WO2023202425A1 - 一种天线和电子设备 - Google Patents

一种天线和电子设备 Download PDF

Info

Publication number
WO2023202425A1
WO2023202425A1 PCT/CN2023/087575 CN2023087575W WO2023202425A1 WO 2023202425 A1 WO2023202425 A1 WO 2023202425A1 CN 2023087575 W CN2023087575 W CN 2023087575W WO 2023202425 A1 WO2023202425 A1 WO 2023202425A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
signal
radiating
frequency
Prior art date
Application number
PCT/CN2023/087575
Other languages
English (en)
French (fr)
Inventor
邵金进
武东伟
石操
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023202425A1 publication Critical patent/WO2023202425A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • H01Q5/15Resonant antennas for operation of centre-fed antennas comprising one or more collinear, substantially straight or elongated active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present application relates to the field of wireless communications, and in particular, to an antenna and an electronic device.
  • 2G low-frequency antennas have strong wall penetration capabilities, but have low specifications. They mainly meet wide coverage and require a pattern with omnidirectional radiation characteristics; while 5G high-frequency antennas have weak wall penetration capabilities. However, the specifications are generally higher, and a structure with higher gain and directional radiation characteristics is used to achieve enhancement in specific directions and users, thus improving the experience of large bandwidth.
  • the embodiment of the present application provides an antenna and electronic equipment, which are manufactured in one piece.
  • a fused antenna structure is designed for low-frequency small-size omnidirectional radiation and high-frequency high-gain directional radiation at both ends. , achieving low-cost, high-performance and highly integrated design of antennas.
  • an antenna including: an input port for inputting a signal to be transmitted, wherein the signal includes a first signal and a second signal, and the frequency of the first signal is higher than the frequency of the second signal; A radiator, used to radiate the first signal; a second radiator, used to radiate the first signal; a third radiator, used to radiate the second signal; wherein the first radiator, the second radiator and the third The radiators are arranged along the first direction, the third radiator is located between the first radiator and the second radiator, and the distance between the first radiator and the second radiator in the first direction is a first value, the first value It is determined based on the wavelength of the first signal and the target radiation direction of the first signal.
  • a binary array composed of a first radiator and a second radiator forms a high-frequency radiator with directional radiation at both ends, presenting a pattern with radiation at both ends; the third radiator is The omnidirectionally radiating low-frequency radiator presents a pattern with omnidirectional radiation, thus achieving differentiation of multi-frequency antenna patterns.
  • the first radiator, the second radiator and the third radiator are integrally formed.
  • the first radiator, the second radiator and the third radiator are mechanically stamped
  • the one-piece antenna is made by technology, eliminating manual assembly requirements, enabling cable-free connection to the single board, and reducing manual production costs.
  • the first value is half the wavelength of the first signal.
  • the distance between the first radiator and the second radiator in the first direction is related to the wavelength corresponding to the center frequency of the first radiator and the second radiator in the working frequency band.
  • the antenna further includes a first connecting member; wherein the first connecting member includes two parallel first connecting pieces, and the extending directions of the two first connecting pieces are parallel In the first direction, one end of the two first connecting pieces is connected to the first radiator, and the other end of the two first connecting pieces is connected to the second radiator.
  • the first radiator and the second radiator are connected through two parallel first connecting pieces, thereby forming a feed transmission structure with a certain impedance.
  • the first radiator includes two first radiating arms, the extension direction of the two first radiating arms is perpendicular to the first direction, and the two first radiating arms The arms are respectively connected symmetrically and orthogonally with one end of the two first connecting pieces with respect to the first direction.
  • the first radiator can be a high-frequency dipole, so that the antenna has better broadband omnidirectional radiation characteristics.
  • the balanced design of the dipole facilitates integrated manufacturing, and Conducive to broadband impedance matching feed design.
  • the second radiator is a folded oscillator, and two ends of the second radiator are respectively connected to the other ends of the two first connecting pieces.
  • the second radiator may be a folded oscillator, which radiates high-frequency signals while causing one end of the antenna to form a closed structure, thereby making the radiation characteristics of the antenna more stable.
  • the third radiator includes two radiating parts, the extending directions of the two radiating parts are perpendicular to the first direction, and the two radiating parts are respectively connected with the first connecting piece.
  • the first positions are symmetrically and orthogonally connected with respect to the first direction.
  • the third radiator may be a low-frequency radiator, so that the antenna has low-frequency radiation characteristics, and the third radiator is placed between the first radiator and the second radiator, so that the antenna It can have both low-frequency omnidirectional radiation characteristics and high-frequency directional radiation characteristics.
  • the radiating part includes a second radiating arm and a third radiating arm, one end of the second radiating arm is orthogonally connected to the first position of the first connecting piece, and the second The other end of the radiating arm is connected to the third radiating arm.
  • the horizontal width of the second radiating arm is smaller than the horizontal width of the third radiating arm.
  • a high-impedance design with a narrow structure is adopted in the area where the third radiator highly overlaps with the first radiator and the second radiator, thereby avoiding the coupling influence between different high- and low-frequency radiators. , thereby suppressing high-frequency coupling and reducing the reflection effect of the low-frequency radiator structure on the high-frequency radiator.
  • the second radiating arm has a bent structure.
  • the second radiation arm of the third radiator is bent, but the second radiation arm of the third radiator is bent.
  • the height of the second radiating arm coincides with the high-frequency radiation pattern, and the size remains unchanged.
  • the extended size of the bent part will shorten the end wide radiator structure, thereby making the overall size of the third radiator smaller, further reducing the size of the antenna. .
  • the antenna further includes a second connecting member; wherein the second connecting member includes two parallel second connecting pieces, and the extending directions of the two second connecting pieces are respectively Located in the normal direction of the two first connecting pieces, one end of the two second connecting pieces is symmetrically and orthogonally connected to the second position of the two first connecting pieces respectively.
  • the two second connecting pieces of the second connecting member serve as input terminals and output terminals respectively, and are connected to the single board for transmitting signals.
  • the second connecting piece has a bent structure.
  • the two second connecting pieces of the second connecting member are gradually opened and bent, so that they can match the radio frequency axis on the single board and the manufacturable shape of the factory.
  • This structural change does not change the composition relationship between the high-frequency radiator and the low-frequency radiator in the antenna, so the radiation pattern of the antenna will not change.
  • the antenna further includes a third connector; wherein the third connector is connected to the first radiator along the first direction, and the antenna Form a closed loop.
  • the entire antenna forms a closed loop through the third connecting member, so that the antenna structure has an integrated manufacturing space, and the antenna performance is more stable and reliable.
  • the antenna further includes a balun; wherein two ends of the balun are respectively connected to two first radiating arms.
  • the third connecting member at the tail is replaced with a balun. While maintaining the antenna to form a closed loop, the size of the balun can be adjusted to form an additional radiation structure to achieve high-frequency vertical Directional radiation characteristics at both ends.
  • the antenna further includes a fourth connecting member; wherein the fourth connecting member includes two fourth connecting pieces, and the extension direction of the two fourth connecting pieces is parallel to the first connecting piece. In one direction, one end of the two fourth connecting pieces is connected to two ends of the balun respectively, and the other end of the two fourth connecting pieces is connected to the two first radiating arms respectively.
  • the balun is connected to the first radiator through a fourth connecting member.
  • the distance between the balun and the first radiator is adjusted so that the balun Increase the reflection effect to reflect the energy from one end of the horizontal two-end radiation, thereby enhancing the forward radiation.
  • the distance between the first radiator and the balun in the first direction is the second value.
  • the second value is one quarter of the wavelength of the first signal.
  • the distance between the first radiator and the balun in the first direction is related to the wavelength corresponding to the center frequency of the first radiator and the second radiator in the working frequency band.
  • an electronic device including the antenna as described in the first aspect.
  • Figure 1 is a schematic structural diagram of an example of a monopole antenna.
  • FIG. 2 is a schematic structural diagram of an antenna 100 provided by an embodiment of the present application.
  • FIG. 3 is a top view of the structure of an example antenna 100 provided by an embodiment of the present application.
  • FIG. 4 is a pattern when the antenna 100 shown in FIGS. 2 and 3 radiates the first signal.
  • FIG. 5 is a pattern when the antenna 100 shown in FIGS. 2 and 3 radiates the second signal.
  • FIG. 6 is a schematic structural diagram of another antenna 200 provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another antenna 300 provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another antenna 400 provided by an embodiment of the present application.
  • FIG. 9 is a pattern when the antenna 400 shown in FIG. 8 radiates the first signal.
  • FIG. 10 is a schematic structural diagram of another antenna 500 provided by an embodiment of the present application.
  • FIG. 11 is a pattern when the antenna 500 shown in FIG. 10 radiates the first signal.
  • Connection/connection It can refer to a mechanical connection relationship or a physical connection relationship.
  • the connection between A and B or the connection between A and B can refer to the existence of fastening components (such as screws, bolts, rivets, etc.) between A and B. Or A and B are in contact with each other and A and B are difficult to separate.
  • Relative/relative setting The relative setting of A and B can refer to the setting of A and B face to face (opposite to, or face to face).
