WO2023202129A1 - 电子设备及其天线模组 - Google Patents

电子设备及其天线模组 Download PDF

Info

Publication number
WO2023202129A1
WO2023202129A1 PCT/CN2022/141191 CN2022141191W WO2023202129A1 WO 2023202129 A1 WO2023202129 A1 WO 2023202129A1 CN 2022141191 W CN2022141191 W CN 2022141191W WO 2023202129 A1 WO2023202129 A1 WO 2023202129A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic sheet
antenna module
magnetic
module according
Prior art date
Application number
PCT/CN2022/141191
Other languages
English (en)
French (fr)
Inventor
袁曲
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023202129A1 publication Critical patent/WO2023202129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material

Definitions

  • This application relates to the technical field of electronic equipment, specifically to electronic equipment and antenna modules thereof.
  • NFC Near Field Communication
  • Embodiments of the present application provide an antenna module.
  • the antenna module includes a first magnetic sheet, a first coil, a second coil and a second magnetic sheet.
  • the first coil and the first magnetic sheet are stacked, and the second coil surrounds the first magnetic sheet.
  • a coil, the number of turns of the second coil is smaller than the number of turns of the first coil, and the second coil is partially covered by the second magnetic sheet in the stacking direction in which the first coil and the first magnetic sheet are stacked.
  • the embodiment of the present application provides an electronic device.
  • the electronic device includes a display module, a casing and the antenna module described in the above embodiments.
  • the casing is connected to the display module, and the antenna module is located between the display module and the casing. in which the housing, the first coil, the first magnetic sheet and the display module are arranged in sequence in the stacking direction.
  • the antenna module provided by this application covers part of the second coil with a second magnetic sheet to change the distribution of the magnetic field generated by the second coil, causing the strongest point of the magnetic field generated by the second coil to deviate original position, and reduce the magnetic flux passing through the first coil to reduce the coupling coefficient between the second coil and the first coil, thereby reducing the risk of the first coil and its related structures being burned out when the second coil is working. , or reduce the risk of the second coil and its related structures being burned out when the first coil is working, thereby increasing the reliability of the antenna module.
  • Figure 1 is an exploded structural diagram of an embodiment of the electronic device provided by the present application.
  • FIG. 2 is a schematic top structural view of an embodiment of the antenna module provided by this application.
  • FIG. 3 is a schematic top structural view of an embodiment of the antenna module provided by the present application.
  • FIG. 4 is a schematic cross-sectional structural diagram of an embodiment of the antenna module provided by this application.
  • FIG. 5 is a schematic cross-sectional structural diagram of an embodiment of the antenna module provided by this application.
  • FIG. 6 is a schematic cross-sectional structural diagram of an embodiment of the antenna module provided by this application.
  • FIG. 7 is a schematic top structural view of various embodiments of the antenna module provided by this application.
  • Figure 8 is a schematic diagram of the magnetic field distribution of the antenna module in Figure 2 on the horizontal plane;
  • Figure 9 is a schematic diagram of the magnetic field distribution of the antenna module in Figure 2 on the vertical plane;
  • Figure 10 is a schematic diagram of the magnetic field distribution of the antenna module in Figure 3 on the horizontal plane;
  • Figure 11 is a schematic diagram of the magnetic field distribution of the antenna module in Figure 3 on the vertical plane;
  • Figure 12 is a graph showing the relationship between the coupling coefficient and frequency of the antenna module in Figures 2 and 3.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • Embodiments of the present application provide an antenna module.
  • the antenna module includes a first magnetic sheet, a first coil, a second coil and a second magnetic sheet.
  • the first coil and the first magnetic sheet are stacked, and the second coil surrounds the first magnetic sheet.
  • a coil, the number of turns of the second coil is smaller than the number of turns of the first coil, and the second coil is partially covered by the second magnetic sheet in the stacking direction in which the first coil and the first magnetic sheet are stacked.
  • the second magnetic piece is connected to the first magnetic piece.
  • first magnetic piece and the second magnetic piece are integral structural parts.
  • the second magnetic piece and the first magnetic piece are formed by bending a magnetic piece twice to form a "Z-shaped" structure.
  • the antenna module further includes a third magnetic sheet connecting the first magnetic sheet and the second magnetic sheet.
  • the orthographic projection of the second magnetic sheet along the stacking direction at least partially falls on the first magnetic sheet.
  • first magnetic sheet, the second coil and the second magnetic sheet are arranged sequentially in the stacking direction.
  • the antenna module includes a base body, the first magnetic piece is formed on the base body, and the first coil and the second coil are spirally formed on the same side of the base body.
  • the first magnetic sheet is coated or glued on one side of the base, the first coil and the second coil are glued on the first magnetic piece, the second magnetic piece is glued on the first magnetic piece and covers the second coil. one part to expose the other part of the second coil.
  • the winding central axis of the second coil coincides with the winding central axis of the first coil.
  • the second coil includes a first wiring part not covered by the second magnetic sheet and a second wiring part covered by the second magnetic sheet.
  • the first wiring part and the first coil are located on the same side of the first magnetic sheet and along the stack. The orthographic projection of the direction falls on the first magnetic piece.
  • the second magnetic piece is coplanar with the first magnetic piece.
  • the second coil is arranged in a rectangular shape, and the second wiring part corresponds to one, two or three sides of the second coil.
  • Embodiments of the present application provide an antenna module.
  • the antenna module includes a base body, a magnetic sheet formed on one side of the base body, and a first coil and a second coil.
  • the second coil includes a first wiring part and a second wiring part. , the first wiring part and the first coil are located on one side of the magnetic sheet, and the second wiring part is located on the other side of the magnetic sheet.
  • the antenna module is provided with a via hole that penetrates the base body and the magnetic sheet, and the second coil extends through the via hole.
  • the via hole is filled with another magnetic sheet.
  • the second coil is arranged in a rectangular shape, and the second wiring part corresponds to one, two or three sides of the second coil.
  • the number of turns of the second coil is smaller than the number of turns of the first coil.
  • An embodiment of the present application provides an electronic device.
  • the electronic device includes a display module, a casing and the above-mentioned antenna module.
  • the casing is connected to the display module, and the antenna module is located between the display module and the casing; wherein, the casing
  • the body, the first coil, the first magnetic sheet and the display module are arranged in sequence in the stacking direction.
  • the first coil is used as a wireless charging antenna
  • the second coil is used as a near field communication antenna.
  • Figure 1 is a schematic exploded structural view of an embodiment of an electronic device provided by this application
