WO2023202115A1 - 一种样品池以及基于傅里叶变换的红外光谱仪 - Google Patents

一种样品池以及基于傅里叶变换的红外光谱仪 Download PDF

Info

Publication number
WO2023202115A1
WO2023202115A1 PCT/CN2022/139886 CN2022139886W WO2023202115A1 WO 2023202115 A1 WO2023202115 A1 WO 2023202115A1 CN 2022139886 W CN2022139886 W CN 2022139886W WO 2023202115 A1 WO2023202115 A1 WO 2023202115A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmosphere
air port
sample cell
sample
atr
Prior art date
Application number
PCT/CN2022/139886
Other languages
English (en)
French (fr)
Inventor
陈中
卢星宇
Original Assignee
西湖大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西湖大学 filed Critical 西湖大学
Publication of WO2023202115A1 publication Critical patent/WO2023202115A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of in-situ atmosphere reaction control, and in particular, to a sample cell and an infrared spectrometer based on Fourier transform.
  • Infrared spectroscopy technology is an effective method for qualitative and quantitative analysis of functional groups of organic compounds. Its method has the advantages of easy use, high sensitivity, strong characteristic signals, and fast measurement speed, and is suitable for the analysis of rapid reaction kinetics. At present, it has been applied more and more in the field of in-situ control, especially in the fields of catalysis and battery, and has been recognized by various industries.
  • the basic working principle of the Fourier transform infrared spectrometer (FTIR) using infrared spectroscopy technology is: the collimated infrared beam to be measured is incident on the Michelson interferometer, and the movement of the moving mirror in the interferometer is controlled to obtain different light The interference pattern under the path difference is subjected to Fourier transform to obtain the infrared spectrum of the beam.
  • FTIR Fourier transform infrared spectrometer
  • a general infrared spectrometer will have a sample chamber between the interferometer output light and the detector. By placing appropriate transmission, reflection and other testing devices in the sample chamber and fixing the sample appropriately, the transmission spectrum and reflection spectrum measurement of the sample can be achieved.
  • an attenuated total reflection device is often installed in an infrared spectrometer.
  • the attenuated total reflection device usually includes a light introduction component, an ATR crystal, and a light export component at its core.
  • the attenuated total reflection device extracts effective spectral information by measuring the reflection signal on the surface of the sample, which simplifies the sample production process and greatly expands the application scope of spectroscopy. It has been widely used in fibers, plastics, coatings, rubber, and adhesives. Surface composition analysis of polymer materials such as agents.
  • the combination of the attenuated total reflection device and the infrared spectrometer can give full play to the advantages of both, and can be applied in more situations and obtain better spectral testing sensitivity, signal-to-noise ratio and sample material properties.
  • Infrared spectrometers with attenuated total reflection devices use attenuated total reflection infrared spectroscopy, which is a method of infrared spectrum testing based on total reflection signals.
  • Thermo Fisher Scientific IS50 series Fourier transform infrared spectrometer is used.
  • the ATR accessory completes infrared spectrum collection.
  • the advantage of using attenuated total reflection infrared spectroscopy to measure fluid samples is that there is no need for sample preparation. The sample can be dropped directly on the ATR crystal. It requires a small amount of sample and is non-destructive to the sample. It is suitable for testing almost all non-strongly corrosive samples.
  • this method has fast testing speed and can achieve in-situ testing and real-time tracking, so it is the best choice for chemical reaction testing of fluid samples.
  • Attenuated total reflection infrared spectroscopy is simple to operate and has obvious characteristic peaks in the spectrum, making it suitable for monitoring changes in sample components during chemical reactions.
  • the ATR accessory here is designed based on the principle of attenuated total reflection of incident light.
  • the monochromatic light emitted by the light source passes through a crystal with a large refractive index and enters the surface of a sample with a small refractive index, reflection and refraction will occur.
  • the incident angle is greater than At the critical angle, the refracted light disappears and all light exists inside the crystal in the form of reflected light, resulting in a total reflection effect.
  • infrared light is totally reflected on the inner surface of the crystal, it will generate a standing wave near the outer surface of the crystal, called an evanescent wave.
  • the evanescent wave penetrates into the sample at each reflection point.
  • Infrared absorption information can be obtained from the attenuated energy of the evanescent wave.
  • the amplitude of the evanescent wave attenuates exponentially as the distance from the crystal interface increases, producing an attenuated total reflection infrared spectrum similar to transmission absorption, thereby obtaining structural information about the chemical composition of the sample surface.
  • the refractive index of most organic substances is lower than 1.5. According to the law of refraction, to obtain an attenuated total reflection spectrum requires an infrared ATR crystal with a refractive index greater than 1.5.
  • ATR crystal materials include: diamond, ZnSe (zinc selenide), germanium (Ge) ), silver chloride (AgCl), silver bromide (AgBr), silicon (Si), especially diamond, which is the most widely used.
  • Diamond material is known as the best ATR crystal due to its good solidity and wear resistance.
  • the Thermo Fisher Scientific IS50 spectrometer uses diamond as the ATR crystal material.
  • the existing structure with built-in ATR accessories can only achieve rapid testing of samples in an open environment, and is incompetent in in-situ chemical reactions that require environmental control. , nor can real-time tracking of the reaction process in an atmosphere environment be achieved for fluid samples.