  • Resonance frequency is also called resonance frequency.
  • the resonant frequency can refer to the frequency at which the imaginary part of the antenna input impedance is zero.
  • the resonant frequency can have a frequency range, that is, the frequency range in which resonance occurs.
  • the frequency corresponding to the strongest resonance point is the center frequency point frequency.
  • the return loss characteristics of the center frequency can be less than -20dB.
  • Resonance frequency band/communication frequency band/working frequency band No matter what type of antenna, it always works within a certain frequency range (frequency band width).
  • the working frequency band of an antenna that supports the B40 frequency band includes frequencies in the range of 2300MHz to 2400MHz, or in other words, the working frequency band of the antenna includes the B40 frequency band.
  • the frequency range that meets the index requirements can be regarded as the working frequency band of the antenna.
  • Electrical length It can refer to the ratio of physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave.
  • the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • the physical length of the radiator can be understood as ⁇ 25% of the electrical length of the radiator.
  • the physical length of the radiator can be understood as ⁇ 10% of the electrical length of the radiator.
  • Wavelength or working wavelength, which can be the wavelength corresponding to the center frequency of the resonant frequency or the center frequency of the working frequency band supported by the antenna.
  • the operating wavelength can be the wavelength calculated using the frequency of 1955MHz.
  • "working wavelength” can also refer to the wavelength corresponding to the resonant frequency or non-center frequency of the working frequency band.
  • the first position of the first linker can be It refers to a conductor part including the midpoint on the first connector, which may be a conductor part of one-eighth wavelength including the midpoint of the conductor.
  • the wavelength may be the wavelength corresponding to the working frequency band of the antenna, and may be the working frequency band.
  • the middle (location) of the conductor may be a portion of the conductor on the conductor that is less than a predetermined threshold (eg, 1 mm, 2 mm, or 2.5 mm) from the midpoint.
  • a predetermined threshold eg 1 mm, 0.5 m, or 0.1 mm
  • a deviation less than a predetermined threshold eg 1 mm, 0.5 m, or 0.1 mm
  • a predetermined angle eg ⁇ 5°, ⁇ 10°
  • Ground, or floor can generally refer to at least part of any ground layer, or ground plate, or ground metal layer, etc. in an electronic device (such as a mobile phone), or any combination of any of the above ground layers, or ground plates, or ground components, etc. At least in part, “ground” can be used to ground components within electronic equipment. In one embodiment, "ground” may be the grounding layer of the circuit board of the electronic device, or it may be the grounding plate formed by the middle frame of the electronic device or the grounding metal layer formed by the metal film under the screen.
  • the circuit board may be a printed circuit board (PCB), such as an 8-, 10-, or 12- to 14-layer board with 8, 10, 12, 13, or 14 layers of conductive material, or by a circuit board such as Components separated and electrically insulated by dielectric or insulating layers such as fiberglass, polymer, etc.
  • the circuit board includes a dielectric substrate, a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through vias.
  • components such as a display, touch screen, input buttons, transmitter, processor, memory, battery, charging circuit, system on chip (SoC) structure, etc. may be mounted on or connected to the circuit board; Or electrically connected to trace and/or ground planes in the circuit board.
  • SoC system on chip
  • ground layers, or ground plates, or ground metal layers are made of conductive materials.
  • the conductive material can be any of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on an insulating substrate, silver foil and tin-plated copper on an insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheet and aluminized substrate.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • Antenna pattern Also known as radiation pattern or far-field pattern, it is a graph showing the relative field strength (normalized modulus value) of the radiation field changing with the direction at a certain distance from the antenna. It is usually used in the maximum radiation direction of the antenna. represented by two mutually perpendicular plane directions.
  • the antenna pattern can be divided into a horizontal plane pattern and a vertical plane pattern.
  • the electronic devices can be optical network terminals (Optical Network Termination, ONT), mobile terminals, etc.
  • the antenna is an antenna with a three-dimensional structure built into the electronic device, which can be a WiFi antenna. It can be wall-mounted on the inner surface of the casing of the electronic device or on a bracket within the casing, and the antenna can also be fixedly connected to the circuit board inside the electronic device.
  • the electronic device includes a radio frequency module arranged on the circuit board.
  • the radio frequency module is electrically connected to a feed sheet of the antenna to feed the antenna.
  • the radio frequency module and the feed sheet may be electrically connected through a radio frequency cable.
  • FIG. 1 is a schematic structural diagram of a multi-branch monopole antenna.
  • a multi-frequency resonant monopole antenna is formed based on multiple branches of unequal length. Each branch corresponds to For a narrow frequency band, the branch length is generally a quarter of the wavelength corresponding to the resonant frequency. As the branch width becomes larger, its corresponding inductive component weakens, the capacitive component increases, and the impedance characteristics under resonance become more stable, thereby increasing the bandwidth of each narrow band. When two narrow bands are close, a broadband antenna is formed .
  • the above-mentioned broadband antenna or multi-branch resonant structure can only show single polarization characteristics. Since the effective radiation structure is different at different frequencies, the existence of radiating and non-radiating parts will affect each other, resulting in the corresponding radiation direction at each frequency.
  • the figures all present the desired horizontal omnidirectional and symmetrical radiation pattern. This design is not good for achieving wide WiFi coverage of optical network equipment (optical network terminal, ONT).
  • this application provides an antenna that can have low-frequency omnidirectional radiation characteristics and high-frequency two-end directional radiation characteristics, realize differentiation of multi-frequency antenna patterns, and realize low-cost and high integration of the antenna through integrated molding manufacturing. design.
  • FIG. 2 shows a schematic structural front view of an example of the antenna 100 of the present application.
  • the antenna 100 may include a first radiator 110 , a second radiator 120 and a third radiator 130 arranged along a first direction.
  • the input port of the antenna can input a first signal and a second signal.
  • the antenna 100 is excited, the first radiator 110 and the second radiator 120 radiate the first signal, and the third radiator 130 radiates the second signal. signals, allowing the antenna 100 to radiate multi-frequency signals.
  • the frequency of the first signal is higher than the frequency of the second signal.
  • the first radiator 110 and the second radiator 120 radiate high-frequency signals
  • the third radiator 130 radiates low-frequency signals, so that the antenna 100 has low-frequency omnidirectional radiation and high-frequency two-end directional radiation.
  • the antenna 100 provided in this application can be manufactured through a mechanical stamping process and integrally molded to form the antenna 100 including the first radiator 110 , the second radiator 120 and the third radiator 130 .
  • the antenna provided by this application has high automated manufacturability, simple manufacturing process, and low manufacturing cost.
  • FIG. 3 is a top view of the antenna 100 .
  • the first radiator 110 is a dipole composed of two first radiating arms 111.
  • the two first radiating arms 111 have the same shape and structure and have a gap 112 in the middle.
  • the two first radiating arms 111 of the first radiator 110 may be specifically in the shape of a strip or a rectangle, and their extending directions are both perpendicular to the first direction X.
  • the two first radiating arms 111 of the first radiator 110 are collinear, and the two collinear first radiating arms 111 form a dipole pair that facilitates polarization.
  • the first radiator has omnidirectional radiation characteristics.
  • the first radiator 110 may be a high-frequency dipole composed of two first radiating arms 111 .
  • a first connecting piece 140 is provided between the first radiator 110 and the second radiating body 120.
  • the first connecting piece 140 includes two parallel first connecting pieces 141.
  • the shape of the two first connecting pieces 141 is The structure is the same and there is a gap 112 in the middle.
  • the two first connecting pieces 141 of the first connecting member 140 can be specifically in the shape of strips or rectangles, and their extension direction are parallel to the first direction X.
  • one end of the two first connecting pieces 141 on the same side is orthogonally connected to one end of the two first radiating arms 111 of the first radiator 110 close to the first direction X, and the other end of the two first connecting pieces 141 on the same side is orthogonally connected.
  • One end is connected to two ends of the second radiator 120 respectively.
  • the distance between the first radiator and the second radiator in the first direction is a first value
  • the first value is determined according to the wavelength of the first signal and the target radiation direction of the first signal.
  • the first value is half the wavelength of the first signal, that is, the distance between the first radiator and the second radiator in the first direction is 120 is one-half of the wavelength corresponding to the center frequency in the same operating frequency band.
  • the first value can also be adjusted according to the design structure of the binary array antenna, by adjusting the distance between the first radiator and the second radiator, thereby achieving radiation characteristics in a specific target direction.
  • two ends of the second radiator 120 are respectively connected to one end on the same side of the two first connecting pieces 141 , and the second radiator has omnidirectional radiation characteristics.
  • the second radiator 120 is a folded oscillator.
  • the folded oscillator is a flat ring-shaped antenna that is symmetrical with respect to the first direction X.
  • the second radiator 120 includes two ports that are symmetrical with respect to the first direction X. , the two ports of the second radiator 120 are respectively connected to one end of the two first connecting pieces 141 on the same side.
  • the third radiator 130 is composed of two radiating parts 131.
  • the two radiating parts 131 have the same shape and structure.
  • the third radiating body 130 is located between the first radiating body 110 and the second radiating part. Between the bodies 120 , the second radiator 130 is connected to the first position of the first connecting piece 141 .
  • the third radiator has omnidirectional radiation characteristics.
  • the two radiating parts 131 are composed of a second radiating arm 132 and a third radiating arm 133.
