WO2023203647A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2023203647A1
WO2023203647A1 PCT/JP2022/018205 JP2022018205W WO2023203647A1 WO 2023203647 A1 WO2023203647 A1 WO 2023203647A1 JP 2022018205 W JP2022018205 W JP 2022018205W WO 2023203647 A1 WO2023203647 A1 WO 2023203647A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
transmission
information
cyclic shift
index
Prior art date
Application number
PCT/JP2022/018205
Other languages
English (en)
French (fr)
Inventor
尚哉 芝池
祐輝 松村
聡 永田
ジン ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/018205 priority Critical patent/WO2023203647A1/ja
Publication of WO2023203647A1 publication Critical patent/WO2023203647A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the uses of sounding reference signals will be wide-ranging.
  • the NR SRS is used not only for uplink (UL) CSI measurement, but also for downlink (DL) CSI measurement, beam management, and the like.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can use an appropriate SRS sequence.
  • a terminal determines a cyclic shift based on an index corresponding to one of a plurality of transmission/reception points for coherent joint transmission, and applies the cyclic shift to a base sequence, thereby: It has a control section that generates a sounding reference signal (SRS), and a transmission section that transmits the SRS.
  • SRS sounding reference signal
  • an appropriate SRS sequence can be used.
  • FIG. 1 is a diagram illustrating an example of SRS resource set configuration information elements.
  • FIG. 2 is a diagram illustrating an example of SRS resource configuration information elements.
  • FIG. 3 shows Rel. 16 is a table showing the relationship between the number of transmission combs K TC and the maximum number of SRS cyclic shifts n SRS CS,max in No. 16.
  • FIG. 4 is a table showing the number of transmission combs K TC and the SRS cyclic shift value n SRS CS,i when the number of SRS ports N ap SRS is 2.
  • FIG. 5 is a table showing the number of transmission combs K TC and the SRS cyclic shift value n SRS CS,i when the number of SRS ports N ap SRS is 4.
  • FIG. 16 is a table showing the relationship between the number of transmission combs K TC and the maximum number of SRS cyclic shifts n SRS CS,max in No. 16.
  • FIG. 4 is a table showing
  • FIG. 6 is a diagram showing the resource start position k TC p_i in the frequency direction when the number of SRS ports N ap SRS is 2.
  • FIG. 7 is a diagram showing the resource start position k 0 p_i in the frequency direction when the number of SRS ports N ap SRS is 4.
  • FIG. 8 is a diagram showing SRS allocation for each port when the number of transmission combs is 4.
  • FIG. 9 is a diagram showing SRS allocation for each port when the number of transmission combs is 2.
  • FIG. 10 is a diagram illustrating an example of a method for determining sequence group numbers of existing SRS sequences.
  • FIG. 11 is a diagram illustrating an example of a method for determining sequence group numbers in Example 3.
  • FIG. 10 is a diagram illustrating an example of a method for determining sequence group numbers of existing SRS sequences.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment.
  • SRS Signal Reference Signals
  • NR SRS is used not only for uplink (UL) CSI measurement, which is also used in existing LTE (LTE Rel. 8-14), but also for downlink (DL) CSI measurement, beam It is also used for beam management, etc.
  • the UE may be configured with one or more SRS resources.
  • SRS resources may be identified by an SRS Resource Index (SRI).
  • SRI SRS Resource Index
  • Each SRS resource may have one or more SRS ports (may correspond to one or more SRS ports).
  • the number of ports for each SRS may be 1, 2, 4, etc.
  • the UE may be configured with one or more SRS resource sets.
  • One SRS resource set may be associated with a predetermined number of SRS resources.
  • the UE may use upper layer parameters in common with respect to SRS resources included in one SRS resource set.
  • the resource set in the present disclosure may be read as a set, resource group, group, or the like.
  • Information regarding SRS resources or resource sets may be configured in the UE using upper layer signaling, physical layer signaling, or a combination thereof.
  • the SRS configuration information element may include an SRS resource set configuration information element (FIG. 1), an SRS resource configuration information element (FIG. 2), etc.
  • the SRS resource set configuration information element (for example, "SRS-ResourceSet” of the RRC parameter) includes an SRS resource set ID (Identifier) (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, It may also include information on the SRS resource type (resourceType) and the usage of the SRS.
  • the SRS resource type may indicate the same time domain behavior of SRS resource configuration, such as periodic SRS (Periodic SRS (P-SRS)), semi-persistent SRS (Semi-Persistent SRS) (SP-SRS)) or aperiodic SRS (A-SRS).
  • P-SRS Period SRS
  • SP-SRS semi-persistent SRS
  • A-SRS aperiodic SRS
  • the UE may transmit the P-SRS and SP-SRS periodically (or periodically after activation).
  • the UE may transmit the A-SRS based on the DCI's SRS request.
  • SRS RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse”
  • L1 (Layer-1) parameter "SRS-SetUse” is, for example, beam management (beamManagement), codebook (CB), non-codebook (CB), non-codebook (NCB)), antenna switching (antenna switching), etc.
  • the SRS for codebook or non-codebook use may be used to determine a precoder for SRI-based codebook-based or non-codebook-based Physical Uplink Shared Channel (PUSCH) transmission.
  • PUSCH Physical Uplink Shared Channel
  • SRS for beam management purposes may assume that only one SRS resource for each SRS resource set can be transmitted at a given time instant. Note that in the same Bandwidth Part (BWP), if a plurality of SRS resources corresponding to the same time domain behavior belong to different SRS resource sets, these SRS resources may be transmitted simultaneously.
  • BWP Bandwidth Part
  • the SRS resource configuration information element (e.g., "SRS-Resource" of the RRC parameter) includes the SRS resource ID (SRS-ResourceId), the number of SRS ports, the number of transmission combs, the SRS resource mapping (e.g., time and/or The information may include frequency resource location, resource offset, resource period, repetition number, number of SRS symbols, SRS bandwidth, etc.), hopping related information, SRS resource type, sequence ID, spatial relationship information, and the like.
  • SRS resource ID SRS-ResourceId
  • the information may include frequency resource location, resource offset, resource period, repetition number, number of SRS symbols, SRS bandwidth, etc.
  • hopping related information e.g., SRS resource type, sequence ID, spatial relationship information, and the like.
  • the value of the number of transmission combs is ⁇ 2,4 ⁇ .
  • the value of the number of SRS ports (nrofSRS-Ports) N ap SRS is ⁇ 1,2,4 ⁇ .
  • the value of antenna port number p i is ⁇ 1000,1001,... ⁇ .
  • the number of consecutive OFDM symbols of SRS (nrofSymbols) N symb is ⁇ 1,2,4 ⁇ .
  • Setting the number of transmission combs may include a comb offset and a cyclic shift (cyclic shift (CS) index, CS number).
  • CS cyclic shift
  • the UE may switch the Bandwidth Part (BWP) for transmitting SRS for each slot, or may switch the antenna. Further, the UE may apply at least one of intra-slot hopping and inter-slot hopping to SRS transmission.
  • BWP Bandwidth Part
  • the frequency domain starting position k 0 p_i for p i (p_i) is given by the following calculation formula.
  • k - indicates a variable with an overline attached to k, and may also be called k bar.
  • k - 0 p_i may be based on comb offset.
  • KTC is the number of transmitted combs.
  • M SC,b SRS is the number of subcarriers used for SRS transmission in the SRS bandwidth m SRS,b [RB].
  • n b is a constant.
  • antenna switching (also referred to as antenna port switching) can be set as an SRS application.
  • SRS antenna switching may be used, for example, when performing downlink CSI acquisition using uplink SRS in a time division duplex (TDD) band.
  • TDD time division duplex
  • UL SRS measurements may be used to determine the DL precoder.
  • the UE may report UE capability information (for example, RRC parameter "supportedSRS-TxPortSwitch") indicating the SRS transmission port switching pattern that it supports to the network.
  • UE capability information for example, RRC parameter "supportedSRS-TxPortSwitch”
  • This pattern is expressed in the form of "txry” such as “t1r2", “t2r4", etc., and it means that SRS can be transmitted using x antenna ports out of a total of y antennas (denoted as xTyR).
  • y may correspond to all or a subset of the UE's receive antennas.
  • a 2T4R (2 transmit ports, 4 receive ports) UE may be configured with an SRS resource set that includes two SRS resources each having two ports and whose purpose is antenna switching for DL CSI acquisition. good.
  • Multi-port SRS transmission Multiport SRS transmission
  • the UE When performing multiport SRS transmission, the UE performs multiplexing using cyclic shift. Equation (1) indicates the cyclic shift ⁇ i at the antenna port P i .
  • Formula (1) is Rel. 17 is being considered for use.
  • the number of transmitted combs KTC is eight.
