WO2023202688A1 - 一种混凝土检测修复监测一体化防护系统及实现方法 - Google Patents

一种混凝土检测修复监测一体化防护系统及实现方法 Download PDF

Info

Publication number
WO2023202688A1
WO2023202688A1 PCT/CN2023/089670 CN2023089670W WO2023202688A1 WO 2023202688 A1 WO2023202688 A1 WO 2023202688A1 CN 2023089670 W CN2023089670 W CN 2023089670W WO 2023202688 A1 WO2023202688 A1 WO 2023202688A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
layer
repair
protective
monitoring
Prior art date
Application number
PCT/CN2023/089670
Other languages
English (en)
French (fr)
Inventor
杨树东
Original Assignee
江苏光跃节能科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏光跃节能科技有限责任公司 filed Critical 江苏光跃节能科技有限责任公司
Publication of WO2023202688A1 publication Critical patent/WO2023202688A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G9/00Forming or shuttering elements for general use
    • E04G9/10Forming or shuttering elements for general use with additional peculiarities such as surface shaping, insulating or heating, permeability to water or air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; ceramics; glass; bricks
    • G01N33/383Concrete, cement

Definitions

  • the invention relates to the technical field of building protection, and in particular to an integrated protection system for concrete detection, repair and monitoring and an implementation method.
  • the existing seal detection technology for waterproofing and anti-corrosion of concrete structures cannot detect the sealing effect of the protection system, resulting in sealing quality problems left over from the system and causing leakage. After the protection system and building are delivered and put into operation, the existing technology cannot provide a 24-hour uninterrupted monitoring system and cannot promptly monitor the leakage of the leaking parts.
  • the purpose of the present invention is to provide an integrated protection system and implementation method for concrete detection, repair and monitoring, so as to solve the problem in the prior art that it is difficult to detect, monitor and repair defects in the protection system and concrete structure caused by sealing problems of the enclosure structure. .
  • the many technical effects that can be produced by the preferred technical solutions among the many technical solutions provided by the present invention are described in detail below.
  • the invention provides an integrated protection system for concrete detection, repair and monitoring, which includes:
  • Protection module includes:
  • Envelope structure which is a cast-in-place reinforced concrete envelope structure
  • Independent cavity layers are arranged in layers along the thickness direction of the enclosure structure. Any layer of the independent cavity layers is provided with at least one cavity opening, and the cavity opening is provided with Install sensors and/or sealing covers on the outer surface of the protective sealing layer and at the opening of the cavity;
  • the sensor is installed at at least one cavity opening of the independent cavity layer on the same level;
  • a processor the sensor is signally connected to the processor
  • the processor is signally connected to the early warning device.
  • the present invention can also make the following improvements.
  • the number of the protective modules is multiple, and the independent cavity layers of the same thickness in two adjacently arranged protective modules are connected on the same layer.
  • any of the independent cavity layers is formed by at least one channel located in the same layer; when the number of the channels located in the same layer is multiple, the plurality of channels are interconnected.
  • the tunnel is formed by degrading the degradable pipe laid in the body of the enclosure structure.
  • At least one of the cavity openings of any of the protection modules is provided with a sensor or a sealing cover; all of the independent cavity layers can pass through the sealing cover and/or the sensor Achieve sealing.
  • the senor is at least one or more of a vacuum sensor, a humidity sensor, and a gas sensor.
  • the processor can accept the monitoring values collected at the sensor, analyze them, and issue monitoring warnings through the early warning device.
  • the invention provides a construction method for manufacturing an integrated protection system for concrete detection, repair and monitoring, which includes the following steps:
  • a sensor is installed in at least one cavity opening of the protective module, and the independent cavity layer is closed with a sealing cover.
  • the sensor is located outside the protective module.
  • the processor signal is connected to the early warning device.
  • the processor can monitor the sensor value in the independent cavity layer through the sensor. When the sensor value is abnormal, the processor sends early warning information to Early warning device, the early warning device sends an early warning signal.
  • step S3 also includes:
  • S31 Perform a vacuum inspection on the independent cavity layer closest to the protective sealing layer in the enclosure structure to determine whether the protective sealing layer is qualified;
  • step S32 If the protective sealing layer is qualified, perform step S4; if the protective sealing layer is unqualified, perform step S33;
  • a vacuum test is performed on at least one of the independent cavity layers in which the sensor is not installed. If the vacuum state cannot be maintained, then It is necessary to inject protective sealing material into the independent cavity layer that cannot maintain a vacuum state for repair;
  • the preferred embodiment of the present invention provides an integrated protection system and implementation method for concrete detection, repair and monitoring, which has the following beneficial effects:
  • the present invention has no cross construction after the reinforced concrete enclosure structure is formed. Its construction is not affected by the ambient temperature, and the construction speed is fast. At the same time, it can greatly shorten the building protection construction period. , using built-in holes to conduct non-destructive testing of the protective sealing effect of concrete structures, which can reduce the cost of protective construction of enclosure structures.
  • the non-destructive testing and monitoring system of the protection system of the present invention will make the protective performance and structural safety of the reinforced concrete enclosure structure more reliable, its construction quality can be detected and monitored, and it can effectively ensure the life of the building protection system and the building structure.
  • the present invention can continuously monitor the protective sealing effect of the enclosure structure 24 hours a day by detecting and monitoring the airtightness of the cavity, thereby realizing dynamic monitoring of the enclosure structure and protection system. Quality monitoring.
  • Figure 1 is an example cross-sectional view of a protection module of an integrated protection system for concrete detection, repair and monitoring according to the present invention
  • Figure 2 is an example of a cross-section of an enclosure structure in an integrated protection system for concrete detection, repair and monitoring according to the present invention
  • Figure 3 is an example diagram of the channel arrangement in Figure 2;
  • FIG. 4 is a schematic diagram of the monitoring process in an integrated protection system for concrete detection, repair and monitoring according to the present invention.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • the present invention provides an integrated protection system for concrete detection, repair and monitoring, including a protection module; a processor; and an early warning device; wherein the protection module includes: an enclosure structure 1, and the enclosure structure 1 is A cast-in-place reinforced concrete enclosure structure.
  • the protective sealing layer 3 is provided on the outer surface of the enclosure structure 1.
  • a number of holes 4 are built in layers along the thickness direction of the enclosure structure 1.
  • the holes on the same level are 4 are connected with each other, and the channels 4 at different levels are not connected with each other to form an independent cavity layer 2.
  • the independent cavity layer 2 of any layer is provided with at least one cavity opening 7, and the cavity opening 7 is provided at each On the outer surface of the protective sealing layer 3, the cavity opening 7 can be provided with a sensor 5 and/or a sealing cover 6;
  • the sensor 5 is signally connected to the processor
  • the processor is signally connected to the early warning device.
