WO2023202611A1 - 一种基于投影原理的导向机器人及骨科手术置钉方法 - Google Patents

一种基于投影原理的导向机器人及骨科手术置钉方法 Download PDF

Info

Publication number
WO2023202611A1
WO2023202611A1 PCT/CN2023/089181 CN2023089181W WO2023202611A1 WO 2023202611 A1 WO2023202611 A1 WO 2023202611A1 CN 2023089181 W CN2023089181 W CN 2023089181W WO 2023202611 A1 WO2023202611 A1 WO 2023202611A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
nail
guide pin
positioning guide
guide
Prior art date
Application number
PCT/CN2023/089181
Other languages
English (en)
French (fr)
Inventor
杨金星
杨雷
Original Assignee
深圳市第二人民医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市第二人民医院 filed Critical 深圳市第二人民医院
Publication of WO2023202611A1 publication Critical patent/WO2023202611A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/90Guides therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • A61B2034/306Wrists with multiple vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy

Definitions

  • the invention belongs to the field of nail placement guides for orthopedic surgery, and specifically relates to a guidance robot based on the projection principle and a nail placement method for orthopedic surgery.
  • Bone nail guide placement is widely used in fracture internal fixation, such as femoral neck fracture internal fixation, sacroiliac screw internal fixation, acetabular and posterior column fracture internal fixation, and the positioning of various long tubular intramedullary nail entrances.
  • fracture internal fixation such as femoral neck fracture internal fixation, sacroiliac screw internal fixation, acetabular and posterior column fracture internal fixation, and the positioning of various long tubular intramedullary nail entrances.
  • repeated fluoroscopy is required to determine the screw entry point and nail path direction to prevent the screw placement position from shifting. This increases the X-ray exposure of the patient and the operator, and increases the risk of ionizing radiation damage and tumors.
  • the three-dimensional navigation system combines navigation technology, computer image processing and clinical surgery. It uses computers to process the collected parameters to obtain real-time three-dimensional images of the patient and surgical instruments during the operation, allowing doctors to know the location of the operating instruments and the patient at any time. anatomical structures, thus improving the safety of surgery.
  • three-dimensional C-arm navigation technology has been widely used in clinical practice to assist percutaneous screw fixation. Unlike traditional fluoroscopy surgery, three-dimensional fluoroscopy can simultaneously display high-resolution images in the sagittal, coronal, and transverse planes during the operation. The operator can clearly observe the positional relationship between the fracture line and the screws in these three planes. , insert the screw under the guidance of the virtual guide screw. Therefore, the advantage of three-dimensional navigation is that it can provide high-quality intraoperative images, has good operability, reduces the difficulty of surgery, improves accuracy, and makes surgery quick and minimally invasive.
  • the stability of the positioning mark will also vary depending on the location, and slight movement during the operation may affect the accuracy of the operation; 3
  • the scanning range of the machine is limited, and it will be more difficult when both sides need to be fixed with screws, and even 2 scans, which increases the amount of intraoperative fluoroscopy and prolongs the operation time; 4
  • the navigation system is complex to operate, has a long learning curve, requires training and maintenance by professional technicians, and has certain requirements for supporting facilities, such as operating room volume, access openings and Protective panels, etc. must take into account the characteristics of each machine.
  • the superiority of intraoperative three-dimensional imaging navigation in sacroiliac joint screw fixation has been confirmed, but there are still shortcomings. The surgeon needs to master relevant anatomical knowledge and have good three-dimensional image analysis capabilities in order to be proficient in using navigation equipment. , shorten the operation time and improve the safety and accuracy of navigation.
  • 3D printing technology is based on digital model files. Through a digital material printer, adhesive materials can be printed layer by layer and rapidly prototyped, turning the model on the computer into a physical object. Some learning The author successfully designed a personalized navigation template through 3D printing and reverse engineering technology.
  • a pelvic fracture model was generated through three-dimensional reconstruction, and then a screw navigation template was designed based on reverse engineering technology, the fracture model and guide plate were printed, and pre-testing was conducted before surgery, and the guide plate was matched with bony landmarks during surgery. , complete the nail placement process through the guide plate.
  • the design of the navigation template also has certain flaws: first, the indications are limited, and it is only suitable for patients whose fractures are not displaced or whose reduction requirements can be achieved through closed reduction; in addition, when placing the navigation template, an incision is required to expose the bony landmarks, which is more traditional The trauma of nail placement under fluoroscopy is greater. During the operation, it is necessary to peel off the attached soft tissue as much as possible to provide the fit between the bone cortex and the guide plate. Excessive peeling range may cause damage to nearby blood vessels and nerves, and insufficient peeling will affect the accuracy of the guide plate. degree, resulting in nail placement deviation.
  • the orthopedic robot system represented by Tirobot mainly has the following characteristics in the process of guided nail placement and fixation of fractures: 1 Accurate positioning: The robot system can provide precise spatial positioning with an accuracy of 0.6 ⁇ 0.8mm. Through the operation of the robotic arm, the Screws are accurate, safe and stable Place it in the corresponding anatomical location to reduce the risk of iatrogenic damage to blood vessels and nerves. 2Real-time monitoring: Tirobot can achieve real-time optical tracking during surgery. There is no need to repeat fluoroscopy during the operation. If the intraoperative position shifts, the system can remind the surgeon for further calibration.
  • the current orthopedic robot system still has certain limitations: First, the surgical robot can only solve the problem of precise positioning, while the path planning of the screw still relies on the experience of the surgeon and needs to be completed manually, which may contain subjective errors. Secondly, good reduction is the basis for accurate positioning. Percutaneous sacroiliac joint screw fixation is suitable for patients who can achieve good reduction through closed reduction; however, patients with large fracture displacement and unsatisfactory reduction cannot be fixed in this way. Thirdly, lack of experience in the initial application of orthopedic robot navigation and positioning systems may lead to deviation of the guide screws. Finally, instruments and equipment are expensive, complex to operate, difficult to assemble and detect, require professional training, and have high maintenance and upkeep costs. These factors have limited the clinical promotion and popularization of orthopedic robots.
  • the technical solution of the present invention provides a basic A guide robot based on the projection principle, used in conjunction with X-ray imaging equipment to assist in bone implantation of nails, including a guide nail placement device and an adjustment mechanism.
  • the adjustment mechanism is used to drive the guide nail placement device to move to any preset position along the long axis of the guide nail placement device. Extending in the vertical direction and disposed in sequence from top to bottom are a primary positioning part and a secondary positioning part;
  • the initial positioning part is provided with an axis hole and a positioning hole arranged at intervals along the long axis of the guide nail placement device, a first positioning guide pin detachably installed in the axis hole, and a second positioning guide pin detachably installed in the positioning hole.
  • the first positioning guide pin and the second positioning guide pin extend horizontally toward the operator's side.
  • the guide nail placement device takes the axis of the axis hole as the rotation axis, is rotatably installed on the adjustment mechanism, and is guided perpendicular to its length. Rotate in the direction of the axis and drive the second positioning guide pin to move until the projections of the second positioning guide pin and the first positioning guide pin overlap on the X-ray imaging equipment configured in the first radiation direction;
  • the secondary positioning part is provided with a rotating clamping part, a positioning plane, and a third positioning guide pin.
  • the rotating clamping part is coaxially arranged with the primary positioning part and is arranged on the same plane as the first positioning guide pin and the second positioning guide pin.
  • the surgical bone nail, one end of the positioning plane is fixedly connected to the rotating clamping part, and the other end is fixedly installed with a third positioning guide nail.
  • the third positioning guide nail is set parallel to the surgical bone nail and is driven by the rotating clamping part at the same time as the first radiation. Move on planes with parallel directions until the projections of the two on the X-ray imaging equipment configured as the second radiation direction reach the surgical position.
  • the guide robot is also equipped with an operation panel, a first drive motor, a second drive motor, and a central processor.
  • the first drive motor is arranged to drive the initial positioning part
  • the second drive motor is arranged to drive the secondary positioning part.
  • the operation panel receives
  • the central processor is used to process the operation input signal for operating the robot and issue control instructions to the first drive motor and the second drive motor.
  • the adjustment mechanism includes a sliding base, a vertically extending first axis arm, a second axis arm extending horizontally;
  • the first axis arm is fixedly installed on the sliding base and is provided with a first guide rail along the axial direction.
  • the second axis arm is telescopically installed and has one end slidably installed on the first axis arm through the first guide rail, and the other end is equipped with a guide nail placement device. , the guide nail placement device is guided to move in horizontal and vertical directions;
  • the sliding base is equipped with a lifting platform and a rolling device to drive the guide robot set above to move to any preset spatial position.
