WO2023201945A1 - 一种裸眼3d显示光学器件 - Google Patents

一种裸眼3d显示光学器件 Download PDF

Info

Publication number
WO2023201945A1
WO2023201945A1 PCT/CN2022/114168 CN2022114168W WO2023201945A1 WO 2023201945 A1 WO2023201945 A1 WO 2023201945A1 CN 2022114168 W CN2022114168 W CN 2022114168W WO 2023201945 A1 WO2023201945 A1 WO 2023201945A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
lens
eye
light
naked
Prior art date
Application number
PCT/CN2022/114168
Other languages
English (en)
French (fr)
Inventor
于迅博
高鑫
邢树军
黄辉
Original Assignee
北京邮电大学
深圳臻像科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学, 深圳臻像科技有限公司 filed Critical 北京邮电大学
Publication of WO2023201945A1 publication Critical patent/WO2023201945A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays

Definitions

  • Embodiments of the present application relate to the field of optical technology, and specifically relate to a naked-eye three-dimensional (3D) display optical device.
  • Naked-eye 3D display refers to a display technology that enables users to view images with 3D display effects directly on the display source without wearing any auxiliary equipment.
  • the principle of naked-eye 3D display is that after the light from the display source is modulated by the optical device, the user's left eye and right eye will see two images with parallax. The parallax image allows the user to see an image with a 3D display effect.
  • Conventional 3D display equipment obtains an image with a 3D display effect through lens array processing, as shown in Figure 1.
  • Each lens in the lens array modulates the incident light from the display source to emit the modulated light to the human eye. After the modulation The image formed by the light appears as a 3D display to the human eye.
  • the lens cannot achieve the ideal optical processing effect, so the processed light usually has a certain aberration, and for incident light with a larger incident angle, the greater the aberration produced by the lens.
  • conventional 3D display devices produce aberrations due to the lens array, resulting in low definition of the 3D display image presented to the user.
  • Embodiments of the present application provide a naked-eye 3D display optical device, which can solve the problem of low definition of 3D displayed images due to aberrations of optical devices in conventional naked-eye 3D display systems.
  • embodiments of the present application provide a naked-eye 3D display optical device, including an aperture layer and at least one lens array layer, and the at least one lens array layer is used to modulate light to obtain 3D display;
  • the diaphragm layer includes light-transmitting areas and light-shielding areas arranged at intervals;
  • Each lens array layer in the at least one lens array layer includes a lens assembly and a filling area, and the lens assembly includes a plurality of spaced apart lens areas;
  • the light-transmitting area of the diaphragm layer corresponds to the lens area of any lens array layer, and the center point of any light-transmitting area and the center point of the lens area corresponding to the light-transmitting area are on a straight line;
  • the lens areas in any two lens array layers of the at least two lens array layers correspond one to one, and any corresponding lens areas in all lens array layers
  • the center point of the lens area is on a straight line;
  • each light-transmitting area in the diaphragm layer is smaller than or equal to the diameter of the corresponding lens area of the light-transmitting area.
  • a spacer layer is provided between two adjacent ones of the diaphragm layer and the at least one lens array layer.
  • the surface shape of each light-transmitting area of the diaphragm layer is a plane or a curved surface.
  • the convex surface of the lens area included in any one of the at least one lens array layer faces the human eye side or the side opposite to the human eye side.
  • the sum of the focal lengths of the light-transmitting area and all lens areas whose center point is located on the same straight line is greater than 0.
  • each light-transmitting area of the diaphragm layer is configured as a curved lens
  • the concave surface of the curved lens of each light-transmitting area faces the human eye side.
  • embodiments of the present application provide a naked-eye 3D display system, which includes a naked-eye 3D display optical device and a display source;
  • the display source is used to emit light to the naked-eye 3D display optical device
  • the naked-eye 3D display optical device is used to process the light from the display source to obtain 3D display light;
  • the naked-eye 3D display optical device is as described in the first aspect or any possible implementation manner of the first aspect.
  • a spacer layer is provided between the naked-eye 3D display optical device and the display source.
  • the naked-eye 3D display optical device when the naked-eye 3D display optical device includes a lens array layer, and a spacer layer is provided between the display source and the lens array layer, the thickness of the spacer layer is the same as the thickness of the lens array layer. The difference in focal length of the lens areas in the array layer is less than the preset value.
  • a first spacing layer is provided between the diaphragm layer and the lens array layer, and the display source and the difference between the sum of the thickness of the first spacer layer and the thickness of the second spacer layer and the focal length of the lens area in the lens array layer is less than a preset value.
  • the naked-eye 3D display optical device includes at least one lens array layer and an aperture layer for modulating light to obtain 3D display.
  • the barrier layer includes spaced-apart light-transmitting areas and light-shielding areas.
  • Each of the at least one lens array layer includes a lens assembly and a filling area.
  • the lens assembly includes a plurality of spaced-apart lens areas.
  • the light-transmitting area of the diaphragm layer also corresponds to the lens area of any lens array layer, and the center point of any light-transmitting area and the center point of the lens area corresponding to the light-transmitting area are also on a straight line, and the diaphragm
  • the diameter of each light-transmitting area in the layer is smaller than or equal to the diameter of the corresponding lens area of the light-transmitting area.
  • the light rays that will produce relatively large aberrations will be blocked by the light-shielding area of the diaphragm layer, so that the light rays emitted from the light-transmitting area of the diaphragm layer will produce relatively small aberrations in the incident light rays. of light.
  • the light incident on the aperture layer comes from the lens array layer or the display source, after being filtered by the aperture layer, it can ensure that the light displayed in the 3D display is light with relatively small aberration, thereby reducing the image quality.
  • the difference affects the 3D display image and improves the clarity of the 3D display image.
  • Figure 1 is a schematic diagram of an exemplary optical path of any lens in a conventional 3D display device provided by an embodiment of the present application;
  • FIG. 2A is a schematic structural diagram of an exemplary naked-eye 3D display optical device 10 provided by an embodiment of the present application;
  • Figure 2B is a schematic diagram of an exemplary composition of the lens array layer 12 provided by the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an exemplary naked-eye 3D display system 100 provided by an embodiment of the present application.
  • Figure 4A is an exemplary structural schematic diagram of a naked-eye 3D display system 1000 provided by an embodiment of the present application.
  • Figure 4B is an exemplary structural schematic diagram of a naked-eye 3D display system 2000 provided by an embodiment of the present application.
  • Figure 4C is an exemplary structural schematic diagram of a naked-eye 3D display system 3000 provided by an embodiment of the present application.
  • FIG. 4D is an exemplary structural schematic diagram of a naked-eye 3D display system 4000 provided by an embodiment of the present application.
  • Aberration refers to the difference between the ideal image of the original object and the actual image of the original object.
  • optical elements cannot achieve ideal imaging. Based on this, for the light emitted from all angles of the original object, the processing effect of the light obtained after processing is different from that under ideal conditions, that is, the optical elements bring aberrations.
  • Embodiments of the present application provide a naked-eye 3D display optical device and a naked-eye 3D display system.
  • an aperture layer By setting an aperture layer, light that generates large aberrations can be filtered to ensure that light that generates relatively small aberrations enters the human eye, thereby It can reduce the impact of aberration on 3D display images and improve the clarity of 3D display images.
  • FIG. 2A shows a naked-eye 3D display optical device 10 .
  • the naked-eye 3D display optical device 10 is, for example, a light processing component of a naked-eye 3D display system.
  • the naked-eye 3D display optical device 10 may include an aperture layer 11 and at least one lens array layer 12 for modulating light to obtain 3D display.
  • the aperture layer 11 includes a light-transmitting area 11A and a light-shielding area 11B arranged at intervals, and at least one lens array layer 12 .
  • Each lens array layer in the layer includes a lens assembly 12A and a filling area 12B.
  • the lens assembly 12A includes a plurality of spaced apart lens areas 121, wherein the lens areas 121 are used to modulate light to achieve 3D display.
  • the naked-eye 3D display optical device 10 includes at least two lens array layers 12, the lens areas of any two lens array layers in the at least two lens array layers 12 correspond one to one, and all lens array layers
  • the center point of any corresponding lens area in is on a straight line.
  • the light-transmitting area 11A of the diaphragm layer 11 corresponds to the lens area 121 of any lens array layer, and the center point of any light-transmitting area and the center point of the lens area corresponding to the light-transmitting area are also on a straight line.
  • This straight line is perpendicular to the end surface of the diaphragm layer 11 or any lens array layer. That is, the center point of any light-transmitting area 11A of the diaphragm layer 11 is on a straight line with the center point of the lens area 121 corresponding to the light-transmitting area 11A in all the lens array layers 12 .
  • the aperture of the light-transmitting area 11A and the aperture of the lens area 121 may be on the order of millimeters (mm).
  • the diameter of any light-transmitting area 11A in the diaphragm layer 11 is smaller than the diameter of the corresponding lens area 121 of the light-transmitting area 11A.
  • the diameter of the light-transmitting area 11A is 0.18 mm
  • the diameter of the lens area 121 is 0.27mm
  • the center distance between two adjacent lens areas in the same lens array layer is 0.9mm or 0.27mm.
  • the diameter of any light-transmitting area 11A in the diaphragm layer 11 is equal to the diameter of the corresponding lens area 121 of the light-transmitting area 11A.