  • Figure 2 is a schematic top view of an antenna module provided by this application.
  • the electronic device 10 may be a portable device such as a mobile phone, a tablet computer, a notebook computer, or a wearable device.
  • the electronic device 10 is a mobile phone as an example for exemplary description.
  • the electronic device 10 may include a display module 11, a housing 12 and an antenna module 13.
  • the housing 12 is connected to the display module 11, and the antenna module 13 is located between the display module 11 and the housing 12, for example The antenna module 13 is located on the side of the display module 11 facing the housing 12 .
  • the housing 12 can include a middle frame 121 and a back cover 122.
  • the display module 11 and the back cover 122 can be respectively disposed on opposite sides of the middle frame 121, and can be assembled through snapping, gluing, welding, threaded connection, etc.
  • One or a combination of the above methods is assembled and connected with the middle frame 121 to form a basic structure in which the display module 11 and the back cover 122 hold the middle frame 121 together.
  • the antenna module 13 may be located on the side of the middle frame 121 away from the display module 11 .
  • the electronic device 10 may also include structural components such as a battery 14, a motherboard 15, a camera module 16, etc., so that the electronic device 10 can implement corresponding functions.
  • the display module 11, the antenna module 13, the camera module 16 and other structural components can be electrically connected to the battery 14, the motherboard 15, etc. through the flexible circuit board (Flexible Printed Circuit, FPC), so that they can obtain the battery 14 power supply, and can execute corresponding instructions under the control of the main board 15.
  • FPC Flexible Printed Circuit
  • the antenna module 13 may include a first magnetic sheet 131, a first coil 132 and a second coil 133.
  • the first coil 132 is stacked with the first magnetic sheet 131.
  • the first coil 132 is located on the first magnetic sheet 131.
  • the orthographic projection of one side of the first coil 132 and along the direction of the winding central axis of the first coil 132 falls on the first magnetic sheet 131 , and the second coil 133 surrounds the first coil 132 .
  • the winding central axis of the second coil 133 and the winding central axis of the first coil 132 can coincide with each other, that is, they can be placed concentrically, so that when the antenna module 13 is applied to the electronic device 10, the electronic device 10 can be saved. interior space.
  • the housing 12 specifically, the back cover 122
  • the first coil 132, the first magnetic sheet 131 and the display module 11 are connected between the first coil 132 and the first
  • the magnetic sheets 131 are stacked and arranged sequentially in the stacking direction, that is, the first coil 132 is further away from the display module 11 than the first magnetic sheet 131, so that the magnetic field distribution of the antenna module 13 is more focused on the back cover. 122 side, thereby increasing the efficiency of transmitting information and/or energy between the electronic device 10 and other devices, and preventing the antenna module 13 from interfering with other electronic components inside the electronic device 10 when working.
  • the first coil 132 can be used to meet the need for the electronic device 10 to transmit energy with other devices in a wireless manner, such as wireless charging of the electronic device 10 or reverse wireless charging of other devices; the second coil 133 can be used In order to meet the needs of information transmission between the electronic device 10 and other devices, information transmission is realized based on technologies such as near field communication, radio frequency tag (Radio Frequency Identification, RFID), and magnetic secure transmission (Magnetic Secure Transmissions, MST).
  • the number of turns of the second coil 133 may be smaller than the number of turns of the first coil 132 . Based on this, this embodiment provides an exemplary description by taking the first coil 132 as a wireless charging antenna and the second coil 133 as a near field communication antenna.
  • the inventor of the present application discovered during long-term research and development work that: with reference to Figure 2, the coupling coefficient between the first coil 132 and the second coil 133 is relatively high, making the coupling between the two stronger, resulting in They interfere with each other in their respective working states, especially in the embodiment where the first coil 132 and the second coil 133 are concentrically arranged.
  • the operating frequency of the first coil 132 under the Qi charging standard is generally 100-205kHz
  • the operating frequency of the second coil 133 is generally 13.56MHz
  • both the first coil 132 and the second coil 133 are placed on the first magnetic piece 131, resulting in that the number of turns of the first coil 132 is generally much greater than the number of turns of the second coil 133.
  • the first magnetic piece 131, the first coil 132 and the second coil 133 may form a transformer.
  • the transmitted signal will be boosted and amplified, causing the first coil 132 to generate a large induced electromotive force, thereby burning out the first coil 132 and its related components. Structural risks.
  • the second coil 133 and its related structures also have the risk of being burned out.
  • Figure 3 is a schematic top view of an antenna module provided by this application.
  • Figure 4 is a schematic cross-sectional structural diagram of an embodiment of an antenna module provided by this application.
  • Figure 5 is a schematic cross-sectional view of an antenna module provided by this application.
  • 6 is a schematic cross-sectional structural diagram of an embodiment of the antenna module provided by this application.
  • the antenna module 13 may also include a second magnetic sheet 134 .
  • the first coil 132 and the first magnetic sheet 133 are stacked.
  • the second coil 133 is partially covered by the second magnetic sheet 134 .
  • the second coil 133 is partially covered by the second magnetic sheet 134; that is, for the antenna module 13,
  • the second coil 133 is partially covered by the second magnetic sheet 134 .
  • the second coil 133 may include a first wiring part 1331 not covered by the second magnetic sheet 134 and a second wiring part 1332 covered by the second magnetic sheet 134, that is, between the first coil 132 and the first In the stacking direction in which the magnetic sheets 133 are stacked, the first wiring portion 1331 is exposed, and the second wiring portion 1332 (for example, the area shown by the dotted line in FIG. 3 ) is covered by the second magnetic sheet 134 .
  • the first wiring portion 1331 is exposed, so that the magnetic field generated by the second coil 133 can radiate to the side away from the first magnetic sheet 131 to meet the working requirements of the second coil 133, thereby allowing the electronic device 10 to pass through the second coil.
  • the second wiring part 1332 is covered by the second magnetic sheet 134, which mainly changes the distribution of the magnetic field generated by the second coil 133, causing the strongest point of the magnetic field generated by the second coil 133 to deviate from its original position. , and reduce the magnetic flux passing through the first coil 132 to reduce the coupling coefficient between the second coil 133 and the first coil 132, thereby reducing the first coil 132 and its related structures from being burned out when the second coil 133 is working. risk, thereby increasing the reliability of the antenna module 13.
  • the antenna module 13 shown in Figure 2 its magnetic field distribution on the horizontal plane and the vertical plane can be shown in Figures 8 and 9 respectively; while for the antenna module 13 shown in Figure 3, its magnetic field distribution on the horizontal plane and the magnetic field distribution on the vertical plane can be shown in Figure 10 and Figure 11 respectively.