  • the guide robot is also equipped with a third drive motor and a fourth drive motor.
  • the third drive motor is used to drive the second axis arm to move a preset distance in the vertical direction.
  • the fourth drive motor is used to drive the second axis arm. Displace a preset distance in the horizontal direction.
  • the adjustment mechanism also includes a housing fixedly installed above the sliding base.
  • the top of the housing is provided with a first opening for passing through the first axis arm and a shape adapted to the radial cross section of the first axis arm.
  • the top of the housing is also X-ray imaging equipment display screen and operation panel are installed.
  • the initial positioning part is coaxially extended downward and provided with a telescopic first link, and the secondary positioning part is fixedly installed at the bottom end of the first link.
  • a screw placement method in orthopedic surgery which uses a guide robot and includes initial positioning and secondary positioning of surgical bone screws.
  • the initial positioning includes the following steps:
  • S101 Adjust the radiation direction of the radioactive source of the X-ray imaging equipment to the first radiation direction, and control the adjustment mechanism to drive the guide positioning device to move to the preset spatial position;
  • S102 Install the first positioning guide pin in the axial hole, and control the first positioning guide pin to move to the nail placement position based on the perspective image of the X-ray imaging equipment configured as the first ray direction;
  • S103 Install the second positioning guide pin in the positioning hole, and control the guide nail setting device to rotate in a direction perpendicular to its long axis with the axis of the axis hole as the rotation axis, until the second positioning guide pin is in contact with the first positioning pin.
  • the projection of the guide nail on the X-ray imaging equipment overlaps due to the position of the surgical bone nail.
  • the nail placement position of the surgical bone nail in one direction is then determined;
  • Secondary positioning includes the following steps:
  • S201 Adjust the radiation direction of the X-ray imaging equipment to the second radiation direction, and the second radiation direction is perpendicular to the first radiation direction;
  • S202 Install the surgical bone nail and the third positioning guide nail, and control the rotating clamping part to rotate and drive the third positioning guide nail to rotate on a plane parallel to the first radiation direction, according to the X-ray configured as the second ray direction
  • the fluoroscopic image of the imaging device controls the movement of the third positioning guide pin to the nail placement position
  • S203 Install the surgical bone nail.
  • the first positioning guide nail, the second positioning guide nail, and the third positioning guide nail jointly determine the placement position of the surgical bone screw in space.
  • the X-ray imaging equipment is a C-arm machine
  • the first radiation direction is the X-ray propagation direction when the C-arm machine frame is placed vertically
  • the second radiation direction is the X-ray propagation direction when the C-arm machine frame is placed horizontally.
  • the guide nail placement device is configured to be driven by the first drive motor in step S103
  • the rotating clamping part is configured to be driven by the second drive motor in step S202
  • the guide robot receives the doctor's operation input and controls The first driving motor and the second driving motor execute motor on/off instructions.
  • step S202 when the third positioning guide pin needs a fine-tuning operation to translate it to the nail placement position, the first link arranged telescopically between the initial positioning part and the secondary positioning part is correspondingly adjusted, The length of the first link is adjusted manually or by motor using a fine-tuning knob.
  • the technical solution of the present invention discloses a guidance robot and an orthopedic surgery nail placement method based on the projection principle, which are based on the characteristics of X-rays radiating along straight lines and the direction of objects radiating along X-rays.
  • the first positioning guide pin, the second positioning guide pin and the third positioning guide pin are used to determine the nail placement planes of the surgical bone screws in the two radial directions of the 90-degree intersection angle, and through The two intersecting planes determine the unique and optimal location for nail placement.
  • the invention determines the position of the nail outside the body, and only needs to pay attention to the projection in one radiation direction at the same time during positioning, thereby reducing the difficulty of bone nail positioning, shortening the operation time, reducing the patient's surgical wound and the impact of fluoroscopy on the patient and the operator. Radiation damage.
  • Figure 1 is a schematic diagram of traditional imaging equipment
  • Figure 2 is a schematic structural diagram of a guided robot based on the projection principle
  • Figure 3 is a schematic structural diagram of the guide needle placement device
  • Figure 4 is a schematic flow chart of the needle insertion method in orthopedic surgery.
  • the technical solution of the present invention provides an auxiliary nail placement solution with low cost, simple operation, low equipment requirements, easy clinical promotion, and high nail placement accuracy.
  • This solution not only provides an auxiliary nail placement solution for use in surgery. It is a guiding robot that assists doctors in determining the path of bone screws. It also provides a method to use the projection of positioning guide screws to assist doctors in quickly and accurately placing bone screws into bones before and during surgery.
  • the "bone nails” and “nails” involved in the present invention may be Kirschner nails, screws, and other rod-shaped fixators used for internal fixation of fractures.
  • the traditional method of using radiography equipment to guide screw placement requires repeated fluoroscopy during the bone screw guidance process to determine the nail entry point and nail track direction to prevent the screw placement position from shifting. This is due to the X-ray emitted by the light source of the X-ray radiography equipment.
  • the direction of light propagation is usually divergent (as shown in Figure 1).
  • the vertical or horizontal movement of the bone nail will cause its front or side projection image to change, which requires the doctor to perform fluoroscopy again to improve the positioning of the bone nail. accuracy.
  • the guide robot and the orthopedic surgery nail placement method provided by the technical solution of the present invention are based on the characteristics of X-ray radiation along a straight line and the principle that the contrast does not change when the object moves along the X-ray radiation direction. It can determine the position of the surgical bone nail by positioning the guide nail. Two nail placement planes at a 90-degree intersection angle in the radial direction, and the unique and best nail placement position is determined through the two intersecting planes. This nail placement position has the best nail insertion point and nail placement path.
  • the above-mentioned utilization The process of positioning guide pins to assist in determining surgical bone pins is completed outside the body.
  • the first positioning guide pin, the second positioning guide pin and the third positioning guide pin should be placed on the side of the human body near the light source.
  • the doctor can observe the positioning guide pins and the bones. fluoroscopic images, and simulate surgical bone nails in vitro based on fluoroscopic images
  • the optimal nail entry point and nail placement path, and during the operation, the doctor only needs to pay attention to the projection of the surgical bone nail in one radial direction at the same time, which is conducive to reducing the difficulty of bone nail positioning, shortening the operation time, and reducing the number of patient operations. Radiation damage from wounds and fluoroscopy to patients and surgeons.
  • the application environment of the present invention is not limited to X-ray imaging equipment. In fact, any X-ray imaging equipment that satisfies linear radiation characteristics is applicable.
  • Embodiment 1 of the present invention is a diagrammatic representation of Embodiment 1 of the present invention.
  • the embodiment of the present invention provides a guide robot based on the projection principle, as shown in Figure 2-3, used to cooperate with X-ray imaging equipment to assist bone implantation of nails, including a guide nail placement device 1 and an adjustment mechanism 2.
  • the adjustment mechanism 2 is used for
  • the guide nail placement device 1 is driven to move to any preset position.
  • the long axis of the guide nail placement device 1 extends in the vertical direction and is sequentially provided with a primary positioning portion 11 and a secondary positioning portion 12 from top to bottom.
  • the initial positioning part 11 and the secondary positioning part 12 are used to respectively determine the nail placement plane of the surgical bone nail 3 on two X-ray imaging equipment configured with different radiation directions.
  • the initial positioning operation is configured in the vertical direction.
  • the secondary positioning operation is completed under X-rays configured in the horizontal radiation direction, and the obtained contrast image is a "side image".
  • the radiation direction is not limited to horizontal or vertical, as long as the two radiation directions are vertical.
  • the initial positioning portion 11 is provided with axial holes 111 and positioning holes 112 spaced apart along the long axis direction of the guide nail placement device 1, and a first positioning guide pin 113 that is detachably installed in the axial hole 111.
  • the second positioning guide pin 114 is detachably installed in the positioning hole 112.
  • the first positioning guide pin 113 and the second positioning guide pin 114 extend horizontally toward the operator side.
  • the adjustment mechanism 2 When determining the first nail placement plane, the adjustment mechanism 2 is used to move the guide nail placement device in the space until the front view image of the first positioning guide nail 113 moves to the optimal nail placement position of the target bone; because the guide nail placement device 1
  • the axial direction of the axis hole 111 is used as the rotation axis and is rotatably mounted on the adjustment mechanism 2. Therefore, during this process, the first positioning guide pin 113 provided corresponding to the axis hole 111 is always in the optimal nail placement position, and the second positioning guide pin 113 is always positioned at the best position.