  • embodiments of the present disclosure propose a sample cell and an infrared spectrometer based on Fourier transform to solve the problems in the existing technology.
  • Embodiments of the present disclosure provide a sample cell, which includes a cell body in the shape of a frustum.
  • the cell body has a top surface, a bottom surface, and a conical surface located between the top surface and the bottom surface, and is provided on the bottom surface.
  • a recess for accommodating the ATR crystal, and a first atmosphere joint and a second atmosphere joint respectively realizing the air inlet or exhaust function of the atmosphere are provided on the conical surface.
  • the first atmosphere joint and the second atmosphere joint adopt a pagoda shape.
  • the first atmosphere joint and the second atmosphere joint are arranged symmetrically.
  • a first external air port and a second external air port are provided on the tapered surface, and a first internal air port and a second internal air port are provided in the recess on the bottom surface.
  • the first external air port A first atmosphere channel is formed between the first inner air port and the second inner air port.
  • a second atmosphere channel is formed between the second outer air port and the second inner air port. The first atmosphere channel and the second atmosphere channel are connected to The recesses are connected.
  • external threads are provided on the outer walls of the first atmosphere joint and the second atmosphere joint, and internal threads are respectively provided on the inner walls of the first external air port and the second external air port.
  • a first sealing member is provided on the bottom surface and is located outside the recess.
  • annular groove is provided on the bottom surface, and the groove is used to fix the first sealing member.
  • the sample cell further includes a second sealing member disposed at the bottom of the first atmosphere joint and the second atmosphere joint.
  • An embodiment of the present disclosure also provides an infrared spectrometer based on Fourier transform, which includes an ATR accessory and the sample cell in any of the above technical solutions, and the sample cell is provided on the ATR accessory.
  • the ATR attachment includes a base plate and a pressure rod, and the sample cell is disposed between the base plate and the lower end of the pressure rod.
  • Embodiments of the present disclosure can be fixed on the ATR accessory through, for example, a pressure rod located above the ATR crystal, and achieve precise control of the in-situ reaction atmosphere in the cavity through the atmosphere joint and the first seal and the second seal, thereby being able to adapt It is used to achieve real-time tracking and spectral detection of the reaction process in an atmospheric environment for in-situ chemical reactions that require environmental control on fluid samples to be tested.
  • a pressure rod located above the ATR crystal
  • Figure 1 is a schematic structural diagram of an infrared spectrometer based on Fourier transform according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of an infrared spectrometer based on Fourier transform according to an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a sample pool according to an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a sample pool according to an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of a sample pool according to an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of the principle of an embodiment of the present disclosure.
  • 1-Cool body 2-First atmosphere joint; 3-Second atmosphere joint; 4-First seal; 100-ATR accessories; 10a-Chassis; 10b-Pressure rod; 11-Top surface; 12-Bottom surface; 13 -Taper surface; 14-recess; 15-first external air port; 16-second external air port; 17-first internal air port; 18-second internal air port; 19-first atmosphere channel; 20-second atmosphere channel; 30-ATR crystal; 40-sample cell.
  • the first embodiment of the present disclosure relates to a sample cell for in-situ atmosphere control of an ATR accessory in a Fourier transform-based infrared spectrometer.
  • the attenuated total reflection (ATR) spectroscopy technology used in this embodiment belongs to Infrared spectrum testing technology places the sample to be tested above the ATR accessory, and the infrared beam reaches the detection device after attenuating reflection in the ATR crystal. It is widely used in testing liquid samples, slurry samples, colloidal samples, powder samples, and film samples. In the case of samples such as , soft polymers, etc., it can not only avoid the tedious steps of tableting and sample preparation, but also avoid the interference of the water absorption peak caused by potassium bromide's water absorption on the test.
  • the sample cell here can be fixedly arranged on, for example, a chassis in the ATR accessory through, for example, a lifting pressure rod on the ATR accessory.
  • Figures 1 and 2 illustrate an ATR accessory 100 in an infrared spectrometer based on Fourier transform.
  • the ATR accessory 100 includes a chassis 10a and a pressure rod 10b.
  • the chassis 10a A sample cell 40 related to the embodiment of the present disclosure is disposed between the pressure rod 10b and the lower end of the pressure rod 10b, and the ATR crystal 30 as the sample to be measured is placed in the sample cell 40.
  • the sample cell 40 involved in the embodiment of the present disclosure is shown in Figures 3 to 5.
  • the sample cell 40 includes a cell body 1.
  • the cell body 1 can, for example, adopt a frustum shape, and of course other shapes can also be used. shape.
  • the frustum shape used here has good stability and can be stably placed on the ATR crystal 30 .
  • the cell body 1 of the sample cell can be made of PEEK material, which is corrosion-resistant, anti-aging, anti-solubility, wear-resistant, anti-static, and has high mechanical strength, for example.
  • the pool body 1 has a top surface 11 and a bottom surface 12.