  • the antenna module 13 shown in Figure 3 is different from the one shown in Figure 2 in terms of magnetic field distribution and the location of the strongest point of the magnetic field.
  • the antenna module 13 shown in Figure 2 on a certain cross-section of the antenna module 13, when the second coil 133 is energized, its current direction will be reversed at any time, and the second coil 133 is located On the same side of the first magnetic piece 131, the magnetic field generated by the second coil 133 is reversed in the first magnetic piece 131; and for the antenna module 13 described in Figure 3, on a certain cross-section of the antenna module 13 , when the second coil 133 is energized, its current direction at any time will also be reversed, but the second coil 133 is partially covered by the second magnetic sheet 134, so that the second coil 133 (such as the second wiring portion 1332 and its opposite The magnetic field generated by the first wiring part 1331) is in the same direction in the first magnetic sheet 131 and the second magnetic sheet 134.
  • the second coil 133 such as the second wiring portion 1332 and its opposite The magnetic field generated by the first wiring part 133
  • the magnetic field generated by the second wiring part 1332 is difficult (or less) to pass through the first coil 132, so that the magnetic field generated by the second coil 133 passes through the first coil 132.
  • the magnetic flux is reduced.
  • the risk of the second coil 133 and its related structures being burned out when the first coil 132 is working can also be reduced to a certain extent, thereby increasing the number of antenna modules. 13 reliability.
  • the second magnetic piece 134 is connected to the first magnetic piece 131, for example, the two are integrated structural members to facilitate magnetic conduction.
  • the second magnetic piece 134 and the first magnetic piece 131 may form a "Z-shaped" structure, for example, one magnetic piece is bent twice.
  • the relative magnetic permeability of the first magnetic piece 131 and the second magnetic piece 134 can be 800 respectively.
  • Curve_1 in Figure 12 can represent the relationship between the coupling coefficient and frequency of the antenna module 13 shown in Figure 2 Curve
  • curve_2 in Figure 12 can represent the relationship curve between the coupling coefficient of the antenna module 13 shown in Figure 3 and the frequency.
  • curve_2 is located “below” curve_1, which means that the coupling coefficient of the antenna module 13 shown in FIG.
  • the coupling coefficient of the antenna module 13 shown in FIG. 2 is smaller than the coupling coefficient of the antenna module 13 shown in FIG. 2 .
  • the coupling coefficients of the antenna module 13 shown in Figure 2 at 100kHz and 13.56MHz correspond to triangle mark 2 and triangle mark 1 respectively, and their sizes are 0.189 and 0.295 respectively; while the antenna module 13 shown in Figure 3
  • the coupling coefficients at 100kHz and 13.56MHz correspond to triangle mark 4 and triangle mark 3, respectively, and their magnitudes are 0.119 and 0.201 respectively.
  • the coupling coefficient at both 100kHz and 13.56MHz drops by about 30% or more.
  • the orthographic projection of the second magnetic sheet 134 along the stacking direction of the first coil 132 and the first magnetic sheet 133 at least partially falls on the first coil 132 and the first magnetic sheet 133 .
  • a magnetic piece 131 to reduce the magnetic resistance between the second magnetic piece 134 and the first magnetic piece 131, which is conducive to preventing the magnetic field generated by the second coil 133 at the second wiring portion 1332 from passing through the second magnetic piece 134 and the first magnetic piece 131.
  • the gaps between the first magnetic pieces 131 leak toward the first coil 132 , thereby reducing the magnetic flux passing through the first coil 132 .
  • the second coil 133 is partially sandwiched between the first magnetic sheet 131 and the second magnetic sheet 134, for example, the second wiring part 1332 is sandwiched between the first magnetic sheet 131 and the second magnetic sheet 134, so that The magnetic field generated by the second coil 133 at the second wiring part 1332 is more concentrated between the first magnetic piece 131 and the second magnetic piece 134, which not only reduces the magnetic flux passing through the first coil 132, but also reduces the second The coil 133 interferes with other electronic components inside the electronic device 10 when it is working.
  • the orthographic projection of the first wiring portion 1331 along the stacking direction (for example, the direction indicated by the arrow in FIG. 4 ) in which the first coil 132 and the first magnetic sheet 133 are stacked can fall on the first magnetic sheet 131, so that The magnetic field generated by the second coil 133 at the first wiring portion 1331 is more concentrated on the side of the first magnetic piece 131 facing the first coil 132, thereby better meeting the working requirements of the second coil 133 and reducing the When the second coil 133 is working, it may interfere with other electronic components inside the electronic device 10 .
  • the antenna module 13 may further include a base body 135 , the first coil 132 and the second coil 133 may be spirally formed on the same side of the base body 135 , and the first magnetic piece 131 may also be formed on the base body 135 .
  • the first magnetic sheet 131 is coated or glued on one side of the base 135 , and the first coil 132 and the second coil 133 are glued to the first magnetic sheet 131 .
  • the second magnetic sheet 134 may cover a part of the second coil 133 to expose the other part.
  • the second magnetic sheet 134 is glued to the first magnetic sheet 131 and covers the second wiring part 1332 while exposing the first wiring part 1331 .
  • the second magnetic sheet 134 covers a part of the second coil 133 and exposes another part, so that the size of the second coil 133 can be reduced while meeting the working requirements of the second coil 133 .
  • the coupling coefficient between the second coil 133 and the first coil 132 reduces the risk of the first coil 132 and its related structures being burned out when the second coil 133 is working, thereby increasing the reliability of the antenna module 13 .
  • the antenna module 13 has a simple structure and low manufacturing cost.
  • the first wiring part 1331 and the first coil 132 may be located on the same side of the first magnetic sheet 131 and along the positive direction of the stacking direction in which the first coil 132 and the first magnetic sheet 133 are stacked.
  • the projection falls on the first magnetic sheet 131 to meet the working requirements of the second coil 133 and reduce interference to other electronic components inside the electronic device 10 when the second coil 133 is working.
  • the second magnetic piece 134 is coplanar with the first magnetic piece 131.
  • the first magnetic piece 131 and the second magnetic piece 134 are an integral structural member. At this time, a via hole for the second coil 133 to pass through can be provided between the first magnetic sheet 131 and the second magnetic sheet 134.
  • the second coil 133 is formed from the integrated structure through the via hole opened on the magnetic sheet of an integrated structure.
  • One side of the magnetic sheet extends to the other side, so that the first wiring part 1331 and the second wiring part 1332 are respectively located on opposite sides of the integrated structure of the magnetic sheet, which can also prevent the second coil 133 from connecting to the second wiring part 1332
  • the magnetic field generated at the first coil 132 propagates toward the first coil 132 , thereby reducing the magnetic flux passing through the first coil 132 .
  • the first magnetic sheet 131 and the second magnetic sheet 134 may be formed on one side of the base 135 as an integral structural member, for example, one side of the base 135 is coated or glued with a magnetic sheet.
