WO2023201869A1 - 一种面向多目标的观测系统及其设计方法 - Google Patents

一种面向多目标的观测系统及其设计方法 Download PDF

Info

Publication number
WO2023201869A1
WO2023201869A1 PCT/CN2022/099328 CN2022099328W WO2023201869A1 WO 2023201869 A1 WO2023201869 A1 WO 2023201869A1 CN 2022099328 W CN2022099328 W CN 2022099328W WO 2023201869 A1 WO2023201869 A1 WO 2023201869A1
Authority
WO
WIPO (PCT)
Prior art keywords
gun
array
observation system
sub
coded
Prior art date
Application number
PCT/CN2022/099328
Other languages
English (en)
French (fr)
Inventor
刘怀山
赵明鑫
尹燕欣
张进
王林飞
Original Assignee
中国海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋大学 filed Critical 中国海洋大学
Priority to GBGB2313001.6A priority Critical patent/GB202313001D0/en
Publication of WO2023201869A1 publication Critical patent/WO2023201869A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/02Generating seismic energy
    • G01V1/133Generating seismic energy using fluidic driving means, e.g. highly pressurised fluids; using implosion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern

Definitions

  • the invention relates to the technical fields of marine geological survey and oil and gas exploration, and in particular to a multi-target observation system and its design method.
  • the observation system is a key part of the seismic information acquisition system. Especially as the development of marine oil and gas moves towards the middle and deep layers, the geological and seismic conditions are complex in the region, and the three-dimensional observation with high resolution and high signal-to-noise ratio is required. The design of the system is even more important.
  • the purpose of the present invention is to solve the above-mentioned defects in the prior art and provide a multi-target ocean continuously controllable coding high-density and high-coverage observation system and its design method.
  • a multi-target observation system including three continuously controllable coded vibrators composed of sequentially delayed excitations; the continuous controllable coded vibrators are combined with 6 streamers to form the observation system;
  • Each of the continuous controllable coded seismic sources is composed of a controllable coded seismic source array composed of 4 identical sub-arrays;
  • the four identical sub-arrays are excited according to a certain time delay.
  • the excitation method of the three continuously controllable coded seismic sources is: the second seismic source is excited with a delay of 75ms, and the third seismic source is excited after the second seismic source is completed. Fire with a delay of 75ms.
  • the four identical sub-arrays are: sub-array 1, sub-array 2, sub-array 3, and sub-array 4; the excitation method of the four sub-arrays is: sub-array Array 1 has no delayed excitation, sub-array 2 and sub-array 3 have a delayed excitation of 24ms, and sub-array 4 has a delayed excitation of 48ms.
  • the sub-array spacing of the four identical sub-arrays is 25m, and the total array capacity is 10560cu.in, consisting of 12 380cu.in, 16 250cu.in, 8 It consists of 150cu.in air guns and 8 100cu.in air guns.
  • the working pressure of the air gun is 2000 psi.
  • the seawater depth is set to 20m and the sea surface reflection coefficient is -0.9.
  • the array is a planar array and the array is placed at a depth of 9m.
  • each sub-array is composed of three 380cu.in, four 250cu.in, two 150cu.in, and two 100cu.in air guns;
  • the two 380cu.in air guns are connected in parallel to form the first gun cluster; the two 150cu.in air guns are connected in parallel to form the second gun cluster; the two 250cu.in air guns are connected in parallel to form the third gun cluster. gun cluster;
  • the 380cu.in air gun mentioned in 1 article the first gun cluster, the 250cu.in air gun described in one article, the second gun cluster, two 100cu.in air rifles connected in series, the 250cu.in air gun described in one article, and the third gun cluster.
  • Gun clusters are connected in series to form the sub-array;
  • the distance between the first gun cluster, the second gun cluster, and the third gun cluster and the air guns connected in series before and after them are all 2.57m; the distance between the two air guns that make up the gun cluster is 0.8m;
  • the distance between the two 100cu.in airguns and one 250cu.in airgun connected in series is 2.5m.
  • the multi-target observation system is composed of the continuously controllable coded seismic source and 6 streamers.
  • the length of the streamer is 6000m
  • the spacing between the streamers is 100m
  • the depth of the streamer is 8m
  • the channel spacing is 12.5m
  • the gun line spacing is 18.75m.
