary interval Dx or the boundary interval Dy may not match the interval D during installation of the LED display device 12 or maintenance/replacement of the LED module 21.
  • the boundary interval Dx becomes narrower than the interval D
  • the area along the boundary between the LED modules 21 arranged adjacent to each other in the left and right direction will have higher brightness than other areas.
  • the joint becomes noticeable in the area along the boundary.
  • the boundary interval Dx becomes wider than the interval D
  • the boundary between the LED modules 21 arranged adjacent to each other in the left and right direction will have lower brightness than other areas.
  • the joint becomes noticeable in the area along the boundary.
  • the boundary interval Dy becomes narrower than the interval D
  • the boundary interval Dy becomes wider than the interval D
  • the boundary between LED modules 21 arranged adjacent to each other in the vertical direction The joints will be noticeable in the area along the .
  • the joint adjustment processing unit 43 performs joint adjustment processing to adjust the brightness so as to eliminate the conspicuous joints at the boundaries between the LED modules 21 arranged adjacent to each other. be able to.
  • the joint coordinate detection unit 51 detects the joint coordinates on the LED display device 12 on the image photographed by the camera 13.
  • FIG. 7 shows a 3 ⁇ 6 array of LED modules 21 set as the adjustment target range 22, and four LED modules arranged in a 2 ⁇ 2 matrix. The boundary portions between the LED modules 21a to 21d are shown enlarged.
  • the joint coordinate detection unit 51 detects the second row and second column of the plurality of LED pixels 24 arranged in a matrix, which are arranged across the boundary between the LED modules 21.
  • the display controller 31 is instructed to cause the LED pixels 24 to turn on in white and to turn off the other LED pixels 24.
  • a region where two rows and two columns of LED pixels 24 arranged across the boundary between the LED modules 21 are provided will be referred to as a hatch region 25.
  • the display control unit 31 controls the LED display device 12
  • the LED display device 12 lights up the LED pixels 24 in the hatch area 25 in white and turns off the other LED pixels 24.
  • the joint coordinate detection unit 51 instructs the camera control unit 32 to have the camera 13 photograph the LED display device 12.
  • the camera control unit 32 controls the camera 13 in response to this, the camera 13 photographs the LED display device 12 in a state where the LED pixels 24 in the hatch area 25 are lit in white.
  • the camera control unit 32 acquires the image and supplies it to the joint coordinate detection unit 51.
  • the joint coordinate detection unit 51 detects the joint coordinates of the LED display device 12 on the image. can be detected. Then, the joint coordinate detection unit 51 notifies the contrast measurement unit 53 of the joint coordinates in the LED display device 12 on the image photographed by the camera 13.
  • the measurement area detection unit 52 detects the measurement area on the LED display device 12 on the image taken by the camera 13.
  • the measurement area detection unit 52 provides the measurement area 26 near both ends of the boundary between the LED modules 21 arranged adjacent to each other, and the LED pixels 24 of the measurement area 26 light up in white. Then, the display controller 31 is instructed to turn off the LED pixels 24 other than the measurement area 26. In response to this, when the display control unit 31 controls the LED display device 12, the LED display device 12 lights up the LED pixels 24 in the measurement area 26 in white, and turns off the LED pixels 24 other than the measurement area 26.
  • the measurement area detection unit 52 detects the measurement area 26 of the LED display device 12 on the image. can be detected. Then, the measurement area detection unit 52 notifies the contrast measurement unit 53 of the measurement area 26 in the LED display device 12 on the image photographed by the camera 13.
  • a measurement area 26-5 is provided near the lower end of the boundary between the LED module 21a and the LED module 21d
  • a measurement area 26-6 is provided near the upper end of the boundary between the LED module 21a and the LED module 21d. Therefore, in the measurement area 26-5 and the measurement area 26-6, contrast measurement is performed to obtain a joint correction value at the boundary between the LED module 21a and the LED module 21d.
  • a measurement area 26-7 is provided near the left end of the boundary between the LED module 21a and the LED module 21e, and a measurement area 26-8 is provided near the right end of the border between the LED module 21a and the LED module 21e. Therefore, in the measurement area 26-7 and the measurement area 26-8, contrast measurement is performed to obtain a joint correction value at the boundary between the LED module 21a and the LED module 21e.
  • FIG. 9 shows an example in which a 30 ⁇ 30 array of LED pixels 24 arranged in a matrix is set as the measurement area 26, and the boundaries between the LED modules 21 arranged adjacent to each other are indicated by broken lines. Illustrated. Although FIG. 9 describes the measurement of contrast in the measurement area 26 where the boundaries between the LED modules 21 are oriented in the horizontal direction, the contrast is similarly measured in the measurement area 26 where the boundaries between the LED modules 21 are oriented in the vertical direction. can be measured.
  • an area where two rows of LED pixels 24 arranged across the boundary between the LED modules 21 are provided is defined as a joint area 27, and an area other than the joint area 27 is defined as a background area 28. That is, the background area 28 is an area where the LED pixels 24 arranged in a 30 ⁇ 14 array above the joint area 27 and the LED pixels 24 arranged in a 30 ⁇ 14 array below the joint area 27 are provided.
  • the contrast measurement unit 53 instructs the display control unit 31 to display a green monochrome screen in the adjustment target range 22 of the LED display device 12. Accordingly, when the display control unit 31 controls the LED display device 12, the LED display device 12 displays a green monochrome screen in the adjustment target range 22. Note that a monochrome screen other than green, for example, a monochrome white screen may be used.
  • the contrast measurement unit 53 instructs the camera control unit 32 to photograph the LED display device 12 with the camera 13.
  • the camera control unit 32 controls the camera 13 in response to this, the camera 13 photographs the LED display device 12 in a state where a green monochrome screen is displayed in the adjustment target range 22.
  • the camera control section 32 acquires the image and supplies it to the contrast measurement section 53.
  • the contrast measurement unit 53 is notified of the joint coordinates in the LED display device 12 on the image taken by the camera 13 from the joint coordinate detection unit 51. Furthermore, the contrast measurement unit 53 is notified of the measurement area 26 in the LED display device 12 on the image photographed by the camera 13 from the measurement area detection unit 52 . Therefore, the contrast measurement unit 53 can measure the brightness of each of the joint area 27 and the background area 28 of the measurement area 26 on the image of the LED display device 12 with a green monochrome screen displayed in the adjustment target range 22. can.
  • the joint area 27 is an area corresponding to the measurement area 26 and the joint coordinates
  • the contrast measurement unit 53 uses the green brightness component in that area as the brightness of the joint area 27.
  • the background area 28 is an area corresponding to the measurement area 26 and a region other than the joint coordinates, and the contrast measurement unit 53 calculates the green brightness component in that area by calculating the brightness component of the background area 28. Measure as.
  • the contrast measurement unit 53 increases the brightness of the hatch area 25 by +10%, +5%, 0%, -5%, and -10%.
  • the display control unit 31 is instructed to change the value to %. In response to this, the display control unit 31 controls the LED display device 12.
  • the contrast measurement unit 53 instructs the camera control unit 32 to cause the camera 13 to photograph the LED display device 12 every time the brightness of the hatch area 25 changes.
  • the camera control unit 32 controls the camera 13.
  • the contrast measurement unit 53 determines that the brightness of the hatch area 25 is +10%, +5%, 0%, -5%, and -10%. It is possible to obtain five images with each state of %. Then, the contrast measurement section 53 measures the contrast of the measurement area 26 based on these five images as described above, and supplies the measurement result to the joint correction value calculation section 54.
  • the joint correction value calculation unit 54 calculates the contrast measurement result of the measurement area 26 when the brightness of the hatch area 25 is +10%, and the measurement result of the contrast of the measurement area 26 when the brightness of the hatch area 25 is +5%.
  • the contrast measurement result of the measurement area 26 when the brightness of the hatch area 25 is 0%
  • the measurement result of the contrast of the measurement area 26 when the brightness of the hatch area 25 is -5%
  • the hatch Linear interpolation is performed on the contrast measurement result of the measurement area 26 when the brightness of the area 25 is ⁇ 10%
  • the brightness of the hatched area 25 where the contrast becomes 0 is determined. That is, when the brightness of the hatched area 25 is as indicated by the white arrow in FIG. 10, the contrast of the measurement area 26 is zero.
  • the joint correction value calculation unit 54 can calculate the signal level corresponding to the brightness of the hatch area 25 where the contrast becomes 0 as the joint correction value. That is, by correcting the brightness of the LED pixels 24 in two rows or columns arranged across the boundary between the LED modules 21 according to the joint correction value, it is possible to avoid the joint from becoming noticeable at that location. Then, the joint correction value calculation unit 54 similarly calculates joint correction values for the boundaries between all the LED modules 21 within the adjustment target range 22.
  • the joint correction value calculation unit 54 supplies the calculated joint correction value to the joint correction value setting unit 55, and the joint correction value setting unit 55 writes and sets the joint correction value in the register of the LED display device 12. do.
  • the joint correction value calculation unit 54 displays a green monochrome screen in the adjustment target range 22 of the LED display device 12, two rows or two columns arranged across the boundaries between the respective LED modules 21 are displayed. Correction according to the joint correction value is applied to the brightness of the LED pixel 24. That is, with the brightness of two rows or two columns of LED pixels 24 arranged across the boundaries between the respective LED modules 21 being corrected according to the joint correction value, a green color is displayed in the adjustment target range 22 of the LED display device 12. A monochrome screen appears.
  • the contrast measurement results of all measurement area detection units 52 are 0. That is, as described above, the contrast of the measurement area 26 is calculated from five images in which the brightness of the hatch area 25 is +10%, +5%, 0%, -5%, and -10%, respectively.
  • the contrast of the measurement area 26 is 0. In this way, it can be confirmed that the joint adjustment process has been performed appropriately.
  • the joint correction value calculation unit 54 supplies the appropriately determined joint correction value to the joint correction value setting unit 55.
  • the joint correction value setting unit 55 writes the joint correction value supplied from the joint correction value calculation unit 54 into the rewritable nonvolatile memory of the LED display device 12, so that the joint becomes noticeable when the LED display device 12 is used. The brightness at the boundary between the LED modules 21 is corrected to prevent this.
  • the joint correction value calculation unit 54 calculates the joint correction value by changing the brightness of an area other than the hatch area 25 (for example, the background area 28).
  • the hatch area 25 may be a predetermined area of LED pixels 24 including two rows or two columns of LED pixels 24 arranged across the boundaries between the LED modules 21, for example, four rows or four columns of LED pixels 24.
  • the area of the pixel 24 may be the hatch area 25.
  • the measurement area 26 is not limited to a rectangle as shown in FIG. 9, but may have any shape as long as it includes the boundaries between the LED modules 21.
  • the joint adjustment processing screen will be described with reference to FIGS. 11 and 12.
  • FIG. 11 shows a joint adjustment processing screen 81 in an NG state where the joint adjustment processing is not properly performed, and the joint adjustment processing screen 81 is provided with a joint condition display area 82.
  • the boundaries between the LED modules 21 in the LED display device 12 are shown with thin lines, and the contrast of the boundary where the joints are conspicuous, that is, the measurement area 26 is 0.
  • a thick line (guide display) is displayed to indicate that the boundary is not a boundary.
  • FIG. 12 shows the joint adjustment processing screen 81 in an OK state where the joint adjustment processing has been appropriately performed.
  • the boundaries between the LED modules 21 in the LED display device 12 displayed in the joint status display area 82 are all indicated by thin lines, indicating that there are no boundaries where joints are noticeable. There is.
  • step S11 the camera positioning processing unit 41 performs the camera positioning process as described above with reference to FIGS. 3 and 4, displays the camera positioning process screen 71, and displays the angle adjustment amount in the angle adjustment display area 73. and displays the position adjustment amount in the position adjustment display area 74.
  • the operator adjusts the angle and position of the camera 13 according to the angle adjustment amount and the position adjustment amount, so that the camera 13 is positioned in front of the LED display device 12 and at the center of the adjustment target range 22. Install accurately.
  • step S12 the external light removal processing unit 42 performs external light removal processing to remove the influence of external light as described above with reference to FIG. Limit the scope.
  • step S13 pre-correction photography is performed.
  • the LED pixels 24 of the hatch area 25 are illuminated in white, and as described above with reference to FIG. 8, the LED pixels 24 of the measurement area 26 are Photographing with the screen lit in white, and photography with changing the brightness of the hatch area 25 while displaying a green monochromatic screen in the adjustment target range 22 of the LED display device 12 as described above with reference to FIG. will be held. Therefore, by performing the pre-correction photography, the joint correction value calculation unit 54 calculates the measurement area when the brightness of the hatch area 25 is +10%, +5%, 0%, -5%, and -10%, respectively. 26 contrast measurement results are obtained.
  • step S14 the joint correction value calculation unit 54 performs linear interpolation on the contrast measurement results obtained in the pre-correction photography in step S13, as described above with reference to FIG. Find the brightness of 25. Then, the joint correction value calculation unit 54 calculates a signal level corresponding to the brightness of the hatch area 25 where the contrast becomes 0 as a joint correction value.
  • step S15 the joint correction value setting unit 55 writes and sets the joint correction value calculated by the joint correction value calculation unit 54 in step S14 to the rewritable nonvolatile memory of the LED display device 12.
  • step S16 post-correction photography is performed.
  • the brightness of the LED pixels 24 in two rows or columns arranged across the boundaries between the respective LED modules 21 is corrected based on the joint correction value, and the LED display A green monochrome screen is displayed in the adjustment target range 22 of the device 12.
  • photography is performed while displaying a green monochrome screen in the adjustment target range 22 of the LED display device 12 while changing the brightness of the hatch area 25. Therefore, by performing post-correction photography, the joint correction value calculation unit 54 calculates that the brightness of the hatch area 25 is +10%, +5%, 0%, -5% with the correction based on the joint correction value applied. , and ⁇ 10%, respectively, to obtain the measurement results of the contrast of the measurement area 26. Furthermore, a joint adjustment processing screen 81 is displayed based on the contrast measurement results.
  • step S17 it is determined whether readjustment by manual adjustment is necessary. For example, the operator visually confirms the state in which the correction based on the joint correction value has been applied, and checks the thick line (i.e., the boundary where the joint is conspicuous) displayed in the joint status display area 82 of the joint adjustment processing screen 81. Based on this, it is determined whether manual adjustment is necessary.
  • the thick line i.e., the boundary where the joint is conspicuous
  • step S17 if it is determined that readjustment by manual adjustment is necessary, the process proceeds to step S18, and joint adjustment is performed using the same manual adjustment method as in the past. In this case, the joint correction value according to the manual adjustment is supplied to the joint correction value setting section 55. Note that instead of performing manual adjustment, the adjustment processing in steps S13 to S16 may be performed again. For example, a GUI (Graphical User Interface) for instructing execution of the readjustment process can be displayed on the joint adjustment process screen 81 to allow the operator to select manual adjustment or readjustment process.
  • GUI Graphic User Interface
  • step S19 the joint correction value setting unit 55 writes the joint correction value manually adjusted or readjusted in step S18 to the rewritable nonvolatile memory of the LED display device 12, and then the process is ended.
  • step S17 if it is determined in step S17 that readjustment by manual adjustment is not necessary, the joint correction value has been written in step S15, and the process is ended.
  • the camera 13 By performing the joint adjustment process as described above, the camera 13 can be easily installed, and the joint coordinates and measurement area 26 can be automatically detected by performing image processing on the images taken at once. Since the contrast can be calculated and an appropriate joint correction value can be calculated, it is possible to achieve consistent joint adjustment in a short time.
  • FIG. 14 shows a 2 ⁇ 4 array of LED modules 21.
  • a group of LED modules 21 arranged in a 2 ⁇ 4 arrangement will be referred to as a cabinet as shown in the figure.
  • the cabinet can operate as an individual display device, and the LED modules 21 in an arrangement other than the 2 ⁇ 4 arrangement may constitute the cabinet.
  • the LED display device 12 is configured as a display device of any size and resolution by arranging a plurality of cabinets.
  • markers 29 are displayed that serve as adjustment points when performing uniformity adjustment processing.
  • markers 29 are displayed at four locations at the center of the upper, lower, left, and right sides of a cabinet consisting of LED modules 21 arranged in a 2 ⁇ 4 array. That is, marker 29-1 is displayed at the center of the bottom side of the cabinet, marker 29-2 is displayed at the center of the left side of the cabinet, marker 29-3 is displayed at the center of the right side of the cabinet, and marker 29-3 is displayed at the center of the top side of the cabinet. Marker 29-4 is displayed.
  • uniformity adjustment processing can be performed on a cabinet-by-cabinet basis, and such display of the marker 29 is referred to as cabinet mode.
  • markers 29 are displayed at eight locations at the center of each of the 2 ⁇ 4 LED modules 21.
  • uniformity adjustment processing can be performed for each LED module 21, and such display of the marker 29 is referred to as module mode.
  • FIG. 14C a cabinet consisting of LED modules 21 arranged in a 2 x 4 array is divided into left and right parts, and the upper, lower, left, and right sides of the 2 x 2 array LED modules 21 on the left and the 2 x 2 array LED modules 21 on the right are shown.
  • Markers 29 are displayed at eight locations in the center of the sides. That is, a marker 29-1 is displayed at the center of the lower side of the 2 ⁇ 2 LED module 21 on the left, a marker 29-2 is displayed at the center of the left side of the 2 ⁇ 2 LED module 21 on the left, and a marker 29-2 is displayed at the center of the left side of the 2 ⁇ 2 LED module 21 on the left.
  • a marker 29-3 is displayed at the center of the right side of the 2 ⁇ 2 array of LED modules 21, and a marker 29-4 is displayed at the center of the upper side of the 2 ⁇ 2 array of LED modules 21 on the left.