  • the diameter of the light-transmitting area 11A and the diameter of the lens area 121 are both 0.27. mm, the center distance between two adjacent lens areas in the same lens array layer is 0.9mm.
  • the center point of any light-transmitting area of the diaphragm layer is on a straight line with the center point of the lens area corresponding to the light-transmitting area in all lens array layers, so that The light to be displayed should be emitted through the lens area of at least one lens array layer and the light-transmitting area of the diaphragm layer.
  • the aperture of the light-transmitting area of the aperture layer is smaller than or equal to the aperture of the corresponding lens area, the light that will cause relatively large aberrations when incident on the aperture layer will be blocked by the light-shielding area of the aperture layer (such as 4A or 4C), thereby ensuring that the light emitted from the light-transmitting area of the diaphragm layer is the light with relatively small aberration in the incident light.
  • the naked-eye 3D display optical device of this technical solution after being filtered by the diaphragm layer, can ensure that the light for 3D display is light with relatively small aberration, thereby reducing the impact of aberration on the 3D display image and improving 3D display. Display image clarity.
  • the light-shielding area 11B of the diaphragm layer 11 can be realized by an opaque material (such as a pure black opaque material) or an opaque paint.
  • the surface shape of each light-transmitting area 11A of the diaphragm layer 11 is flat or
  • the curved surface, that is, the light-transmitting area 11A may be configured as a hole, a flat lens, or a curved lens.
  • the surface shapes of each curved lens of the diaphragm layer 11 are basically the same, and the concave surfaces of the curved lenses in each light-transmitting area face the human eye side.
  • FIG. 2B which illustrates the composition of the lens array layer 12 .
  • the lens assembly 12A of each lens array layer in at least one lens array layer 12 may be implemented to include a plurality of lens regions. Integral components.
  • the filling area 12B may be implemented as an integral component that is shaped to match the lens assembly 12A (ie, with a physical filling medium), or as air (ie, without a physical filling medium).
  • the convex lens part in the lens assembly 12A can fit into the recessed part of the filling area 12B, so that the lens assembly 12A and the lens assembly 12A can be
  • the conforming portion of the filling area 12B is a gap-free fit (the lens array layer shown in any of Figures 4A to 4D).
  • the lens array layer 12 described above in conjunction with FIG. 2B is only an illustrative implementation of the present application and does not constitute a limitation on the lens array layer in the embodiment of the present application.
  • the medium shown as 12B in FIG. 2B is a physical medium, then in this example, the medium shown as 12B can also be used as a lens assembly, and the medium shown as 12A is used as a filling area.
  • the lens array layer 12 is used to modulate the light to obtain 3D display.
  • any lens array layer meets the following characteristics: in the direction perpendicular to the end surface of the lens array layer, the center point of any lens area of the lens array layer The sum of the focal length and the focal length of the filling area of the lens array layer is greater than 0.
  • two adjacent lens areas among the plurality of lens areas included in the lens assembly 12A can be arranged without gaps, that is, the diameter of each lens area is, for example, N, N is greater than 0, and the center of the two adjacent lens areas
  • the spacing can be N.
  • a certain distance may be between two adjacent lens areas among the plurality of lens areas included in the lens assembly 12A. That is, the aperture of each lens area is, for example, N, and the center distance between two adjacent lens areas is greater than N.
  • the lens area included in any lens array layer may be a one-dimensional linear lens unit (such as a cylindrical lens unit), or a two-dimensional lens unit (such as a circular lens unit or a square lens unit), which is not the case in this embodiment. limit.
  • the lens component of the lens array layer when the lens component of the lens array layer is implemented as 12A in Figure 2B, the filling area of the lens array layer is implemented as 12B in Figure 2B.
  • the refractive index of the lens components in the lens array layer is greater than the refractive index of the filling area.
  • the refractive index of the lens component is greater than 1
  • the refractive index of the filling area is greater than or equal to 1.
  • the lens assembly has an index of refraction of 1.61 and the filled region has an index of refraction of 1.43 or 1.
  • the convex surface of the lens area 121 included in any of the at least one lens array layer 12 may face the human eye side. In other embodiments, the convex surface of the lens area 121 included in any one of the at least one lens array layer 12 may face the side opposite to the human eye side.
  • the optical device located on the same straight line as the center point of any light-transmitting area is the lens area of each lens array layer.
  • the sum of the focal lengths of the light-transmitting area and all lens areas whose center point is located on the same straight line is greater than 0.
  • the filling area in the lens array layer can wrap the lens area in the lens array layer.
  • any part of the aperture layer is connected to the filling area in the lens array layer.
  • a light-transmitting area whose center point is located on the same straight line also includes a filling area.
  • the sum of the focal lengths of the light-transmitting area, all lens areas, and the filling area located on the straight line is greater than 0.
  • a spacer layer 13 is provided between adjacent two of the diaphragm layer 11 and at least one lens array layer 12 .
  • the material of the spacer layer 13 may be a single refractive index material or a composite material of multiple different refractive index materials.
  • materials with different refractive indexes may include, for example, ultraviolet rays (UV) glue, plastic (Polycarbonate, PC), polyethylene glycol terephthalate (PET), polymethylmethacrylate ( polymethyl methacrylate (PMMA), air, etc., the embodiments of this application are not limited to this.
  • the vertical distance from one layer in contact with the spacer layer to another layer is defined as the "thickness" of the spacer layer.
  • the “thickness of the spacer layer” mentioned below in this specification is This is the meaning and will not be explained again in this manual.
  • the thickness of the spacer layer may be on the order of micrometers ( ⁇ m).
  • the thickness of the spacer layer between the diaphragm layer 11 and any adjacent lens array layer of the diaphragm layer 11 is 70 ⁇ m.
  • the spacer layer 13 is provided to ensure the display performance of the light emitted from the naked-eye 3D display optical device 10 . Therefore, the thickness of the spacer layer 13 is related to the aberration of the naked-eye 3D display optical device 10 .
  • the focal length of the lens area in each lens array layer, the size of the aperture of the light-transmitting area 11A, and the aberration of each lens area in at least one lens array layer 12 determine the thickness of the spacer layer 13 .
  • it can be flexibly deployed according to actual implementation scenarios, and the embodiments of this application are not limited to this.
  • FIG. 2A is only a schematic representation and does not constitute a limitation on the naked-eye 3D display optical device of the present application.
  • the aperture layer in Figure 2A is an optical element layer located at the edge of the naked-eye 3D display optical device, in actual implementation scenarios, the positional relationship between the aperture layer and at least one lens array layer can be flexibly deployed according to needs.
  • the naked-eye 3D display optical device includes, for example, an aperture layer and two lens array layers, and the aperture layer is, for example, located between the two lens array layers. This application will not give examples one by one here.
  • Figure 3 illustrates a naked-eye 3D display system 100 (hereinafter referred to as the system 100).
  • the system 100 includes a naked-eye 3D display optical device 110 and a display source 120.
  • the display source 120 is used to emit light to the naked-eye 3D display optical device 110.
  • the display source 120 provides, for example, a 3D light field encoded image.
  • the naked-eye 3D display optical device 110 can be as shown in the naked-eye 3D display optical device 10 described in the above embodiment, and is used to process the light from the display source 120 to obtain 3D display light, so that after the light is incident on the human eye, it can Presents a 3D displayed image to the user.
  • the structure illustrated in Figure 3 does not constitute a specific limitation on the naked-eye 3D display system.
  • the naked-eye 3D display system may include more or fewer optical elements than shown in the figure, which is not limited by the embodiments of the present application.
  • the naked-eye 3D display system of the embodiment of the present application uses a naked-eye 3D display optical device provided with an aperture layer. Since each light-transmitting area of the aperture layer is connected with at least one lens array layer The lens areas in are one-to-one correspondence, and the diameter of each light-transmitting area in the diaphragm layer is smaller than or equal to the diameter of the corresponding lens area of the light-transmitting area, so that the light incident on the diaphragm layer of the naked-eye 3D display optical device, The light that will produce relatively large aberrations is blocked by the light-shielding area of the aperture layer, so that the light emitted from the light-transmitting area of the aperture layer is the light that produces relatively small aberrations in the incident light.
  • the display source 120 can be disposed on the lower side of the naked-eye 3D display optical device 110 as shown in FIG. 3 , or can be disposed on the naked-eye 3D display optical device 110 the upper side.
  • the display source 120 is disposed on the upper side of the naked-eye 3D display optical device 110
  • the light exit surface of the display source 120 faces the naked-eye 3D display optical device 110 .
  • the display source 120 may be adjacent to the diaphragm layer of the naked-eye 3D display optical device 110, and the light exit surface of the display source 120 faces the naked-eye 3D display optical device.
  • the diaphragm layer of the device 110 the embodiment illustrated in FIG. 4C and FIG. 4D.
  • the display source 120 may be adjacent to the lens array layer of the naked-eye 3D display optical device 110 , and the light exit surface of the display source 120 faces the lens array layer adjacent to the display source 120 (as shown in FIG. 4A and FIG. 4B embodiment).
  • a spacer layer 130 may be disposed between the naked-eye 3D display optical device 110 and the display source 120 .