  • the protective modules are arranged in zones according to the design requirements, and their arrangement quantity is determined according to the design requirements.
  • the adjacently arranged protective modules have built-in independent cavity layers, which can be connected to the same layer according to the design requirements, or not connected, and cross-protection modules on the same layer are used.
  • the coherent independent cavity layer formed by the interconnection method is viewed at the same angle as the independent cavity layer.
  • the number and arrangement of the independent cavity layers in the enclosure structure are set according to the design requirements, and the number and arrangement of the channels forming the independent cavity layers are set according to the design requirements, while ensuring that the enclosure structure
  • the number of independent cavity layers 2 in the building envelope 1 can be three or more. It only needs to ensure that all independent cavity layers 2 are independent of each other. Just set it up and not connect to each other.
  • the tunnel is formed by the degradation of degradable pipes laid in the body of the enclosure structure.
  • At least one of the cavity openings of any of the protection modules is provided with a sensor or a sealing cover; all of the independent cavity layers can be sealed by the sealing cover and/or the sensor.
  • the sensor can be any one or more of a vacuum sensor, a humidity sensor, and a gas sensor according to monitoring design requirements.
  • the senor When in use, the sensor is responsible for collecting monitoring values, the processor is responsible for processing and analyzing the monitoring values, and the early warning device is responsible for issuing monitoring early warnings.
  • the enclosure structure 1 of a concrete detection, repair and monitoring integrated protection system provided by the present invention is provided with three independent cavity layers 2, and the three independent cavity layers 2 are respectively along the enclosure.
  • the protective structure 1 is arranged in layers in the thickness direction, as shown in Figure 2.
  • a single degradable tube is arranged in a serpentine shape along the length and/or width direction of the enclosure structure 1.
  • the structure of the channel 4 is as follows As shown in Figure 3.
  • both ends of three independent cavity layers 2 with different depths in the enclosure structure 1 form cavity openings 7 located on the outer surface of the protective sealing layer 3.
  • the independent cavities The cavity openings of layer 2 are the left cavity opening 7a, the central cavity opening 7c, and the right cavity opening 7b.
  • the channels 4 forming the independent cavity layer 2 are constructed from degradable tubes that penetrate the enclosure structure 1 . After the reinforced concrete structure of the enclosure structure 1 is hardened and the degradable pipes are degraded, three independent cavity layers 2 composed of channels 4 are formed.
  • the above-mentioned degradable tube may be a capillary tube.
  • the independent cavity layer 2 can be arranged and degraded by a single degradable tube to form a single-channel cavity 4, or a pipeline system composed of multiple degradable tubes connected by splicing, bonding or threaded connections can be provided. into a mesh sheet, and after degradation, a mesh-shaped independent cavity layer composed of multiple channels 4 is formed. Can be set according to specific design.
  • the independent cavity layer 2 located in the middle is evacuated and a micro vacuum sensor 5 is provided at the hollow cavity opening 7c.
  • the remaining five cavity openings are all sealed through the sealing cover 6. seal.
  • the above-mentioned micro vacuum sensor 5 can deactivate the sealing effect of the independent cavity layer 2 by sensing the pressure in the corresponding independent cavity layer 2 . If the sealing performance of the independent cavity layer 2 is good, it means that the protective module has a good protective sealing effect at this time. On the contrary, it means that there are gaps in the protective sealing layer and the cast-in-place reinforced concrete structure or the vibration density is not enough. If there are any defects, it is necessary to carry out non-destructive inspection of the corresponding parts.
  • the micro vacuum sensor 5 is responsible for collecting monitoring values, the processor is responsible for processing and analyzing the monitoring values, and the early warning device is responsible for issuing monitoring warnings.
  • the micro vacuum sensor 5 is located in the The processor signal outside the protection module is connected to the early warning device.
  • the processor can monitor the sensor value in the independent cavity layer through the sensor. When the sensor value is abnormal, the processor sends The early warning information is sent to the early warning device, and the early warning device sends an early warning signal.
  • the early warning device also includes a display end, which can display the above information and issue the early warning information.
  • micro vacuum sensor 5 and the processor, processor and early warning device can use equipment and connection methods in the prior art to achieve signal connection. Its specific structure and working principle are in the prior art and will not be described again here.
  • This embodiment provides a method for implementing an integrated protection system for concrete detection, repair, and monitoring, which includes the following steps:
  • a sensor is installed in at least one cavity opening of the corresponding protective module, and the independent cavity layer is closed with a sealing cover.
  • the sensor is connected to the protective sealing layer.
  • the processor signal is connected outside the module, and the processor signal is connected to the early warning device.
  • the processor can monitor the sensor value in the independent cavity layer through the sensor. When the sensor value is abnormal, the processor sends an early warning. The information is sent to the early warning device, and the early warning device sends an early warning signal.
  • S31 Perform vacuum inspection on the independent cavity layer 3 closest to the protective sealing layer in the enclosure structure to determine whether the protective sealing layer is qualified;
  • step S32 If the protective sealing layer 2 is qualified, perform step S4; if the protective sealing layer is unqualified, perform step S33;
  • step S33 the independent cavity layer 2 on the other side of the enclosure structure 1 that is closest to the protective sealing layer 3 needs to be vacuum tested to determine whether the Whether the protective sealing layer 3 is qualified, if the test result is unqualified, step S33 can be repeated multiple times until a protective sealing system that meets the design requirements is obtained.
  • the integrated protection system for concrete detection, repair and monitoring obtained after the above processing steps can meet the design requirements.
  • a sensor can be installed at one cavity opening c according to the design requirements and the remaining cavity openings can be sealed.
  • long-term dynamic monitoring of the protection module can be achieved through the processor and early warning device connected to the above-mentioned sensors. .
  • the protective sealing layer can be judged by temporarily evacuating the independent cavity layer 2 connected to the left cavity opening 7a (no need to install a sensor at this time) 3 construction quality. If there is a leakage problem in the protective sealing layer, the protective sealing layer itself can be partially repaired, or the independent cavity layer 2 connected to the left cavity opening 7a can be repaired by grouting protective materials (reverse method of protective repair deal with).
  • a sealing cover 6 is installed on one end of the independent cavity layer 2 in the middle to perform sealing and vacuuming operations, and then a micro vacuum sensor 5 is installed at the hollow cavity opening 7c at the other end and the hollow cavity opening 7c is closed.
  • the independent cavity layer 2 located in the middle is in a negative pressure state, and the sensor can collect data and realize real-time monitoring of the pressure value there. If the data meets the design requirements, the repair is completed.
  • This construction method can use existing detection and monitoring methods combined with specially designed protection system structures to be applied in the building protection system, thereby achieving monitoring of the building protection system.