  • FIG. 3 shows Rel. 16 is a table showing the relationship between the number of transmission combs K TC and the maximum number of SRS cyclic shifts n SRS CS,max in No. 16. Note that it is assumed that n SRS CS,max ⁇ 0,1,...,n SRS CS,max ⁇ and N ap SRS ⁇ 1,2,4 ⁇ .
  • FIG. 4 is a table showing the number of transmission combs K TC and the SRS cyclic shift value n SRS CS,i when the number of SRS ports N ap SRS is 2.
  • FIG. 5 is a table showing the number of transmission combs K TC and the SRS cyclic shift value n SRS CS,i when the number of SRS ports N ap SRS is 4.
  • Equation (2) indicates the resource start position k 0 p_i in the frequency direction.
  • Formula (2) is expressed as Rel. 17 is being considered for use. Note that among the three cases of k - TC p_i , the first case (A) corresponds to odd-numbered ports ⁇ 1001, 1003 ⁇ when the number of transmission combs is 8.
  • the third case (case C) is another case.
  • nshift is set by the parameter freqDomainShift of the SRS resource configuration information element (FIG. 2).
  • nshift is set by the parameter freqDomainShift of the SRS resource configuration information element (FIG. 2).
  • combOffset of the SRS resource configuration information element is used.
  • KTC is set by transmissionComb of the SRS resource configuration information element. That is, in case C, the value of the RRC parameter is applied as is.
  • FIG. 6 is a diagram showing the resource start position k TC p_i in the frequency direction when the number of SRS ports N ap SRS is 2.
  • case C of equation (2) is used.
  • FIG. 7 is a diagram showing the resource start position k 0 p_i in the frequency direction when the number of SRS ports N ap SRS is 4.
  • FIG. 8 is a diagram showing SRS allocation for each port when the number of transmission combs is 4.
  • ports #0 and 2 use case C of equation (2)
  • ports #1 and 3 use case B.
  • a different cyclic shift is used at each port. Note that in FIG. 8, the horizontal axis is time and the vertical axis is frequency. The same applies to the diagrams showing other SRS allocations.
  • FIG. 9 is a diagram showing SRS allocation for each port when the number of transmission combs is 2. For ports #0 and 1 in this example, case C of equation (2) is used. Also, a different cyclic shift is used at each port.
  • x ⁇ y represents a mark with y attached to the upper right of x.
  • r ⁇ p i (n,l') r u,v ⁇ ( ⁇ i , ⁇ )(n) 0 ⁇ n ⁇ M sc,b
  • SRS -1 ⁇ r u,v ⁇ ( ⁇ i , ⁇ )(n) e j ⁇ n r - u,v (n), 0 ⁇ n ⁇ M ZC
  • At least one of sequence hopping and group hopping for low PAPR sequences may be configured by RRC.
  • the base sequence r - u,v (n) is divided into multiple groups.
  • r - indicates a variable with an overline attached to r, and may also be called r bar.
  • v represents the base sequence number within the group.
  • the definition of the base sequence r - u,v (0),...,r - u,v (M ZC -1) depends on the sequence length M ZC .
  • Group hopping is based on the SRS sequence IDn ID SRS and the symbol number within the radio frame for the SRS resource.
  • the symbol number is the slot number n s,f ⁇ in the radio frame, the number of symbols in the slot N symb slot , the starting symbol l 0 for the SRS resource, the SRS symbol number l' in the SRS resource, determined by
  • sequence number is based on the symbol number within the radio frame for that SRS resource.
  • JT Joint transmission may refer to simultaneous data transmission from multiple points (eg, TRPs) to a single UE.
  • Rel. 17 supports non-coherent joint transmission (NCJT) from two TRPs.
  • PDSCHs from the two TRPs may be independently precoded and independently decoded.
  • Frequency resources may be non-overlapping, partially overlapping, or full-overlapping. If overlap occurs, the PDSCH from one TRP will interfere with the PDSCH from the other TRP.
  • CJT coherent joint transmission
  • Data from the four TRPs may be coherently precoded and transmitted to the UE on the same time-frequency resource.
  • the same precoding matrix may be used.
  • Coherent may mean that there is a fixed relationship between the phases of multiple received signals.
  • 4TRP joint precoding the signal quality is improved and there is no interference between the 4 TRPs.
  • Data may only be subject to interference outside of the four TRPs.
  • a CJT is a transmission from coherent multiple TRPs on different MIMO layers on the same time and frequency resources.
  • the SRS set by one TRP may be received simultaneously by coherent multiple TRPs.
  • An SRS set by one TRP can become a strong source of interference when viewed from other coherent TRPs.
  • the problem is how to randomize the SRS sequence for the CJT case. If the SRS sequence cannot be appropriately determined, there is a risk that communication throughput will be reduced.
  • the present inventors came up with a method for determining an SRS sequence.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • Rel.XX indicates a 3GPP release.
  • release number “XX” is just an example, and may be replaced with another number.
  • the CS index, CS number, CS value (cyclic shift value), n SRS cs and n SRS cs,i may be read interchangeably.
  • the SRS sequence may be a low peak-to-average power ratio (PAPR) sequence defined by a cyclic shift (CS) ⁇ i of the base sequence.
  • ⁇ i may be given by 2 ⁇ *n SRS cs, i /n SRS cs,max using the CS index n SRS cs,i and the maximum CS number n SRS cs,max .
  • n SRS cs,i is based on CS index n SRS cs , n SRS cs,max , antenna port number p i , and port number N ap SRS , ⁇ 0,1,...n SRS cs,max -1 ⁇ It may be.
  • the CS index n SRS cs or n SRS cs,i may be set by upper layer signaling or may be included in the transmission comb configuration (upper layer parameter transmissionComb).
  • transmission comb settings, transmissionComb, and number of transmission combs may be interchanged.
  • the transmission comb configuration may include at least one of the number of transmission combs (K TC ), a comb offset (starting subcarrier offset), and a CS index.
  • At least one of P-SRS, SP-SRS, and AP-SRS may be used as the SRS in the present disclosure.
  • PSRS and P-SRS may be read interchangeably.
  • SP SRS and SP-SRS may be read interchangeably.
  • AP SRS and AP-SRS may be read interchangeably.
  • the resource set group and the SRS resource set group may be interchanged.
  • xTyR is applied, “txry” is transmitted (reported) in UE capability information (e.g., supportedSRS-TxPortSwitch), and xTyR is configured in upper layer signaling/physical layer signaling. It may be read differently.
  • UL transmission with a number of layers greater than 4 may be applied.
  • the processing of the present disclosure may be applied to UEs that support a number of layers greater than four.
  • SRS port, transmission port, and SRS transmission port may be read interchangeably.
  • reception port, antenna port, and UE antenna port may be interchanged.
  • a port and an antenna port may be read interchangeably.
  • X ports in the present disclosure may mean X antenna ports (SRS antenna ports).
  • multiplexing using different comb indexes, frequency division multiplexing (FDM), and multiplexing using the same time resource and different frequency resources may be interchanged.
  • multiplexing using different cyclic shift indexes, Code Division Multiplexing (CDM), multiplexing using different cyclic shift indexes and the same time resource and the same frequency resource may be read as each other.
  • ports #0 to #7 may be replaced with ports #1000 to #1007. That is, 1000 may be added to each port number for ports #0 to #7.
  • a configurable index a specific index, a TRP index, a panel index, an index introduced for CJT, an antenna port index, an RS (SRS) port index, a CORESET pool index, a TCI state location, may be read interchangeably.
  • SRS RS
  • the maximum value of the configurable index may be specified in the specifications or may be set by RRC.
  • the maximum value of the configurable index (for example, maxID) may be the number of TRPs for CJT.
  • the number of TRPs for CJT may be four.
  • the value of the configurable index (for example, ⁇ 0,1,2,3 ⁇ ) may be set for each SRS resource set, may be set for each SRS resource, or may be specified by the DCI/MAC CE. It's okay.
  • symbol numbers l and l 0 +l' within a radio frame for SRS resources may be read interchangeably.
  • l 0 +l' may be the starting symbol number within the radio frame for the SRS resource.
  • l' may be a symbol number within the SRS resource (starting symbol is 0).
  • This embodiment relates to cyclic shift (CS) determination for each TRP.
  • the CS applied to the SRS may be determined based on at least a configurable index.
  • the parameters required for CS determination may include at least one of the following options 1-1 to 1-4.
  • Option 2 Parameter setting/instruction/notification in option 1 may follow at least one of options 2-1 to 2-3 below.
  • [Option 2-1] Explicitly set by RRC parameters (RRC IE).
  • RRC IE RRC parameters
  • Another RRC parameter may include at least one of a configured comb, a number of TRPs for CJT.
  • CS hopping for SRS may be supported.
  • CS hopping for SRS may be performed similarly to cyclic shift hopping for PUCCH.