  • the composition medium of the spacer layer 130 may refer to the composition medium of the spacer layer 13 in the above embodiment, which will not be described in detail here.
  • the focal length of the optical path in the naked-eye 3D display optical device 110 and the distance between the spacer layer 130 and the lens array layer in the naked-eye 3D display optical device 110 determine the thickness of the spacer layer 130 . That is, the thickness of the spacer layer 130 when the display source 120 is adjacent to the lens array layer is different from the thickness of the spacer layer 130 when the display source 120 is adjacent to the aperture layer. Please refer to the description of the following embodiments for details.
  • the following takes the naked-eye 3D display optical device 110 including a lens array layer as an example to introduce the naked-eye 3D display system according to the embodiment of the present application.
  • Figure 4A illustrates a naked-eye 3D display system 1000 (hereinafter referred to as the system 1000).
  • the system 1000 includes an aperture layer 1001, a first spacer layer 1002, a lens array layer 1003, a second spacer layer 1004 and a display source 1005.
  • the naked-eye 3D display optical device in the system 1000 includes an aperture layer 1001, a first spacer layer 1002 and a lens array layer 1003.
  • the display source 1005 is disposed on one side of the lens array layer 1003, and a second spacer layer 1004 is disposed between the display source 1005 and the lens array layer 1003.
  • the display source 1005 emits light in the direction of the lens array layer 1003, so that the naked-eye 3D display optical device in the system 1000 processes the emitted light, so that the user can see the 3D displayed image with the naked eye in the direction of the light emitted by the aperture layer 1001.
  • the 3D displayed image is an image in which the image displayed by the display source 1005 has a 3D display effect, as shown in the optical path schematically illustrated in FIG. 4A .
  • the materials of the first spacer layer 1002 and the second spacer layer 1004 are as described in the above embodiments, and will not be described again here.
  • the difference between the thickness of the second spacer layer 1004 and the focal length of the lens area in the lens array layer 1003 may be less than a preset value.
  • the thickness of the second spacer layer 1004 should ensure that the display source is located at the focal plane of the lens array layer 1003.
  • the thickness of the second spacer layer 1004 is difficult to ensure that the display source is exactly at the focal plane.
  • the difference between the thickness of the second spacer layer 1004 and the focal length of the lens area in the lens array layer 1003 can be set to be less than a preset value, and the range of the preset value should be Ensure that the corresponding naked-eye 3D display system meets the needs of optical imaging.
  • the diaphragm layer 1001 includes light-transmitting areas and light-shielding areas arranged at intervals.
  • the light-shielding areas are, for example, a black opaque material, and the light-transmitting areas are, for example, holes arranged at intervals on the black opaque material.
  • the diameter of each light-transmitting area is, for example, 0.18 mm.
  • the lens array layer 1003 includes a lens assembly and a filling area.
  • the lens assembly includes a plurality of lens areas with the same surface shape and one-to-one correspondence with the light-transmitting area of the diaphragm layer 1001. The center of each lens area corresponds to the center of the light-transmitting area.
  • the diameter of each lens area is, for example, 0.27mm, and the center distance between two adjacent lens areas in the same lens array layer is 0.9mm or 0.27mm.
  • the lens assembly includes a lens area with a convex surface facing the display source 1005 .
  • FIG. 4A is only a schematic description and does not constitute a limitation on the naked-eye 3D display system involved in this application.
  • the structural relationship between the display source and the naked-eye 3D display optical device in the naked-eye 3D display system can also be other, and the convex surface orientation of the lens area in the lens array layer can also be other, etc.
  • the naked-eye 3D display system 2000 (hereinafter referred to as the system 2000 ), the system 2000 includes an aperture layer 2001 , a first spacer layer 2002 , a lens array layer 2003 , a second spacer layer 2004 and a display source 2005 .
  • the structure, composition and function of the aperture layer 2001, the first spacer layer 2002, the second spacer layer 2004 and the display source 2005 in the system 2000 can respectively correspond to the aperture layer 1001 and the first spacer in the system 1000.
  • the description of the layer 1002, the second spacer layer 1004 and the display source 1005 will not be described in detail in this embodiment of the present application.
  • the convex surfaces of the lens areas included in the lens array layer 2003 in the system 2000 all face the direction of the aperture layer 2001.
  • the distance between adjacent lens areas in the system 2000 is 1.7 mm
  • the aperture of the lens area is, for example, 0.5 mm
  • the aperture of the light-transmitting area in the diaphragm layer 2001 is, for example, 0.5 mm or 0.3 mm.
  • optical path of the naked-eye 3D display system is not shown in FIG. 4B
  • the optical path of the system 2000 illustrated in FIG. 4B is similar to that illustrated in FIG. 4A , and can be reasonably derived based on the optical path illustrated in FIG. 4A .
  • 4A and 4B respectively illustrate two exemplary naked-eye 3D display systems in which the display source is arranged on one side of the lens array layer.
  • the display source can also be arranged on one side of the diaphragm layer.
  • Figure 4C is a naked-eye 3D display system 3000 (hereinafter referred to as the system 3000) provided by an embodiment of the present application.
  • the system 3000 includes a lens array layer 3001, a first spacer layer 3002, an aperture layer 3003, a second lens array layer 3001, a second spacer layer 3002, a second spacer layer 3002, and a second spacer layer 3002.
  • the display source 3005 is disposed on one side of the aperture layer 3003, and the second spacer layer 3004 is disposed between the display source 3005 and the aperture layer 3003.
  • the display source 3005 emits light in the direction of the diaphragm layer 3003.
  • the structure, composition, and function of the lens array layer 3001 and the aperture layer 3003 in the system 3000 can be referred to the lens array layer 1003 and the aperture layer 1001 in the system 1000 respectively, and will not be described again here.
  • the relationship between the diameter of the lens area in the lens array layer 3001 and the diameter of the light-transmitting area in the diaphragm layer 3003 can be as described in the system 1000 or as described in the system 2000.
  • the difference between the sum of the thickness of the first spacer layer 3002 and the thickness of the second spacer layer 3004 in the system 3000 and the focal length of the lens area in the lens array layer 3001 is less than the preset value.
  • the default value is as described in the previous embodiment.
  • FIG. 4D is a naked-eye 3D display system 4000 (hereinafter referred to as the system 4000) provided by an embodiment of the present application.
  • the system 4000 includes a lens array layer 4001, a first spacer layer 4002, and an aperture layer 4003 arranged in sequence. , the second spacer layer 4004 and the display source 4005.
  • the convex surface of the lens area in the lens array layer 4001 is oriented as shown in the convex surface of the lens area of the lens array layer 2003 in the system 2000.
  • the structural relationship between the lens array layer 4001 and the aperture layer 4003, the structural relationship between the display source 4005 and the aperture layer 4003 and the second spacer layer 4004, the thickness of the first spacer layer 4002, the thickness of the second spacer layer 4004 and the lens array layer For the relationship between the focal length of the lens area in 4001, please refer to the relevant description in the system 3000, and will not be repeated here.
  • optical path of the naked-eye 3D display system is not shown in Figure 4D
  • optical path of the system 4000 illustrated in Figure 4D is similar to that shown in Figure 4C, and can be reasonably derived based on the optical path illustrated in Figure 4C.
  • the functions, optical properties, and relationships between each optical element all meet the requirements of naked-eye 3D display optics.
  • Device 10 is described in the corresponding embodiment.
  • the refractive index of the lens area of each lens array layer and the refractive index of the filling area of the lens array layer may vary depending on the embodiment.
  • the naked-eye 3D display optical devices in FIGS. 4A to 4D please refer to the description of the above embodiments, and the embodiments of the present application will not be described in detail here.
  • FIGS. 4A to 4D are all for the convenience of illustrating the technical solution of the present application, taking the naked-eye 3D display optical device including a lens array layer as an example.
  • the naked-eye 3D display optical device may also include more optical elements.
  • the naked-eye 3D display optical device may include at least two lens array layers.
  • the light-transmitting area of the diaphragm layer can be configured as a curved lens or the like. The embodiments of the present application will not be exemplified one by one here.
  • the naked-eye 3D display optical device provided by the embodiment of the present application includes at least one lens array layer and an aperture layer.
  • the aperture layer includes light-transmitting areas and light-shielding areas arranged at intervals.
  • the at least one lens array layer is used to modulate the light to obtain 3D display.
  • Each of the lens array layers includes a lens assembly and a filling area, and the lens assembly includes a plurality of spaced apart lens areas.
  • the naked-eye 3D display optical device when the naked-eye 3D display optical device includes at least two lens array layers, the lens areas in any two lens array layers correspond one to one, and the center point of any corresponding lens area in all lens array layers is at On a straight line.
  • the light-transmitting area of the diaphragm layer also corresponds to the lens area of any lens array layer, and the center point of any light-transmitting area and the center point of the lens area corresponding to the light-transmitting area are also on a straight line, and the diaphragm
  • the diameter of each light-transmitting area in the layer is smaller than or equal to the diameter of the corresponding lens area of the light-transmitting area.
  • the naked-eye 3D display system of the embodiment of the present application no matter whether the light incident on the aperture layer comes from the lens array layer or from the display source, after being filtered by the aperture layer, it can ensure that the light displayed in the 3D display is aberrated. Relatively small light can reduce the impact of aberration on 3D display images and improve the clarity of 3D display images.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