  • the positioning guide pin 114 is driven by the guide nail placing device 1 to move left and right.
  • the first positioning guide pin 113 and the second positioning guide pin 114 move together.
  • the surgical bone nail 3 moves up and down or rotates on this plane, its perspective image does not change, so that when positioning the lateral screw track, the doctor only needs to focus on the surgical bone nail.
  • the side view perspective image of 3 is sufficient.
  • the secondary positioning part 12 is provided with a rotating clamping part 121, a positioning plane 122, and a third positioning guide pin 123.
  • the rotating clamping part 121 is coaxially arranged with the initial positioning part 11 and is equipped with a surgical bone nail 3.
  • the surgical bone nail 3 The positioning plane 122 is located on the same plane as the first positioning guide pin 113 and the second positioning guide pin 114 .
  • One end of the positioning plane 122 is fixedly connected to the rotating clamping part 121 , and the other end extends horizontally and is fixedly installed with a third positioning device parallel to the surgical bone nail 3 .
  • the guide nail 123, the third positioning guide nail 123 and the surgical bone nail 3 can be driven by the rotating clamping part 121 to move in a direction parallel to the first radial direction until the side view perspective image of the third positioning guide nail 123 moves to the target bone.
  • the surgical bone nail 3 is installed and the nail placement action is performed with reference to the perspective image of the third positioning guide nail 123 .
  • Kirschner wires are used for the surgical bone screws 3 to assist the doctor in accurately inserting the surgical bone screws.
  • the first positioning guide nail 113, the second positioning guide screw 114 and the third positioning guide screw 123 are used with the surgical bone screws 3. Kirschner wires of consistent specifications.
  • the adjustment mechanism 2 in the embodiment of the present invention includes: a sliding base 21, a first axis arm 22 extending vertically, and a second axis arm 23 extending horizontally.
  • the first axis arm 22 is fixedly installed on the sliding base 21 and is provided with a first guide rail along the axial direction.
  • the second axis arm 23 is telescopically arranged and has one end slidably installed on the first axis arm 22 through the first guide rail.
  • the guide nail placement device 1 is installed on one end, and the guide nail placement device 1 is guided to move in the horizontal and vertical directions; in other embodiments, it can be configured as follows: the first axis arm 22 is fixedly installed on the sliding base 21 and moves along the axial direction.
  • a first guide rail is provided, and the guide nail placement device 1 is installed on the side of the second axis arm 23 near the operator.
  • the second axis arm 23 is slidably installed on the first axis arm 22 through the first guide rail, and the guide nail placement device 1 is Guided to move in the vertical direction, the second shaft arm 23 is provided with a second guide rail extending in the axial direction and is slidably mounted on the first shaft arm 22 through the second guide rail, and the guide nail placement device 1 is guided in the horizontal direction. Movement, the doctor can manually or electrically adjust the first axis arm 22 and the second axis arm 23 to control the horizontal and vertical movement of the nail placement device;
  • the sliding base 21 is provided with a lifting platform and a rolling device for driving the guide robot to any preset spatial position.
  • the sliding base 21 is used to greatly move the guiding robot and initially place it.
  • the first axis arm 22 and the second axis arm 23 are used to fine-tune the guiding nail placement device 1.
  • the doctor cooperatively operates the sliding base 21, the first axis arm 22, and the second axis.
  • the arm 23 can adjust the guide nail placement device 1 to an ideal placement position.
  • the initial positioning part 11 extends downward coaxially and is provided with a telescopic first link 8, and the secondary positioning part 12 is fixedly installed at the bottom end of the first link 8.
  • the positioning plane 122 fixedly installed on the rotating clamping part 121 can be configured to be telescopic, and/or the positioning plane 122 can be rotated and installed on the rotating clamping part 121, so that the doctor can adjust the third positioning by rotating the positioning plane.
  • the relative position of guide screws and surgical bone screws placement thereby effectively preventing the third positioning guide pin from being blocked by the bone and ensuring that the third positioning guide pin can provide a reference for the placement of surgical bone screws.
  • Embodiment 2 of the present invention is a diagrammatic representation of Embodiment 2 of the present invention.
  • the embodiment of the present invention provides an intelligent electronically controlled guidance robot that assists doctors in performing orthopedic surgeries.
  • the guidance robot is equipped with an operation panel 4 and a first drive motor 5 , second drive motor 6, central processing unit.
  • the first drive motor 5 is arranged corresponding to the initial positioning part 11 to drive the guide nail setting device 1 to rotate with the axis direction of the axis hole 111 as the rotation axis, and determines the first positioning guide pin 113 and the second positioning guide pin 114.
  • the second drive motor 6 is arranged corresponding to the secondary positioning part 12 to drive the rotating clamping part 121 to rotate and drive the third positioning guide nail 123 and the surgical bone parallel to the first radial direction. direction;
  • the operation panel 4 receives the operation input for operating the robot, and the central processor is used to process the operation input signal and issue control instructions to the first drive motor 5 and the second drive motor 6 to assist the doctor in adjusting the surgical bone nail. s position.
  • the guide robot is also equipped with a third drive motor and a fourth drive motor.
  • the third drive motor is used to drive the second axis arm 23 to move a preset distance in the vertical direction.
  • the fourth drive motor is used to drive the second axis arm. 23 displaces a preset distance in the horizontal direction to assist the doctor in overall adjusting the spatial position of the guide nail placement device 1 .
  • the adjustment mechanism 2 also includes a housing fixedly installed above the sliding base 21.
  • the top of the housing is provided with a first opening for passing through the first shaft arm 22 and a shape adapted to the radial cross-section of the first shaft arm 22.
  • the top of the casing is also equipped with a display screen 7 for displaying X-ray images and an operation panel 4.
  • Embodiment 3 of the present invention is a diagrammatic representation of Embodiment 3 of the present invention.
  • the embodiment of the present invention provides a screw placement method for orthopedic surgery.
  • the nail placement method includes initial positioning and secondary positioning of the surgical bone screw 3, wherein , the initial positioning includes the following steps:
  • S101 Adjust the radiation direction of the X-ray imaging equipment to the first radiation direction, and control the adjustment mechanism 2 to drive the guide positioning device to move to the preset spatial position;
  • the rotation or translation of the surgical bone nail 3 on the first nail placement plane will not affect the X-ray imaging equipment's fluoroscopic image in the first radiation direction, allowing the doctor to perform the following two tasks: During the secondary positioning process, you only need to pay attention to the fluoroscopic image in the second radial direction, which is helpful to accurately locate the nail insertion site of the surgical bone screw 3 and the best nail insertion path.
  • Secondary positioning includes the following steps:
  • S201 Adjust the radiation direction of the X-ray imaging equipment to the second radiation direction, and the second radiation direction is perpendicular to the first radiation direction;
  • S202 Install the third positioning guide pin 123, and control the rotating clamping part 121 to rotate and drive the third positioning guide pin 123.
  • the three positioning guide pins 123 rotate on a plane parallel to the first radiation direction, and control the third positioning guide pins 123 to move to the nail placement position according to the perspective image of the X-ray imaging equipment configured as the second ray direction.
  • the surgical bone The second nail placement plane of nail 3 in the second radial direction is then determined;
  • S203 Install the surgical bone nail 3 and insert it into the bone.
  • the first positioning guide nail 113, the second positioning guide nail 114, and the third positioning guide nail 123 jointly determine the position of the surgical bone screw 3 in space. Optimal nailing position.
  • the X-ray imaging equipment is a C-arm machine.
  • the first radiation direction is the propagation direction of X-rays when the C-arm machine frame is placed vertically.
  • the second radiation direction is the propagation direction of X-rays when the C-arm machine frame is placed horizontally. direction.
  • X-ray imaging equipment is not limited to C-arm machines.
  • One-way X-ray imaging equipment can be used in primary hospitals.
  • the orthopedic surgery nail placement solution of the embodiment of the present invention has low equipment requirements and is simple to operate, which is conducive to promotion in primary hospitals. universal.
  • the guide nail placement device 1 is configured to be driven by the first drive motor 5 in step S103, and the rotating clamping part 121 is configured to be driven by the second drive motor in step S202.
  • 6 corresponds to the drive, and the guidance robot receives the operation input from the doctor, and controls the first drive motor 5 and the second drive motor 6 to execute the motor opening/closing instructions.
  • the first link 8 disposed between the initial positioning part 11 and the secondary positioning part 12 and telescopically arranged should be adjusted accordingly.
  • the length of the connecting rod 8 is adjusted manually or electrically through a fine-tuning knob to meet the different requirements of different bones for surgical operating space in actual operations.
  • the doctor can adjust the length of the positioning plane 122 as needed or adjust the placement position of the third positioning guide pin 123 outside the body by rotating the positioning plane 122, thereby ensuring that the third positioning guide pin can Provide reference for surgical bone nail placement.

