WO2023202656A1 - System for predicting a state of injuries of a vulnerable road user for a vehicle and vehicle - Google Patents

System for predicting a state of injuries of a vulnerable road user for a vehicle and vehicle Download PDF

Info

Publication number
WO2023202656A1
WO2023202656A1 PCT/CN2023/089437 CN2023089437W WO2023202656A1 WO 2023202656 A1 WO2023202656 A1 WO 2023202656A1 CN 2023089437 W CN2023089437 W CN 2023089437W WO 2023202656 A1 WO2023202656 A1 WO 2023202656A1
Authority
WO
WIPO (PCT)
Prior art keywords
road user
vulnerable road
injuries
state
vehicle
Prior art date
Application number
PCT/CN2023/089437
Other languages
French (fr)
Inventor
Mingjun Yang
Zhongka YANG
Original Assignee
Mercedes-Benz Group AG
Daimler Greater China Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercedes-Benz Group AG, Daimler Greater China Ltd. filed Critical Mercedes-Benz Group AG
Publication of WO2023202656A1 publication Critical patent/WO2023202656A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/34Protecting non-occupants of a vehicle, e.g. pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/2661Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic mounted on parts having other functions
    • B60Q1/268Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic mounted on parts having other functions on windscreens or windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • B60Q1/503Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking using luminous text or symbol displays in or on the vehicle, e.g. static text
    • B60Q1/5035Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking using luminous text or symbol displays in or on the vehicle, e.g. static text electronic displays
    • B60Q1/5037Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking using luminous text or symbol displays in or on the vehicle, e.g. static text electronic displays the display content changing automatically, e.g. depending on traffic situation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • B60Q1/52Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking for indicating emergencies
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0027Post collision measures, e.g. notifying emergency services