一种裸眼3D显示光学器件(10),包括光阑层(11)和至少一个透镜阵列层(12),光阑层(11)包括间隔设置的透光区(11A)和遮光区(11B),至少一个透镜阵列层(12)中每个透镜阵列层(12)包括透镜组件(12A),透镜组件(12A)包括若干间隔设置的透镜区(121)。其中,光阑层(11)的透光区(11B)与任一透镜阵列层(12)的透镜区(121)一一对应,且中心点在一条直线上;光阑层(11)中每一透光区(11A)的口径小于或者等于该透光区(11A)相对应透镜区(121)的口径。经过光阑层(11)的过滤,能够确保呈3D显示的光线是像差相对较小的光线,从而能够减小像差对3D显示图像的影响,提高裸眼3D显示图像的清晰度。

Description

一种裸眼3D显示光学器件 技术领域
本申请实施例涉及光学技术领域,具体涉及一种裸眼三维(3 Dimension,3D)显示光学器件。
背景技术
裸眼3D显示是指用户在不佩戴任何辅助设备的情况下,即可直接在显示源观看到3D显示效果的图像的显示技术。裸眼3D显示的原理在于,显示源的光线经过光学器件的调制之后会让用户左眼和右眼看到具有视差的两幅图像,该视差图像使用户看到呈3D显示效果的图像。
常规3D显示设备通过透镜阵列处理得到呈3D显示效果的图像,如图1所示,该透镜阵列中的每个透镜调制显示源入射的光线,以出射调制后的光线至人眼,该调制后的光线形成的图像在人眼看来呈3D显示效果。
实际实施场景中,透镜无法达到理想的光学处理效果,使得处理后的光线通常存在一定像差,且对于入射角越大的入射光,透镜产生的像差越大。基于此,常规3D显示设备因透镜阵列会产生像差,导致向用户呈现的3D显示图像清晰度较低。
发明内容
本申请实施例提供了一种裸眼3D显示光学器件,能够解决常规裸眼3D显示系统由于光学器件的像差导致3D显示的图像清晰度低的问题。
第一方面,本申请实施例提供了一种裸眼3D显示光学器件,包括光阑层和至少一个透镜阵列层,所述至少一个透镜阵列层用于调制得到3D显示的光线;
所述光阑层包括间隔设置的透光区和遮光区;
所述至少一个透镜阵列层中每个透镜阵列层包括透镜组件和填充区,所述透镜组件包括若干间隔设置的透镜区;
所述光阑层的透光区与任一透镜阵列层的透镜区一一对应,且任意透光区的中心点与该透光区对应的透镜区的中心点在一条直线上;
当所述裸眼3D显示光学器件包含至少两个透镜阵列层时,所述至少两个透镜阵列层的任意两个透镜阵列层中的透镜区一一对应,且所有透镜阵列层中任意相对应的透镜区的中心点在一条直线上;
所述光阑层中每一透光区的口径小于或者等于该透光区相对应透镜区的口径。
在一些可能的实施方式中,所述光阑层和所述至少一个透镜阵列层中相邻两个之间均设置有间隔层。
在一些可能的实施方式中,所述光阑层各个透光区的面型为平面或者曲面。
在一些可能的实施方式中,所述至少一个透镜阵列层中任一透镜阵列层包含的透镜区凸面朝向人眼侧或者与所述人眼侧相反的一侧。
在一些可能的实施方式中,中心点位于同一直线的透光区和所有透镜区的焦距之和大于0。
在一些可能的实施方式中,当所述光阑层的各个透光区设置为曲面透镜时,所述各个透光区的曲面透镜的凹面朝向人眼侧。
第二方面,本申请实施例提供了一种裸眼3D显示系统,所述系统包括裸眼3D显示光学器件和显示源;
所述显示源用于向所述裸眼3D显示光学器件出射光线;
所述裸眼3D显示光学器件用于将来自所述显示源的光线处理得到呈3D显示的光线;
所述裸眼3D显示光学器件如第一方面或者第一方面任一可能的实施方式所述。
在一些可能的实施方式中,所述裸眼3D显示光学器件与所述显示源之间设置有间隔层。
在一些可能的实施方式中,当所述裸眼3D显示光学器件包括一个透镜阵列层,且所述显示源与所述透镜阵列层之间设置间隔层时,所述间隔层的厚度与所述透镜阵列层中透镜区焦距的差值小于预设值。
在一些可能的实施方式中,当所述裸眼3D显示光学器件包括一个透镜阵列层,所述光阑层与所述透镜阵列层之间设置第一间隔层时,且所述显示源与所述光阑层之间设置第二间隔层时,所述第一间隔层的厚度和所述第二间隔层的厚度之和与所述透镜阵列层中透镜区焦距的差值小于预设值。
为解决现有裸眼3D显示系统所显示的图像清晰度低的问题,本申请实施例提供的裸眼3D显示光学器件包括至少一个用于调制得到3D显示的光线的透镜阵列层和光阑层,该光阑层包括间隔设置的透光区和遮光区,该至少一个透镜阵列层中每个透镜阵列层包括透镜组件和填充区,该透镜组件包括若干间隔设置的透镜区。本申请实施例中,当裸眼3D显示光学器件包括至少两个透镜阵列层时,任意两个透镜阵列层中的透镜区一一对应,所有透镜阵列层中任意相对应的透镜区的中心点在一条直线上。光阑层的透光区与任一透镜阵列层的透镜区同样一一对应,且任意透光区的中心点与该透光区对应的透镜区的中心点也在一条直线上,且光阑层中每任一透光区的口径小于或者等于该透光区相对应透镜区的口径。这样,入射到光阑层的光线中,会产生相对较大像差的光线被光阑层的遮光区遮挡,使得光阑层的透光区出射的光线是入射光线中产生像差相对较小的光线。基于此,无论入射到光阑层的光线来自透镜阵列层,还是来自显示源,经过光阑层的过滤,均能够确保呈3D显示的光线是像差相对较小的光线,从而能够减小像差对3D显示图像的影响,提高3D显示图像的清晰度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要 使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的常规3D显示设备中任一透镜的示例性光路示意图;
图2A是本申请实施例提供的裸眼3D显示光学器件10的示例性结构示意图;
图2B是本申请实施例提供的透镜阵列层12的示例性组成示意图;
图3是本申请实施例提供的裸眼3D显示系统100的示例性结构示意图;
图4A是本申请实施例提供的裸眼3D显示系统1000的示例性结构示意图;
图4B是本申请实施例提供的裸眼3D显示系统2000的示例性结构示意图;
图4C是本申请实施例提供的裸眼3D显示系统3000的示例性结构示意图;
图4D是本申请实施例提供的裸眼3D显示系统4000的示例性结构示意图。
具体实施方式
本申请以下实施例中所使用的术语是为了描述可选实施方式的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式。还应当理解,尽管在以下实施例中可能采用术语第一、第二等来描述某一类对象,但所述对象不限于这些术语。这些术语用来将该类对象的具体对象进行区分。例如,以下实施例中可能采用术语第一、第二等来描述间隔层,但间隔层不应限于这些术语。以下实施例中可能采用术语第一、第二等来描述的其他类对象同理,此处不再赘述。
下面对本申请实施例中涉及的技术进行解释。
像差,是指原始对象的理想成像与原始对象实际成象之间的差异。实际实现中,光学元件无法实现理想成像,基于此,对于原始对象各个角度的出射光线,处理之后得到的光线对应的处理效果与理想情况下存在差异,即光学元件带来了像差。
本申请实施例提供了一种裸眼3D显示光学器件及裸眼3D显示系统,通过设置光阑层,能够过滤产生较大像差的光线,以确保产生像差相对较小的光线进入人眼,从而能够减小像差对3D显示图像的影响,提高3D显示图像的清晰度。