  • the top surface 11 and the bottom surface 12 are circles with different diameters. shape, wherein the diameter of the top surface 11 can be smaller than the diameter of the bottom surface 12, and there is a tapered surface 13 between the top surface 11 and the bottom surface 12. Such a shape is also conducive to the passage of atmosphere from the sample cell. 40 enters and contacts the ATR crystal 30 .
  • a recess 14 is provided on the bottom surface 12.
  • the recess 14 can form a cavity, and the ATR crystal 30 is placed in the recess 14 .
  • the size of the recess 14 here is determined based on the size of the ATR crystal.
  • first atmosphere joint 2 and a second atmosphere joint 3 are provided on the conical surface 13 of the pool body 1, and the first atmosphere joint 2 and the second atmosphere joint 3 can be arranged symmetrically; wherein, The structures of the two atmosphere joints may be the same.
  • the first atmosphere joint 2 and the second atmosphere joint 3 may be arbitrarily switched to a joint with an air inlet function or a joint with an exhaust function to realize the introduction of the atmosphere respectively. Air or exhaust function.
  • first atmosphere joint 2 and the second atmosphere joint 3 here can be made of 304 stainless steel material with corrosion resistance, heat resistance, low temperature strength and mechanical properties.
  • first atmosphere connector 2 and the second atmosphere connector 3 can adopt various versatile shapes such as a pagoda type, wherein setting the atmosphere connector in a pagoda shape can facilitate the connection of the atmosphere hose.
  • first external air port 15 and the second external air port 16 can be provided at symmetrical positions on the conical surface 13 of the pool body 1 and symmetrically provided in the recess 14 on the bottom surface 12 .
  • the outer walls of the first atmosphere joint 2 and the second atmosphere joint 3 are provided with external threads, Internal threads are respectively provided on the inner wall surfaces of the first external air port 15 and the second external air port 16 for rotationally installing the first atmosphere joint 2 and the second atmosphere joint 3 .
  • a first sealing member 4 is provided on the bottom surface 12 of the pool body 1.
  • the first sealing member 4 may be, for example, an atmosphere sealing ring, which is disposed at the bottom of the pool body 1 and located on the The outside of the recess 14 can increase the friction between the cell body 1 and the chassis 10a when the sample cell 40 is placed on the chassis 10a of the ATR accessory 100. In addition, it can also stabilize the overall device. Ensure air tightness.
  • an annular groove may be provided on the bottom surface 12 of the pool body 1 , and the groove is used to fix the first sealing member 4 on the bottom surface 12 .
  • the sample cell also includes a second sealing member, which is provided at the bottom of the first atmosphere connector 2 and the second atmosphere connector 3 to prevent the atmosphere connector from being connected with the corresponding atmosphere channel. Air leakage occurs during connection.
  • the second seal may use an O-ring, for example, two O-rings may be installed at the bottoms of the two atmosphere joints to further ensure the air tightness in the recess 14 during the flow of atmosphere.
  • the second sealing member can be made of fluorine rubber material with good heat resistance, oxidation resistance, corrosion resistance and aging resistance.
  • the ionic liquid or other liquid materials to be measured and the sample to be measured are dropped there.
  • the ATR crystal 30 align the center of the bottom surface 12 of the sample cell 40 with the center of the ATR crystal and place it above the ATR crystal 30, and fix the sample cell 40 with the pressure rod in the ATR accessory.
  • a chemical reaction occurs on the sample to be tested, and the generated exhaust gas or excess atmosphere is discharged through the second inner air port 18 and the second outer air port 16 .
  • infrared light is emitted to the ATR crystal 30 through an infrared spectrometer.
  • the infrared light will generate a half-wavelength dissipation wave upward at the liquid interface of the ATR crystal 30 and then be fully reflected to the infrared spectrometer.
  • the infrared absorption spectrum of the measured sample such as the ionic liquid (or other liquid) is determined by calculating the absorption of the ATR evanescent wave by the sample to be measured.
  • the sample cell involved in the embodiment of the present disclosure can be fixed on the ATR accessory through, for example, a pressure rod located above the ATR crystal, and the in-situ reaction atmosphere in the cavity can be achieved through the atmosphere joint and the first and second seals.
  • Precise control enables it to be adapted to in-situ chemical reactions that require environmental control, and enables real-time tracking of the reaction process in an atmospheric environment on fluid samples to be tested.
  • a second embodiment of the present disclosure provides a Fourier transform-based infrared spectrometer, which includes an ATR accessory and the sample cell of any one of the above embodiments, where the sample cell is disposed on the ATR accessory.
  • the sample cell can be fixed on the chassis of the ATR accessory through the pressure rod above the ATR crystal.
  • the ATR accessory here can be any form of ATR accessory.
  • the infrared spectrometer here at least includes a transmitting device and a detection device.
  • the infrared device is used to emit infrared light to the sample to be measured on the ATR crystal.
  • the detection device is used to receive the reflected wave reflected by the ATR crystal. In this way, by calculating the sample's absorption of the ATR evanescent wave, the infrared absorption spectrum of the ionic liquid (or other liquid) and other test samples is determined.
  • the Fourier transform-based infrared spectrometer involved in the embodiment of the present disclosure can realize infrared absorption spectrum detection of the sample to be tested based on the sample cell.