Definitions

  • the present disclosure relates to the field of vehicles, in particular to a system for predicting a state of injuries of a vulnerable road user for a vehicle.
  • the disclosure further relates to a corresponding vehicle.
  • an object of the present disclosure is to propose a system for predicting a state of injuries of a vulnerable road user for a vehicle, through which system a position and a posture of the vulnerable road user colliding with a hood of the vehicle in an accident can be effectively reconstructed, thereby reliably predicting the state of injuries of the vulnerable road user and displaying the state of injuries in order to facilitate the rescue.
  • the system is also capable of identifying whether the vulnerable road user in collision was deliberately carrying out a scam. This improves the intelligence of the vehicle and also the user friendliness.
  • a system for predicting a state of injuries of a vulnerable road user for a vehicle wherein the system at least comprises:
  • a plurality of acceleration sensors which are configured to be at least partially arranged on an inner side of a hood of the vehicle;
  • controller which is configured to receive signals from the acceleration sensors and to predict a state of injuries of the vulnerable road user at least based on the signals from the acceleration sensors;
  • an interaction unit which is configured to display the state of injuries of the vulnerable road user.
  • vulnerable road users are to be understood as persons that interact with a vehicle on the outside of the vehicle, in particular pedestrians, cyclists and motorcyclists.
  • a system for predicting a state of injuries of a vulnerable road user for a vehicle comprises a plurality of acceleration sensors arranged on a hood of the vehicle, which are capable of detecting accelerations generated by different body parts of the vulnerable road user hitting the hood of the vehicle when the vulnerable road user collides with the vehicle, where a position and a posture of the vulnerable road user hitting the hood of the vehicle can be effectively reconstructed through analysis of generation times of acceleration signals of the acceleration sensors and acceleration values, thereby reliably predicting the state of injuries of the vulnerable road user, and the state of injuries is then displayed through an interaction unit.
  • This is beneficial for people around or medical rescue workers to make the most reasonable judgment on the injured vulnerable road user.
  • the acceleration sensors are configured to cover the hood of the vehicle in a matrix form; and/or the acceleration sensors are multi-axis acceleration sensors, in particular three-axis acceleration sensors.
  • each of the acceleration sensors is correspondingly coded according to a position; and/or the acceleration sensors are partitioned in a modularized manner so as to define a high-risk area and a low-risk area, wherein the acceleration sensors have a higher density in the high-risk area than in the low-risk area.
  • the acceleration sensors are detachably encapsulated in receiving housings.
  • the receiving housing is a hexagonal structure; and/or the receiving housing is constructed as a cover panel with a recess for receiving the acceleration sensor; and/or the receiving housing is fixedly mounted to the inner side of the hood by welding.
  • the system further comprises a camera unit, which is configured to shoot the vulnerable road user in order to determine a type of the vulnerable road user as well as a position and a posture thereof at the time of collision, and the controller predicts a state of injuries of the vulnerable road user additionally based on the type of the vulnerable road user as well as the position and the posture thereof at the time of collision.
  • the system further comprises an energy supply unit, which is configured to supply power to the system, wherein the energy supply unit is a 12V accumulator; and/or the system further comprises a collision detector, which is configured to detect a collision signal; and/or the system further comprises a speed detector, which is configured to detect a speed of the vehicle at the time of collision.
  • the energy supply unit is a 12V accumulator
  • the system further comprises a collision detector, which is configured to detect a collision signal
  • a speed detector which is configured to detect a speed of the vehicle at the time of collision.
  • the interaction unit displays the state of injuries of the vulnerable road user on an onboard display screen and/or vehicle window glass; and/or the interaction unit sends the state of injuries of the vulnerable road user to a remote rescue service.
  • the controller predicts a state of injuries of the vulnerable road user through a fuzzy prediction neural network algorithm; and/or the state of injuries comprises a head injury level of the vulnerable road user.
  • a vehicle which comprises the system for predicting a state of injuries of a vulnerable road user according to the present disclosure.
  • FIG. 1 shows a schematic view of a vehicle according to an exemplary embodiment of the disclosure
  • FIG. 2 shows a partial view of a distribution of acceleration sensors of a system according to an exemplary embodiment of the disclosure
  • FIG. 3a and FIG. 3b show a top view and a cross-sectional view, respectively, of an acceleration sensor of a system according to an exemplary embodiment of the disclosure
  • FIG. 4 shows a schematic block diagram of a system according to an exemplary embodiment of the disclosure.
  • FIG. 1 shows a schematic view of a vehicle 100 according to an exemplary embodiment of the disclosure.
  • the vehicle 100 comprises a system 10 for predicting a state of injuries of a vulnerable road user and a hood 20, wherein the system 10 comprises a plurality of acceleration sensors 1 arranged at least partially on an inner side of the hood 20.
  • the acceleration sensors 1 are distributed in a matrix form, so that when the vulnerable road user collides with the hood 20, a position and a posture of the vulnerable road user hitting the hood of the vehicle can be effectively reconstructed according to triggering times of signals from the sensors in the matrix and acceleration values, thereby accurately predicting the state of injuries of the vulnerable road user.
  • the acceleration sensors 1 completely cover the hood 20 of the vehicle 100, which means the acceleration sensors 1 are arranged in a matrix form over the inner side of the entire hood 20, so that no matter which position on the hood 20 is hit by the vulnerable road user, it can be sufficiently and reliably detected.
  • the acceleration sensors 1 are only arranged in a matrix form in areas of the hood 20 which are more likely to be collided, for example, the area of the hood 20 close to a front bumper.
  • the acceleration sensors 1 are configured as multi-axis acceleration sensors, in particular three-axis acceleration sensors, where in a three-axis acceleration sensor, spatial acceleration is decomposed on three axes, X, Y, and Z, an acceleration of a part of the vulnerable road user that is in contact with the hood 20 is converted into a change in capacitance by means of variable capacitance principles, and then the change in capacitance is converted through a converter circuit into a voltage value, which is amplified and filtered, subject to analog-digital conversion, and then is output as a digital signal, that is to say, the acceleration values in three spatial directions are obtained.
  • the acceleration sensors 1 are configured as uniaxial acceleration sensors, which detect an acceleration exerted by the vulnerable road user on the hood 20 as a whole.
  • the system 10 for predicting a state of injuries of a vulnerable road user comprises a controller 2, which receives signals from the acceleration sensors 1 and is capable of predicting the state of injuries of the vulnerable road user at least based on the signals.
  • a fuzzy prediction neural network algorithm is stored in the controller 2, through which the state of injuries of the vulnerable road user can be predicted.