Abstract

本发明技术方案公开了一种基于投影原理的导向机器人及骨科手术置钉方法,其基于X射线沿直线放射的特征以及物体沿X射线放射方向移动时造影不变的原理,通过第一定位导钉、第二定位导钉以及第三定位导钉分别确定出手术骨钉在90度交角的两个放射方向上的置钉平面,并通过两个相交平面确定出唯一且最佳的置钉位置。本发明置钉位置的确定在体外完成,且定位时同一时刻仅需关注一个放射方向上的投影,从而降低骨钉定位难度,缩短手术操作时间,减少患者手术创面以及透视对患者以及术者的放射伤害。

Description

一种基于投影原理的导向机器人及骨科手术置钉方法 技术领域
本发明属于骨科手术置钉导向器领域,具体涉及一种基于投影原理的导向机器人及骨科手术置钉方法。
背景技术
骨钉导向置入在骨折内固定中应用广泛,比如股骨颈骨折内固定、骶髂螺钉内固定、髋臼前后柱骨折内固定及各种长管状骨髓内钉入口的定位等,在骨钉导向过程中需反复透视确定入钉点及钉道方向,以免螺钉置入位置发生偏移,这使患者及操作人员的X线暴露增加,电离辐射损伤及肿瘤发生风险随之增高。因此,为降低手术操作难度,提高螺钉置入的准确性和安全性,越来越多的先进科研成果被引入医疗领域,新的辅助置钉技术应运而生,如三维导航技术、3D技术、骨科机器人技术等,这些技术为辅助置钉提供了新的选择。基于以上背景,如何选择和利用新型辅助置钉技术,掌握安全有效、简单易行的导向方法,是目前研究的重点。
(1)三维导航辅助螺钉置入技术
三维导航系统是将导航技术、计算机图像处理与临床手术相结合,利用计算机把采集的参数加以处理,以在术中获得患者及手术器械的实时三维图像,让医生随时了解操作器械的位置与患者解剖结构的关系,从而提高手术的安全性。
目前,三维C型臂导航技术用于辅助经皮螺钉固定已在临床广泛应用。与传统透视下手术不同,三维透视可在术中同时显示矢状面、冠状面和横断面上的高分辨率图像,术者可在这3个切面上清晰观察到骨折线和螺钉的位置关系,在虚拟导钉的指引下置入螺钉。因此三维导航的优势在于可提供高质量的术中影像,具有良好的可操作性,降低了手术难度,提高了准确性,使手术快捷、微创。
虽然三维导航下骶髂关节螺钉内固定有明显优势,但也存在缺点和操作难点:①采集图形并建立导航系统需要大量时间,因为三维C型臂是通过旋转190°获取约100张图像来完成图像采集的,这增加了X线透视的次数和时间,导致在使用三维导航辅助技术初期可能会较传统方法更耗时;②导航需要定位标志,定位时需在髂嵴上进行有创性操作,定位标记的稳定性也会因部位不同而出现差异,术中轻微移动都可能影响手术的准确性;③机器的扫描范围有限,当双侧都需螺钉固定时会比较困难,甚至需要进行2次扫描,使术中透视量增加、手术时间延长;④导航系统操作复杂,学习曲线较长,需要专业技术人员的培训和维护,且对配套设施有一定要求,如手术室容积、通道口及防护板等必须考虑每台机器的特点。总体来说,术中三维成像导航在骶髂关节螺钉固定中的优越性已被证实,但目前尚存在缺点,需要术者掌握相关解剖知识、具备良好的三维图像分析能力,才能熟练使用导航设备、缩短手术时间、提高导航的安全性和准确性。
(2)3D打印辅助螺钉置入技术
3D打印技术以数字模型文件为基础,通过数字材料打印机,将可粘合材料逐层打印、快速成型,将计算机上的模型变成实物。一些学 者通过3D打印和逆向工程技术成功设计出个体化导航模板。穆卫庐等的研究中通过三维重建生成骨盆骨折模型,然后依据逆向工程技术设计出螺钉导航模板,打印出骨折模型和导板,在术前进行预试验,术中将导板与骨性标志进行匹配,通过导板完成置钉过程。研究表明,依托个体化导板置钉可简化手术操作,实现螺钉的快速、精准置入。
但导航模板的设计也存在一定缺陷:首先是适应证有限,仅适用于骨折无移位或通过闭合复位能达到复位要求的患者;此外,放置导航模板时需要切开显露骨性标志,较传统透视下置钉创伤更大,术中需尽可能剥离附着的软组织,提供骨皮质与导板的嵌合,剥离范围过大有造成临近血管神经损伤的风险,而剥离不充分又会影响导板的精确度,导致置钉偏差。
(3)机器人辅助螺钉置入技术
近年来,计算机导航联合机器人辅助的微创内固定已被越来越多骨科医生所接受。因为手术过程中术者难免受到自身生理条件的限制,会由于疲劳或微小动作等原因而出现失误和偏差,造成手术精度下降。为了降低人为失误、充分发挥导航设备的优势,机器人辅助手术系统被应用于骨科手术中。骨科机器人系统是通过术前成像、术中实时跟踪和机械手臂辅助进行位置规划,确保置钉位置准确,适用于经皮螺钉内固定手术。目前国内应用及相关研究报道较多的是我国自主研发的第3代Tirobot骨科机器人系统,也称“天玑”骨科手术机器人。
以Tirobot为代表的骨科机器人系统在导向置钉固定骨折的过程中,主要有以下特点:①定位准确:机器人系统可提供精确的空间定位,精度为0.6~0.8mm,通过机械臂的运行,将螺钉准确、安全、稳 定地置入相应解剖部位,降低血管、神经医源性损伤的风险。②实时监测:Tirobot可实现术中实时光学跟踪,在操作过程中无需重复透视,若术中位置发生偏移,系统可提醒术者进一步校准。③辐射量低:与人工置钉相比,机器人导航明显减少了术中X线透视次数,从而减少了术中辐射给医生和患者带来的电离辐射损害。④自主操作:术者手动规划钉道路径后,后续操作可由系统按规划路径程序性完成,引导医生高效、安全地完成手术。另外,该机器人系统采用模块化、小型化和通用性设计,可实现手术规划与手术操作分离,通过互联网实施远程手术。
但是,目前骨科机器人系统仍存在一定局限性:首先,手术机器人只能解决精确定位问题,而螺钉的路径规划仍依赖于外科医生的经验,需手动完成,这可能存在主观误差。其次,良好复位是精准定位的基础,经皮骶髂关节螺钉固定适用于通过闭合复位可以获得良好复位的患者;而对于骨折移位较大、复位不满意的患者,不能用这种方式固定。再次,在初期应用骨科机器人导航定位系统时经验不足,可能会导致导钉发生偏移。最后,仪器设备费用昂贵,操作复杂,组装和检测困难,需要专业人员培训,而且维护和保养的费用较高,这些因素都限制了骨科机器人在临床的推广和普及。
因此,现在亟待一种操作简单、造价低廉、对设备要求低且置钉创伤更小的导向机器人及骨科手术置钉方法。
发明内容
为克服以上背景技术所述的缺陷,本发明技术方案提供了一种基 于投影原理的导向机器人,用于配合X射线造影设备辅助骨内置钉,包括导向置钉装置及调节机构,调节机构用以驱动导向置钉装置移动至任意预设位置导向置钉装置长轴沿竖直方向延伸且自上而下依次配置有初定位部以及二次定位部;
初定位部,设有沿导向置钉装置长轴方向间隔排列的轴心孔和定位孔、可拆卸安装在轴心孔的第一定位导钉以及可拆卸安装在定位孔的第二定位导钉,第一定位导钉与第二定位导钉向手术者一侧水平延伸设置,导向置钉装置以轴心孔轴线方向为旋转轴、可转动地安装于调节机构且被引导在垂直于其长轴的方向上转动,并带动第二定位导钉移动直至第二定位导钉与第一定位导钉在配置为第一放射方向的X射线造影设备上的投影重叠;