  • the second radiating arm 132 and the third radiating arm 133 may be strip-shaped or rectangular, and their extension directions are perpendicular to the first radiating arm 132.
  • Direction X In a specific embodiment, the width of the second radiating arm 132 in the first direction X is smaller than the width of the third radiating arm 133 in the first direction X.
  • the two radiating parts 131 of the third radiator 130 are collinear, that is, the two second radiating arms 132 and the two third radiating arms 133 are collinear.
  • the two collinear radiating parts 131 form a dipole pair that facilitates polarization. .
  • One end of the second radiating arm 132 is connected to the first position of the first connecting piece 141 , and the other end of the second radiating arm 132 is connected to one end of the third radiating arm 133 .
  • first position of the first connecting piece 141 is related to the port matching characteristics. The closer the first position is to the first radiator 110, the better the port matching characteristics are.
  • the third radiator may be a low frequency dipole.
  • the first radiator 110 and the second radiator 120 with omnidirectional radiation characteristics and the first connector 140 form a one-piece binary array antenna, which can be used as a high-frequency radiation body, forming a pattern with directional radiation from both ends.
  • the third radiator 130 serves as an omnidirectional low-frequency radiator and forms a pattern with omnidirectional radiation, so that the antenna 100 has low-frequency omnidirectional radiation characteristics and high-frequency two-end directional radiation characteristics.
  • FIG. 2 and FIG. 3 only schematically show some components included in the antenna 100, and the actual shapes, actual sizes and actual structures of these components are not limited by FIG. 2.
  • FIG. 4 is a pattern when the antenna 100 shown in FIGS. 2 and 3 radiates the first signal. It can be seen from Figure 4 that the antenna 100 along the first direction X has directional radiation characteristics along the first direction X and in the opposite direction to the first direction X, That is, the antenna 100 has high-frequency bidirectional radiation characteristics.
  • FIG. 5 is a pattern when the antenna 100 shown in FIGS. 2 and 3 radiates the second signal. It can be seen from FIG. 5 that the antenna 100 along the first direction X has omnidirectional radiation characteristics, that is, the antenna 100 has low-frequency omnidirectional radiation characteristics.
  • the antenna 100 may further include a second connecting member 150 and a third connecting member 160 .
  • the antenna 100 When a signal is input, the antenna 100 is excited to form a multi-frequency antenna with low-frequency omnidirectional radiation characteristics and high-frequency directional radiation characteristics.
  • the antenna 100 can be manufactured through a mechanical stamping process to include a first radiator 110, a second radiator 120, a third radiator 130, a first connector 140, a second connector 150 and a third connector. 160 piece antenna for 100.
  • the first radiator 110, the second radiator 120, the first connector 140, and the third connector 160 form the high-frequency radiator 170, and the third radiator 130 serves as the low-frequency radiator 180.
  • the second connecting piece 150 includes two second connecting pieces 151.
  • the two second connecting pieces 151 have the same shape and structure.
  • the two second connecting pieces of the second connecting piece 150 are 151 can be specifically in the form of a bar or a rectangle.
  • One end of the two second connecting pieces 151 close to the first direction
  • the second position of the first connecting member 140 is related to the high-frequency characteristics of the antenna 100.
  • the second position of the first connecting member 140 is close to the first radiator 110, that is, the second connecting member 150 and The connection position of the first connecting member 140 is close to the first radiator 110 .
  • the two second connecting pieces 151 of the second connecting member 150 are manufactured together with the first radiator 110 , the second radiator 120 , the third radiator 130 , the first connecting member 140 and the third connecting member. 160 can be located on the same plane, and the two second connecting pieces 151 can be bent so that they are perpendicular to the first radiator 110, the second radiator 120, the first connector 140, the third radiator 130 and the third connection
  • the entirety of the component 160 allows the two second connecting pieces 151 to be used for plugging or patching with the circuit board.
  • the length of the second connecting member can be adjusted according to the internal space actually required by the product.
  • the third connecting member 160 is located on the opposite side of the second radiator 120 and is connected to the other end of the first radiator, so that the antenna 100 forms a closed loop.
  • the antenna 100 including the third connector 160 produces a pattern when radiating the first signal and the second signal, which is consistent with Figures 4 and 5.
  • the antenna 100 including the third connector 160 produces a pattern when radiating the first signal and the second signal, which is consistent with Figures 4 and 5.
  • the area of the antenna is mainly limited by the size of the low-frequency radiator, while the feed structure and the connection relationship with the single board are limited by the second connecting piece.
  • the low-frequency radiator that is, the third radiator can be 130, and the adjustment of the shape of the second connecting member 150, thereby reducing the size of the antenna.
  • FIG. 6 shows a schematic structural diagram of an example of the antenna 200 of the present application.
  • the embodiment shown in FIG. 6 includes the structures of the embodiments shown in FIG. 2 and FIG. 3 .
  • the second radiating arm 132 of the third radiator 130 in the embodiment shown in Figures 2 and 3 has a narrow structure, while in the antenna shown in Figure 6 , the second radiating arm 132 of the third radiator 130 in Figures 2 and 3 is bent to obtain the fourth radiating arm 134.
  • the extended size of the bent portion will shorten the original
  • the overall structure of the two radiating arms 132 makes the overall size of the third radiator 130 smaller, further reducing the size of the antenna 200 .
  • the bending process can be understood as changing the second radiating arm 132 into a serpentine structure, and the bending process can also be understood as changing the second radiating arm 132 into a structure including at least one U-shaped bend.
  • This application The specific form of the bending treatment is not limited.
  • the fourth radiating arm 134 is obtained by bending the second radiating arm 132 of the third radiator 130, while maintaining the length of the original circuit line, that is, the antenna 200 While the directional pattern is consistent with the directional pattern of the antenna 100, the size of the third radiator 130 is reduced, further reducing the overall size of the antenna 100.
  • FIG. 7 shows a schematic structural diagram of an example of the antenna 300 of the present application.
  • the embodiment shown in FIG. 7 includes the structures of the embodiments shown in FIG. 2 and FIG. 3 .
  • the two second connecting pieces 151 of the second connecting piece 150 in Figures 2 and 3 are gradually opened.
  • the bending process obtains the fourth connecting piece 152, that is, when the two second connecting pieces 151 are perpendicular to the radiating structure, the length of the two second connecting pieces 151 remains unchanged, and the two second connecting pieces 151 are opened outwards. , so that the distance along the direction perpendicular to the first direction The distance between the two ends along the direction perpendicular to the first direction X.
  • this structural change does not change the composition relationship between the high-frequency radiator and the low-frequency radiator, the radiation pattern of the antenna 300 is consistent with the antenna. The radiation pattern of 300 will not change.
  • the bending process of gradually opening can be understood as opening the second connecting piece 151 from one end to the other end, and the bending process of gradually opening can also be understood as performing multiple operations on the second connecting piece 151 Bending, this application does not limit the specific form of the bending process of gradual opening.
  • the two second connecting pieces 151 of the second connecting member 150 are gradually opened and bent, while maintaining the length of the original circuit line, that is, the length of the antenna 300 is
  • the pattern is consistent with the pattern produced by the antenna 100 when radiating the first signal and the second signal, thereby reducing the size of the second connecting member 150 and further reducing the overall size of the antenna 300 .
  • FIG. 8 shows a schematic structural diagram of an example of the antenna 400 of the present application.
  • the embodiment shown in FIG. 8 includes the structures of the embodiments shown in FIG. 2 and FIG. 3 .
  • the third connector 160 in the embodiment shown in FIGS. 2 and 3 only serves as a connector to connect to the first radiator 110 , so that the entire antenna forms a closed loop.
  • the third connector 160 in Figures 2 and 3 is replaced with the balun 190 shown in Figure 8, so that it can maintain the antenna to form a closed loop while adjusting the balun.
  • the size of the lumen forms an additional radiation structure to achieve high-frequency vertical directional radiation characteristics at both ends.
  • the balun 190 may be a branch with a larger size than the first radiator 110 so as to participate in radiation as a radiator.
  • the antenna 400 can have vertical two-end directional radiation characteristics.
  • FIG. 9 is a pattern when the antenna 400 shown in FIG. 8 radiates the first signal. It can be seen from FIG. 9 that the antenna 400 along the first direction X has directional radiation characteristics perpendicular to the first direction X, that is, the antenna 400 has high-frequency vertical directional radiation characteristics at both ends.
  • the balun 190 is connected to the first radiator 110.
  • the balun 190 can be directly connected to the first radiator 110.
  • the balun 190 can be connected to the first radiator 110 through the fourth connection member 191, specifically the antenna 500 shown in Figure 10.
  • the distance between the first radiator and the balun in the first direction is the second value.
  • the second value is one quarter of the wavelength of the first signal.
  • the second value can also be other values, which is not limited by this application.
  • the balun 190 by adjusting the distance between the balun 190 and the first radiator 110, the balun 190 has a reflection effect, so that the antenna 500 has forward radiation characteristics.
  • FIG. 11 is a pattern when the antenna 500 shown in FIG. 10 radiates the first signal. It can be seen from Figure 11 that the antenna 500 along the first direction X has unidirectional radiation characteristics in the opposite direction of the first direction
  • the third radiator 130 in the antenna 500 is consistent with that in the antenna 100 , the pattern when the antenna 500 radiates the second signal is consistent with that shown in FIG. 5 . To avoid redundancy, no detailed description will be given here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection between devices or units may be in electrical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供了一种天线和电子设备,其中,天线包括输入端口,用于输入待发射的信号,其中,所述信号包括第一信号和第二信号,第一信号的频率高于第二信号的频率;第一辐射体,用于辐射所述第一信号;第二辐射体,用于辐射所述第一信号;第三辐射体,用于辐射所述第二信号;其中,第一辐射体、第二辐射体和第三辐射体沿第一方向排列,第三辐射体位于第一辐射体和第二辐射体之间,且第一辐射体和第二辐射体在所述第一方向上的距离为第一值,第一值是根据第一信号的波长和第一信号的目标辐射方向确定的。本申请提供的天线能够产生低频全向辐射和高频两端定向辐射,实现多频天线方向图差异化,通过一体成型制造,实现天线低成本和高集成设计。

