WO2023203724A1 - Display device, and computer-readable storage medium - Google Patents

Display device, and computer-readable storage medium Download PDF

Info

Publication number
WO2023203724A1
WO2023203724A1 PCT/JP2022/018442 JP2022018442W WO2023203724A1 WO 2023203724 A1 WO2023203724 A1 WO 2023203724A1 JP 2022018442 W JP2022018442 W JP 2022018442W WO 2023203724 A1 WO2023203724 A1 WO 2023203724A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
update cycle
state
screen
component
Prior art date
Application number
PCT/JP2022/018442
Other languages
French (fr)
Japanese (ja)
Inventor
貫太 渡邉
和弘 平内
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/018442 priority Critical patent/WO2023203724A1/en
Publication of WO2023203724A1 publication Critical patent/WO2023203724A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools

Definitions

  • the present disclosure relates to a display device and a computer-readable storage medium.
  • a plurality of screen components are displayed on the display screen of a control device that controls industrial machinery.
  • the plurality of screen components are, for example, a screen component that displays the feed rate and a screen component that displays the rotation speed of the main shaft. These multiple screen components are set to be updated at mutually different update cycles.
  • a control device that, when an operator specifies a screen component, updates the specified screen component at an update cycle that is shorter than the update cycle of other screen components (for example, Patent Document 1).
  • the display device includes a storage unit that stores a relationship between an update cycle of at least one screen component displayed on the display screen and at least one of a state of the industrial machine and an action of an operator, and at least one of the state and the action of the operator. determining the update cycle based on the relationship stored in the storage unit and the state determined by the determination unit; and determining the update cycle based on the relationship stored in the storage unit and the state determined by the determination unit a determining unit that performs at least one of determining the update period based on the behavior determined by the determining unit; and displaying the at least one screen component based on the update period determined by the determining unit. and a display section for displaying.
  • a computer-readable storage medium stores a relationship between an update cycle of at least one screen component displayed on a display screen and at least one of a state of an industrial machine and an action of an operator; determining the update period based on the stored relationship and the determined state; and determining the update period based on the stored relationship and the determined behavior. and displaying the at least one screen component based on the determined update period.
  • FIG. 2 is a block diagram showing an example of a hardware configuration of an industrial machine. It is a block diagram showing an example of the function of a control device.
  • FIG. 3 is a diagram illustrating an example of the relationship between the update cycle of screen components and the state of industrial machinery.
  • FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
  • FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
  • FIG. 3 is a diagram illustrating an example of the relationship between the update cycle of screen components and the state of industrial machinery.
  • FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
  • FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
  • FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
  • FIG. 3 is a diagram illustrating an example of the relationship between the update cycle of screen components and the state of industrial machinery.
  • FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
  • FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
  • 3 is a flowchart illustrating an example of the flow of processing executed in a display device. It is a block diagram showing an example of the function of a display device.
  • FIG. 7 is a diagram illustrating an example of the relationship between the update cycle of screen components and operator behavior.
  • FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
  • FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
  • a display device is a device that displays information regarding industrial machinery on a display screen.
  • Industrial machines are, for example, machine tools, wire electrical discharge machines, injection molding machines, industrial robots and three-dimensional printers.
  • Machine tools are, for example, lathes, machining centers, and multitasking machines.
  • the information regarding the industrial machine includes, for example, information indicating the position, speed, and acceleration of a plurality of control axes of the industrial machine.
  • the information regarding the industrial machine includes information regarding the operating program that operates the industrial machine.
  • the operation program is, for example, a machining program for a machine tool or an operation program for an industrial robot.
  • the display device is installed, for example, in a control device that controls industrial machinery.
  • the display device may be implemented in a server or a PC (Personal Computer) connected to the control device.
  • PC Personal Computer
  • FIG. 1 is a block diagram showing an example of the hardware configuration of an industrial machine including a control device.
  • the industrial machine 1 includes a control device 2, an input/output device 3, a servo amplifier 4, a servo motor 5, a spindle amplifier 6, a spindle motor 7, and an auxiliary device 8.
  • the control device 2 is a device that controls the entire industrial machine 1.
  • the control device 2 includes a hardware processor 201 , a bus 202 , a ROM (Read Only Memory) 203 , a RAM (Random Access Memory) 204 , and a nonvolatile memory 205 .
  • the hardware processor 201 is a processor that controls the entire control device 2 according to a system program.
  • the hardware processor 201 reads a system program stored in the ROM 203 via the bus 202, and performs various processes based on the system program.
  • the hardware processor 201 controls the servo motor 5 and the spindle motor 7 based on a machining program, for example.
  • the hardware processor 201 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
  • the hardware processor 201 analyzes a machining program and outputs control commands to the servo motor 5 and spindle motor 7, for example, every control cycle.
  • the bus 202 is a communication path that connects each piece of hardware within the control device 2 to each other. Each piece of hardware within the control device 2 exchanges data via a bus 202.
  • the ROM 203 is a storage device that stores system programs and the like for controlling the entire control device 2.
  • ROM 203 is a computer readable storage medium.
  • the RAM 204 is a storage device that temporarily stores various data.
  • the RAM 204 functions as a work area for the hardware processor 201 to process various data.
  • the nonvolatile memory 205 is a storage device that retains data even when the industrial machine 1 is powered off and the control device 2 is not supplied with power.
  • Nonvolatile memory 205 stores, for example, operating programs and various parameters.
  • Non-volatile memory 205 is a computer readable storage medium.
  • the non-volatile memory 205 is configured with, for example, battery-backed memory or an SSD (Solid State Drive).
  • the control device 2 further includes an interface 206, an axis control circuit 207, a spindle control circuit 208, a PLC (Programmable Logic Controller) 209, and an I/O unit 210.
  • an interface 206 an interface 206, an axis control circuit 207, a spindle control circuit 208, a PLC (Programmable Logic Controller) 209, and an I/O unit 210.
  • PLC Programmable Logic Controller
  • the interface 206 connects the bus 202 and the input/output device 3.
  • the interface 206 sends various data processed by the hardware processor 201 to the input/output device 3, for example.
  • the input/output device 3 receives various data via the interface 206 and displays the various data.
  • the input/output device 3 also receives input of various data and sends the various data to, for example, the hardware processor 201 via the interface 206.
  • the input/output device 3 is, for example, a touch panel.
  • the input/output device 3 is, for example, a capacitive touch panel. Note that the touch panel is not limited to a capacitive type, and may be a touch panel of another type.
  • the input/output device 3 is installed on an operation panel (not shown) in which the control device 2 is housed.
  • the axis control circuit 207 is a circuit that controls the servo motor 5.
  • the axis control circuit 207 receives control commands from the hardware processor 201 and sends various commands for driving the servo motor 5 to the servo amplifier 4.
  • the axis control circuit 207 sends a torque command for controlling the torque of the servo motor 5 to the servo amplifier 4, for example.
  • the servo amplifier 4 receives a command from the axis control circuit 207 and supplies current to the servo motor 5.
  • the servo motor 5 is driven by receiving current from the servo amplifier 4.
  • Servo motor 5 is provided on each control axis of industrial machine 1 .
  • the servo motor 5 is, for example, an X-axis servo motor, a Y-axis servo motor, a Z-axis servo motor, an A-axis servo motor, and a C-axis servo motor. Including motor.
  • the servo motor 5 is connected to, for example, a ball screw that drives a tool rest. By driving the servo motor 5, structures of the industrial machine 1, such as a tool post, move in the direction of a predetermined control axis.
  • the servo motor 5 has a built-in encoder (not shown) that detects the position of the control axis and the feed rate. Position feedback information and speed feedback information indicating the position of the control axis detected by the encoder and the feed rate of the control axis, respectively, are fed back to the axis control circuit 207. Thereby, the axis control circuit 207 performs feedback control of the control axis.
  • the spindle control circuit 208 is a circuit for controlling the spindle motor 7.
  • the spindle control circuit 208 receives a control command from the hardware processor 201 and sends a command for driving the spindle motor 7 to the spindle amplifier 6.
  • the spindle control circuit 208 sends a spindle speed command for controlling the rotational speed of the spindle motor 7 to the spindle amplifier 6, for example.
  • the spindle amplifier 6 receives a command from the spindle control circuit 208 and supplies current to the spindle motor 7.
  • the spindle motor 7 is driven by receiving current from the spindle amplifier 6.
  • the spindle motor 7 is connected to the main shaft and rotates the main shaft.
  • the PLC 209 is a device that executes a ladder program to control the auxiliary equipment 8. PLC 209 sends commands to auxiliary equipment 8 via I/O unit 210.
  • the I/O unit 210 is an interface that connects the PLC 209 and the auxiliary equipment 8.
  • the I/O unit 210 sends the command received from the PLC 209 to the auxiliary device 8.
  • the auxiliary equipment 8 is installed in the industrial machine 1 and is a device that performs auxiliary operations in the industrial machine 1. Auxiliary equipment 8 operates based on instructions received from I/O unit 210. The auxiliary equipment 8 may be equipment installed around the industrial machine 1. The auxiliary equipment 8 is, for example, a tool changer, a cutting fluid injection device, or an opening/closing door drive device.
  • FIG. 2 is a block diagram showing an example of the functions of the control device 2 that controls the industrial machine 1.
  • the control device 2 includes a control section 21 and a display device 22.
  • the control unit 21 is realized, for example, by the hardware processor 201 performing arithmetic processing using a system program stored in the ROM 203, an operation program stored in the nonvolatile memory 205, and various data.
  • the control unit 21 controls one or more control axes of the industrial machine 1 based on an operation program.
  • the one or more control axes include, for example, at least one of the X axis, the Y axis, and the Z axis.
  • the plurality of control axes may further include at least one of the A-axis, B-axis, and C-axis.
  • the control unit 21 outputs information indicating the state of the industrial machine 1 to the display device 22.
  • the state of the industrial machine 1 means the setting state and operating state of the industrial machine 1.
  • the setting state includes a driving mode setting state in which one of the plurality of driving modes is set.
  • the operating states include an editing state where an operating program is being edited, an execution state where the operating program is being executed, and an interrupt state where an interrupt is being executed. Further, the operating state may include the positions, speeds, and accelerations of a plurality of control axes.
  • the information indicating the state of the industrial machine 1 includes at least one of an operation mode signal, an automatic operation start signal, and an interrupt signal.
  • the operation mode signal is a signal indicating the operation mode set for the industrial machine 1.
  • the operation modes include automatic operation mode, MDI (Manual Data Input) operation mode, and manual operation mode.
  • the driving mode signals include an automatic driving mode signal, an MDI driving mode signal, and a manual driving mode signal, which correspond to these driving modes, respectively.
  • the automatic operation mode is a mode in which the industrial machine 1 is automatically operated based on an operation program created in advance.
  • the automatic operation mode is used, for example, when the industrial machine 1 continuously processes a plurality of workpieces.
  • the MDI operation mode is a mode in which the industrial machine 1 is operated based on an operation program manually input by the operator.
  • the MDI operation mode is used, for example, when a simple operation test of the industrial machine 1 is performed.
  • the manual operation mode is a mode in which the operator operates the industrial machine 1 using the axis movement switch on the operation panel, the pulse generator, etc.
  • the manual operation mode is used, for example, when preparing the industrial machine 1 for operation.
  • the automatic operation start signal is a signal indicating that automatic operation has started and the operation program is being executed.
  • the automatic operation start signal is a signal indicating that execution of the operation program has been started by pressing the cycle start button.
  • the interrupt signal is a signal indicating that an interrupt is performed during automatic operation of the industrial machine 1 and that the interrupt is being executed.
  • the interrupt signal is output, for example, when an operator performs an interrupt operation while execution of an operating program is temporarily suspended.
  • the interrupt operation is performed, for example, by turning on a predetermined switch provided on the operation panel of the control device 2. Note that while the interrupt is being executed, the operator can operate the industrial machine 1 using the axis movement switch on the operation panel, the pulse generator, etc., as in the manual operation mode.
  • the display device 22 includes a storage section 221, a determination section 222, a determination section 223, and a display section 224.
  • the storage unit 221 is realized, for example, by storing various data and various programs in the RAM 204 or the nonvolatile memory 205.
  • the determination unit 222, the determination unit 223, and the display unit 224 are configured such that, for example, the hardware processor 201 performs arithmetic processing using the system program stored in the ROM 203, the operation program stored in the nonvolatile memory 205, and various data. This is achieved by
  • the storage unit 221 stores the relationship between the update cycle of at least one screen component displayed on the display screen and the state of the industrial machine 1.
  • the display screen is, for example, the display screen of the input/output device 3.
  • the screen component is an image displayed on a display screen for presenting various information regarding the industrial machine 1 or accepting various information, and a program for displaying the image.
  • Screen components include, for example, a coordinate value display component that displays coordinate values that indicate the position of the control axis, an editor component that is used to edit an operation program, a feed rate display component that displays the feed rate of the control axis, and a component that displays the rotation speed of the main axis. It includes a spindle speed display component to display, and a modal display component to display modal commands that are in a valid state while the operation program is being executed.
  • the update cycle is the cycle at which information displayed by the screen component is updated. In other words, the screen component displays new information updated every update cycle.
  • the update cycle is, for example, one of 16 [ms], 64 [ms], 128 [ms], and 256 [ms].
  • the state of the industrial machine 1 means the operating state or setting state of the industrial machine 1.
  • the operating states include an editing state where the operating program is being edited, an interrupt state where an interrupt is being executed, and an execution state where the operating program is being executed.
  • the setting state includes a driving mode setting state in which one of the plurality of types of driving modes is set. For example, when the automatic operation mode is set, the state of the industrial machine 1 becomes the automatic operation mode setting state.
  • the storage unit 221 stores the relationship between the update cycle and the state of the industrial machine 1 using, for example, a table.
  • FIG. 3 is a diagram illustrating an example of the relationship between the update cycle of screen components stored in the storage unit 221 and the state of the industrial machine 1.
  • FIG. 3 is a diagram showing the relationship between the update cycle of screen components and the state of the industrial machine 1 in the MDI operation mode.
  • the screen components include a coordinate value display component and an editor component.
  • the states of the industrial machine 1 include an editing state in which the operating program is being edited, and an execution state in which the operating program is being executed.
  • the storage unit 221 stores that in the editing state, the coordinate value display component is updated at 128 [ms] and the editor component is updated at 16 [ms].
  • the storage unit 221 also stores that in the execution state, the coordinate value display component is updated at 16 [ms] and the editor component is updated at 128 [ms].
  • the determining unit 222 receives information indicating the status of the industrial machine 1 from the control unit 21 and determines the status of the industrial machine 1.
  • Information indicating the state of the industrial machine 1 is a signal output by the control device 2.
  • the control section 21 outputs an MDI operation mode signal to the determination section 222.
  • the determination unit 222 determines that the industrial machine 1 is set to the MDI operation mode. In other words, the determination unit 222 determines that the state of the industrial machine 1 is the MDI operation mode setting state.
  • the determining unit 222 determines that the operator in the industrial machine 1 is editing the operation program, that is, the state of the industrial machine 1 is in the editing state.
  • the control unit 21 outputs an editing signal indicating that it is in the editing state to the judgment unit. 222.
  • the determining unit 222 may determine that the state of the industrial machine 1 is the editing state in response to receiving the editing signal.
  • the determining unit 223 determines the update cycle of the screen component based on the relationship between the update cycle of the screen component stored in the storage unit 221 and the state of the industrial machine 1 and the state of the industrial machine 1 determined by the determining unit 222. do.
  • the determining unit 222 determines that the state of the industrial machine 1 is the MDI operation mode setting state and the editing state
  • the determining unit 223 sets the update cycle of the coordinate value display component to 128 [ms] and the editor. Set the component update cycle to 16 [ms].
  • the display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223. Further, the display unit 224 receives information to be displayed on each screen component from the control unit 21.
  • FIG. 4 is a diagram showing an example of screen components displayed on the display screen.
  • the display unit 224 updates and displays the coordinate value display component C every 128 [ms].
  • the display unit 224 updates and displays the editor component E every 16 [ms].
  • the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 4.
  • the update period of other screen components shown in FIG. 4 may be, for example, 64 [ms], which is preset in the control device 2.
  • the control unit 21 In the MDI operation mode, when editing of the operation program in the editor component E is completed and execution of the input operation program is started, the control unit 21 outputs an automatic operation start signal to the determination unit 222.
  • the determining unit 222 receives the automatic operation start signal, the determining unit 222 determines that the industrial machine 1 is in automatic operation, that is, the state of the industrial machine 1 is in the execution state.
  • the determination unit 222 determines that the industrial machine 1 is in the MDI operation mode setting state and the execution state, the determination unit 223 sets the update cycle of the coordinate value display component C to 16 [ms] and changes the editor The update cycle of component E is determined to be 128 [ms].
  • the display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
  • FIG. 5 is a diagram showing an example of screen components displayed on the display screen.
  • the display unit 224 updates and displays the update cycle of the coordinate value display component C every 16 [ms].
  • the display unit 224 updates and displays the update cycle of the editor component E every 128 [ms].
  • the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 5.
  • FIG. 6 is a diagram illustrating an example of the relationship between the update cycle of screen components stored in the storage unit 221 and the state of the industrial machine 1.
  • FIG. 6 is a diagram showing the relationship between the update cycle of screen components and the state of the industrial machine 1 in automatic operation mode and manual operation mode.
  • the screen components include a coordinate value display component C, a feed rate display component, a spindle speed display component, and a modal display component.
  • the storage unit 221 updates the coordinate value display component C at 64 [ms], the feed rate display component at 16 [ms], and the spindle speed display component at 16 [ms].
  • the modal display component is updated at 128 [ms].
  • the storage unit 221 updates the coordinate value display component C at 16 [ms], updates the feed rate display component at 128 [ms], and updates the spindle speed display component at 128 [ms].
  • the modal display component is updated at 128 [ms].
  • the operator pays the most attention to the feed rate display component and the spindle speed display component, then the coordinate value display component C, and does not pay much attention to the modal display component. Furthermore, in the manual operation mode, the operator focuses on the coordinate value display component C and does not pay much attention to the feed rate display component, the spindle speed display component, and the modal display component. Therefore, the update cycle of each screen component in the automatic operation mode setting state and the manual operation mode setting state is set as shown in FIG. 6.
  • the control unit 21 When the industrial machine 1 is set to automatic operation mode, the control unit 21 outputs an automatic operation mode signal to the determination unit 222. Upon receiving the automatic operation mode signal, the determination unit 222 determines that the industrial machine 1 is set to the automatic operation mode. In other words, the determination unit 222 determines that the industrial machine 1 is in the automatic operation mode setting state.
  • the control unit 21 outputs a manual operation mode signal to the determination unit 222.
  • the determination unit 222 determines that the industrial machine 1 is set to the manual operation mode. In other words, the determination unit 222 determines that the industrial machine 1 is in the manual operation mode setting state.
  • the determining unit 223 sets the update cycle of the coordinate value display component C to 64 [ms] and updates the feed rate display component.
  • the cycle is determined to be 16 [ms], the update cycle of the spindle speed display component to 16 [ms], and the update cycle of the modal display component to 128 [ms].
  • the display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
  • FIG. 7 is a diagram showing an example of screen components displayed on the display screen.
  • the display unit 224 updates and displays the update cycle of the coordinate value display component C every 64 [ms].
  • the display unit 224 updates and displays the update cycle of the feed speed display component F every 16 [ms].
  • the display unit 224 updates and displays the update cycle of the spindle speed display component S every 16 [ms].
  • the display unit 224 updates and displays the update cycle of the modal display component M every 128 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG.
  • the determination unit 223 sets the update cycle of the coordinate value display component C to 16 [ms] and the update cycle of the feed rate display component F.
  • the update cycle is determined to be 128 [ms]
  • the update cycle of the spindle speed display component S is determined to be 128 [ms]
  • the update cycle of the modal display component M is determined to be 128 [ms].
  • the display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
  • FIG. 8 is a diagram showing an example of screen components displayed on the display screen.
  • the display unit 224 updates and displays the update cycle of the coordinate value display component C every 16 [ms].
  • the display unit 224 updates and displays the update cycle of the feed speed display component F every 128 [ms].
  • the display unit 224 updates and displays the update cycle of the spindle speed display component S every 128 [ms].
  • the display unit 224 updates and displays the update cycle of the modal display component M every 128 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 8 .
  • FIG. 9 is a diagram illustrating an example of the relationship between the update cycle of screen components stored in the storage unit 221 and the state of the industrial machine 1.
  • FIG. 9 shows the relationship between the update cycle of screen components and the state of industrial machine 1 in the automatic operation mode with no interruptions, and the relationship between the update cycle of screen components in the automatic operation mode with an interrupt and the industrial machine 1.
  • 2 is a diagram showing the relationship with the state of the machine 1.
  • the screen components include a coordinate value display component C, a feed rate display component F, a spindle speed display component S, and a modal display component M.
  • the storage unit 221 updates the coordinate value display component C at 64 [ms], updates the feed speed display component F at 16 [ms], and updates the spindle speed display. It is stored that the component S is updated at 16 [ms] and the modal display component M is updated at 128 [ms].
  • the storage unit 221 updates the coordinate value display component C at 16 [ms], updates the feed speed display component F at 16 [ms], and updates the spindle speed. It is stored that the display component S is updated at 16 [ms] and the modal display component M is updated at 256 [ms].
  • the operator pays the most attention to the feed rate display component F and the spindle speed display component S, then the coordinate value display component C, and the modal display component M. I don't pay much attention to it.
  • the operator pays attention to the coordinate value display part C, the feed rate display part F, and the spindle speed display part S, and modulates the Don't pay much attention to the display component M. Therefore, the update period of each screen component in the state where no interruption is made in the automatic driving mode setting state and the update period of each screen component in the state in which an interruption is made in the automatic driving mode setting state are set as shown in Figure 9. be done.
  • control unit 21 When the industrial machine 1 is set to the automatic operation mode, the control unit 21 outputs an automatic operation mode signal to the determination unit 222. Upon receiving the automatic operation mode signal, the determination unit 222 determines that the state of the industrial machine 1 is the automatic operation mode setting state.
  • the determination unit 223 sets the update cycle of the coordinate value display component C to 64 [ms], the update cycle of the feed speed display component F to 16 [ms], the update cycle of the spindle speed display component S to 16 [ms], and the update cycle of the modal display component M to 128 [ms]. do.
  • the display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
  • FIG. 10 is a diagram showing an example of screen components displayed on the display screen.
  • the display unit 224 updates and displays the update cycle of the coordinate value display component C every 64 [ms].
  • the display unit 224 updates and displays the update cycle of the feed speed display component F every 16 [ms].
  • the display unit 224 updates and displays the update cycle of the spindle speed display component S every 16 [ms]. .
  • the display unit 224 updates and displays the update cycle of the modal display component M every 128 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 10.
  • the control unit 21 When an interrupt occurs during automatic operation of the industrial machine 1, the control unit 21 outputs an interrupt signal to the determination unit 222.
  • the determining unit 222 receives the interrupt signal, the determining unit 222 determines that the interrupt has been performed during automatic operation of the industrial machine 1. In other words, the determination unit 222 determines that the state of the industrial machine 1 is an interrupt state.
  • the determining unit 223 sets the update cycle of the coordinate value display component C to 16 [ms]. , the update cycle of the feed speed display component F is determined to be 16 [ms], the update cycle of the spindle speed display component S is determined to be 16 [ms], and the update cycle of the modal display component M is determined to be 256 [ms].
  • the display unit 224 displays at least each screen component based on the update cycle determined by the determination unit 223.
  • FIG. 11 is a diagram showing an example of screen components displayed on the display screen.
  • the display unit 224 updates and displays the update cycle of the coordinate value display component C every 16 [ms].
  • the display unit 224 updates and displays the update cycle of the feed speed display component F every 16 [ms].
  • the display unit 224 updates and displays the update cycle of the spindle speed display component S every 16 [ms].
  • the display unit 224 updates and displays the update cycle of the modal display component M every 256 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 11.
  • FIG. 12 is a flowchart showing an example of the flow of processing executed in the display device 22.
  • the determination unit 222 receives information indicating the state of the industrial machine 1 (step S1).
  • the determining unit 222 determines the state of the industrial machine 1 based on the received information indicating the state of the industrial machine 1 (step S2).
  • the determining unit 223 determines the update cycle of the screen component based on the relationship between the update cycle stored in the storage unit 221 and the state of the industrial machine 1 and the state of the industrial machine 1 determined by the determining unit 222. (Step S3).
  • the display unit 224 displays the screen component based on the update cycle determined by the determining unit 223 (step S4), and the process ends.
  • the display unit 224 receives information indicating the state of the industrial machine 1, such as information indicating the position of a control axis, from the control unit 21 and displays it on each screen component.
  • the display device 22 includes a storage unit 221 that stores the relationship between the update cycle of at least one screen component displayed on the display screen and the state of the industrial machine 1, and a storage unit 221 that determines the state of the industrial machine 1. a determining unit 223 that determines the update cycle based on the relationship stored in the storage unit 221 and the state of the industrial machine 1 determined by the determining unit 222; and a display unit 224 that displays at least one screen component based on the updated update cycle.
  • the display device 22 can change the update cycle of screen components without burdening the operator with operations to specify screen components. Moreover, only the update period of the screen components that are noticed by the operator can be shortened depending on the state of the industrial machine 1. As a result, it is possible to prevent the processing load on the hardware processor 201 from becoming excessively large. Further, the display of the screen component that the operator is interested in can be updated smoothly.
  • the display device 22 shortens the update cycle of only the screen components that are noticed by the operator, the display of the screen components can be updated smoothly without using the expensive and highly functional hardware processor 201. . Therefore, the cost of the display device 22 can be reduced.
  • the determination unit 222 determines the state of the industrial machine 1 based on the signal output by the control device 2 that controls the industrial machine 1.
  • the signal output by the control device 2 includes an operation mode signal indicating the operation mode of the industrial machine 1. Further, the signal output by the control device 2 includes an automatic operation start signal indicating that automatic operation of the industrial machine 1 has started. Further, the signal output by the control device 2 includes an interrupt signal indicating that an interrupt has been performed. Therefore, the display device 22 can change the update cycle of each screen component according to various states of the industrial machine 1.
  • the storage unit 221 stores the relationship between the update cycle and the state of the industrial machine 1 using a table. Therefore, the operator can easily understand, for example, the relationship between the update cycle and the state of the industrial machine 1.
  • the display unit 224 displays an image indicating the update cycle on the display screen. Therefore, the operator can easily understand the update cycle of each screen component.
  • the storage unit 221 stores the relationship between the update cycle of screen components and the state of the industrial machine 1. Further, the determining unit 222 determines the state of the industrial machine 1. Further, the determining unit 223 determines the update cycle based on the relationship stored in the storage unit 221 and the state of the industrial machine 1 determined by the determining unit 222.
  • the storage unit 221 may store the relationship between the update cycle of at least one screen component displayed on the display screen and the operator's actions.
  • the determination unit 222 determines the operator's behavior based on information from an acquisition unit that monitors the operator's behavior and acquires information regarding the operator's behavior.
  • the determining unit 223 determines the update cycle of each screen component based on the relationship stored in the storage unit 221 and the operator's behavior determined by the determining unit 222.
  • FIG. 13 is a block diagram showing an example of the function of the display device 22 in which the update cycle of screen components is determined based on the operator's actions.
  • the block diagram shown in FIG. 13 differs from the control device 2 shown in FIG. 2 in that the acquisition unit 9 is connected to the display device 22. Therefore, the acquisition unit 9 and its related functions will be described here, and the description of the same functions as those described using FIG. 2 will be omitted.
  • the acquisition unit 9 monitors the operator's behavior and acquires information regarding the operator's behavior.
  • the operator's behavior is, for example, which screen component out of a plurality of screen components the operator is paying attention to. That is, the acquisition unit 9 monitors the operator's line of sight.
  • the acquisition unit 9 is, for example, an imaging device.
  • the imaging device is, for example, a camera.
  • the acquisition unit 9 acquires information regarding the operator's behavior and sends it to the determination unit 222 .
  • the information regarding the operator's behavior is, for example, line-of-sight information indicating the operator's line of sight.
  • the storage unit 221 stores the relationship between the update cycle of at least one screen component displayed on the display screen and the operator's actions.
  • FIG. 14 is a diagram illustrating an example of the relationship between the update cycle of screen components stored in the storage unit 221 and operator behavior.
  • the storage unit 221 stores in a table the update cycle of the screen component that the operator is paying attention to, and the update cycle of screen components other than the screen component that the operator is focusing on. In other words, the storage unit 221 stores the update cycles of the screen parts that are ahead of the operator's line of sight and the update cycles of other screen parts.
  • the storage unit 221 updates the coordinate value display component C at 16 [ms], updates the feed speed display component F at 128 [ms], and displays the spindle speed. It is stored that the component S is updated at 128 [ms] and the modal display component M is updated at 128 [ms].
  • the storage unit 221 updates the coordinate value display component C at 128 [ms], updates the feed speed display component F at 16 [ms], It is stored that the spindle speed display component S is updated at 128 [ms] and the modal display component M is updated at 128 [ms].
  • the determining unit 222 determines the behavior of the operator. Specifically, the determination unit 222 determines which screen component among the plurality of screen components the operator is paying attention to, based on the information regarding the operator's behavior acquired by the acquisition unit 9. For example, when the operator looks at one screen component continuously for three seconds or more, the determination unit 222 determines that the operator is paying attention to the screen component.
  • the determining unit 223 determines the update cycle of the screen component based on the relationship between the update cycle of the screen component stored in the storage unit 221 and the operator's behavior and the operator's behavior determined by the determining unit 222.
  • the determination unit 223 sets the update cycle of the coordinate value display component C to 16 [ms] and the feed rate display component F.
  • the update cycle is determined to be 128 [ms]
  • the update cycle of the spindle speed display component S is determined to be 128 [ms]
  • the update cycle of the modal display component M is determined to be 128 [ms].
  • the determination unit 223 sets the update cycle of the coordinate value display component C to 128 [ms], and sets the update cycle of the coordinate value display component C to 128 [ms].
  • the update cycle is determined to be 16 [ms], the update cycle of the spindle speed display component S to 128 [ms], and the update cycle of the modal display component M to 128 [ms].
  • the display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
  • FIGS. 15A and 15B are diagrams showing examples of screen components displayed on the display screen.
  • the display unit 224 displays coordinate value display component C, feed rate display component F, spindle speed display component S, and modal display component C. All display parts M are updated and displayed at the same update cycle of 64 [ms].
  • the determining unit 223 sets the update cycle of the coordinate value display component C to 16 [ms]. , the update cycle of the feed speed display component F is determined to be 128 [ms], the update cycle of the spindle speed display component S is determined to be 128 [ms], and the update cycle of the modal display component M is determined to be 128 [ms].
  • the display unit 224 displays at least each screen component based on the update cycle determined by the determination unit 223 (see FIG. 15B).
  • the display device 22 includes a storage unit 221 that stores the relationship between the update cycle of at least one screen component displayed on the display screen and the operator's behavior, and a determination unit 222 that determines the operator's behavior. and a determining unit 223 that determines the update cycle based on the relationship stored in the storage unit 221 and the behavior of the operator determined by the determining unit, and at least It includes a display section 224 that displays one screen component.
  • the display device 22 can change the update cycle of screen components without burdening the operator with operations to specify screen components. Further, it is possible to shorten only the update period of the screen parts that are noticed by the operator. As a result, it is possible to smoothly update the display of the screen component that attracts the operator's attention. Further, since the display device 22 shortens the update period of only the screen components that are noticed by the operator, it is not necessary to use the expensive and highly functional hardware processor 201. Therefore, the cost of the display device 22 can be reduced.
  • the relationship between the update cycle of screen components and the operator's actions is stored in a table, and the determining unit 223 uses the table to determine the update cycle.
  • the storage unit 221 may store, for example, priorities when displaying a plurality of screen components.
  • the storage unit 221 stores that the priorities of the coordinate value display component C, the feed rate display component F, the spindle speed display component S, and the modal display component M are 1, 2, 3, and 4, respectively. In this case, 1 has the highest priority and 4 has the lowest priority.
  • the determining unit 222 determines the behavior of the operator. That is, the determining unit 222 determines which screen component the operator is paying attention to.
  • the determining unit 223 determines the update cycle of the screen component that the operator is paying attention to to be shorter than the update cycle of other screen components. For example, when the determining unit 222 determines that the operator is paying attention to the feed rate display component F, the determining unit 223 determines the update cycle of the feed rate display component F to be 16 [ms]. Further, the determining unit 223 determines the update period of screen components other than the feed rate display component F based on the priority.
  • the determining unit 223 determines the update cycle of the coordinate value display component C, which has the highest priority among the coordinate value display component C, the spindle speed display component S, and the modal display component M, to 64 [ms], for example. . Further, the determining unit 223 determines the update period of the spindle speed display component S having the next highest priority to, for example, 128 [ms]. Further, the determining unit 223 determines the update cycle of the modal display component M having the lowest priority to, for example, 256 [ms].
  • the display unit 224 displays a plurality of screen components based on the update cycle determined by the determination unit 223.
  • the storage unit 221 may store the relationship between the update cycle and the state of the industrial machine 1 or the relationship between the update cycle and the operator's behavior using a function.
  • the storage unit 221 may store a function indicating the relationship between the feed rate of the control axis of the industrial machine 1 and the update period of the coordinate value display component C.
  • the screen component is an image displayed on the display screen to present or receive various information regarding the industrial machine 1, and a program for displaying the image. Therefore, the determination unit 222, the determination unit 223, and the display unit 224 may be implemented as functions of screen components. In other words, the screen component itself may determine the update cycle by determining the state of the industrial machine 1 or the operator's actions. Alternatively, the functions of the determination unit 222 and the determination unit 223 may be implemented in addition to the screen component, and the display unit 224 may be implemented in the screen component.
  • the present disclosure is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit.
  • any component of the embodiment of the present disclosure may be modified or any component of the embodiment may be omitted.
  • the storage unit 221 may store the relationship between the update cycle of the screen components and the state of the industrial machine 1, and the relationship between the update cycle of the screen components and the operator's actions.
  • the determination unit 222 may determine both the state of the industrial machine 1 and the operator's behavior.
  • the determining unit 223 determines the update cycle based on the relationship stored in the storage unit 221 and the state of the industrial machine 1 determined by the determining unit 222, and determines the update cycle based on the relationship stored in the storage unit 221 and the state of the industrial machine 1 determined by the determining unit Both determining the update period based on the determined operator behavior may be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