二次定位部,设有旋转夹持部、定位平面、第三定位导钉,旋转夹持部与初定位部同轴设置且配置有与第一定位导钉以及第二定位导钉同一平面上的手术骨钉,定位平面一端固定连接旋转夹持部,另一端固定安装有第三定位导钉,第三定位导钉与手术骨钉平行设置且同时被旋转夹持部带动在与第一放射方向平行的平面上移动,直至二者在配置为第二放射方向的X射线造影设备上的投影抵达手术位置。
进一步地,导向机器人还配置有操作面板、第一驱动电机、第二驱动电机、中央处理器,第一驱动电机对应驱动初定位部布设,第二驱动电机对应驱动二次定位部,操作面板接收用于操作机器人的操作输入,中央处理器用于处理操作输入信号,并向第一驱动电机以及第二驱动电机发出控制指令。
进一步地,调节机构包括滑动底座、竖直延伸设置的第一轴臂、 水平延伸设置的第二轴臂;
第一轴臂固定安装在滑动底座上且沿轴向设有第一导轨,第二轴臂可伸缩设置且一端通过第一导轨可滑动安装在第一轴臂上,另一端安装导向置钉装置,导向置钉装置被引导在水平及竖直方向上移动;
滑动底座设有升降平台以及滚动装置,用以驱动上方设置的导向机器人移动至任意预设的空间位置。
进一步地,导向机器人还配置有第三驱动电机、第四驱动电机,第三驱动电机用以驱动第二轴臂在竖直方向上位移预设距离,第四驱动电机用以驱动第二轴臂在水平方向上位移预设距离。
进一步地,调节机构还包括固定安装在滑动底座上方的壳体,壳体顶部设有用以穿设第一轴臂且形状与第一轴臂径向截面适配的第一开口,壳体顶部还安装有X射线造影设备显示屏以及操作面板。
进一步地,初定位部向下同轴延伸设有可伸缩的第一连杆,二次定位部固定安装在第一连杆底端。
一种骨科手术置钉方法,采用导向机器人,包括手术骨钉的初定位以及二次定位,初定位包括如下步骤:
S101:调节X射线造影设备放射源的放射方向至第一放射方向,并控制调节机构驱动导向定位装置移动至预设空间位置;
S102:安装第一定位导钉于轴心孔,并根据配置为第一射线方向的X射线造影设备的透视图像,控制第一定位导钉移动至置钉位置;
S103:安装第二定位导钉于定位孔,并控制导向置钉装置以轴心孔轴心方向为旋转轴、在垂直于其长轴的方向上转动,直至第二定位导钉与第一定位导钉在X射线造影设备上的投影重叠,由于手术骨钉位 于由第一定位导钉及第二定位导钉确定的平面上,此时手术骨钉一个方向上的置钉位置随即确定;
二次定位包括如下步骤:
S201:调节X射线造影设备的放射方向至第二放射方向,第二放射方向垂直于第一放射方向;
S202:安装手术骨钉以及第三定位导钉,并控制旋转夹持部转动并带动第三定位导钉在平行于第一放射方向平行的平面上转动,根据配置为第二射线方向的X射线造影设备的透视图像,控制第三定位导钉移动至置钉位置;
S203:安装手术骨钉,此时,由第一定位导钉、第二定位导钉、第三定位导钉共同确定出手术骨钉在空间上的置钉位置。
进一步地,X射线造影设备为C臂机,第一放射方向为C臂机机架竖直放置时X光线传播方向,第二放射方向为C臂机机架水平放置时X光线传播方向。
进一步地,导向置钉装置在步骤S103中被配置为由第一驱动电机对应驱动,旋转夹持部在步骤S202被配置为由第二驱动电机对应驱动,导向机器人接收医者的操作输入,并控制第一驱动电机以及第二驱动电机执行电机开启/关闭指令。
进一步地,在步骤S202中,当第三定位导钉需微调操作将其平移至置钉位置时,对应调节配置在初定位部与二次定位部之间且可伸缩设置的第一连杆,第一连杆的长度通过微调旋钮手动调节或电机调节。
本发明技术方案公开了一种基于投影原理的导向机器人及骨科手术置钉方法,其基于X射线沿直线放射的特征以及物体沿X射线放射方 向移动时造影不变的原理,通过第一定位导钉、第二定位导钉以及第三定位导钉分别确定出手术骨钉在90度交角的两个放射方向上的置钉平面,并通过两个相交平面确定出唯一且最佳的置钉位置。本发明置钉位置的确定在体外完成,且定位时同一时刻仅需关注一个放射方向上的投影,从而降低骨钉定位难度,缩短手术操作时间,减少患者手术创面以及透视对患者以及术者的放射伤害。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为传统造影设备成像示意图;
图2为基于投影原理的导向机器人的结构示意图;
图3为导向置针装置的结构示意图;
图4为骨科手术置针方法的流程示意图。
主要元件符号说明:
1:导向置钉装置;11:初定位部;111:轴心孔;112:定位孔;
113:第一定位导钉;114:第二定位导钉;12:二次定位部;121:旋转夹持部;122:定位平面;123:第三定位导钉;
2:调节机构;21:滑动底座;22:第一轴臂;23:第二轴臂;
3:手术骨钉;4:操作面板;5:第一驱动电机;6:第二驱动电
机;7:显示屏;8:第一连杆。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于方法、函数、规程、子例程、子程序等等。
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本发明的示例性实施例的目的。但是本发明可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
虽然现代骨科手术要求,在骨折内固定操作前,医者应借助辅助置钉设备尽可能确定骨钉置钉方向以及入钉点,尽可能避免术中调整导致创口扩大,但事实上,包括三维导航技术、3D打印技术以及骨 科机器人技术在内的辅助置钉技术或因设备造价高、操作难度大,过于依赖医者经验,难以在基层医院推广应用。
为解决上述技术问题,本发明技术方案提供了一种成本低、操作简单、设备要求低、易于临床推广、置钉准确性高的辅助置钉方案,本方案不仅提供了一种用以在术前辅助医者确定骨钉路径的导向机器人,同时提供一种在术前以及术中利用定位导钉的投影辅助医者将骨钉快速、精准置入骨内的方法。
本发明中涉及的“骨钉”、“钉”可以是克氏钉、螺钉、以及其他用于骨折内固定手术的杆状固定物。
传统利用造影设备导向置钉的方法,其在骨钉导向过程中需反复透视确定入钉点及钉道方向,以免螺钉置入位置发生偏移,这是由于X射线造影设备的光源发出的X光传播方向通常呈发散状(如图1所示),骨钉竖直或水平向移动会导致其正位或侧位的投影图像改变,这要求医者不得不再次透视,以提高骨钉定位的准确性。
本发明技术方案提供的导向机器人以及骨科手术置钉方法,基于X射线沿直线放射的特征以及物体沿X射线放射方向移动时造影不变的原理,能够通过定位导钉分别确定出手术骨钉在90度交角的两个放射方向上的置钉平面,并通过两个相交平面确定出唯一且最佳的置钉位置,该置钉位置具有最佳的入钉点以及置钉钉道,上述利用定位导钉辅助确定手术骨钉的过程在体外完成。
具体而言,医者在术中定位时,第一定位导钉、第二定位导钉以及第三定位导钉应放置在人体近光源一侧,此时,医者能够观察到定位导钉以及骨骼的透视图像,并根据透视图像在体外模拟出手术骨钉 的最佳入钉点以及置钉路径,并且在手术过程中,医者同一时刻仅需关注手术骨钉在一个放射方向上的投影,有利于降低骨钉定位难度、缩短手术操作时间、减少患者手术创面以及透视对患者以及术者的放射伤害。
本发明的应用环境并不限于X射线造影设备,事实上,任何满足直线放射特征的射线造影设备均可适用。
下面结合具体实施例以及附图2-4对本发明涉及的一种基于投影原理的导向机器人以及应用导向机器人的骨科手术置钉方法做详细的阐述及说明。