Description

一种天线和电子设备
本申请要求于2022年4月18日提交中国国家知识产权局、申请号为202210405826.0、申请名称为“一种天线和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种天线和电子设备。
背景技术
随着家庭网络无线局域网(wIreless fidelity,WiFi)产品规格及频段不断增加,多频天线的需求越来越多。目前,多频天线大多通过将低频天线与高频天线嵌套,实现两种频段的天线的总体辐射性能较佳的目的。
然而,对于WiFi不同频点而言,2G低频天线穿墙能力强,但规格低,主要以满足广覆盖为主,需要具有全向辐射特性的方向图;而5G高频天线穿墙能力弱,但规格一般较高,采用增益更高,具有定向辐射特性的结构实现特定方向和用户的增强,从而提升大带宽的体验。
因此,如何控制天线辐射性能,设计小尺寸、低成本、免连接、具有差异化方向图的多频天线是非常重要的研究方向。
发明内容
本申请实施例提供了一种天线和电子设备,采用一体成型制造,同时基于双频差异化辐射特性要求设计了低频小尺寸全向辐射和高频高增益的两端定向辐射的融合型天线结构,实现天线的低成本、高性能和高集成设计。
第一方面,提供了一种天线,包括:输入端口,用于输入待发射的信号,其中,信号包括第一信号和第二信号,第一信号的频率高于第二信号的频率;第一辐射体,用于辐射所述第一信号;第二辐射体,用于辐射第一信号;第三辐射体,用于辐射第二信号;其中,第一辐射体、第二辐射体和第三辐射体沿第一方向排列,第三辐射体位于第一辐射体和第二辐射体之间,且第一辐射体和第二辐射体在第一方向上的距离为第一值,第一值是根据第一信号的波长和第一信号的目标辐射方向确定的。
根据本申请实施例的技术方案,由第一辐射体和第二辐射体组成的二元阵列形成具有两端定向辐射的高频辐射体,呈现具有两端辐射的方向图;第三辐射体为全向辐射的低频辐射体,呈现具有全向辐射的方向图,从而实现多频天线方向图的差异化。
结合第一方面,在第一方面的某些实现方式中,第一辐射体,第二辐射体和第三辐射体一体成型。
根据本申请实施例的技术方案,第一辐射体,第二辐射体和第三辐射体通过机械冲压 工艺制成一体成型式天线,免除了人工组装要求,实现与单板的免cable连接,降低人工制作成本。
结合第一方面,在第一方面的某些实现方式中,第一值为第一信号的波长的二分之一。
根据本申请实施例的技术方案,第一辐射体和第二辐射体在第一方向上的距离与第一辐射体和第二辐射体工作频段上中心频率对应的波长有关,当第一辐射体和第二辐射体工作在相同的工作频段上时,第一值为第一信号的波长的二分之一时,该天线能够具有较高增益的辐射。
结合第一方面,在第一方面的某些实现方式中,天线还包括第一连接件;其中,第一连接件包括两个平行的第一连接片,两个第一连接片的延伸方向平行于第一方向,两个第一连接片的一端与第一辐射体相连,两个第一连接片的另一端与第二辐射体相连。
根据本申请实施例的技术方案,第一辐射体和第二辐射体通过两个平行的第一连接片相连,从而构成了具有一定阻抗的馈电传输结构。
结合第一方面,在第一方面的某些实现方式中,第一辐射体包括两个第一辐射臂,两个第一辐射臂的延伸方向垂直于所述第一方向,两个第一辐射臂分别与两个第一连接片的一端关于第一方向对称正交相连。
根据本申请实施例的技术方案,第一辐射体可以为高频偶极子,使得该天线具有较好的宽带全向辐射特性,同时采用偶极子的平衡设计有助于一体成型制造,且有利于宽带阻抗匹配馈电设计。
结合第一方面,在第一方面的某些实现方式中,第二辐射体为折合振子,第二辐射体的两端分别与两个第一连接片的另一端相连。
根据本申请实施例的技术方案,第二辐射体可以为折合振子,在辐射高频信号的同时,使得天线的一端形成闭合结构,从而使得该天线的辐射特性更加稳定。
结合第一方面,在第一方面的某些实现方式中,第三辐射体包括两个辐射部分,两个辐射部分的延伸方向垂直于第一方向,两个辐射部分分别与第一连接片的第一位置关于第一方向对称正交相连。
根据本申请实施例的技术方案,第三辐射体可以是低频辐射体,使得该天线具有低频辐射特性,同时将第三辐射体置于第一辐射体和第二辐射体之间,使得该天线能够同时具有低频全向辐射特性和高频定向辐射特性。
结合第一方面,在第一方面的某些实现方式中,辐射部分包括第二辐射臂和第三辐射臂,第二辐射臂的一端与第一连接片的第一位置正交相连,第二辐射臂的另一端与第三辐射臂相连。
结合第一方面,在第一方面的某些实现方式中,第二辐射臂的水平宽度小于第三辐射臂的水平宽度。
根据本申请实施例的技术方案,在第三辐射体与第一辐射体和第二辐射体高度重合的区域采取了细窄结构的高阻抗设计,避免了高低频不同辐射体之间的耦合影响,从而抑制高频耦合,减少低频辐射体结构对高频辐射体的反射作用。
结合第一方面,在第一方面的某些实现方式中,第二辐射臂为弯折结构。
根据本申请实施例的技术方案,对第三辐射体的第二辐射臂进行弯折化处理,但该第 二辐射臂的高度与高频辐射图重合,尺寸不变,弯折部分延展的尺寸将缩短末端宽辐射体结构,从而使得第三辐射体的整体尺寸变小,进一步地减小了天线的尺寸。
结合第一方面,在第一方面的某些实现方式中,天线还包括第二连接件;其中,第二连接件包括两个平行的第二连接片,两个第二连接片的延伸方向分别位于两个第一连接片的法线方向,两个第二连接片的一端分别与两个第一连接片的第二位置对称正交相连。
根据本申请实施例的技术方案,第二连接件的两个第二连接片分别作为输入端和输出端,与单板相连,用于传输信号。
结合第一方面,在第一方面的某些实现方式中,第二连接片为弯折结构。
根据本申请实施例的技术方案,对第二连接件的两个第二连接片进行渐变张开的弯折化处理,这样能够匹配单板上射频轴向及工厂的可制造型,同时由于这种结构变化并没有改变该天线中高频辐射体和低频辐射体的组成关系,因此该天线的辐射方向图不会发生变化。
结合第一方面,在第一方面的某些实现方式中,天线还包括第三连接件;其中,所述第三连接件沿所述第一方向与所述第一辐射体相连,所述天线形成闭合回路。
根据本申请实施例的技术方案,通过第三连接件使得整体天线形成一个闭合回路,使得天线结构具有一体成型的制造空间,且天线性能更加稳定可靠。
结合第一方面,在第一方面的某些实现方式中,天线还包括巴伦;其中,巴伦的两端分别与两个第一辐射臂相连。
根据本申请实施例的技术方案,将尾部的第三连接件替换为巴伦,在保持天线形成闭合回路的同时,可通过调整巴伦的尺寸,从而形成额外的一个辐射结构,实现高频垂直两端定向辐射特性。
结合第一方面,在第一方面的某些实现方式中,天线还包括第四连接件;其中,第四连接件包括两个第四连接片,两个第四连接片的延伸方向平行于第一方向,两个第四连接片的一端分别与巴伦的两端相连,两个第四连接片的另一端分别与两个第一辐射臂相连。
根据本申请实施例的技术方案,巴伦通过第四连接件与第一辐射体相连,在保持天线为闭合回路的结构下,通过调整巴伦与第一辐射体之间的间距,使得巴伦增加反射作用,将水平两端辐射中的一端能量反射,从而增强前向辐射。
结合第一方面,在第一方面的某些实现方式中,第一辐射体与巴伦在第一方向上的距离为第二值。
结合第一方面,在第一方面的某些实现方式中,第二值为第一信号的波长的四分之一。
根据本申请实施例的技术方案,第一辐射体与巴伦在第一方向上的距离即第二值与第一辐射体和第二辐射体在工作频段上中心频率对应的波长有关,当第二值为第一信号的波长的四分之一时,巴伦的反射作用较强,从而使得天线具有较强的前向辐射。
第二方面,提供了一种电子设备,包括如上述第一方面所述的天线。
附图说明
图1是一例单极子天线的结构示意图。
图2是本申请实施例提供的一例天线100的结构示意图。
图3是本申请实施例提供的一例天线100的结构的俯视图。
图4是图2和图3所示的天线100辐射第一信号时的方向图。