  • a marker 29-5 is displayed at the center of the lower side of the 2 ⁇ 2 LED module 21 on the right side
  • a marker 29-6 is displayed at the center of the left side of the 2 ⁇ 2 LED module 21 on the right side
  • a marker 29-6 is displayed at the center of the left side of the 2 ⁇ 2 LED module 21 on the right side.
  • a marker 29-7 is displayed at the center of the right side of the 2 ⁇ 2 array of LED modules 21, and a marker 29-8 is displayed at the center of the upper side of the 2 ⁇ 2 array of LED modules 21 on the right.
  • the marker display section 61 instructs the display control section 31 to display the marker 29 in one of the modes shown in FIG. Thereby, the display control unit 31 displays the marker 29 in one of the modes shown in FIG.
  • the LED display device 12 is controlled so as to do so.
  • the marker display unit 61 instructs the camera control unit 32 to take a picture of the LED display device 12 with the camera 13.
  • the camera control unit 32 controls the camera 13 in response to this, the camera 13 photographs the LED display device 12 with the LED pixel 24 of the marker 29 lit in white.
  • the camera control section 32 acquires the image and supplies it to the marker display section 61.
  • the marker display unit 61 detects the marker 29 in the LED display device 12 on the image based on the image taken of the LED display device 12 in which the LED pixel 24 of the marker 29 is lit in white. be able to. Then, the marker display section 61 notifies the luminance data calculation section 63 of the marker 29 on the LED display device 12 on the image photographed by the camera 13.
  • the monochrome display unit 62 controls the display to display a monochrome red image, a monochrome green image, and a monochrome blue image corresponding to the emission color of the LED element included in the LED pixel 24. Instruct the section 31.
  • the display control unit 31 controls the LED display device 12 so as to sequentially display a red monochrome image, a green monochrome image, and a blue monochrome image.
  • the monochrome display section 62 instructs the camera control section 32 to take a picture of the LED display device 12 with the camera 13 every time the color of the display control section 31 changes. In response to this, the camera control unit 32 controls the camera 13.
  • the monochrome display unit 62 can acquire three images of the LED display device 12 displaying a red monochrome image, a green monochrome image, and a blue monochrome image, and display these images as follows.
  • the brightness data is supplied to the brightness data calculation section 63.
  • an image taken of the LED display device 12 displaying a red monochrome image will be referred to as a red monochrome photographed image.
  • an image taken of the LED display device 12 displaying a green monochrome image is referred to as a green monochrome photographed image
  • an image taken of the LED display device 12 displaying a blue monochrome image is referred to as a blue monochrome photographed image. .
  • the brightness data calculation unit 63 calculates the brightness data based on the lens calibration table according to the lens used by the camera 13, since shading occurs in the image taken by the camera 13, in which the brightness in the peripheral area decreases. Then, the lens shading of the red single color photographed image, the green single color photographed image, and the blue single color photographed image is corrected. Furthermore, since the LED pixels 24 of the LED display device 12 have viewing angle characteristics, the brightness data calculation unit 63 calculates the brightness when the LED pixels 24 are viewed from the front based on the LED calibration table. The viewing angle characteristics of a monochromatic red photographic image, a monochromatic green photographic image, and a monochromatic blue photographic image are corrected.
  • the brightness data calculation unit 63 corrects the lens shading and viewing angle characteristics of the single-color red photographed image, the single-color green photographed image, and the single-color blue photographed image, and changes the position of the marker 29 in each corrected image. Calculate the brightness data of the area. That is, the brightness data calculation unit 63 calculates red brightness data from the region of the marker 29 in the red monochromatic photographed image whose lens shading and viewing angle characteristics have been corrected. Similarly, the brightness data calculation unit 63 calculates green brightness data from the area of the marker 29 in the single-color green photographed image with corrected lens shading and viewing angle characteristics, and Blue luminance data is calculated from the area of the marker 29 in the monochromatic photographed image. The brightness data calculation unit 63 then supplies red brightness data, green brightness data, and blue brightness data to the uniformity correction value calculation unit 64.
  • the uniformity correction value calculation unit 64 holds reference luminance data that serves as a reference for each of a single-color red photographed image, a single-color green photographed image, and a single-color blue photographed image.
  • the uniformity correction value calculation unit 64 can obtain reference luminance data by photographing a reference cabinet in advance.
  • the uniformity correction value calculation unit 64 may obtain reference brightness data by photographing the reference LED module 21 or an area specified by the operator in advance, or may convert a value input from an external source into reference brightness data. You can also obtain it as
  • the uniformity correction value calculation unit 64 calculates a red uniformity correction value from the red brightness comparison data for each marker 29, calculates a green uniformity correction value from the green brightness comparison data for each marker 29, and calculates a green uniformity correction value from the green brightness comparison data for each marker 29.
  • a blue uniformity correction value is calculated from the blue luminance comparison data for each color.
  • the uniformity correction value calculation unit 64 is in the radiator mode in which the markers 29 are displayed as shown in FIG. The uniformity correction value is calculated in units of 21.
  • the uniformity correction value calculation unit 64 supplies the red uniformity correction value, the green uniformity correction value, and the blue uniformity correction value to the uniformity correction value setting unit 65.
  • the uniformity correction value setting unit 65 writes and sets the red uniformity correction value, the green uniformity correction value, and the blue uniformity correction value in the register of the LED display device 12. Thereby, for example, when the monochrome display unit 62 displays a monochrome red image, a monochrome green image, and a monochrome blue image on the LED display device 12, the red monochrome image, A single color green image and a single color blue image are displayed.
  • the luminance data at all markers 29 will be a uniform value, and it can be confirmed that the uniformity adjustment process has been appropriately performed.
  • the uniformity correction value calculation unit 64 supplies the appropriately determined uniformity correction value to the uniformity correction value setting unit 65.
  • the uniformity correction value setting section 65 writes the uniformity correction value supplied from the uniformity correction value calculation section 64 into the rewritable nonvolatile memory of the LED display device 12, so that when the LED display device 12 is used, it is uniform as a whole.
  • the brightness is corrected so that an image with a certain quality is displayed. This makes it possible to correct differences in brightness between cabinets or between LED modules 21 due to individual differences during manufacture or deterioration over time.
  • a white monochrome image in addition to using a red monochrome image, a green monochrome image, and a blue monochrome image, depending on the configuration of the LED pixel 24, a white monochrome image, an invisible light monochrome image (invisible If an LED pixel 24 capable of outputting light is used), etc. may be used. Further, these monochrome images do not need to be displayed on the entire surface of the LED display device 12, and for example, if they are displayed at least on the marker 29, the uniformity adjustment process can be performed.
  • the uniformity adjustment processing screen will be described with reference to FIGS. 15 to 18.
  • FIG. 15 shows a uniformity adjustment processing screen 91 in an NG state where the uniformity adjustment processing is not properly performed, and the uniformity adjustment processing screen 91 is provided with a uniformity state display area 92. Further, FIG. 15 shows an example in which the adjustment target range is a range in which a cabinet including a 2 ⁇ 4 array of LED modules 21 is arranged in a 3 ⁇ 2 matrix. In the example shown in FIG. 15, in the uniformity state display area 92, the LED modules 21 that do not have uniformity over the entire adjustment target range are shown in black (guide display).
  • FIG. 16 shows the uniformity adjustment processing screen 91 in an OK state where the uniformity adjustment processing has been appropriately performed. Further, FIG. 16 shows an example in which the adjustment target range is a range in which a cabinet including a 2 ⁇ 4 array of LED modules 21 is arranged in a 2 ⁇ 2 matrix. In the example shown in FIG. 16, in the uniformity state display area 92, there is no LED module 21 that does not have uniformity over the entire adjustment target range, that is, all the LED modules 21 have uniformity. It has been shown that
  • FIG. 17 shows a uniformity adjustment processing screen 91 in an NG state where the uniformity adjustment processing is not properly performed, and the uniformity adjustment processing screen 91 is provided with a uniformity state display area 92. Further, FIG. 17 shows an example in which the entire range of the LED display device 12 is the range to be adjusted. In the example shown in FIG. 17, in the uniformity state display area 92, the LED modules 21 that do not have uniformity over the entire adjustment target range are shown in black (guide display).
  • steps S21 and S22 processing similar to steps S11 and S12 in FIG. 13 is performed.
  • step S24 the uniformity correction value calculation unit 64 creates red brightness comparison data for each marker 29, and calculates a red uniformity correction value from the brightness comparison data. Similarly, the uniformity correction value calculation unit 64 creates green brightness comparison data for each marker 29 to calculate a green uniformity correction value, creates blue brightness comparison data for each marker 29, and performs blue uniformity correction. Calculate the value.
  • step S25 the uniformity correction value setting unit 65 writes and sets the uniformity correction value calculated by the uniformity correction value calculation unit 64 in step S24 to the rewritable nonvolatile memory of the LED display device 12.
  • step S26 post-correction photography is performed.
  • a red monochrome image, a green monochrome image, and a blue monochrome image are displayed on the LED display with correction based on the uniformity correction value set for the LED display device 12 applied. displayed on the device 12.
  • the brightness data calculation unit 63 acquires red brightness data, green brightness data, and blue brightness data for each marker 29.
  • a uniformity adjustment processing screen 91 is displayed based on the red luminance data, green luminance data, and blue luminance data.
  • step S27 it is determined whether readjustment by manual adjustment is necessary. For example, the operator visually confirms the state in which the correction based on the uniformity correction value has been applied, and confirms that the uniformity state display area 92 of the uniformity adjustment processing screen 91 is blacked out (i.e., LEDs that are not uniform). Based on module 21), it is determined whether manual adjustment is necessary.
  • step S27 If it is determined in step S27 that readjustment by manual adjustment is necessary, the process proceeds to step S28, and uniformity adjustment is performed using the same manual adjustment method as in the past. In this case, the uniformity correction value according to the manual adjustment is supplied to the uniformity correction value setting section 65. Note that instead of performing the manual adjustment, the adjustment processing of steps S23 to S26 may be performed again. For example, a GUI for instructing execution of the readjustment process can be displayed on the uniformity adjustment process screen 91 to allow the operator to select manual adjustment or readjustment process.
  • step S29 the uniformity correction value setting unit 65 writes the uniformity correction value manually adjusted or readjusted in step S28 to the rewritable nonvolatile memory of the LED display device 12, and then the process is ended.
  • step S27 if it is determined in step S27 that readjustment by manual adjustment is not necessary, the uniformity correction value has been written in step S25, and the process is ended.
  • the camera 13 can be easily installed, and by performing image processing on the images taken at once, the marker 29 is automatically detected and the red, red, Since green and blue luminance data can be calculated and an appropriate uniformity correction value can be calculated, uniformity adjustment without variation can be achieved in a short time.
  • ⁇ Camera pose estimation method> A posture estimation method for estimating the posture of the camera 13 will be described with reference to FIG.
  • the joint adjustment processing unit and uniformity adjustment processing can be performed in the same manner as when the camera 13 is installed at the center position of the adjustment target range 22.
  • the world coordinate system is provided based on the shape information of the LED display device 12 so that the XY plane of the world coordinate system is parallel to the display surface of the LED display device 12.
  • the camera coordinate system is set parallel to the image sensor with the center of the image sensor of the camera 13 as its origin, and the origin of the camera coordinate system in the Y direction is set according to the height information of the camera 13.
  • the positioning markers 23-1 to 23-4 are displayed at the four corners of the adjustment target range 22, and the camera 13 takes a picture.
  • the coordinates (Xw, Yw, Zw) of the markers 23-1 to 23-4 on the display surface of the LED display device 12 are expressed in a three-dimensional world coordinate system.
  • the coordinates (Xi, Yi) of the points where the markers 23-1 to 23-4 are photographed are expressed in a two-dimensional image coordinate system.
  • These coordinates (Xi, Yi) can be converted into coordinates (Xc, Yc, Zc) according to the three-dimensional camera coordinate system using internal parameters as shown in the following equation (1).
  • the attitude of the camera 13 can be estimated by calculating the external parameters shown in equation (2) using the least squares method. Note that by displaying a larger number of markers 23, the accuracy of estimating the posture of the camera 13 can be improved.
  • outside light reflected on the LED display device 12 i.e., other than the light emitted when displaying an image on the LED display device 12
  • an external light reflection removal process that removes external light
  • a monochromatic screen of a certain color is displayed on the entire surface of the LED display device 12 and photographed with the camera 13, and as shown in the center of FIG.
  • the image is displayed on the entire surface of the LED display device 12 (or with the entire surface of the LED display device 12 turned off) and photographed with the camera 13.
  • external light reflected on the LED display device 12 will be captured in both images.
  • the display system 11 by checking the external light reflected on the LED display device 12 before and after each photographing performed in the joint adjustment processing and the uniformity adjustment processing, the illuminance change of the external light reflected on the LED display device 12 is determined. It is possible to prevent incorrect adjustment due to
  • a red monochrome screen a green monochrome screen, and a blue monochrome screen are displayed on the entire surface of the LED display device 12
  • a black image is displayed on the entire surface of the LED display device 12. Then, by checking the difference in the area where the LED display device 12 is photographed before and after displaying the red monochrome screen, changes in the illuminance of external light can be confirmed. Similarly, by checking the difference in the area where the LED display device 12 is photographed before and after displaying a green monochrome screen and before and after displaying a blue monochrome screen, changes in the illuminance of external light can be confirmed. can do.
  • changes in external light illuminance are checked by subtracting pixel by pixel of the image sensor of the camera 13, and in uniformity adjustment processing, changes in external light illuminance are checked for each cabinet, which is the unit of measurement. .
  • uniformity adjustment processing can be performed for each cabinet, which is a collection of a plurality of LED modules 21.
  • a cabinet adjacent to the cabinet to which the uniformity adjustment process has been applied can be used as a reference.
  • the uniformity adjustment process is performed using a cabinet consisting of a 3 ⁇ 3 array of LED modules 21 as the adjustment target range 22.
  • the 3 ⁇ 3 array of LED modules 21 arranged at the lower left of the LED display device 12 is the adjusted adjustment target range 22, and the LED modules 21 arranged at the lower right of the LED display device 12 are adjusted.
  • the 3 ⁇ 3 array of LED modules 21 that are present in the figure constitute an adjustment target range 22 that is being adjusted.
  • the LED display devices 12 that constitute the adjusted adjustment target range 22 When performing uniformity adjustment processing for the adjustment target range 22 that is being adjusted, among the LED display devices 12 that constitute the adjusted adjustment target range 22, the LED display devices 12 adjacent to the adjustment target range 22 that are being adjusted are , a photographing area to be photographed by the camera 13. In this way, by photographing with the camera 13 so as to overlap a part of the adjusted adjustment target range 22, a difference in brightness can be detected at the boundary of the adjusted adjustment target range 22, using the adjusted adjustment target range 22 as a reference. Uniformity adjustment processing can be performed to prevent this from occurring.
  • the uniformity adjustment process is performed based on the reference point provided in each adjustment target range 22.
  • the uniformity adjustment process After this is performed, the overall brightness of the adjustment target range 22 on the right side is different from the overall brightness of the left adjustment target range 22.
  • a level difference in brightness occurs at the boundary between the cabinet serving as the adjustment target range 22 on the right side and the cabinet serving as the left adjustment target range 22.
  • the adjusted adjustment target range 22 when the adjusted adjustment target range 22 is placed adjacent to the left side of the adjustment target range 22 that is being adjusted, the adjusted adjustment target range 22 is arranged in the same row. Uniformity adjustment processing is performed for the adjustment target range 22 that is being adjusted, with the brightness of the LED module 21 serving as a reference at 22 as a target.
  • the adjusted adjustment target range 22 is arranged below and adjacent to the adjustment target range 22 that is being adjusted, the adjusted adjustment target range 22 is arranged in the same column. Uniformity adjustment processing is performed for the adjustment target range 22 that is being adjusted, using the brightness of the reference LED module 21 in the range 22 as a target.
  • each point is Uniformity adjustment processing is performed on the adjustment target range 22 that is being adjusted, using the brightness weighted and synthesized according to the directional distance as a target. That is, the brightness of the reference LED module 21 in the adjusted adjustment target range 22 in the row direction is weighted according to the distance in the row direction, and the brightness of the reference LED module 21 in the adjusted adjustment target range 22 in the column direction is weighted. The brightnesses of the LED modules 21 are weighted according to the distance in the column direction, and the brightnesses are combined and used as a target.
  • the LED calibration table used in the uniformity adjustment process will be described with reference to FIG. 26.
  • an LED calibration table is used when assuming a viewing position of the LED display device 12 and performing uniformity adjustment processing to prevent color shift from occurring at that position.
  • the LED display devices 12 can be installed in a round shape by adjusting the angle difference between adjacent cabinets 17 for each cabinet 17 made up of a plurality of LED modules 21.
  • curve information indicating the shape of the LED display device 12 installed in a round shape it can be used as shape information of the LED display device 12 when aligning the camera 13, or in uniformity adjustment processing. It can be used to obtain an LED calibration table for the adjustment target range 22.
  • FIG. 27 shows a plan view of the LED display device 12 installed in a round shape by arranging 33 cabinets 17 with predetermined angles between adjacent cabinets 17.
  • a numerical value indicating the angular difference between adjacent cabinets 17 is registered.
  • the angular difference between cabinet 17-1 and cabinet 17-2 is registered as 0° in the curve information
  • the angular difference between cabinet 17-2 and cabinet 17-3 is registered as 2° in the curve information.
  • Cabinets 17-3 to 17-6 are registered in the curve information with an angular difference of 5 degrees
  • cabinets 17-6 to 17-9 are registered in the curve information with an angular difference of 10 degrees. be done.