Abstract

一种样品池(40)以及基于傅里叶变换的红外光谱仪,样品池(40)包括呈锥台形状的池体(1),池体(1)具有顶面(11)、底面(12)以及位于顶面(11)和底面(12)之间的锥面(13),在底面(12)上设置用于容纳ATR晶体(30)的凹部(14),在锥面(13)上设置分别实现气氛的进气或者排气功能的第一气氛接头(2)和第二气氛接头(3)。样品池(40)通过位于ATR晶体(30)上方的压力杆(10b)固定在ATR附件样品池(100)上,通过气氛接头(2,3)以及第一密封件(4)和第二密封件实现空腔内的原位反应气氛的精确控制,能够用于在需要环境控制的原位化学反应中对流体待测样品实现气氛环境下反应过程的实时追踪和光谱检测。

Description

一种样品池以及基于傅里叶变换的红外光谱仪 技术领域
本公开涉及原位气氛反应控制领域,尤其涉及一种样品池与基于傅里叶变换的红外光谱仪。
背景技术
红外光谱技术是一种用于有机化合物官能团的定性分析与定量分析中的有效手段,其方法具有使用方便、灵敏度高、特征信号强、测量速度快的优势,适合于快速反应动力学的分析。目前在原位控制领域,特别是催化、电池等领域中取得了越来越多的应用,受到各行业的认可。
采用红外光谱技术的基于傅里叶变换的红外光谱仪(FTIR)的基本工作原理是:经过准直的待测红外光束入射到迈克尔逊干涉仪中,控制干涉仪中动镜的运动,获得不同光程差下的干涉图,将获得的干涉图进行傅里叶变换,就得到光束的红外光谱图。一般的红外光谱仪在干涉仪输出光与检测器之间会设置样品仓,通过在样品仓内放置适当透射、反射等测试装置并将样品以适当固定,以实现样品的透射光谱、反射光谱测量。
现有技术中,往往在红外光谱仪中设置衰减全反射装置(ATR),衰减全反射装置作为一种高灵敏光信号测试装置,其核心通常包括光导入组件、ATR晶体、光导出组件。衰减全反射装置通过测量样品表面的反射信号来提取有效光谱信息,简化了样品制作过程,同时也极大地拓展了光谱法的应用范围,已经被广泛应用于纤维、塑料、涂料、橡胶、粘合剂等高分子材料制品的表面成份分析。这样,衰减全反射装置与红外光谱仪相结合,能够发挥二者的优势,就可以在更多场合取得应用、获取更好的光谱测试灵敏度、信噪比和对样品材料性质。理论上,将衰减全反射装置放入红外光谱仪的样品仓,就可实现ATR光谱测试分析
具有衰减全反射装置的红外光谱仪采用衰减全反射红外光谱法,其是一种基于全反射信号进行红外光谱测试的方法,现有技术中例如采用Thermo  Fisher Scientific IS50系列傅里叶变换红外光谱仪的内置ATR附件完成红外光谱采集。衰减全反射红外光谱法测定流体样品的优点是无需制样,样品直接滴在ATR晶体上即可,所需样品用量少,对样品无破坏性,几乎适合于所有非强腐蚀性的样品测试;此外,该方法测试速度快,可以实现原位测试和实时跟踪,因此对于流体样品的化学反应测试是最佳选择。衰减全反射红外光谱法操作简单,谱图特征峰明显,适合监控化学反应过程中的样品成份的变化。
这里的ATR附件是基于入射光的衰减全反射原理而设计的,当光源发出的单色光穿过折射率大的晶体进入折射率小的样品表面上,会发生反射和折射,当入射角大于临界角时,则折射光消失,所有的光都以反射光的形式在晶体内部存在,发生全反射效应。实际上,红外光在晶体内表面发生全反射时,会在晶体外表面附近产生驻波,称为隐失波,样品与晶体外表面接触时,在每个反射点隐失波都穿入样品。从隐失波衰减的能量可以得到红外吸收的信息。隐失波振幅随离开晶体界面距离的增大按指数规律衰减,产生与透射吸收类似的衰减全反射红外谱图,从而获得样品表面化学成分的结构信息。大多数有机物的折射率都低于1.5,根据折射定律,要获得衰减全反射光谱需要折射率大于1.5的红外ATR晶体,常用的ATR晶体材料有:金刚石、ZnSe(硒化锌)、锗(Ge)、氯化银(AgCl)、溴化银(AgBr)、硅(Si),尤以金刚石应用最多。金刚石材料由于其具有较好的坚固性和耐磨性,被称为最佳的ATR晶体。Thermo Fisher Scientific IS50光谱仪正是采用金刚石作为ATR晶体材料,但是现有的内置ATR附件的结构中仅在开放的环境中能实现样品的快速测试,而在需要环境控制的原位化学反应中无法胜任,也不能对流体样品实现气氛环境下反应过程的实时追踪。
为此,要实现气氛控制的原位化学反应的监控,首先,必须设计出合适的原位样品池,且池体腔内的密封性要足够好,保证每次化学化应的环境控制是一致的,确保实验的可重复性;其二,气氛是一直与原位样品池紧密接触的,所以原位样品池的材质需要具有很好的惰性,避免长时间接触气氛而受到腐蚀。
发明内容
有鉴于此,本公开实施例提出了一种样品池与基于傅里叶变换的红外光谱仪,以解决现有技术中的问题。