图5是图2和图3所示的天线100辐射第二信号时的方向图。
图6是本申请实施例提供的另一例天线200的结构示意图。
图7是本申请实施例提供的另一例天线300的结构示意图。
图8是本申请实施例提供的另一例天线400的结构示意图。
图9是图8所示的天线400辐射第一信号时的方向图。
图10是本申请实施例提供的另一例天线500的结构示意图。
图11是图10所示的天线500辐射第一信号时的方向图。
具体实施方式
以下,对本申请实施例可能出现的术语进行解释。
连接/相连:可以指一种机械连接关系或物理连接关系,例如,A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
相对/相对设置:A与B相对设置可以是指A与B面对面(opposite to,或是face to face)设置。
谐振/谐振频率:谐振频率又叫共振频率。谐振频率可以指天线输入阻抗虚部为零处的频率。谐振频率可以有一个频率范围,即,发生共振的频率范围。共振最强点对应的频率就是中心频率点频率。中心频率的回波损耗特性可以小于-20dB。
谐振频段/通信频段/工作频段:无论何种类型的天线,总是在一定的频率范围(频段宽度)内工作。例如,支持B40频段的天线,其工作频段包括2300MHz~2400MHz范围内的频率,或者是说,该天线的工作频段包括B40频段。满足指标要求的频率范围可以看作天线的工作频段。
电长度:可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
其中,L为物理长度,λ为电磁波的波长。
在本申请的一些实施例中,辐射体的物理长度,可以理解为辐射体的电长度±25%。
在本申请的一些实施例中,辐射体的物理长度,可以理解为辐射体的电长度±10%。
波长:或者工作波长,可以是谐振频率的中心频率对应的波长或者天线所支持的工作频段的中心频率。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那工作波长可以为利用1955MHz这个频率计算出来的波长。不限于中心频率,“工作波长”也可以是指谐振频率或工作频段的非中心频率对应的波长。
本申请实施例中提及的中间或中间位置等这类关于位置、距离的限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。例如,第一连接体的第一位置可以 是指第一连接体上包括中点的一段导体部分,可以是包括该导体中点的一段八分之一波长的导体部分,其中,波长可以是天线的工作频段对应的波长,可以是工作频段的中心频率对应的波长,或者,谐振点对应的波长。又例如,导体的中间(位置)可以是指导体上距离中点小于预定阈值(例如,1mm,2mm,或2.5mm)的一段导体部分。
本申请实施例中提及的共线、共轴、共面、对称(例如,轴对称、或中心对称等)、平行、垂直、相同(例如,长度相同、宽度相同等等)等这类限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。共线的两个辐射枝节或者两个天线单元的边缘之间在线宽方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。共面的两个辐射枝节或者两个天线单元的边缘之间在垂直于其共面平面的方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。相互平行或垂直的两个天线单元之间可以存在预定角度(例如±5°,±10°)的偏差。
地,或地板:可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地”可用于电子设备内元器件的接地。一个实施例中,“地”可以是电子设备的电路板的接地层,也可以是电子设备中框形成的接地板或屏幕下方的金属薄膜形成的接地金属层。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。一个实施例中,诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上系统(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
天线方向图:又称辐射方向图或远场方向图,为在离天线一定距离处,辐射场的相对场强(归一化模值)随方向变化的图形,通常采用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示。天线方向图可分为水平面方向图和铅垂面方向图。
本申请涉及应用在电子设备中的天线,电子设备可以为光网络终端(Optical Network Termination,ONT)、移动终端等,天线为内置在电子设备中的具有立体结构的天线,可以为WiFi天线,天线可以壁挂在电子设备的机壳内表面或机壳内的支架上,天线也可以固定连接至电子设备内的电路板上。电子设备包括设置在电路板上的射频模块,射频模块与天线的馈电片电连接为所述天线馈电,射频模块与馈电片之间可以通过射频电缆电连接。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解 这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1为一种多枝节的单极子天线的结构示意图,如图1所示,采用基于多个不等长的枝节在一起构成一种多频谐振的单极子天线,其中每一个枝节对应一个窄频带,枝节长度一般为对应谐振频率的四分之一波长。随着枝节宽度变大,其对应的感性分量弱化,容性分量增加,谐振下的阻抗特性愈发稳定,从而使每一个窄频带带宽增大,当两个窄带靠近时就形成一种宽带天线。
然而,上述宽带天线或者多枝节谐振结构均只能呈现单极化特性,由于不同频率下有效辐射结构各不同,辐射和非辐射部分的存在会相互影响,从而造成每个频率下对应的辐射方向图完全都呈现的期望水平全向且对称一致的辐射方向图,这种设计对于实现光网络设备(optical network terminal,ONT)的WiFi广覆盖是不佳的。
为此,本申请提供了一种天线,能够具有低频全向辐射特性和高频两端定向辐射特性,实现多频天线方向图的差异化,通过一体成型制造,实现天线的低成本和高集成设计。
图2示出了本申请的天线100的一例的示意性结构主视图。
如图2所示,该天线100可以包括沿第一方向排列的第一辐射体110、第二辐射体120和第三辐射体130。该天线的输入端口可以输入第一信号和第二信号,当有信号输入时,天线100被激励,第一辐射体110和第二辐射体120辐射第一信号,第三辐射体130辐射第二信号,使得天线100能够辐射多频信号。
其中,第一信号的频率高于第二信号的频率。
示例性地,第一辐射体110和第二辐射体120辐射高频信号,第三辐射体130辐射低频信号,使得该天线100具有低频全向辐射和高频两端定向辐射。
需要说明的是,本申请所提供的天线100可通过机械冲压工艺制造,通过一体成型制造,形成包括第一辐射体110、第二辐射体120和第三辐射体130的天线100。与传统的组装式天线相比,本申请提供的天线自动化制造性高,制造工艺简单,制造成本低。
下面结合图2和图3对天线100进行详细说明,其中,图3为天线100的俯视图。
具体地,如图2和图3所示,第一辐射体110是由两个第一辐射臂111组成的偶极子,两个第一辐射臂111的形状结构相同且中间设有缝隙112,第一辐射体110的两个第一辐射臂111具体可以呈条形或矩形,且它们的延伸方向均垂直于第一方向X。在具体的实施例中,第一辐射体110的两个第一辐射臂111共线,共线的两个第一辐射臂111构成便于极化的偶极子对。该第一辐射体具有全向辐射特性。
在一个实施例中,第一辐射体110可以为由两个第一辐射臂111组成的高频偶极子。