  • the base 135 is provided with a via hole that penetrates the base 135 .
  • the aforementioned via hole corresponds to the joint between the first magnetic piece 131 and the second magnetic piece 134 , and further penetrates the aforementioned joint, that is, the base and the integrated structural member.
  • the magnetic sheet is provided with via holes penetrating the base body and the magnetic sheet of the integrated structural member at a preset position.
  • the first coil 132 can be glued to the magnetic piece of the integrated structural member, and can specifically correspond to the first magnetic piece 131; the second coil 133 can be partially glued to the magnetic piece of the integrated structure, and can be connected through the aforementioned via hole. Extend, so that another part is glued to the other side of the base body 135 facing away from the magnetic piece of the integrated structural member.
  • the first wiring part 1331 is glued to the magnetic sheet of the integrated structural member
  • the second wiring part 1332 is glued to the other side of the base 135 away from the magnetic piece of the integrated structural member.
  • this embodiment opens a via hole on the base body 135 so that a part of the second coil 133 that is originally located on the same side of the base body 135 as the first coil 132 extends to the base body through the aforementioned via hole.
  • the other side of 135 facing away from the first coil 132 can reduce the coupling coefficient between the second coil 133 and the first coil 132 while meeting the working requirements of the second coil 133, thereby reducing the first coil 132 and its
  • the risk of related structures being burned out when the second coil 133 is working increases the reliability of the antenna module 13 .
  • the antenna module 13 has a simple structure and low manufacturing cost.
  • the orthographic projection of the second magnetic sheet 134 along the stacking direction of the first coil 132 and the first magnetic sheet 133 may not fall on the first magnetic sheet 131 , for example, the second The orthographic projection of the magnetic sheet 134 along the stacking direction of the first coil 132 and the first magnetic sheet 133 and the orthographic projection of the first magnetic sheet 131 along the stacking direction of the first coil 132 and the first magnetic sheet 133 may be offset from each other. . At this time, the second magnetic sheet 134 and the first magnetic sheet 131 may be spaced apart in the stacking direction of the first coil 132 and the first magnetic sheet 133 to facilitate the placement of the first magnetic sheet 131 and the second magnetic sheet 134 .
  • the antenna module 13 may also include a third magnetic piece 136 connecting the first magnetic piece 131 and the second magnetic piece 134.
  • the third magnetic piece 136 may be used to seal the first magnetic piece 131 and the second magnetic piece 134. to reduce the magnetic resistance between the second magnetic piece 134 and the first magnetic piece 131, which is conducive to preventing the magnetic field generated by the second coil 133 at the second wiring portion 1332 from passing through the second magnetic piece 134 and the first magnetic piece 131.
  • the gaps between the magnetic pieces 131 leak toward the first coil 132 , thereby reducing the magnetic flux passing through the first coil 132 .
  • the first magnetic piece 131, the second magnetic piece 134 and the third magnetic piece 136 may be an integral structural member.
  • the orthographic projection of the first wiring portion 1331 along the stacking direction in which the first coil 132 and the first magnetic sheet 133 are stacked can fall on the first magnetic sheet 131 so that the second coil 133 is at the first wiring portion 1331
  • the generated magnetic field is more concentrated on the side of the first magnetic piece 131 facing the first coil 132 , thereby better meeting the working requirements of the second coil 133 and reducing the impact on the interior of the electronic device 10 when the second coil 133 is working. Interference from other electronic components.
  • first magnetic sheet 131, the second magnetic sheet 134 and the third magnetic sheet 136 may be formed of materials that have a certain magnetic permeability and are easy to form magnetic paths, such as ferrite and nanocrystals. Magnetic materials, amorphous magnetic materials, silicon steel plates, etc.
  • the first magnetic sheet 131 and the second magnetic sheet 134 can be respectively coated or glued on opposite sides of the base 135 , both along the stacking direction of the first coil 132 and the first magnetic sheet 133 .
  • the orthographic projections can be offset from each other.
  • the base 135 may be provided with a via hole penetrating the base 135 , and the via hole is located between the first magnetic piece 131 and the second magnetic piece 134 .
  • the first coil 132 can be glued to the first magnetic piece 131; a part of the second coil 133 can be glued to the second magnetic piece 134 and extended through the aforementioned via hole, so that the other part is glued to the first magnetic piece 134.
  • the first wiring part 1331 is glued to the first magnetic sheet 131, and the second wiring part 1332 is glued to the second magnetic piece 134. Further, the third magnetic piece 136 is filled in the aforementioned via hole to connect the first magnetic piece 131 and the second magnetic piece 134 . In other words, based on the antenna module 13 shown in FIG.
  • a part of the magnetic sheet originally located on one side of the base 135 is split to the other side to form the first magnetic sheet 131 located on opposite sides of the base 135 and the second magnetic sheet 134, and a via hole is opened on the base 135, so that a part of the second coil 133 originally located on the first magnetic sheet 131 extends through the aforementioned via hole to the other side of the base 135 away from the first magnetic sheet 131.
  • the coupling coefficient between the second coil 133 and the first coil 132 can be reduced while meeting the working requirements of the second coil 133, thereby reducing the friction between the first coil 132 and its related structures.
  • the risk of the second coil 133 being burned out during operation further increases the reliability of the antenna module 13 .
  • the antenna module 13 has a simple structure and low manufacturing cost.
  • FIG. 7 is a schematic structural diagram of a top view of various embodiments of the antenna module provided by the present application.
  • the second coil 133 can be arranged in a rectangular shape, or of course, can also be arranged in a circular shape; the first coil 132 can be arranged in a rectangular shape or a circular shape.
  • the second wiring part 1332 may correspond to two sides of the second coil 133, such as the two adjacent sides shown in (a) of FIG. 7 or the two opposite sides shown in (b) of FIG. 7; or three sides, such as 7 As shown in (c).
  • the second magnetic sheet 134 covers one side of the second coil 133.
  • the second magnetic sheet 134 covers the second side.
  • the two or three sides of the coil 133 not only change the distribution of the magnetic field generated by the second coil 133 while taking into account the working requirements of the second coil 133, but also make the strongest point of the magnetic field generated by the second coil 133 deviate from the original position, further reducing the magnetic flux passing through the first coil 132 to reduce the coupling coefficient between the second coil 133 and the first coil 132, thereby reducing the impact of the first coil 132 and its related structures when the second coil 133 is working. The risk of being burned out thereby increases the reliability of the antenna module 13 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请主要是涉及电子设备及其天线模组,天线模组包括第一磁性片、第一线圈、第二线圈和第二磁性片,第一线圈与第一磁性片层叠设置,第二线圈环绕第一线圈,第二线圈的匝数小于第一线圈的匝数,在第一线圈与第一磁性片层叠设置的层叠方向上,第二线圈被第二磁性片部分覆盖。本申请通过第二磁性片盖住第二线圈的一部分,以改变第二线圈产生的磁场的分布,使得第二线圈产生的磁场的最强点偏离原本的位置,并减少穿过第一线圈的磁通量,以减小第二线圈与第一线圈之间的耦合系数,从而降低第一线圈及其相关结构在第二线圈工作时被烧坏的风险,或者降低第二线圈及其相关结构在第一线圈工作时被烧坏的风险,进而增加天线模组的可靠性。