  • numerical values indicating the angular difference between adjacent cabinets 17 are similarly registered in the curve information.
  • FIG. 28 is a diagram illustrating the alignment of the camera 13 installed with respect to the LED display device 12 installed in a round shape.
  • the posture (Pan/Tilt/Roll, X/Y/Z position) of the camera 13 is estimated and adjusted based on the image taken by the camera 13 and the curve information that is the shape information of the LED display device 12.
  • the angle ⁇ toward the front of the target range and the distance D that is deviated from the center of the adjustment target range can be determined.
  • the installation position of the camera 13 so that the angle ⁇ and the distance D become 0, the camera 13 can be installed at the front and center position of the adjustment target range.
  • the LED calibration table according to the viewing angle of the LED pixel 24 and the lens calibration table according to the lens used by the camera 13 are separated, the LED display installed in a round shape
  • the LED calibration table can be applied accurately to the device 12. Thereby, for example, it is possible to cope with a distorted image obtained when the LED display device 12 installed in a round shape is photographed with the camera 13 so as to look up.
  • the viewing angle ⁇ of the LED pixel 24 to be measured is determined based on curve information indicating the shape of the LED display device 12 and camera position information indicating the installation position of the camera 13 with respect to the LED display device 12. can be calculated.
  • the viewing angle ⁇ of the LED pixel 24 to be measured is defined by a straight line (dotted chain line) passing through the LED pixel 24 to be measured and going in a direction perpendicular to the cabinet 17, and from the LED pixel 24 to be measured to the camera 13. is the angle with the straight line (double-dashed line) toward the focal point.
  • a viewing point mode is set to adjust the uniformity to be uniform at the position of the camera 13, which is the viewing point, and the viewing point can be arbitrarily selected according to the installation case of the display system 11. .
  • FIG. 30A an installation case in which the LED display device 12 is installed at a height of 3 to 5 meters will be described.
  • uniformity adjustment can be performed by estimating the orientation of the camera 13. can be processed.
  • uniformity adjustment processing for the LED display device 12 installed at a height of 3 to 5 m can be performed using the camera 13 installed at a height of 1.7 m, for example.
  • FIG. 30B shows an example in which the uniformity adjustment process for the LED display device 12 is performed in a front view mode in which the camera 13 is installed in front of the LED display device 12 and at the center of the adjustment target range 22. .
  • the viewing height for viewing the LED display device 12 is in front of the LED display device 12 (for example, viewing height: 5.1 m)
  • the viewing angle of the LED Images can be viewed without being affected by color shift.
  • color shift may occur at the top of the LED display device 12 due to the viewing angle of the LEDs. You will be able to view the generated images.
  • the direction in which the LED display device 12 is looked up is dealt with by performing viewpoint adjustment limited to the vertical direction.
  • viewpoint adjustment limited to the vertical direction.
  • the gain may be adjusted and fixed depending on the horizontal and vertical angles.
  • the display system 11 supports viewing that does not cause color shift in the image at the viewing point assumed depending on the installation case of the LED display device 12. can do.
  • FIG. 31 is a block diagram showing an example of the configuration of an embodiment of a computer in which a program that executes the series of processes described above is installed.
  • the program can be recorded in advance on the hard disk 105 or ROM 103 as a recording medium built into the computer.
  • the program can be stored (recorded) in a removable recording medium 111 driven by the drive 109.
  • a removable recording medium 111 can be provided as so-called package software.
  • examples of the removable recording medium 111 include a flexible disk, a CD-ROM (Compact Disc Read Only Memory), an MO (Magneto Optical) disk, a DVD (Digital Versatile Disc), a magnetic disk, and a semiconductor memory.
  • the computer has a built-in CPU (Central Processing Unit) 102, and an input/output interface 110 is connected to the CPU 102 via a bus 101.
  • CPU Central Processing Unit
  • the CPU 102 executes a program stored in a ROM (Read Only Memory) 103 in accordance with the command. .
  • the CPU 102 loads the program stored in the hard disk 105 into the RAM (Random Access Memory) 104 and executes the program.
  • the CPU 102 performs processing according to the above-described flowchart or processing performed according to the configuration of the above-described block diagram. Then, the CPU 102 outputs the processing result from the output unit 106 or transmits it from the communication unit 108 via the input/output interface 110, or records it on the hard disk 105, as necessary.
  • the input unit 107 includes a keyboard, a mouse, a microphone, and the like.
  • the output unit 106 includes an LCD (Liquid Crystal Display), a speaker, and the like.
  • the processing that a computer performs according to a program does not necessarily have to be performed chronologically in the order described as a flowchart. That is, the processing that a computer performs according to a program includes processing that is performed in parallel or individually (for example, parallel processing or processing using objects).
  • program may be processed by one computer (processor) or may be processed in a distributed manner by multiple computers. Furthermore, the program may be transferred to a remote computer and executed.
  • a system refers to a collection of multiple components (devices, modules (components), etc.), regardless of whether all the components are located in the same casing. Therefore, multiple devices housed in separate casings and connected via a network, and a single device with multiple modules housed in one casing are both systems. .
  • the configuration described as one device (or processing section) may be divided and configured as a plurality of devices (or processing sections).
  • the configurations described above as a plurality of devices (or processing units) may be configured as one device (or processing unit).
  • part of the configuration of one device (or processing unit) may be included in the configuration of another device (or other processing unit) as long as the configuration and operation of the entire system are substantially the same. .
  • the present technology can take a cloud computing configuration in which one function is shared and jointly processed by multiple devices via a network.
  • the above-mentioned program can be executed on any device. In that case, it is only necessary that the device has the necessary functions (functional blocks, etc.) and can obtain the necessary information.
  • the processing of the steps described in the program may be executed in chronological order according to the order described in this specification, in parallel, or in a manner in which calls are made. It may also be configured to be executed individually at necessary timings such as at certain times. In other words, the processing of each step may be executed in a different order from the order described above, unless a contradiction occurs. Furthermore, the processing of the step of writing this program may be executed in parallel with the processing of other programs, or may be executed in combination with the processing of other programs.
  • the present technology can also have the following configuration.
  • (1) Based on an image obtained by photographing an LED display device in which a plurality of LED (Light Emitting Diode) modules are arranged in a tiled manner, boundaries between adjacent LED modules in the LED display device are included.
  • a contrast measurement unit that measures the brightness of a joint area and a background area outside the joint area, and measures the contrast of the joint area with respect to the background area;
  • An information processing system comprising: a joint correction value calculation unit that calculates a joint correction value for adjusting brightness at a boundary between the LED modules based on the contrast measurement result.
  • the contrast measurement unit measures the plurality of contrasts by changing the brightness of the joint area or the background area at a predetermined ratio, The information processing system according to (1), wherein the joint correction value calculation unit calculates the joint correction value based on the plurality of contrast measurement results.
  • the joint correction value calculation unit performs linear interpolation for the plurality of contrasts, and calculates a signal level corresponding to the brightness of the joint area where the contrast becomes 0 as the joint correction value. information processing system.
  • the position of an area corresponding to a predetermined LED pixel including two rows or two columns of LED pixels arranged across the boundary between the adjacent LED modules is set as joint coordinates.
  • the information processing system according to any one of (1) to (3) above, further comprising: a joint coordinate detection unit that detects joint coordinates.
  • the joint coordinate detection unit lights up predetermined LED pixels including two rows or two columns of LED pixels arranged across the boundary between the adjacent LED modules, and lights up LED pixels other than the predetermined LED pixels.
  • the information processing system according to (4) above, wherein the joint coordinates are detected based on an image taken of the LED display device in a non-lit state.
  • the measurement area detection unit detects an area corresponding to the measurement area based on an image taken of the LED display device with LED pixels in the measurement area turned on and LED pixels other than the measurement area turned off.