本发明实施例一:
本发明实施例提供了一种基于投影原理的导向机器人,如图2-3所示,用于配合X射线造影设备辅助骨内置钉,包括导向置钉装置1及调节机构2,调节机构2用以驱动导向置钉装置1移动至任意预设位置,导向置钉装置1长轴沿竖直方向延伸且自上而下依次配置有初定位部11以及二次定位部12。其中,初定位部11以及二次定位部12用以分别确定手术骨钉3在两个配置为不同放射方向的X射线造影设备上的置钉平面,本实施例中初定位操作在配置为竖直放射方向的X射线下完成,得到的造影图像为“正片”,二次定位操作在配置为水平放射方向的X射线下完成,此时得到的为“侧片”,需要说明的是,在其他实施例中,放射方向并不限制于水平或竖直,只需满足两放射方向垂直即可。
具体而言,初定位部11设有沿导向置钉装置1长轴方向间隔排列的轴心孔111和定位孔112、可拆卸安装在轴心孔111的第一定位导钉113 以及可拆卸安装在定位孔112的第二定位导钉114,第一定位导钉113与第二定位导钉114向手术者一侧水平延伸设置。
在确定第一置钉平面时,利用调节机构2在空间内移动导向置钉装置,直至第一定位导钉113的正片透视图像移动至目标骨骼的最佳置钉位置;由于导向置钉装置1以轴心孔111轴线方向为旋转轴、可转动地安装于调节机构2,因此,在此过程中,对应轴心孔111设置的第一定位导钉113始终位于最佳置钉位置,第二定位导钉114被导向置钉装置1带动左右移动,当第一定位导钉113与第二定位导钉114的X射线透视图像重叠时,第一定位导钉113及第二定位导钉114共同确定一个平行于第一放射方向的第一置钉平面,手术骨钉3在此平面上下移动或旋转时,其透视图像不发生改变,使定位侧片钉道时,医者只需关注手术骨钉3的侧片透视图像即可。
二次定位部12,设有旋转夹持部121、定位平面122、第三定位导钉123,旋转夹持部121与初定位部11同轴设置且配置有手术骨钉3,手术骨钉3与第一定位导钉113以及第二定位导钉114位于同一平面上,定位平面122一端固定连接旋转夹持部121,另一端水平延伸且固定安装有与手术骨钉3平行设置的第三定位导钉123,第三定位导钉123与手术骨钉3能够被旋转夹持部121带动在平行于第一放射方向上移动,直至第三定位导钉123的侧片透视图像移动至目标骨骼的最佳置钉位置,此时安装手术骨钉3并参照第三定位导钉123的透视图像执行置钉动作。
本发明实施例中手术骨钉3选用克氏针,为辅助医者精准置入手术骨钉,第一定位导钉113、第二定位导钉114及第三定位导钉123选用与手术骨钉3规格一致的克氏针。
为合理化结构,本发明实施例中调节机构2包括:滑动底座21、竖直延伸设置的第一轴臂22、水平延伸设置的第二轴臂23。
其中,第一轴臂22固定安装在滑动底座21上且沿轴向设有第一导轨,第二轴臂23可伸缩设置且一端通过第一导轨可滑动安装在第一轴臂22上,另一端安装导向置钉装置1,导向置钉装置1被引导在水平及竖直方向上移动;在其他实施例中,可配置为:第一轴臂22固定安装在滑动底座21上且沿轴向设有第一导轨,导向置钉装置1安装在第二轴臂23近手术者一侧,第二轴臂23通过第一导轨可滑动安装在第一轴臂22上且导向置钉装置1被引导在竖直方向上移动,第二轴臂23设置有沿轴向延伸设置的第二导轨且通过第二导轨滑动安装在第一轴臂22上,导向置钉装置1被引导在水平方向上移动,医者能够手动或电动调节第一轴臂22以及第二轴臂23以控制置钉装置水平、竖直移动;
滑动底座21设有升降平台以及滚动装置,用以驱动导向机器人至任意预设的空间位置。
滑动底座21用以大幅移动导向机器人并初步放置,第一轴臂22及第二轴臂23用以微调导向置钉装置1,医者通过协同操作滑动底座21、第一轴臂22、第二轴臂23能够将导向置钉装置1调整至理想放置位置。
考虑到实际手术中不同骨骼对手术操作空间要求不同,初定位部11向下同轴延伸设有可伸缩的第一连杆8,二次定位部12固定安装在第一连杆8底端,使得医者能够根据手术需要自主调节初定位部11与二次定位部12间距。在其他实施例中,固定安装在旋转夹持部121的定位平面122可伸缩设置,和/或定位平面122可旋转安装在旋转夹持部121,使医者能够通过旋转该定位平面调整第三定位导钉与手术骨钉的相对位 置,从而有效避免第三定位导钉被骨骼阻挡,确保第三定位导钉能够为手术骨钉的置入提供参考。
本发明实施例二:
本发明实施例在实施例一的基础上,如图2-3所示,提供了一种辅助医者实施骨科手术的智能电控导向机器人,该导向机器人配置有操作面板4、第一驱动电机5、第二驱动电机6、中央处理器。
其中,第一驱动电机5对应初定位部11布设,用以驱动导向置钉装置1以轴心孔111轴线方向为旋转轴转动,通过第一定位导钉113以及第二定位导钉114确定第一放射方向上的第一置钉平面;第二驱动电机6对应二次定位部12布设,用以驱动旋转夹持部121旋转并带动第三定位导钉123与手术骨在平行于第一放射方向上移动;操作面板4接收用于操作机器人的操作输入,中央处理器用于处理操作输入信号,并向第一驱动电机5以及第二驱动电机6发出控制指令,用以辅助医者调节手术骨钉的位置。
此外,导向机器人还配置有第三驱动电机、第四驱动电机,第三驱动电机用以驱动第二轴臂23在竖直方向上位移预设距离,第四驱动电机用以驱动第二轴臂23在水平方向上位移预设距离,用以辅助医者整体调节导向置钉装置1的空间位置。
为合理化结构,调节机构2还包括固定安装在滑动底座21上方的壳体,壳体顶部设有用以穿设第一轴臂22且形状与第一轴臂22径向截面适配的第一开口,壳体顶部还安装有用以展示X射线影像的显示屏7以及操作面板4。
本发明实施例三:
本发明实施例在实施例一及实施例二基础上,提供了一种骨科手术置钉方法,如图2-4所示,置钉方法包括手术骨钉3的初定位以及二次定位,其中,初定位包括如下步骤:
S101:调节X射线造影设备的放射方向至第一放射方向,并控制调节机构2驱动导向定位装置移动至预设空间位置;
S102:安装第一定位导钉113于轴心孔111,并根据配置为第一射线方向的X射线造影设备的透视图像,控制第一定位导钉113移动至置钉位置;
S103:确定好第一定位导钉113的空间位置后,安装第二定位导钉114于定位孔112,并控制导向置钉装置1以轴心孔111轴线方向为旋转轴转动,直至第二定位导钉114与第一定位导钉113在X射线造影设备上的透视图像重叠,由于手术骨钉3位于由第一定位导钉113及第二定位导钉114确定的平面上,此时手术骨钉3一个方向上的置钉位置随即确定,手术骨钉3在第一置钉平面上转动或平移均不会影响其在第一放射方向的X射线造影设备的透视图像,使得医者在如下二次定位过程中,仅需关注第二放射方向的透视图像即可,有利于精准定位手术骨钉3的入钉位点以及最佳入钉钉道。
二次定位包括如下步骤:
S201:调节X射线造影设备的放射方向至第二放射方向,第二放射方向垂直于第一放射方向;
S202:安装第三定位导钉123,并控制旋转夹持部121转动并带动第 三定位导钉123在平行于第一放射方向的平面上转动,根据配置为第二射线方向的X射线造影设备的透视图像,控制第三定位导钉123移动至置钉位置,此时手术骨钉3在第二放射方向上的第二置钉平面随即确定;