  • the controller 2 may also consider other characteristic parameters, such as a real-time speed of the vehicle at the time of collision, an image of the vulnerable road user, etc., in order to have a more accurate prediction of the state of injuries of the vulnerable road user. These will be described in detail later.
  • the controller 2 is directly integrated in a central processor of the vehicle 100.
  • the system 10 for predicting a state of injuries of a vulnerable road user further comprises an interaction unit 3 capable of receiving and displaying the state of injuries of the vulnerable road user acquired by the controller 2.
  • the interaction unit 3 may visually display the state of injuries of the vulnerable road user, wherein the interaction unit 3 is formed in particular as a display unit integrated on vehicle window glass 30 of the vehicle 100, so that the state of injuries of the vulnerable road user can be directly displayed.
  • the interaction unit 3 is formed as an onboard screen of the vehicle 100, or that the interaction unit 3 is formed as an acoustic unit, which audibly informs of the state of injuries of the vulnerable road user.
  • FIG. 2 shows a partial view of a distribution of acceleration sensors of a system 10 according to an exemplary embodiment of the disclosure
  • each of the acceleration sensors 1 of the system 10 is correspondingly coded according to its position, so that the positions of these acceleration sensors 1 relative to one another and to the hood 20 can be better defined, thereby more effectively indicating the position of the hood 20 hit by the vulnerable road user.
  • the code of the acceleration sensor 1 is expressed in the form of (x, y) , wherein x represents a position of the corresponding acceleration sensor in a horizontal direction of the vehicle 100, and y represents a position of the corresponding acceleration sensor in a longitudinal direction of the vehicle 100.
  • (0, 0) represents an acceleration sensor 1 arranged in the middle of the vehicle 100 and at a frontmost end of the hood 20.
  • the acceleration sensors 1 on the inner side of the hood 20 of the vehicle 100 are partitioned in a modularized manner so as to define a high-risk area and a low-risk area.
  • “high-risk area” is to be understood as an area of the hood 20 that has a higher probability of being hit when the vulnerable road user collides with the vehicle 100, such as the area of the hood 20 close to the front bumper.
  • “low-risk area” should be understood as an area of the hood 20 that has a lower probability of being hit when the vulnerable road user collides with the vehicle 100, for example, the areas on both sides of the hood 20 near the windshield.
  • the acceleration sensors have a higher density in the high-risk area than in the low-risk area, so that the manufacturing cost can be reduced as much as possible while satisfying the requirements of prediction accuracy.
  • FIG. 3a and FIG. 3b show a top view and a cross-sectional view, respectively, of an acceleration sensor 1 of a system 10 according to an exemplary embodiment of the disclosure.
  • the acceleration sensor 1 is encapsulated in a receiving housing 11, thereby simplifying the installation of acceleration sensors 1 on the inner side of the hood 20.
  • the receiving housing 11 is configured as a hexagonal structure, wherein a plurality of hexagonal structures can be assembled together without gaps therebetween and thus form a honeycomb structure, which readily allows a matrix-like distribution of the acceleration sensors 1 and improves the stability of the whole system 10.
  • hexagonal structure wherein a plurality of hexagonal structures can be assembled together without gaps therebetween and thus form a honeycomb structure, which readily allows a matrix-like distribution of the acceleration sensors 1 and improves the stability of the whole system 10.
  • other shapes of receiving housings considered meaningful by those skilled in the art may also be taken into consideration, for example, a square or circular structure.
  • the acceleration sensor 1 is detachably encapsulated in the receiving housing 11.
  • the receiving housing 11 is configured as a cover panel with a recess 12 for receiving the acceleration sensor 1, and the acceleration sensor 1 is fixedly mounted in the recess 12 by a bolt, where the bolt passes through a screw hole 13 to assemble the receiving housing 11 and the acceleration sensor 1 together.
  • the receiving housing 11 is fixedly mounted to the inner side of the hood 20 of the vehicle 100 by welding. However, it can also be considered that the receiving housing 11 is fixedly mounted to the inner side of the hood 20 by means of bonding, clamping, etc.
  • FIG. 4 shows a schematic block diagram of a system 10 according to an exemplary embodiment of the disclosure.
  • the system 10 for predicting a state of injuries of a vulnerable road user comprises an acceleration sensor 1, a controller 2 and an interaction unit 3, and the controller predicts the state of injuries of the vulnerable road user based on a signal from the acceleration sensor 1 and displays the state of injuries through the interaction unit 3.
  • the system 10 further comprises a camera unit 4, which is configured to shoot the vulnerable road user.
  • a type of the vulnerable road user as well as a position and a posture thereof at the time of collision can be determined.
  • the type of the vulnerable road user may include pedestrians, cyclists and motorcyclists.
  • other types of vulnerable road users are also conceivable, for example, people riding a self-balancing scooter.
  • the type of the vulnerable road user has a large influence on the hit body part of the vulnerable road user and the hit position of the hood 20.
  • the controller 2 predicts the state of injuries of the vulnerable road user additionally based on the type of the vulnerable road user as well as the position and the posture thereof at the time of collision, thereby more accurately predicting the state of injuries of the vulnerable road user.
  • the system 10 further comprises a collision detector 5, which is configured to detect a collision signal.
  • the collision detector 5 is, for example, integrated into an airbag unit of the vehicle 100. Based on the collision signal, the controller 2 can more accurately assess the severity of the collision and the state of injuries of the vulnerable road user.
  • the system 10 further comprises a speed detector 6, which is configured to detect a speed of the vehicle 100 at the time of collision.
  • a speed detector 6 which is configured to detect a speed of the vehicle 100 at the time of collision.
  • the state of injuries of the vulnerable road user and the speed of the vehicle 100 are in a positive correlation.
  • the controller 2 is allowed to more accurately predict the state of injuries of the vulnerable road user.
  • the controller 2 can also determine whether the vulnerable road user in collision was carrying out a scam according to the above signals, which can provide corresponding evidence for the traffic police to assign responsibility.
  • the state of injuries of the vulnerable road user comprises a head injury level of the vulnerable road user.
  • the most badly injured part of a vulnerable road user in a collision accident is the head.
  • the state of injuries of critical body parts of the vulnerable road user can be determined as far as possible.
  • the system 10 further comprises an energy supply unit 7, which is configured to supply power to the system 10.
  • the energy supply unit 7 is a 12V accumulator here.
  • the interaction unit 3 of the system 10 sends the state of injuries of the vulnerable road user acquired by the controller 2 to a remote rescue service 200.
  • the interaction unit 3 sends the state of injuries and an accident location to the remote rescue service 200, for example, via wireless communication technology or emergency alarm technology.
  • the remote rescue service 200 dispatches medical rescue workers to the accident scene as soon as possible in order to provide corresponding medical assistance to the injured vulnerable road user in time.