  • a design method for a multi-objective observation system includes the following steps:
  • Step A Design a controllable coded source array containing four identical sub-arrays, and simulate its wavelets and spectrum through the van der Waals non-ideal gas airgun wavelet model;
  • Step B Construct a continuously controllable coded seismic source.
  • the continuously controllable coded seismic source is constructed by successively stimulating three controllable coded seismic source arrays, and its wavelets and spectrum are simulated through the van der Waals non-ideal gas airgun wavelet model;
  • Step C Combine the continuously controllable coded seismic source with 6 streamers to form an observation system
  • Step D Based on the observation system, when a single seismic source is excited, it faces shallow targets, and when three seismic sources are excited sequentially, it faces mid-to-deep targets;
  • the excitation method of the three controllable coded source arrays is: first excite source A, then excite source B after sailing 25m, and then excite the three sources ABC in sequence after sailing 25m again.
  • the interval excitation time of the three sources is 75ms.
  • the sub-array spacing of the four identical sub-arrays is 25m, and the total array capacity is 10560cu.in, consisting of 12 380cu.in and 16 250cu.in. in, eight 150cu.in, and eight 100cu.in air guns.
  • the working pressure of the air gun is 2000 psi.
  • the seawater depth is set to 20m.
  • the sea surface reflection coefficient is -0.9.
  • the array is a planar array and the array depth is 9m.
  • the design method of a multi-target observation system is provided.
  • the observation system is composed of the continuously controllable coded source and 6 streamers.
  • the length of the streamer is 6000m, the spacing between the streamers is 100m, and the streamer is lowered.
  • the depth is 8m, the channel spacing is 12.5m, and the gun line spacing is 18.75m.
  • each sub-array is composed of three 380cu.in, four 250cu.in, two 150cu.in, and two 100cu.in air guns. composition;
  • the two 380cu.in air guns are connected in parallel to form the first gun cluster; the two 150cu.in air guns are connected in parallel to form the second gun cluster; the two 250cu.in air guns are connected in parallel to form the third gun cluster. gun cluster;
  • the 380cu.in air gun mentioned in 1 article the first gun cluster, the 250cu.in air gun described in one article, the second gun cluster, two 100cu.in air rifles connected in series, the 250cu.in air gun described in one article, and the third gun cluster.
  • Gun clusters are connected in series to form the sub-array;
  • the distance between the first gun cluster, the second gun cluster, and the third gun cluster and the air guns connected in series before and after them are all 2.57m; the distance between the two air guns that make up the gun cluster is 0.8m;
  • the distance between the two 100cu.in airguns and one 250cu.in airgun connected in series is 2.5m.
  • This invention is based on the basic theory that the larger the absolute width of the seismic wavelet, the higher the resolution and the design idea of the land controllable seismic source. It uses the relationship between the excitation time and the wavelet signal reception time to regularly adjust the parameters of each sub-array in the air gun array.
  • the excitation time causes the pulse peak value of each sub-array in the wavelet excited by the array to shift over time.
  • Figure 1 is a design idea diagram of the multi-target oriented continuous controllable coding high-density and high-coverage observation system according to the present invention
  • Figure 2 is a plan view of the controllable coding source array according to the present invention.
  • Figure 3 is the excitation wavelet and spectrum diagram of the controllable coded source array according to the present invention.
  • Figure 4 is a plan view of the large-capacity continuously controllable encoding source array according to the present invention.
  • Figure 5 is the exciton wave and spectrum diagram of the large-capacity continuously controllable coded source array according to the present invention.
  • Figure 6 is a diagram of different frequency bands and dominant dominant frequencies of excitation wavelets of the large-capacity continuously controllable coded source array according to the present invention.
  • Figure 7 is a plan view of an observation system with continuous controllable coding, high density and high coverage times according to the present invention.
  • Figure 8 is a plan view of the multi-target continuous controllable encoding high-density and high-coverage observation system according to the present invention.
  • the present invention provides a multi-target, continuously controllable, coded, high-density, high-coverage observation system.