下面结合示例对本申请实施例的技术方案进行介绍。
参见图2A,图2A示出了一种裸眼3D显示光学器件10,裸眼3D显示光学器件10例如是裸眼3D显示系统的光线处理组件。裸眼3D显示光学器件10可以包括光阑层11和至少一个用于调制得到3D显示的光线的透镜阵列层12,光阑层11包括间隔设置的透光区11A和遮光区11B,至少一个透镜阵列层中每个透镜阵列层包括透镜组件12A和填充区12B,透镜组件12A包括若干间隔设置的透镜区121,其中,透镜区121用于调制得到3D显示的光线。
实际实施场景中,若裸眼3D显示光学器件10中包括至少两个透镜阵列层12,该至少两个透镜阵列层12中的任意两个透镜阵列层的透镜区一一对应,且所有透镜阵列层中任意相对应的透镜区的中心点在一条直线上。光阑层11的透光区11A与任一透镜阵列层的透镜区121一一对应,且任意透光区的中心点与该透光区对应的透镜区的中心点也在一条直线上。该直线垂直于光阑层11或任一透镜阵列层的端面。也即,光阑层11任一透光区11A的中心点,与所有透镜阵列层12中与该透光区11A对应的透镜区121的中心点在一条直线上。
进一步的,透光区11A的口径和透镜区121的口径可以是毫米(mm)级。一些实施方式中,光阑层11中任一透光区11A的口径小于该透光区11A相对应透镜区121的口径,例如,透光区11A的口径是0.18mm,透镜区121 的口径是0.27mm,同一透镜阵列层中相邻两个透镜区的中心间距是0.9mm或0.27mm。另一些实施方式中,光阑层11中任一透光区11A的口径等于该透光区11A相对应透镜区121的口径,例如,透光区11A的口径和透镜区121的口径均是0.27mm,同一透镜阵列层中相邻两个透镜区的中心间距是0.9mm。
可见,采用本实现方案的裸眼3D显示光学器件,光阑层任一透光区的中心点,均与所有透镜阵列层中与该透光区对应的透镜区的中心点在一条直线上,使得待显示的光线应经由至少一个透镜阵列层的透镜区和光阑层的透光区出射。有鉴于光阑层透光区的口径小于或者等于相对应透镜区的口径,使得入射到光阑层的光线中,会产生相对较大像差的光线均被光阑层的遮光区遮挡(如图4A或者图4C示意的光路),从而能够确保光阑层的透光区出射的光线是入射光线中产生像差相对较小的光线。可见,本技术方案的裸眼3D显示光学器件,经过光阑层的过滤,能够确保呈3D显示的光线是像差相对较小的光线,从而能够减小像差对3D显示图像的影响,提高3D显示图像的清晰度。
示例性的,光阑层11的遮光区11B可以由不透光材料(例如纯黑的不透光材料)或不透光涂料实现,光阑层11各个透光区11A的面型为平面或者曲面,即,透光区11A可以设置为孔、平面透镜或者曲面透镜。可选的,当透光区11A部分设置为曲面透镜时,光阑层11的各曲面透镜面型基本相同,且各个透光区的曲面透镜的凹面均朝向人眼侧。
示例性的,参见图2B,图2B示意了透镜阵列层12的组成,如图2B所示,至少一个透镜阵列层12中每个透镜阵列层的透镜组件12A可以实现为包括多个透镜区的整体部件。填充区12B可以实现为形态与透镜组件12A相互配合的整体部件(即有实体填充介质),或者,空气(即无实体填充介质)。当填充区12B实现为实体填充介质,且填充区12B与透镜组件12A相互贴合时,透镜组件12A中凸起的透镜部分能够与填充区12B的凹陷部位适配,从而可以得到透镜组件12A与填充区12B的贴合部分无间隙配合(如图4A 至图4D中任一所示的透镜阵列层)。
需要指出的是,以上结合图2B所述的透镜阵列层12仅是本申请的一种示意性实现方式,对本申请实施例的透镜阵列层不构成限制。在本申请的另一些实现方式中,若图2B中的12B所示的为实体介质,那么,本示例中,12B所示介质也可以用作透镜组件,而12A所示介质用作填充区。
其中,透镜阵列层12用于调制得到3D显示的光线,基于此,任一透镜阵列层满足以下特性:在垂直于该透镜阵列层端面方向上,该透镜阵列层的任一透镜区中心点的焦距与该透镜阵列层填充区的焦距之和大于0。
一些实施方式中,透镜组件12A所包含的多个透镜区中相邻两透镜区可以无间隙排布,即每个透镜区的口径例如是N,N大于0,相邻两个透镜区的中心间距可以为N。另一些实施方式中,透镜组件12A所包含的多个透镜区中相邻两透镜区之间可以间隔一定距离,即每个透镜区的口径例如是N,相邻两个透镜区的中心间距大于N。
可选的,任意透镜阵列层中包含的透镜区可以是一维线性透镜单元(例如柱透镜单元),或者二维透镜单元(例如圆透镜单元或者方透镜单元),本申请实施例对此不限制。
需要指出的是,对应任一透镜阵列层,当该透镜阵列层的透镜组件实现为图2B中12A,该透镜阵列层的填充区实现为图2B中12B,为满足3D显示的光学特性,该透镜阵列层中透镜组件的折射率大于填充区的折射率。示例性的,透镜组件的折射率大于1,填充区的折射率大于或者等于1。例如,透镜组件的折射率为1.61,填充区的折射率为1.43或1。
一些实施方式中,至少一个透镜阵列层12中任一透镜阵列层包含的透镜区121的凸面可以朝向人眼侧。另一些实施方式中,至少一个透镜阵列层12中任一透镜阵列层包含的透镜区121的凸面可以朝向与人眼侧相反的一侧。
其中,无论光阑层11的透光区11A是哪种面型,且无论至少一个透镜阵列层中每个透镜阵列层的透镜区的凸面朝向,中心点位于同一直线的透光区和所有透镜区的焦距之和大于0。
可选的,当裸眼3D显示光学器件10中所有透镜阵列层的填充区均为空气时,与任一透光区的中心点位于同一直线的光学器件为各透镜阵列层的透镜区,该实施场景中,中心点位于同一直线的透光区和所有透镜区的焦距之和大于0。当至少一个透镜阵列层中包括填充区为实体光学介质的透镜阵列层时,该透镜阵列层中的填充区可以包裹该透镜阵列层中的透镜区,该实施场景中,与光阑层的任一透光区中心点位于同一直线的还包括填充区,相应的,中心点位于同一直线的透光区、所有透镜区、以及位于该直线的填充区的焦距之和大于0。
再次参见图2A,可选的,光阑层11和至少一个透镜阵列层12中相邻两个之间均设置有间隔层13。可选的,间隔层13的材料可以是单一折射率材料,也可以是多种不同折射率材料的复合材料。多种不同折射率材料例如可以包括紫外线光(Ultraviolet Rays,UV)胶、塑料(Polycarbonate,PC)、聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)、聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)、空气等,本申请实施例对此不限制。
其中,对于任意间隔层,本申请实施例中将该间隔层所接触的一个层至另一个层的垂直距离定义为该间隔层的“厚度”,本说明书下文涉及的“间隔层的厚度”均是该含义,本说明书下文不再重复解释。
示例性的,间隔层的厚度可以是微米(μm)级。例如,光阑层11与光阑层11任一相邻透镜阵列层之间的间隔层厚度是70μm。
需要指出的是,间隔层13的设置旨在确保裸眼3D显示光学器件10出射光线的显示性能,因此,间隔层13的厚度与裸眼3D显示光学器件10的像差相关。示例性的,各透镜阵列层中透镜区的焦距、透光区11A口径的大小、以及至少一个透镜阵列层12中各透镜区的像差,决定间隔层13的厚度。具体的,可以根据实际实施场景灵活部署,本申请实施例对此不限制。