Abstract

提供了一种混凝土检测修复监测一体化防护系统及实现方法,该系统包括防护模块、传感器(5)、处理器和预警装置。其中,防护模块包括:围护结构体(1)、防护密封层(3)和独立空腔层(2);围护结构体(1)外表面设置防护密封层(3),围护结构体(1)内部分层设置有若干独立空腔层(2),在防护密封层(3)外表面设置有空腔开口(7),空腔开口(7)可安装传感器(5)和密封盖(6);传感器(5)与处理器信号连接;处理器与预警装置信号连接。该混凝土检测修复监测一体化防护系统的防护密封效果好且方便检修及监测。

Description

一种混凝土检测修复监测一体化防护系统及实现方法 技术领域
本发明涉及建筑防护技术领域,尤其是涉及一种混凝土检测修复监测一体化防护系统及实现方法。
背景技术
国内近几十年建筑领域在飞速发展,每年各种建筑,因为漏水问题带来无数的财产损失和民事纠纷。现有工程技术,在混凝土结构基础面的裂缝及缺陷部位防水、防腐密封施工时,因为各种原因导致防护密封层的质量达不到钢筋混凝土结构体全密封的防水、防腐、防护的质量要求。
现有的混凝土结构体防水、防腐的密封检测技术,无法检测防护系统密封效果,导致系统遗留的密封质量问题,引起渗漏。在防护系统和建筑交付运营后,现有技术无法提供一个24小时不间断的监测系统,不能够及时监测漏水部位的渗漏情况。
上述问题引起建筑防护层的功能失效,不能够系统检测,不能够实时监测。从而引起建筑结构寿命缩短及建筑防护功能和建筑结构安全受到影响。国内因各种建筑防护问题导致出现很多重大损失。
为了解决上述问题,需要研发一种含有空腔的现浇钢筋混凝土围护结构,实现对围护结构体防护密封性的无损检修、实时监测。
发明内容
本发明的目的在于提供一种混凝土检测修复监测一体化防护系统及实现方法,以解决现有技术中对于围护结构体密封问题引起的防护系统及混凝土结构缺陷,难以检测、监测及修复的问题。本发明提供的诸多技术方案中的优选技术方案所能产生的诸多技术效果详见下文阐述。
为实现上述目的,本发明提供了以下技术方案:
本发明提供的一种混凝土检测修复监测一体化防护系统,包括:
防护模块,所述防护模块,包括:
(1)围护结构体,所述围护结构体为现浇钢筋混凝土围护结构体,
(2)防护密封层,所述围护结构体外表面设置有所述防护密封层,
(3)独立空腔层,沿所述围护结构体厚度方向分层设置有若干独立空腔层,任意一层所述独立空腔层至少设有一个空腔开口,所述空腔开口设置于所述防护密封层外表面,所述空腔开口处安装传感器和/或密封盖;
传感器,位于同一层面的所述独立空腔层的至少一个所述空腔开口处安装有所述传感器;
处理器,所述传感器与所述处理器信号连接;
预警装置,所述处理器与所述预警装置信号连接。
在上述技术方案的基础上,本发明还可以做如下改进。
作为本发明的进一步改进,所述防护模块的数量为多个,相邻布置的两个所述防护模块内的、位于同一厚度的所述独立空腔层同层联通。
作为本发明的进一步改进,任意一个所述独立空腔层由位于同一层的至少一个孔道形成;当位于同一层的所述孔道的数量为多个时,多个所述孔道相互联通。
作为本发明的进一步改进,所述孔道由铺设在所述围护结构体内的可降解管降解后形成。
作为本发明的进一步改进,任意一个所述防护模块的至少一个所述空腔开口处设有传感器或密封盖;所有的所述独立空腔层均能通过所述密封盖和/或所述传感器实现密封。
作为本发明的进一步改进,所述传感器为真空传感器、湿度传感器、气体传感器中的至少一种或多种。
作为本发明的进一步改进,所述处理器能接受所述传感器处采集到的监测数值并对其进行分析并通过所述预警装置发布监测预警。
本发明提供了一种用于制造混凝土检测修复监测一体化防护系统的施工方法,包括以下步骤:
S1:基于预先设定的围护结构设计要求,在施工场地安装钢筋网架,并将用于构造所述孔道的可降解管按设计要求固定在所述钢筋网架的相应位置上;
S2:在所述钢筋网架外安装结构浇筑模板,随后对固定有所述可降解管的钢筋网架进行混凝土浇筑以及养护、脱模,得到该围护结构体,待可降解管降解完成后,得到所述孔道,形成所述独立空腔层;
S3:对所述围护结构体进行所述防护密封层施工,并对所述防护密封层的密闭性进行验收;
S4:所述防护密封层验收合格后,在所述防护模块的至少一个所述空腔开口内设置传感器,并通过密闭盖封闭所述独立空腔层,所述传感器与位于所述防护模块外部的处理器信号连接,所述处理器信号连接所述预警装置,所述处理器能通过所述传感器监测所述独立空腔层内的传感器数值,当传感器数值异常时,处理器发送预警信息给预警装置,预警装置发送预警信号。