This display device comprises: a storage unit for storing a relationship between an update period of at least one screen component displayed on a display screen, and a state of an industrial machine; an assessing unit for assessing the state of the industrial machine; a determining unit for carrying out a determination of the update period on the basis of the relationship stored in the storage unit and the state assessed by the assessing unit; and a display unit for causing the at least one screen component to be displayed on the basis of the update period determined by the determining unit.

Description

表示装置およびコンピュータ読み取り可能な記憶媒体Display device and computer readable storage medium
 本開示は、表示装置およびコンピュータ読み取り可能な記憶媒体に関する。 The present disclosure relates to a display device and a computer-readable storage medium.
 産業機械を制御する制御装置の表示画面には、複数の画面部品が表示される。複数の画面部品は、例えば、送り速度を表示する画面部品、および主軸の回転数を表示する画面部品である。これら複数の画面部品は、それぞれ、互いに異なる更新周期で更新されるように設定される。 A plurality of screen components are displayed on the display screen of a control device that controls industrial machinery. The plurality of screen components are, for example, a screen component that displays the feed rate and a screen component that displays the rotation speed of the main shaft. These multiple screen components are set to be updated at mutually different update cycles.
 また、オペレータが画面部品を指定することにより、指定された画面部品を他の画面部品の更新周期よりも短い更新周期で更新する制御装置が知られている(例えば、特許文献1)。 Furthermore, a control device is known that, when an operator specifies a screen component, updates the specified screen component at an update cycle that is shorter than the update cycle of other screen components (for example, Patent Document 1).
特開平11-238027号公報Japanese Patent Application Publication No. 11-238027
 しかし、特許文献1に記載された技術では、ある画面部品の更新周期を短くするには、オペレータが表示画面に表示されているカーソルを意図的に操作して画面部品を指定する必要がある。そのため、画面部品を指定する操作がオペレータにとって負担となる。 However, with the technology described in Patent Document 1, in order to shorten the update cycle of a certain screen component, the operator needs to intentionally operate a cursor displayed on the display screen to specify the screen component. Therefore, the operation of specifying screen components becomes a burden for the operator.
 よって、オペレータに画面部品を指定する操作の負担を与えずに画面部品の更新周期を変更可能な表示装置が望まれている。 Therefore, there is a need for a display device that can change the update cycle of screen components without burdening the operator with operations for specifying screen components.
 表示装置が、表示画面に表示される少なくとも1つの画面部品の更新周期と、産業機械の状態およびオペレータの行動の少なくともいずれかとの関係を記憶する記憶部と、前記状態および前記行動の少なくともいずれかを判断する判断部と、前記記憶部に記憶された前記関係および前記判断部によって判断された前記状態に基づいて前記更新周期を決定すること、ならびに、前記記憶部に記憶された前記関係および前記判断部によって判断された前記行動に基づいて前記更新周期を決定することの少なくともいずれかを実行する決定部と、前記決定部によって決定された前記更新周期に基づいて前記少なくとも1つの画面部品を表示させる表示部と、を備える。 The display device includes a storage unit that stores a relationship between an update cycle of at least one screen component displayed on the display screen and at least one of a state of the industrial machine and an action of an operator, and at least one of the state and the action of the operator. determining the update cycle based on the relationship stored in the storage unit and the state determined by the determination unit; and determining the update cycle based on the relationship stored in the storage unit and the state determined by the determination unit a determining unit that performs at least one of determining the update period based on the behavior determined by the determining unit; and displaying the at least one screen component based on the update period determined by the determining unit. and a display section for displaying.
 コンピュータ読み取り可能な記憶媒体が、表示画面に表示される少なくとも1つの画面部品の更新周期と、産業機械の状態およびオペレータの行動の少なくともいずれかとの関係を記憶することと、前記状態および前記行動の少なくともいずれかを判断することと、記憶された前記関係および判断された前記状態に基づいて前記更新周期を決定すること、ならびに、記憶された前記関係および判断された前記行動に基づいて前記更新周期を決定することの少なくともいずれかを実行することと、決定された前記更新周期に基づいて前記少なくとも1つの画面部品を表示させることと、をコンピュータに実行させる命令を記憶する。 A computer-readable storage medium stores a relationship between an update cycle of at least one screen component displayed on a display screen and at least one of a state of an industrial machine and an action of an operator; determining the update period based on the stored relationship and the determined state; and determining the update period based on the stored relationship and the determined behavior. and displaying the at least one screen component based on the determined update period.
 本開示の一態様により、オペレータに画面部品を指定する操作の負担を与えずに画面部品の更新周期を変更することが可能になる。 According to one aspect of the present disclosure, it is possible to change the update cycle of screen components without burdening the operator with operations for specifying screen components.
産業機械のハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a hardware configuration of an industrial machine. 制御装置の機能の一例を示すブロック図である。It is a block diagram showing an example of the function of a control device. 画面部品の更新周期と産業機械の状態との関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of the relationship between the update cycle of screen components and the state of industrial machinery. 表示画面に表示される画面部品の一例を示す図である。FIG. 3 is a diagram showing an example of screen components displayed on a display screen. 表示画面に表示される画面部品の一例を示す図である。FIG. 3 is a diagram showing an example of screen components displayed on a display screen. 画面部品の更新周期と産業機械の状態との関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of the relationship between the update cycle of screen components and the state of industrial machinery. 表示画面に表示される画面部品の一例を示す図である。FIG. 3 is a diagram showing an example of screen components displayed on a display screen. 表示画面に表示される画面部品の一例を示す図である。FIG. 3 is a diagram showing an example of screen components displayed on a display screen. 画面部品の更新周期と産業機械の状態との関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of the relationship between the update cycle of screen components and the state of industrial machinery. 表示画面に表示される画面部品の一例を示す図である。FIG. 3 is a diagram showing an example of screen components displayed on a display screen. 表示画面に表示される画面部品の一例を示す図である。FIG. 3 is a diagram showing an example of screen components displayed on a display screen. 表示装置において実行される処理の流れの一例を示すフローチャートである。3 is a flowchart illustrating an example of the flow of processing executed in a display device. 表示装置の機能の一例を示すブロック図である。It is a block diagram showing an example of the function of a display device. 画面部品の更新周期とオペレータの行動との関係の一例を示す図である。FIG. 7 is a diagram illustrating an example of the relationship between the update cycle of screen components and operator behavior. 表示画面に表示される画面部品の一例を示す図である。FIG. 3 is a diagram showing an example of screen components displayed on a display screen. 表示画面に表示される画面部品の一例を示す図である。FIG. 3 is a diagram showing an example of screen components displayed on a display screen.
 以下、本開示の実施形態に係る表示装置について図面を用いて説明する。なお、以下の実施形態で説明する特徴のすべての組み合わせが課題解決に必ずしも必要であるとは限らない。また、必要以上の詳細な説明を省略する場合がある。また、以下の実施形態の説明、および図面は、当業者が本開示を十分に理解するために提供されるものであり、請求の範囲を限定することを意図していない。 Hereinafter, a display device according to an embodiment of the present disclosure will be described using the drawings. Note that not all combinations of features described in the embodiments below are necessarily necessary to solve the problem. Further, more detailed explanation than necessary may be omitted. Further, the following description of the embodiments and the drawings are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the scope of the claims.
 表示装置は、産業機械に関する情報を表示画面に表示させる装置である。産業機械は、例えば、工作機械、ワイヤ放電加工機、射出成形機、産業用ロボットおよび3次元プリンタである。工作機械は、例えば、旋盤、マシニングセンタおよび複合加工機である。 A display device is a device that displays information regarding industrial machinery on a display screen. Industrial machines are, for example, machine tools, wire electrical discharge machines, injection molding machines, industrial robots and three-dimensional printers. Machine tools are, for example, lathes, machining centers, and multitasking machines.
 産業機械に関する情報は、例えば、産業機械の複数の制御軸の位置、速度、および加速度を示す情報を含む。産業機械に関する情報は、産業機械を動作させる動作プログラムに関する情報を含む。動作プログラムは、例えば、工作機械の加工プログラム、および産業用ロボットの動作プログラムである。 The information regarding the industrial machine includes, for example, information indicating the position, speed, and acceleration of a plurality of control axes of the industrial machine. The information regarding the industrial machine includes information regarding the operating program that operates the industrial machine. The operation program is, for example, a machining program for a machine tool or an operation program for an industrial robot.
 表示装置は、例えば、産業機械を制御する制御装置に実装される。表示装置は、制御装置に接続されたサーバ、またはPC(Personal Computer)に実装されてもよい。以下では、制御装置に実装された表示装置について説明する。 The display device is installed, for example, in a control device that controls industrial machinery. The display device may be implemented in a server or a PC (Personal Computer) connected to the control device. The display device installed in the control device will be described below.
 図1は、制御装置を備える産業機械のハードウェア構成の一例を示すブロック図である。産業機械1は、制御装置2と、入出力装置3と、サーボアンプ4と、サーボモータ5と、スピンドルアンプ6と、スピンドルモータ7と、補助機器8とを備える。 FIG. 1 is a block diagram showing an example of the hardware configuration of an industrial machine including a control device. The industrial machine 1 includes a control device 2, an input/output device 3, a servo amplifier 4, a servo motor 5, a spindle amplifier 6, a spindle motor 7, and an auxiliary device 8.
 制御装置2は、産業機械1全体を制御する装置である。制御装置2は、ハードウェアプロセッサ201と、バス202と、ROM(Read Only Memory)203と、RAM(Random Access Memory)204と、不揮発性メモリ205とを備える。 The control device 2 is a device that controls the entire industrial machine 1. The control device 2 includes a hardware processor 201 , a bus 202 , a ROM (Read Only Memory) 203 , a RAM (Random Access Memory) 204 , and a nonvolatile memory 205 .
 ハードウェアプロセッサ201は、システムプログラムに従って制御装置2全体を制御するプロセッサである。ハードウェアプロセッサ201は、バス202を介してROM203に格納されたシステムプログラムなどを読み出し、システムプログラムに基づいて各種処理を行う。ハードウェアプロセッサ201は、例えば、加工プログラムに基づいて、サーボモータ5、およびスピンドルモータ7を制御する。ハードウェアプロセッサ201は、例えば、CPU(Central Processing Unit)、または電子回路である。 The hardware processor 201 is a processor that controls the entire control device 2 according to a system program. The hardware processor 201 reads a system program stored in the ROM 203 via the bus 202, and performs various processes based on the system program. The hardware processor 201 controls the servo motor 5 and the spindle motor 7 based on a machining program, for example. The hardware processor 201 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
 ハードウェアプロセッサ201は、制御周期ごとに、例えば、加工プログラムの解析、ならびに、サーボモータ5、およびスピンドルモータ7に対する制御指令の出力を行う。 The hardware processor 201 analyzes a machining program and outputs control commands to the servo motor 5 and spindle motor 7, for example, every control cycle.
 バス202は、制御装置2内の各ハードウェアを互いに接続する通信路である。制御装置2内の各ハードウェアはバス202を介してデータをやり取りする。 The bus 202 is a communication path that connects each piece of hardware within the control device 2 to each other. Each piece of hardware within the control device 2 exchanges data via a bus 202.
 ROM203は、制御装置2全体を制御するためのシステムプログラムなどを記憶する記憶装置である。ROM203は、コンピュータ読み取り可能な記憶媒体である。 The ROM 203 is a storage device that stores system programs and the like for controlling the entire control device 2. ROM 203 is a computer readable storage medium.
 RAM204は、各種データを一時的に格納する記憶装置である。RAM204は、ハードウェアプロセッサ201が各種データを処理するための作業領域として機能する。 The RAM 204 is a storage device that temporarily stores various data. The RAM 204 functions as a work area for the hardware processor 201 to process various data.
 不揮発性メモリ205は、産業機械1の電源が切られ、制御装置2に電力が供給されていない状態でもデータを保持する記憶装置である。不揮発性メモリ205は、例えば、動作プログラム、および各種パラメータを記憶する。不揮発性メモリ205は、コンピュータ読み取り可能な記憶媒体である。不揮発性メモリ205は、例えば、バッテリでバックアップされたメモリ、または、SSD(Solid State Drive)で構成される。 The nonvolatile memory 205 is a storage device that retains data even when the industrial machine 1 is powered off and the control device 2 is not supplied with power. Nonvolatile memory 205 stores, for example, operating programs and various parameters. Non-volatile memory 205 is a computer readable storage medium. The non-volatile memory 205 is configured with, for example, battery-backed memory or an SSD (Solid State Drive).
 制御装置2は、さらに、インタフェース206と、軸制御回路207と、スピンドル制御回路208と、PLC(Programmable Logic Controller)209と、I/Oユニット210とを備える。 The control device 2 further includes an interface 206, an axis control circuit 207, a spindle control circuit 208, a PLC (Programmable Logic Controller) 209, and an I/O unit 210.
 インタフェース206は、バス202と入出力装置3とを接続する。インタフェース206は、例えば、ハードウェアプロセッサ201によって処理された各種データを入出力装置3に送る。 The interface 206 connects the bus 202 and the input/output device 3. The interface 206 sends various data processed by the hardware processor 201 to the input/output device 3, for example.
 入出力装置3は、インタフェース206を介して各種データを受け、各種データを表示する。また、入出力装置3は、各種データの入力を受け付けてインタフェース206を介して各種データを、例えば、ハードウェアプロセッサ201に送る。 The input/output device 3 receives various data via the interface 206 and displays the various data. The input/output device 3 also receives input of various data and sends the various data to, for example, the hardware processor 201 via the interface 206.
 入出力装置3は、例えば、タッチパネルである。入出力装置3は、例えば、静電容量方式のタッチパネルである。なお、タッチパネルは、静電容量方式に限らず、他の方式のタッチパネルであってもよい。入出力装置3は、制御装置2が格納される操作盤(不図示)に設置される。 The input/output device 3 is, for example, a touch panel. The input/output device 3 is, for example, a capacitive touch panel. Note that the touch panel is not limited to a capacitive type, and may be a touch panel of another type. The input/output device 3 is installed on an operation panel (not shown) in which the control device 2 is housed.
 軸制御回路207は、サーボモータ5を制御する回路である。軸制御回路207は、ハードウェアプロセッサ201からの制御指令を受けてサーボモータ5を駆動させるための各種指令をサーボアンプ4に送る。軸制御回路207は、例えば、サーボモータ5のトルクを制御するトルクコマンドをサーボアンプ4に送る。 The axis control circuit 207 is a circuit that controls the servo motor 5. The axis control circuit 207 receives control commands from the hardware processor 201 and sends various commands for driving the servo motor 5 to the servo amplifier 4. The axis control circuit 207 sends a torque command for controlling the torque of the servo motor 5 to the servo amplifier 4, for example.
 サーボアンプ4は、軸制御回路207からの指令を受けて、サーボモータ5に電流を供給する。 The servo amplifier 4 receives a command from the axis control circuit 207 and supplies current to the servo motor 5.
 サーボモータ5は、サーボアンプ4から電流の供給を受けて駆動する。サーボモータ5は、産業機械1の各制御軸に設けられる。産業機械1が5軸を有する工作機械である場合、サーボモータ5は、例えば、X軸用サーボモータ、Y軸用サーボモータ、Z軸用サーボモータ、A軸用サーボモータ、およびC軸用サーボモータを含む。 The servo motor 5 is driven by receiving current from the servo amplifier 4. Servo motor 5 is provided on each control axis of industrial machine 1 . When the industrial machine 1 is a machine tool having five axes, the servo motor 5 is, for example, an X-axis servo motor, a Y-axis servo motor, a Z-axis servo motor, an A-axis servo motor, and a C-axis servo motor. Including motor.