具体地,在第一辐射体110和第二辐射体120之间设有第一连接件140,第一连接件140包括两个平行的第一连接片141,两个第一连接片141的形状结构相同且中间设有缝隙112,第一连接件140的两个第一连接片141具体可以呈条形或矩形,且它们的延伸方 向均平行于第一方向X。其中,两个第一连接片141同侧的一端分别与第一辐射体110的两个第一辐射臂111靠近第一方向X的一端正交相连,两个第一连接片141同侧的另一端分别与第二辐射体120的两端相连。
其中,第一辐射体和第二辐射体在第一方向上的距离为第一值,该第一值是根据第一信号的波长和第一信号的目标辐射方向确定的。
在一个实施例中,该第一值为第一信号的波长的二分之一,即第一辐射体和第二辐射体在第一方向上的距离为第一辐射体110和第二辐射体120在相同工作频段上中心频率对应的波长的二分之一。
可选地,第一值还可以根据二元阵天线的设计结构进行调整,通过调节第一辐射体和第二辐射体之间的距离,从而实现特点目标方向的辐射特性。
具体地,如图2和图3所示,第二辐射体120的两端分别与两个第一连接片141同侧的一端相连,该第二辐射体具有全向辐射特性。
在一个实施例中,该第二辐射体120为折合振子,该折合振子为关于第一方向X对称的扁环状的天线,该第二辐射体120包括两个关于第一方向X对称的端口,第二辐射体120的两个端口分别与两个第一连接片141同侧的一端相连。
具体地,如图2和图3所示,第三辐射体130由两个辐射部分131组成,两个辐射部分131的形状结构相同,第三辐射体130位于第一辐射体110和第二辐射体120之间,第二辐射体130与第一连接片141的第一位置相连。该第三辐射体具有全向辐射特性。
其中,两个辐射部分131由第二辐射臂132和第三辐射臂133组成,第二辐射臂132和第三辐射臂133具体可以呈条形或矩形,且它们的延伸方向均垂直于第一方向X。在具体的实施例中,第二辐射臂132在第一方向X上的宽度小于第三辐射臂133在第一方向X上的宽度。第三辐射体130的两个辐射部分131共线,即两个第二辐射臂132和两个第三辐射臂133共线,共线的两个辐射部分131构成便于极化的偶极子对。
其中,第二辐射臂132的一端与第一连接片141的第一位置相连,第二辐射臂132的另一端与第三辐射臂133的一端相连。
应理解,第一连接片141的第一位置与端口匹配特性相关,第一位置距离第一辐射体110越近,则端口匹配特性越好。
在一个实施例中,该第三辐射体可以为低频偶极子。
在本申请实施例提供的技术方案中,具有全向辐射特性的第一辐射体110、第二辐射体120,与第一连接件140形成一件式的二元阵列天线,能够作为高频辐射体,形成具有两端定向辐射的方向图。第三辐射体130作为全向辐射的低频辐射体,形成具有全向辐射的方向图,从而使得该天线100具有低频全向辐射特性和高频两端定向辐射特性。
需要说明的是,图2和图3仅示意性的示出了天线100包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图2限定。
为了更好地理解本申请实施例中提供的天线100所带来的有益效果,下面结合天线100的方向图进行具体说明。
图4是图2和图3所示所示天线100辐射第一信号时的方向图。从图4中可以看出,沿第一方向X的天线100具有沿第一方向X方向和沿第一方向X反方向的定向辐射特性, 即天线100具有高频双向辐射特性。
图5是图2和图3所示所示天线100辐射第二信号时的方向图。从图5中可以看出,沿第一方向X的天线100具有全向辐射特性,即天线100具有低频全向辐射特性。
在一种可能的实施方式中,该天线100还可以包括第二连接件150和第三连接件160。当有信号输入时,天线100被激励,形成具有低频全向辐射特性和高频定向辐射特性的多频天线。
需要说明的是,天线100可通过机械冲压工艺制造,形成包括第一辐射体110、第二辐射体120、第三辐射体130、第一连接件140、第二连接件150和第三连接件160的一件式天线100。
其中,第一辐射体110、第二辐射体120、第一连接件140、和第三连接件160组成高频辐射体170,第三辐射体130作为低频辐射体180。
具体地,如图2和图3所示,第二连接件150包括两个第二连接片151,两个第二连接片151的形状结构相同,第二连接件150的两个第二连接片151具体可以呈条形或矩形。两个第二连接片151靠近第一方向X的一端与第一连接件140的第二位置相连,两个第二连接片151的另一端分别作为信号输入端和输出端。
应理解,第一连接件140的第二位置与天线100的高频特性有关,在一个实施例中,第一连接件140的第二位置靠近第一辐射体110,即第二连接件150与第一连接件140的连接位置靠近第一辐射体110。
需要说明的是,第二连接件150的两个第二连接片151生产制造时与第一辐射体110、第二辐射体120、第三辐射体130、第一连接件140和第三连接件160可以位于同一平面,可以将两个第二连接片151进行弯折,使得其垂直于第一辐射体110、第二辐射体120、第一连接件140、第三辐射体130和第三连接件160的整体,如图2所示,使得两个第二连接片151用于与电路板的插接或贴片。
应理解,该第二连接件的长度根据可根据产品实际所需的内部空间调节。
具体地,如图2和图3所示,第三连接件160位于第二辐射体120的对侧,与第一辐射体的另一端相连,使得天线100形成闭合回路。
应理解,本申请对该第三连接件160的形状不予限制。
需要说明的是,由于第三连接件160不进行辐射,因此包含第三连接件160的天线100在辐射第一信号和第二信号时产生的方向图与图4和图5一致,这里,为了避免赘述,省略其描述。
对于整个天线而言,天线的面积主要受低频辐射体尺寸的限制,而馈电结构以及与单板的连接关系则受第二连接片的限制,可以通过对低频辐射体,即第三辐射体130,和第二连接件150形状的调整,从而减小天线尺寸。下面结合图6和图7进行具体说明。
图6示出了本申请的天线200的一例的示意性结构图。其中,图6所示的实施例包括图2和图3所示的实施例的各结构。
与图2和图3所示实施例不同的是,图2和图3所示实施例中的第三辐射体130的第二辐射臂132为细窄结构,而在图6所示的天线中,将图2和图3中的第三辐射体130的第二辐射臂132进行弯折化处理,得到第四辐射臂134,弯折部分延展的尺寸将缩短原第 二辐射臂132的整体结构,从而使得第三辐射体130的整体尺寸变小,进一步地减小了天线200的尺寸。
应理解,弯折化处理可以理解为将第二辐射臂132改为蛇形结构,弯折化处理还可以理解为将第二辐射臂132改为包括至少一个U型弯折的结构,本申请对弯折化处理的具体形式不予限制。
在本申请实施例提供的技术方案中,通过将第三辐射体130的第二辐射臂132进行弯折化处理,得到第四辐射臂134,在保持原有电路线路长度的同时,即天线200的方向图与天线100的方向图一致的同时,缩小了第三辐射体130的尺寸,进一步地减小了天线100的整体尺寸。
图7示出了本申请的天线300的一例的示意性结构图。其中,图7所示的实施例包括图2和图3所示的实施例的各结构。
与图2和图3所示实施例不同的是,在图7所示的天线300中,将图2和图3中的第二连接件150的两个第二连接片151进行渐变张开的弯折化处理得到第四连接片152,即当两个第二连接片151垂直于辐射结构时,两个第二连接片151的长度不变,将两个第二连接片151向外张开,使得两个第二连接片151中作为信号馈入端的两端的,沿垂直于第一方向X方向上的距离小于两个第二连接片151中与第一连接件140的第二位置连接的两端沿垂直于第一方向X方向上的距离。这样能够使得天线300匹配单板上射频轴向及工厂的可制造型,同时由于这种结构变化并没有改变高频辐射体和低频辐射体的组成关系,因此该天线300的辐射方向图与天线300的辐射方向图不会发生变化。