  • the contrast measuring unit measures, on an image taken of the LED display device displaying a monochromatic screen of a predetermined color, detecting a brightness component of the predetermined color in an area corresponding to the measurement area and the joint coordinates as the brightness of the joint area; A brightness component of the predetermined color in an area corresponding to the measurement area and other than the joint coordinates is detected as the brightness of the background area, as described in (6) above. information processing system.
  • the contrast measurement unit measures the contrast using an image taken of the LED display device displaying the monochrome screen with correction applied based on the joint correction value, and reports the measurement result.
  • the information processing system according to (9) above, which displays a joint adjustment processing screen to be presented.
  • the information processing system according to any one of (1) to (13) above, further comprising a processing unit.
  • the camera positioning processing unit receives the designation of the target range and performs camera positioning processing based on the specified target range.
  • the camera positioning processing unit is configured to determine four areas corresponding to the positioning markers on the image based on an image taken of the LED display device with positioning markers displayed at the four corners of the target range. and calculates an adjustment amount for adjusting the angle and position of the camera to match the reference position coordinate data of four target markers acquired in advance.
  • the information processing system according to (14) above .
  • the information processing system Based on an image obtained by photographing an LED display device in which a plurality of LED (Light Emitting Diode) modules are arranged in a tiled manner, boundaries between adjacent LED modules in the LED display device are included. measuring the brightness of a joint area and a background area outside the joint area, and measuring the contrast of the joint area with respect to the background area; An adjustment method comprising: calculating a joint correction value for adjusting brightness at a boundary between the LED modules, based on the contrast measurement result. (20) In the computer of the information processing system, Based on an image obtained by photographing an LED display device in which a plurality of LED (Light Emitting Diode) modules are arranged in a tiled manner, boundaries between adjacent LED modules in the LED display device are included.
  • a program for executing processing including: calculating a joint correction value for adjusting brightness at a boundary between the LED modules based on the contrast measurement result.
  • 11 display system 12 LED display device, 13 camera, 14 information processing device, 15 display controller, 16 lighting device, 21 LED module, 22 adjustment target range, 23 positioning marker, 24 LED pixel, 25 Hatch area, 26 Measurement Area, 27 -jointed area, 28 background area, 29 markers, 31 display control department, 32 camera control unit, 33 screen display control unit, 34 LED display adjustment processing unit, 41 Camera position position determination processing unit, 43 external light removal processing unit, 43 Joint adjustment processing section, 44 Uniformity adjustment processing section, 51 Joint coordinate detection section, 52 Measurement area detection section, 53 Contrast measurement section, 54 Joint correction value calculation section, 55 Joint correction value setting section, 61 Marker display section, 62 Single color display section, 63 brightness data calculation section, 64 uniformity correction value calculation section, 65 uniformity correction value setting section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本開示は、より高画質な画像を表示することができるようにする情報処理システム、調整方法、およびプログラムに関する。 コントラスト測定部は、複数のLEDモジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、LEDディスプレイ装置における、互いに隣接するLEDモジュールどうしの境界を含む目地エリア、および、その目地エリア外部の背景エリアの明るさを測定し、背景エリアに対する目地エリアのコントラストを測定する。目地補正値算出部は、コントラストの測定結果に基づいて、LEDモジュールどうしの境界における輝度を調整する目地補正値を算出する。本技術は、例えば、LEDを用いた直視型でタイリング式の大型ディスプレイに適用できる。

Description

情報処理システム、調整方法、およびプログラム
 本開示は、情報処理システム、調整方法、およびプログラムに関し、特に、より高画質な画像を表示することができるようにした情報処理システム、調整方法、およびプログラムに関する。
 近年、LED(Light Emitting Diode)を用いた直視型でタイリング式の大型ディスプレイの市場が拡大しており、より忠実な映像表現を目的とした大型のLEDディスプレイの設置が進んでいる。例えば、映画業界などでは、バーチャルスタジオでの背景として、複数のLEDモジュールがタイル状に配置された大型のLEDディスプレイを利用するケースが増加している。
 例えば、特許文献1には、LEDディスプレイをカメラで撮影した場合に、撮影により得られた画像の帯状の輝度ムラが生じるのを抑制することができる駆動装置が開示されている。
国際公開第2018/164105号
 ところで、上述したようなタイリング式の大型のLEDディスプレイにおいては、LEDモジュール間の目地を目立たなくするための調整作業や、画像全体として均一性を実現するための調整作業を行うことによって、高画質な画像を表示することができる。しかしながら、従来、これらの調整作業は、LEDモジュールどうしの間を1カ所ずつ、輝度を変化させながら目視および手動で作業者により行われていたため、作業時間が長くなるだけでなく、作業者の技能によって仕上がりにバラつきが発生することが懸念される。そこで、これらの調整作業を自動化することによって、より短時間で、かつ、作業者によって仕上がりにバラつきが発生するのを回避して、高画質な画像を表示できるようにすることが求められている。
 本開示は、このような状況に鑑みてなされたものであり、より高画質な画像を表示することができるようにするものである。
 本開示の一側面の情報処理システムは、複数のLEDモジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、前記LEDディスプレイ装置における、互いに隣接する前記LEDモジュールどうしの境界を含む目地エリア、および、前記目地エリア外部の背景エリアの明るさを測定し、前記背景エリアに対する前記目地エリアのコントラストを測定するコントラスト測定部と、前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を調整する目地補正値を算出する目地補正値算出部とを備える。
 本開示の一側面の調整方法は、情報処理システムが、複数のLEDモジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、前記LEDディスプレイ装置における、互いに隣接する前記LEDモジュールどうしの境界を含む目地エリア、および、前記目地エリア外部の背景エリアの明るさを測定し、前記背景エリアに対する前記目地エリアのコントラストを測定することと、前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を調整する目地補正値を算出することとを含む処理を行う。
 本開示の一側面のプログラムは、情報処理システムのコンピュータに、複数のLEDモジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、前記LEDディスプレイ装置における、互いに隣接する前記LEDモジュールどうしの境界を含む目地エリア、および、前記目地エリア外部の背景エリアの明るさを測定し、前記背景エリアに対する前記目地エリアのコントラストを測定することと、前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を調整する目地補正値を算出することとを含む処理を実行させる。
 本開示の一側面においては、複数のLEDモジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、LEDディスプレイ装置における、互いに隣接するLEDモジュールどうしの境界を含む目地エリア、および、その目地エリア外部の背景エリアの明るさが測定され、背景エリアに対する目地エリアのコントラストが測定され、コントラストの測定結果に基づいて、LEDモジュールどうしの境界における輝度を調整する目地補正値が算出される。
本技術を適用したディスプレイシステムの一実施の形態の構成例を示す図である。 LEDディスプレイ調整処理部の構成例を示すブロック図である。 調整対象範囲および測定用マーカについて説明する図である。 カメラ位置決め処理画面の一表示例を示す図である。 外光除去処理について説明する図である。 LEDディスプレイ装置において目地が目立ってしまうことについて説明する図である。 目地座標の検出について説明する図である。 測定エリアの検出について説明する図である。 測定エリアにおける目地エリアおよび背景エリアについて説明する図である。 コントラストが0になる信号レベルについて説明する図である。 NG状態での目地調整処理画面の一表示例を示す図である。 OK状態での目地調整処理画面の一表示例を示す図である。 目地調整処理を説明するフローチャートである。 測定マーカの配置について説明する図である。 NG状態でのユニフォミティ調整処理画面の第1の表示例を示す図である。 OK状態でのユニフォミティ調整処理画面の第1の表示例を示す図である。 NG状態でのユニフォミティ調整処理画面の第2の表示例を示す図である。 OK状態でのユニフォミティ調整処理画面の第2の表示例を示す図である。 ユニフォミティ調整処理を説明するフローチャートである。 カメラの姿勢を推定する姿勢推定方法について説明する図である。 外光の映り込み除去処理について説明する図である。 LEDディスプレイ装置に映り込む外光の照度変化について説明する図である。 オーバーラップ撮影について説明する図である。 キャビネットとの境界に発生する輝度の段差について説明する図である。 調整済みの調整対象範囲を基準として行われる調整中の調整対象範囲に対するユニフォミティ調整処理について説明する図である。 LED校正テーブルについて説明する図である。 ラウンド形状のLEDディスプレイ装置のカーブ情報について説明する図である。 ラウンド形状に対するカメラの位置合わせについて説明する図である。 ラウンド形状に対するユニフォミティ調整処理について説明する図である。 視聴点モードについて説明する図である。 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 <ディスプレイシステムの構成例>
 図1は、本技術を適用したディスプレイシステムの一実施の形態の構成例を示す図である。
 図1に示すように、ディスプレイシステム11は、LEDディスプレイ装置12、カメラ13、情報処理装置14、およびディスプレイコントローラ15を備えて構成される。
 LEDディスプレイ装置12は、複数のLEDモジュール21がタイル状に並べられて構成されており、LEDモジュール21は、表面の縁まで画像を表示することができる。従って、LEDディスプレイ装置12は、隣接するLEDモジュール21を互いに隙間なく設置することによって、LEDモジュール21どうしの境界において物理的な目地が現れることのない画像を、LEDディスプレイ装置12全体として表示することができる。
 ここで、ディスプレイシステム11では、後述の図6を参照して説明するように、LEDモジュール21どうしの境界において輝度が高くまたは低くなることによって目地が目立ってしまうことがある。そこで、ディスプレイシステム11では、LEDディスプレイ装置12の目地が目立ってしまうことを回避するために輝度を調整する処理(以下、目地調整処理部と称する)が行われる。また、ディスプレイシステム11では、LEDディスプレイ装置12の全体として均一性を備える画像を表示するために輝度を調整する処理(以下、ユニフォミティ調整処理と称する)が行われる。
 カメラ13は、LEDディスプレイ装置12の正面に設置され、目地調整処理部およびユニフォミティ調整処理が行われる際に、情報処理装置14による制御に従って、LEDディスプレイ装置12を撮影する。
 情報処理装置14は、例えば、パーソナルコンピュータを利用することができ、カメラ13により撮影されたLEDディスプレイ装置12の画像を使用して、LEDディスプレイ装置12に対して目地調整処理およびユニフォミティ調整処理を行う調整用ソフトウェアを実行する。そして、情報処理装置14は、各種の指示やコマンド、設定値などをディスプレイコントローラ15に出力する。なお、情報処理装置14は、ディスプレイコントローラ15に対する制御を行う制御用ソフトウェアを実行するパーソナルコンピュータを兼用してもよいし、情報処理装置14の他に、制御用ソフトウェアを実行するためのパーソナルコンピュータを用意してもよい。
 ディスプレイコントローラ15は、例えば、図示しないビデオサーバから供給されるフレーム単位の映像信号を、LEDディスプレイ装置12が有する複数のLEDモジュール21の位置に応じて分割し、それぞれのLEDモジュール21に対する発光制御を行う。また、ディスプレイコントローラ15は、例えば、情報処理装置14からの指示に従って測定エリア26(図8)やマーカ29(図14)などの発光制御を行ったり、設定値などをLEDディスプレイ装置12に供給したりする。なお、ディスプレイコントローラ15がLEDディスプレイ装置12に組み込まれて(一体となって)、ディスプレイシステム11が構成されてもよい。
 このようにディスプレイシステム11は構成されており、LEDディスプレイ装置12の設置時、または、LEDモジュール21の保守交換時に、それらの作業を行う作業者が目地調整処理部およびユニフォミティ調整処理を実行することができる。これにより、ディスプレイシステム11は、より高画質な画像をLEDディスプレイ装置12に表示することができる。
 図2は、情報処理装置14の構成例を示すブロック図である。
 図2に示すように、情報処理装置14は、ディスプレイ制御部31、カメラ制御部32、画面表示制御部33、およびLEDディスプレイ調整処理部34を備えて構成される。
 ディスプレイ制御部31は、LEDディスプレイ調整処理部34からの指示に従って、LEDディスプレイ装置12の表示に関する制御を行うことができる。
 カメラ制御部32は、LEDディスプレイ調整処理部34からの指示に従ってカメラ13による撮影を制御し、カメラ13が撮影したLEDディスプレイ装置12の画像を取得して、LEDディスプレイ調整処理部34に供給する。
 画面表示制御部33は、LEDディスプレイ調整処理部34からの指示に従って、情報処理装置14の表示部に対する画面の表示を制御する。例えば、画面表示制御部33は、後述の図4に示すカメラ位置決め処理画面71や、後述の図11および図12に示す目地調整処理画面81、後述の図15乃至図18に示すユニフォミティ調整処理画面91などの表示を制御する。
 LEDディスプレイ調整処理部34は、カメラ位置決め処理部41、外光除去処理部42、目地調整処理部43、およびユニフォミティ調整処理部44を備えて構成される。
 カメラ位置決め処理部41は、LEDディスプレイ装置12の正面、かつ、調整対象範囲22(図3)の中心となる位置にカメラ13を正確に設置するためのカメラ位置決め処理を行う。
 外光除去処理部42は、カメラ13によりLEDディスプレイ装置12を撮影する際における外光の影響を除去するための外光除去処理を行う。
 目地調整処理部43は、LEDディスプレイ装置12を撮影して得られる画像に基づいて目地調整処理を行い、目地座標検出部51、測定エリア検出部52、コントラスト測定部53、目地補正値算出部54、および目地補正値設定部55を備えて構成される。
 目地座標検出部51は、目地調整処理において、カメラ13によりLEDディスプレイ装置12を撮影した画像上における目地座標を検出する。
 測定エリア検出部52は、目地調整処理において、カメラ13によりLEDディスプレイ装置12を撮影した画像上における測定エリア26(図8)を検出する。
 コントラスト測定部53は、目地調整処理において、カメラ13によりLEDディスプレイ装置12を撮影した画像上における測定エリア26の目地エリア27(図9)および背景エリア28(図9)それぞれの明るさを測定して、背景エリア28に対する目地エリア27のコントラストを測定する。
 目地補正値算出部54は、目地調整処理において、コントラスト測定部53による測定エリア26のコントラストの測定結果に基づいて、目地補正値を算出する。
 目地補正値設定部55は、目地調整処理において、目地補正値算出部54によって適切に求められた目地補正値をLEDディスプレイ装置12の記憶部に書き込んで、例えば、レジスタまたは書き換え可能な不揮発性メモリに書き込んで、その目地補正値を設定する。
 ユニフォミティ調整処理部44は、LEDディスプレイ装置12を撮影して得られる画像に基づいてユニフォミティ調整処理を行い、マーカ表示部61、単色表示部62、輝度データ算出部63、ユニフォミティ補正値算出部64、およびユニフォミティ補正値設定部65を備えて構成される。
 マーカ表示部61は、ユニフォミティ調整処理において、カメラ13によりLEDディスプレイ装置12を撮影した画像上におけるマーカ29(図14)を検出する。
 単色表示部62は、ユニフォミティ調整処理において、赤色の単色画像、緑色の単色画像、および青色の単色画像をLEDディスプレイ装置12に表示させ、それらの単色画像を表示したLEDディスプレイ装置12を撮影した3枚の画像を取得して、輝度データ算出部63に供給する。LEDディスプレイ装置12が有する個々のLED素子は、複数の発光色(例えば、赤色、緑色、および青色の三原色)の輝度を調整することで多彩な色を表現することができ、単色表示部62は、それらの発光色に対応する単色画像をLEDディスプレイ装置12に表示させる。