  • the system includes three continuously controllable coded seismic sources composed of sequentially delayed excitations; the continuously controllable coded seismic source is combined with a conventional observation system. Form the observation system;
  • Each of the continuous controllable coded seismic sources is composed of a controllable coded source array composed of 4 identical sub-arrays;
  • the four identical sub-arrays are excited according to a certain time delay
  • composition of the array of seismic sources in the conventional observation system is the same as that of the array of continuously controllable coded seismic sources, except that each sub-array and each seismic source are excited at the same time.
  • the excitation method of the three continuously controllable coded seismic sources is: the second seismic source is excited with a delay of 75ms, and the third seismic source is excited with a delay of 75ms based on the completion of the excitation of the second seismic source.
  • 75 ms is the wavelength of a single source excitation wavelet.
  • the sequential delay of excitation by 75 ms (150 ms) is not only to completely separate the excitation wavelet waveforms of each source, but also to construct an ultra-wide pulse wavelet with a wider waveform envelope.
  • the four identical sub-arrays are respectively: sub-array 1, sub-array 2, sub-array 3, and sub-array 4; the excitation methods of these four sub-arrays are: sub-array 1 is excited without delay, sub-array 2, sub-array Array 3 has a delayed excitation of 24ms, and subarray 4 has a delayed excitation of 48ms.
  • the sub-array spacing of the four identical sub-arrays is 25m, and the total array capacity is 10560cu.in. It consists of 12 380cu.in, 16 250cu.in, 8 150cu.in, and 8 100cu.in air guns.
  • the working pressure is 2000 psi
  • the seawater depth is set to 20m
  • the sea surface reflection coefficient is -0.9
  • the array is a planar array
  • the array depth is 9m.
  • this sub-array is that it is mainly composed of large-capacity air guns, so it can better suppress the bubble effect; the sub-array spacing of 25m is to widen the sub-array spacing, so that the excitation of each sub-array can be seen as a separate "seismic source".
  • the main effect of this is to subdivide the bins, and the bin size is reduced from 12.5*25m to 6.25*6.25m; the air gun working pressure, water depth and sea surface reflection coefficient are all conventional parameters; the delayed excitation time of each sub-array is In order to construct broad pulse wavelets.
  • each of the sub-arrays is composed of three 380cu.in, four 250cu.in, two 150cu.in, and two 100cu.in air guns;
  • the two 380cu.in air guns are connected in parallel to form the first gun cluster; the two 150cu.in air guns are connected in parallel to form the second gun cluster; the two 250cu.in air guns are connected in parallel to form the third gun cluster. gun cluster;
  • the 380cu.in air gun mentioned in 1 article the first gun cluster, the 250cu.in air gun described in one article, the second gun cluster, two 100cu.in air rifles connected in series, the 250cu.in air gun described in one article, and the third gun cluster.
  • Gun clusters are connected in series to form the sub-array;
  • the distance between the first gun cluster, the second gun cluster, and the third gun cluster and the air guns connected in series before and after them are all 2.57m; the distance between the two air guns that make up the gun cluster is 0.8m;
  • the distance between the two 100cu.in airguns and one 250cu.in airgun connected in series is 2.5m.
  • the observation system consists of the continuously controllable coded seismic source and 6 streamers.
  • the length of the streamer is 6000m
  • the spacing between the streamers is 100m
  • the depth of the streamer is 8m
  • the channel spacing is 12.5m
  • the shot line spacing is 18.75m. .
  • the present invention also provides a design method for a multi-target ocean continuously controllable coding high-density and high-coverage observation system.
  • the design is shown in Figure 1. Specifically, the excitation of each sub-array in the airgun source array is reasonably regulated.
  • the three controllable coded vibrators are continuously excited, that is, the same three controllable coded vibrators are sequentially delayed to form a large-capacity continuously controllable coded vibrator, and the large-capacity continuously controllable coded vibrator is compared with the conventional coded vibrator.
  • the observation system combines and adjusts the number of source excitations to form a multi-target, continuously controllable, coded, high-density, high-coverage observation system.