应理解,渐变张开的弯折化处理可以理解为由第二连接片151一端到另一端向外张开,渐变张开的弯折化处理还可以理解为对第二连接片151进行多次弯折,本申请对渐变张开的弯折化处理的具体形式不予限制。
在本申请实施例提供的技术方案中,通过将第二连接件150的两个第二连接片151进行渐变张开的弯折化处理,在保持原有电路线路长度的同时,即天线300的方向图与天线100在辐射第一信号和第二信号时产生的方向图一致,缩小了第二连接件150的尺寸,进一步地减小了天线300的整体尺寸。
图8示出了本申请的天线400的一例的示意性结构图。其中,图8所示的实施例包括图2和图3所示的实施例的各结构。
与图2和图3所示实施例不同的是,图2和图3所示实施例中的第三连接件160仅作为连接体与第一辐射体110相连,使得整体天线形成闭合回路。而在图8所示的天线500中,将图2和图3中的第三连接件160替换为如图8所示的巴伦190,使得其在保持天线形成闭合回路的同时,通过调整巴伦的尺寸大小,从而形成额外的一个辐射结构,实现高频垂直两端定向辐射特征。
具体地,巴伦190可以为尺寸大于第一辐射体110的枝节,以作为一个辐射体参与辐射。
在本申请实施例提供的技术方案中,通过将巴伦190作为一个辐射体与高频辐射体180共同进行辐射,能够使得天线400具有垂直两端定向辐射特征。
为了更好地理解本申请实施例中提供的天线400所带来的有益效果,下面结合天线400 的方向图进行具体说明。图9是图8所示天线400辐射第一信号时的方向图。从图9中可以看出,沿第一方向X的天线400具有垂直于第一方向X方向的定向辐射特性,即天线400具有高频垂直两端定向辐射特性。
需要说明的是,由于天线400中的第三辐射体130与天线100中的一致,因此天线400辐射第二信号时的方向图与图5一致,这里,为了避免赘述,不再详细说明。
应理解,巴伦190与第一辐射体110相连,在一个实施例中,巴伦190可以直接与第一辐射体110相连。在一个实施例中,巴伦190可以通过第四连接件191与第一辐射体110相连,具体如图10所示的天线500,通过调节第四连接件191的长度,即第一辐射体与巴伦在第一方向上的距离,可以使得巴伦190具有反射作用,能够将前后双波束中的后波束能量反射,从而使得天线500增强前向辐射。第一辐射体与巴伦在第一方向上的距离为第二值。在具体的实施例中,第二值为第一信号的波长的四分之一,第二值还可以为其他值,本申请不予限制。
在本申请实施例提供的技术方案中,通过调节巴伦190与第一辐射体110之间的间距,使得巴伦190具有反射作用,从而使得天线500具有前向辐射特性。
为了更好地理解本申请实施例中提供的天线500所带来的有益效果,下面结合天线600的方向图进行具体说明。图11是图10所示天线500辐射第一信号时的方向图。从图11中可以看出,沿第一方向X的天线500具有沿第一方向X反方向的单向辐射特性,即天线500进一步增强了图4中双端辐射中一端的辐射特性。
需要说明的是,由于天线500中的第三辐射体130与天线100中的一致,因此天线500辐射第二信号时的方向图与图5一致,这里,为了避免赘述,不再详细说明。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的之间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种天线,其特征在于,包括:
    输入端口,用于输入待发射的信号,其中,所述信号包括第一信号和第二信号;
    第一辐射体,用于辐射所述第一信号;
    第二辐射体,用于辐射所述第一信号;
    第三辐射体,用于辐射所述第二信号;
    其中,所述第一辐射体、所述第二辐射体和所述第三辐射体沿第一方向排列,所述第三辐射体位于所述第一辐射体和所述第二辐射体之间。
  2. 根据权利要求1所述的天线,其特征在于,所述第一信号的频率高于所述第二信号的频率。
  3. 根据权利要求1或2所述的天线,其特征在于,所述第一辐射体,所述第二辐射体和所述第三辐射体共同构成一个彼此相连的结构。
  4. 根据权利要求1至3中任一项所述的天线,其特征在于,所述第一辐射体和所述第二辐射体在所述第一方向上的距离为第一值,所述第一值是根据所述第一信号的波长和所述第一信号的目标辐射方向确定的。
  5. 根据权利要求4所述的天线,其特征在于,所述第一值为所述第一信号的波长的二分之一。
  6. 根据权利要求1至5中任一项所述的天线,其特征在于,所述天线还包括第一连接件;
    其中,所述第一连接件包括两个平行的第一连接片,两个所述第一连接片的延伸方向平行于所述第一方向,两个所述第一连接片的一端与所述第一辐射体相连,两个所述第一连接片的另一端与所述第二辐射体相连。
  7. 根据权利要求6所述的天线,其特征在于,所述第一辐射体包括两个第一辐射臂,两个所述第一辐射臂的延伸方向垂直于所述第一方向,两个所述第一辐射臂分别与两个所述第一连接片的一端关于所述第一方向对称正交相连。
  8. 根据权利要求6或7所述的天线,其特征在于,所述第二辐射体为折合振子,所述第二辐射体的两端分别与两个所述第一连接片的另一端相连。
  9. 根据权利要求6至8中任一项所述的天线,其特征在于,所述第三辐射体包括两个辐射部分,两个所述辐射部分的延伸方向垂直于所述第一方向,两个所述辐射部分分别与所述第一连接片的第一位置关于所述第一方向对称正交相连。
  10. 根据权利要求9所述的天线,其特征在于,所述辐射部分包括第二辐射臂和第三辐射臂,所述第二辐射臂的一端与所述第一连接片的第一位置正交相连,所述第二辐射臂的另一端与所述第三辐射臂相连。
  11. 根据权利要求10所述的天线,其特征在于,所述第二辐射臂在所述第一方向上的宽度小于第三辐射臂在所述第一方向上的宽度。
  12. 根据权利要求10所述的天线,其特征在于,所述第二辐射臂为弯折结构。
  13. 根据权利要求6至12中任一项所述的天线,其特征在于,所述天线还包括第二连接件;
    其中,所述第二连接件包括两个平行的第二连接片,两个所述第二连接片的延伸方向分别位于两个所述第一连接片的法线方向,两个所述第二连接片的一端分别与两个所述第一连接片的第二位置对称正交相连。
  14. 根据权利要求13所述的天线,其特征在于,所述第二连接片为弯折结构。
  15. 根据权利要求6至14中任一项所述的天线,其特征在于,所述天线还包括第三连接件;
    其中,所述第三连接件沿所述第一方向与所述第一辐射体相连,所述天线形成闭合回路。
  16. 根据权利要求6至14中任一项所述的天线,其特征在于,所述天线还包括巴伦;
    其中,所述巴伦的两端分别与两个所述第一辐射臂相连。
  17. 根据权利要求16所述的天线,其特征在于,所述天线还包括第四连接件;
    其中,所述第四连接件包括两个第四连接片,两个所述第四连接片的延伸方向平行于所述第一方向,两个所述第四连接片的一端分别与所述巴伦的两端相连,两个所述第四连接片的另一端分别与两个所述第一辐射臂相连。
  18. 根据权利要求17所述的天线,其特征在于,所述第一辐射体与所述巴伦在所述第一方向上的距离为第二值。
  19. 根据权利要求18所述的天线,其特征在于,所述第二值为所述第一信号的波长的四分之一。
  20. 一种电子设备,其特征在于,包括如权利要求1至19中任一项所述的天线。
PCT/CN2023/087575 2022-04-18 2023-04-11 一种天线和电子设备 WO2023202425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210405826.0 2022-04-18
CN202210405826.0A CN116960623A (zh) 2022-04-18 2022-04-18 一种天线和电子设备