 サーボモータ5は、例えば、刃物台を駆動させるボールねじに連結される。サーボモータ5が駆動することにより、刃物台などの産業機械1の構造物が所定の制御軸方向に移動する。サーボモータ5は、制御軸の位置、および送り速度を検出するエンコーダ(不図示)を内蔵する。エンコーダによって検出される制御軸の位置、および制御軸の送り速度をそれぞれ示す位置フィードバック情報、および速度フィードバック情報は、軸制御回路207にフィードバックされる。これにより、軸制御回路207は、制御軸のフィードバック制御を行う。 The servo motor 5 is connected to, for example, a ball screw that drives a tool rest. By driving the servo motor 5, structures of the industrial machine 1, such as a tool post, move in the direction of a predetermined control axis. The servo motor 5 has a built-in encoder (not shown) that detects the position of the control axis and the feed rate. Position feedback information and speed feedback information indicating the position of the control axis detected by the encoder and the feed rate of the control axis, respectively, are fed back to the axis control circuit 207. Thereby, the axis control circuit 207 performs feedback control of the control axis.
 スピンドル制御回路208は、スピンドルモータ7を制御するための回路である。スピンドル制御回路208は、ハードウェアプロセッサ201からの制御指令を受けてスピンドルモータ7を駆動させるための指令をスピンドルアンプ6に送る。スピンドル制御回路208は、例えば、スピンドルモータ7の回転速度を制御するスピンドル速度コマンドをスピンドルアンプ6に送る。 The spindle control circuit 208 is a circuit for controlling the spindle motor 7. The spindle control circuit 208 receives a control command from the hardware processor 201 and sends a command for driving the spindle motor 7 to the spindle amplifier 6. The spindle control circuit 208 sends a spindle speed command for controlling the rotational speed of the spindle motor 7 to the spindle amplifier 6, for example.
 スピンドルアンプ6は、スピンドル制御回路208からの指令を受けて、スピンドルモータ7に電流を供給する。 The spindle amplifier 6 receives a command from the spindle control circuit 208 and supplies current to the spindle motor 7.
 スピンドルモータ7は、スピンドルアンプ6から電流の供給を受けて駆動する。スピンドルモータ7は、主軸に連結され、主軸を回転させる。 The spindle motor 7 is driven by receiving current from the spindle amplifier 6. The spindle motor 7 is connected to the main shaft and rotates the main shaft.
 PLC209は、ラダープログラムを実行して補助機器8を制御する装置である。PLC209は、I/Oユニット210を介して補助機器8に対して指令を送る。 The PLC 209 is a device that executes a ladder program to control the auxiliary equipment 8. PLC 209 sends commands to auxiliary equipment 8 via I/O unit 210.
 I/Oユニット210は、PLC209と補助機器8とを接続するインタフェースである。I/Oユニット210は、PLC209から受けた指令を補助機器8に送る。 The I/O unit 210 is an interface that connects the PLC 209 and the auxiliary equipment 8. The I/O unit 210 sends the command received from the PLC 209 to the auxiliary device 8.
 補助機器8は、産業機械1に設置され、産業機械1において補助的な動作を行う機器である。補助機器8は、I/Oユニット210から受けた指令に基づいて動作する。補助機器8は、産業機械1の周辺に設置される機器であってもよい。補助機器8は、例えば、工具交換装置、切削液噴射装置、または開閉ドア駆動装置である。 The auxiliary equipment 8 is installed in the industrial machine 1 and is a device that performs auxiliary operations in the industrial machine 1. Auxiliary equipment 8 operates based on instructions received from I/O unit 210. The auxiliary equipment 8 may be equipment installed around the industrial machine 1. The auxiliary equipment 8 is, for example, a tool changer, a cutting fluid injection device, or an opening/closing door drive device.
 図2は、産業機械1を制御する制御装置2の機能の一例を示すブロック図である。制御装置2は、制御部21と、表示装置22を備える。制御部21は、例えば、ハードウェアプロセッサ201が、ROM203に記憶されているシステムプログラムならびに不揮発性メモリ205に記憶されている動作プログラム、および各種データを用いて演算処理することにより実現される。 FIG. 2 is a block diagram showing an example of the functions of the control device 2 that controls the industrial machine 1. The control device 2 includes a control section 21 and a display device 22. The control unit 21 is realized, for example, by the hardware processor 201 performing arithmetic processing using a system program stored in the ROM 203, an operation program stored in the nonvolatile memory 205, and various data.
 制御部21は、動作プログラムに基づいて産業機械1の一または複数の制御軸を制御する。一または複数の制御軸は、例えば、X軸、Y軸、およびZ軸の少なくともいずれかを含む。複数の制御軸は、さらに、A軸、B軸、およびC軸の少なくともいずれかを含んでいてもよい。 The control unit 21 controls one or more control axes of the industrial machine 1 based on an operation program. The one or more control axes include, for example, at least one of the X axis, the Y axis, and the Z axis. The plurality of control axes may further include at least one of the A-axis, B-axis, and C-axis.
 制御部21は、表示装置22に向けて産業機械1の状態を示す情報を出力する。産業機械1の状態とは、産業機械1の設定状態および運転状態を意味する。 The control unit 21 outputs information indicating the state of the industrial machine 1 to the display device 22. The state of the industrial machine 1 means the setting state and operating state of the industrial machine 1.
 設定状態は、複数種類の運転モードのうちのいずれかの運転モードが設定された運転モード設定状態を含む。運転状態は、動作プログラムの編集中である編集状態、動作プログラムの実行中である実行状態、および割り込みの実行中である割込状態を含む。また、運転状態は、複数の制御軸の位置、速度、および加速度を含んでいてもよい。 The setting state includes a driving mode setting state in which one of the plurality of driving modes is set. The operating states include an editing state where an operating program is being edited, an execution state where the operating program is being executed, and an interrupt state where an interrupt is being executed. Further, the operating state may include the positions, speeds, and accelerations of a plurality of control axes.
 産業機械1の状態を示す情報は、運転モード信号、自動運転開始信号、および、割込信号の少なくともいずれかを含む。 The information indicating the state of the industrial machine 1 includes at least one of an operation mode signal, an automatic operation start signal, and an interrupt signal.
 運転モード信号は、産業機械1に設定された運転モードを示す信号である。運転モードは、自動運転モード、MDI(Manual Data Input)運転モード、および手動運転モードを含む。運転モード信号は、これらの運転モードにそれぞれ対応する、自動運転モード信号、MDI運転モード信号、および手動運転モード信号を含む。 The operation mode signal is a signal indicating the operation mode set for the industrial machine 1. The operation modes include automatic operation mode, MDI (Manual Data Input) operation mode, and manual operation mode. The driving mode signals include an automatic driving mode signal, an MDI driving mode signal, and a manual driving mode signal, which correspond to these driving modes, respectively.
 自動運転モードは、あらかじめ作成された動作プログラムに基づいて産業機械1を自動的に動作させるモードである。自動運転モードは、例えば、産業機械1が複数のワークを連続して加工する場合に用いられる。 The automatic operation mode is a mode in which the industrial machine 1 is automatically operated based on an operation program created in advance. The automatic operation mode is used, for example, when the industrial machine 1 continuously processes a plurality of workpieces.
 MDI運転モードは、オペレータによって手動で入力された動作プログラムに基づいて産業機械1を動作させるモードである。MDI運転モードは、例えば、産業機械1の簡単な動作テストが行われる場合に用いられる。 The MDI operation mode is a mode in which the industrial machine 1 is operated based on an operation program manually input by the operator. The MDI operation mode is used, for example, when a simple operation test of the industrial machine 1 is performed.
 手動運転モードは、オペレータが、操作盤の軸移動スイッチ、および、パルス発生器などを用いて産業機械1を動作させるモードである。手動運転モードは、例えば、産業機械1の運転準備を行う際に用いられる。 The manual operation mode is a mode in which the operator operates the industrial machine 1 using the axis movement switch on the operation panel, the pulse generator, etc. The manual operation mode is used, for example, when preparing the industrial machine 1 for operation.
 自動運転開始信号は、自動運転が開始され、動作プログラムが実行中であることを示す信号である。自動運転開始信号は、サイクルスタートボタンが押下されることによって、動作プログラムの実行が開始されたことを示す信号である。 The automatic operation start signal is a signal indicating that automatic operation has started and the operation program is being executed. The automatic operation start signal is a signal indicating that execution of the operation program has been started by pressing the cycle start button.
 割込信号は、産業機械1の自動運転中に割り込みが行われ、割り込みの実行中であることを示す信号である。割込信号は、例えば、動作プログラムの実行が一時的に中断しているときにオペレータによって割り込み操作が行われることにより出力される。割り込み操作は、例えば、制御装置2の操作盤に設けられた所定のスイッチをオン状態にすることにより行われる。なお、割り込みの実行中は、手動運転モードと同様に、オペレータが操作盤の軸移動スイッチ、および、パルス発生器などを用いて産業機械1を動作させることができる。 The interrupt signal is a signal indicating that an interrupt is performed during automatic operation of the industrial machine 1 and that the interrupt is being executed. The interrupt signal is output, for example, when an operator performs an interrupt operation while execution of an operating program is temporarily suspended. The interrupt operation is performed, for example, by turning on a predetermined switch provided on the operation panel of the control device 2. Note that while the interrupt is being executed, the operator can operate the industrial machine 1 using the axis movement switch on the operation panel, the pulse generator, etc., as in the manual operation mode.
 表示装置22は、記憶部221と、判断部222と、決定部223と、表示部224とを備える。記憶部221は、例えば、各種データ、および各種プログラムが、RAM204、または不揮発性メモリ205に記憶されることにより実現される。判断部222、決定部223および表示部224は、例えば、ハードウェアプロセッサ201が、ROM203に記憶されているシステムプログラムならびに不揮発性メモリ205に記憶されている動作プログラム、および各種データを用いて演算処理することにより実現される。 The display device 22 includes a storage section 221, a determination section 222, a determination section 223, and a display section 224. The storage unit 221 is realized, for example, by storing various data and various programs in the RAM 204 or the nonvolatile memory 205. The determination unit 222, the determination unit 223, and the display unit 224 are configured such that, for example, the hardware processor 201 performs arithmetic processing using the system program stored in the ROM 203, the operation program stored in the nonvolatile memory 205, and various data. This is achieved by
 記憶部221は、表示画面に表示される少なくとも1つの画面部品の更新周期と、産業機械1の状態との関係を記憶する。 The storage unit 221 stores the relationship between the update cycle of at least one screen component displayed on the display screen and the state of the industrial machine 1.
 表示画面は、例えば、入出力装置3の表示画面である。画面部品は、産業機械1に関する各種情報の提示、または各種情報の受け付けをするために表示画面に表示される画像および当該画像を表示させるためのプログラムである。 The display screen is, for example, the display screen of the input/output device 3. The screen component is an image displayed on a display screen for presenting various information regarding the industrial machine 1 or accepting various information, and a program for displaying the image.
 画面部品は、例えば、制御軸の位置を示す座標値を表示する座標値表示部品、動作プログラムの編集に用いられるエディタ部品、制御軸の送り速度を表示する送り速度表示部品、主軸の回転速度を表示する主軸速度表示部品、および動作プログラムの実行中に有効状態となっているモーダル指令を表示するモーダル表示部品とを含む。 Screen components include, for example, a coordinate value display component that displays coordinate values that indicate the position of the control axis, an editor component that is used to edit an operation program, a feed rate display component that displays the feed rate of the control axis, and a component that displays the rotation speed of the main axis. It includes a spindle speed display component to display, and a modal display component to display modal commands that are in a valid state while the operation program is being executed.
 更新周期は、画面部品が表示する情報を更新する周期である。つまり、画面部品は、更新周期ごとに更新された新たな情報を表示する。更新周期は、例えば、16[ms]、64[ms]、128[ms]および256[ms]のいずれかである。 The update cycle is the cycle at which information displayed by the screen component is updated. In other words, the screen component displays new information updated every update cycle. The update cycle is, for example, one of 16 [ms], 64 [ms], 128 [ms], and 256 [ms].
 産業機械1の状態は、上述したように、産業機械1の運転状態、または設定状態を意味する。運転状態は、動作プログラムが編集中である編集状態、割り込みの実行中である割込状態、および動作プログラムの実行中である実行状態を含む。設定状態は、複数種類の運転モードのうちのいずれかの運転モードが設定された運転モード設定状態を含む。例えば、自動運転モードが設定されている場合、産業機械1の状態は自動運転モード設定状態となる。記憶部221は、更新周期と産業機械1の状態の関係を、例えば、テーブルを用いて記憶する。 As mentioned above, the state of the industrial machine 1 means the operating state or setting state of the industrial machine 1. The operating states include an editing state where the operating program is being edited, an interrupt state where an interrupt is being executed, and an execution state where the operating program is being executed. The setting state includes a driving mode setting state in which one of the plurality of types of driving modes is set. For example, when the automatic operation mode is set, the state of the industrial machine 1 becomes the automatic operation mode setting state. The storage unit 221 stores the relationship between the update cycle and the state of the industrial machine 1 using, for example, a table.
 図3は、記憶部221に記憶された画面部品の更新周期と産業機械1の状態との関係の一例を示す図である。図3は、MDI運転モードにおける画面部品の更新周期と産業機械1の状態との関係を示す図である。画面部品は、座標値表示部品とエディタ部品とを含む。また、MDI運転モードにおいて、産業機械1の状態は、動作プログラムの編集中である編集状態、および動作プログラムの実行中である実行状態を含む。 FIG. 3 is a diagram illustrating an example of the relationship between the update cycle of screen components stored in the storage unit 221 and the state of the industrial machine 1. FIG. 3 is a diagram showing the relationship between the update cycle of screen components and the state of the industrial machine 1 in the MDI operation mode. The screen components include a coordinate value display component and an editor component. Furthermore, in the MDI operation mode, the states of the industrial machine 1 include an editing state in which the operating program is being edited, and an execution state in which the operating program is being executed.
 記憶部221は、編集状態では、座標値表示部品を128[ms]で更新させ、エディタ部品を16[ms]で更新させることを記憶している。また、記憶部221は、実行状態では、座標値表示部品を16[ms]で更新させ、エディタ部品を128[ms]で更新させることを記憶している。 The storage unit 221 stores that in the editing state, the coordinate value display component is updated at 128 [ms] and the editor component is updated at 16 [ms]. The storage unit 221 also stores that in the execution state, the coordinate value display component is updated at 16 [ms] and the editor component is updated at 128 [ms].
 なお、動作プログラムの編集中は、オペレータは、座標値表示部品よりもエディタ部品に注目する。また、自動運転中は、オペレータは、エディタ部品よりも座標値表示部品に注目する。そのため、編集状態では、エディタ部品の更新周期は短く設定され、実行状態では、座標値表示部品の更新周期が短く設定される。ここで、図2の説明に戻る。 Note that while editing the operation program, the operator pays more attention to the editor component than to the coordinate value display component. Furthermore, during automatic operation, the operator pays more attention to the coordinate value display component than to the editor component. Therefore, in the edit state, the update cycle of the editor component is set short, and in the execution state, the update cycle of the coordinate value display component is set short. Here, we return to the explanation of FIG. 2.
 判断部222は、制御部21から産業機械1の状態を示す情報を受けて産業機械1の状態を判断する。産業機械1の状態を示す情報は、制御装置2が出力する信号である。例えば、産業機械1が、MDI運転モードに設定されている場合、制御部21は、判断部222に対しMDI運転モード信号を出力する。判断部222は、MDI運転モード信号を受けると産業機械1がMDI運転モードに設定されていると判断する。言い換えれば、判断部222は、産業機械1の状態がMDI運転モード設定状態であると判断する。 The determining unit 222 receives information indicating the status of the industrial machine 1 from the control unit 21 and determines the status of the industrial machine 1. Information indicating the state of the industrial machine 1 is a signal output by the control device 2. For example, when the industrial machine 1 is set to the MDI operation mode, the control section 21 outputs an MDI operation mode signal to the determination section 222. Upon receiving the MDI operation mode signal, the determination unit 222 determines that the industrial machine 1 is set to the MDI operation mode. In other words, the determination unit 222 determines that the state of the industrial machine 1 is the MDI operation mode setting state.
 また、産業機械1がMDI運転モードに設定されると、制御装置2の表示画面には、手動での動作プログラムの入力を受け付けるエディタ部品が表示される。このとき、エディタ部品はオペレータからの指令の入力を受け付け可能な状態、言い換えれば、動作プログラムの編集が可能な状態となっている。したがって、判断部222は、MDI運転モード信号を受けると、産業機械1においてオペレータが動作プログラムの編集中である、すなわち、産業機械1の状態が編集状態であると判断する。 Furthermore, when the industrial machine 1 is set to the MDI operation mode, an editor component that accepts manual operation program input is displayed on the display screen of the control device 2. At this time, the editor component is in a state in which it can accept command input from the operator, in other words, in a state in which it can edit the operating program. Therefore, upon receiving the MDI operation mode signal, the determining unit 222 determines that the operator in the industrial machine 1 is editing the operation program, that is, the state of the industrial machine 1 is in the editing state.