Abstract

The present disclosure relates to a system (10) for predicting a state of injuries of a vulnerable road user for a vehicle (100), characterized in that the system (10) at least comprises: a plurality of acceleration sensors (1), which are configured to be at least partially arranged on an inner side of a hood (20) of the vehicle (100); a controller (2), which is configured to receive signals from the acceleration sensors (1) and to predict a state of injuries of the vulnerable road user at least based on the signals from the acceleration sensors (1); and an interaction unit (3), which is configured to display the state of injuries of the vulnerable road user. The disclosure further relates to a corresponding vehicle. Reliable prediction of the state of injuries of the vulnerable road user is thereby allowed in order to assist the rescue.

Description

SYSTEM FOR PREDICTING A STATE OF INJURIES OF A VULNERABLE ROAD USER FOR A VEHICLE AND VEHICLE TECHNICAL FIELD
The present disclosure relates to the field of vehicles, in particular to a system for predicting a state of injuries of a vulnerable road user for a vehicle. The disclosure further relates to a corresponding vehicle.
BACKGROUND ART
In recent years, with the development of society and the improvement of living standards, more and more people choose cars as the means of transportation, which on the one hand improves the convenience of travel, but on the other hand leads to an increase of road traffic accidents. According to research, in traffic accidents where a vulnerable road user collides with a vehicle, the position most likely hit by the vulnerable road user is the hood of the vehicle, and the vulnerable road user suffers a more serious injury than vehicle occupants as a result of lack of protection.
However, although most of the existing vehicles are equipped with a dash cam to record the whole accident and thereby assign responsibility for the accident, it is impossible to predict the state of injuries of the vulnerable road user after the collision, for example, the hit body part of the vulnerable road user and the severity. In particular, when the vulnerable road user falls into a coma, it is possible that the people around misjudge the injury and thus result in aggravation of the condition of the injured or failure to call for medical rescue in time. Also, it is difficult for rescue workers to quickly judge the injured parts of the vulnerable road user and the severity, which will delay the optimal time for rescue and cause greater damage to the vulnerable road user.
SUMMARY OF THE INVENTION
For this reason, an object of the present disclosure is to propose a system for predicting a state of injuries of a vulnerable road user for a vehicle, through which system a position and a posture of the vulnerable road user colliding with a hood of the vehicle in an accident can be effectively reconstructed, thereby reliably predicting the state of injuries of the vulnerable road user and displaying the state of injuries in order to facilitate the rescue. In this way, secondary injuries to the vulnerable road user can be avoided, and the rescue efficiency after the accident is greatly promoted. In addition, the system is also capable of identifying whether the vulnerable road user in collision was deliberately carrying out a scam. This improves the intelligence of the vehicle and also the user friendliness.
According to a first aspect of the disclosure, a system for predicting a state of injuries of a vulnerable road user for a vehicle is provided, wherein the system at least comprises:
- a plurality of acceleration sensors, which are configured to be at least partially arranged on an inner side of a hood of the vehicle;
- a controller, which is configured to receive signals from the acceleration sensors and to predict a state of injuries of the vulnerable road user at least based on the signals from the acceleration sensors; and
- an interaction unit, which is configured to display the state of injuries of the vulnerable road user.
Within the framework of the present disclosure, “vulnerable road users” are to be understood as persons that interact with a vehicle on the outside of the vehicle, in particular pedestrians, cyclists and motorcyclists.
According to the disclosure, a system for predicting a state of injuries of a vulnerable road user for a vehicle comprises a plurality of acceleration sensors arranged on a hood of the vehicle, which are capable of detecting accelerations generated by different body parts of the vulnerable road user hitting the hood of the vehicle when the vulnerable road user collides with the vehicle, where a position and a posture of the vulnerable road user hitting the hood of the vehicle can be effectively reconstructed through analysis of generation times of acceleration signals of the acceleration sensors and acceleration values, thereby reliably predicting the state of injuries of the vulnerable road user, and the state of injuries is then displayed through an interaction unit. This is beneficial for people around or medical rescue workers to make the most reasonable judgment on the injured vulnerable road user.
According to an exemplary embodiment of the disclosure, the acceleration sensors are configured to cover the hood of the vehicle in a matrix form; and/or the acceleration sensors are multi-axis acceleration sensors, in particular three-axis acceleration sensors.
According to an exemplary embodiment of the disclosure, each of the acceleration sensors is correspondingly coded according to a position; and/or the acceleration sensors are partitioned in a modularized manner so as to define a high-risk area and a low-risk area, wherein the acceleration sensors have a higher density in the high-risk area than in the low-risk area.
According to an exemplary embodiment of the disclosure, the acceleration sensors are detachably encapsulated in receiving housings.
According to an exemplary embodiment of the disclosure, the receiving housing is a hexagonal structure; and/or the receiving housing is constructed as a cover panel with a recess for receiving the acceleration sensor; and/or the receiving housing is fixedly mounted to the inner side of the hood by welding.
According to an exemplary embodiment of the disclosure, the system further comprises a camera unit, which is configured to shoot the vulnerable road user in order to determine a type of the vulnerable road user as well as a position and a posture thereof at the time of collision, and the controller predicts a state of injuries of the vulnerable road user additionally based on the type of the vulnerable road user as well as the position and the posture thereof at the time of collision.
According to an exemplary embodiment of the disclosure, the system further comprises an energy supply unit, which is configured to supply power to the system, wherein the energy supply unit is a 12V accumulator; and/or the system further comprises a collision detector, which is configured to detect a collision signal; and/or the system further comprises a speed detector, which is configured to detect a speed of the vehicle at the time of collision.
According to an exemplary embodiment of the disclosure, the interaction unit displays the state of injuries of the vulnerable road user on an onboard display screen and/or vehicle window glass; and/or the interaction unit sends the state of injuries of the vulnerable road user to a remote rescue service.