作为本发明的进一步改进,所述S3步骤还包括:
S31:对所述围护结构体内最靠近所述防护密封层的所述独立空腔层进行抽真空检测,以判断所述防护密封层是否合格;
S32:若所述防护密封层合格,则执行步骤S4;若所述防护密封层不合格,则执行步骤S33;
S33:对所述部位的区域防护密封层进行修复;和/或,向步骤S31中进行抽真空处理的所述独立空腔层进行逆作法无损防护密封材料注浆修复,从而得到符合设计要求的防护密封系统。
作为本发明的进一步改进,还包括:
当所述传感器监测到所述独立空腔层内的监测数值状态异常时,此时对至少一个未安装所述传感器的所述独立空腔层内进行抽真空检测,若不能保持真空状态,则需要向无法保持真空状态的所述独立空腔层内注入防护密封材料进行修复;
当对所有未安装所述传感器的所述独立空腔层进行修复处理后依然无法解决所述传感器检测到的监测数值异常问题时,向安装有所述传感器的所述独立空腔层内注入防护密封材料进行最终的修复处理。
相比于现有技术,本发明较佳的实施方式提供的一种混凝土检测修复监测一体化防护系统及实现方法具备以下有益效果:
(1)本发明相较于现有的钢筋混凝土围护结构体,钢筋混凝土围护结构成型后,无交叉施工,其施工不受环境温度影响,施工速度快,同时能够大大缩短建筑防护施工周期,利用内置孔道,对混凝土结构的防护密封效果进行无损检测,可以降低围护结构防护施工造价。
(2)本发明的防护系统无损检测、监测系统,会使钢筋混凝土围护结构防护性能及结构安全性更加可靠,其施工质量可检测、可监测,能够有效保证建筑防护系统及建筑结构寿命。
(3)本发明由于围护结构体内置空腔,通过检测、监测空腔密闭性,可以对围护结构体的防护密封效果进行24h连续不断的监测,实现对围护结构及防护系统的动态质量监测。
(4)在施工时以及施工完成后,一旦检测到围护结构体内存在裂缝或者缺陷,可以利用向独立密封层注入防护密封材料,实施无损修复施工,有效解决了传统的防护层及钢筋混凝土内部结构缺陷修复难度高的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一种混凝土检测修复监测一体化防护系统的防护模块截面示例图;
图2是本发明一种混凝土检测修复监测一体化防护系统中的围护结构体截面示例图;
图3是图2中的孔道排布的示例图;
图4是本发明一种混凝土检测修复监测一体化防护系统中的监测流程示意图。
图中1、围护结构体;2、独立空腔层;3、防护密封层;4、孔道;5、传感器;6、密封盖;7、空腔开口,7a、左空腔开口,7b、右空腔开口,7c、中空腔开口。
实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本发明中的具体含义。
下面结合附图对本发明的技术方案进行具体说明。
如图1所示例,本发明提供了一种混凝土检测修复监测一体化防护系统,包括防护模块;处理器;预警装置;其中防护模块包括:围护结构体1,所述围护结构体1为现浇钢筋混凝土围护结构体,所述围护结构体1外表面设置有所述防护密封层3,沿所述围护结构体1厚度方向分层内置有若干孔道4,同一层面所述孔道4互相联通,不同层面的所述孔道4互不联通,形成独立空腔层2,任意一层所述独立空腔层2至少设有一个空腔开口7,所述空腔开口7设置于所述防护密封层3外表面,所述空腔开口7可设置传感器5和/或密封盖6;
所述传感器5与处理器信号连接;
所述处理器与预警装置信号连接。
所述防护模块依照设计要求分区布置,其布置数量依据设计要求确定,相邻布置的所述防护模块内置独立空腔层,可依据设计要求同层联通,亦可不联通,采用跨防护模块同层联通方式形成的连贯独立空腔层,与所述独立空腔层同视。
依据设计要求设置所述围护结构体内所述独立空腔层的数量以及排布方式,依据设计要求设置形成所述独立空腔层的所述孔道的数量以及排布方式,在保证围护结构体1的强度和承重效果满足设计要求的前提下,围护结构体1内的独立空腔层2的数量可以是三个甚至更多,只需要保证所有的独立空腔层2之间相互独立设置且互不连通即可。
所述孔道由铺设在所述围护结构体内的可降解管降解后形成。
任意一个所述防护模块的至少一个所述空腔开口处设有传感器或密封盖;所有的所述独立空腔层均能通过所述密封盖和/或所述传感器实现密封。
所述传感器,可根据监测设计需求选用真空传感器、湿度传感器、和气体传感器中的任意一种或多种。
在使用时,所述传感器负责采集监测数值,所述处理器负责处理分析监测数值,所述预警装置负责发布监测预警。
实施例1:
如图1-3所示,本发明提供的一种混凝土检测修复监测一体化防护系统的围护结构体1上设置有三个独立空腔层2,且三个独立空腔层2分别沿该围护结构体1的厚度方向分层布置,如图2所示。
为了保证独立空腔层2能够满足设计要求,作为可选的实施方式,单根可降解管沿围护结构体1的长度和/或宽度方向蛇形排布,此时的孔道4的结构如图3所示。
在本实施例中,三个在围护结构体1内深度不同的独立空腔层2的两端均形成位于防护密封层3外表面的空腔开口7,如图2所示,独立空腔层2的空腔开口为左空腔开口7a、中空腔开口7c、右空腔开口7b。作为可选的实施方式,形成独立空腔层2的孔道4由穿设在围护结构体1内的可降解管构造而成。在围护结构体1钢筋混凝土结构硬化,可降解管完成降解后,形成由孔道4构成的三个独立空腔层2。
需要注意的是,上述可降解管可以是毛细管。
独立空腔层2,可以由单根可降解管排布降解形成单通道空腔孔道4,也可以设置由多根可降解管通过拼接、粘接或者螺纹连接等连接方式连接起来的管路制成网片,降解后形成由多条孔道4组成的网状独立空腔层。可根据具体设计设定。
如图1-2所示,对位于中间位置的独立空腔层2经行抽真空处理并在中空腔开口7c处设置有微型真空传感器5,其余五个空腔开口处均通过密封盖6进行密封。
上述微型真空传感器5可以通过感应相应独立空腔层2内的压力的方式来退断该独立空腔层2的密封效果。若独立空腔层2的密封性较好,则说明此时该防护模块具有较好的防护密封效果,反之,则说明该防护密封层及现浇钢筋混凝土结构内存在缝隙或者振捣密实度不够等缺陷,需要对相应部分进行无损检修。
如图4所示,所述微型真空传感器5负责采集监测数值,所述处理器负责处理分析监测数值,所述预警装置负责发布监测预警,为了方便达到上述效果,微型真空传感器5与位于所述防护模块外部的处理器信号连接,所述处理器信号连接所述预警装置,所述处理器能通过所述传感器监测所述独立空腔层内的传感器数值,当传感器数值异常时,处理器发送预警信息给预警装置,预警装置发送预警信号,另外,该预警装置还包括一展示端,该展示端能够将上述信息展示出来并发布预警信息。
上述微型真空传感器5与处理器、处理器与预警装置,可采用现有技术中的设备和连接方法实现信号连接,其具体构造和工作原理为现有技术,在此不再赘述。
实施例2:
本实施例提供了一种混凝土检测修复监测一体化防护系统的实现方法,包括以下步骤:
S1:基于预先设定的围护结构设计要求,在施工场地安装钢筋网架,并将用于构造所述孔道的可降解管按设计要求固定在所述钢筋网架的相应位置上;
S2:在所述钢筋网架外安装结构浇筑模板,随后对固定有所述可降解管的钢筋网架进行混凝土浇筑以及养护、脱模,得到该围护结构体,待可降解管降解完成后,得到所述孔道,形成所述独立空腔层;
S3:对所述围护结构体进行所述防护密封层施工,并对所述防护密封层的密闭性进行验收;
S4:所述防护密封层验收合格后,在相应的所述防护模块的至少一个所述空腔开口内设置传感器,并通过密闭盖封闭所述独立空腔层,所述传感器与位于所述防护模块外部的处理器信号连接,所述处理器信号连接所述预警装置,所述处理器能通过所述传感器监测所述独立空腔层内的传感器数值,当传感器数值异常时,处理器发送预警信息给预警装置,预警装置发送预警信号。
在围护结构体1及防护密封层3施工完成后,需要对所述防护密封层的密闭性进行验收,验收步骤如下:
S31:对所述围护结构体内最靠近所述防护密封层的所述独立空腔层3进行抽真空检测,以判断所述防护密封层是否合格;
S32:若所述防护密封层2合格,则执行步骤S4;若所述防护密封层不合格,则执行步骤S33;
S33:对所述部位的区域防护密封层2进行修复;和/或,向步骤S31中进行抽真空处理的所述独立空腔层进行逆作法无损防护密封材料注浆修复,从而得到符合设计要求的防护密封系统。
需要注意的是,当经过上述步骤S33处理后,需对所述围护结构体1内另外一侧最靠近所述防护密封层3的所述独立空腔层2进行抽真空检测,以判断所述防护密封层3是否合格,若检测结果不合格,可以多次重复步骤S33直至得到符合设计要求的防护密封系统为止。
经过上述处理步骤后得到的混凝土检测修复监测一体化防护系统,能够满足设计要求,在验收合格后,可以根据设计要求在一个空腔开口c处安装传感器并对其余空腔开口进行密封处理。在日常维护过程中,可以通过与上述传感器相连的处理器和预警装置来实现对该防护模块进行长期动态监测。。
下面以图2为例对上述施工过程中的验收和监测部分进行详细说明:
(1)验收:
施工完成后,为了检测相应的防护密封系统结构是否符合设计要求,可以通过对左空腔开口7a连通的独立空腔层2采用临时抽真空的方式(此时无需安装传感器)来判断防护密封层3的施工质量。若防护密封层存在渗漏问题,则可以采取对防护密封层本身进行局部修复,或者对左空腔开口7a连通的独立空腔层2进行防护材料注浆的方式来进行修复(逆作法防护修复处理)。
修复检测完成后,对位于中部的独立空腔层2的一端安装密封盖6,进行封闭和抽真空作业,然后在其另一端中空腔开口7c处安装微型真空传感器5并封闭中空腔开口7c,此时,位于中部的独立空腔层2处于负压状态,通过该传感器可以采集数据并实现对该处压力值进行实时监测。若数据符合设计要求,则说明修复完成。
(2)监测:
建筑使用维护过程中,通过安装在中空腔开口7c口处的传感器实现对该防护模块的长期监测。后期一旦发现传感器处的数据异常时,则说明中空腔开口7c对应的孔道2内的密闭状态遭到破坏,防护系统及结构可能出现问题。此时,可以选择对右空腔开口7b的联通的独立空腔层2进行临时抽真空检测(此时无需安装传感器)以检测防护密封系统的状态。若该独立空腔层2可以保持真空状态,则说明防护系统依旧正常工作,若该独立空腔层2无法保持真空状态,说明防护系统遭到破坏,此时,可以选择通过右空腔开口7b向所连通的独立空腔层2内注入柔性(或刚韧)密封防护材料来实现对防护系统的再次修复。
若此时左空腔开口7a连通的独立空腔层内为空腔状态的话(之前验收阶段不需修复的情况),亦可选择对此独立空腔层做上述操作。
若经上述修复步骤后,传感器处的数据恢复正常,则说明修复成功;若依旧异常,此时可以选择向中空腔开口7c连通的独立空腔层内注入柔性密封防护材料,以修复该防护结构。
该施工方法可以利用现有的检测、监测手段结合特殊设计的防护系统结构应用于建筑物防护系统内,从而实现对建筑防护系统的监测。
下面结合围护结构体的具体用途对其施工方式进行说明:
(一)当该围护结构体作为钢筋混凝土结构底板时,其施工步骤如下:
1、按照围护结构设计要求施工钢筋网架。
2、同步进行按照结构内置柔性防护密封系统设计要求,进行三层管(毛细管网片)安装及定位施工。在安装时,可以通过绑扎的方式对上述毛细管网片进行固定。另外,同步进行安装检测单元及监测单元连接通道。
3、结构浇筑模板安装,随后进行混凝土浇筑。需要注意的是,管的两端需要位于结构浇筑模板外。
4、按操作规范对浇筑板结构进行养护和脱模处理。
5、按照逆作法负压无损防护检测技术要求进行检测,如果检测到存在缺陷,需对缺陷处进行修复处理,并进行复检,复检合格后进行下一步操作。
6、安装传感器、处理器、预警装置,并对其进行测试。
7、测试完成后,进行远程控制服务测试交付。
该底板在进行现场施工时,需要先按照逆作法维护结构底板防护系统设计要求施工防护密封层 3
(二)当该围护结构体作为外墙体维护结构时(包括地上和地下建筑物外墙),其施工步骤如下:
1、按照围护结构设计要求施工钢筋网架。
2、同步进行按照结构内置柔性防护密封系统设计要求,进行三层管(毛细管网片)安装及定位施工。在安装时,可以通过绑扎的方式对上述毛细管网片进行固定。另外,同步进行安装检测单元及监测单元连接通道。
3、结构浇筑模板安装,随后进行混凝土浇筑。需要注意的是,管的两端需要位于结构浇筑模板外。
4、按操作规范对浇筑板结构进行养护和脱模处理。
5、按照逆作法负压无损防护检测技术要求进行检测,如果检测到存在缺陷,需对缺陷处进行修复处理,并进行复检,复检合格后进行下一步操作。
6、安装与监测功能配套的传感器、处理器、预警装置,并对其进行测试。
7、测试完成后,进行远程控制服务测试交付。
该外墙体在进行现场施工时,需要先按照逆作法维护结构底板防护系统设计要求施工防护密封层3。
(三)当该围护结构体作为钢筋混凝土结构顶板时,其施工步骤如下:
1、按照围护结构顶板设计要求进行结构浇筑模板安装施工。
2、按照围护结构设计要求施工钢筋网架。
3、同步进行按照结构内置柔性防护密封系统设计要求,进行三层管(毛细管网片)安装及定位施工。在安装时,可以通过绑扎的方式对上述毛细管网片进行固定。另外,同步进行安装检测单元及监测单元连接通道。
4、进行混凝土浇筑。需要注意的是,管的两端需要位于结构浇筑模板外。
5、按操作规范对浇筑板结构进行养护和脱模处理。
6、按照逆作法负压无损防护检测技术要求进行检测,如果检测到存在缺陷,需对缺陷处进行修复处理,并进行复检,复检合格后进行下一步操作。
7、安装与监测功能配套的传感器、处理器、预警装置,并对其进行测试。
8、测试完成后,进行远程控制服务测试交付。
该顶板在进行现场施工时,需要先按照逆作法维护结构顶板防护系统设计要求施工防护密封层3。
通过上述方法可以实现对混凝土检测修复监测一体化防护系统的施工安装。