可以理解的是,图2A仅是示意性表示,并不构成对本申请裸眼3D显示光学器件的限定。虽然图2A中的光阑层是设置于裸眼3D显示光学器件边缘 的光学元件层,但在实际实施场景中,光阑层和至少一个透镜阵列层的位置关系可以根据需求灵活部署。例如,在本申请另一些实施方式中,裸眼3D显示光学器件例如包括光阑层和两个透镜阵列层,该光阑层例如位于该两个透镜阵列层之间。本申请此处不再一一举例。
参见图3,图3示意了一种裸眼3D显示系统100(以下简称系统100),系统100包括裸眼3D显示光学器件110和显示源120,显示源120用于向裸眼3D显示光学器件110出射光线,显示源120例如提供3D光场编码图像。裸眼3D显示光学器件110可以如上述实施例所述的裸眼3D显示光学器件10所示,用于将来自显示源120的光线处理得到呈3D显示的光线,使得该光线入射到人眼之后,能够向用户呈现3D显示的图像。
可以理解的是,图3示意的结构并不构成对裸眼3D显示系统的具体限定。在本申请另一些实施方式中,裸眼3D显示系统可以包括比图示更多或更少的光学元件,本申请实施例对此不限制。
结合上述对裸眼3D显示光学器件的描述可知,本申请实施例的裸眼3D显示系统采用设置有光阑层的裸眼3D显示光学器件,由于光阑层的每个透光区与至少一个透镜阵列层中的透镜区一一对应,且光阑层中每任一透光区的口径小于或者等于该透光区相对应透镜区的口径,使得入射到裸眼3D显示光学器件光阑层的光线中,会产生相对较大像差的光线被光阑层的遮光区遮挡,使得光阑层的透光区出射的光线是入射光线中产生像差相对较小的光线。基于此,本申请实施例的裸眼3D显示系统中,无论入射到光阑层的光线来自透镜阵列层,还是来自显示源,经过光阑层的过滤,均能够确保呈3D显示的光线是像差相对较小的光线,从而能够减小像差对3D显示图像的影响,提高3D显示图像的清晰度。
可选的,在裸眼3D显示光学器件110固定不变的情况下,显示源120既可以如图3示意的设置在裸眼3D显示光学器件110的下侧,也可以设置在裸眼3D显示光学器件110的上侧。当然,在设置在裸眼3D显示光学器件110的上侧的场景下,显示源120的出光面朝向裸眼3D显示光学器件110。 基于此,结合前述对裸眼3D显示光学器件的描述可知,一些实施方式中,显示源120可以与裸眼3D显示光学器件110的光阑层相邻,且显示源120的出光面朝向裸眼3D显示光学器件110的光阑层(如图4C和图4D示意的实施例)。另一些实施方式中,显示源120可以与裸眼3D显示光学器件110的透镜阵列层相邻,且显示源120的出光面朝向与显示源120相邻的透镜阵列层(如图4A和图4B示意的实施例)。
再次参见图3,示例性的,裸眼3D显示光学器件110和显示源120之间可以设置间隔层130。间隔层130的组成介质可以参考上述实施例中间隔层13的组成介质,本申请实施例此处不赘述。
可选的,裸眼3D显示光学器件110中光路通道的焦距,以及间隔层130与裸眼3D显示光学器件110中透镜阵列层的距离,决定间隔层130的厚度。即,当显示源120与透镜阵列层相邻时间隔层130的厚度,与当显示源120与光阑层相邻时间隔层130的厚度不同,详见下述实施例的描述。
以下以裸眼3D显示光学器件110中包括一个透镜阵列层为例,对本申请实施例的裸眼3D显示系统进行介绍。
参见图4A,图4A示意了一种裸眼3D显示系统1000(以下简称系统1000),系统1000包括光阑层1001、第一间隔层1002、透镜阵列层1003、第二间隔层1004和显示源1005。其中,系统1000中的裸眼3D显示光学器件包括光阑层1001、第一间隔层1002和透镜阵列层1003。显示源1005设置于透镜阵列层1003的一侧,且显示源1005与透镜阵列层1003之间设置有第二间隔层1004。显示源1005向透镜阵列层1003的方向出射光线,以使系统1000中的裸眼3D显示光学器件处理该出射光,从而使得用户在光阑层1001出射光的方向能够裸眼看到3D显示的图像,该3D显示的图像是显示源1005所显示的图像呈3D显示效果的图像,如图4A示意的光路所示。
其中,第一间隔层1002的材料和第二间隔层1004的材料均如上述实施例所述,此处不再赘述。第二间隔层1004的厚度与透镜阵列层1003中透镜区焦距的差值可以小于预设值。
需要说明的,理想状态下,第二间隔层1004的厚度应保证显示源位于透镜阵列层1003的焦平面处,然而,实际实施场景中,第二间隔层1004的厚度难以做到让显示源恰好位于透镜阵列层1003的焦平面处。基于此,本申请实施例示意的裸眼3D显示系统中,可以设置第二间隔层1004的厚度与透镜阵列层1003中透镜区焦距的差值小于预设值,该预设值的取值范围应当确保相应裸眼3D显示系统满足光学成像的需求。
再次参见图4A,光阑层1001包括间隔设置的透光区和遮光区,遮光区例如是黑色不透光材质,透光区例如是间隔设置于黑色不透光材质上的孔。每个透光区的口径例如是0.18mm。透镜阵列层1003包括透镜组件和填充区,透镜组件包括若干面型相同且与光阑层1001透光区一一对应的透镜区,每个透镜区的中心与该透镜区对应透光区的中心对齐,每个透镜区的口径例如是0.27mm,同一透镜阵列层中相邻两个透镜区的中心间距是0.9mm或0.27mm。。本示例中,透镜组件包含的透镜区凸面朝向显示源1005。
可以理解的是,上述图4A仅是示意性描述,对本申请涉及的裸眼3D显示系统不构成限制。本申请其他实施方式中,裸眼3D显示系统中显示源与裸眼3D显示光学器件的结构关系还可以是其他,透镜阵列层中透镜区的凸面朝向也可以是其他等。
例如,如图4B所示的裸眼3D显示系统2000(以下简称系统2000),系统2000包括光阑层2001、第一间隔层2002、透镜阵列层2003、第二间隔层2004和显示源2005。其中,系统2000中的光阑层2001、第一间隔层2002、第二间隔层2004和显示源2005的结构、组成和功能,可以分别对应参考对系统1000中的光阑层1001、第一间隔层1002、第二间隔层1004和显示源1005的描述,本申请实施例此处不详述。
示例性的,系统2000中的透镜阵列层2003所包含的透镜区凸面均朝向光阑层2001的方向。
示例性的,系统2000中相邻透镜区的间隔是1.7mm,透镜区的口径例如是0.5mm,光阑层2001中透光区的口径例如0.5mm或者0.3mm。
可以理解的是,虽然图4B中未示出裸眼3D显示系统的光路,但是图4B示意的系统2000的光路与图4A所示的相似,且可以根据图4A示意的光路合理得出。
图4A和图4B分别示意了显示源设置与透镜阵列层一侧的两种示例性裸眼3D显示系统,其他一些实施方式中,显示源还可以设置在光阑层一侧。
参见图4C,图4C是本申请实施例提供的裸眼3D显示系统3000(以下简称系统3000),系统3000包括顺次排列的透镜阵列层3001、第一间隔层3002、光阑层3003、第二间隔层3004和显示源3005。本示例中,显示源3005设置于光阑层3003的一侧,且显示源3005与光阑层3003之间设置第二间隔层3004。显示源3005向光阑层3003的方向出射光线。