According to an exemplary embodiment of the disclosure, the controller predicts a state of injuries of the vulnerable road user through a fuzzy prediction neural network algorithm; and/or the state of injuries comprises a head injury level of the vulnerable road user.
According to a second aspect of the disclosure, a vehicle is provided, which comprises the system for predicting a state of injuries of a vulnerable road user according to the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
The principles, characteristics and advantages of the disclosure can be better understood by describing the disclosure in greater detail with reference to the accompany drawings. The drawings are as follows:
FIG. 1 shows a schematic view of a vehicle according to an exemplary embodiment of the disclosure;
FIG. 2 shows a partial view of a distribution of acceleration sensors of a system according to an exemplary embodiment of the disclosure;
FIG. 3a and FIG. 3b show a top view and a cross-sectional view, respectively, of an acceleration sensor of a system according to an exemplary embodiment of the disclosure;
FIG. 4 shows a schematic block diagram of a system according to an exemplary embodiment of the disclosure.
DETAILED DESCRIPTION OF THE INVENTION
For a clearer understanding of the technical problems to be solved, technical solutions and advantageous technical effects of the present disclosure, the disclosure will be further elaborated below in conjunction with the drawings and a number of embodiments. It is to be understood that the specific embodiments described herein are simply for explaining the disclosure, rather than limiting the scope of protection of the disclosure.
In the description of the embodiments, directional or positional relationships such as “above” , “below” , “left” , and “right” are based on the directional or positional relationships shown in the drawings, which are only for the convenience of description and simplification of operations, rather than specifying or implying that the device or element being referred to must be in a specific direction or be constructed and operated in a specific orientation, and therefore should not be construed as limitations on the disclosure.
FIG. 1 shows a schematic view of a vehicle 100 according to an exemplary embodiment of the disclosure.
As shown in FIG. 1, the vehicle 100 comprises a system 10 for predicting a state of injuries of a vulnerable road user and a hood 20, wherein the system 10 comprises a plurality of acceleration sensors 1 arranged at least partially on an inner side of the hood 20. Here, the acceleration sensors 1 are distributed in a matrix form, so that when the vulnerable road user collides with the hood 20, a position and a posture of the vulnerable road user hitting the hood of the vehicle can be effectively reconstructed according to triggering times of signals from the sensors in the matrix and acceleration values, thereby accurately predicting the state of injuries of the vulnerable road user.
Exemplarily, the acceleration sensors 1 completely cover the hood 20 of the vehicle 100, which means the acceleration sensors 1 are arranged in a matrix form over the inner side of  the entire hood 20, so that no matter which position on the hood 20 is hit by the vulnerable road user, it can be sufficiently and reliably detected. However, it is also conceivable that the acceleration sensors 1 are only arranged in a matrix form in areas of the hood 20 which are more likely to be collided, for example, the area of the hood 20 close to a front bumper. Furthermore, it is also conceivable to increase the distance between the acceleration sensors 1, or in other words, to reduce the density of arrangement, in areas of the hood 20 which are less likely to be collided. This can reduce the manufacturing and assembly costs of the system 10.
Exemplarily, the acceleration sensors 1 are configured as multi-axis acceleration sensors, in particular three-axis acceleration sensors, where in a three-axis acceleration sensor, spatial acceleration is decomposed on three axes, X, Y, and Z, an acceleration of a part of the vulnerable road user that is in contact with the hood 20 is converted into a change in capacitance by means of variable capacitance principles, and then the change in capacitance is converted through a converter circuit into a voltage value, which is amplified and filtered, subject to analog-digital conversion, and then is output as a digital signal, that is to say, the acceleration values in three spatial directions are obtained. However, it can also be considered that the acceleration sensors 1 are configured as uniaxial acceleration sensors, which detect an acceleration exerted by the vulnerable road user on the hood 20 as a whole.
As shown in FIG. 1, the system 10 for predicting a state of injuries of a vulnerable road user comprises a controller 2, which receives signals from the acceleration sensors 1 and is capable of predicting the state of injuries of the vulnerable road user at least based on the signals. Exemplarily, a fuzzy prediction neural network algorithm is stored in the controller 2, through which the state of injuries of the vulnerable road user can be predicted. Certainly, in addition to the signals from the acceleration sensors 1, the controller 2 may also consider other characteristic parameters, such as a real-time speed of the vehicle at the time of collision, an image of the vulnerable road user, etc., in order to have a more accurate prediction of the state of injuries of the vulnerable road user. These will be described in detail later. Exemplarily, the controller 2 is directly integrated in a central processor of the vehicle 100.
As shown in FIG. 1, the system 10 for predicting a state of injuries of a vulnerable road user further comprises an interaction unit 3 capable of receiving and displaying the state of injuries of the vulnerable road user acquired by the controller 2. As an example, the interaction unit 3 may visually display the state of injuries of the vulnerable road user, wherein the interaction unit 3 is formed in particular as a display unit integrated on vehicle window glass 30 of the vehicle 100, so that the state of injuries of the vulnerable road user can be directly displayed. However, it is also conceivable that the interaction unit 3 is formed  as an onboard screen of the vehicle 100, or that the interaction unit 3 is formed as an acoustic unit, which audibly informs of the state of injuries of the vulnerable road user.
FIG. 2 shows a partial view of a distribution of acceleration sensors of a system 10 according to an exemplary embodiment of the disclosure;
As shown in FIG. 2, each of the acceleration sensors 1 of the system 10 is correspondingly coded according to its position, so that the positions of these acceleration sensors 1 relative to one another and to the hood 20 can be better defined, thereby more effectively indicating the position of the hood 20 hit by the vulnerable road user. Exemplarily, the code of the acceleration sensor 1 is expressed in the form of (x, y) , wherein x represents a position of the corresponding acceleration sensor in a horizontal direction of the vehicle 100, and y represents a position of the corresponding acceleration sensor in a longitudinal direction of the vehicle 100. For example, (0, 0) represents an acceleration sensor 1 arranged in the middle of the vehicle 100 and at a frontmost end of the hood 20.