Claims (10)

  1. 一种混凝土检测修复监测一体化防护系统,其特征在于,包括:
    防护模块,所述防护模块,包括围护结构体、防护密封层和独立空腔层,所述围护结构体为现浇钢筋混凝土围护结构体,其外表面设置有所述防护密封层;,沿所述围护结构体厚度方向分层设置有若干独立空腔层,
    任意一层所述独立空腔层至少设有一个空腔开口,所述空腔开口设置于所述防护密封层外表面,所述空腔开口处安装传感器和/或密封盖;
    传感器,位于同一层面的所述独立空腔层的至少一个所述空腔开口处安装有所述传感器;
    处理器,所述传感器与所述处理器信号连接;
    预警装置,所述处理器与所述预警装置信号连接。
  2. 根据权利要求1所述的混凝土检测修复监测一体化防护系统,其特征在于,所述防护模块的数量为多个,相邻布置的两个所述防护模块内的、位于同一厚度的所述独立空腔层同层联通。
  3. 根据权利要求1所述的混凝土检测修复监测一体化防护系统,其特征在于,任意一个所述独立空腔层由位于同一层的至少一个孔道形成;当位于同一层的所述孔道的数量为多个时,多个所述孔道相互联通。
  4. 根据权利要求1所述的混凝土检测修复监测一体化防护系统,其特征在于,所述孔道由铺设在所述围护结构体内的可降解管降解后形成。
  5. 根据权利要求1中所述的混凝土检测修复监测一体化防护系统,其特征在于,任意一个所述防护模块的至少一个所述空腔开口处设有传感器或密封盖;所有的所述独立空腔层均能通过所述密封盖和/或所述传感器实现密封。
  6. 根据权利要求1所述的混凝土检测修复监测一体化防护系统,其特征在于,所述传感器为真空传感器、湿度传感器、和气体传感器中的至少一种或多种。
  7. 根据权利要求1所述的混凝土检测修复监测一体化防护系统,其特征在于,所述处理器能接受所述传感器处采集到的监测数值并对其进行分析并通过所述预警装置发布监测预警。
  8. 根据权利要求1-7中任一项所述的混凝土检测修复监测一体化防护系统的实现方法,其特征在于,包括以下步骤:
    S1:基于预先设定的围护结构设计要求,在施工场地安装钢筋网架,并将用于构造所述孔道的可降解管按设计要求固定在所述钢筋网架的相应位置上;
    S2:在所述钢筋网架外安装结构浇筑模板,随后对固定有所述可降解管的钢筋网架进行混凝土浇筑以及养护、脱模,得到该围护结构体,待可降解管降解完成后,得到所述孔道,形成所述独立空腔层;
    S3:对所述围护结构体进行所述防护密封层施工,并对所述防护密封层的密闭性进行验收;
    S4:所述防护密封层验收合格后,在所述防护模块的至少一个所述空腔开口内设置传感器,并通过密闭盖封闭所述独立空腔层,所述传感器与位于所述防护模块外部的处理器信号连接,所述处理器信号连接所述预警装置,所述处理器能通过所述传感器监测所述独立空腔层内的传感器数值,当传感器数值异常时,处理器发送预警信息给预警装置,预警装置发送预警信号。
  9. 根据权利要求8所述的混凝土检测修复监测一体化防护系统的施工方法,其特征在于,所述S3步骤还包括:
    S31:对所述围护结构体内最靠近所述防护密封层的所述独立空腔层进行抽真空处理,以判断所述防护密封层是否合格;
    S32:若所述防护密封层合格,则执行步骤S4;若所述防护密封层不合格,则执行步骤S33;
    S33:对所述部位的区域防护密封层进行修复;和/或,向步骤S31中进行抽真空处理的所述独立空腔层进行逆作法无损防护密封材料注浆修复,从而得到符合设计要求的防护密封系统。
  10. 根据权利要求8所述的混凝土检测修复监测一体化防护系统的实现方法,其特征在于,还包括:
    当所述传感器监测到所述独立空腔层内的监测数值状态异常时,此时对至少一个未安装所述传感器的所述独立空腔层内进行抽真空检测,若不能保持真空状态,则需要向无法保持真空状态的所述独立空腔层内注入防护密封材料进行修复;
    当对所有未安装所述传感器的所述独立空腔层进行修复处理后依然无法解决所述传感器检测到的监测数值异常问题时,向安装有所述传感器的所述独立空腔层内注入防护密封材料进行最终的修复处理。
PCT/CN2023/089670 2022-04-21 2023-04-21 一种混凝土检测修复监测一体化防护系统及实现方法 WO2023202688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210426660.0 2022-04-21
CN202210426660.0A CN114737755A (zh) 2022-04-21 2022-04-21 一种混凝土检测修复监测一体化防护系统及实现方法

Publications (1)

Publication Number Publication Date
WO2023202688A1 true WO2023202688A1 (zh) 2023-10-26

Family

ID=82283886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089670 WO2023202688A1 (zh) 2022-04-21 2023-04-21 一种混凝土检测修复监测一体化防护系统及实现方法

Country Status (2)