S203:安装手术骨钉3并置入骨内,由第一定位导钉113、第二定位导钉114、第三定位导钉123共同确定出手术骨钉3在空间上的置钉位置即为最佳置钉位置。
本发明实施例中,X射线造影设备为C臂机,第一放射方向为C臂机机架竖直放置时X光线传播方向,第二放射方向为C臂机机架水平放置时X光线传播方向。当然,X射线造影设备并不限制于C臂机,在基层医院可采用单向X射线造影设备,本发明实施例的骨科手术置钉方案对设备要求低、操作简单,有利于在基层医院推广普及。
为辅助医者精确、快速置入手术骨钉3,导向置钉装置1在步骤S103中被配置为由第一驱动电机5对应驱动,旋转夹持部121在步骤S202被配置为由第二驱动电机6对应驱动,导向机器人接收医者的操作输入,并控制第一驱动电机5以及第二驱动电机6执行电机开启/关闭指令。
当第三定位导钉123需微调操作将其平移至最佳置钉位置时,对应调节配置在初定位部11与二次定位部12之间且可伸缩设置的第一连杆8,第一连杆8的长度通过微调旋钮手动调节或电机调节,以满足实际手术中不同骨骼对手术操作空间要求不同。
当出现骨骼止挡第三定位导钉123时,医者可以根据需要调整定位平面122的长度或通过旋转定位平面122调整第三定位导钉123在体外的放置位置,从而确保第三定位导钉能够为手术骨钉的置入提供参考。
以上对本发明技术方案所提供的一种基于投影原理的导向机器人及骨科手术置钉方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想和方法,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种基于投影原理的导向机器人,用于配合X射线造影设备辅助骨内置钉,包括导向置钉装置及调节机构,调节机构用以驱动所述导向置钉装置移动至任意预设位置,其特征在于,所述导向置钉装置长轴沿竖直方向延伸且自上而下依次配置有初定位部以及二次定位部;
    所述初定位部,设有沿导向置钉装置长轴方向间隔排列的轴心孔和定位孔、可拆卸安装在轴心孔的第一定位导钉以及可拆卸安装在定位孔的第二定位导钉,第一定位导钉与第二定位导钉向手术者一侧水平延伸设置,导向置钉装置以轴心孔轴线方向为旋转轴、可转动地安装于调节机构,用以带动第二定位导钉移动,直至第二定位导钉与第一定位导钉在配置为第一放射方向的X射线透视图像重叠;
    所述二次定位部,设有旋转夹持部、定位平面、第三定位导钉,所述旋转夹持部与初定位部同轴设置且配置有手术骨钉,手术骨钉与所述第一定位导钉以及第二定位导钉处于同一平面上,所述定位平面一端固定连接旋转夹持部,另一端水平延伸且固定安装有第三定位导钉,第三定位导钉与手术骨钉平行设置且被旋转夹持部带动在与平行于第一放射方向的方向上转动,直至二者在配置为第二放射方向的X射线透视图像抵达手术位置。
  2. 如权利要求1所述的基于投影原理的导向机器人,其特征在于,所述导向机器人还配置有操作面板、第一驱动电机、第二驱动电机、中央处理器,第一驱动电机对应驱动所述初定位部,第二驱动电机对应驱动所述二次定位部,操作面板接收用于操作机器人的操作输 入,中央处理器用于处理所述操作输入信号,并向第一驱动电机以及第二驱动电机发出控制指令。
  3. 如权利要求2所述的基于投影原理的导向机器人,其特征在于,所述调节机构包括滑动底座、竖直延伸设置的第一轴臂、水平延伸设置的第二轴臂;
    所述第一轴臂固定安装在滑动底座上且沿轴向设有第一导轨,第二轴臂可伸缩设置且一端通过第一导轨可滑动安装在第一轴臂上,另一端安装所述导向置钉装置,导向置钉装置被引导在水平及竖直方向上移动;
    所述滑动底座设有升降平台以及滚动装置,用以驱动导向机器人移动至任意预设的空间位置。
  4. 如权利要求3所述的基于投影原理的导向机器人,其特征在于,所述导向机器人还配置有第三驱动电机、第四驱动电机,所述第三驱动电机用以驱动第二轴臂在竖直方向上位移预设距离,所述第四驱动电机用以驱动第二轴臂在水平方向上位移预设距离。
  5. 如权利要求4所述的基于投影原理的导向机器人,其特征在于,所述滑动底座还包括设置在其上方的壳体,壳体顶部设有用以穿设第一轴臂且形状与第一轴臂径向截面适配的开口,壳体顶部还安装有所述操作面板以及用以展示X射线透视图像的显示屏。
  6. 如权利要求1所述的基于投影原理的导向机器人,其特征在于,所述初定位部向下同轴延伸设有可伸缩的第一连杆,所述二次定位部固定安装在第一连杆底端。
  7. 一种骨科手术置钉方法,采用如权利要求1-6任一项所述的导向机器 人,其特征在于,包括手术骨钉的初定位、二次定位,初定位包括如下步骤:
    S101:调节X射线造影设备的放射方向至第一放射方向,并控制所述调节机构驱动所述导向定位装置移动至预设空间位置;
    S102:安装第一定位导钉于所述轴心孔,并根据配置为第一射线方向的X射线造影设备的透视图像,控制第一定位导钉移动至置钉位置;
    S103:安装第二定位导钉于所述定位孔,并控制所述导向置钉装置以所述轴心孔轴线方向为旋转轴转动,直至第二定位导钉与第一定位导钉在X射线造影设备上的透视图像重叠,由于手术骨钉位于由第一定位导钉及第二定位导钉确定的平面上,此时手术骨钉在第一放射方向上的第一置钉平面随即确定;
    二次定位包括如下步骤:
    S201:调节X射线造影设备的放射方向至第二放射方向,第二放射方向垂直于第一放射方向;
    S202:安装第三定位导钉,并控制所述旋转夹持部转动并带动所述第三定位导钉在平行于第一放射方向的平面上转动,根据配置为第二射线方向的X射线造影设备的透视图像,控制第三定位导钉移动至置钉位置,此时手术骨钉在第二放射方向上的第二置钉平面随即确定;
    S203:安装手术骨钉并置入骨内。
  8. 如权利要求7所述的骨科手术置钉方法,其特征在于,所述X射线造影设备为C臂机,所述第一放射方向为C臂机机架竖直放置时X光 线传播方向,所述第二放射方向为C臂机机架水平放置时X光线传播方向。
  9. 如权利要求7所述的骨科手术置钉方法,其特征在于,所述导向置钉装置在步骤S103中被配置为由所述第一驱动电机对应驱动,所述旋转夹持部在步骤S202被配置为由所述第二驱动电机对应驱动,所述导向机器人接收医者的操作输入,并控制第一驱动电机以及第二驱动电机执行电机开启/关闭指令。
  10. 如权利要求书9所述的骨科手术置钉方法,其特征在于,在步骤S202中,当所述第三定位导钉需微调操作将其平移至最佳置钉位置时,对应调节设置在初定位部与二次定位部之间且可伸缩设置的第一连杆,第一连杆的长度通过电机调节或微调旋钮手动调节。
PCT/CN2023/089181 2022-04-19 2023-04-19 一种基于投影原理的导向机器人及骨科手术置钉方法 WO2023202611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210411260.2 2022-04-19
CN202210411260.2A CN114795444A (zh) 2022-04-19 2022-04-19 一种基于投影原理的导向机器人及骨科手术置钉方法