Exemplarily, the acceleration sensors 1 on the inner side of the hood 20 of the vehicle 100 are partitioned in a modularized manner so as to define a high-risk area and a low-risk area. Here, “high-risk area” is to be understood as an area of the hood 20 that has a higher probability of being hit when the vulnerable road user collides with the vehicle 100, such as the area of the hood 20 close to the front bumper. And “low-risk area” should be understood as an area of the hood 20 that has a lower probability of being hit when the vulnerable road user collides with the vehicle 100, for example, the areas on both sides of the hood 20 near the windshield. Here, the acceleration sensors have a higher density in the high-risk area than in the low-risk area, so that the manufacturing cost can be reduced as much as possible while satisfying the requirements of prediction accuracy.
FIG. 3a and FIG. 3b show a top view and a cross-sectional view, respectively, of an acceleration sensor 1 of a system 10 according to an exemplary embodiment of the disclosure.
As shown in FIG. 3a, the acceleration sensor 1 is encapsulated in a receiving housing 11, thereby simplifying the installation of acceleration sensors 1 on the inner side of the hood 20. Exemplarily, the receiving housing 11 is configured as a hexagonal structure, wherein a plurality of hexagonal structures can be assembled together without gaps therebetween and thus form a honeycomb structure, which readily allows a matrix-like distribution of the acceleration sensors 1 and improves the stability of the whole system 10. Of course, other shapes of receiving housings considered meaningful by those skilled in the art may also be  taken into consideration, for example, a square or circular structure.
Exemplarily, the acceleration sensor 1 is detachably encapsulated in the receiving housing 11. As shown in FIG. 3a and FIG. 3b, the receiving housing 11 is configured as a cover panel with a recess 12 for receiving the acceleration sensor 1, and the acceleration sensor 1 is fixedly mounted in the recess 12 by a bolt, where the bolt passes through a screw hole 13 to assemble the receiving housing 11 and the acceleration sensor 1 together.
Exemplarily, the receiving housing 11 is fixedly mounted to the inner side of the hood 20 of the vehicle 100 by welding. However, it can also be considered that the receiving housing 11 is fixedly mounted to the inner side of the hood 20 by means of bonding, clamping, etc.
FIG. 4 shows a schematic block diagram of a system 10 according to an exemplary embodiment of the disclosure.
As shown in FIG. 4, the system 10 for predicting a state of injuries of a vulnerable road user according to the disclosure comprises an acceleration sensor 1, a controller 2 and an interaction unit 3, and the controller predicts the state of injuries of the vulnerable road user based on a signal from the acceleration sensor 1 and displays the state of injuries through the interaction unit 3.
Exemplarily, the system 10 further comprises a camera unit 4, which is configured to shoot the vulnerable road user. By means of an image of the vulnerable road user, a type of the vulnerable road user as well as a position and a posture thereof at the time of collision can be determined. Exemplarily, the type of the vulnerable road user may include pedestrians, cyclists and motorcyclists. Of course, other types of vulnerable road users are also conceivable, for example, people riding a self-balancing scooter. Here, the type of the vulnerable road user has a large influence on the hit body part of the vulnerable road user and the hit position of the hood 20. The controller 2 predicts the state of injuries of the vulnerable road user additionally based on the type of the vulnerable road user as well as the position and the posture thereof at the time of collision, thereby more accurately predicting the state of injuries of the vulnerable road user.
Exemplarily, the system 10 further comprises a collision detector 5, which is configured to detect a collision signal. Here, the collision detector 5 is, for example, integrated into an airbag unit of the vehicle 100. Based on the collision signal, the controller 2 can more accurately assess the severity of the collision and the state of injuries of the vulnerable road user.
Exemplarily, the system 10 further comprises a speed detector 6, which is configured to detect a speed of the vehicle 100 at the time of collision. Here, the state of injuries of the vulnerable road user and the speed of the vehicle 100 are in a positive correlation.
Here, based on a comprehensive consideration of the acceleration signals from the acceleration sensors 1, the image signal from the camera unit 4, the collision signal from the collision detector 5, and the speed signal from the speed detector 6, the controller 2 is allowed to more accurately predict the state of injuries of the vulnerable road user. In addition, the controller 2 can also determine whether the vulnerable road user in collision was carrying out a scam according to the above signals, which can provide corresponding evidence for the traffic police to assign responsibility.
Exemplarily, the state of injuries of the vulnerable road user comprises a head injury level of the vulnerable road user. Here, according to research, the most badly injured part of a vulnerable road user in a collision accident is the head. Through a specific prediction of the head injury level of the vulnerable road user, the state of injuries of critical body parts of the vulnerable road user can be determined as far as possible.
Exemplarily, in order to ensure a normal operation of the system 10, the system 10 further comprises an energy supply unit 7, which is configured to supply power to the system 10. The energy supply unit 7 is a 12V accumulator here.
Exemplarily, the interaction unit 3 of the system 10 sends the state of injuries of the vulnerable road user acquired by the controller 2 to a remote rescue service 200. In this case, the interaction unit 3 sends the state of injuries and an accident location to the remote rescue service 200, for example, via wireless communication technology or emergency alarm technology. After receiving the state of injuries, the remote rescue service 200 dispatches medical rescue workers to the accident scene as soon as possible in order to provide corresponding medical assistance to the injured vulnerable road user in time.
The preceding interpretation of the embodiments only describes the disclosure within the framework of the examples described here. Certainly, the individual features of the embodiments can be freely combined with one another, as long as it is technically meaningful without departing from the scope of the disclosure.
Other advantages and alternative embodiments of the disclosure are obvious to those skilled in the art. Therefore, the present disclosure in its broader sense is not limited to the specific  details, representative structures, and exemplary embodiments shown and described here. On the contrary, those skilled in the art can make various modifications and substitutions without departing from the basic spirit and scope of the present disclosure.