 なお、制御部21は、産業機械1がMDI運転モードに設定されてエディタ部品がオペレータからの指令の入力を受け付け可能な状態となったときに編集状態であることを示す編集中信号を判断部222に送ってもよい。判断部222は、編集中信号を受けることに応じて、産業機械1の状態が、編集状態であると判断してもよい。 Furthermore, when the industrial machine 1 is set to the MDI operation mode and the editor component is in a state where it can accept command input from the operator, the control unit 21 outputs an editing signal indicating that it is in the editing state to the judgment unit. 222. The determining unit 222 may determine that the state of the industrial machine 1 is the editing state in response to receiving the editing signal.
 決定部223は、記憶部221に記憶された画面部品の更新周期と産業機械1の状態との関係、および判断部222によって判断された産業機械1の状態に基づいて画面部品の更新周期を決定する。 The determining unit 223 determines the update cycle of the screen component based on the relationship between the update cycle of the screen component stored in the storage unit 221 and the state of the industrial machine 1 and the state of the industrial machine 1 determined by the determining unit 222. do.
 例えば、判断部222によって、産業機械1の状態がMDI運転モード設定状態、かつ編集状態であると判断されると、決定部223は、座標値表示部品の更新周期を128[ms]に、エディタ部品の更新周期を16[ms]に決定する。 For example, when the determining unit 222 determines that the state of the industrial machine 1 is the MDI operation mode setting state and the editing state, the determining unit 223 sets the update cycle of the coordinate value display component to 128 [ms] and the editor. Set the component update cycle to 16 [ms].
 表示部224は、決定部223によって決定された更新周期に基づいて少なくとも1つの画面部品を表示させる。また、表示部224は、各画面部品に表示させる情報を制御部21から受ける。 The display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223. Further, the display unit 224 receives information to be displayed on each screen component from the control unit 21.
 図4は、表示画面に表示される画面部品の一例を示す図である。決定部223が、座標値表示部品Cの更新周期を128[ms]に決定した場合、表示部224は、座標値表示部品Cを128[ms]ごとに更新して表示する。また、決定部223が、エディタ部品Eの更新周期を16[ms]に決定した場合、表示部224は、エディタ部品Eを16[ms]ごとに更新して表示する。なお、表示部224は、図4に示すように、更新周期を示す画像を表示画面に表示させてもよい。また、図4に示す他の画面部品の更新周期は、例えば、制御装置2においてあらかじめ設定される64[ms]でよい。 FIG. 4 is a diagram showing an example of screen components displayed on the display screen. When the determining unit 223 determines the update cycle of the coordinate value display component C to be 128 [ms], the display unit 224 updates and displays the coordinate value display component C every 128 [ms]. Further, when the determining unit 223 determines the update cycle of the editor component E to be 16 [ms], the display unit 224 updates and displays the editor component E every 16 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 4. Further, the update period of other screen components shown in FIG. 4 may be, for example, 64 [ms], which is preset in the control device 2.
 MDI運転モードにおいて、エディタ部品Eでの動作プログラムの編集が完了し、入力された動作プログラムの実行が開始されると、制御部21は、自動運転開始信号を判断部222に出力する。判断部222が自動運転開始信号を受けると、判断部222は、産業機械1が自動運転中、すなわち、産業機械1の状態が実行状態であると判断する。 In the MDI operation mode, when editing of the operation program in the editor component E is completed and execution of the input operation program is started, the control unit 21 outputs an automatic operation start signal to the determination unit 222. When the determining unit 222 receives the automatic operation start signal, the determining unit 222 determines that the industrial machine 1 is in automatic operation, that is, the state of the industrial machine 1 is in the execution state.
 判断部222によって、産業機械1の状態がMDI運転モード設定状態、かつ、実行状態であると判断されると、決定部223は、座標値表示部品Cの更新周期を16[ms]に、エディタ部品Eの更新周期を128[ms]に決定する。 When the determination unit 222 determines that the industrial machine 1 is in the MDI operation mode setting state and the execution state, the determination unit 223 sets the update cycle of the coordinate value display component C to 16 [ms] and changes the editor The update cycle of component E is determined to be 128 [ms].
 表示部224は、決定部223によって決定された更新周期に基づいて少なくとも1つの画面部品を表示させる。 The display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
 図5は、表示画面に表示される画面部品の一例を示す図である。決定部223が、座標値表示部品Cの更新周期を16[ms]に決定した場合、表示部224は、座標値表示部品Cの更新周期を16[ms]ごとに更新して表示する。また、決定部223が、エディタ部品Eの更新周期を128[ms]に決定した場合、表示部224は、エディタ部品Eの更新周期を128[ms]ごとに更新して表示する。なお、表示部224は、図5に示すように、更新周期を示す画像を表示画面に表示させてもよい。 FIG. 5 is a diagram showing an example of screen components displayed on the display screen. When the determining unit 223 determines the update cycle of the coordinate value display component C to be 16 [ms], the display unit 224 updates and displays the update cycle of the coordinate value display component C every 16 [ms]. Further, when the determining unit 223 determines the update cycle of the editor component E to be 128 [ms], the display unit 224 updates and displays the update cycle of the editor component E every 128 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 5.
 図6は、記憶部221に記憶された画面部品の更新周期と産業機械1の状態との関係の一例を示す図である。図6は、自動運転モードおよび手動運転モードにおける画面部品の更新周期と産業機械1の状態との関係を示す図である。画面部品は、座標値表示部品C、送り速度表示部品、主軸速度表示部品、およびモーダル表示部品を含む。 FIG. 6 is a diagram illustrating an example of the relationship between the update cycle of screen components stored in the storage unit 221 and the state of the industrial machine 1. FIG. 6 is a diagram showing the relationship between the update cycle of screen components and the state of the industrial machine 1 in automatic operation mode and manual operation mode. The screen components include a coordinate value display component C, a feed rate display component, a spindle speed display component, and a modal display component.
 記憶部221は、自動運転モード設定状態では、座標値表示部品Cを64[ms]で更新させ、送り速度表示部品を16[ms]で更新させ、主軸速度表示部品を16[ms]で更新させ、モーダル表示部品を128[ms]で更新させることを記憶している。また、記憶部221は、手動運転モード設定状態では、座標値表示部品Cを16[ms]で更新させ、送り速度表示部品を128[ms]で更新させ、主軸速度表示部品を128[ms]で更新させ、モーダル表示部品を128[ms]で更新させることを記憶している。 In the automatic operation mode setting state, the storage unit 221 updates the coordinate value display component C at 64 [ms], the feed rate display component at 16 [ms], and the spindle speed display component at 16 [ms]. The modal display component is updated at 128 [ms]. In addition, in the manual operation mode setting state, the storage unit 221 updates the coordinate value display component C at 16 [ms], updates the feed rate display component at 128 [ms], and updates the spindle speed display component at 128 [ms]. , and the modal display component is updated at 128 [ms].
 なお、自動運転モードでは、オペレータは、送り速度表示部品、および主軸速度表示部品に最も注目し、次に、座標値表示部品Cに注目し、モーダル表示部品にはあまり注目しない。また、手動運転モードでは、オペレータは、座標値表示部品Cに注目し、送り速度表示部品、主軸速度表示部品、およびモーダル表示部品にはあまり注目しない。そのため、自動運転モード設定状態、および手動運転モード設定状態における各画面部品の更新周期は、図6に示すように設定される。 Note that in the automatic operation mode, the operator pays the most attention to the feed rate display component and the spindle speed display component, then the coordinate value display component C, and does not pay much attention to the modal display component. Furthermore, in the manual operation mode, the operator focuses on the coordinate value display component C and does not pay much attention to the feed rate display component, the spindle speed display component, and the modal display component. Therefore, the update cycle of each screen component in the automatic operation mode setting state and the manual operation mode setting state is set as shown in FIG. 6.
 産業機械1が自動運転モードに設定されている場合、制御部21は、判断部222に対し自動運転モード信号を出力する。判断部222は、自動運転モード信号を受けると産業機械1が自動運転モードに設定されていると判断する。言い換えれば、判断部222は、産業機械1の状態が自動運転モード設定状態であると判断する。 When the industrial machine 1 is set to automatic operation mode, the control unit 21 outputs an automatic operation mode signal to the determination unit 222. Upon receiving the automatic operation mode signal, the determination unit 222 determines that the industrial machine 1 is set to the automatic operation mode. In other words, the determination unit 222 determines that the industrial machine 1 is in the automatic operation mode setting state.
 また、産業機械1が、手動運転モードに設定されている場合、制御部21は、判断部222に対し手動運転モード信号を出力する。判断部222は、手動運転モード信号を受けると産業機械1が手動運転モードに設定されていると判断する。言い換えれば、判断部222は、産業機械1の状態が手動運転モード設定状態であると判断する。 Further, when the industrial machine 1 is set to the manual operation mode, the control unit 21 outputs a manual operation mode signal to the determination unit 222. Upon receiving the manual operation mode signal, the determination unit 222 determines that the industrial machine 1 is set to the manual operation mode. In other words, the determination unit 222 determines that the industrial machine 1 is in the manual operation mode setting state.
 判断部222によって、産業機械1の状態が自動運転モード設定状態であると判断されると、決定部223は、座標値表示部品Cの更新周期を64[ms]に、送り速度表示部品の更新周期を16[ms]に、主軸速度表示部品の更新周期を16[ms]に、およびモーダル表示部品の更新周期を128[ms]に決定する。 When the determining unit 222 determines that the state of the industrial machine 1 is in the automatic operation mode setting state, the determining unit 223 sets the update cycle of the coordinate value display component C to 64 [ms] and updates the feed rate display component. The cycle is determined to be 16 [ms], the update cycle of the spindle speed display component to 16 [ms], and the update cycle of the modal display component to 128 [ms].
 表示部224は、決定部223によって決定された更新周期に基づいて少なくとも1つの画面部品を表示させる。 The display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
 図7は、表示画面に表示される画面部品の一例を示す図である。決定部223が、座標値表示部品Cの更新周期を64[ms]に決定した場合、表示部224は、座標値表示部品Cの更新周期を64[ms]ごとに更新して表示する。また、決定部223が、送り速度表示部品Fの更新周期を16[ms]に決定した場合、表示部224は、送り速度表示部品Fの更新周期を16[ms]ごとに更新して表示する。決定部223が、主軸速度表示部品Sの更新周期を16[ms]に決定した場合、表示部224は、主軸速度表示部品Sの更新周期を16[ms]ごとに更新して表示する。また、決定部223が、モーダル表示部品Mの更新周期を128[ms]に決定した場合、表示部224は、モーダル表示部品Mの更新周期を128[ms]ごとに更新して表示する。なお、表示部224は、図7に示すように、更新周期を示す画像を表示画面に表示させてもよい。 FIG. 7 is a diagram showing an example of screen components displayed on the display screen. When the determining unit 223 determines the update cycle of the coordinate value display component C to be 64 [ms], the display unit 224 updates and displays the update cycle of the coordinate value display component C every 64 [ms]. Further, when the determining unit 223 determines the update cycle of the feed speed display component F to be 16 [ms], the display unit 224 updates and displays the update cycle of the feed speed display component F every 16 [ms]. . When the determining unit 223 determines the update cycle of the spindle speed display component S to be 16 [ms], the display unit 224 updates and displays the update cycle of the spindle speed display component S every 16 [ms]. Further, when the determining unit 223 determines the update cycle of the modal display component M to be 128 [ms], the display unit 224 updates and displays the update cycle of the modal display component M every 128 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG.
 判断部222によって、産業機械1の状態が手動運転モード設定状態であると判断されると、決定部223は、座標値表示部品Cの更新周期を16[ms]に、送り速度表示部品Fの更新周期を128[ms]に、主軸速度表示部品Sの更新周期を128[ms]に、およびモーダル表示部品Mの更新周期を128[ms]に決定する。 When the determination unit 222 determines that the state of the industrial machine 1 is in the manual operation mode setting state, the determination unit 223 sets the update cycle of the coordinate value display component C to 16 [ms] and the update cycle of the feed rate display component F. The update cycle is determined to be 128 [ms], the update cycle of the spindle speed display component S is determined to be 128 [ms], and the update cycle of the modal display component M is determined to be 128 [ms].
 表示部224は、決定部223によって決定された更新周期に基づいて少なくとも1つの画面部品を表示させる。 The display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
 図8は、表示画面に表示される画面部品の一例を示す図である。決定部223が、座標値表示部品Cの更新周期を16[ms]に決定した場合、表示部224は、座標値表示部品Cの更新周期を16[ms]ごとに更新して表示する。また、決定部223が、送り速度表示部品Fの更新周期を128[ms]に決定した場合、表示部224は、送り速度表示部品Fの更新周期を128[ms]ごとに更新して表示する。決定部223が、主軸速度表示部品Sの更新周期を128[ms]に決定した場合、表示部224は、主軸速度表示部品Sの更新周期を128[ms]ごとに更新して表示する。また、決定部223が、モーダル表示部品Mの更新周期を128[ms]に決定した場合、表示部224は、モーダル表示部品Mの更新周期を128[ms]ごとに更新して表示する。なお、表示部224は、図8に示すように、更新周期を示す画像を表示画面に表示させてもよい。 FIG. 8 is a diagram showing an example of screen components displayed on the display screen. When the determining unit 223 determines the update cycle of the coordinate value display component C to be 16 [ms], the display unit 224 updates and displays the update cycle of the coordinate value display component C every 16 [ms]. Furthermore, when the determining unit 223 determines the update cycle of the feed speed display component F to be 128 [ms], the display unit 224 updates and displays the update cycle of the feed speed display component F every 128 [ms]. . When the determining unit 223 determines the update cycle of the spindle speed display component S to be 128 [ms], the display unit 224 updates and displays the update cycle of the spindle speed display component S every 128 [ms]. Further, when the determining unit 223 determines the update cycle of the modal display component M to be 128 [ms], the display unit 224 updates and displays the update cycle of the modal display component M every 128 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 8 .
 図9は、記憶部221に記憶された画面部品の更新周期と産業機械1の状態との関係の一例を示す図である。図9は、割り込みがされていない状態の自動運転モードにおける画面部品の更新周期と産業機械1の状態との関係、および割り込みがされた割込状態の自動運転モードにおける画面部品の更新周期と産業機械1の状態との関係を示す図である。画面部品は、座標値表示部品C、送り速度表示部品F、主軸速度表示部品S、およびモーダル表示部品Mを含む。 FIG. 9 is a diagram illustrating an example of the relationship between the update cycle of screen components stored in the storage unit 221 and the state of the industrial machine 1. FIG. 9 shows the relationship between the update cycle of screen components and the state of industrial machine 1 in the automatic operation mode with no interruptions, and the relationship between the update cycle of screen components in the automatic operation mode with an interrupt and the industrial machine 1. 2 is a diagram showing the relationship with the state of the machine 1. FIG. The screen components include a coordinate value display component C, a feed rate display component F, a spindle speed display component S, and a modal display component M.
 記憶部221は、割り込みがされていない状態における自動運転モード設定状態では、座標値表示部品Cを64[ms]で更新させ、送り速度表示部品Fを16[ms]で更新させ、主軸速度表示部品Sを16[ms]で更新させ、モーダル表示部品Mを128[ms]で更新させることを記憶している。また、記憶部221は、割り込みがされた状態における自動運転モード設定状態では、座標値表示部品Cを16[ms]で更新させ、送り速度表示部品Fを16[ms]で更新させ、主軸速度表示部品Sを16[ms]で更新させ、モーダル表示部品Mを256[ms]で更新させることを記憶している。 In the automatic operation mode setting state with no interruption, the storage unit 221 updates the coordinate value display component C at 64 [ms], updates the feed speed display component F at 16 [ms], and updates the spindle speed display. It is stored that the component S is updated at 16 [ms] and the modal display component M is updated at 128 [ms]. In addition, in the automatic operation mode setting state with an interrupt, the storage unit 221 updates the coordinate value display component C at 16 [ms], updates the feed speed display component F at 16 [ms], and updates the spindle speed. It is stored that the display component S is updated at 16 [ms] and the modal display component M is updated at 256 [ms].