  • the values to be randomized may be at least one of the following options 1-1 to 1-2. [Option 1-1] n SRS CS (CS index configured for the UE). [Option 1-2] Port number where SRS is sent.
  • the factor for randomization may be at least one of the following options 2-1 to 2-3.
  • n SRS CS (CS index configured for the UE).
  • Option 2-2 Symbol number within the radio frame for SRS resources.
  • Option 2-3 Configurable index.
  • the determination of the CS may not take into account the configurable index.
  • the cyclic shift ⁇ i may be given by the following equation (A1).
  • the determination of the CS may take into account the configurable index.
  • the cyclic shift ⁇ i may be given by the following equation (A2).
  • CS may take into account the configurable index and not the slot number and symbol number.
  • the cyclic shift ⁇ i may be given by the following equation (A3).
  • M may be the number of bits (that can represent maxID) to cover the maximum value maxID of the configurable index. That is, 2 M-1 ⁇ maxID+1 ⁇ 2 M may be satisfied, or 2 M-1 ⁇ N CID ⁇ 2 M using the number of settable index values N CID .
  • the UE can appropriately determine the CS for SRS and randomize the SRS sequence.
  • the sequence used for SRS may be determined based on at least a configurable index.
  • the parameters necessary for determining the sequence number may include at least one of the following options 1-1 to 1-7.
  • Option 2 Parameter setting/instruction/notification in option 1 may follow at least one of options 2-1 to 2-3 below.
  • [Option 2-1] Explicitly set by RRC parameters (RRC IE).
  • RRC IE RRC parameters
  • Another RRC parameter may include at least one of a configured comb, a number of TRPs for CJT.
  • ⁇ Option 3 ⁇ Determination of the actual sequence number may follow at least one of the following options 3-1 to 3-3.
  • the actual sequence number may be given by the following formula. (existing series number v + configurable index) mod 2.
  • the actual sequence number changes from the existing sequence number v to the existing sequence number +1 (the difference between the existing sequence number v and the existing sequence number +1). (in between) may be toggled.
  • the number of base sequences may be at most two.
  • the sequence number determination formula may be modified to include at least a configurable index.
  • the sequence number determination formula may be given by the following formula (B1).
  • Option 4 ⁇ The on/off switching of embodiment #2 may be based on at least one of the following options 4-1 to 4-3.
  • 4-1 Existing parameters related to sequence hopping. For example, groupOrSequenceHopping (eg, if it is set to sequenceHopping, sequence hopping is on in this embodiment).
  • groupOrSequenceHopping eg, if it is set to sequenceHopping, sequence hopping is on in this embodiment.
  • Option 4-2 Whether or not it is CJT operation.
  • Option 4-3 New parameters for sequence hopping for CJT (Rel.18).
  • the UE can appropriately determine the sequence number for SRS and randomize the SRS sequence.
  • This embodiment relates to group hopping per TRP.
  • the sequence group used for SRS may be determined based on at least a configurable index.
  • the parameters necessary for determining the sequence group number may include at least one of the following options 1-1 to 1-6.
  • Option 2 Parameter setting/instruction/notification in option 1 may follow at least one of options 2-1 to 2-3 below.
  • [Option 2-1] Explicitly set by RRC parameters (RRC IE).
  • RRC IE RRC parameters
  • Another RRC parameter may include at least one of a configured comb, a number of TRPs for CJT.
  • ⁇ Option 3 ⁇ Determination of the actual sequence group number may follow at least one of options 3-1 to 3-2 below.
  • the actual sequence group number may be given by the following formula. (Existing series group number u + configurable index) mod 30.
  • the sequence group number determination formula may be modified to include at least a configurable index.
  • the sequence group number determination formula may be given by any of Examples 1 to 5 below. [[Example 1]] [[Example 2]] [[Example 3]] [[Example 4]] [[Example 5]] Depending on the number of values of the settable index, a plurality of expressions such as the following expression (C5) may be defined.
  • the sequence group number of the existing SRS sequence is given by the following equation (C6).
  • each symbol in a radio frame corresponds to each bit of a pseudo-random (pseudo-noise (PN)) sequence.
  • PN pseudo-random
  • the 8-bit pseudorandom sequence covers 140 ways.
  • the 8-bit pseudorandom sequence is converted to a decimal number.
  • the group number is calculated based on the value of the configurable index being added to the generated decimal number.
  • Example 2 the input value of each bit in the 8-bit pseudorandom sequence is shifted by the value of a configurable index.
  • Example 3 independent inputs are given to each bit of the pseudorandom sequence generator in different TRPs to cover 140 symbols for all TRPs. The same input to pseudorandom sequence generation is given for different TRPs of different symbols.
  • Example 4 independent inputs are given to each bit of the pseudorandom sequence generator in different TRPs to cover 140 symbols for all TRPs. The same input to pseudorandom sequence generation is given for different TRPs of different symbols.
  • Example 5 the bit width (number of bits) of the pseudorandom sequence is changed depending on the number of TRPs.
  • Option 4 ⁇ The on/off switching of embodiment #3 may be based on at least one of the following options 4-1 to 4-3.
  • Option 4-1 Existing parameters regarding sequence group hopping. For example, groupOrSequenceHopping (eg, if it is set to groupHopping, sequence group hopping is on in this embodiment).
  • groupOrSequenceHopping eg, if it is set to groupHopping, sequence group hopping is on in this embodiment.
  • Option 4-2 Whether or not it is CJT operation.
  • Option 4-3 New parameters for sequence hopping for CJT (Rel.18).
  • the UE can appropriately determine the group number for SRS and randomize the SRS sequence.
  • CS/sequence/group hopping is based on a configurable index.
  • the configurable index may vary in the time domain.
  • the time variation of the configurable index may be based on at least one of the following options 1-1 to 1-2.
  • One or more patterns for time variation may be specified in the specification.
  • Multiple patterns may be defined.
  • One pattern among a plurality of patterns may be set/instructed via RRC IE/MAC CE/DCI.
  • Multiple patterns may be set by RRC.
  • One pattern among the plurality of patterns may be indicated via the MAC CE/DCI.
  • An initial value of the configurable index may be set.
  • a configurable index may be incremented or decremented every time unit.
  • the time unit may be any of the following: - One or more symbols - One or more slots - One or more periods (e.g. periods in periodic/semi-persistent SRS) ⁇ One hop (same band transmission, frequency hopping period)
  • the maximum number of configurable indexes may be specified in the specification or may be set/instructed via RRC IE/MAC CE/DCI.
  • the initial value of the configurable index may be set to 0.
  • the time variation of the configurable index and at least one of embodiments #1 to #3 may be combined.
  • the configurable index and at least one of the CS and sequence number and sequence group number may hop simultaneously.
  • the UE can change the configurable index over time and randomize the SRS sequence.
  • the particular UE capability may indicate at least one of the following: - Support processing/operation/control/information for at least one of the above embodiments.
  • ⁇ Support CJT. Support reception from coherent multiple TRPs. - Supporting the mitigation of SRS interference in the case of CJT. - To support the mitigation of SRS interference in the case of CJT by sequence randomization (hopping).
  • the above-mentioned specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (for example, cell, band, BWP). , capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), or for each subcarrier spacing (SCS). It may be the ability of
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the UE is configured with specific information related to the embodiment described above by upper layer signaling.
  • the specific information may be information indicating enabling at least one feature of the embodiments described above, any RRC parameters for a specific release (eg, Rel. 18), or the like. _r18 may be added to the name of the RRC parameter.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
  • the UE can realize the above functions while maintaining compatibility with existing specifications.
  • Department and A terminal comprising: a transmitter that transmits the SRS.
  • control unit determines the cyclic shift based on the symbol number of the SRS and the index.
  • the control unit determines an integer based on the SRS symbol number and the index, and determines the cyclic shift based on a remainder obtained by dividing the integer by the maximum number of cyclic shifts.
  • the terminal according to supplementary note 1 or supplementary note 2, which determines a shift.
  • the control unit multiplies the SRS symbol number by the number of the plurality of transmission/reception points, determines an integer based on the multiplication result and the index, and sets the integer to the maximum of the cyclic shift.
  • the terminal according to any one of appendices 1 to 3, wherein the cyclic shift is determined based on a remainder obtained by dividing by a number.
  • a control unit that determines a base sequence based on an index corresponding to one of a plurality of transmission and reception points for coherent joint transmission, and generates a sounding reference signal (SRS) by applying a cyclic shift to the base sequence.
  • a terminal comprising: a transmitter that transmits the SRS.
  • the control unit determines the sequence group number of the base sequence based on the symbol number of the SRS and the index.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • support information indicating that the terminal supports a specific reception function for interference reduction may be received.
  • the control unit 110 determines a cyclic shift based on an index corresponding to one of a plurality of transmission/reception points for coherent joint transmission, and applies the cyclic shift to a base sequence to generate a sounding reference signal (SRS). ) may be generated.