本公开实施例提供一种样品池,包括呈锥台形状的池体,所述池体具有顶面、底面以及位于所述顶面和所述底面之间的锥面,在所述底面上设置用于容纳ATR晶体的凹部,在所述锥面上设置分别实现气氛的进气或者排气功能的第一气氛接头和第二气氛接头。
在一些实施例中,所述第一气氛接头和所述第二气氛接头采用宝塔型。
在一些实施例中,所述第一气氛接头和所述第二气氛接头对称设置。
在一些实施例中,在所述锥面上设置第一外气口和第二外气口,在所述底面上的所述凹部中设置第一内气口和第二内气口,所述第一外气口和所述第一内气口之间形成第一气氛通道,所述第二外气口和所述第二内气口之间形成第二气氛通道,所述第一气氛通道和所述第二气氛通道与所述凹部连通。
在一些实施例中,所述第一气氛接头和所述第二气氛接头的外壁设置外螺纹,在所述第一外气口和所述第二外气口的内壁面上分别设置内螺纹。
在一些实施例中,在所述底面上设置第一密封件,其位于所述凹部的外侧。
在一些实施例中,所述底面上设置环形的凹槽,所述凹槽用于固定设置所述第一密封件。
在一些实施例中,所述样品池还包括第二密封件,所述第二密封件设置在所述第一气氛接头和所述第二气氛接头的底部。
本公开实施例还提供一种基于傅里叶变换的红外光谱仪,其包括ATR附件以及上述任一项技术方案中的所述样品池,所述样品池设置在所述ATR附件上。
在一些实施例中,所述ATR附件包括底盘和压力杆,所述样品池设置在所述底盘和所述压力杆的下端之间。
本公开实施例能够通过例如位于ATR晶体上方的压力杆固定在ATR附件上,通过气氛接头以及第一密封件和第二密封件从而实现空腔内的原位反应气氛的精确控制,从而能够适应于在需要环境控制的原位化学反应对流体的待测样品实现气氛环境下反应过程的实时追踪和光谱检测。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的基于傅里叶变换的红外光谱仪的结构示意图;
图2为本公开实施例的基于傅里叶变换的红外光谱仪的结构示意图;
图3本公开实施例的样品池的结构示意图;
图4本公开实施例的样品池的结构示意图;
图5本公开实施例的样品池的结构示意图;
图6本公开实施例的原理示意图。
附图标记:
1-池体;2-第一气氛接头;3-第二气氛接头;4-第一密封件;100-ATR附件;10a-底盘;10b-压力杆;11-顶面;12-底面;13-锥面;14-凹部;15-第一外气口;16-第二外气口;17-第一内气口;18-第二内气口;19-第一气氛通道;20-第二气氛通道;30-ATR晶体;40-样品池。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不 排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
本公开的第一实施例涉及一种样品池,其用于基于傅里叶变换的红外光谱仪中的ATR附件的原位气氛控制,在本实施例中采用的衰减全反射(ATR)光谱技术属于红外光谱测试技术,将待测样品置于ATR附件上方,通过红外光束在ATR晶体内发生衰减反射后到达检测装置,广泛运用在测试液体样品、浆状样品、胶状样品、粉末样品、薄膜样品、柔软的聚合物等样品的场景,不但可以免除压片制样的繁琐步骤,又可以避免溴化钾吸水带来的水的吸收峰对测试的干扰。
在一般的ATR附件中,这里的所述样品池通过所述ATR附件上的例如升降压力杆能够固定设置在所述ATR附件中的例如底盘上。如图1和图2所示,图1和图2示出一种基于傅里叶变换的红外光谱仪中的ATR附件100,所述ATR附件100包括底盘10a和压力杆10b,在所述底盘10a和所述压力杆10b的下端之间设置本公开实施例涉及的样品池40,将作为待测样品的ATR晶体30设置在所述样品池40中。
具体地,本公开实施例涉及的所述样品池40如图3-图5所示,所述样品池40包括池体1,所述池体1可以例如采用锥台形状,当然还可以采用其他形状。这里的采用的锥台形状具有较好的稳定性,以能够稳定地设置在所述ATR晶体30上。这里的所述样品池的所述池体1例如可以采用耐腐蚀、抗老化、抗溶解性、耐磨损、抗静电、机械强度高的PEEK材料制成。
进一步地,所述池体1具有顶面11以及底面12,在一个实施方式中,当例如采用锥台形状的情况下,这里的所述顶面11和所述底面12均为不同直径的圆形形状,其中,所述顶面11的直径可以小于所述底面12的直径,所述顶面11和所述底面12之间具有锥面13,这样的形状还有利于气氛从所述样品池40的上方进入并接触所述ATR晶体30。
进一步地,在所述底面12上设置凹部14,当在将所述样品池40设置在ATR附件100的所述底盘10a上时,所述凹部14能够形成一腔体,所述ATR 晶体30设置在所述凹部14中。这里的所述凹部14的尺寸基于所述ATR晶体的大小确定。