Claims (10)

  1. A system (10) for predicting a state of injuries of a vulnerable road user for a vehicle (100) , characterized in that the system (10) at least comprises:
    - a plurality of acceleration sensors (1) , which are configured to be at least partially arranged on an inner side of a hood (20) of the vehicle (100) ;
    - a controller (2) , which is configured to receive signals from the acceleration sensors (1) and to predict a state of injuries of the vulnerable road user at least based on the signals from the acceleration sensors (1) ; and
    - an interaction unit (3) , which is configured to display the state of injuries of the vulnerable road user.
  2. The system (10) according to claim 1, characterized in that
    the acceleration sensors (1) are configured to cover the hood (20) of the vehicle (100) in a matrix form; and/or
    the acceleration sensors (1) are multi-axis acceleration sensors, in particular three-axis acceleration sensors.
  3. The system (10) according to claim 1 or 2, characterized in that
    each of the acceleration sensors (1) is correspondingly coded according to a position; and/or
    the acceleration sensors (1) are partitioned in a modularized manner so as to define a high-risk area and a low-risk area, wherein the acceleration sensors (1) have a higher density in the high-risk area than in the low-risk area.
  4. The system (10) according to any one of the preceding claims, characterized in that the acceleration sensors (1) are detachably encapsulated in receiving housings (11) .
  5. The system (10) according to claim 4, characterized in that
    the receiving housing (11) is a hexagonal structure; and/or
    the receiving housing (11) is constructed as a cover panel with a recess (12) for receiving the acceleration sensor (1) ; and/or
    the receiving housing (11) is fixedly mounted to the inner side of the hood (20) by welding.
  6. The system (10) according to any one of the preceding claims, characterized in that
    the system (10) further comprises a camera unit (4) , which is configured to shoot the vulnerable road user in order to determine a type of the vulnerable road user as well as a position and a posture thereof at the time of collision, wherein the controller predicts a state of injuries of the vulnerable road user based on the type of the vulnerable road user as well as  the position and the posture thereof at the time of collision.
  7. The system (10) according to any one of the preceding claims, characterized in that
    the system (10) further comprises an energy supply unit (7) , which is configured to supply power to the system (10) , wherein the energy supply unit (7) is a 12V accumulator; and/or
    the system (10) further comprises a collision detector (5) , which is configured to detect a collision signal; and/or
    the system (10) further comprises a speed detector (6) , which is configured to detect a speed of the vehicle (100) at the time of collision.
  8. The system (10) according to any one of the preceding claims, characterized in that
    the interaction unit (3) displays the state of injuries of the vulnerable road user on an onboard display screen and/or vehicle window glass (30) ; and/or
    the interaction unit (3) sends the state of injuries of the vulnerable road user to a remote rescue service (200) .
  9. The system (10) according to any one of the preceding claims, characterized in that
    the controller (2) predicts the state of injuries of the vulnerable road user through a fuzzy prediction neural network algorithm; and/or
    the state of injuries comprises a head injury level of the vulnerable road user.
  10. A vehicle (100) , which comprises a system (10) for predicting a state of injuries of a vulnerable road user according to any one of the preceding claims.
PCT/CN2023/089437 2022-04-22 2023-04-20 System for predicting a state of injuries of a vulnerable road user for a vehicle and vehicle WO2023202656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210430998.3 2022-04-22
CN202210430998.3A CN116968681A (en) 2022-04-22 2022-04-22 System for predicting injury condition of vulnerable road user of vehicle and vehicle