Publications (1)

Publication Number Publication Date
WO2023202425A1 true WO2023202425A1 (zh) 2023-10-26

Family

ID=88419116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087575 WO2023202425A1 (zh) 2022-04-18 2023-04-11 一种天线和电子设备

Country Status (2)

Country Link
CN (1) CN116960623A (zh)
WO (1) WO2023202425A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033068A (ja) * 2004-07-12 2006-02-02 Toshiba Corp アンテナおよび当該アンテナ搭載の携帯無線装置
CN104393401A (zh) * 2014-11-26 2015-03-04 佛山中元创新实业有限公司 一种高增益印刷天线
CN105514591A (zh) * 2016-02-19 2016-04-20 广东中元创新科技有限公司 电子线双频带天线
CN205376750U (zh) * 2016-01-12 2016-07-06 中磊电子(苏州)有限公司 双频天线
US20170264019A1 (en) * 2016-03-10 2017-09-14 Rf Industries Pty Ltd Multiband antenna
CN112787094A (zh) * 2021-01-18 2021-05-11 深圳市共进电子股份有限公司 小尺寸双频天线和通信设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033068A (ja) * 2004-07-12 2006-02-02 Toshiba Corp アンテナおよび当該アンテナ搭載の携帯無線装置
CN104393401A (zh) * 2014-11-26 2015-03-04 佛山中元创新实业有限公司 一种高增益印刷天线
CN205376750U (zh) * 2016-01-12 2016-07-06 中磊电子(苏州)有限公司 双频天线
CN105514591A (zh) * 2016-02-19 2016-04-20 广东中元创新科技有限公司 电子线双频带天线
US20170264019A1 (en) * 2016-03-10 2017-09-14 Rf Industries Pty Ltd Multiband antenna
CN112787094A (zh) * 2021-01-18 2021-05-11 深圳市共进电子股份有限公司 小尺寸双频天线和通信设备

Also Published As

Publication number Publication date
CN116960623A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
TWI251956B (en) Multi-band antenna
US6172651B1 (en) Dual-band window mounted antenna system for mobile communications
TWI268009B (en) Dual band antenna and method for making the same
WO2021238347A1 (zh) 天线和电子设备
WO2019223318A1 (zh) 室内基站及其pifa天线
TWM627483U (zh) 雙天線系統
WO2016101136A1 (zh) 一种多频段介质谐振手机终端天线
WO2023202425A1 (zh) 一种天线和电子设备
WO2019227651A1 (zh) 便携式通信终端及其pifa天线
WO2021227813A1 (zh) 天线装置和电子设备
TWI467853B (zh) 雙頻天線及應用該雙頻天線之無線通訊裝置
US6480156B2 (en) Inverted-F dipole antenna
CN112838369A (zh) 天线模块
TWM444619U (zh) 多頻寄生耦合天線及具有多頻寄生耦合天線的無線通訊裝置
EP3893329B1 (en) Antenna for sending and/or receiving electromagnetic signals
JP7407487B1 (ja) 伝送装置及びアンテナ
WO2024032414A1 (zh) 天线及终端设备
CN218334313U (zh) 一种低频辐射单元和基站天线
CN219246926U (zh) 适用于5GHz频宽的天线结构及无线模组
CN218648132U (zh) 天线组件及电子设备
WO2024046199A1 (zh) 一种电子设备
WO2023109556A1 (zh) 天线和电子设备
WO2024037124A1 (zh) 天线模组、天线阵列及电子设备
CN214542533U (zh) 一种内嵌于屏幕内部结构的天线
WO2024114634A1 (zh) 一种天线结构和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791080

Country of ref document: EP

Kind code of ref document: A1