 輝度データ算出部63は、ユニフォミティ調整処理において、赤色の単色画像、緑色の単色画像、および青色の単色画像を表示したLEDディスプレイ装置12を撮影した3枚の画像におけるマーカ29の領域の輝度データを算出する。
 ユニフォミティ補正値算出部64は、ユニフォミティ調整処理において、色ごとの基準輝度データと、輝度データ算出部63により算出された色ごとの輝度データとを比較することにより、それぞれの色ごとのユニフォミティ補正値を算出する。
 ユニフォミティ補正値設定部65は、ユニフォミティ調整処理において、ユニフォミティ補正値算出部64によって適切に求められた色ごとのユニフォミティ補正値をLEDディスプレイ装置12のレジスタまたは書き換え可能な不揮発性メモリに書き込んで、その色ごとのユニフォミティ補正値を設定する。
 <カメラ位置決め処理の処理例>
 図3および図4を参照して、カメラ位置決め処理の一例について説明する。
 ディスプレイシステム11では、カメラ13により撮影された画像を使用して目地調整処理およびユニフォミティ調整処理を行う際に、LEDディスプレイ装置12の調整対象範囲となるLEDモジュール21の中央に正確にカメラ13を設置する必要がある。例えば、ディスプレイシステム11では、LEDディスプレイ装置12の全体、即ち、全てのLEDモジュール21を調整対象範囲とする他、任意の個数のLEDモジュール21を調整対象範囲として設定することができる。
 図3に示す例では、LEDディスプレイ装置12は、縦×横が6×12となるようにタイル状に配置されたLEDモジュール21(1,1)乃至21(6,12)により構成されており、破線で囲まれている範囲が調整対象範囲22として設定されている。即ち、図3に示す例では、3×6配列のLEDモジュール21(3,2)乃至21(3,7)、LEDモジュール21(4,2)乃至21(4,7)、およびLEDモジュール21(5,2)乃至21(5,7)が、調整対象範囲22として設定されている。
 例えば、作業者は、LEDディスプレイ装置12の正面、かつ、調整対象範囲22の中心となる位置にカメラ13を仮設置する。そして、作業者が、情報処理装置14を操作して、調整対象範囲22を指定すると、カメラ位置決め処理部41は、調整対象範囲22の指定を受け付けて、その指定された調整対象範囲22に基づいてカメラ位置決め処理を実行する。
 まず、カメラ位置決め処理部41は、調整対象範囲22の四隅に位置決め用のマーカ23-1乃至23-4が表示されるようにディスプレイ制御部31に対して指示する。これにより、ディスプレイ制御部31は、LEDモジュール21(3,2)の左下隅に位置決め用のマーカ23-1を表示し、LEDモジュール21(3,7)の右下隅に位置決め用のマーカ23-2を表示し、LEDモジュール21(5,2)の左上隅に位置決め用のマーカ23-3を表示し、LEDモジュール21(5,7)の右上隅に位置決め用のマーカ23-4を表示するように、LEDディスプレイ装置12に対する制御を行う。
 そして、カメラ位置決め処理部41は、カメラ13によりLEDディスプレイ装置12が撮影されるようにカメラ制御部32に対して指示し、カメラ制御部32は、カメラ13に対する制御を行う。これに応じて、カメラ13がLEDディスプレイ装置12を撮影した画像を取得すると、カメラ制御部32は、その画像を取得してカメラ位置決め処理部41に供給する。これにより、カメラ位置決め処理部41は、カメラ13により撮影された画像上における位置決め用のマーカ23-1乃至23-4の位置座標データを取得することができる。
 さらに、カメラ位置決め処理部41は、図4に示すようなカメラ位置決め処理画面71が表示されるように画面表示制御部33に対して指示し、画面表示制御部33は、情報処理装置14の表示部の表示を制御する。
 図4に示すように、カメラ位置決め処理画面71には、画像表示領域72、角度調整表示領域73、および位置調整表示領域74が設けられている。
 画像表示領域72には、カメラ13がLEDディスプレイ装置12を撮影した画像、即ち、調整対象範囲22の四隅に位置決め用のマーカ23-1乃至23-4を表示しているLEDディスプレイ装置12の画像が表示される。図4に示す例では、画像表示領域72に、カメラ13により撮影された画像上における位置決め用のマーカ23-1乃至23-4の位置が示されている。
 角度調整表示領域73は、画像上における位置決め用のマーカ23-1乃至23-4を、目標とするマーカの基準位置座標データに一致させるためにカメラ13の角度(Pan , Tilt , Roll)を調整する角度調整量が示されている。また、それぞれの角度調整量の隣には、角度調整量に従ってカメラ13を動かす方向を作業者が容易に把握できるようにするためのアイコンが表示されている。
 位置調整表示領域74は、画像上における位置決め用のマーカ23-1乃至23-4を、目標とするマーカの基準位置座標データに一致させるためにカメラ13の位置(X方向、Y方向、Z方向)を調整する位置調整量が示されている。また、それぞれの位置調整量の隣には、位置調整量に従ってカメラ13を動かす方向を作業者が容易に把握できるようにするためのアイコンが表示されている。
 ここで、カメラ13により実際に撮影された画像には、レンズディストーション(レンズ歪曲収差)により樽型に歪んでいるため、その画像上において目標となるマーカ位置を計算により求めることは困難である。そこで、ディスプレイシステム11では、個々のLEDモジュール21の四隅を目標とするマーカ位置として、それらの基準位置座標データが、カメラ13により実際に撮影された画像上のどの位置に映るかをシミュレートすることが行われる。即ち、個々のLEDモジュール21の四隅を点灯させた状態で、カメラ13により実際に撮影を行う。これにより、カメラ位置決め処理部41は、個々のLEDモジュール21の四隅を点灯させた状態で撮影された画像上における目標とするマーカの基準位置座標データを、基準情報として事前に取得することができる。
 従って、カメラ位置決め処理部41は、基準情報における位置決め用のマーカ23-1乃至23-4に対応する基準位置座標データと、カメラ位置決め処理で取得した画像における位置決め用のマーカ23-1乃至23-4の位置座標データとを比較し、それらのズレ分を計算することによって、角度調整量および位置調整量を求めることができる。
 これにより、作業者は、角度調整表示領域73に表示される角度調整量、および、位置調整表示領域74に表示される位置調整量に従って、カメラ13の角度および位置を調整することで、LEDディスプレイ装置12の正面、かつ、調整対象範囲22の中心となる位置にカメラ13を正確に設置することができる。
 <外光除去処理の処理例>
 図5を参照して、外光除去処理の一例について説明する。
 例えば、図5のAに示すように、LEDディスプレイ装置12が配置される室内に照明装置16が設けられていている場合、照明装置16の照明光や、その照明光が床などに反射した光が、カメラ13により撮影した画像に不要な外光として映り込むことがある。そのため、ディスプレイシステム11では、そのような外光が目地調整処理部およびユニフォミティ調整処理に悪影響を及ぼしてしまうことを回避するために、外光除去処理部42による外光除去処理が必要となる。
 まず、図5のBに示すように、外光除去処理部42は、照明装置16以外の照明をオフにして、LEDディスプレイ装置12の調整対象範囲22に白色画像を表示させた状態で、カメラ13によりLEDディスプレイ装置12が撮影されるようにカメラ制御部32に対して指示する。なお、図5のBでは、LEDディスプレイ装置12の全面に白色画像が表示された状態が示されている。
 次に、図5のCに示すように、外光除去処理部42は、照明装置16以外の照明をオフにしたまま、LEDディスプレイ装置12の全面に黒色画像を表示させた状態で、カメラ13によりLEDディスプレイ装置12が撮影されるようにカメラ制御部32に対して指示する。これに応じて、カメラ制御部32が、カメラ13に対する制御を行うと、カメラ13は、調整対象範囲22に白色画像が表示されたLEDディスプレイ装置12を撮影し、全面に黒色画像が表示されたLEDディスプレイ装置12を撮影する。そして、カメラ制御部32は、その2枚の画像を取得して外光除去処理部42に供給する。
 従って、外光除去処理部42は、白色画像を表示させた状態で撮影された画像から、黒色画像を表示させた状態で撮影された画像を減算する演算を行うことにより、図5のDに示すように、LEDディスプレイ装置12の白色画像だけが残った画像を取得することができる。
 そして、外光除去処理部42は、この画像上でLEDディスプレイ装置12の白色画像に対応する領域を、目地調整処理およびユニフォミティ調整処理を行う際の処理対象範囲として限定する。これにより、カメラ13により撮影される撮影範囲に照明装置16が配置されていた場合であっても、照明装置16の影響を除去して、目地調整処理およびユニフォミティ調整処理を行うことができる。
 なお、外光除去処理は、調整対象範囲22に白色画像を表示させる他、黒色以外の所定色の画像を表示させて行うことができる。また、外光除去処理では、LEDディスプレイ装置12の全面に黒色画像を表示させた状態とする他、LEDディスプレイ装置12の全面を消灯させた状態としてもよい。
 <目地調整処理の処理例>
 図6乃至図13を参照して、目地調整処理の一例について説明する。
 まず、図6を参照して、LEDディスプレイ装置12において目地が目立ってしまうことについて説明する。
 図6には、図3を参照して説明したように調整対象範囲22として設定された3×6配列のLEDモジュール21が示されている。また、図6では、縦×横が2×2となるように配置された4つのLEDモジュール21a乃至21dどうしの境界部分が拡大して示されている。また、図6では、互いに隣接して配置されるLEDモジュール21どうしの境界が破線で図示されている。
 例えば、LEDモジュール21では、複数のLED画素24が、それぞれX方向およびY方向に均等な間隔Dで行列状に配置されている。そして、左右方向に隣接して配置されるLEDモジュール21の境界に沿って配置されるLED画素24どうしの境界間隔Dx、および、上下方向に隣接して配置されるLEDモジュール21の境界に沿って配置されるLED画素24どうしの境界間隔Dyが、間隔Dと一致するようにLEDモジュール21の外形形状は形成されている。しかしながら、実際には、様々な誤差などによって、LEDディスプレイ装置12の設置時またはLEDモジュール21の保守交換時に、境界間隔Dxまたは境界間隔Dyが、間隔Dと一致しないことある。
 例えば、境界間隔Dxが間隔Dより狭くなってしまった場合、左右方向に隣接して配置されるLEDモジュール21どうしの境界に沿った領域が、他の領域よりも輝度が高くなってしまう結果、その境界に沿った領域において目地が目立ってしまうことになる。一方、境界間隔Dxが間隔Dより広くなってしまった場合、左右方向に隣接して配置されるLEDモジュール21どうしの境界に沿った領域が、他の領域よりも輝度が低くなってしまう結果、その境界に沿った領域において目地が目立ってしまうことになる。同様に、境界間隔Dyが間隔Dより狭くなってしまった場合、および、境界間隔Dyが間隔Dより広くなってしまった場合にも、上下方向に隣接して配置されるLEDモジュール21どうしの境界に沿った領域において目地が目立ってしまうことになる。
 そこで、ディスプレイシステム11では、目地調整処理部43が目地調整処理を行うことによって、互いに隣接して配置されるLEDモジュール21どうしの境界において目地が目立ってしまうことを解消するように輝度を調整することができる。
 まず、目地調整処理では、目地座標検出部51が、カメラ13により撮影された画像上のLEDディスプレイ装置12における目地座標を検出する。
 図7には、図6と同様に、調整対象範囲22として設定された3×6配列のLEDモジュール21が示されているとともに、縦×横が2×2となるように配置された4つのLEDモジュール21a乃至21dどうしの境界部分が拡大して示されている。
 例えば、目地座標検出部51は、図7に示すように、行列状に配置されている複数のLED画素24のうちの、LEDモジュール21どうしの境界を挟んで配置される2行および2列のLED画素24が白色で点灯し、それら以外のLED画素24が消灯するように、ディスプレイ制御部31に対して指示する。ここで、LEDモジュール21どうしの境界を挟んで配置される2行および2列のLED画素24が設けられる領域を、以下、ハッチ領域25と称する。これに応じて、ディスプレイ制御部31が、LEDディスプレイ装置12に対する制御を行うと、LEDディスプレイ装置12は、ハッチ領域25のLED画素24を白色で点灯させ、それら以外のLED画素24を消灯させる。
 そして、目地座標検出部51は、カメラ13によりLEDディスプレイ装置12が撮影されるようにカメラ制御部32に対して指示する。これに応じて、カメラ制御部32が、カメラ13に対する制御を行うと、カメラ13は、ハッチ領域25のLED画素24が白色で点灯している状態のLEDディスプレイ装置12を撮影する。これにより、カメラ制御部32は、その画像を取得して目地座標検出部51に供給する。
 従って、目地座標検出部51は、ハッチ領域25のLED画素24が白色で点灯している状態のLEDディスプレイ装置12が撮影された画像に基づいて、その画像上のLEDディスプレイ装置12における目地座標を検出することができる。そして、目地座標検出部51は、カメラ13により撮影された画像上のLEDディスプレイ装置12における目地座標を、コントラスト測定部53に通知する。
 次に、目地調整処理では、測定エリア検出部52が、カメラ13により撮影された画像上のLEDディスプレイ装置12における測定エリアを検出する。
 図8には、図6と同様に、調整対象範囲22として設定された3×6配列のLEDモジュール21が示されている。また、図8では、LEDモジュール21aを中心として、その下側に配置されるLEDモジュール21bの一部、その左側に配置されるLEDモジュール21cの一部、その右側に配置されるLEDモジュール21dの一部、および、その上側に配置されるLEDモジュール21eの一部が拡大して示されている。
 例えば、測定エリア検出部52は、図8に示すように、互いに隣接して配置されるLEDモジュール21どうしの境界の両端近傍に測定エリア26を設け、測定エリア26のLED画素24が白色で点灯し、測定エリア26以外のLED画素24が消灯するように、ディスプレイ制御部31に対して指示する。これに応じて、ディスプレイ制御部31が、LEDディスプレイ装置12に対する制御を行うと、LEDディスプレイ装置12は、測定エリア26のLED画素24を白色で点灯させ、測定エリア26以外のLED画素24を消灯させる。
 そして、測定エリア検出部52は、カメラ13によりLEDディスプレイ装置12が撮影されるようにカメラ制御部32に対して指示する。これに応じて、カメラ制御部32が、カメラ13に対する制御を行うと、カメラ13は、測定エリア26のLED画素24が白色で点灯している状態のLEDディスプレイ装置12を撮影する。これにより、カメラ制御部32は、その画像を取得して測定エリア検出部52に供給する。
 従って、測定エリア検出部52は、測定エリア26のLED画素24が白色で点灯している状態のLEDディスプレイ装置12が撮影された画像に基づいて、その画像上のLEDディスプレイ装置12における測定エリア26を検出することができる。そして、測定エリア検出部52は、カメラ13により撮影された画像上のLEDディスプレイ装置12における測定エリア26を、コントラスト測定部53に通知する。
 図8に示す例では、LEDモジュール21aおよびLEDモジュール21bの境界の左端近傍に測定エリア26-1が設けられ、LEDモジュール21aおよびLEDモジュール21bの境界の右端近傍に測定エリア26-2が設けられている。従って、測定エリア26-1および測定エリア26-2において、LEDモジュール21aおよびLEDモジュール21bの境界における目地補正値を求めるためのコントラストの測定が行われる。また、LEDモジュール21aおよびLEDモジュール21cの境界の下端近傍に測定エリア26-3が設けられ、LEDモジュール21aおよびLEDモジュール21cの境界の上端近傍に測定エリア26-4が設けられている。従って、測定エリア26-3および測定エリア26-4において、LEDモジュール21aおよびLEDモジュール21cの境界における目地補正値を求めるためのコントラストの測定が行われる。
 同様に、LEDモジュール21aおよびLEDモジュール21dの境界の下端近傍に測定エリア26-5が設けられ、LEDモジュール21aおよびLEDモジュール21dの境界の上端近傍に測定エリア26-6が設けられている。従って、測定エリア26-5および測定エリア26-6において、LEDモジュール21aおよびLEDモジュール21dの境界における目地補正値を求めるためのコントラストの測定が行われる。また、LEDモジュール21aおよびLEDモジュール21eの境界の左端近傍に測定エリア26-7が設けられ、LEDモジュール21aおよびLEDモジュール21eの境界の右端近傍に測定エリア26-8が設けられている。従って、測定エリア26-7および測定エリア26-8において、LEDモジュール21aおよびLEDモジュール21eの境界における目地補正値を求めるためのコントラストの測定が行われる。
 図9には、行列状に配置される30×30配列のLED画素24が測定エリア26として設定された一例が示されており、互いに隣接して配置されるLEDモジュール21どうしの境界が破線で図示されている。なお、図9では、LEDモジュール21どうしの境界が横方向に向かう測定エリア26におけるコントラストの測定について説明するが、LEDモジュール21どうしの境界が縦方向に向かう測定エリア26においても、同様に、コントラストを測定することができる。
 また、測定エリア26のうちの、LEDモジュール21どうしの境界を挟んで配置される2行のLED画素24が設けられるエリアを目地エリア27とし、目地エリア27以外のエリアを背景エリア28とする。即ち、背景エリア28は、目地エリア27の上側における30×14配列のLED画素24、および、目地エリア27の下側における30×14配列のLED画素24が設けられるエリアである。
 例えば、コントラスト測定部53は、LEDディスプレイ装置12の調整対象範囲22に緑色の単色画面を表示するようにディスプレイ制御部31に対して指示する。これに応じて、ディスプレイ制御部31が、LEDディスプレイ装置12に対する制御を行うと、LEDディスプレイ装置12は、調整対象範囲22に緑色の単色画面を表示する。なお、緑色以外の単色画面、例えば、白色の単色画面を使用してもよい。
 そして、コントラスト測定部53は、カメラ13によりLEDディスプレイ装置12が撮影されるようにカメラ制御部32に対して指示する。これに応じて、カメラ制御部32が、カメラ13に対する制御を行うと、カメラ13は、調整対象範囲22に緑色の単色画面を表示した状態のLEDディスプレイ装置12を撮影する。これにより、カメラ制御部32は、その画像を取得してコントラスト測定部53に供給する。
 上述したように、コントラスト測定部53には、カメラ13により撮影された画像上のLEDディスプレイ装置12における目地座標が目地座標検出部51から通知されている。また、コントラスト測定部53には、カメラ13により撮影された画像上のLEDディスプレイ装置12における測定エリア26が測定エリア検出部52から通知されている。従って、コントラスト測定部53は、調整対象範囲22に緑色の単色画面を表示した状態のLEDディスプレイ装置12の画像上における測定エリア26の目地エリア27および背景エリア28それぞれの明るさを測定することができる。
 例えば、目地エリア27は、測定エリア26に対応する領域、かつ、目地座標に対応する領域であって、コントラスト測定部53は、その領域における緑色の明るさ成分を、目地エリア27の明るさとして測定する。また、背景エリア28は、測定エリア26に対応する領域、かつ、目地座標以外に対応する領域であって、コントラスト測定部53は、その領域における緑色の明るさ成分を、背景エリア28の明るさとして測定する。
 そして、コントラスト測定部53は、目地エリア27の明るさを、背景エリア28の明るさで除算することによって、測定エリア26のコントラスト(=目地エリア27の明るさ/背景エリア28の明るさ)を算出することができる。
 さらに、コントラスト測定部53は、LEDディスプレイ装置12の調整対象範囲22に緑色の単色画面を表示しつつ、ハッチ領域25の明るさを+10%、+5%、0%、-5%、および-10%と変化するようにディスプレイ制御部31に対して指示する。これに応じて、ディスプレイ制御部31が、LEDディスプレイ装置12に対する制御を行う。
 同時に、コントラスト測定部53は、ハッチ領域25の明るさが変化するたびに、カメラ13によりLEDディスプレイ装置12が撮影されるようにカメラ制御部32に対して指示する。これに応じて、カメラ制御部32が、カメラ13に対する制御を行う。
 従って、コントラスト測定部53は、LEDディスプレイ装置12の調整対象範囲22に緑色の単色画面を表示しつつ、ハッチ領域25の明るさが+10%、+5%、0%、-5%、および-10%それぞれである状態の5枚の画像を取得することができる。そして、コントラスト測定部53は、それらの5枚の画像に基づいて、上述したように、測定エリア26のコントラストを測定し、その測定結果を目地補正値算出部54に供給する
 図10には、ハッチ領域25の明るさに対する測定エリア26のコントラストの測定結果の一例が示されている。
 目地補正値算出部54は、ハッチ領域25の明るさが+10%であるときの測定エリア26のコントラストの測定結果、ハッチ領域25の明るさが+5%であるときの測定エリア26のコントラストの測定結果、ハッチ領域25の明るさが0%であるときの測定エリア26のコントラストの測定結果、ハッチ領域25の明るさが-5%であるときの測定エリア26のコントラストの測定結果、および、ハッチ領域25の明るさが-10%であるときの測定エリア26のコントラストの測定結果について、直線補間を行い、コントラストが0になるハッチ領域25の明るさを求める。即ち、図10において白抜きの矢印が示すハッチ領域25の明るさのとき、測定エリア26のコントラストが0になる。
 従って、目地補正値算出部54は、コントラストが0になるハッチ領域25の明るさに該当する信号レベルを、目地補正値として算出することができる。つまり、目地補正値に従って、LEDモジュール21どうしの境界を挟んで配置される2行または2列のLED画素24の輝度を補正することで、その個所において目地が目立つことを回避することができる。そして、目地補正値算出部54は、調整対象範囲22内の全てのLEDモジュール21どうしの境界について、同様に目地補正値を算出する。