其中,系统3000中的透镜阵列层3001和光阑层3003的结构、组成和功能,可以分别对应参考对系统1000中的透镜阵列层1003和光阑层1001,此处不再赘述。可选的,透镜阵列层3001中透镜区的口径与光阑层3003中透光区的口径的大小关系,可以如系统1000中所述,或者如系统2000中所述。
需要指出的,为满足3D显示的光学特性,系统3000中第一间隔层3002的厚度和第二间隔层3004的厚度之和,与透镜阵列层3001中透镜区焦距的差值小于预设值。该预设值如前述实施例的描述。
再如,参见图4D,图4D是本申请实施例提供的裸眼3D显示系统4000(以下简称系统4000),系统4000包括顺次排列的透镜阵列层4001、第一间隔层4002、光阑层4003、第二间隔层4004和显示源4005。其中,透镜阵列层4001中透镜区的凸面朝向如系统2000中透镜阵列层2003的透镜区所示的凸面朝向。透镜阵列层4001与光阑层4003的结构关系,显示源4005与光阑层4003和第二间隔层4004的结构关系,第一间隔层4002的厚度、第二间隔层4004的厚度与透镜阵列层4001中透镜区焦距的关系,可以参考系统3000中的相关描述,此处不再赘述。
可以理解的是,虽然图4D中未示出裸眼3D显示系统的光路,但是图4D示意的系统4000的光路与图4C所示的相似,且可以根据图4C示意的光 路合理得出。
需要指出的是,图4A至图4D示意的裸眼3D显示系统所包含的裸眼3D显示光学器件中,各光学元件的功能、光学特性、以及各光学元件之间的关系,均满足裸眼3D显示光学器件10对应的实施例所述。例如,图4A至图4D示意的透镜阵列层中,各个透镜阵列层透镜区的折射率和该透镜阵列层的填充区的折射率的值,可以随实施例各不相同。图4A至图4D中裸眼3D显示光学器件满足的其他条件,可以参见上述实施例的描述,本申请实施例此处不再详述。
此外,图4A至图4D均是为了便于说明本申请技术方案,以裸眼3D显示光学器件包含一个透镜阵列层为例的示例性展示,对本申请实施例所述的裸眼3D显示光学器件以及裸眼3D显示系统均不构成限制。在本申请的另一些实施方式中,裸眼3D显示光学器件还可以包含更多光学元件,例如,裸眼3D显示光学器件包含至少两个透镜阵列层。在本申请的其他一些实施方式中,光阑层的透光区可以设置为曲面透镜等。本申请实施例此处不再一一举例。
综上,本申请实施例提供的裸眼3D显示光学器件包括至少一个透镜阵列层和光阑层,该光阑层包括间隔设置的透光区和遮光区,该至少一个用于调制得到3D显示的光线的透镜阵列层中每个透镜阵列层包括透镜组件和填充区,该透镜组件包括若干间隔设置的透镜区。本申请实施例中,当裸眼3D显示光学器件包括至少两个透镜阵列层时,任意两个透镜阵列层中的透镜区一一对应,所有透镜阵列层中任意相对应的透镜区的中心点在一条直线上。光阑层的透光区与任一透镜阵列层的透镜区同样一一对应,且任意透光区的中心点与该透光区对应的透镜区的中心点也在一条直线上,且光阑层中每任一透光区的口径小于或者等于该透光区相对应透镜区的口径。这样,入射到光阑层的光线中,会产生相对较大像差的光线被光阑层的遮光区遮挡,使得光阑层的透光区出射的光线是入射光线中产生像差相对较小的光线。基于此,应用本申请实施例的裸眼3D显示系统,无论入射到光阑层的光线来自透镜 阵列层,还是来自显示源,经过光阑层的过滤,均能够确保呈3D显示的光线是像差相对较小的光线,从而能够减小像差对3D显示图像的影响,提高3D显示图像的清晰度。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处,相关之处参见方法实施例部分的说明即可。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种裸眼三维3D显示光学器件,其特征在于,所述裸眼3D显示光学器件包括光阑层和至少一个透镜阵列层,所述至少一个透镜阵列层用于调制得到3D显示的光线;
    所述光阑层包括间隔设置的透光区和遮光区;
    所述至少一个透镜阵列层中每个透镜阵列层包括透镜组件和填充区,所述透镜组件包括若干间隔设置的透镜区;
    所述光阑层的透光区与任一透镜阵列层的透镜区一一对应,且任意透光区的中心点与该透光区对应的透镜区的中心点在一条直线上;
    当所述裸眼3D显示光学器件包含至少两个透镜阵列层时,所述至少两个透镜阵列层的任意两个透镜阵列层中的透镜区一一对应,且所有透镜阵列层中任意相对应的透镜区的中心点在一条直线上;
    所述光阑层中每一透光区的口径小于或者等于该透光区相对应透镜区的口径。
  2. 根据权利要求1所述的裸眼3D显示光学器件,其特征在于,
    所述光阑层和所述至少一个透镜阵列层中相邻两个之间均设置有间隔层。
  3. 根据权利要求1所述的裸眼3D显示光学器件,其特征在于,
    所述光阑层各个透光区的面型为平面或者曲面。
  4. 根据权利要求1所述的裸眼3D显示光学器件,其特征在于,
    所述至少一个透镜阵列层中任一透镜阵列层包含的透镜区凸面朝向人眼侧或者与所述人眼侧相反的一侧。
  5. 根据权利要求3或4所述的裸眼3D显示光学器件,其特征在于,
    中心点位于同一直线的透光区和所有透镜区的焦距之和大于0。
  6. 根据权利要求3所述的裸眼3D显示光学器件,其特征在于,
    当所述光阑层的各个透光区设置为曲面透镜时,所述各个透光区的曲面透镜的凹面朝向人眼侧。
  7. 一种裸眼三维3D显示系统,其特征在于,所述系统包括裸眼3D显示光学器件和显示源;
    所述显示源用于向所述裸眼3D显示光学器件出射光线;
    所述裸眼3D显示光学器件用于将来自所述显示源的光线处理得到呈3D显示的光线;
    所述裸眼3D显示光学器件如权利要求1至6中任一项所述。
  8. 根据权利要求7所述的裸眼3D显示系统,其特征在于,
    所述裸眼3D显示光学器件与所述显示源之间设置有间隔层。
  9. 根据权利要求7或8所述的裸眼3D显示系统,其特征在于,当所述裸眼3D显示光学器件包括一个透镜阵列层,且所述显示源与所述透镜阵列层之间设置间隔层时,所述间隔层的厚度与所述透镜阵列层中透镜区焦距的差值小于预设值。
  10. 根据权利要求7或8所述的裸眼3D显示系统,其特征在于,当所述裸眼3D显示光学器件包括一个透镜阵列层,所述光阑层与所述透镜阵列层之间设置第一间隔层时,且所述显示源与所述光阑层之间设置第二间隔层时,所述第一间隔层的厚度和所述第二间隔层的厚度之和与所述透镜阵列层中透镜区焦距的差值小于预设值。
PCT/CN2022/114168 2022-04-18 2022-08-23 一种裸眼3d显示光学器件 WO2023201945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210402922.XA CN114660824A (zh) 2022-04-18 2022-04-18 一种裸眼3d显示光学器件
CN202210402922.X 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023201945A1 true WO2023201945A1 (zh) 2023-10-26