进一步地,在所述池体1的所述锥面13上设置第一气氛接头2和第二气氛接头3,所述第一气氛接头2和所述第二气氛接头3可以对称设置;其中,这两个气氛接头的结构可以是相同的,所述第一气氛接头2和所述第二气氛接头3可以任意切换成具有进气功能的接头或者具有排气功能的接头以分别实现气氛的进气或者排气功能。
具体地,这里的所述第一气氛接头2和所述第二气氛接头3气氛可以采用具有耐蚀性、耐热性、低温强度和机械特性的304不锈钢材料制成。此外,所述第一气氛接头2和所述第二气氛接头3可以采用宝塔型等多种通用性的形状,其中,将气氛接头设置为宝塔的形状能够便于气氛软管的连接。
具体地,可以在所述池体1的所述锥面13上相互对称的位置处设置第一外气口15和第二外气口16,在所述底面12上的所述凹部14中相互对称设置第一内气口17和第二内气口18,其中,所述第一外气口15和所述第一内气口17之间具有第一气氛通道19,所述第二外气口16和所述第二内气口18之间设置第二气氛通道20,这样,这两个气氛通道将外界与所述凹部14连通,分别用于气氛的进气和排气。
进一步地,为了在所述池体1上安装所述第一气氛接头2和所述第二气氛接头3,将所述第一气氛接头2和所述第二气氛接头3的外壁设置外螺纹,在所述第一外气口15和所述第二外气口16的内壁面上分别设置内螺纹,以用于旋转安装所述第一气氛接头2和所述第二气氛接头3。
进一步地,在所述池体1的所述底面12上设置第一密封件4,所述第一密封件4例如可以是气氛密封圈,其设置在所述池体1的底部并且位于所述凹部14的外侧,当所述样品池40设置在ATR附件100的所述底盘10a上时能够增大所述池体1与所述底盘10a之间的摩擦力,此外,还能稳定整体装置以及保证气密性。具体地,可以在所述池体1的所述底面12上设置环形的凹槽,所述凹槽用于在所述底面12上固定设置所述第一密封件4。
此外,所述样品池还包括第二密封件,所述第二密封件设置在所述第一气氛接头2和所述第二气氛接头3的底部,以防止气氛气氛接头与对应的气氛通道之间在连接时出现漏气。具体地,所述第二密封件可以采用O型垫圈,例如可以将两个O型垫圈分别安装在两个气氛接头的底部,以进一步保证气 氛流动过程中所述凹部14中的气密性。这里,所述第二密封件可以采用耐热性好、抗氧化性、耐腐蚀性和耐老化性的氟橡胶材制成。
如图6所示,在基于傅里叶变换的红外光谱仪中的ATR附件100中使用本公开实施例的所述样品池40时,将待测的离子液体或者其他液体材料等待测样品滴在所述ATR晶体30上,然后将所述样品池40的所述底面12的中心对齐所述ATR晶体中心放置在ATR晶体30的上方,并用所述ATR附件中的压力杆固定所述样品池40的所述池体1;将气氛通过例如所述第一气氛接头2通过所述第一外气口15和所述第一内气口17进入到所述凹部14的腔体中,与所述ATR晶体30上的待测样品发生化学反应,产生的废气或者过量的气氛通过所述第二内气口18和所述第二外气口16排出。这次过程中,通过红外光谱仪向所述ATR晶体30发射红外光,红外光会在所述ATR晶体30处的液体界面处向上产生半个波长消散波,然后再全反射到所述红外光谱仪的探测器中,通过计算待测样品对ATR消散波的吸收,确定离子液体(或者其他液体)等待测样品的红外吸收光谱图。
本公开实施例涉及的所述样品池能够通过例如位于ATR晶体上方的压力杆固定在ATR附件上,通过气氛接头以及第一密封件和第二密封件从而实现空腔内的原位反应气氛的精确控制,从而能够适应于在需要环境控制的原位化学反应对流体的待测样品实现气氛环境下反应过程的实时追踪。
本公开的第二实施例提供一种基于傅里叶变换的红外光谱仪,其包括ATR附件以及上述实施例中的任一项的所述样品池,这里的所述样品池设置在所述ATR附件上,例如所述样品池可以通过ATR晶体上方的压力杆固定在ATR附件的底盘上,这里的ATR附件可以是任意形式的ATR附件。这里的所述红外光谱仪中至少包括发射装置以及探测装置,所述红外装置用于向所述ATR晶体上的待测样品发射红外光,所述探测装置用于接受经过ATR晶体反射的反射波,这样通过计算样品对ATR消散波的吸收,确定离子液体(或者其他液体)等待测样品的红外吸收光谱图。
本公开实施例涉及的基于傅里叶变换的红外光谱仪能够基于样品池实现对待测样品的红外吸收光谱检测。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征 的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
以上对本公开多个实施例进行了详细说明,但本公开不限于这些具体的实施例,本领域技术人员在本公开构思的基础上,能够做出多种变型和修改实施例,这些变型和修改都应落入本公开所要求保护的范围。