Publications (1)

Publication Number Publication Date
WO2023202656A1 true WO2023202656A1 (en) 2023-10-26

Family

ID=86605828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089437 WO2023202656A1 (en) 2022-04-22 2023-04-20 System for predicting a state of injuries of a vulnerable road user for a vehicle and vehicle

Country Status (2)

Country Link
CN (1) CN116968681A (en)
WO (1) WO2023202656A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140207341A1 (en) * 2013-01-22 2014-07-24 Denso Corporation Impact-injury predicting system
US20190197414A1 (en) * 2017-12-22 2019-06-27 At&T Intellectual Property I, L.P. System and method for estimating potential injuries from a vehicular incident
JP2020061088A (en) * 2018-10-12 2020-04-16 一般財団法人日本自動車研究所 Collision injury prediction model creation method, collision injury prediction method, collision injury prediction system, and advanced automatic accident notification system
DE102020103851A1 (en) * 2020-02-14 2021-08-19 Bayerische Motoren Werke Aktiengesellschaft Method, computer-readable medium, system and vehicle comprising the system for providing accident parameters to a person outside a vehicle after an accident of the vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140207341A1 (en) * 2013-01-22 2014-07-24 Denso Corporation Impact-injury predicting system
US20190197414A1 (en) * 2017-12-22 2019-06-27 At&T Intellectual Property I, L.P. System and method for estimating potential injuries from a vehicular incident
JP2020061088A (en) * 2018-10-12 2020-04-16 一般財団法人日本自動車研究所 Collision injury prediction model creation method, collision injury prediction method, collision injury prediction system, and advanced automatic accident notification system
DE102020103851A1 (en) * 2020-02-14 2021-08-19 Bayerische Motoren Werke Aktiengesellschaft Method, computer-readable medium, system and vehicle comprising the system for providing accident parameters to a person outside a vehicle after an accident of the vehicle

Also Published As

Publication number Publication date
CN116968681A (en) 2023-10-31

Similar Documents

Publication Publication Date Title
EP2905184B1 (en) Collision detection apparatus
CN107933471B (en) Accident active calling rescue method and vehicle-mounted automatic help-seeking system
US20190147746A1 (en) Device for identifying an accident situation of an open road vehicle
CN106274779B (en) A kind of detection method, device and its application of vehicle rollover and collision
CN107399290A (en) Safe driving assistant system and its control method
CN109466488A (en) A kind of vehicle collision automatic help alarm system
CN101357622A (en) Method for operating a motor vehicle and control device
CN102245441A (en) Collision determination system, occupant restraint system, and vehicle
EP3470274B1 (en) Vehicle security system using sensor data
JP2007293536A (en) Accident information collecting system and accident information recording device
CN112537254A (en) Vehicle and vehicle early warning method and device
CN111204302A (en) Automobile collision accident handling method and electronic equipment
CN112977253B (en) Two-way safety auxiliary system for vehicle
CN107472128A (en) Monitoring method, system and the vehicle of vehicle blind zone
WO2023202656A1 (en) System for predicting a state of injuries of a vulnerable road user for a vehicle and vehicle
JP4293243B2 (en) In-vehicle antitheft device
CN103085716A (en) Traffic accident preventing system and traffic accident preventing method
US20230026459A1 (en) Method and device for classifying an accident event involving a two-wheeled vehicle
CN110203293B (en) Collision accident detection method, device and system and vehicle
CN103318084A (en) Intelligent coach-overload monitoring system
JP2005265800A (en) Vehicular acceleration display
CN115257614B (en) Whole-process collision safety control system of intelligent automobile and automobile
US20110291825A1 (en) Car collision global positioning system
KR100980489B1 (en) Method and apparatus for alarming driving in sleep responsive to vehicle motion and speed
CN207225206U (en) A kind of vehicle whistle prior-warning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23727197

Country of ref document: EP

Kind code of ref document: A1