Country Link
CN (1) CN114737755A (zh)
WO (1) WO2023202688A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114737755A (zh) * 2022-04-21 2022-07-12 江苏光跃节能科技有限责任公司 一种混凝土检测修复监测一体化防护系统及实现方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101090A (ja) * 1994-09-29 1996-04-16 Tadashi Matsuoka 遮水構造体に適用する漏水・浸水検知装置
CN102650629A (zh) * 2011-03-24 2012-08-29 北京交科公路勘察设计研究院有限公司 一种基于光纤光栅的隧道渗水监测方法及装置
JP2013079505A (ja) * 2011-10-03 2013-05-02 Nihon Univ コンクリート構造物のひび割れ補修部の検知方法
CN105465613A (zh) * 2015-11-19 2016-04-06 中建七局第二建筑有限公司 城市地下排水管道渗漏定位系统及其施工方法
CN106088174A (zh) * 2016-08-21 2016-11-09 浙江科技学院 一种软土地区地下连续墙渗漏检测系统
US20170051522A1 (en) * 2015-08-21 2017-02-23 Donald Velazquez Concrete and masonry restoration and ornamentation method and apparatus
CN108333109A (zh) * 2018-02-27 2018-07-27 华北水利水电大学 一种混凝土结构内部裂缝监测装置及方法
CN114250988A (zh) * 2022-01-24 2022-03-29 上海市建筑科学研究院有限公司 预制混凝土剪力墙底部接缝渗漏水检测与修复一体化方法
CN114737755A (zh) * 2022-04-21 2022-07-12 江苏光跃节能科技有限责任公司 一种混凝土检测修复监测一体化防护系统及实现方法
CN114809114A (zh) * 2022-05-19 2022-07-29 江苏光跃节能科技有限责任公司 混凝土结构缝逆作法防水密封结构及其施工方法
CN115824911A (zh) * 2022-05-18 2023-03-21 上海市建筑科学研究院有限公司 预制混凝土剪力墙竖缝渗漏水检测与修复一体化方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101090A (ja) * 1994-09-29 1996-04-16 Tadashi Matsuoka 遮水構造体に適用する漏水・浸水検知装置
CN102650629A (zh) * 2011-03-24 2012-08-29 北京交科公路勘察设计研究院有限公司 一种基于光纤光栅的隧道渗水监测方法及装置
JP2013079505A (ja) * 2011-10-03 2013-05-02 Nihon Univ コンクリート構造物のひび割れ補修部の検知方法
US20170051522A1 (en) * 2015-08-21 2017-02-23 Donald Velazquez Concrete and masonry restoration and ornamentation method and apparatus
CN105465613A (zh) * 2015-11-19 2016-04-06 中建七局第二建筑有限公司 城市地下排水管道渗漏定位系统及其施工方法
CN106088174A (zh) * 2016-08-21 2016-11-09 浙江科技学院 一种软土地区地下连续墙渗漏检测系统
CN108333109A (zh) * 2018-02-27 2018-07-27 华北水利水电大学 一种混凝土结构内部裂缝监测装置及方法
CN114250988A (zh) * 2022-01-24 2022-03-29 上海市建筑科学研究院有限公司 预制混凝土剪力墙底部接缝渗漏水检测与修复一体化方法
CN114737755A (zh) * 2022-04-21 2022-07-12 江苏光跃节能科技有限责任公司 一种混凝土检测修复监测一体化防护系统及实现方法
CN115824911A (zh) * 2022-05-18 2023-03-21 上海市建筑科学研究院有限公司 预制混凝土剪力墙竖缝渗漏水检测与修复一体化方法
CN114809114A (zh) * 2022-05-19 2022-07-29 江苏光跃节能科技有限责任公司 混凝土结构缝逆作法防水密封结构及其施工方法

Also Published As

Publication number Publication date
CN114737755A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2023202688A1 (zh) 一种混凝土检测修复监测一体化防护系统及实现方法
CN106501496A (zh) 一种可视化的钢管混凝土拱桥管内混凝土灌注试验装置
CN111828013B (zh) 地面盾构隧道实验实体模型及其施工方法
CN113027172A (zh) 一种集装箱快速搭建的房屋模块化划分式搭建方法
CN113341061A (zh) 钢-混凝土结构隧道防火保护材料耐火试验装置及方法
CN109440777B (zh) 地下结构混凝土施工缝渗漏超前监测预警装置及施工方法
CN205246284U (zh) 盾构隧道管片环缝抗渗性能试验系统
CN114809114A (zh) 混凝土结构缝逆作法防水密封结构及其施工方法
CN217537874U (zh) 一种混凝土检测修复监测一体化防护系统
CN201660973U (zh) 混凝土后浇带预封闭排气构造
CN210427566U (zh) 一种三维可视渗透注浆模型试验装置
CN214363658U (zh) 一种预应力锚杆逆作法无接缝防水结构
CN216973425U (zh) 一种先撑后挖的斜向预制钢桩基坑支护体系
CN212507065U (zh) 钢结构装配式住宅工厂预制钢管混凝土柱
CN217399743U (zh) 混凝土结构缝逆作法防水密封结构
CN113062411A (zh) 超大型环形混凝土不锈钢水箱及其制作方法
CN112211091A (zh) 钢筋波纹管灌浆锚固连接结构及其饱满度检测方法
US9758959B2 (en) Method and device for drainage and detection of leakage
CN114059714A (zh) 一种有粘结预应力梁施工工艺
CN112523780A (zh) 软岩隧道衬砌拱顶防脱空主动监测施工工法
CN111307683A (zh) 一种自平衡式钢筋混凝土结构抗渗性能测试装置及方法
CN219911731U (zh) 一种nmp回收脱水塔装置
CN216950485U (zh) 一种盾构管片外土压力监测快速安装装置
CN217561407U (zh) 一种逆作法竖向支撑钢管柱的混凝土检测装置
CN216381386U (zh) 一种具有管内应力监测功能的矩形顶管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791340

Country of ref document: EP

Kind code of ref document: A1