Description

电子设备及其天线模组 【技术领域】
本申请涉及电子设备的技术领域,具体是涉及电子设备及其天线模组。
【背景技术】
随着电子设备的不断普及,电子设备已经成为人们日常生活中不可或缺的社交、娱乐工具,人们对于电子设备的要求也越来越高。以手机这类电子设备为例,其中搭载近场通信(Near Field Communication,NFC)模块、无线充电模块的比例越来越大,以满足用户的日常使用需求。
【发明内容】
本申请实施例提供了一种天线模组,天线模组包括第一磁性片、第一线圈、第二线圈和第二磁性片,第一线圈与第一磁性片层叠设置,第二线圈环绕第一线圈,第二线圈的匝数小于第一线圈的匝数,在第一线圈与第一磁性片层叠设置的层叠方向上,第二线圈被第二磁性片部分覆盖。
本申请实施例提供了一种电子设备,电子设备包括显示模组、壳体和上述实施例所述的天线模组,壳体与显示模组连接,天线模组位于显示模组与壳体之间;其中,壳体、第一线圈、第一磁性片和显示模组在层叠方向上依次排布。
本申请的有益效果是:本申请提供的天线模组通过第二磁性片盖住第二线圈的一部分,以改变第二线圈产生的磁场的分布,使得第二线圈产生的磁场的最强点偏离原本的位置,并减少穿过第一线圈的磁通量,以减小第二线圈与第一线圈之间的耦合系数,从而降低第一线圈及其相关结构在第二线圈工作时被烧坏的风险,或者降低第二线圈及其相关结构在第一线圈工作时被烧坏的风险,进而增加天线模组的可靠性。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的电子设备一实施例的分解结构示意图;
图2是本申请提供的天线模组一实施例的俯视结构示意图;
图3是本申请提供的天线模组一实施例的俯视结构示意图;
图4是本申请提供的天线模组一实施例的截面结构示意图;
图5是本申请提供的天线模组一实施例的截面结构示意图;
图6是本申请提供的天线模组一实施例的截面结构示意图;
图7是本申请提供的天线模组各种实施例的俯视结构示意图;
图8是图2中天线模组在水平面上的磁场分布示意图;
图9是图2中天线模组在竖直面上的磁场分布示意图;
图10是图3中天线模组在水平面上的磁场分布示意图;
图11是图3中天线模组在竖直面上的磁场分布示意图;
图12是图2和图3中天线模组的耦合系数与频率之间的关系曲线。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例提供了一种天线模组,天线模组包括第一磁性片、第一线圈、第二线圈和第二磁性片,第一线圈与第一磁性片层叠设置,第二线圈环绕第一线圈,第二线圈的匝数小于第一线圈的匝数,在第一线圈与第一磁性片层叠设置的层叠方向上,第二线圈被第二磁性片部分覆盖。
其中,第二磁性片与第一磁性片连接。
其中,第一磁性片和第二磁性片为一体结构件。
其中,第二磁性片与第一磁性片由一磁性片弯折两次形成构成“Z字型”结构。
其中,第二磁性片沿层叠方向的正投影不落在第一磁性片上,天线模组还包括连接第一磁性片和第二磁性片的第三磁性片。
其中,第二磁性片沿层叠方向的正投影至少部分落在第一磁性片上。
其中,第一磁性片、第二线圈与第二磁性片在层叠方向上依次设置。
其中,天线模组包括基体,第一磁性片形成在基体上,第一线圈和第二线圈分别螺旋地形成在基体的同一侧。
其中,第一磁性片涂布或者胶接在基体的一侧,第一线圈和第二线圈胶接在第一磁性片上,第二磁性片胶接在第一磁性片上,并覆盖第二线圈的一部分,以外露第二线圈的另一部分。
其中,第二线圈的卷绕中心轴与第一线圈的卷绕中心轴重合。
其中,第二线圈包括未被第二磁性片覆盖的第一布线部和被第二磁性片覆盖的第二布线部,第一布线部与第一线圈位于第一磁性片的同一侧且沿层叠方向的正投影落在第一磁性片上。
其中,第二磁性片与第一磁性片共面。
其中,第二线圈呈矩形设置,第二布线部对应第二线圈的一条边、两条边或者三条边。
本申请实施例提供了一种天线模组,天线模组包括基体、形成在基体的一侧的磁性片,以及第一线圈和第二线圈,第二线圈包括第一布线部和第二布线部,第一布线部与第一线圈位于磁性片的一侧,第二布线部位于磁性片的另一侧。
其中,天线模组设置有贯穿基体和磁性片的过孔,第二线圈经由过孔延伸。
其中,过孔内填充有另一磁性片。
其中,第二线圈呈矩形设置,第二布线部对应第二线圈的一条边、两条边或者三条边。
其中,第二线圈的匝数小于第一线圈的匝数。
本申请实施例提供了一种电子设备,电子设备包括显示模组、壳体和上述天线模组,壳体与显示模组连接,天线模组位于显示模组与壳体之间;其中,壳体、第一线圈、第一磁性片和显示模组在层叠方向上依次排布。
其中,第一线圈用作无线充电天线,第二线圈用作近场通信天线。
参阅图1及图2,图1是本申请提供的电子设备一实施例的分解结构示意图,图2是本申请提供的天线模组一实施例的俯视结构示意图。
本申请中,电子设备10可以为手机、平板电脑、笔记本电脑、可穿戴设备等便携装置。其中,本实施例以电子设备10为手机为例进行示例性的说明。
结合图1,电子设备10可以包括显示模组11、壳体12和天线模组13,壳体12与显示模组11连接,天线模组13位于显示模组11与壳体12之间,例如天线模组13位于显示模组11朝向壳体12的一侧。其中,壳体12可以包括中框121和后盖122,显示模组11和后盖122可以分别设置在中框121的相对两侧,并可以通过卡接、胶接、焊接、螺纹连接等组装方式中的一种或其组合与中框121组装连接,以形成显示模组11与后盖122一同夹持中框121的基本结构。此时,天线模组13可以位于中框121背离显示模组11的一侧。进一步地,电子设备10还可以包括电池14、主板15、摄像头模组16等结构件,以使得电子设备10能够实现相应的功能。其中,显示模组11、天线模组13、摄像头模组16等结构件可以通过柔性电路板(Flexible Printed Circuit,FPC)分别与电池14、主板15等电性连接,以使得他们能够得到电池14的电能供应,并能够在主板15的控制下执行相应的指令。
结合图2,天线模组13可以包括第一磁性片131、第一线圈132和第二线圈133,第一线圈132与第一磁性片131层叠设置,例如第一线圈132位于第一磁性片131的一侧且沿第一线圈132的卷绕中心轴所在方向的正投影落在第一磁性片131上,第二线圈133环绕第一线圈132。其中,第二线圈133的卷绕中心轴与第一线圈132的卷绕中心轴可以重合,也即两者可以同心放置,以在天 线模组13应用于电子设备10时,节省电子设备10的内部空间。进一步地,当天线模组13应用于电子设备10时,壳体12(具体可以为后盖122)、第一线圈132、第一磁性片131和显示模组11在第一线圈132与第一磁性片131层叠设置的层叠方向上依次排布,也即第一线圈132相较于第一磁性片131更远离显示模组11,以使得天线模组13的磁场分布更多地聚焦于后盖122一侧,进而增加电子设备10与其他设备传输信息和/或能量的效率,并避免天线模组13工作时干扰电子设备10内部的其他电子元件。进一步地,第一线圈132可以用于满足电子设备10以无线的方式与其他设备传输能量的需求,例如对电子设备10进行无线充电或者对其他设备进行反向无线充电;第二线圈133可以用于满足电子设备10与其他设备传输信息的需求,例如基于近场通信、射频标签(Radio Frequency Identification,RFID)、磁性安全传输(Magnetic Secure Transmissions,MST)等技术实现信息传输。其中,第二线圈133的匝数可以小于第一线圈132的匝数。基于此,本实施例以第一线圈132用作无线充电天线,第二线圈133用作近场通信天线为例进行示例性的说明。
然而,本申请的发明人在长期的研发工作中发现:结合图2,第一线圈132与第二线圈133之间的耦合系数较高,使得两者之间耦合作用较强,导致两者在各自的工作状态下相互干扰,尤其是在第一线圈132与第二线圈133同心设置的实施例中。例如:由于第一线圈132在Qi充电标准下的工作频率一般为100-205kHz,第二线圈133的工作频率一般为13.56MHz,且第一线圈132和第二线圈133都置于第一磁性片131上,导致第一线圈132的匝数一般要远多于第二线圈133的匝数。此时,第一磁性片131、第一线圈132和第二线圈133可以构成一变压器。其中,当第二线圈133工作时,因变压器的升压效应,发射信号会被升压放大,导致第一线圈132可能产生一个较大的感应电动势,从而有烧坏第一线圈132及其相关结构的风险。类似地,当第一线圈132工作时,第二线圈133及其相关结构也存在烧坏的风险。因此,有必要降低第一线圈132与第二线圈133之间的耦合系数,减少第一线圈132与第二线圈133之间的能量传递,以改善两者在各自的工作状态下相互干扰,保证线圈及其相关结构的可靠性。