Claims (10)

  1. 一种样品池,其特征在于,包括呈锥台形状的池体,所述池体具有顶面、底面以及位于所述顶面和所述底面之间的锥面,在所述底面上设置用于容纳ATR晶体的凹部,在所述锥面上设置分别实现气氛的进气或者排气功能的第一气氛接头和第二气氛接头。
  2. 根据权利要求1所述的样品池,其特征在于,所述第一气氛接头和所述第二气氛接头采用宝塔型。
  3. 根据权利要求1所述的样品池,其特征在于,所述第一气氛接头和所述第二气氛接头对称设置。
  4. 根据权利要求1所述的样品池,其特征在于,在所述锥面上设置第一外气口和第二外气口,在所述底面上的所述凹部中设置第一内气口和第二内气口,所述第一外气口和所述第一内气口之间形成第一气氛通道,所述第二外气口和所述第二内气口之间形成第二气氛通道,所述第一气氛通道和所述第二气氛通道与所述凹部连通。
  5. 根据权利要求4所述的样品池,其特征在于,所述第一气氛接头和所述第二气氛接头的外壁设置外螺纹,在所述第一外气口和所述第二外气口的内壁面上分别设置内螺纹。
  6. 根据权利要求1所述的样品池,其特征在于,在所述底面上设置第一密封件,其位于所述凹部的外侧。
  7. 根据权利要求6所述的样品池,其特征在于,所述底面上设置环形的凹槽,所述凹槽用于固定设置所述第一密封件。
  8. 根据权利要求1所述的样品池,其特征在于,所述样品池还包括第二密封件,所述第二密封件设置在所述第一气氛接头和所述第二气氛接头的底部。
  9. 一种基于傅里叶变换的红外光谱仪,其特征在于,包括ATR附件以及权利要求1-8中任一项的所述样品池,所述样品池设置在所述ATR附件上。
  10. 根据权利要求1所述的红外光谱仪,其特征在于,所述ATR附件包括底盘和压力杆,所述样品池设置在所述底盘和所述压力杆的下端之间。
PCT/CN2022/139886 2022-04-18 2022-12-19 一种样品池以及基于傅里叶变换的红外光谱仪 WO2023202115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210405136.5 2022-04-18
CN202210405136.5A CN114720418A (zh) 2022-04-18 2022-04-18 一种样品池以及基于傅里叶变换的红外光谱仪

Publications (1)

Publication Number Publication Date
WO2023202115A1 true WO2023202115A1 (zh) 2023-10-26

Family

ID=82244365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139886 WO2023202115A1 (zh) 2022-04-18 2022-12-19 一种样品池以及基于傅里叶变换的红外光谱仪

Country Status (2)