  • the transmitter/receiver 120 may receive the SRS.
  • the control unit 110 determines a base sequence based on an index corresponding to one of a plurality of transmission/reception points for coherent joint transmission, and applies a cyclic shift to the base sequence to generate a sounding reference signal (SRS). may be generated.
  • the transmitter/receiver 120 may receive the SRS.
  • FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitter/receiver 220 may transmit support information indicating support for a specific reception function for reducing interference in reception.
  • the control unit 210 determines a cyclic shift based on an index corresponding to one of a plurality of transmission/reception points for coherent joint transmission, and applies the cyclic shift to a base sequence to generate a sounding reference signal (SRS). ) may be generated.
  • the transmitter/receiver 220 may transmit the SRS.
  • the control unit 210 may determine the cyclic shift based on the SRS symbol number and the index.
  • the control unit 210 determines an integer based on the symbol number of the SRS and the index, and determines the integer based on the remainder obtained by dividing the integer by the maximum number of cyclic shifts. Click shift may also be determined.
  • the control unit 210 multiplies the SRS symbol number by the number of the plurality of transmission/reception points, determines an integer based on the multiplication result and the index, and converts the integer into the cyclic shift.
  • the cyclic shift may be determined based on the remainder obtained by dividing by a maximum number.
  • the control unit 210 determines a base sequence based on an index corresponding to one of a plurality of transmission/reception points for coherent joint transmission, and applies a cyclic shift to the base sequence to generate a sounding reference signal (SRS). may be generated.
  • the transmitter/receiver 220 may transmit the SRS.
  • the control unit 210 may determine the sequence group number of the base sequence based on the symbol number of the SRS and the index.
  • the control unit 210 may determine the sequence group number of the base sequence based on the symbol number of the SRS, the number of the plurality of transmission/reception points, and the index.
  • the control unit 210 may determine the sequence number of the base sequence based on the symbol number of the SRS and the index.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame configuration. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New Radio Access
  • FX Future Generation Radio Access
  • G Global System for Mobile Communications
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてサイクリックシフトを決定し、前記サイクリックシフトをベース系列に適用することによって、サウンディング参照信号(SRS)を生成する制御部と、前記SRSを送信する送信部と、を有する。本開示の一態様によれば、適切なSRS系列を用いることができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システムにおいては、サウンディング参照信号(Sounding Reference Signal(SRS))の用途が多岐にわたっている。例えば、NRのSRSは、上りリンク(Uplink(UL))のCSI測定のためだけでなく、下りリンク(Downlink(DL))のCSI測定、ビーム管理(beam management)などにも利用される。
 将来の無線通信システム(例えば、3GPP Rel.18以降)では、コヒーレントな複数の送受信ポイント(TRP)から受信が検討されている。しかしながら、このようなケースにおけるSRS系列が十分に検討されていない。SRS系列の決定方法が明らかでなければ、通信スループットの低下などを招くおそれがある。
 そこで、本開示は、適切なSRS系列を用いることができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてサイクリックシフトを決定し、前記サイクリックシフトをベース系列に適用することによって、サウンディング参照信号(SRS)を生成する制御部と、前記SRSを送信する送信部と、を有する。
 本開示の一態様によれば、適切なSRS系列を用いることができる。
図1は、SRSリソースセット設定情報要素の一例を示す図である。 図2は、SRSリソース設定情報要素の一例を示す図である。 図3は、Rel.16における、送信comb数KTCとSRSのサイクリックシフト最大数nSRS CS,maxとの関係を示すテーブルである。 図4は、SRSのポート数Nap SRSが2である場合の、送信comb数KTCとSRSのサイクリックシフト値nSRS CS,iを示すテーブルである。 図5は、SRSのポート数Nap SRSが4である場合の、送信comb数KTCとSRSのサイクリックシフト値nSRS CS,iを示すテーブルである。 図6は、SRSのポート数Nap SRSが2である場合の、周波数方向のリソース開始位置kTC p_iを示す図である。 図7は、SRSのポート数Nap SRSが4である場合の、周波数方向のリソース開始位置k0 p_iを示す図である。 図8は、送信comb数が4である場合の、各ポートのSRS割り当てを示す図である。 図9は、送信comb数が2である場合の、各ポートのSRS割り当てを示す図である。 図10は、既存のSRS系列の系列グループ番号の決定方法の一例を示す図である。 図11は、例3の系列グループ番号の決定方法の一例を示す図である。 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図13は、一実施形態に係る基地局の構成の一例を示す図である。 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図16は、一実施形態に係る車両の一例を示す図である。
(SRS)
 NRにおいては、測定用参照信号(Sounding Reference Signal(SRS))の用途が多岐にわたっている。NRのSRSは、既存のLTE(LTE Rel.8-14)でも利用された上りリンク(Uplink(UL))のCSI測定のためだけでなく、下りリンク(Downlink(DL))のCSI測定、ビーム管理(beam management)などにも利用される。
 UEは、1つ又は複数のSRSリソースを設定(configure)されてもよい。SRSリソースは、SRSリソースインデックス(SRS Resource Index(SRI))によって特定されてもよい。
 各SRSリソースは、1つ又は複数のSRSポートを有してもよい(1つ又は複数のSRSポートに対応してもよい)。例えば、SRSごとのポート数は、1、2、4などであってもよい。
 UEは、1つ又は複数のSRSリソースセット(SRS resource set)を設定されてもよい。1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい。UEは、1つのSRSリソースセットに含まれるSRSリソースに関して、上位レイヤパラメータを共通で用いてもよい。なお、本開示におけるリソースセットは、セット、リソースグループ、グループなどで読み替えられてもよい。
 SRSリソース又はリソースセットに関する情報は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いてUEに設定されてもよい。
 SRS設定情報要素(例えば、RRC情報要素の「SRS-Config」)は、SRSリソースセット設定情報要素(図1)、SRSリソース設定情報要素(図2)などを含んでもよい。
 SRSリソースセット設定情報要素(例えば、RRCパラメータの「SRS-ResourceSet」)は、SRSリソースセットID(Identifier)(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ(resourceType)、SRSの用途(usage)の情報を含んでもよい。