  • the design method includes the following steps:
  • Step A Design a controllable coded source array containing four identical sub-arrays, and simulate its wavelets and spectrum through the van der Waals non-ideal gas airgun wavelet model;
  • the controllable coded source array is shown in Figure 2. It consists of 4 identical sub-arrays. The sub-array spacing is 25m. The total array capacity is 10560cu.in, consisting of 12 380cu.in, 16 250cu.in, 8 It consists of 150cu.in air guns and 8 100cu.in air guns. The working pressure of the air gun is 2000 psi. The seawater depth is set to 20m and the sea surface reflection coefficient is -0.9. The array is a planar array and the array is placed at a depth of 9m.
  • the excitation method of each subarray is as follows: subarray 1 has no delay excitation, subarrays 2 and 3 have delayed excitation of 24ms, and subarray 4 has delayed excitation of 48ms.
  • the excitation wavelets and spectrum of the controllable coded source array are shown in Figure 3.
  • Step B Use the three controllable coded vibrator arrays described in step A to successively excite the three controllable coded vibrator arrays to construct a large-capacity continuous controllable coded vibrator, simulated through the van der Waals non-ideal gas airgun wavelet model Its subwaves span the spectrum;
  • the large-capacity continuously controllable coded vibrator source is shown in Figure 4 and consists of the controllable coded vibrator array described in step A.
  • the excitation method of the single sub-array inside each controllable coded source array is: sub-array 1 is excited without delay, sub-arrays 2 and 3 are excited with delay of 24ms, and sub-array 4 is excited with delay of 48ms.
  • the excitation method between the three sources is that the second source is excited with a delay of 75ms, and the third source is excited with a delay of 75ms based on the completion of the excitation of the second source.
  • the excitation wavelets and spectrum of the large-capacity continuously controllable coded source array are shown in Figure 5.
  • Figure 6 shows different frequency bands and dominant frequencies.
  • the different frequency bands and dominant frequencies shown in Figure 6 are for the middle and deep layers.
  • 15-60Hz main frequency 40Hz
  • 5-20Hz main frequency 10Hz
  • 1-5Hz main frequency 2Hz
  • Step C Combine the continuously controllable coding seismic source described in step B with the conventional observation system (i.e. 6 streamers) to form a continuously controllable coding high-density and high-coverage observation system.
  • the conventional observation system i.e. 6 streamers
  • the continuous controllable coding high-density and high-coverage observation system is shown in Figure 7.
  • the observation system consists of the large-capacity continuous controllable coding source in step B and 6 streamers.
  • the length of the streamer is 6000m, and the spacing between the streamers is 100m.
  • the towing depth is 8m, the channel spacing is 12.5m, and the gun line spacing is 18.75m.
  • Step D Based on the continuous controllable coding high-density and high-coverage observation system described in step C, for different targets in shallow, medium and deep layers, respectively stimulate a single controllable coding source in step B, and the seismic source in step B.
  • Three controllable coding seismic sources can realize a continuous controllable coding high-density and high-coverage observation system for multiple targets.
  • the multi-target continuously controllable coding high-density and high-coverage observation system is shown in Figure 8.
  • ABC in Figure 8 represents that every 25m of sailing, the controllable coded seismic source in step A is excited. Specifically, the A seismic source is first excited, and then the B seismic source is excited after sailing for 25m. After another 25m of sailing, the three ABC sources are excited in sequence. source, the interval excitation time of the three sources is 75ms. When a single seismic source is excited, it faces shallow targets, and when three seismic sources are excited sequentially, it faces mid- to deep-seated targets.
  • the specific excitation method is as described in steps (A) and (B).
  • This embodiment is based on the following basic assumptions: the length and width of the exploration area are 14km and 5km respectively, the depth of the deepest target layer is 4000m, and the acquisition method is bidirectional acquisition. Therefore, the specific steps for seismic source and observation system design are:
  • the controllable coded source array is shown in Figure 2. It consists of 4 identical sub-arrays. The sub-array spacing is 25m. The total array capacity is 10560cu.in. It consists of 12 380cu.in, 16 250cu.in, 8 It consists of 150cu.in air guns and 8 100cu.in air guns. The working pressure of the air gun is 2000 psi. The seawater depth is set to 20m and the sea surface reflection coefficient is -0.9. The array is a planar array and the array is placed at a depth of 9m.
  • the excitation method of each subarray is as follows: subarray 1 has no delay excitation, subarrays 2 and 3 have delayed excitation of 24ms, and subarray 4 has delayed excitation of 48ms.