 なお、割り込みがされていない状態における自動運転モードでは、オペレータは、送り速度表示部品F、および主軸速度表示部品Sに最も注目し、次に、座標値表示部品Cに注目し、モーダル表示部品Mにはあまり注目しない。また、自動運転モードにおいて割り込みがされ、パルス発生器などを用いて手動操作がされる場合、オペレータは、座標値表示部品C、送り速度表示部品F、および主軸速度表示部品Sに注目し、モーダル表示部品Mにはあまり注目しない。そのため、自動運転モード設定状態において割り込みがされていない状態の各画面部品の更新周期、および自動運転モード設定状態において割り込みがされた状態の各画面部品の更新周期は、図9に示すように設定される。 Note that in the automatic operation mode with no interruptions, the operator pays the most attention to the feed rate display component F and the spindle speed display component S, then the coordinate value display component C, and the modal display component M. I don't pay much attention to it. In addition, when an interrupt occurs in the automatic operation mode and manual operation is performed using a pulse generator or the like, the operator pays attention to the coordinate value display part C, the feed rate display part F, and the spindle speed display part S, and modulates the Don't pay much attention to the display component M. Therefore, the update period of each screen component in the state where no interruption is made in the automatic driving mode setting state and the update period of each screen component in the state in which an interruption is made in the automatic driving mode setting state are set as shown in Figure 9. be done.
 産業機械1が、自動運転モードに設定されている場合、制御部21は、判断部222に対し自動運転モード信号を出力する。判断部222は、自動運転モード信号を受けると産業機械1の状態が自動運転モード設定状態であると判断する。 When the industrial machine 1 is set to the automatic operation mode, the control unit 21 outputs an automatic operation mode signal to the determination unit 222. Upon receiving the automatic operation mode signal, the determination unit 222 determines that the state of the industrial machine 1 is the automatic operation mode setting state.
 判断部222によって、産業機械1の状態が自動運転モード設定状態であり、かつ、割り込みがされていない状態であると判断されると、決定部223は、座標値表示部品Cの更新周期を64[ms]に、送り速度表示部品Fの更新周期を16[ms]に、主軸速度表示部品Sの更新周期を16[ms]に、およびモーダル表示部品Mの更新周期を128[ms]に決定する。 When the determination unit 222 determines that the industrial machine 1 is in the automatic operation mode setting state and is not interrupted, the determination unit 223 sets the update cycle of the coordinate value display component C to 64 [ms], the update cycle of the feed speed display component F to 16 [ms], the update cycle of the spindle speed display component S to 16 [ms], and the update cycle of the modal display component M to 128 [ms]. do.
 表示部224は、決定部223によって決定された更新周期に基づいて少なくとも1つの画面部品を表示させる。 The display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
 図10は、表示画面に表示される画面部品の一例を示す図である。決定部223が、座標値表示部品Cの更新周期を64[ms]に決定した場合、表示部224は、座標値表示部品Cの更新周期を64[ms]ごとに更新して表示する。また、決定部223が、送り速度表示部品Fの更新周期を16[ms]に決定した場合、表示部224は、送り速度表示部品Fの更新周期を16[ms]ごとに更新して表示する。また、決定部223が、主軸速度表示部品Sの更新周期を16[ms]に決定した場合、表示部224は、主軸速度表示部品Sの更新周期を16[ms]ごとに更新して表示する。また、決定部223が、モーダル表示部品Mの更新周期を128[ms]に決定した場合、表示部224は、モーダル表示部品Mの更新周期を128[ms]ごとに更新して表示する。なお、表示部224は、図10に示すように、更新周期を示す画像を表示画面に表示させてもよい。 FIG. 10 is a diagram showing an example of screen components displayed on the display screen. When the determining unit 223 determines the update cycle of the coordinate value display component C to be 64 [ms], the display unit 224 updates and displays the update cycle of the coordinate value display component C every 64 [ms]. Further, when the determining unit 223 determines the update cycle of the feed speed display component F to be 16 [ms], the display unit 224 updates and displays the update cycle of the feed speed display component F every 16 [ms]. . Furthermore, when the determining unit 223 determines the update cycle of the spindle speed display component S to be 16 [ms], the display unit 224 updates and displays the update cycle of the spindle speed display component S every 16 [ms]. . Further, when the determining unit 223 determines the update cycle of the modal display component M to be 128 [ms], the display unit 224 updates and displays the update cycle of the modal display component M every 128 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 10.
 産業機械1の自動運転中において割り込みが行われると、制御部21は、割込信号を判断部222に出力する。判断部222が割込信号を受けると、判断部222は、産業機械1の自動運転中に割り込みが行われたと判断する。言い換えれば、判断部222は、産業機械1の状態が割込状態であると判断する。 When an interrupt occurs during automatic operation of the industrial machine 1, the control unit 21 outputs an interrupt signal to the determination unit 222. When the determining unit 222 receives the interrupt signal, the determining unit 222 determines that the interrupt has been performed during automatic operation of the industrial machine 1. In other words, the determination unit 222 determines that the state of the industrial machine 1 is an interrupt state.
 判断部222によって産業機械1の状態が自動運転モード設定状態であり、かつ、割込状態であると判断されると、決定部223は、座標値表示部品Cの更新周期を16[ms]に、送り速度表示部品Fの更新周期を16[ms]に、主軸速度表示部品Sの更新周期を16[ms]に、モーダル表示部品Mの更新周期を256[ms]に決定する。 When the determining unit 222 determines that the industrial machine 1 is in the automatic operation mode setting state and in the interrupt state, the determining unit 223 sets the update cycle of the coordinate value display component C to 16 [ms]. , the update cycle of the feed speed display component F is determined to be 16 [ms], the update cycle of the spindle speed display component S is determined to be 16 [ms], and the update cycle of the modal display component M is determined to be 256 [ms].
 表示部224は、決定部223によって決定された更新周期に基づいて少なくとも各画面部品を表示させる。 The display unit 224 displays at least each screen component based on the update cycle determined by the determination unit 223.
 図11は、表示画面に表示される画面部品の一例を示す図である。決定部223が、座標値表示部品Cの更新周期を16[ms]に決定した場合、表示部224は、座標値表示部品Cの更新周期を16[ms]ごとに更新して表示する。また、決定部223が、送り速度表示部品Fの更新周期を16[ms]に決定した場合、表示部224は、送り速度表示部品Fの更新周期を16[ms]ごとに更新して表示する。また、決定部223が、主軸速度表示部品Sの更新周期を16[ms]に決定した場合、表示部224は、主軸速度表示部品Sの更新周期を16[ms]ごとに更新して表示する。また、決定部223が、モーダル表示部品Mの更新周期を256[ms]に決定した場合、表示部224は、モーダル表示部品Mの更新周期を256[ms]ごとに更新して表示する。なお、表示部224は、図11に示すように、更新周期を示す画像を表示画面に表示させてもよい。 FIG. 11 is a diagram showing an example of screen components displayed on the display screen. When the determining unit 223 determines the update cycle of the coordinate value display component C to be 16 [ms], the display unit 224 updates and displays the update cycle of the coordinate value display component C every 16 [ms]. Further, when the determining unit 223 determines the update cycle of the feed speed display component F to be 16 [ms], the display unit 224 updates and displays the update cycle of the feed speed display component F every 16 [ms]. . Furthermore, when the determining unit 223 determines the update cycle of the spindle speed display component S to be 16 [ms], the display unit 224 updates and displays the update cycle of the spindle speed display component S every 16 [ms]. . Furthermore, when the determining unit 223 determines the update cycle of the modal display component M to be 256 [ms], the display unit 224 updates and displays the update cycle of the modal display component M every 256 [ms]. Note that the display unit 224 may display an image indicating the update cycle on the display screen, as shown in FIG. 11.
 図12は、表示装置22において実行される処理の流れの一例を示すフローチャートである。表示装置22では、まず、判断部222が産業機械1の状態を示す情報と受け付ける(ステップS1)。 FIG. 12 is a flowchart showing an example of the flow of processing executed in the display device 22. In the display device 22, first, the determination unit 222 receives information indicating the state of the industrial machine 1 (step S1).
 次に、判断部222が、受け付けた産業機械1の状態を示す情報に基づいて、産業機械1の状態を判断する(ステップS2)。 Next, the determining unit 222 determines the state of the industrial machine 1 based on the received information indicating the state of the industrial machine 1 (step S2).
 次に、決定部223が、記憶部221に記憶された更新周期と産業機械1の状態との関係、および判断部222によって判断された産業機械1の状態に基づいて画面部品の更新周期を決定する(ステップS3)。 Next, the determining unit 223 determines the update cycle of the screen component based on the relationship between the update cycle stored in the storage unit 221 and the state of the industrial machine 1 and the state of the industrial machine 1 determined by the determining unit 222. (Step S3).
 次に、表示部224が決定部223によって決定された更新周期に基づいて画面部品を表示させ(ステップS4)、処理を終了する。なお、表示部224は、産業機械1の状態を示す情報、例えば、制御軸の位置などを示す情報を制御部21から受けて各画面部品に表示させる。 Next, the display unit 224 displays the screen component based on the update cycle determined by the determining unit 223 (step S4), and the process ends. Note that the display unit 224 receives information indicating the state of the industrial machine 1, such as information indicating the position of a control axis, from the control unit 21 and displays it on each screen component.
 以上説明したように、表示装置22は、表示画面に表示される少なくとも1つの画面部品の更新周期と、産業機械1の状態との関係を記憶する記憶部221と、産業機械1の状態を判断する判断部222と、記憶部221に記憶された関係および判断部222によって判断された産業機械1の状態に基づいて更新周期を決定することを実行する決定部223と、決定部223によって決定された更新周期に基づいて少なくとも1つの画面部品を表示させる表示部224と、を備える。 As explained above, the display device 22 includes a storage unit 221 that stores the relationship between the update cycle of at least one screen component displayed on the display screen and the state of the industrial machine 1, and a storage unit 221 that determines the state of the industrial machine 1. a determining unit 223 that determines the update cycle based on the relationship stored in the storage unit 221 and the state of the industrial machine 1 determined by the determining unit 222; and a display unit 224 that displays at least one screen component based on the updated update cycle.
 したがって、表示装置22は、オペレータに画面部品を指定する操作の負担を与えずに画面部品の更新周期を変更することが可能になる。また、オペレータによって注目される画面部品の更新周期のみを産業機械1の状態に応じて短くすることができる。その結果、ハードウェアプロセッサ201の処理に係る負荷が過度に大きくなることを防ぐことができる。また、オペレータが注目する画面部品の表示をスムーズに更新することができる。 Therefore, the display device 22 can change the update cycle of screen components without burdening the operator with operations to specify screen components. Moreover, only the update period of the screen components that are noticed by the operator can be shortened depending on the state of the industrial machine 1. As a result, it is possible to prevent the processing load on the hardware processor 201 from becoming excessively large. Further, the display of the screen component that the operator is interested in can be updated smoothly.
 また、表示装置22は、オペレータによって注目される画面部品の更新周期のみを短くするので、高価かつ高機能なハードウェアプロセッサ201を使用しなくても画面部品の表示をスムーズに更新することができる。そのため、表示装置22のコストの削減を図ることができる。 Further, since the display device 22 shortens the update cycle of only the screen components that are noticed by the operator, the display of the screen components can be updated smoothly without using the expensive and highly functional hardware processor 201. . Therefore, the cost of the display device 22 can be reduced.
 また、判断部222は産業機械1を制御する制御装置2が出力する信号に基づいて産業機械1の状態を判断する。制御装置2が出力する信号は、産業機械1の運転モードを示す運転モード信号を含む。また、制御装置2が出力する信号は、産業機械1の自動運転が開始されたことを示す自動運転開始信号を含む。また、制御装置2が出力する信号は、割り込みが行われたことを示す割込信号を含む。したがって、表示装置22は、産業機械1の様々な状態に応じて各画面部品の更新周期を変更することができる。 Furthermore, the determination unit 222 determines the state of the industrial machine 1 based on the signal output by the control device 2 that controls the industrial machine 1. The signal output by the control device 2 includes an operation mode signal indicating the operation mode of the industrial machine 1. Further, the signal output by the control device 2 includes an automatic operation start signal indicating that automatic operation of the industrial machine 1 has started. Further, the signal output by the control device 2 includes an interrupt signal indicating that an interrupt has been performed. Therefore, the display device 22 can change the update cycle of each screen component according to various states of the industrial machine 1.
 また、記憶部221は、更新周期と産業機械1の状態との関係を、テーブルを用いて記憶する。そのため、オペレータは、例えば、更新周期と産業機械1の状態との関係を容易に把握することができる。 Furthermore, the storage unit 221 stores the relationship between the update cycle and the state of the industrial machine 1 using a table. Therefore, the operator can easily understand, for example, the relationship between the update cycle and the state of the industrial machine 1.
 また、表示部224は、更新周期を示す画像を表示画面に表示させる。したがって、オペレータは、各画面部品の更新周期を容易に理解することができる。 Additionally, the display unit 224 displays an image indicating the update cycle on the display screen. Therefore, the operator can easily understand the update cycle of each screen component.
 上述した実施形態では、記憶部221は、画面部品の更新周期と、産業機械1の状態との関係を記憶する。また、判断部222は、産業機械1の状態を判断する。また、決定部223は、記憶部221に記憶された関係および判断部222によって判断された産業機械1の状態に基づいて更新周期を決定する。 In the embodiment described above, the storage unit 221 stores the relationship between the update cycle of screen components and the state of the industrial machine 1. Further, the determining unit 222 determines the state of the industrial machine 1. Further, the determining unit 223 determines the update cycle based on the relationship stored in the storage unit 221 and the state of the industrial machine 1 determined by the determining unit 222.
 しかし、記憶部221が表示画面に表示される少なくとも1つの画面部品の更新周期と、オペレータの行動との関係を記憶してもよい。この場合、判断部222は、オペレータの行動を監視してオペレータの行動に関する情報を取得する取得部からの情報に基づいてオペレータの行動を判断する。決定部223は、記憶部221に記憶された関係および判断部222によって判断されたオペレータの行動に基づいて各画面部品の更新周期を決定する。 However, the storage unit 221 may store the relationship between the update cycle of at least one screen component displayed on the display screen and the operator's actions. In this case, the determination unit 222 determines the operator's behavior based on information from an acquisition unit that monitors the operator's behavior and acquires information regarding the operator's behavior. The determining unit 223 determines the update cycle of each screen component based on the relationship stored in the storage unit 221 and the operator's behavior determined by the determining unit 222.
 図13は、オペレータの行動に基づいて画面部品の更新周期が決定される表示装置22の機能の一例を示すブロック図である。図13に示すブロック図は、取得部9が表示装置22に接続されている点で図2に示す制御装置2と異なる。したがって、ここでは、取得部9、およびこれに関連する機能について説明し、図2を用いて説明した機能と同じ機能については説明を省略する。 FIG. 13 is a block diagram showing an example of the function of the display device 22 in which the update cycle of screen components is determined based on the operator's actions. The block diagram shown in FIG. 13 differs from the control device 2 shown in FIG. 2 in that the acquisition unit 9 is connected to the display device 22. Therefore, the acquisition unit 9 and its related functions will be described here, and the description of the same functions as those described using FIG. 2 will be omitted.
 取得部9は、オペレータの行動を監視してオペレータの行動に関する情報を取得する。オペレータの行動は、例えば、複数の画面部品のうちのいずれの画面部品にオペレータが注目しているかである。つまり、取得部9は、オペレータの視線を監視する。 The acquisition unit 9 monitors the operator's behavior and acquires information regarding the operator's behavior. The operator's behavior is, for example, which screen component out of a plurality of screen components the operator is paying attention to. That is, the acquisition unit 9 monitors the operator's line of sight.
 取得部9は、例えば、撮像装置である。撮像装置は、例えば、カメラである。取得部9は、オペレータの行動に関する情報を取得して判断部222に送る。オペレータの行動に関する情報は、例えば、オペレータの視線を示す視線情報である。 The acquisition unit 9 is, for example, an imaging device. The imaging device is, for example, a camera. The acquisition unit 9 acquires information regarding the operator's behavior and sends it to the determination unit 222 . The information regarding the operator's behavior is, for example, line-of-sight information indicating the operator's line of sight.