 そして、目地補正値算出部54は、算出した目地補正値を目地補正値設定部55に供給し、目地補正値設定部55は、その目地補正値を、LEDディスプレイ装置12のレジスタに書き込んで設定する。これにより、目地補正値算出部54が、LEDディスプレイ装置12の調整対象範囲22に緑色の単色画面を表示させると、それぞれのLEDモジュール21どうしの境界を挟んで配置される2行または2列のLED画素24の輝度には、目地補正値に従った補正が適用されることになる。即ち、それぞれのLEDモジュール21どうしの境界を挟んで配置される2行または2列のLED画素24の輝度が目地補正値に従って補正された状態で、LEDディスプレイ装置12の調整対象範囲22に緑色の単色画面が表示される。
 このとき、目地補正値が適切に求められていれば、全ての測定エリア検出部52のコントラストの測定結果は0となっている。即ち、上述したのと同様に、ハッチ領域25の明るさが+10%、+5%、0%、-5%、および-10%それぞれである状態の5枚の画像から、測定エリア26のコントラストを測定して、その測定結果の直線補間を行うと、ハッチ領域25の明るさが0%のときに、測定エリア26のコントラストが0となっている。このように、目地調整処理が適切に行われていたことを確認することができる。
 そして、目地補正値算出部54は、適切に求められた目地補正値を目地補正値設定部55に供給する。目地補正値設定部55が、目地補正値算出部54から供給された目地補正値を、LEDディスプレイ装置12の書き換え可能な不揮発性メモリに書き込むことで、LEDディスプレイ装置12の使用時には、目地が目立つことがないようにLEDモジュール21どうしの境界の輝度が補正される。
 なお、目地補正値算出部54は、ハッチ領域25の明るさを変化させるのに替えて、ハッチ領域25以外の領域(例えば、背景エリア28)の明るさを変更させて目地補正値を求めてもよい。また、ハッチ領域25は、LEDモジュール21どうしの境界を挟んで配置される2行または2列のLED画素24を含む所定のLED画素24の領域としてもよく、例えば、4行または4列のLED画素24の領域をハッチ領域25としてもよい。また、測定エリア26は、図9に示したような矩形に限定されることなく、LEDモジュール21どうしの境界を含んでいれば、どのような形状でもよい。
 図11および図12を参照して、目地調整処理画面について説明する。
 図11には、目地調整処理が適切に行われていないNG状態での目地調整処理画面81が示されており、目地調整処理画面81には、目地状態表示領域82が設けられている。図11に示す例では、目地状態表示領域82には、LEDディスプレイ装置12におけるLEDモジュール21どうしの境界が細線で示されており、目地が目立っている境界、即ち、測定エリア26のコントラストが0でない境界であることを示す太線(ガイド表示)が表示されている。
 図12には、目地調整処理が適切に行われたOK状態での目地調整処理画面81が示されている。図12に示す例では、目地状態表示領域82に表示されているLEDディスプレイ装置12におけるLEDモジュール21どうしの境界は、全て細線で示されており、目地が目立っている境界がないことを表している。
 図13に示すフローチャートを参照して、目地調整処理について説明する。
 ステップS11において、カメラ位置決め処理部41は、図3および図4を参照して上述したようにカメラ位置決め処理を行ってカメラ位置決め処理画面71を表示して、角度調整表示領域73に角度調整量を表示し、位置調整表示領域74に位置調整量を表示する。これにより、作業者は、角度調整量および位置調整量に従って、カメラ13の角度および位置を調整することで、LEDディスプレイ装置12の正面、かつ、調整対象範囲22の中心となる位置にカメラ13を正確に設置する。
 ステップS12において、外光除去処理部42は、図5を参照して上述したように外光除去処理を行って外光の影響を除去し、目地調整処理およびユニフォミティ調整処理を行う際の処理対象範囲を限定する。
 ステップS13において、補正前撮影が行われる。ここで、補正前撮影では、図7を参照して上述したようにハッチ領域25のLED画素24を白色で点灯させた撮影、図8を参照して上述したように測定エリア26のLED画素24を白色で点灯させた撮影、および、図10を参照して上述したようにLEDディスプレイ装置12の調整対象範囲22に緑色の単色画面を表示しつつ、ハッチ領域25の明るさを変化させた撮影が行われる。従って、補正前撮影が行われることによって、目地補正値算出部54は、ハッチ領域25の明るさが+10%、+5%、0%、-5%、および-10%それぞれであるときの測定エリア26のコントラストの測定結果を取得する。
 ステップS14において、目地補正値算出部54は、ステップS13の補正前撮影で取得したコントラストの測定結果について、図10を参照して上述したように、直線補間を行い、コントラストが0になるハッチ領域25の明るさを求める。そして、目地補正値算出部54は、コントラストが0になるハッチ領域25の明るさに該当する信号レベルを、目地補正値として算出する。
 ステップS15において、目地補正値設定部55は、ステップS14で目地補正値算出部54により算出された目地補正値を、LEDディスプレイ装置12の書き換え可能な不揮発性メモリに書き込んで設定する。
 ステップS16において、補正後撮影が行われる。ここで、補正後撮影では、それぞれのLEDモジュール21どうしの境界を挟んで配置される2行または2列のLED画素24の輝度が目地補正値に基づいて補正が適用された状態で、LEDディスプレイ装置12の調整対象範囲22に緑色の単色画面が表示される。そして、図10を参照して上述したようにLEDディスプレイ装置12の調整対象範囲22に緑色の単色画面を表示しつつ、ハッチ領域25の明るさを変化させた撮影が行われる。従って、補正後撮影が行われることによって、目地補正値算出部54は、目地補正値による補正が適用された状態で、ハッチ領域25の明るさが+10%、+5%、0%、-5%、および-10%それぞれであるときの測定エリア26のコントラストの測定結果を取得する。また、コントラストの測定結果に基づいて、目地調整処理画面81が表示される。
 ステップS17において、マニュアル調整による再調整をする必要があるか否かが判定される。例えば、作業者は、目地補正値による補正が適用された状態を目視で確認し、目地調整処理画面81の目地状態表示領域82に表示されている太線(即ち、目地が目立っている境界)に基づいて、マニュアル調整が必要であるか否かを判定する。
 ステップS17において、マニュアル調整による再調整をする必要があると判定された場合、処理はステップS18に進み、従来と同様のマニュアルによる調整手法によって、目地調整が行われる。この場合、マニュアル調整に応じた目地補正値が目地補正値設定部55に供給される。なお、マニュアル調整を行うのに替えて、ステップS13乃至ステップS16の調整処理が再度行われるようにしてもよい。例えば、目地調整処理画面81に再調整処理の実行を指示するGUI(Graphical User Interface)を表示して、マニュアル調整または再調整処理を作業者に選択させることができる。
 ステップS19において、目地補正値設定部55は、ステップS18でマニュアル調整または再調整処理された目地補正値を、LEDディスプレイ装置12の書き換え可能な不揮発性メモリに書き込んだ後、処理は終了される。
 一方、ステップS17において、マニュアル調整による再調整をする必要がないと判定された場合、ステップS15で目地補正値は書き込み済みであり、処理は終了される。
 以上のように目地調整処理が行われることにより、カメラ13を容易に設置することができるとともに、一括で撮影された画像に対して画像処理を施すことで目地座標および測定エリア26を自動で検出してコントラストを算出し、適切な目地補正値を算出することができるので、短時間でバラツキのない目地調整を実現することができる。
 <ユニフォミティ調整処理の処理例>
 図14乃至図19を参照して、ユニフォミティ調整処理の一例について説明する。
 図14には、2×4配列のLEDモジュール21が示されている。以下、図示するように2×4配列のLEDモジュール21の纏まりをキャビネットと称する。キャビネットは、個別の表示装置として動作可能であり、2×4配列以外の配列のLEDモジュール21がキャビネットを構成してもよい。また、LEDディスプレイ装置12は、複数のキャビネットを並べることで任意のサイズおよび解像度の表示装置として構成される。また、図14には、ユニフォミティ調整処理を行う際の調整ポイントとなるマーカ29が表示されている。
 図14のAには、2×4配列のLEDモジュール21からなるキャビネットの上下左右の辺の中央となる4カ所にマーカ29が表示されている。即ち、キャビネットの下辺の中央にマーカ29-1が表示され、キャビネットの左辺の中央にマーカ29-2が表示され、キャビネットの右辺の中央にマーカ29-3が表示され、キャビネットの上辺の中央にマーカ29-4が表示されている。このように、マーカ29を表示することによってキャビネット単位でユニフォミティ調整処理を行うことができ、このようなマーカ29の表示をキャビネットモードと称する。
 図14のBには、2×4配列のLEDモジュール21それぞれの中央となる8カ所にマーカ29が表示されている。このように、マーカ29を表示することによってLEDモジュール21単位でユニフォミティ調整処理を行うことができ、このようなマーカ29の表示をモジュールモードと称する。
 図14のCには、2×4配列のLEDモジュール21からなるキャビネットを左右に分割して、左側の2×2配列のLEDモジュール21および右側の2×2配列のLEDモジュール21それぞれの上下左右の辺の中央となる8カ所にマーカ29が表示されている。即ち、左側の2×2配列のLEDモジュール21の下辺の中央にマーカ29-1が表示され、左側の2×2配列のLEDモジュール21の左辺の中央にマーカ29-2が表示され、左側の2×2配列のLEDモジュール21の右辺の中央にマーカ29-3が表示され、左側の2×2配列のLEDモジュール21の上辺の中央にマーカ29-4が表示されている。また、右側の2×2配列のLEDモジュール21の下辺の中央にマーカ29-5が表示され、右側の2×2配列のLEDモジュール21の左辺の中央にマーカ29-6が表示され、右側の2×2配列のLEDモジュール21の右辺の中央にマーカ29-7が表示され、右側の2×2配列のLEDモジュール21の上辺の中央にマーカ29-8が表示されている。このように、マーカ29を表示することによって2×2配列のLEDモジュール21単位でユニフォミティ調整処理を行うことができ、このようなマーカ29の表示をラジエータモードと称する。
 まず、ユニフォミティ調整処理では、マーカ表示部61は、図14に示したいずれかのモードでマーカ29を表示するようにディスプレイ制御部31に対して指示する。これにより、ディスプレイ制御部31は、図14に示したいずれかのモードでマーカ29を表示するように、即ち、マーカ29のLED画素24が白色で点灯し、マーカ29以外のLED画素24が消灯するように、LEDディスプレイ装置12に対する制御を行う。
 そして、マーカ表示部61は、カメラ13によりLEDディスプレイ装置12が撮影されるようにカメラ制御部32に対して指示する。これに応じて、カメラ制御部32が、カメラ13に対する制御を行うと、カメラ13は、マーカ29のLED画素24が白色で点灯している状態のLEDディスプレイ装置12を撮影する。これにより、カメラ制御部32は、その画像を取得してマーカ表示部61に供給する。
 従って、マーカ表示部61は、マーカ29のLED画素24が白色で点灯している状態のLEDディスプレイ装置12が撮影された画像に基づいて、その画像上のLEDディスプレイ装置12におけるマーカ29を検出することができる。そして、マーカ表示部61は、カメラ13により撮影された画像上のLEDディスプレイ装置12におけるマーカ29を、輝度データ算出部63に通知する。
 次に、ユニフォミティ調整処理では、単色表示部62は、LED画素24に含まれるLED素子の発光色に対応する赤色の単色画像、緑色の単色画像、および青色の単色画像を表示するようにディスプレイ制御部31に対して指示する。これにより、ディスプレイ制御部31は、赤色の単色画像、緑色の単色画像、および青色の単色画像を順番に表示するように、LEDディスプレイ装置12に対する制御を行う。同時に、単色表示部62は、ディスプレイ制御部31の色が変化するたびに、カメラ13によりLEDディスプレイ装置12が撮影されるようにカメラ制御部32に対して指示する。これに応じて、カメラ制御部32が、カメラ13に対する制御を行う。
 従って、単色表示部62は、赤色の単色画像、緑色の単色画像、および青色の単色画像それぞれを表示したLEDディスプレイ装置12を撮影した3枚の画像を取得することができ、それらの画像を、輝度データ算出部63に供給する。ここで、以下、赤色の単色画像を表示したLEDディスプレイ装置12を撮影した画像を、赤色単色の撮影画像と称する。同様に、緑色の単色画像を表示したLEDディスプレイ装置12を撮影した画像を緑色単色の撮影画像と称し、青色の単色画像を表示したLEDディスプレイ装置12を撮影した画像を青色単色の撮影画像と称する。
 ここで、輝度データ算出部63は、カメラ13により撮影した画像には周辺部の明るさが落ち込むシェーディングが発生していることより、カメラ13が使用しているレンズに従ったレンズ校正テーブルに基づいて、赤色単色の撮影画像、緑色単色の撮影画像、および青色単色の撮影画像のレンズシェーディングを修正する。さらに、輝度データ算出部63は、LEDディスプレイ装置12のLED画素24は視野角特性を有していることより、LED校正テーブルに基づいて、LED画素24を正面視したときの明るさとなるように赤色単色の撮影画像、緑色単色の撮影画像、および青色単色の撮影画像の視野角特性を修正する。
 このように、輝度データ算出部63は、赤色単色の撮影画像、緑色単色の撮影画像、および青色単色の撮影画像のレンズシェーディングおよび視野角特性を修正し、それぞれの修正後の画像におけるマーカ29の領域の輝度データを算出する。即ち、輝度データ算出部63は、レンズシェーディングおよび視野角特性が修正された赤色単色の撮影画像におけるマーカ29の領域から赤色の輝度データを算出する。同様に、輝度データ算出部63は、レンズシェーディングおよび視野角特性が修正された緑色単色の撮影画像におけるマーカ29の領域から緑色の輝度データを算出し、レンズシェーディングおよび視野角特性が修正された青色単色の撮影画像におけるマーカ29の領域から青色の輝度データを算出する。そして、輝度データ算出部63は、赤色の輝度データ、緑色の輝度データ、および青色の輝度データをユニフォミティ補正値算出部64に供給する
 ユニフォミティ補正値算出部64は、赤色単色の撮影画像、緑色単色の撮影画像、および青色単色の撮影画像それぞれの基準となる基準輝度データを保持している。例えば、ユニフォミティ補正値算出部64は、基準となるキャビネットを事前に撮影することによって基準輝度データを取得することができる。または、ユニフォミティ補正値算出部64は、基準となるLEDモジュール21や、作業者によって指定されたエリアなどを事前に撮影することによって基準輝度データ取得したり、外部から入力された値を基準輝度データとして取得してもよい。
 そして、ユニフォミティ補正値算出部64は、赤色単色の撮影画像の基準輝度データと、輝度データ算出部63から供給された赤色の輝度データとを比較して相対的な輝度比を換算することで、マーカ29ごとに赤色の輝度比較データを作成する。同様に、ユニフォミティ補正値算出部64は、緑色単色の撮影画像および青色単色の撮影画像についても、マーカ29ごとに、緑色の輝度比較データおよび青色の輝度比較データを作成する。
 そして、ユニフォミティ補正値算出部64は、マーカ29ごとの赤色の輝度比較データから赤色のユニフォミティ補正値を算出し、マーカ29ごとの緑色の輝度比較データから緑色のユニフォミティ補正値を算出し、マーカ29ごとの青色の輝度比較データから青色のユニフォミティ補正値を算出する。
 例えば、ユニフォミティ補正値算出部64は、図14のAに示したようにマーカ29が表示されるキャビネットモードである場合、マーカ29どうしの間を線形補間することで、キャビネット単位でユニフォミティ補正値を算出する。また、ユニフォミティ補正値算出部64は、図14のBに示したようにマーカ29が表示されるモジュールモードである場合、それぞれのマーカ29が表示されているLEDモジュール21単位でユニフォミティ補正値を算出する。また、ユニフォミティ補正値算出部64は、図14のCに示したようにマーカ29が表示されるラジエータモードである場合、マーカ29どうしの間を線形補間することで、2×2配列のLEDモジュール21単位でユニフォミティ補正値を算出する。
 そして、ユニフォミティ補正値算出部64は、赤色のユニフォミティ補正値、緑色のユニフォミティ補正値、および青色のユニフォミティ補正値をユニフォミティ補正値設定部65に供給する。ユニフォミティ補正値設定部65は、赤色のユニフォミティ補正値、緑色のユニフォミティ補正値、および青色のユニフォミティ補正値を、LEDディスプレイ装置12のレジスタに書き込んで設定する。これにより、例えば、単色表示部62が、赤色の単色画像、緑色の単色画像、および青色の単色画像それぞれをLEDディスプレイ装置12に表示させると、全体として均一となるように、赤色の単色画像、緑色の単色画像、および青色の単色画像が表示される。
 このとき、ユニフォミティ補正値が適切に求められていれば、全てのマーカ29における輝度データは均一な値となっており、ユニフォミティ調整処理が適切に行われていたことを確認することができる。
 そして、ユニフォミティ補正値算出部64は、適切に求められたユニフォミティ補正値をユニフォミティ補正値設定部65に供給する。ユニフォミティ補正値設定部65が、ユニフォミティ補正値算出部64から供給されたユニフォミティ補正値を、LEDディスプレイ装置12の書き換え可能な不揮発性メモリに書き込むことで、LEDディスプレイ装置12の使用時には、全体として均一性を備える画像が表示されるように輝度が補正される。これにより、製造時の個体差や経年劣化によるキャビネット間またはLEDモジュール21間の輝度差を補正することができる。
 なお、ユニフォミティ調整処理では、赤色の単色画像、緑色の単色画像、および青色の単色画像を用いる他、LED画素24の構成に応じて、白色の単色画像や、非可視光の単色画像(非可視光を出力可能なLED画素24が用いられている場合)などを用いてもよい。また、これらの単色画像は、LEDディスプレイ装置12の全面に表示されていなくてもよく、例えば、少なくともマーカ29において表示されていればユニフォミティ調整処理を行うことができる。
 図15乃至図18を参照して、ユニフォミティ調整処理画面について説明する。
 図15には、ユニフォミティ調整処理が適切に行われていないNG状態でのユニフォミティ調整処理画面91が示されており、ユニフォミティ調整処理画面91には、ユニフォミティ状態表示領域92が設けられている。また、図15では、2×4配列のLEDモジュール21からなるキャビネットが縦×横が3×2となるように配置された範囲が、調整対象範囲となっている例が示されている。図15に示す例では、ユニフォミティ状態表示領域92には、調整対象範囲の全体に対して均一性を備えていないLEDモジュール21が黒塗り(ガイド表示)で示されている。
 図16には、ユニフォミティ調整処理が適切に行われたOK状態でのユニフォミティ調整処理画面91が示されている。また、図16では、2×4配列のLEDモジュール21からなるキャビネットが縦×横が2×2となるように配置された範囲が、調整対象範囲となっている例が示されている。図16に示す例では、ユニフォミティ状態表示領域92には、調整対象範囲の全体に対して均一性を備えていないLEDモジュール21がないこと、即ち、全てのLEDモジュール21が均一性を備えていることが示されている。
 図17には、ユニフォミティ調整処理が適切に行われていないNG状態でのユニフォミティ調整処理画面91が示されており、ユニフォミティ調整処理画面91には、ユニフォミティ状態表示領域92が設けられている。また、図17では、LEDディスプレイ装置12の全体の範囲が、調整対象範囲となっている例が示されている。図17に示す例では、ユニフォミティ状態表示領域92には、調整対象範囲の全体に対して均一性を備えていないLEDモジュール21が黒塗り(ガイド表示)で示されている。
 図18には、ユニフォミティ調整処理が適切に行われたOK状態でのユニフォミティ調整処理画面91が示されている。また、図18では、LEDディスプレイ装置12の全体の範囲が、調整対象範囲となっている例が示されている。図18に示す例では、ユニフォミティ状態表示領域92には、調整対象範囲の全体に対して均一性を備えていないLEDモジュール21がないこと、即ち、全てのLEDモジュール21が均一性を備えていることが示されている。
 図19に示すフローチャートを参照して、ユニフォミティ調整処理について説明する。
 ステップS21およびS22において、図13のステップS11およびS12と同様の処理が行われる。
 ステップS23において、補正前撮影が行われる。ここで、補正前撮影では、図14を参照して上述したようにマーカ29のLED画素24を白色で点灯させた撮影、並びに、赤色の単色画像、緑色の単色画像、および青色の単色画像を表示させた状態のディスプレイ制御部31の撮影が行われる。従って、補正前撮影が行われることによって、輝度データ算出部63は、マーカ29ごとに、赤色の輝度データ、緑色の輝度データ、および青色の輝度データを取得する。
 ステップS24において、ユニフォミティ補正値算出部64は、マーカ29ごとの赤色の輝度比較データを作成し、その輝度比較データから赤色のユニフォミティ補正値を算出する。同様に、ユニフォミティ補正値算出部64は、マーカ29ごとの緑色の輝度比較データを作成して緑色のユニフォミティ補正値を算出し、マーカ29ごとの青色の輝度比較データを作成して青色のユニフォミティ補正値を算出する。
 ステップS25において、ユニフォミティ補正値設定部65は、ステップS24でユニフォミティ補正値算出部64により算出されたユニフォミティ補正値を、LEDディスプレイ装置12の書き換え可能な不揮発性メモリに書き込んで設定する。
 ステップS26において、補正後撮影が行われる。ここで、補正後撮影では、LEDディスプレイ装置12に対して設定されたユニフォミティ補正値に基づいた補正が適用された状態で、赤色の単色画像、緑色の単色画像、および青色の単色画像がLEDディスプレイ装置12に表示される。そして、ステップS23の補正前撮影と同様に、輝度データ算出部63が、マーカ29ごとに、赤色の輝度データ、緑色の輝度データ、および青色の輝度データを取得する。また、赤色の輝度データ、緑色の輝度データ、および青色の輝度データに基づいて、ユニフォミティ調整処理画面91が表示される。
 ステップS27において、マニュアル調整による再調整をする必要があるか否かが判定される。例えば、作業者は、ユニフォミティ補正値による補正が適用された状態を目視で確認し、ユニフォミティ調整処理画面91のユニフォミティ状態表示領域92に表示されている黒塗り(即ち、均一性を備えていないLEDモジュール21)に基づいて、マニュアル調整が必要であるか否かを判定する。
 ステップS27において、マニュアル調整による再調整をする必要があると判定された場合、処理はステップS28に進み、従来と同様のマニュアルによる調整手法によって、ユニフォミティ調整が行われる。この場合、マニュアル調整に応じたユニフォミティ補正値がユニフォミティ補正値設定部65に供給される。なお、マニュアル調整を行うのに替えて、ステップS23乃至ステップS26の調整処理が再度行われるようにしてもよい。例えば、ユニフォミティ調整処理画面91に再調整処理の実行を指示するGUIを表示して、マニュアル調整または再調整処理を作業者に選択させることができる。