 ここで、SRSリソースタイプは、SRSリソース設定の時間ドメインのふるまい(same time domain behavior)を示してもよく、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信してもよい。UEは、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。
 また、SRSの用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブック(codebook(CB))、ノンコードブック(non-codebook(NCB))、アンテナスイッチング(antennaSwitcing)などであってもよい。例えば、コードブック又はノンコードブック用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースの上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のプリコーダの決定に用いられてもよい。
 ビーム管理用途のSRSは、各SRSリソースセットについて1つのSRSリソースだけが、所定の時間インスタント(given time instant)において送信可能であると想定されてもよい。なお、同じBandwidth Part(BWP)において、同じ時間ドメインのふるまいに該当する複数のSRSリソースがそれぞれ異なるSRSリソースセットに属する場合、これらのSRSリソースは同時に送信されてもよい。
 SRSリソース設定情報要素(例えば、RRCパラメータの「SRS-Resource」)は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信comb数、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、空間関係情報などを含んでもよい。
 送信comb数(transmissionComb)の値は、{2,4}である。SRSのポート数(nrofSRS-Ports)Nap SRSの値は、{1,2,4}である。アンテナポート番号piの値は{1000,1001,...}である。SRSの連続OFDMシンボル数(nrofSymbols)Nsymb SRSの値は、{1,2,4}である。時間ドメインにおける開始位置(startPosition)に対し、スロットの終了から時間ドメイン逆方向に数えられるシンボルのオフセットloffsetは、{0,1,...5}であり、開始位置は、l0=Nsymb slot-1-loffsetによって与えられる。
 送信comb数の設定は、combオフセット及びサイクリックシフト(cyclic shift(CS)インデックス、CS番号)を含んでもよい。
 combオフセット(サブキャリアオフセット)={0,1,...KTC-1}とCSとの少なくとも1つが異なるUEからのSRSが、同じ送信comb数及び同じRB及び同じシンボルを用いて多重されてもよい。
 UEは、スロットごとにSRSを送信するBandwidth Part(BWP)をスイッチングしてもよいし、アンテナをスイッチングしてもよい。また、UEは、スロット内ホッピング及びスロット間ホッピングの少なくとも一方をSRS送信に適用してもよい。
 既存のSRSにおいて、pi(p_i)に対する周波数ドメイン開始位置k0 p_iは、次の算出式によって与えられる。
 k0 p_i=k- 0 p_ib=0 BSRSKTCMSC,b SRSnb
 ここで、k-は、kにオーバーラインを付した変数を示し、kバーとも呼ばれてもよい。k- 0 p_iは、combオフセットに基づいてもよい。KTCは、送信comb数である。MSC,b SRSは、SRS帯域幅mSRS,b[RB]の内、SRS送信に用いられるサブキャリアの数である。nbは、定数である。
(SRSアンテナスイッチング)
 Rel.15 NRでは、上述したようにSRSの用途としてアンテナスイッチング(アンテナポートスイッチングと呼ばれてもよい)が設定可能である。SRSアンテナスイッチングは、例えば、時分割複信(Time Division Duplex(TDD))バンドにおいて、下りリンクのCSI取得(acquisition)を上りリンクのSRSを用いて行う際に利用されてもよい。
 例えば、送信に利用できるアンテナポート数が受信に利用できるアンテナポート数より少ないという能力を有するUEについては、DLのプリコーダの決定のために、ULのSRS測定が利用されてもよい。
 なお、UEは、サポートするSRSの送信ポートスイッチングパターンを示すUE能力情報(例えば、RRCパラメータ「supportedSRS-TxPortSwitch」)をネットワークに報告してもよい。このパターンは、例えば、”t1r2”、“t2r4”などの”txry”の形式で表現され、これは合計y個のアンテナのうちx個のアンテナポートを用いてSRS送信できること(xTyRと表記されてもよい)を意味してもよい。ここで、yは、UEの受信アンテナの全て又はサブセットに対応してもよい。
 例えば、2T4R(2送信ポート、4受信ポート)のUEは、DL CSI取得のために、それぞれ2ポートを有する2つのSRSリソースを含み、かつ用途がアンテナスイッチングであるSRSリソースセットを設定されてもよい。
 なお、“txty”のxとyが同じ値の場合、xT=xR(例えば、4T=4R)と表記されてもよい。
(マルチポートSRS送信)
 マルチポートのSRS送信について説明する。UEは、マルチポートによるSRS送信を行う場合、サイクリックシフトを用いた多重を行う。式(1)は、アンテナポートPiにおけるサイクリックシフトαiを示す。式(1)は、Rel.17での使用が検討されている。式(1)において、ポート数Nap SRS=4かつサイクリックシフト最大数nSRS CS,max=6であるケースをケース1とし、そうではないケース(otherwise)をケース2とする。ケース1では、送信comb数KTCは8となる。
Figure JPOXMLDOC01-appb-I000001
 図3は、Rel.16における、送信comb数KTCとSRSのサイクリックシフト最大数nSRS CS,maxとの関係を示すテーブルである。なお、nSRS CS,max∈{0,1,…,nSRS CS,max}、Nap SRS∈{1,2,4}であるとする。図4は、SRSのポート数Nap SRSが2である場合の、送信comb数KTCとSRSのサイクリックシフト値nSRS CS,iを示すテーブルである。図5は、SRSのポート数Nap SRSが4である場合の、送信comb数KTCとSRSのサイクリックシフト値nSRS CS,iを示すテーブルである。
 式(2)は、周波数方向のリソース開始位置k0 p_iを示す。式(2)は、Rel.17での使用が検討されている。なお、k- TC p_iの3つのケースについて、1番目のケース(A)は、送信comb数が8である場合の奇数番号のポート{1001,1003}に対応する。2番目のケース(ケースB)は、送信comb数が2,4である場合の、平均以上のサイクリックシフト値(nap CS=∈{nSRS CS,max/2,…,nSRS CS,max})を有する奇数番号のポート{1001,1003}に対応する。3番目のケース(ケースC)はその他のケースである。
Figure JPOXMLDOC01-appb-I000002
 nshiftは、SRSリソース設定情報要素(図2)のパラメータfreqDomainShiftによって設定される。k- TCは、SRSリソース設定情報要素のcombOffsetが用いられる。KTCは、SRSリソース設定情報要素のtransmissionCombによって設定される。つまり、ケースCではRRCパラメータの値がそのまま適用される。
 図6は、SRSのポート数Nap SRSが2である場合の、周波数方向のリソース開始位置kTC p_iを示す図である。この例では、式(2)のケースCが用いられる。図7は、SRSのポート数Nap SRSが4である場合の、周波数方向のリソース開始位置k0 p_iを示す図である。この例では、1,3行目((nSRS CS)={0,1,2,3}or{0,1,2,3,4,5}のケース)では、式(2)のケースCが適用され、2,4行目((nSRS CS)={4,5,6,7}or{6,7,8,9,10,11}のケース)では、式(2)のケースBが適用され、5行目(KTC(nSRS CS,max)=8(6)のケース)では、ケースAが適用される。
 図8は、送信comb数が4である場合の、各ポートのSRS割り当てを示す図である。この例のポート#0、2では、式(2)のケースCが使用され、ポート#1、3では、ケースBが使用される。また、各ポートにおいて、異なるサイクリックシフトが使用される。なお、図8において、横軸が時間、縦軸が周波数であるとする。他のSRS割り当てを示す図についても同様である。
 図9は、送信comb数が2である場合の、各ポートのSRS割り当てを示す図である。この例のポート#0、1では、式(2)のケースCが使用される。また、各ポートにおいて、異なるサイクリックシフトが使用される。
(ベース系列)
 SRS系列は、次式によって与えられる。ここで、x^yはxの右上にyが付された標記を表す。
r^pi(n,l')=ru,v^(αi,δ)(n)
0≦n≦Msc,b SRS-1
l'∈{0,1,...,Nsymb SRS-1}
ru,v^(αi,δ)(n)=ejαnr- u,v(n), 0≦n≦MZC
 低PAPR系列に対する、系列ホッピング及びグループホッピングの少なくとも1つがRRCによって設定されてもよい。ベース系列r- u,v(n)は複数グループに分割される。r-は、rにオーバーラインを付した変数を示し、rバーとも呼ばれてもよい。u={0,1,...,29}はグループ番号を表し、vはグループ内のベース系列番号を表す。各グループは、長さmMZC=Nsc RB/2δ, 1/2≦m/2δ≦5の1つのベース系列(v=0)と、長さmMZC=Nsc RB/2δ, 6≦m/2δの2つのベース系列(v=0,1)と、を含む。ベース系列r- u,v(0),...,r- u,v(MZC-1)の定義は、系列長MZCに依存する。
 グループホッピングは、SRS系列IDnID SRSと、SRSリソースに対する無線フレーム内のシンボル番号と、に基づく。そのシンボル番号は、無線フレーム内のスロット番号ns,f μと、スロット内のシンボル数Nsymb slotと、そのSRSリソースに対する開始シンボルl0と、そのSRSリソース内のSRSシンボル番号l'と、によって決定される。
 系列ホッピングにおいて、系列番号は、そのSRSリソースに対する無線フレーム内のシンボル番号に基づく。
(JT)
 joint transmission(JT)は、複数のポイント(例えば、TRP)から単一のUEへの同時データ送信を意味してもよい。
 Rel.17は、2つのTRPからのnon-coherent joint transmission(NCJT)をサポートする。2つのTRPからのPDSCHは、独立にプリコードされ、独立に復号されてもよい。周波数リソースは、オーバーラップしなくてもよいし(non-overlapping)、部分的にオーバーラップしてもよいし(partial-overlapping)、完全にオーバーラップしてもよい(full-overlapping)。オーバラップが起こる場合、1つのTRPからのPDSCHは、他のTRPからのPDSCHへの干渉になる。