共同参阅图3至图6,图3是本申请提供的天线模组一实施例的俯视结构示意图,图4是本申请提供的天线模组一实施例的截面结构示意图,图5是本申请提供的天线模组一实施例的截面结构示意图,图6是本申请提供的天线模组一实施例的截面结构示意图。需要说明的是:为了便于描述,相较于图2,图3至图6中第一线圈、第二线圈及其他相关结构均进行了简化,例如第一线圈简化为一环状结构,第二线圈简化为一框状结构。
与上述实施例的主要区别在于:本实施例中,结合图3,天线模组13还可以包括第二磁性片134,在第一线圈132与第一磁性片133层叠设置的层叠方向上,第二线圈133被第二磁性片134部分覆盖。换言之,对于电子设备10而言,若揭开壳体12(具体可以为后盖122),可以看到第二线圈133被第二磁性片134部分覆盖;也即对于天线模组13而言,在第一线圈132背离第一磁性片131的一侧沿天线模组13的厚度方向(也即第一线圈132与第一磁性片133层叠设置 的参考方向)观察,可以看到第二线圈133被第二磁性片134部分覆盖。作为示例性地,第二线圈133可以包括未被第二磁性片134覆盖的第一布线部1331和被第二磁性片134覆盖的第二布线部1332,也即在第一线圈132与第一磁性片133层叠设置的层叠方向上,第一布线部1331外露,第二布线部1332(例如图3中虚线所示的区域)被第二磁性片134覆盖。其中,第一布线部1331外露,使得第二线圈133产生的磁场能够向其背离第一磁性片131的一侧辐射,以满足第二线圈133的工作需求,进而允许电子设备10通过第二线圈133与其他设备传输信息;而第二布线部1332被第二磁性片134覆盖,主要是改变第二线圈133产生的磁场的分布,使得第二线圈133产生的磁场的最强点偏离原本的位置,并减少穿过第一线圈132的磁通量,以减小第二线圈133与第一线圈132之间的耦合系数,从而降低第一线圈132及其相关结构在第二线圈133工作时被烧坏的风险,进而增加天线模组13的可靠性。例如:对于图2所述的天线模组13,其在水平面和竖直面上的磁场分布可以分别如图8和图9所示;而对于图3所述的天线模组13,其在水平面和竖直面上的磁场分布可以分别如图10和图11所示。显然,不论是磁场分布,还是磁场最强点的位置,图3所述的天线模组13与图2所示的均不相同。进一步地,对于图2所述的天线模组13,在天线模组13的某一截面上,第二线圈133通电时其在任意一时刻的电流方向会反向,且第二线圈133又位于第一磁性片131的同一侧,使得第二线圈133所产生的磁场在第一磁性片131内反向;而对于图3所述的天线模组13,在天线模组13的某一截面上,第二线圈133通电时其在任意一时刻的电流方向同样会反向,但第二线圈133部分被第二磁性片134覆盖,使得第二线圈133(例如第二布线部1332及与其相对的第一布线部1331)所产生的磁场在第一磁性片131和第二磁性片134内同向。再例如:在第二磁性片134的导磁作用下,第二布线部1332产生的磁场难以(或者较少)穿过第一线圈132,使得第二线圈133产生的磁场穿过第一线圈132的磁通量得以减少。当然,由于第二线圈133部分被第二磁性片134覆盖,同样也可以在一定程度上降低第二线圈133及其相关结构在第一线圈132工作时被烧坏的风险,进而增加天线模组13的可靠性。
作为示例性地,第二磁性片134与第一磁性片131连接,例如两者为一体结构件,以便于导磁。其中,第二磁性片134与第一磁性片131可以构成“Z字型”结构,例如由一磁性片弯折两次形成。进一步地,第一磁性片131和第二磁性片134的相对磁导率可以分别为800,图12中曲线_1可以表示图2所示的天线模组13的耦合系数与频率之间的关系曲线,而图12中曲线_2可以表示图3所示的天线模组13的耦合系数与频率之间的关系曲线。显然,曲线_2位于曲线_1的“下方”,意味着图3所示的天线模组13的耦合系数较图2所示的天线模组13的耦合系数更小。具体而言,图2所示的天线模组13在100kHz和13.56MHz下的耦合系数分别对应三角形标记2和三角形标记1,其大小分别为0.189和0.295;而图3所示的天线模组13在100kHz和13.56MHz下的耦合系数分别对应三角形标记4和三角形标记3,其大小分别为0.119和0.201。显然,在100kHz和13.56MHz下的耦合系数均下降约30%以上。
在一些实施例中,结合图4,第二磁性片134沿第一线圈132与第一磁性片 133层叠设置的层叠方向(例如图4中箭头所示的方向)的正投影至少部分落在第一磁性片131上,以减小第二磁性片134与第一磁性片131之间的磁阻,有利于阻碍第二线圈133在第二布线部1332处产生的磁场经由第二磁性片134与第一磁性片131之间的缝隙朝向第一线圈132泄漏,进而减少穿过第一线圈132的磁通量。进一步地,第二线圈133部分夹设在第一磁性片131与第二磁性片134之间,例如第二布线部1332夹设在第一磁性片131与第二磁性片134之间,以使得第二线圈133在第二布线部1332处产生的磁场更多地聚集在第一磁性片131与第二磁性片134之间,这样不仅减少穿过第一线圈132的磁通量,还减小第二线圈133工作时对电子设备10内部的其他电子元件的干扰。
类似地,第一布线部1331沿第一线圈132与第一磁性片133层叠设置的层叠方向(例如图4中箭头所示的方向)的正投影可以落在第一磁性片131上,以使得第二线圈133在第一布线部1331处产生的磁场更多地聚集在第一磁性片131朝向第一线圈132的一侧,进而更好地满足第二线圈133的工作需求,并减小第二线圈133工作时对电子设备10内部的其他电子元件的干扰。
作为示例性地,天线模组13还可以包括基体135,第一线圈132和第二线圈133可以分别螺旋地形成在基体135的同一侧,第一磁性片131也可以形成在基体135上。例如:第一磁性片131涂布或者胶接在基体135的一侧,第一线圈132和第二线圈133胶接在第一磁性片131上。此时,第二磁性片134可以覆盖第二线圈133的一部分以外露另一部分,例如第二磁性片134胶接在第一磁性片131上并覆盖第二布线部1332而外露第一布线部1331。换言之,基于图2所示的天线模组13,本实施例通过第二磁性片134覆盖第二线圈133的一部分并外露另一部分,即可在满足第二线圈133的工作需求的情况下减小第二线圈133与第一线圈132之间的耦合系数,从而降低第一线圈132及其相关结构在第二线圈133工作时被烧坏的风险,进而增加天线模组13的可靠性。除此之外,天线模组13的结构简单,制作成本低。
在其他一些实施例中,结合图5,第一布线部1331与第一线圈132可以位于第一磁性片131的同一侧且沿第一线圈132与第一磁性片133层叠设置的层叠方向的正投影落在第一磁性片131上,以满足第二线圈133的工作需求,并减小第二线圈133工作时对电子设备10内部的其他电子元件的干扰。进一步地,第二磁性片134与第一磁性片131共面,例如第一磁性片131和第二磁性片134为一体结构件。此时,第一磁性片131与第二磁性片134之间可以设有供第二线圈133穿过的过孔,也即第二线圈133经由一体结构的磁性片上开设的过孔由一体结构的磁性片的一侧延伸至另一侧,以使得第一布线部1331和第二布线部1332分别位于一体结构的磁性片的相背两侧,同样能够阻碍第二线圈133在第二布线部1332处产生的磁场朝向第一线圈132传播,进而减少穿过第一线圈132的磁通量。
作为示例性地,第一磁性片131和第二磁性片134可以作为一体结构件形成在基体135的一侧,例如基体135的一侧涂布或者胶接一磁性片。其中,基体135上设有贯穿基体135的过孔,前述过孔对应于第一磁性片131和第二磁性片134之间的结合处,并进一步贯穿前述结合处,也即基体和一体结构件的 磁性片在预设位置设有贯穿基体和一体结构件的磁性片的过孔。此时,第一线圈132可以胶接在一体结构件的磁性片上,并可以具体对应于第一磁性片131;第二线圈133可以一部分胶接在一体结构件的磁性片上,并经由前述过孔延伸,使得另一部分胶接在基体135背离一体结构件的磁性片的另一侧上。例如:第一布线部1331胶接在一体结构件的磁性片上,第二布线部1332胶接在基体135背离一体结构件的磁性片的另一侧上。换言之,基于图2所示的天线模组13,本实施例通过在基体135上开设过孔,使得第二线圈133原本与第一线圈132位于基体135同一侧的一部分经由前述过孔延伸至基体135背离第一线圈132的另一侧,即可在满足第二线圈133的工作需求的情况下减小第二线圈133与第一线圈132之间的耦合系数,从而降低第一线圈132及其相关结构在第二线圈133工作时被烧坏的风险,进而增加天线模组13的可靠性。除此之外,天线模组13的结构简单,制作成本低。