 ステップS29において、ユニフォミティ補正値設定部65は、ステップS28でマニュアル調整または再調整処理されたユニフォミティ補正値を、LEDディスプレイ装置12の書き換え可能な不揮発性メモリに書き込んだ後、処理は終了される。
 一方、ステップS27において、マニュアル調整による再調整をする必要がないと判定された場合、ステップS25でユニフォミティ補正値は書き込み済みであり、処理は終了される。
 以上のようにユニフォミティ調整処理が行われることにより、カメラ13を容易に設置することができるとともに、一括で撮影された画像に対して画像処理を施すことでマーカ29を自動で検出して赤色、緑色、および青色の輝度データを算出し、適切なユニフォミティ補正値を算出することができるので、短時間でバラツキのないユニフォミティ調整を実現することができる。
 <カメラの姿勢推定方法>
 図20を参照して、カメラ13の姿勢を推定する姿勢推定方法について説明する。
 上述したように、ディスプレイシステム11では、LEDディスプレイ装置12の正面かつ調整対象範囲22の中心となる位置にカメラ13を設置して目地調整処理部およびユニフォミティ調整処理を行う必要があった。これに対し、LEDディスプレイ装置12の正面または調整対象範囲22の中心から離れた位置にカメラ13が設置された場合であっても、カメラ13の姿勢を推定することによって、LEDディスプレイ装置12の正面かつ調整対象範囲22の中心となる位置にカメラ13が設置されていたときと同等に、目地調整処理部およびユニフォミティ調整処理に行うことができる。
 例えば、カメラ13の姿勢を推定するためには、LEDディスプレイ装置12の形状を示す形状情報、および、カメラ13が設置されている高さを示す高さ情報を事前に取得しておく必要がある。世界座標系は、LEDディスプレイ装置12の形状情報に基づいて、世界座標系のXY平面がLEDディスプレイ装置12の表示面に平行となるように設けられる。カメラ座標系は、カメラ13の撮像素子の中心を原点として、撮像素子に平行となるように設けられ、カメラ座標系のY方向の原点は、カメラ13の高さ情報に従って設定される。
 そして、上述した図3に示すように、調整対象範囲22の四隅に位置決め用のマーカ23-1乃至23-4を表示させて、カメラ13による撮影を行う。LEDディスプレイ装置12の表示面上におけるマーカ23-1乃至23-4の座標(Xw,Yw,Zw)は、三次元的な世界座標系で表される。
 カメラ13により撮影された画像上において、マーカ23-1乃至23-4が写された点の座標(Xi,Yi)は、二次元的な画像座標系で表される。この座標(Xi,Yi)は、次の式(1)に示すような内部パラメータを用いて、三次元的なカメラ座標系に従った座標(Xc,Yc,Zc)に変換することができる。
Figure JPOXMLDOC01-appb-M000001
 画像上のマーカ23-1乃至23-4が写された点の座標(Xi,Yi)をカメラ座標系で表した座標(Xc,Yc,Zc)は、次の式(2)に示すような外部パラメータを用いて、LEDディスプレイ装置12の表示面上におけるマーカ23-1乃至23-4の座標(Xw,Yw,Zw)に変換することができる。
Figure JPOXMLDOC01-appb-M000002
 従って、この式(2)に示す外部パラメータを最小二乗法によって算出することによって、カメラ13の姿勢を推定することができる。なお、より多数のマーカ23を表示させることで、カメラ13の姿勢の推定精度の向上を図ることができる。
 <外光の映り込みに対する対処>
 図21および図22を参照して、外光の映り込みに対する対処について説明する。
 ディスプレイシステム11では、上述した補正前撮影(図13のステップS13および図19のステップS23)において、LEDディスプレイ装置12に映り込む外光(即ち、LEDディスプレイ装置12で画像を表示する際の発光以外の光)を除去する外光の映り込み除去処理を行うことができる。
 外光の映り込み除去処理では、図21の左側に示すように、ある色の単色画面をLEDディスプレイ装置12の全面に表示させてカメラ13で撮影し、図21の中央に示すように、黒色画像をLEDディスプレイ装置12の全面に表示させて(または、LEDディスプレイ装置12の全面を消灯させた状態として)カメラ13で撮影する。このとき、LEDディスプレイ装置12が設置されている環境に変更がなければ、どちらの画像にもLEDディスプレイ装置12に映り込む外光が写されることになる。
 そして、ある色の単色画面をLEDディスプレイ装置12に表示させて撮影した画像から、黒色画像をLEDディスプレイ装置12の全面に表示させて撮影した画像の差分を求めることで、LEDディスプレイ装置12に映り込む外光を除去することができる。これにより、図21の右側に示すように、LEDディスプレイ装置12に表示されている単色画面だけの画像データを取得することができる。従って、LEDディスプレイ装置12に表示されている単色画面だけの画像データを用いて、目地調整処理およびユニフォミティ調整処理を行うことで、より正確に調整することができる。
 また、ディスプレイシステム11では、目地調整処理およびユニフォミティ調整処理で行われる各撮影の前後で、LEDディスプレイ装置12に映り込む外光をチェックすることによって、LEDディスプレイ装置12に映り込む外光の照度変化による誤調整を防止することができる。
 例えば、図22に示すように、赤色の単色画面、緑色の単色画面、および青色の単色画面をLEDディスプレイ装置12の全面に表示させる前後に、黒色画像をLEDディスプレイ装置12の全面に表示させる。そして、赤色の単色画面を表示させる前後でLEDディスプレイ装置12が写されている領域における差分をチェックすることで、外光の照度変化を確認することができる。同様に、緑色の単色画面を表示させる前後で、および、青色の単色画面を表示させる前後で、LEDディスプレイ装置12が写されている領域における差分をチェックすることで、外光の照度変化を確認することができる。例えば、目地調整処理では、カメラ13の撮像素子の画素単位で減算することで外光の照度変化を確認し、ユニフォミティ調整処理では、測定の単位となるキャビネットごとに外光の照度変化を確認する。
 そして、ディスプレイシステム11では、外光の照度変化が大きい場合には、目地調整処理またはユニフォミティ調整処理を中断することができる。即ち、外光の動的な影響が大きい場合には、調整を正確に行うことができないため、処理を中断して外光の影響を排除する必要がある。
 <ユニフォミティ調整処理>
 図23乃至図26を参照して、ユニフォミティ調整処理について説明する。
 ディスプレイシステム11では、上述したように、複数のLEDモジュール21の纏まりであるキャビネット単位で、ユニフォミティ調整処理を行うことができる。このとき、あるキャビネットを調整対象範囲22としてユニフォミティ調整処理を行うときに、そのキャビネットに隣接するユニフォミティ調整処理が施されたキャビネットを基準とすることができる。
 例えば、図23に示すように、3×3配列のLEDモジュール21からなるキャビネットを調整対象範囲22としてユニフォミティ調整処理を行う例について説明する。図23に示す例では、LEDディスプレイ装置12の左下に配置されている3×3配列のLEDモジュール21が調整済みの調整対象範囲22となっていて、LEDディスプレイ装置12の右下に配置されている3×3配列のLEDモジュール21が調整中の調整対象範囲22となっている。
 そして、調整中の調整対象範囲22のユニフォミティ調整処理を行う際に、調整済みの調整対象範囲22を構成するLEDディスプレイ装置12のうち、調整中の調整対象範囲22に隣接するLEDディスプレイ装置12を、カメラ13による撮影の対象となる撮影エリアとする。このように、調整済みの調整対象範囲22の一部をオーバーラップするようにカメラ13で撮影を行うことにより、調整済みの調整対象範囲22を基準として、調整対象範囲22の境界で輝度の段差が発生しないようにユニフォミティ調整処理を行うことができる。
 例えば、図24のAに示すように、オーバーラップすることなく調整対象範囲22ごとにカメラ13で撮影を行う場合、それぞれの調整対象範囲22に設けられる基準点を基準としてユニフォミティ調整処理が行われる。例えば、右側の調整対象範囲22で基準点となっているLEDディスプレイ装置12の輝度と、左側の調整対象範囲22で基準点となっているLEDディスプレイ装置12の輝度とが異なる場合、ユニフォミティ調整処理が行われた後では、右側の調整対象範囲22の全体の輝度と左側の調整対象範囲22の全体の輝度とが異なることになる。その結果、右側の調整対象範囲22となるキャビネットと左側の調整対象範囲22となるキャビネットとの境界に輝度の段差が発生してしまう。
 これに対し、図24のBに示すように、調整済みの調整対象範囲22の一部をオーバーラップするようにカメラ13で撮影を行う場合、調整済みの調整対象範囲22に基準点を設け、その基準点を基準として、調整中の調整対象範囲22のユニフォミティ調整処理を行うことができる。これにより、調整中の調整対象範囲22の輝度を、調整済みの調整対象範囲22の輝度に一致させることができる。その結果、調整対象範囲22となるキャビネットの境界で輝度の段差が発生することを回避することができ、ディスプレイシステム11は、より大きなサイズのLEDディスプレイ装置12に対応することが可能となる。
 図25のAに示すように、調整中の調整対象範囲22に対して左側に隣接して調整済みの調整対象範囲22が配置されている場合、同一の行ごとに、調整済みの調整対象範囲22にある基準となるLEDモジュール21の明るさをターゲットとして、調整中の調整対象範囲22に対するユニフォミティ調整処理が行われる。
 図25のBに示すように、調整中の調整対象範囲22に対して下側に隣接して調整済みの調整対象範囲22が配置されている場合、同一の列ごとに、調整済みの調整対象範囲22にある基準となるLEDモジュール21の明るさをターゲットとして、調整中の調整対象範囲22に対するユニフォミティ調整処理が行われる。
 図25のCに示すように、調整中の調整対象範囲22に対して左側および下側に隣接して調整済みの調整対象範囲22が配置されている場合、各点ごとに、行方向および列方向の距離に応じて重み付けして合成した明るさをターゲットとして、調整中の調整対象範囲22に対するユニフォミティ調整処理が行われる。即ち、行方向にある調整済みの調整対象範囲22にある基準となるLEDモジュール21の明るさを行方向の距離に応じて重み付けするとともに、列方向にある調整済みの調整対象範囲22にある基準となるLEDモジュール21の明るさを列方向の距離に応じて重み付けした加重平均で、それらの明るさを合成してターゲットとする。
 図26を参照して、ユニフォミティ調整処理で利用されるLED校正テーブルについて説明する。
 例えば、後述する図30に示すように高所に設置されたLEDディスプレイ装置12を見上げるように視聴する場合、LEDディスプレイ装置12のLED画素24を構成する各色のLEDの視野角によって色ズレが発生することになる。そこで、LEDディスプレイ装置12を視聴する位置を想定し、その位置で色ズレが発生しないようにユニフォミティ調整処理を行う際に、LED校正テーブルが利用される。
 図26に示すように、LED校正テーブルは、ユニフォミティ調整処理を行う際のカメラ13の設置位置を基準として、パン方向およびチルト方向それぞれに±45°の範囲で取得される。例えば、レンズ校正テーブルには、水平角度H、垂直角度V、およびLEDディスプレイ装置12までの距離Dごとに、LEDの視野角に応じて色ズレを補正するための補正係数が登録される。
 <ラウンド形状のLEDディスプレイ装置>
 図27乃至図29を参照して、ラウンド形状のLEDディスプレイ装置12について説明する。
 ディスプレイシステム11では、複数のLEDモジュール21からなるキャビネット17ごとに、隣接するキャビネット17どうしの角度差を調整することで、LEDディスプレイ装置12をラウンド形状に設置することができる。そして、ラウンド形状に設置されたLEDディスプレイ装置12の形状を示すカーブ情報を事前に準備することで、カメラ13の位置合わせ時におけるLEDディスプレイ装置12の形状情報として使用することや、ユニフォミティ調整処理における調整対象範囲22のLED校正テーブルの取得に使用することができる。
 図27を参照して、ラウンド形状に設置されたLEDディスプレイ装置12のカーブ情報について説明する。
 図27には、33個のキャビネット17を、隣り合うキャビネット17どうしで所定の角度を設けて配置することでラウンド形状に設置されたLEDディスプレイ装置12を平面視した状態が示されている。そして、カーブ情報には、隣り合うキャビネット17どうしの角度差を示す数値が登録される。図示する例では、キャビネット17-1とキャビネット17―2との角度差が0°としてカーブ情報に登録され、キャビネット17-2とキャビネット17―3との角度差が2°としてカーブ情報に登録される。キャビネット17-3からキャビネット17-6まで、それぞれ互いの角度差が5°としてカーブ情報に登録され、キャビネット17-6からキャビネット17-9まで、それぞれ互いの角度差が10°としてカーブ情報に登録される。以下、同様に、隣り合うキャビネット17どうしの角度差を示す数値が、カーブ情報に登録される。
 図28は、ラウンド形状に設置されたLEDディスプレイ装置12に対して設置されるカメラ13の位置合わせについて説明する図である。
 例えば、カメラ13により撮影された画像、および、LEDディスプレイ装置12の形状情報であるカーブ情報に基づいて、カメラ13の姿勢(Pan/Tilt/Roll,X/Y/Z位置)を推定し、調整対象範囲の正面に向かう角度θと、調整対象範囲の中心からズレている距離Dとを求めることができる。そして、角度θおよび距離Dが0となるようにカメラ13の設置位置を調整することで、調整対象範囲の正面かつ中心となる位置にカメラ13を設置することができる。
 また、ディスプレイシステム11では、LED画素24の視野角に応じたLED校正テーブルとカメラ13が使用しているレンズに従ったレンズ校正テーブルとが分離してあるため、ラウンド形状に設置されたLEDディスプレイ装置12に対して、LED校正テーブルを的確に適用することができる。これにより、例えば、ラウンド形状に設置されたLEDディスプレイ装置12を、見上げるようにカメラ13で撮影したときに得られる歪んだ画像にも対応することができる。
 図29は、ラウンド形状に設置されたLEDディスプレイ装置12におけるユニフォミティ調整処理について説明する図である。
 例えば、ディスプレイシステム11では、LEDディスプレイ装置12の形状を示すカーブ情報、および、LEDディスプレイ装置12に対するカメラ13の設置位置を示すカメラ位置情報に基づいて、測定対象となるLED画素24の視野角αを算出することができる。測定対象となるLED画素24の視野角αは、測定対象となるLED画素24を通ってキャビネット17に対して垂直な方向に向かう直線(一点鎖線)と、測定対象となるLED画素24からカメラ13の焦点に向かう直線(二点鎖線)との角度である。
 そして、ディスプレイシステム11では、全てのLED画素24の視野角αを算出した後、LED校正テーブルに登録されている補正係数をかけた明るさデータを取得することができる。
 <ユニフォミティ調整処理の視聴点モード>
 図30を参照して、ユニフォミティ調整処理の視聴点モードについて説明する。
 ディスプレイシステム11では、視聴点となるカメラ13の位置でユニフォミティが均一となるように調整する視聴点モードを設定し、ディスプレイシステム11の設置案件に応じて、視聴点を任意に選択することができる。
 例えば、図30のAに示すように、LEDディスプレイ装置12が3~5mの高さに設置される設置案件について説明する。図20を参照して上述したように、LEDディスプレイ装置12の正面または調整対象範囲22の中心から離れた位置にカメラ13が設置されていても、カメラ13の姿勢を推定することで、ユニフォミティ調整処理を行うことができる。つまり、3~5mの高さに設置されているLEDディスプレイ装置12のユニフォミティ調整処理を、例えば、1.7mの高さに設置されたカメラ13で行うことができる。
 図30のBには、LEDディスプレイ装置12の正面かつ調整対象範囲22の中心となる位置にカメラ13を設置する正面視モードで、LEDディスプレイ装置12のユニフォミティ調整処理を行う例が示されている。
 正面視モードでユニフォミティ調整処理を行った場合には、LEDディスプレイ装置12を視聴する視聴高さがLEDディスプレイ装置12の正面(例えば、視聴高さ:5.1m)であれば、LEDの視野角の影響を受けず、色ズレの発生しない画像を視聴することができる。一方、この場合、3~5mの高さに設置されているLEDディスプレイ装置12を、例えば、1.7mの高さから視聴すると、LEDディスプレイ装置12の上部でLEDの視野角の影響によって色ズレの発生した画像を視聴することになる。
 また、正面視モードでは、垂直方向に限定した視点調整を行うことによって、LEDディスプレイ装置12を見上げる方向に対応する。例えば、プライベートシアターなどでは、水平方向および垂直方向に適用した1カ所での視聴に対応することができる。また、水平方向および垂直方向の角度によりゲインを調整し、固定してもよい。
 図30のCには、3~5mの高さに設置されているLEDディスプレイ装置12に対して1.7mの高さを視聴点に設定してカメラ13を設置する視聴点モードで、LEDディスプレイ装置12のユニフォミティ調整処理を行う例が示されている。
 視聴点モードでユニフォミティ調整処理を行った場合には、LEDディスプレイ装置12を視聴する視聴高さが1.7mであれば、LEDの視野角の影響を受けず、色ズレの発生しない画像を視聴することができる。一方、この場合、3~5mの高さに設置されているLEDディスプレイ装置12を正面から、例えば、5.1mの高さから視聴すると、LEDディスプレイ装置12の下部でLEDの視野角の影響によって色ズレの発生した画像を視聴することになる。
 このように、ユニフォミティ調整処理の視聴点モードを設定することで、ディスプレイシステム11では、LEDディスプレイ装置12の設置案件に応じて想定される視聴点で画像に色ズレが発生しないような視聴に対応することができる。
 なお、LED校正テーブルを取得するときに、LED画素24の視野角ごとのシェーディングデータを測定する必要がある。その際、LEDモジュール21およびカメラ13のうちの一方を固定し、他方をロボットアームに装着して、ロボットアームを動かして相対的な角度を変更することでデータを測定することができる。これにより、例えば、波長ぶりに対応可能となり、平面光源を不要とすることができる。
 <コンピュータの構成例>
 次に、上述した一連の処理は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
 図31は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示すブロック図である。
 プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク105やROM103に予め記録しておくことができる。
 あるいはまた、プログラムは、ドライブ109によって駆動されるリムーバブル記録媒体111に格納(記録)しておくことができる。このようなリムーバブル記録媒体111は、いわゆるパッケージソフトウェアとして提供することができる。ここで、リムーバブル記録媒体111としては、例えば、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto Optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリ等がある。
 なお、プログラムは、上述したようなリムーバブル記録媒体111からコンピュータにインストールする他、通信網や放送網を介して、コンピュータにダウンロードし、内蔵するハードディスク105にインストールすることができる。すなわち、プログラムは、例えば、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送することができる。
 コンピュータは、CPU(Central Processing Unit)102を内蔵しており、CPU102には、バス101を介して、入出力インタフェース110が接続されている。
 CPU102は、入出力インタフェース110を介して、ユーザによって、入力部107が操作等されることにより指令が入力されると、それに従って、ROM(Read Only Memory)103に格納されているプログラムを実行する。あるいは、CPU102は、ハードディスク105に格納されたプログラムを、RAM(Random Access Memory)104にロードして実行する。
 これにより、CPU102は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU102は、その処理結果を、必要に応じて、例えば、入出力インタフェース110を介して、出力部106から出力、あるいは、通信部108から送信、さらには、ハードディスク105に記録等させる。
 なお、入力部107は、キーボードや、マウス、マイク等で構成される。また、出力部106は、LCD(Liquid Crystal Display)やスピーカ等で構成される。
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
 また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。
 さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
 また、例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。
 また、例えば、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。換言するに、1つのステップに含まれる複数の処理を、複数のステップの処理として実行することもできる。逆に、複数のステップとして説明した処理を1つのステップとしてまとめて実行することもできる。
 なお、コンピュータが実行するプログラムは、プログラムを記述するステップの処理が、本明細書で説明する順序に沿って時系列に実行されるようにしても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで個別に実行されるようにしても良い。つまり、矛盾が生じない限り、各ステップの処理が上述した順序と異なる順序で実行されるようにしてもよい。さらに、このプログラムを記述するステップの処理が、他のプログラムの処理と並列に実行されるようにしても良いし、他のプログラムの処理と組み合わせて実行されるようにしても良い。
 なお、本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。