 記憶部221は、表示画面に表示される少なくとも1つの画面部品の更新周期と、オペレータの行動との関係を記憶する。 The storage unit 221 stores the relationship between the update cycle of at least one screen component displayed on the display screen and the operator's actions.
 図14は、記憶部221に記憶された画面部品の更新周期とオペレータの行動との関係の一例を示す図である。記憶部221は、オペレータが注目している画面部品の更新周期と、オペレータが注目している画面部品以外の画面部品の更新周期をテーブルに記憶する。言い換えれば、記憶部221は、オペレータの視線の先にある画面部品の更新周期と、それ以外の画面部品の更新周期とを記憶する。 FIG. 14 is a diagram illustrating an example of the relationship between the update cycle of screen components stored in the storage unit 221 and operator behavior. The storage unit 221 stores in a table the update cycle of the screen component that the operator is paying attention to, and the update cycle of screen components other than the screen component that the operator is focusing on. In other words, the storage unit 221 stores the update cycles of the screen parts that are ahead of the operator's line of sight and the update cycles of other screen parts.
 記憶部221は、オペレータが座標値表示部品Cに注目している場合、座標値表示部品Cを16[ms]で更新させ、送り速度表示部品Fを128[ms]で更新させ、主軸速度表示部品Sを128[ms]で更新させ、モーダル表示部品Mを128[ms]で更新させることを記憶している。 When the operator is paying attention to the coordinate value display component C, the storage unit 221 updates the coordinate value display component C at 16 [ms], updates the feed speed display component F at 128 [ms], and displays the spindle speed. It is stored that the component S is updated at 128 [ms] and the modal display component M is updated at 128 [ms].
 また、記憶部221は、オペレータが送り速度表示部品Fに注目している場合は、座標値表示部品Cを128[ms]で更新させ、送り速度表示部品Fを16[ms]で更新させ、主軸速度表示部品Sを128[ms]で更新させ、モーダル表示部品Mを128[ms]で更新させることを記憶している。 Furthermore, when the operator is paying attention to the feed rate display component F, the storage unit 221 updates the coordinate value display component C at 128 [ms], updates the feed speed display component F at 16 [ms], It is stored that the spindle speed display component S is updated at 128 [ms] and the modal display component M is updated at 128 [ms].
 判断部222は、オペレータの行動を判断する。具体的に、判断部222は、取得部9によって取得されたオペレータの行動に関する情報に基づいて、オペレータが複数の画面部品のうちのいずれの画面部品に注目しているかを判断する。判断部222は、例えば、オペレータが1つの画面部品に連続して3秒以上視線を向けている場合に、オペレータは当該画面部品に注目していると判断する。 The determining unit 222 determines the behavior of the operator. Specifically, the determination unit 222 determines which screen component among the plurality of screen components the operator is paying attention to, based on the information regarding the operator's behavior acquired by the acquisition unit 9. For example, when the operator looks at one screen component continuously for three seconds or more, the determination unit 222 determines that the operator is paying attention to the screen component.
 決定部223は、記憶部221に記憶された画面部品の更新周期とオペレータの行動との関係および判断部222によって判断されたオペレータの行動に基づいて画面部品の更新周期を決定する。 The determining unit 223 determines the update cycle of the screen component based on the relationship between the update cycle of the screen component stored in the storage unit 221 and the operator's behavior and the operator's behavior determined by the determining unit 222.
 例えば、判断部222によってオペレータが座標値表示部品Cに注目していると判断されると、決定部223は、座標値表示部品Cの更新周期を16[ms]に、送り速度表示部品Fの更新周期を128[ms]に、主軸速度表示部品Sの更新周期を128[ms]に、およびモーダル表示部品Mの更新周期を128[ms]に決定する。 For example, when the determination unit 222 determines that the operator is paying attention to the coordinate value display component C, the determination unit 223 sets the update cycle of the coordinate value display component C to 16 [ms] and the feed rate display component F. The update cycle is determined to be 128 [ms], the update cycle of the spindle speed display component S is determined to be 128 [ms], and the update cycle of the modal display component M is determined to be 128 [ms].
 また、判断部222によってオペレータが送り速度表示部品Fに注目していると判断されると、決定部223は、座標値表示部品Cの更新周期を128[ms]に、送り速度表示部品Fの更新周期を16[ms]に、主軸速度表示部品Sの更新周期を128[ms]に、およびモーダル表示部品Mの更新周期を128[ms]に決定する。 Further, when the determination unit 222 determines that the operator is paying attention to the feed rate display component F, the determination unit 223 sets the update cycle of the coordinate value display component C to 128 [ms], and sets the update cycle of the coordinate value display component C to 128 [ms]. The update cycle is determined to be 16 [ms], the update cycle of the spindle speed display component S to 128 [ms], and the update cycle of the modal display component M to 128 [ms].
 表示部224は、決定部223によって決定された更新周期に基づいて少なくとも1つの画面部品を表示させる。 The display unit 224 displays at least one screen component based on the update cycle determined by the determination unit 223.
 図15Aおよび図15Bは、表示画面に表示される画面部品の一例を示す図である。例えば、自動運転の開始前において、オペレータが複数の画面部品のいずれにも注目していない場合、表示部224は、座標値表示部品C、送り速度表示部品F、主軸速度表示部品S、およびモーダル表示部品Mの更新周期をすべて同じ64[ms]で更新して表示させる。 FIGS. 15A and 15B are diagrams showing examples of screen components displayed on the display screen. For example, before starting automatic operation, if the operator is not paying attention to any of the screen components, the display unit 224 displays coordinate value display component C, feed rate display component F, spindle speed display component S, and modal display component C. All display parts M are updated and displayed at the same update cycle of 64 [ms].
 判断部222が取得部9からの情報に基づいて、オペレータが座標値表示部品Cに注目していると判断した場合、決定部223は、座標値表示部品Cの更新周期を16[ms]に、送り速度表示部品Fの更新周期を128[ms]に、主軸速度表示部品Sの更新周期を128[ms]に、モーダル表示部品Mの更新周期を128[ms]に決定する。 When the determining unit 222 determines that the operator is paying attention to the coordinate value display component C based on the information from the acquisition unit 9, the determining unit 223 sets the update cycle of the coordinate value display component C to 16 [ms]. , the update cycle of the feed speed display component F is determined to be 128 [ms], the update cycle of the spindle speed display component S is determined to be 128 [ms], and the update cycle of the modal display component M is determined to be 128 [ms].
 表示部224は、決定部223によって決定された更新周期に基づいて少なくとも各画面部品を表示させる(図15B参照)。 The display unit 224 displays at least each screen component based on the update cycle determined by the determination unit 223 (see FIG. 15B).
 以上説明したように、表示装置22は、表示画面に表示される少なくとも1つの画面部品の更新周期と、オペレータの行動との関係を記憶する記憶部221と、オペレータの行動を判断する判断部222と、記憶部221に記憶された関係および判断部によって判断されたオペレータの行動に基づいて更新周期を決定することを実行する決定部223と、決定部223によって決定された更新周期に基づいて少なくとも1つの画面部品を表示させる表示部224と、を備える。 As described above, the display device 22 includes a storage unit 221 that stores the relationship between the update cycle of at least one screen component displayed on the display screen and the operator's behavior, and a determination unit 222 that determines the operator's behavior. and a determining unit 223 that determines the update cycle based on the relationship stored in the storage unit 221 and the behavior of the operator determined by the determining unit, and at least It includes a display section 224 that displays one screen component.
 したがって、表示装置22は、オペレータに画面部品を指定する操作の負担を与えずに画面部品の更新周期を変更することが可能になる。また、オペレータによって注目される画面部品の更新周期のみを短くすることができる。その結果、オペレータが注目する画面部品の表示をスムーズに更新することができる。また、表示装置22は、オペレータによって注目される画面部品の更新周期のみを短くするので、高価かつ高機能なハードウェアプロセッサ201を使用しなくてもよい。そのため、表示装置22のコストの削減を図ることができる。 Therefore, the display device 22 can change the update cycle of screen components without burdening the operator with operations to specify screen components. Further, it is possible to shorten only the update period of the screen parts that are noticed by the operator. As a result, it is possible to smoothly update the display of the screen component that attracts the operator's attention. Further, since the display device 22 shortens the update period of only the screen components that are noticed by the operator, it is not necessary to use the expensive and highly functional hardware processor 201. Therefore, the cost of the display device 22 can be reduced.
 上述した実施形態では、画面部品の更新周期と、オペレータの行動との関係がテーブルに記憶されており、決定部223は、テーブルを用いて更新周期を決定する。しかし、記憶部221は、例えば、複数の画面部品を表示させる際の優先度を記憶してもよい。例えば、記憶部221は、座標値表示部品C、送り速度表示部品F、主軸速度表示部品S、およびモーダル表示部品Mの優先度がそれぞれ、1、2、3、および4であること記憶する。この場合、1が最も優先度が高く、4が最も優先度が低い。 In the embodiment described above, the relationship between the update cycle of screen components and the operator's actions is stored in a table, and the determining unit 223 uses the table to determine the update cycle. However, the storage unit 221 may store, for example, priorities when displaying a plurality of screen components. For example, the storage unit 221 stores that the priorities of the coordinate value display component C, the feed rate display component F, the spindle speed display component S, and the modal display component M are 1, 2, 3, and 4, respectively. In this case, 1 has the highest priority and 4 has the lowest priority.
 判断部222は、オペレータの行動を判断する。すなわち、判断部222は、オペレータが注目している画面部品を判断する。 The determining unit 222 determines the behavior of the operator. That is, the determining unit 222 determines which screen component the operator is paying attention to.
 決定部223は、オペレータが注目している画面部品の更新周期を他の画面部品の更新周期よりも短い更新周期に決定する。例えば、判断部222は、オペレータが送り速度表示部品Fに注目していると判断した場合、決定部223は、送り速度表示部品Fの更新周期を16[ms]に決定する。また、決定部223は、送り速度表示部品F以外の画面部品の更新周期を優先度に基づいて決定する。 The determining unit 223 determines the update cycle of the screen component that the operator is paying attention to to be shorter than the update cycle of other screen components. For example, when the determining unit 222 determines that the operator is paying attention to the feed rate display component F, the determining unit 223 determines the update cycle of the feed rate display component F to be 16 [ms]. Further, the determining unit 223 determines the update period of screen components other than the feed rate display component F based on the priority.
 例えば、決定部223は、座標値表示部品C、主軸速度表示部品S、およびモーダル表示部品Mのうち最も優先度が高い座標値表示部品Cの更新周期を、例えば、64[ms]に決定する。また、決定部223は、次に優先度が高い主軸速度表示部品Sの更新周期を、例えば、128[ms]に決定する。また、決定部223は、最も優先度が低いモーダル表示部品Mの更新周期を、例えば、256[ms]に決定する。 For example, the determining unit 223 determines the update cycle of the coordinate value display component C, which has the highest priority among the coordinate value display component C, the spindle speed display component S, and the modal display component M, to 64 [ms], for example. . Further, the determining unit 223 determines the update period of the spindle speed display component S having the next highest priority to, for example, 128 [ms]. Further, the determining unit 223 determines the update cycle of the modal display component M having the lowest priority to, for example, 256 [ms].
 表示部224は、決定部223によって決定された更新周期に基づいて複数の画面部品を表示させる。 The display unit 224 displays a plurality of screen components based on the update cycle determined by the determination unit 223.
 また、記憶部221は、更新周期と産業機械1の状態との関係、または更新周期とオペレータの行動との関係を、関数を用いて記憶してもよい。 Furthermore, the storage unit 221 may store the relationship between the update cycle and the state of the industrial machine 1 or the relationship between the update cycle and the operator's behavior using a function.
 例えば、記憶部221は産業機械1の制御軸の送り速度と座標値表示部品Cの更新周期との関係を示す関数を記憶してもよい。この場合、制御軸の送り速度が速いほど座標値表示部品Cの更新周期を短くすればよい。 For example, the storage unit 221 may store a function indicating the relationship between the feed rate of the control axis of the industrial machine 1 and the update period of the coordinate value display component C. In this case, the faster the feed speed of the control axis is, the shorter the update period of the coordinate value display component C may be.
 上述したとおり、画面部品は、産業機械1に関する各種情報の提示、または各種情報の受け付けをするために表示画面に表示される画像および当該画像を表示させるためのプログラムである。したがって、判断部222、決定部223、および表示部224は、画面部品の機能として実装されてよい。言い換えれば、画面部品自身が、産業機械1の状態、またはオペレータの行動を判断し、更新周期を決定してもよい。あるいは、画面部品以外に判断部222、および決定部223の機能が実装され、表示部224が画面部品に実装されてもよい。 As described above, the screen component is an image displayed on the display screen to present or receive various information regarding the industrial machine 1, and a program for displaying the image. Therefore, the determination unit 222, the determination unit 223, and the display unit 224 may be implemented as functions of screen components. In other words, the screen component itself may determine the update cycle by determining the state of the industrial machine 1 or the operator's actions. Alternatively, the functions of the determination unit 222 and the determination unit 223 may be implemented in addition to the screen component, and the display unit 224 may be implemented in the screen component.
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、本開示の実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。具体的には、記憶部221は、画面部品の更新周期と産業機械1の状態との関係、および画面部品の更新周期とオペレータの行動との関係を記憶してもよい。この場合、判断部222は、産業機械1の状態およびオペレータの行動の両方を判断してもよい。決定部223は、記憶部221に記憶された関係および判断部222によって判断された産業機械1の状態に基づいて更新周期を決定することと、記憶部221に記憶された関係および判断部222によって判断されたオペレータの行動に基づいて更新周期を決定することの両方を実行してもよい。 Note that the present disclosure is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit. For example, any component of the embodiment of the present disclosure may be modified or any component of the embodiment may be omitted. Specifically, the storage unit 221 may store the relationship between the update cycle of the screen components and the state of the industrial machine 1, and the relationship between the update cycle of the screen components and the operator's actions. In this case, the determination unit 222 may determine both the state of the industrial machine 1 and the operator's behavior. The determining unit 223 determines the update cycle based on the relationship stored in the storage unit 221 and the state of the industrial machine 1 determined by the determining unit 222, and determines the update cycle based on the relationship stored in the storage unit 221 and the state of the industrial machine 1 determined by the determining unit Both determining the update period based on the determined operator behavior may be performed.
  1       産業機械
  2       制御装置
  21      制御部
  22      表示装置
  201     ハードウェアプロセッサ
  202     バス
  203     ROM
  204     RAM
  205     不揮発性メモリ
  206     インタフェース
  207     軸制御回路
  208     スピンドル制御回路
  209     PLC
  210     I/Oユニット
  221     記憶部
  222     判断部
  223     決定部
  224     表示部
  3       入出力装置
  4       サーボアンプ
  5       サーボモータ
  6       スピンドルアンプ
  7       スピンドルモータ
  8       補助機器
  9       取得部
  C       座標値表示部品
  E       エディタ部品
  F       送り速度表示部品
  S       主軸速度表示部品
  M       モーダル表示部品
1 Industrial Machine 2 Control Device 21 Control Unit 22 Display Device 201 Hardware Processor 202 Bus 203 ROM
204 RAM
205 Non-volatile memory 206 Interface 207 Axis control circuit 208 Spindle control circuit 209 PLC
210 I/O unit 221 Storage section 222 Judgment section 223 Determination section 224 Display section 3 Input/output device 4 Servo amplifier 5 Servo motor 6 Spindle amplifier 7 Spindle motor 8 Auxiliary equipment 9 Acquisition section C Coordinate value display component E Editor component F Feed rate Display parts S Spindle speed display parts M Modal display parts