在其他又一些实施例中,结合图6,第二磁性片134沿第一线圈132与第一磁性片133层叠设置的层叠方向的正投影可以不落在第一磁性片131上,例如第二磁性片134沿第一线圈132与第一磁性片133层叠设置的层叠方向的正投影与第一磁性片131沿第一线圈132与第一磁性片133层叠设置的层叠方向的正投影可以彼此错开。此时,第二磁性片134与第一磁性片131在第一线圈132与第一磁性片133层叠设置的层叠方向上可以间隔设置,以便于设置第一磁性片131和第二磁性片134。进一步地,天线模组13还可以包括连接第一磁性片131和第二磁性片134的第三磁性片136,第三磁性片136可以用于密封第一磁性片131和第二磁性片134之间的间隙,以减小第二磁性片134与第一磁性片131之间的磁阻,有利于阻碍第二线圈133在第二布线部1332处产生的磁场经由第二磁性片134与第一磁性片131之间的缝隙朝向第一线圈132泄漏,进而减少穿过第一线圈132的磁通量。其中,第一磁性片131、第二磁性片134和第三磁性片136可以为一体结构件。
类似地,第一布线部1331沿第一线圈132与第一磁性片133层叠设置的层叠方向的正投影可以落在第一磁性片131上,以使得第二线圈133在第一布线部1331处产生的磁场更多地聚集在第一磁性片131朝向第一线圈132的一侧,进而更好地满足第二线圈133的工作需求,并减小第二线圈133工作时对电子设备10内部的其他电子元件的干扰。
需要说明的是:本申请中,第一磁性片131、第二磁性片134和第三磁性片136可以由具有一定的磁导率且易于形成磁路径的材料形成,例如铁氧体、纳米晶体磁性材料、非晶磁性材料、硅钢板等。
作为示例性地,第一磁性片131和第二磁性片134可以分别涂布或者胶接在基体135的相背两侧,两者沿第一线圈132与第一磁性片133层叠设置的层叠方向的正投影可以彼此错开。其中,基体135上可以设有贯穿基体135的过孔,前述过孔位于第一磁性片131和第二磁性片134之间。此时,第一线圈132可以胶接在第一磁性片131上;第二线圈133可以一部分胶接在第二磁性片134上,并经由前述过孔延伸,使得另一部分胶接在第一磁性片131上。例如:第一布线部1331胶接在第一磁性片131上,第二布线部1332胶接在第二磁性片 134上。进一步地,第三磁性片136填充在前述过孔内,以连接第一磁性片131和第二磁性片134。换言之,基于图2所示的天线模组13,本实施例通过将原本位于基体135一侧的磁性片拆分一部分至另一侧,以形成位于基体135相背两侧的第一磁性片131和第二磁性片134,并在基体135上开设过孔,使得第二线圈133原本位于第一磁性片131上的一部分经由前述过孔延伸至位于基体135背离第一磁性片131的另一侧的第二磁性片134上,即可在满足第二线圈133的工作需求的情况下减小第二线圈133与第一线圈132之间的耦合系数,从而降低第一线圈132及其相关结构在第二线圈133工作时被烧坏的风险,进而增加天线模组13的可靠性。除此之外,天线模组13的结构简单,制作成本低。
参阅图7,图7是本申请提供的天线模组各种实施例的俯视结构示意图。
与上述实施例的主要区别在于:本实施例中,结合图7,第二线圈133可以呈矩形设置,当然也可以呈圆形设置;第一线圈132可以呈矩形或者圆形设置。其中,第二布线部1332可以对应第二线圈133的两条边,例如图7中(a)所示的相邻两边或者图7中(b)所示的相对两边;或者三条边,例如7中(c)所示。相较于图3中第二布线部1332对应第二线圈133的一条边,也即第二磁性片134盖住第二线圈133的一条边,本实施例通过第二磁性片134盖住第二线圈133的两条边或者三条边,以在兼顾第二线圈133的工作需求的情况下,不仅改变第二线圈133产生的磁场的分布,使得第二线圈133产生的磁场的最强点偏离原本的位置,还进一步减少穿过第一线圈132的磁通量,以减小第二线圈133与第一线圈132之间的耦合系数,从而降低第一线圈132及其相关结构在第二线圈133工作时被烧坏的风险,进而增加天线模组13的可靠性。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种天线模组,其中,所述天线模组包括第一磁性片、第一线圈、第二线圈和第二磁性片,所述第一线圈与所述第一磁性片层叠设置,所述第二线圈环绕所述第一线圈,所述第二线圈的匝数小于所述第一线圈的匝数,在所述第一线圈与所述第一磁性片层叠设置的层叠方向上,所述第二线圈被所述第二磁性片部分覆盖。
  2. 根据权利要求1所述的天线模组,其中,所述第二磁性片与所述第一磁性片连接。
  3. 根据权利要求2所述的天线模组,其中,所述第一磁性片和所述第二磁性片为一体结构件。
  4. 根据权利要求3所述的天线模组,其中,所述第二磁性片与所述第一磁性片由一磁性片弯折两次形成构成“Z字型”结构。
  5. 根据权利要求2所述的天线模组,其中,所述第二磁性片沿所述层叠方向的正投影不落在所述第一磁性片上,所述天线模组还包括连接所述第一磁性片和所述第二磁性片的第三磁性片。
  6. 根据权利要求1所述的天线模组,其中,所述第二磁性片沿所述层叠方向的正投影至少部分落在所述第一磁性片上。
  7. 根据权利要求6所述的天线模组,其中,所述第一磁性片、所述第二线圈与所述第二磁性片在所述层叠方向上依次设置。
  8. 根据权利要求7所述的天线模组,其中,所述天线模组包括基体,所述第一磁性片形成在所述基体上,所述第一线圈和所述第二线圈分别螺旋地形成在所述基体的同一侧。
  9. 根据权利要求8所述的天线模组,其中,所述第一磁性片涂布或者胶接在所述基体的一侧,所述第一线圈和所述第二线圈胶接在所述第一磁性片上,所述第二磁性片胶接在所述第一磁性片上,并覆盖所述第二线圈的一部分,以外露所述第二线圈的另一部分。
  10. 根据权利要求8所述的天线模组,其中,所述第二线圈的卷绕中心轴与所述第一线圈的卷绕中心轴重合。
  11. 根据权利要求1所述的天线模组,其中,所述第二线圈包括未被所述第二磁性片覆盖的第一布线部和被所述第二磁性片覆盖的第二布线部,所述第一布线部与所述第一线圈位于所述第一磁性片的同一侧且沿所述层叠方向的正投影落在所述第一磁性片上。
  12. 根据权利要求11所述的天线模组,其中,所述第二磁性片与所述第一磁性片共面。
  13. 根据权利要求11所述的天线模组,其中,所述第二线圈呈矩形设置,所述第二布线部对应所述第二线圈的一条边、两条边或者三条边。
  14. 一种天线模组,其中,所述天线模组包括基体、形成在所述基体的一侧的磁性片,以及第一线圈和第二线圈,所述第二线圈包括第一布线部和第二布线部,所述第一布线部与所述第一线圈位于所述磁性片的一侧,所述第二布 线部位于所述磁性片的另一侧。
  15. 根据权利要求14所述的天线模组,其中,所述天线模组设置有贯穿所述基体和所述磁性片的过孔,所述第二线圈经由所述过孔延伸。
  16. 根据权利要求15所述的天线模组,其中,所述过孔内填充有另一磁性片。
  17. 根据权利要求14所述的天线模组,其中,所述第二线圈呈矩形设置,所述第二布线部对应所述第二线圈的一条边、两条边或者三条边。
  18. 根据权利要求14所述的天线模组,其中,所述第二线圈的匝数小于所述第一线圈的匝数。
  19. 一种电子设备,其中,所述电子设备包括显示模组、壳体和权利要求1-18任一项所述的天线模组,所述壳体与所述显示模组连接,所述天线模组位于所述显示模组与所述壳体之间;其中,所述壳体、所述第一线圈、所述第一磁性片和所述显示模组在所述层叠方向上依次排布。
  20. 根据权利要求19所述的电子设备,其中,所述第一线圈用作无线充电天线,所述第二线圈用作近场通信天线。
PCT/CN2022/141191 2022-04-19 2022-12-22 电子设备及其天线模组 WO2023202129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210412701.0 2022-04-19
CN202210412701.0A CN116960607A (zh) 2022-04-19 2022-04-19 电子设备及其天线模组