 Rel.18において、4つまでのTRPを用いるcoherent joint transmission(CJT)をサポートすることが検討されている。4つのTRPからのデータは、コヒーレントにプリコードされ、同じ時間-周波数リソース上においてUEへ送信されてもよい。例えば、4つのTRPからのチャネルを考慮し、同じプリコーディング行列が用いられてもよい。コヒーレントは、複数の受信信号の位相の間に一定の関係があることを意味してもよい。4TRPジョイントプリコーディングを用いて、信号品質が改善され、4つのTRPの間において干渉がなくてもよい。データは、4つのTRPの外の干渉のみを受けてもよい。
(分析)
 CJTは、同じ時間及び周波数のリソース上の異なるMIMOレイヤ上において、コヒーレント複数TRPからの送信である。1つのTRPによって設定されたSRSは、コヒーレント複数TRPによって同時に受信されてもよい。
 1つのTRPによって設定されたSRSが、他のコヒーレントTRPから見ると、強い干渉源となり得る。この場合、別のUEのSRSに対する干渉軽減のためのSRS系列ランダマイズを利用することが考えられる。CJTのケースに対してSRS系列をどのようにランダム化するかが問題となる。SRS系列を適切に決定できなければ、通信スループットの低下などを招くおそれがある。
 そこで、本発明者らは、SRS系列の決定方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、「Rel.XX」という記載は、3GPPのリリースを示す。ただし、リリース番号「XX」は、一例であり、他の番号に置き換えられてもよい。
 本開示において、CSインデックス、CS番号、CS値(サイクリックシフト値)、nSRS cs、nSRS cs,i、は互いに読み替えられてもよい。
 本開示において、SRS系列は、ベース系列のサイクリックシフト(CS)αiによって定義される低peak-to-average power ratio(PAPR)系列であってもよい。αiは、CSインデックスnSRS cs,i、CS最大数nSRS cs,maxを用いて、2π*nSRS cs,i/nSRS cs,maxによって与えられてもよい。nSRS cs,iは、CSインデックスnSRS cs、nSRS cs,max、アンテナポート番号pi、ポート数Nap SRS、に基づき、{0,1,...nSRS cs,max-1}であってもよい。CSインデックスnSRS cs又はnSRS cs,iは、上位レイヤシグナリングによって設定されてもよいし、送信comb設定(上位レイヤパラメータtransmissionComb)内に含まれてもよい。
 本開示において、送信comb設定、transmissionComb、送信comb数、は互いに読み替えられてもよい。本開示において、送信comb設定は、送信comb数(KTC)、combオフセット(開始サブキャリアオフセット)、CSインデックス、の少なくとも1つを含んでもよい。
 本開示におけるSRSとして、P-SRS、SP-SRS、AP-SRSの少なくとも1つが用いられてもよい。本開示において、P SRS,P-SRSは互いに読み替えられてもよい。本開示において、SP SRS,SP-SRSは互いに読み替えられてもよい。本開示において、AP SRS,AP-SRSは互いに読み替えられてもよい。リソースセットグループ、SRSリソースセットグループは互いに読み替えられてもよい。
 本開示において、xTyRが適用されること、UE能力情報(例えば、supportedSRS-TxPortSwitch)において”txry”を送信(報告)すること、xTyRが上位レイヤシグナリング/物理レイヤシグナリングにおいて設定されることは、互いに読み替えられてもよい。本開示において、4より大きいレイヤ数のUL送信が適用されてもよい。本開示の処理は、4より大きいレイヤ数がサポートされたUEに適用されてもよい。
 本開示において、SRSポート、送信ポート、SRS送信ポートは、互いに読み替えられてもよい。本開示において、受信ポート、アンテナポート、UEアンテナポートは、互いに読み替えられてもよい。
 本開示において、ポート、アンテナポートは互いに読み替えられてもよい。本開示における「Xポート」は、X個のアンテナポート(SRSのアンテナポート)を意味してもよい。
 本開示において、異なるcombインデックスを用いる多重、周波数分割多重(Frequency Division Multiplexing(FDM))、同じ時間リソース及び異なる周波数リソースを用いる多重、は互いに読み替えられてもよい。本開示において、異なるサイクリックシフトインデックスを用いる多重、Code Division Multiplexing(CDM)、異なるサイクリックシフトインデックス及び同じ時間リソース及び同じ周波数リソースを用いる多重、は互いに読み替えられてもよい。
 本開示において、ポート#0~#7は、ポート#1000~#1007に読み替えられてもよい。すなわち、ポート#0~#7には、各ポート番号に1000が加算されてもよい。
(無線通信方法)
 各実施形態において、設定可能インデックス(configurable index)、特定インデックス、TRPインデックス、パネルインデックス、CJT用に導入されたインデックス、アンテナポートインデックス、RS(SRS)ポートインデックス、CORESETプールインデックス、TCI状態の位置、は互いに読み替えられてもよい。
 設定可能インデックスの最大値は、仕様に規定されてもよいし、RRCによって設定されてもよい。設定可能インデックスの最大値(例えば、maxID)は、CJT用のTRP数であってもよい。設定可能インデックスの値の数(例えば、NCID)は、CJT用のTRP数であってもよい。maxID=NCID-1であってもよい。例えば、CJT用のTRP数は、4であってもよい。設定可能インデックスの値(例えば、{0,1,2,3})は、SRSリソースセットごとに設定されてもよいし、SRSリソースごとに設定されてもよいし、DCI/MAC CEによって指示されてもよい。
 各実施形態において、SRSリソースに対する無線フレーム内のシンボル番号l、l0+l'、は、互いに読み替えられてもよい。l0+l'、は、SRSリソースに対する無線フレーム内の開始シンボル番号であってもよい。l'は、SRSリソース内のシンボル番号(開始シンボルを0とする)であってもよい。
<実施形態#1>
 この実施形態は、TRPごとのサイクリックシフト(CS)決定に関する。
 SRSに適用されるCSは、少なくとも設定可能インデックスに基づいて決定されてもよい。
《オプション1》
 CS決定に必要なパラメータは、以下のオプション1-1から1-4の少なくとも1つを含んでもよい。
[オプション1-1]設定可能インデックス。
[オプション1-2]CSインデックス(例えば、nSRS CS)。
[オプション1-3]CSの最大数。
[オプション1-4]実施形態#1又は実施形態#1のバリエーション(CSホッピング)が設定されるか否か。
《オプション2》
 オプション1におけるパラメータの設定/指示/通知は、以下のオプション2-1から2-3の少なくとも1つに従ってもよい。
[オプション2-1]RRCパラメータ(RRC IE)によって明示的に設定される。
[オプション2-2]別のRRCパラメータに基づいて暗示的に決定される。別のRRCパラメータは、設定されたcomb、CJT用のTRP数、の少なくとも1つを含んでもよい。
[オプション2-3]MAC CE及びDCIの少なくとも1つによって指示される。
《オプション3》
 実際のCSは、次式によって与えられてもよい。
(オプション1によって決定されるCS+設定可能インデックス) mod サイクリックシフト数。
<実施形態#1のバリエーション>
 SRS用のCSホッピングがサポートされてもよい。
 SRS用のCSホッピングは、PUCCH用のサイクリックシフトホッピングと同様に行われてもよい。
《オプション1》
 ランダム化される値は、以下のオプション1-1から1-2の少なくとも1つであってもよい。
[オプション1-1]nSRS CS(UEに対して設定されるCSインデックス)。
[オプション1-2]SRSが送信されるポート番号。
《オプション2》
 ランダム化のための因子は、以下のオプション2-1から2-3の少なくとも1つであってもよい。
[オプション2-1]nSRS CS(UEに対して設定されるCSインデックス)。
[オプション2-2]SRSリソースに対する無線フレーム内のシンボル番号。
[オプション2-3]設定可能インデックス。
《例1-1》
 CSの決定は、設定可能インデックスを考慮しなくてもよい。サイクリックシフトαiは、次式(A1)によって与えられてもよい。
Figure JPOXMLDOC01-appb-I000003
《例1-2》
 CSの決定は、設定可能インデックスを考慮してもよい。サイクリックシフトαiは、次式(A2)によって与えられてもよい。
Figure JPOXMLDOC01-appb-I000004
《例1-3》
 CSの決定は、設定可能インデックスを考慮し、スロット番号及びシンボル番号を考慮しなくてもよい。サイクリックシフトαiは、次式(A3)によって与えられてもよい。
Figure JPOXMLDOC01-appb-I000005
 ここで、Mは、設定可能インデックスの最大値maxIDをカバーするための(maxIDを表現可能な)ビット数であってもよい。すなわち、2M-1<maxID+1≦2Mであってもよいし、設定可能インデックスの値の数NCIDを用いて2M-1<NCID≦2Mであってもよい。
 この実施形態によれば、UEは、SRS用のCSを適切に決定でき、SRS系列をランダム化できる。
<実施形態#2>
 この実施形態は、TRPごとの系列ホッピングに関する。
 SRSに用いられる系列は、少なくとも設定可能インデックスに基づいて決定されてもよい。
《オプション1》
 系列番号の決定に必要なパラメータは、以下のオプション1-1から1-7の少なくとも1つを含んでもよい。
[オプション1-1]設定可能インデックス。
[オプション1-2]系列番号(例えば、v)。それは、SRSリソースに対する無線フレーム内のシンボル番号に基づいて計算されてもよい。
[オプション1-3]系列ホッピングが設定されるか否か。
[オプション1-4]SRS系列長。
[オプション1-5]SRS系列ID。
[オプション1-6]系列の最大数。
[オプション1-7]実施形態#2(設定可能インデックス/TRPごとの系列ホッピング)が設定されるか否か。
《オプション2》
 オプション1におけるパラメータの設定/指示/通知は、以下のオプション2-1から2-3の少なくとも1つに従ってもよい。
[オプション2-1]RRCパラメータ(RRC IE)によって明示的に設定される。
[オプション2-2]別のRRCパラメータに基づいて暗示的に決定される。別のRRCパラメータは、設定されたcomb、CJT用のTRP数、の少なくとも1つを含んでもよい。
[オプション2-3]MAC CE及びDCIの少なくとも1つによって指示される。
《オプション3》
 実際の系列番号の決定は、以下のオプション3-1から3-3の少なくとも1つに従ってもよい。
[オプション3-1]実際の系列番号は、次式によって与えられてもよい。
(既存の系列番号v+設定可能インデックス) mod 2。
[オプション3-2]設定可能インデックスに依存して、実際の系列番号が、既存の啓系列番号vから既存の系列番号+1へ(既存の啓系列番号vと既存の系列番号+1との間において)トグルされてもよい。NRにおいて、ベース系列数は多くとも2であってもよい。