Country Link
CN (1) CN114720418A (zh)
WO (1) WO2023202115A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720418A (zh) * 2022-04-18 2022-07-08 西湖大学 一种样品池以及基于傅里叶变换的红外光谱仪

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183737A (ja) * 1997-09-12 1999-03-26 Res Dev Corp Of Japan 赤外反射スペクトルの測定方法及びその装置
CN102539332A (zh) * 2012-02-13 2012-07-04 浙江师范大学 一种用于气固界面或液固界面研究的原位红外光谱池
CN102590090A (zh) * 2012-02-13 2012-07-18 浙江师范大学 一种用于研究气液固三相界面的原位红外光谱池
WO2014005987A1 (en) * 2012-07-03 2014-01-09 Danmarks Tekniske Universitet An add-on system for photochemical atr-ir spectroscopy studies
WO2014005985A1 (en) * 2012-07-03 2014-01-09 Danmarks Tekniske Universitet An add-on cap for atr-ir spectroscopy studies
CN105445191A (zh) * 2015-11-30 2016-03-30 中国科学院长春应用化学研究所 多通道原位测量气氛池
CN111398174A (zh) * 2020-03-20 2020-07-10 安徽大学 一种双通道原位红外反应池
CN114152576A (zh) * 2021-11-08 2022-03-08 厦门理工学院 一种多功能气氛池
CN114720418A (zh) * 2022-04-18 2022-07-08 西湖大学 一种样品池以及基于傅里叶变换的红外光谱仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183737A (ja) * 1997-09-12 1999-03-26 Res Dev Corp Of Japan 赤外反射スペクトルの測定方法及びその装置
CN102539332A (zh) * 2012-02-13 2012-07-04 浙江师范大学 一种用于气固界面或液固界面研究的原位红外光谱池
CN102590090A (zh) * 2012-02-13 2012-07-18 浙江师范大学 一种用于研究气液固三相界面的原位红外光谱池
WO2014005987A1 (en) * 2012-07-03 2014-01-09 Danmarks Tekniske Universitet An add-on system for photochemical atr-ir spectroscopy studies
WO2014005985A1 (en) * 2012-07-03 2014-01-09 Danmarks Tekniske Universitet An add-on cap for atr-ir spectroscopy studies
CN105445191A (zh) * 2015-11-30 2016-03-30 中国科学院长春应用化学研究所 多通道原位测量气氛池
CN111398174A (zh) * 2020-03-20 2020-07-10 安徽大学 一种双通道原位红外反应池
CN114152576A (zh) * 2021-11-08 2022-03-08 厦门理工学院 一种多功能气氛池
CN114720418A (zh) * 2022-04-18 2022-07-08 西湖大学 一种样品池以及基于傅里叶变换的红外光谱仪

Also Published As

Publication number Publication date
CN114720418A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US6535283B1 (en) Apparatus for spectroscopic analysis of a fluid medium by attenuated reflection
WO2023202115A1 (zh) 一种样品池以及基于傅里叶变换的红外光谱仪
TW200533908A (en) A handheld device with a disposable element for chemical analysis of multiple analytes
JP2008309785A (ja) 減衰全反射センサー
GB2577977A (en) Terahertz surface plasmon resonance sensing device and using method
CN105092492A (zh) 一种基于导光毛细管的光度分析仪及其检测方法
US3020795A (en) Fluid inspection apparatus
WO2023065673A1 (zh) 一种用于气敏传感探究的原位光谱分析池及应用
US20100045997A1 (en) Oxygen sensor using principle of surface plasmon resonance and oxygen transmission rate measurement system including the same
WO2018099408A1 (zh) 基于石墨烯表面波的高灵敏多光束折射率探测装置和方法
CN105044029B (zh) 基于导波共振的传感器及传感器测试系统
CN107462522B (zh) 一种可在线连续进行液体光声检测的光声池及测量方法
Perino et al. Characterization of grating coupled surface plasmon polaritons using diffracted rays transmittance
US5402237A (en) Reflection-free ellipsometry measurement apparatus and method for small sample cells
CN207717616U (zh) 一种传感器探头及气体检测装置
CN107064061A (zh) 超高分辨折射率仪
CN103278475B (zh) 透明介质折射率的测量装置及测量方法
CN104655525A (zh) 一种液体比重仪
CN215179645U (zh) 一种总有机碳分析仪用气体检测装置
CN204405482U (zh) 一种液体比重仪
CN219104729U (zh) Spr传感器
CN217180520U (zh) 透过率的检测装置及系统
Cavalcanti et al. Automated reflectometer for surface plasmon resonance studies in the infrared and its application for the characterization of Pd films
CN107807108A (zh) 一种大量程高分辨率的气液折射率检测方法及装置
CN219777487U (zh) 一种利用积分球的气体高灵敏检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938333

Country of ref document: EP

Kind code of ref document: A1