Publications (1)

Publication Number Publication Date
WO2023202129A1 true WO2023202129A1 (zh) 2023-10-26

Family

ID=88419050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141191 WO2023202129A1 (zh) 2022-04-19 2022-12-22 电子设备及其天线模组

Country Status (2)

Country Link
CN (1) CN116960607A (zh)
WO (1) WO2023202129A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140375262A1 (en) * 2012-02-17 2014-12-25 Panasonic Corporation Wireless charging module and mobile terminal provided with same
US20170005399A1 (en) * 2014-03-28 2017-01-05 Murata Manufacturing Co., Ltd. Antenna device and electronic device
CN106898484A (zh) * 2015-12-17 2017-06-27 三星电机株式会社 无线通信线圈、线圈模块及使用该线圈模块的移动终端
CN208539110U (zh) * 2018-08-08 2019-02-22 无锡村田电子有限公司 一种电子设备及其天线装置
US20210367342A1 (en) * 2021-08-06 2021-11-25 Google Llc Optimized Near-Field Communication Antenna Structure for Reduced Coupling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140375262A1 (en) * 2012-02-17 2014-12-25 Panasonic Corporation Wireless charging module and mobile terminal provided with same
US20170005399A1 (en) * 2014-03-28 2017-01-05 Murata Manufacturing Co., Ltd. Antenna device and electronic device
CN106898484A (zh) * 2015-12-17 2017-06-27 三星电机株式会社 无线通信线圈、线圈模块及使用该线圈模块的移动终端
CN208539110U (zh) * 2018-08-08 2019-02-22 无锡村田电子有限公司 一种电子设备及其天线装置
US20210367342A1 (en) * 2021-08-06 2021-11-25 Google Llc Optimized Near-Field Communication Antenna Structure for Reduced Coupling

Also Published As

Publication number Publication date
CN116960607A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US11070075B2 (en) Electronic device including non-contact charging module and battery
US10468913B2 (en) Electronic device including non-contact charging module
WO2016186443A1 (ko) 콤보 안테나유닛 및 이를 포함하는 무선전력 수신모듈
WO2016186444A1 (ko) 무선충전용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
JP6514960B2 (ja) アンテナ装置の製造方法、及びアンテナ装置
JP2013084915A (ja) 近距離無線通信と無線充電共用の感応モジュール
JP2006314181A (ja) 非接触充電装置及び非接触充電システム並びに非接触充電方法
TW201414082A (zh) 天線裝置及電子機器
WO2023202129A1 (zh) 电子设备及其天线模组
JP2017163676A (ja) 非接触充電用コイルアッシー
JP2013093989A (ja) 非接触充電モジュール及びこれを用いた非接触充電機器及び携帯端末
JP2014087188A (ja) 携帯機器とこれに内蔵されるパック電池
WO2018102963A1 (zh) 电子设备及其集成式隔磁片
US20230412006A1 (en) Wireless transmission module
JP2009005470A (ja) 非接触電力伝送用コイル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938347

Country of ref document: EP

Kind code of ref document: A1