[オプション3-3]系列番号決定式が、少なくとも設定可能インデックスを含むように変更されてもよい。例えば、系列番号決定式は、次式(B1)によって与えられてもよい。
Figure JPOXMLDOC01-appb-I000006
《オプション4》
 実施形態#2のオン/オフの切り替えは、以下のオプション4-1から4-3の少なくとも1つに基づいてもよい。
[オプション4-1]系列ホッピングに関する既存のパラメータ。例えば、groupOrSequenceHopping(例えば、それがsequenceHoppingにセットされた場合、この実施形態の系列ホッピングはオンである)。
[オプション4-2]CJT動作であるか否か。
[オプション4-3]CJT用(Rel.18)の系列ホッピングのための新規パラメータ。
 この実施形態によれば、UEは、SRS用の系列番号を適切に決定でき、SRS系列をランダム化できる。
<実施形態#3>
 この実施形態は、TRPごとのグループホッピングに関する。
 SRSに用いられる系列グループは、少なくとも設定可能インデックスに基づいて決定されてもよい。
《オプション1》
 系列グループ番号の決定に必要なパラメータは、以下のオプション1-1から1-6の少なくとも1つを含んでもよい。
[オプション1-1]設定可能インデックス。
[オプション1-2]系列グループ番号(例えば、u)。それは、SRSリソースに対する無線フレーム内のシンボル番号と、SRS系列IDと、の少なくとも1つに基づいて計算されてもよい。系列グループ番号の値の範囲は0から29までであってもよい。
[オプション1-3]グループホッピングが設定されるか否か。
[オプション1-4]SRS系列長。
[オプション1-5]実施形態#3(設定可能インデックス/TRPごとのグループホッピング)が設定されるか否か。
[オプション1-6]SRS系列ID。
《オプション2》
 オプション1におけるパラメータの設定/指示/通知は、以下のオプション2-1から2-3の少なくとも1つに従ってもよい。
[オプション2-1]RRCパラメータ(RRC IE)によって明示的に設定される。
[オプション2-2]別のRRCパラメータに基づいて暗示的に決定される。別のRRCパラメータは、設定されたcomb、CJT用のTRP数、の少なくとも1つを含んでもよい。
[オプション2-3]MAC CE及びDCIの少なくとも1つによって指示される。
《オプション3》
 実際の系列グループ番号の決定は、以下のオプション3-1から3-2の少なくとも1つに従ってもよい。
[オプション3-1]実際の系列グループ番号は、次式によって与えられてもよい。
(既存の系列グループ番号u+設定可能インデックス) mod 30。
[オプション3-2]系列グループ番号決定式が、少なくとも設定可能インデックスを含むように変更されてもよい。例えば、系列グループ番号決定式は、以下の例1から例5のいずれかによって与えられてもよい。
[[例1]]
Figure JPOXMLDOC01-appb-I000007
[[例2]]
Figure JPOXMLDOC01-appb-I000008
[[例3]]
Figure JPOXMLDOC01-appb-I000009
[[例4]]
Figure JPOXMLDOC01-appb-I000010
[[例5]]設定可能インデックスの値の数に依存して、次式(C5)のように複数の式が規定されてもよい。
Figure JPOXMLDOC01-appb-I000011
 既存のSRS系列の系列グループ番号は、次式(C6)によって与えられる。
Figure JPOXMLDOC01-appb-I000012
 この既存の系列グループ番号決定式において、15 kHzのサブキャリア間隔(SCS)を想定すると、無線フレーム内の各シンボルは、疑似ランダム(pseudo-random、pseudo-noise(PN))系列の各ビットへ独立の入力を与える。8ビットの疑似ランダム系列は、140通りをカバーする。8ビット疑似ランダム系列は、10進数の番号に変換される。
 Mビットの疑似ランダム系列の生成器c(x)へ、10進数xが入力されることによって、Mビットの2進数c(i)(i=0,1,...,M-1)である疑似ランダム系列が出力される。10進数xが0からA-1である場合、A通りの疑似ランダム系列が生成できる。x=2Mである場合、M個の独立の値をc(i)へ入力することによってMビットからなる2進数を生成し、その2進数を10進数へ変換する。xの最大値がAを超えるようにMが決定される。
 図10の例に示すように、既存のSRS系列の系列グループ番号決定式は、M=8であり、シンボル番号ns,f μNsymb SRS+l0+l'に対応する疑似ランダム系列として、x=8(ns,f μNsymb SRS+l0+l')ビットだけシフトされた位置の8ビットの2進数を10進数に変換する。既存のSRS系列の系列グループ番号決定式は、8ビットの疑似ランダム系列を生成することによって、2^8=256通りの疑似ランダム系列を生成できるため、140(1無線フレーム内のシンボル数)通りの疑似ランダム系列(8ビット*140シンボル=1120ビット)を得ることができる。
 例1において、設定可能インデックスの値が、生成された10進数の番号に加算されることに基づいて、グループ番号が計算される。
 例2において、8ビット疑似ランダム系列内の各ビットの入力値が、設定可能インデックスの値によってシフトされる。
 例3において、全てのTRPに対して140シンボルをカバーするために、異なるTRPの内の疑似ランダム系列生成器の各ビットへ独立の入力が与えられる。異なるシンボルの異なるTRPに対し、疑似ランダム系列生成へ同じ入力が与えられる。
 図11の例に示すように、例3の系列グループ番号決定式は、M=8であり、シンボル番号ns,f μNsymb SRS+l0+l'と設定インデックスyに対応する疑似ランダム系列として、x=8(NCID((ns,f μNsymb SRS+l0+l')+y)ビットだけシフトされた位置の8ビットの2進数を10進数に変換する。
 例4において、全てのTRPに対して140シンボルをカバーするために、異なるTRPの内の疑似ランダム系列生成器の各ビットへ独立の入力が与えられる。異なるシンボルの異なるTRPに対し、疑似ランダム系列生成へ同じ入力が与えられる。
 例4の系列グループ番号決定式は、M=10であり、10ビットの疑似ランダム系列を生成することによって、2^10=1024通りの疑似ランダム系列を生成できるため、140*4=560(1無線フレーム内のシンボル数)通りの疑似ランダム系列(8ビット*140シンボル*4設定可能インデックス=4480ビット)を得ることができる。
 例5において、TRPの数に依存して、疑似ランダム系列のビット幅(ビット数)が変更される。
《オプション4》
 実施形態#3のオン/オフの切り替えは、以下のオプション4-1から4-3の少なくとも1つに基づいてもよい。
[オプション4-1]系列グループホッピングに関する既存のパラメータ。例えば、groupOrSequenceHopping(例えば、それがgroupHoppingにセットされた場合、この実施形態の系列グループホッピングはオンである)。
[オプション4-2]CJT動作であるか否か。
[オプション4-3]CJT用(Rel.18)の系列ホッピングのための新規パラメータ。
 この実施形態によれば、UEは、SRS用のグループ番号を適切に決定でき、SRS系列をランダム化できる。
<実施形態#4>
 この実施形態は、設定可能インデックスの時間変化に関する。
 実施形態#1から#3において、CS/系列/グループのホッピングは、設定可能インデックスに基づく。その設定可能インデックスは、時間ドメインにおいて変化してもよい。
《オプション1》
 設定可能インデックスの時間変化は、以下のオプション1-1から1-2の少なくとも1つに基づいてもよい。
[オプション1-1]時間変化のための1つ以上のパターンが仕様において規定されてもよい。
[[例1]]複数パターンが規定されてもよい。複数パターンの内の1つのパターンがRRC IE/MAC CE/DCIを介して設定/指示されてもよい。
[[例2]]複数パターンがRRCによって設定されてもよい。複数パターンの内の1つのパターンがMAC CE/DCIを介して指示されてもよい。
[オプション1-2]設定可能インデックスの初期値が設定されてもよい。設定可能インデックスが、時間ユニットごとにインクリメント又はデクリメントされてもよい。時間ユニットは、以下のいずれかであってもよい。
・1つ以上のシンボル
・1つ以上のスロット
・1つ以上の周期(例えば、周期的/セミパーシステントのSRSにおける周期)
・1つのホップ(同じ帯域の送信、周波数ホッピングの期間)
 設定可能インデックスの最大数が、仕様に規定されてもよいし、RRC IE/MAC CE/DCIを介して設定/指示されてもよい。例えば、設定可能インデックスの初期値は、0に設定されてもよい。
《オプション2》
 設定可能インデックスの時間変化と、実施形態#1から#3の少なくとも1つとが、組み合わせられてもよい。設定可能インデックスと、CS及び系列番号及び系列グループ番号の少なくとも1つとが、同時にホップしてもよい。
 この実施形態によれば、UEは、設定可能インデックスを時間に応じて変化させることができ、SRS系列をランダム化できる。
<補足>
《UE能力情報/上位レイヤパラメータ》
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
・上記実施形態の少なくとも1つについての処理/動作/制御/情報をサポートすること。
・CJTをサポートすること。
・コヒーレント複数TRPからの受信をサポートすること。
・CJTのケースにおけるSRS干渉の軽減をサポートすること。
・系列ランダム化(ホッピング)によって、CJTのケースにおけるSRS干渉の軽減をサポートすること。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、BWP)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。例えば、当該特定の情報は、上述の実施形態の少なくとも1つの機能を有効化することを示す情報、特定のリリース(例えば、Rel.18)向けの任意のRRCパラメータなどであってもよい。そのRRCパラメータの名称に_r18が付けられてもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
 以上のUE能力/上位レイヤパラメータによれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。
(付記A)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてサイクリックシフトを決定し、前記サイクリックシフトをベース系列に適用することによって、サウンディング参照信号(SRS)を生成する制御部と、
 前記SRSを送信する送信部と、を有する端末。
[付記2]
 前記制御部は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、前記サイクリックシフトを決定する、付記1に記載の端末。
[付記3]