Family

ID=82034495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114168 WO2023201945A1 (zh) 2022-04-18 2022-08-23 一种裸眼3d显示光学器件

Country Status (2)

Country Link
CN (1) CN114660824A (zh)
WO (1) WO2023201945A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660824A (zh) * 2022-04-18 2022-06-24 北京邮电大学 一种裸眼3d显示光学器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165372A (ja) * 1996-12-10 1998-06-23 Canon Inc 立体映像装置
CN101281298A (zh) * 2008-04-18 2008-10-08 浙江大学 实现全视场空间三维显示的屏幕装置
WO2013141682A1 (ru) * 2012-03-22 2013-09-26 Janins Boriss Способ создания многоракурсных изображений и оптическая плёнка для его осуществления
CN104238126A (zh) * 2014-09-12 2014-12-24 京东方科技集团股份有限公司 一种裸眼立体显示装置
CN104423050A (zh) * 2013-09-05 2015-03-18 友达光电股份有限公司 裸眼立体显示装置
CN107515435A (zh) * 2017-09-11 2017-12-26 京东方科技集团股份有限公司 显示面板和显示装置
CN114660824A (zh) * 2022-04-18 2022-06-24 北京邮电大学 一种裸眼3d显示光学器件
CN217305655U (zh) * 2022-04-18 2022-08-26 北京邮电大学 一种裸眼3d显示光学组件及裸眼3d显示系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165372A (ja) * 1996-12-10 1998-06-23 Canon Inc 立体映像装置
CN101281298A (zh) * 2008-04-18 2008-10-08 浙江大学 实现全视场空间三维显示的屏幕装置
WO2013141682A1 (ru) * 2012-03-22 2013-09-26 Janins Boriss Способ создания многоракурсных изображений и оптическая плёнка для его осуществления
CN104423050A (zh) * 2013-09-05 2015-03-18 友达光电股份有限公司 裸眼立体显示装置
CN104238126A (zh) * 2014-09-12 2014-12-24 京东方科技集团股份有限公司 一种裸眼立体显示装置
CN107515435A (zh) * 2017-09-11 2017-12-26 京东方科技集团股份有限公司 显示面板和显示装置
CN114660824A (zh) * 2022-04-18 2022-06-24 北京邮电大学 一种裸眼3d显示光学器件
CN217305655U (zh) * 2022-04-18 2022-08-26 北京邮电大学 一种裸眼3d显示光学组件及裸眼3d显示系统

Also Published As

Publication number Publication date
CN114660824A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
US11740402B2 (en) Energy relays with traverse energy localization
US11726325B2 (en) Near-eye optical imaging system, near-eye display device and head-mounted display device
JP6093800B2 (ja) 光学装置及びその光学装置を組み込んだ自動立体視ディスプレイ装置
US7821717B2 (en) Lenticular lens array element
KR102021166B1 (ko) 리니어 프레넬 렌즈 시트, 투과형 표시 장치 및 리니어 프레넬 렌즈 시트를 제조하기 위한 롤 형상의 주형
CN108139591B (zh) 三维显示面板、包括其的三维显示设备、及其制造方法
JP6913441B2 (ja) 画像表示装置
US20050134965A1 (en) Variable optical arrays and variable manufacturing methods
CN104238126A (zh) 一种裸眼立体显示装置
WO2023201945A1 (zh) 一种裸眼3d显示光学器件
CN108761818B (zh) 一种自由立体显示系统
US10191198B2 (en) Display apparatus including directional backlight unit and method of assembling the display apparatus
CN108761819B (zh) 一种全视差自由立体显示系统
CN217305655U (zh) 一种裸眼3d显示光学组件及裸眼3d显示系统
US9479765B2 (en) Autostereoscopic projection device
KR101749443B1 (ko) 입체 표시 장치
JP2007516469A (ja) 可変光学配列及び可変な製造方法
JP2000035616A (ja) スクリーンシート
JPWO2018139141A1 (ja) 光学素子及びそれを用いた映像表示装置
JP2005037884A (ja) レンズプレートおよびその製造方法並びに画像伝達装置
US11415728B2 (en) System and method for holographic displays
TWM505616U (zh) 3d顯示層及3d顯示結構
TWM520771U (zh) 3d顯示層及其3d顯示結構
TWI597527B (zh) 3d顯示層及其3d顯示結構
US9612518B2 (en) Screen and multiple-screen system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938170

Country of ref document: EP

Kind code of ref document: A1