Claims (10)

  1.  表示画面に表示される少なくとも1つの画面部品の更新周期と、産業機械の状態およびオペレータの行動の少なくともいずれかとの関係を記憶する記憶部と、
     前記状態および前記行動の少なくともいずれかを判断する判断部と、
     前記記憶部に記憶された前記関係および前記判断部によって判断された前記状態に基づいて前記更新周期を決定すること、ならびに、前記記憶部に記憶された前記関係および前記判断部によって判断された前記行動に基づいて前記更新周期を決定することの少なくともいずれかを実行する決定部と、
     前記決定部によって決定された前記更新周期に基づいて前記少なくとも1つの画面部品を表示させる表示部と、
    を備える表示装置。
    a storage unit that stores a relationship between an update cycle of at least one screen component displayed on the display screen and at least one of the state of the industrial machine and the behavior of the operator;
    a determination unit that determines at least one of the state and the action;
    determining the update period based on the relationship stored in the storage unit and the state determined by the determination unit; and determining the update period based on the relationship stored in the storage unit and the state determined by the determination unit a determining unit that performs at least one of determining the update period based on behavior;
    a display unit that displays the at least one screen component based on the update cycle determined by the determination unit;
    A display device comprising:
  2.  前記判断部は前記産業機械を制御する制御装置が出力する信号に基づいて前記状態を判断する請求項1に記載の表示装置。 The display device according to claim 1, wherein the determination unit determines the state based on a signal output by a control device that controls the industrial machine.
  3.  前記信号は、前記産業機械の運転モードを示す運転モード信号を含む請求項2に記載の表示装置。 The display device according to claim 2, wherein the signal includes an operation mode signal indicating an operation mode of the industrial machine.
  4.  前記信号は、前記産業機械の自動運転が開始されたことを示す自動運転開始信号を含む請求項3に記載の表示装置。 The display device according to claim 3, wherein the signal includes an automatic operation start signal indicating that automatic operation of the industrial machine has started.
  5.  前記信号は、割り込みが行われたことを示す割込信号を含む請求項3に記載の表示装置。 4. The display device according to claim 3, wherein the signal includes an interrupt signal indicating that an interrupt has been performed.
  6.  前記記憶部は、前記更新周期と前記状態および前記行動の少なくともいずれかとの前記関係を、テーブルを用いて記憶する請求項1~5のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 5, wherein the storage unit stores the relationship between the update cycle and at least one of the state and the action using a table.
  7.  前記記憶部は、前記更新周期と前記状態および前記行動の少なくともいずれかとの前記関係を、関数を用いて記憶する請求項1~5のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 5, wherein the storage unit stores the relationship between the update period and at least one of the state and the action using a function.
  8.  前記判断部は、前記オペレータの視線を示す視線情報に基づいて前記行動を判断する請求項1または2に記載の表示装置。 The display device according to claim 1 or 2, wherein the determination unit determines the action based on line-of-sight information indicating the operator's line of sight.
  9.  前記表示部は、前記更新周期を示す画像を表示画面に表示させる請求項1~8のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 8, wherein the display section displays an image indicating the update cycle on a display screen.
  10.  表示画面に表示される少なくとも1つの画面部品の更新周期と、産業機械の状態およびオペレータの行動の少なくともいずれかとの関係を記憶することと、
     前記状態および前記行動の少なくともいずれかを判断することと、
     記憶された前記関係および判断された前記状態に基づいて前記更新周期を決定すること、ならびに、記憶された前記関係および判断された前記行動に基づいて前記更新周期を決定することの少なくともいずれかを実行することと、
     決定された前記更新周期に基づいて前記少なくとも1つの画面部品を表示させることと、
    をコンピュータに実行させる命令を記憶するコンピュータ読み取り可能な記憶媒体。
    storing a relationship between an update cycle of at least one screen component displayed on a display screen and at least one of a state of an industrial machine and an action of an operator;
    determining at least one of the state and the action;
    determining the update period based on the stored relationship and the determined state; and determining the update period based on the stored relationship and the determined behavior. to carry out and
    Displaying the at least one screen component based on the determined update cycle;
    A computer-readable storage medium that stores instructions that cause a computer to execute.
PCT/JP2022/018442 2022-04-21 2022-04-21 Display device, and computer-readable storage medium WO2023203724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018442 WO2023203724A1 (en) 2022-04-21 2022-04-21 Display device, and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018442 WO2023203724A1 (en) 2022-04-21 2022-04-21 Display device, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2023203724A1 true WO2023203724A1 (en) 2023-10-26