 <構成の組み合わせ例>
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数のLED(Light Emitting Diode)モジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、前記LEDディスプレイ装置における、互いに隣接する前記LEDモジュールどうしの境界を含む目地エリア、および、前記目地エリア外部の背景エリアの明るさを測定し、前記背景エリアに対する前記目地エリアのコントラストを測定するコントラスト測定部と、
 前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を調整する目地補正値を算出する目地補正値算出部と
 を備える情報処理システム。
(2)
 前記コントラスト測定部は、前記目地エリアまたは前記背景エリアの明るさを所定の割合で変更することで、複数の前記コントラストを測定し、
 前記目地補正値算出部は、前記複数のコントラストの測定結果に基づいて、前記目地補正値を算出する
 上記(1)に記載の情報処理システム。
(3)
 前記目地補正値算出部は、前記複数のコントラストについて直線補間を行い、前記コントラストが0になる前記目地エリアの明るさに該当する信号レベルを、前記目地補正値として算出する
 上記(2)に記載の情報処理システム。
(4)
 前記LEDディスプレイ装置を撮影した画像上で、互いに隣接する前記LEDモジュールどうしの境界を挟んで配置される2行または2列のLED画素を含む所定のLED画素に対応する領域の位置を目地座標として検出する目地座標検出部
 をさらに備える上記(1)から(3)までのいずれかに記載の情報処理システム。
(5)
 前記目地座標検出部は、互いに隣接する前記LEDモジュールどうしの境界を挟んで配置される2行または2列のLED画素を含む所定のLED画素を点灯させ、前記所定のLED画素以外のLED画素を消灯させた状態の前記LEDディスプレイ装置を撮影した画像に基づいて、前記目地座標を検出する
 上記(4)に記載の情報処理システム。
(6)
 前記LEDディスプレイ装置を撮影した画像上で、互いに隣接する前記LEDモジュールどうしの境界を含む所定の形状の測定エリアに対応する領域を検出する測定エリア検出部
 をさらに備える上記(4)に記載の情報処理システム。
(7)
 前記測定エリア検出部は、前記測定エリアのLED画素を点灯させ、前記測定エリア以外のLED画素を消灯させた状態の前記LEDディスプレイ装置を撮影した画像に基づいて、前記測定エリアに対応する領域を検出する
 上記(6)に記載の情報処理システム。
(8)
 前記測定エリアは、互いに隣接する前記LEDモジュールどうしの境界の両端近傍に設けられる
 上記(6)に記載の情報処理システム。
(9)
 前記コントラスト測定部は、所定の色の単色画面を表示している前記LEDディスプレイ装置を撮影した画像上で、
  前記測定エリアに対応する領域、かつ、前記目地座標に対応する領域であって、その領域における前記所定の色の明るさ成分を、前記目地エリアの明るさとして検出し、
  前記測定エリアに対応する領域、かつ、前記目地座標以外に対応する領域であって、その領域における前記所定の色の明るさ成分を、前記背景エリアの明るさとして検出する
 上記(6)に記載の情報処理システム。
(10)
 前記コントラスト測定部は、前記目地補正値に基づいて補正が適用された状態で、前記単色画面を表示している前記LEDディスプレイ装置を撮影した画像を用いて前記コントラストを測定し、その測定結果を提示する目地調整処理画面を表示させる
 上記(9)に記載の情報処理システム。
(11)
 前記目地調整処理画面では、前記測定エリアにおける前記コントラストが0でない境界であることを示すガイド表示が行われる
 上記(10)に記載の情報処理システム。
(12)
 前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を再調整する必要があるか否かが判定される
 上記(10)に記載の情報処理システム。
(13)
 前記目地補正値算出部によって求められた前記目地補正値を、前記LEDディスプレイ装置の記憶部に書き込んで設定する目地補正値設定部
 をさらに備える上記(1)から(12)までのいずれかに記載の情報処理システム。
(14)
 前記LEDディスプレイ装置の正面、かつ、前記目地補正値を算出する対象となる対象範囲の中心となる位置に、前記LEDディスプレイ装置を撮影するカメラを正確に設置するためのカメラ位置決め処理を行うカメラ位置決め処理部
 をさらに備える上記(1)から(13)までのいずれかに記載の情報処理システム。
(15)
 前記カメラ位置決め処理部は、前記対象範囲の指定を受け付けて、指定された前記対象範囲に基づいてカメラ位置決め処理を行う
 上記(14)に記載の情報処理システム。
(16)
 前記カメラ位置決め処理部は、前記対象範囲の四隅に位置決め用のマーカを表示させた状態の前記LEDディスプレイ装置を撮影した画像に基づいて、その画像上における前記位置決め用のマーカに対応する4つの領域を検出し、事前に取得している目標とする4つのマーカの基準位置座標データに一致させるための前記カメラの角度および位置を調整する調整量を算出する
 上記(14)に記載の情報処理システム。
(17)
 前記カメラ位置決め処理部は、前記カメラの角度および位置を調整する調整量を表示する表示領域が設けられるカメラ位置決め処理画面を表示させる
 上記(16)に記載の情報処理システム。
(18)
 全面に黒色以外の所定色の画像を表示させた状態の前記LEDディスプレイ装置を撮影した画像から、全面に黒色画像を表示させた状態または全面を消灯させた状態の前記LEDディスプレイ装置を撮影した画像を減算する演算を行うことにより、前記LEDディスプレイ装置の前記所定色の画像だけが残った画像を取得し、その画像上で前記所定色の画像に対応する領域を処理対象範囲として限定する外光除去処理部
 をさらに備える上記(1)から(17)までのいずれかに記載の情報処理システム。
(19)
 情報処理システムが、
 複数のLED(Light Emitting Diode)モジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、前記LEDディスプレイ装置における、互いに隣接する前記LEDモジュールどうしの境界を含む目地エリア、および、前記目地エリア外部の背景エリアの明るさを測定し、前記背景エリアに対する前記目地エリアのコントラストを測定することと、
 前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を調整する目地補正値を算出することと
 を含む処理を行う調整方法。
(20)
 情報処理システムのコンピュータに、
 複数のLED(Light Emitting Diode)モジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、前記LEDディスプレイ装置における、互いに隣接する前記LEDモジュールどうしの境界を含む目地エリア、および、前記目地エリア外部の背景エリアの明るさを測定し、前記背景エリアに対する前記目地エリアのコントラストを測定することと、
 前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を調整する目地補正値を算出することと
 を含む処理を実行させるためのプログラム。
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 11 ディスプレイシステム, 12 LEDディスプレイ装置, 13 カメラ, 14 情報処理装置, 15 ディスプレイコントローラ, 16 照明装置, 21 LEDモジュール, 22 調整対象範囲, 23 位置決め用のマーカ, 24 LED画素, 25 ハッチ領域, 26 測定エリア, 27 目地エリア, 28 背景エリア, 29 マーカ, 31 ディスプレイ制御部, 32 カメラ制御部, 33 画面表示制御部, 34 LEDディスプレイ調整処理部, 41 カメラ位置決め処理部, 42 外光除去処理部, 43 目地調整処理部, 44 ユニフォミティ調整処理部, 51 目地座標検出部, 52 測定エリア検出部, 53 コントラスト測定部, 54 目地補正値算出部, 55 目地補正値設定部, 61 マーカ表示部, 62 単色表示部, 63 輝度データ算出部, 64 ユニフォミティ補正値算出部, 65 ユニフォミティ補正値設定部

Claims (20)

  1.  複数のLED(Light Emitting Diode)モジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、前記LEDディスプレイ装置における、互いに隣接する前記LEDモジュールどうしの境界を含む目地エリア、および、前記目地エリア外部の背景エリアの明るさを測定し、前記背景エリアに対する前記目地エリアのコントラストを測定するコントラスト測定部と、
     前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を調整する目地補正値を算出する目地補正値算出部と
     を備える情報処理システム。
  2.  前記コントラスト測定部は、前記目地エリアまたは前記背景エリアの明るさを所定の割合で変更することで、複数の前記コントラストを測定し、
     前記目地補正値算出部は、前記複数のコントラストの測定結果に基づいて、前記目地補正値を算出する
     請求項1に記載の情報処理システム。
  3.  前記目地補正値算出部は、前記複数のコントラストについて直線補間を行い、前記コントラストが0になる前記目地エリアの明るさに該当する信号レベルを、前記目地補正値として算出する
     請求項2に記載の情報処理システム。
  4.  前記LEDディスプレイ装置を撮影した画像上で、互いに隣接する前記LEDモジュールどうしの境界を挟んで配置される2行または2列のLED画素を含む所定のLED画素に対応する領域の位置を目地座標として検出する目地座標検出部
     をさらに備える請求項1に記載の情報処理システム。
  5.  前記目地座標検出部は、互いに隣接する前記LEDモジュールどうしの境界を挟んで配置される2行または2列のLED画素を含む所定のLED画素を点灯させ、前記所定のLED画素以外のLED画素を消灯させた状態の前記LEDディスプレイ装置を撮影した画像に基づいて、前記目地座標を検出する
     請求項4に記載の情報処理システム。
  6.  前記LEDディスプレイ装置を撮影した画像上で、互いに隣接する前記LEDモジュールどうしの境界を含む所定の形状の測定エリアに対応する領域を検出する測定エリア検出部
     をさらに備える請求項4に記載の情報処理システム。
  7.  前記測定エリア検出部は、前記測定エリアのLED画素を点灯させ、前記測定エリア以外のLED画素を消灯させた状態の前記LEDディスプレイ装置を撮影した画像に基づいて、前記測定エリアに対応する領域を検出する
     請求項6に記載の情報処理システム。
  8.  前記測定エリアは、互いに隣接する前記LEDモジュールどうしの境界の両端近傍に設けられる
     請求項6に記載の情報処理システム。
  9.  前記コントラスト測定部は、所定の色の単色画面を表示している前記LEDディスプレイ装置を撮影した画像上で、
      前記測定エリアに対応する領域、かつ、前記目地座標に対応する領域であって、その領域における前記所定の色の明るさ成分を、前記目地エリアの明るさとして検出し、
      前記測定エリアに対応する領域、かつ、前記目地座標以外に対応する領域であって、その領域における前記所定の色の明るさ成分を、前記背景エリアの明るさとして検出する
     請求項6に記載の情報処理システム。
  10.  前記コントラスト測定部は、前記目地補正値に基づいて補正が適用された状態で、前記単色画面を表示している前記LEDディスプレイ装置を撮影した画像を用いて前記コントラストを測定し、その測定結果を提示する目地調整処理画面を表示させる
     請求項9に記載の情報処理システム。
  11.  前記目地調整処理画面では、前記測定エリアにおける前記コントラストが0でない境界であることを示すガイド表示が行われる
     請求項10に記載の情報処理システム。
  12.  前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を再調整する必要があるか否かが判定される
     請求項10に記載の情報処理システム。
  13.  前記目地補正値算出部によって求められた前記目地補正値を、前記LEDディスプレイ装置の記憶部に書き込んで設定する目地補正値設定部
     をさらに備える請求項1に記載の情報処理システム。
  14.  前記LEDディスプレイ装置の正面、かつ、前記目地補正値を算出する対象となる対象範囲の中心となる位置に、前記LEDディスプレイ装置を撮影するカメラを正確に設置するためのカメラ位置決め処理を行うカメラ位置決め処理部
     をさらに備える請求項1に記載の情報処理システム。
  15.  前記カメラ位置決め処理部は、前記対象範囲の指定を受け付けて、指定された前記対象範囲に基づいてカメラ位置決め処理を行う
     請求項14に記載の情報処理システム。
  16.  前記カメラ位置決め処理部は、前記対象範囲の四隅に位置決め用のマーカを表示させた状態の前記LEDディスプレイ装置を撮影した画像に基づいて、その画像上における前記位置決め用のマーカに対応する4つの領域を検出し、事前に取得している目標とする4つのマーカの基準位置座標データに一致させるための前記カメラの角度および位置を調整する調整量を算出する
     請求項14に記載の情報処理システム。
  17.  前記カメラ位置決め処理部は、前記カメラの角度および位置を調整する調整量を表示する表示領域が設けられるカメラ位置決め処理画面を表示させる
     請求項16に記載の情報処理システム。
  18.  処理対象範囲に黒色以外の所定色の画像を表示させた状態の前記LEDディスプレイ装置を撮影した画像から、全面に黒色画像を表示させた状態または全面を消灯させた状態の前記LEDディスプレイ装置を撮影した画像を減算する演算を行うことにより、前記LEDディスプレイ装置の前記所定色の画像だけが残った画像を取得し、その画像上で前記所定色の画像に対応する領域を処理対象範囲として限定する外光除去処理部
     をさらに備える請求項1に記載の情報処理システム。
  19.  情報処理システムが、
     複数のLED(Light Emitting Diode)モジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、前記LEDディスプレイ装置における、互いに隣接する前記LEDモジュールどうしの境界を含む目地エリア、および、前記目地エリア外部の背景エリアの明るさを測定し、前記背景エリアに対する前記目地エリアのコントラストを測定することと、
     前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を調整する目地補正値を算出することと
     を含む処理を行う調整方法。
  20.  情報処理システムのコンピュータに、
     複数のLED(Light Emitting Diode)モジュールがタイル状に配置されて構成されるLEDディスプレイ装置を撮影して得られる画像に基づいて、前記LEDディスプレイ装置における、互いに隣接する前記LEDモジュールどうしの境界を含む目地エリア、および、前記目地エリア外部の背景エリアの明るさを測定し、前記背景エリアに対する前記目地エリアのコントラストを測定することと、
     前記コントラストの測定結果に基づいて、前記LEDモジュールどうしの境界における輝度を調整する目地補正値を算出することと
     を含む処理を実行させるためのプログラム。
PCT/JP2023/013119 2022-04-21 2023-03-30 情報処理システム、調整方法、およびプログラム WO2023203984A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022070297 2022-04-21
JP2022-070297 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023203984A1 true WO2023203984A1 (ja) 2023-10-26

Family

ID=88419734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013119 WO2023203984A1 (ja) 2022-04-21 2023-03-30 情報処理システム、調整方法、およびプログラム

Country Status (2)

Country Link
TW (1) TW202407665A (ja)
WO (1) WO2023203984A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070019461A (ko) * 2005-08-12 2007-02-15 삼성에스디아이 주식회사 유기 전계발광 표시장치의 구동 방법
JP2014095793A (ja) * 2012-11-09 2014-05-22 Sharp Corp 表示装置のムラの表示方法、プログラム
CN106373522A (zh) * 2016-11-21 2017-02-01 西安诺瓦电子科技有限公司 拼接亮暗线调节方法
CN112289209A (zh) * 2020-10-20 2021-01-29 长春希达电子技术有限公司 Led显示箱体及显示屏拼缝像素间距亮度纠正方法
CN112419966A (zh) * 2020-11-17 2021-02-26 长春希达电子技术有限公司 一种显示单元间非标准间距像素亮度修正方法
CN112700753A (zh) * 2020-12-25 2021-04-23 视联动力信息技术股份有限公司 拼接屏幕显示方法、装置、电子设备及存储介质
CN114283742A (zh) * 2022-01-14 2022-04-05 季华实验室 换后显示单元亮度修正方法、装置、电子设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070019461A (ko) * 2005-08-12 2007-02-15 삼성에스디아이 주식회사 유기 전계발광 표시장치의 구동 방법
JP2014095793A (ja) * 2012-11-09 2014-05-22 Sharp Corp 表示装置のムラの表示方法、プログラム
CN106373522A (zh) * 2016-11-21 2017-02-01 西安诺瓦电子科技有限公司 拼接亮暗线调节方法
CN112289209A (zh) * 2020-10-20 2021-01-29 长春希达电子技术有限公司 Led显示箱体及显示屏拼缝像素间距亮度纠正方法
CN112419966A (zh) * 2020-11-17 2021-02-26 长春希达电子技术有限公司 一种显示单元间非标准间距像素亮度修正方法
CN112700753A (zh) * 2020-12-25 2021-04-23 视联动力信息技术股份有限公司 拼接屏幕显示方法、装置、电子设备及存储介质
CN114283742A (zh) * 2022-01-14 2022-04-05 季华实验室 换后显示单元亮度修正方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
TW202407665A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
JP3925521B2 (ja) スクリーンの一部の辺を用いたキーストーン補正
US9860494B2 (en) System and method for calibrating a display system using a short throw camera
EP2721383B1 (en) System and method for color and intensity calibrating of a display system for practical usage
JP4637845B2 (ja) マルチプロジェクションシステムにおける幾何補正方法
US10750141B2 (en) Automatic calibration projection system and method
JP3497805B2 (ja) 画像投影表示装置
JP4165540B2 (ja) 投写画像の位置調整方法
WO2005002240A1 (ja) 表示特性補正データの算出方法、表示特性補正データの算出プログラム、表示特性補正データの算出装置
WO2022206527A1 (zh) 投影图像的校正方法及激光投影设备
EP1861748A1 (en) Method of and apparatus for automatically adjusting alignement of a projector with respect to a projection screen
JP2007043275A (ja) 投写画像の位置調整方法
JP2019168546A (ja) 投影制御装置、投影装置、投影制御方法及びプログラム
WO2019167455A1 (ja) 情報処理装置、情報処理装置の演算方法、プログラム
JP5217496B2 (ja) 画像投影システム、制御装置、画像投影方法、プログラム及び記録媒体
JP2005099150A (ja) 画像表示装置の画像補正データ算出方法
US11735078B2 (en) Control device, control method, control program, and control system
JP2009049862A (ja) 投射画像の形状歪補正支援システム、投射画像の形状歪補正支援方法、及びプロジェクタ
JP4661576B2 (ja) 投写画像の位置調整方法
WO2023203984A1 (ja) 情報処理システム、調整方法、およびプログラム
WO2023203985A1 (ja) 情報処理システム、調整方法、およびプログラム
US11977811B2 (en) Controlling characteristics of light output from LED walls
JP2002365718A (ja) マルチディスプレイ装置およびその調整方法
JP6118624B2 (ja) マルチプロジェクタシステム及びマルチプロジェクタの調整方法
US11611732B1 (en) Method and device for aligning color channels
JP2012113244A (ja) 画像処理装置、画像処理方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791636

Country of ref document: EP

Kind code of ref document: A1