Publications (1)

Publication Number Publication Date
WO2023202611A1 true WO2023202611A1 (zh) 2023-10-26

Family

ID=82505148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089181 WO2023202611A1 (zh) 2022-04-19 2023-04-19 一种基于投影原理的导向机器人及骨科手术置钉方法

Country Status (2)

Country Link
CN (1) CN114795444A (zh)
WO (1) WO2023202611A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114795444A (zh) * 2022-04-19 2022-07-29 深圳市第二人民医院 一种基于投影原理的导向机器人及骨科手术置钉方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104382643A (zh) * 2014-12-12 2015-03-04 陈伟 一种骨折微创固定的克氏针定位器
CN108451631A (zh) * 2018-02-13 2018-08-28 邓婉坤 一种股骨颈空心螺钉导针定位装置及使用方法
US20200146733A1 (en) * 2017-05-04 2020-05-14 Orthofix S.R.L. Targeting System for the Guided Insertion of a Guide Wire or a Bone Screw
CN112716592A (zh) * 2021-01-21 2021-04-30 上海市东方医院(同济大学附属东方医院) 基于计算机辅助的置入骶髂螺钉方向调节装置及调节方法
CN113907859A (zh) * 2021-09-07 2022-01-11 上海市第十人民医院 一种骶髂关节螺钉导航辅助置钉装置
CN114795444A (zh) * 2022-04-19 2022-07-29 深圳市第二人民医院 一种基于投影原理的导向机器人及骨科手术置钉方法
CN218606798U (zh) * 2022-04-19 2023-03-14 深圳市第二人民医院 基于投影原理的导向置钉装置、导向机器人及一体式骨科手术设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104382643A (zh) * 2014-12-12 2015-03-04 陈伟 一种骨折微创固定的克氏针定位器
US20200146733A1 (en) * 2017-05-04 2020-05-14 Orthofix S.R.L. Targeting System for the Guided Insertion of a Guide Wire or a Bone Screw
CN108451631A (zh) * 2018-02-13 2018-08-28 邓婉坤 一种股骨颈空心螺钉导针定位装置及使用方法
CN112716592A (zh) * 2021-01-21 2021-04-30 上海市东方医院(同济大学附属东方医院) 基于计算机辅助的置入骶髂螺钉方向调节装置及调节方法
CN113907859A (zh) * 2021-09-07 2022-01-11 上海市第十人民医院 一种骶髂关节螺钉导航辅助置钉装置
CN114795444A (zh) * 2022-04-19 2022-07-29 深圳市第二人民医院 一种基于投影原理的导向机器人及骨科手术置钉方法
CN218606798U (zh) * 2022-04-19 2023-03-14 深圳市第二人民医院 基于投影原理的导向置钉装置、导向机器人及一体式骨科手术设备

Also Published As

Publication number Publication date
CN114795444A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US7822466B2 (en) Robot for computed tomography interventions
CN105916463B (zh) 可拆卸组装圆弧形精准定位设备
WO2017000538A1 (zh) 可拆卸组装圆弧形精准定位设备
WO2017017443A1 (en) Apparatus for performing fracture reduction
Wu et al. Guidance for treatment of pelvic acetabular injuries with precise minimally invasive internal fixation based on the orthopaedic surgery robot positioning system
CN105411658B (zh) 一种用于股骨干骨折的复位装置
WO2023202611A1 (zh) 一种基于投影原理的导向机器人及骨科手术置钉方法
CN1522671A (zh) 机械臂式自动立体定位系统
WO2017050201A1 (zh) 微创医疗机器人系统
Wang et al. Computer-assisted navigation systems for insertion of cannulated screws in femoral neck fractures: a comparison of bi-planar robot navigation with optoelectronic navigation in a Synbone hip model trial
EP1742584B1 (en) Automatic pointing device for correct positioning of the distal locking screws of an intramedullary nail
JP2002509750A (ja) 穿孔位置を設定する方法および装置
EP3197379B1 (en) Device for repositioning bone fracture fragments
CN106264702A (zh) 脊柱微创定位系统及其在脊柱微创定位中的应用
CN218606798U (zh) 基于投影原理的导向置钉装置、导向机器人及一体式骨科手术设备
CN113907859B (zh) 一种骶髂关节螺钉导航辅助置钉装置
CN107595406B (zh) 骨折闭合复位治疗的电磁导视系统
Kahler et al. Evaluation of a computer integrated surgical technique for percutaneous fixation of transverse acetabular fractures
CN101627915A (zh) 一种有外部摄像装置的c型臂x线透视机
WO2023107384A1 (en) Image guided robotic spine injection system
CN204971579U (zh) 微创医疗机器人系统
JPH07255719A (ja) 放射線治療計画用ctシステム,放射線治療装置及び放射線治療システム
Zixiang et al. Robot-assisted orthopedic surgery
Cui et al. A Novel Navigation Device for Precise Percutaneous Placement of the Guidewire in Femoral Neck Fracture Cannulated Screw Fixation Surgery
Scharll et al. Laser Target System in Combination with an Aiming Device for Percutaneous CT-Guided Interventions–An Accuracy Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791266

Country of ref document: EP

Kind code of ref document: A1