Family

ID=88419608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018442 WO2023203724A1 (en) 2022-04-21 2022-04-21 Display device, and computer-readable storage medium

Country Status (1)

Country Link
WO (1) WO2023203724A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136689A (en) * 1985-12-11 1987-06-19 株式会社東芝 Crt screen display system
JPH02110627A (en) * 1988-10-19 1990-04-23 Hitachi Ltd Displaying method for multi-window picture
JP2015219329A (en) * 2014-05-16 2015-12-07 三菱電機株式会社 Information display control device and information display control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136689A (en) * 1985-12-11 1987-06-19 株式会社東芝 Crt screen display system
JPH02110627A (en) * 1988-10-19 1990-04-23 Hitachi Ltd Displaying method for multi-window picture
JP2015219329A (en) * 2014-05-16 2015-12-07 三菱電機株式会社 Information display control device and information display control method

Similar Documents

Publication Publication Date Title
US9310799B2 (en) Numerical controller having function of operation based on table format data
JPH0432908A (en) Cnc units controlling plural machines
JPS5968003A (en) Emergency machine origin resetting device of numerically controlled machine tool
JP4044105B2 (en) Numerical control device having function of switching operation means for each system
US20070198125A1 (en) Numerical controller
JP2762788B2 (en) Moving body operation display device and display method thereof
US5200678A (en) Motor driving control apparatus
WO2023203724A1 (en) Display device, and computer-readable storage medium
US6397123B1 (en) Numerical control apparatus
WO2022154049A1 (en) Numerical control device
WO2023058085A1 (en) Numerical control device
JP2559273B2 (en) Numerical control device and screen display method of numerical control device
WO2023199408A1 (en) Numerical control device, and computer-readable storage medium
WO2022196622A1 (en) Numerical control device
WO2022249304A1 (en) Control device for industrial machine
WO2022030437A1 (en) Numerical control device, manufacturing machine, and manufacturing machine control method
WO2023053349A9 (en) Numerical control device
WO2022239233A1 (en) Imaging environment adjusting device, and computer-readable storage medium
WO2023228356A1 (en) Numerical control device and computer-readable storage medium
WO2022249303A9 (en) Control device for industrial machine
JPH05282047A (en) Manual feed operation processor
WO2022244070A1 (en) Operation status display device and computer-readable storage medium
WO2022239155A9 (en) Numerical control device and computer-readable storage medium
WO2022249305A1 (en) Control device for industrial machine
WO2023166559A1 (en) Data collecting device and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938524

Country of ref document: EP

Kind code of ref document: A1