 前記制御部は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、整数を決定し、前記整数を前記サイクリックシフトの最大数によって除算することによって得られる剰余に基づいて、前記サイクリックシフトを決定する、付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、前記SRSのシンボル番号に前記複数の送受信ポイントの数を乗算し、前記乗算の結果と、前記インデックスと、に基づいて、整数を決定し、前記整数を前記サイクリックシフトの最大数によって除算することによって得られる剰余に基づいて、前記サイクリックシフトを決定する、付記1から付記3のいずれかに記載の端末。
(付記B)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてベース系列を決定し、サイクリックシフトを前記ベース系列に適用することによって、サウンディング参照信号(SRS)を生成する制御部と、
 前記SRSを送信する送信部と、を有する端末。
[付記2]
 前記制御部は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、前記ベース系列の系列グループ番号を決定する、付記1に記載の端末。
[付記3]
 前記制御部は、前記SRSのシンボル番号と、前記複数の送受信ポイントの数と、前記インデックスと、に基づいて、前記ベース系列の系列グループ番号を決定する、付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、前記ベース系列の系列番号を決定する、付記1から付記3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図13は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、端末が干渉低減のための特定受信機能をサポートすることを示すサポート情報を受信してもよい。
 制御部110は、コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてサイクリックシフトを決定し、前記サイクリックシフトをベース系列に適用することによって、サウンディング参照信号(SRS)を生成してもよい。送受信部120は、前記SRSを受信してもよい。
 制御部110は、コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてベース系列を決定し、サイクリックシフトを前記ベース系列に適用することによって、サウンディング参照信号(SRS)を生成してもよい。送受信部120は、前記SRSを受信してもよい。
(ユーザ端末)
 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、受信における干渉低減のための特定受信機能のサポートを示すサポート情報を送信してもよい。
 制御部210は、コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてサイクリックシフトを決定し、前記サイクリックシフトをベース系列に適用することによって、サウンディング参照信号(SRS)を生成してもよい。送受信部220は、前記SRSを送信してもよい。
 前記制御部210は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、前記サイクリックシフトを決定してもよい。
 前記制御部210は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、整数を決定し、前記整数を前記サイクリックシフトの最大数によって除算することによって得られる剰余に基づいて、前記サイクリックシフトを決定してもよい。
 前記制御部210は、前記SRSのシンボル番号に前記複数の送受信ポイントの数を乗算し、前記乗算の結果と、前記インデックスと、に基づいて、整数を決定し、前記整数を前記サイクリックシフトの最大数によって除算することによって得られる剰余に基づいて、前記サイクリックシフトを決定してもよい。
 制御部210は、コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてベース系列を決定し、サイクリックシフトを前記ベース系列に適用することによって、サウンディング参照信号(SRS)を生成してもよい。送受信部220は、前記SRSを送信してもよい。
 前記制御部210は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、前記ベース系列の系列グループ番号を決定してもよい。
 前記制御部210は、前記SRSのシンボル番号と、前記複数の送受信ポイントの数と、前記インデックスと、に基づいて、前記ベース系列の系列グループ番号を決定してもよい。
 前記制御部210は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、前記ベース系列の系列番号を決定してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図16は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてサイクリックシフトを決定し、前記サイクリックシフトをベース系列に適用することによって、サウンディング参照信号(SRS)を生成する制御部と、
     前記SRSを送信する送信部と、を有する端末。
  2.  前記制御部は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、前記サイクリックシフトを決定する、請求項1に記載の端末。
  3.  前記制御部は、前記SRSのシンボル番号と、前記インデックスと、に基づいて、整数を決定し、前記整数を前記サイクリックシフトの最大数によって除算することによって得られる剰余に基づいて、前記サイクリックシフトを決定する、請求項1に記載の端末。
  4.  前記制御部は、前記SRSのシンボル番号に前記複数の送受信ポイントの数を乗算し、前記乗算の結果と、前記インデックスと、に基づいて、整数を決定し、前記整数を前記サイクリックシフトの最大数によって除算することによって得られる剰余に基づいて、前記サイクリックシフトを決定する、請求項1に記載の端末。
  5.  コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてサイクリックシフトを決定し、前記サイクリックシフトをベース系列に適用することによって、サウンディング参照信号(SRS)を生成するステップと、
     前記SRSを送信するステップと、を有する、端末の無線通信方法。
  6.  コヒーレントジョイント送信のための複数の送受信ポイントの1つに対応するインデックスに基づいてサイクリックシフトを決定し、前記サイクリックシフトをベース系列に適用することによって、サウンディング参照信号(SRS)を生成する制御部と、
     前記SRSを受信する受信部と、を有する基地局。
PCT/JP2022/018205 2022-04-19 2022-04-19 端末、無線通信方法及び基地局 WO2023203647A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018205 WO2023203647A1 (ja) 2022-04-19 2022-04-19 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018205 WO2023203647A1 (ja) 2022-04-19 2022-04-19 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2023203647A1 true WO2023203647A1 (ja) 2023-10-26

Family

ID=88419483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018205 WO2023203647A1 (ja) 2022-04-19 2022-04-19 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2023203647A1 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Introduction of MIMO enhancements", 3GPP DRAFT; R1-2112919, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. e-meeting; 20211111 - 20211119, 7 December 2021 (2021-12-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052087798 *
ZTE: "Initial views on Rel-18 MIMO evolution", 3GPP DRAFT; R1-2201192, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220221 - 20220303, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052109255 *

Similar Documents

Publication Publication Date Title
WO2023203677A1 (ja) 端末、無線通信方法及び基地局
WO2023203647A1 (ja) 端末、無線通信方法及び基地局
WO2023203648A1 (ja) 端末、無線通信方法及び基地局
WO2023188125A1 (ja) 端末、無線通信方法及び基地局
WO2023188126A1 (ja) 端末、無線通信方法及び基地局
WO2023218953A1 (ja) 端末、無線通信方法及び基地局
WO2023209965A1 (ja) 端末、無線通信方法及び基地局
WO2024034128A1 (ja) 端末、無線通信方法及び基地局
WO2023209998A1 (ja) 端末、無線通信方法及び基地局
WO2023181332A1 (ja) 端末、無線通信方法及び基地局
WO2024069930A1 (ja) 端末、無線通信方法及び基地局
WO2023175777A1 (ja) 端末、無線通信方法及び基地局
WO2023181331A1 (ja) 端末、無線通信方法及び基地局
WO2024047869A1 (ja) 端末、無線通信方法及び基地局
WO2024009492A1 (ja) 端末、無線通信方法及び基地局
WO2023152920A1 (ja) 端末、無線通信方法及び基地局
WO2023170905A1 (ja) 端末、無線通信方法及び基地局
WO2024034046A1 (ja) 端末、無線通信方法及び基地局
WO2024034139A1 (ja) 端末、無線通信方法及び基地局
WO2024047870A1 (ja) 端末、無線通信方法及び基地局
WO2023170904A1 (ja) 端末、無線通信方法及び基地局
WO2023152921A1 (ja) 端末、無線通信方法及び基地局
WO2023209874A1 (ja) 端末、無線通信方法及び基地局
WO2023152919A1 (ja) 端末、無線通信方法及び基地局
WO2024034140A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938450

Country of ref document: EP

Kind code of ref document: A1