  • the large-capacity continuous controllable coded vibrator array is shown in Figure 4, which consists of the three controllable coded vibrators described in step A.
  • the excitation method of the single subarray inside each source is as described in step (1) above.
  • the excitation method between the three sources is that the second source is excited with a delay of 75ms, and the third source is excited with a delay of 75ms based on the completion of the excitation of the second source.
  • the observation system consists of the large-capacity continuously controllable coding seismic source in step B and 6 streamers.
  • the length of the streamer is 6000m, and the spacing between the streamers is 100m.
  • the towing depth is 8m
  • the channel spacing is 12.5m
  • the gun line spacing is 18.75m.
  • a multi-target continuously controllable coding high-density and high-coverage observation system is shown in Figure 8.
  • ABC in Figure 8 represents the controllable coded seismic source in step A that is excited every 25m of sailing. Specifically, when A and B seismic sources are excited respectively, they are facing shallow targets. When A, B, and C are all three seismic sources, When stimulating, it is aimed at medium and deep goals. When a single source is excited or three sources are excited sequentially, the specific excitation method is as described in step S01 and step S02.
  • the specific parameters of the observation system obtained through the embodiment of the present invention are shown in Table 1.
  • the array composition of the seismic sources in the conventional observation system is the same as the source array proposed in the embodiment of the present invention, but each sub-array and each seismic source are excited simultaneously.
  • the multi-target continuously controllable coding high-density and high-coverage observation system proposed by the present invention has the advantages of smaller area units, higher coverage times and 7 times higher coverage density than conventional observation systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种面向多目标的观测系统及其设计方法,该系统包括:3个依次延迟激发构成的连续可控编码震源;所述连续可控编码震源与6条拖缆结合形成所述观测系统;所述每个连续可控编码震源由4个相同子阵构成的可控编码震源阵列组成;所述4个相同子阵的激发方式按照一定的时间延迟激发;所述常规观测系统中震源的阵列组成与所述连续可控编码震源的阵列相同,只是各子阵及各震源均为同时激发。本方法观测系统成本低、可行性高、具有高密度和高覆盖次数的优势。

Description

一种面向多目标的观测系统及其设计方法 技术领域
本发明涉及海洋地质调查和油气勘探技术领域,尤其涉及一种面向多目标的观测系统及其设计方法。
背景技术
在海洋地质调查及油气资源勘探中观测系统是地震信息采集系统中的关键部分,特别是随着海洋油气的开发迈向中深层,地质地震条件区域复杂,高分辨率高信噪比的三维观测系统的设计更加重要。为了克服阴影区、焦散区潜山等复杂地质条件,拓宽方位角,提高覆盖次数和密度,常规的观测系统诸如单源单向、单源双向、多源多单向、多源双向观测系统向长排列、宽方位、多方位以及富方位等“两宽一高”的方向发展,并取得了一定的进展,但相对于常规观测系统,经济成本太高,对于技术和装备条件要求极高,在实际工程应用中开展工作困难。因此具有普适性、灵活性、成本低的高密度和高覆盖次数的观测系统设计是地球物理学领域亟待解决的问题。
发明内容
本发明的目的在于解决上述现有技术存在的缺陷,提供一种面向多目标的海洋连续可控编码高密度高覆盖次数的观测系统及其设计方法。
一种面向多目标的观测系统,包括3个依次延迟激发构成的连续可控编码震源;所述连续可控编码震源与6条拖缆结合形成所述观测系统;
所述每个连续可控编码震源由4个相同子阵构成的可控编码 震源阵列组成;
所述4个相同子阵的激发方式按照一定的时间延迟激发。
进一步地,如上所述的面向多目标的观测系统,所述3个连续可控编码震源的激发方式为:第2个震源延迟75ms激发,第3个震源在第二个震源激发完成的基础上延迟75ms激发。
进一步地,如上所述的面向多目标的观测系统,所述4个相同子阵分别为:子阵1、子阵2、子阵3、子阵4;该4个子阵的激发方式为:子阵1无延迟激发,子阵2、子阵3延迟激发24ms,子阵4延迟激发48ms。
进一步地,如上所述的面向多目标的观测系统,所述4个相同子阵的子阵间距为25m,阵列总容量为10560cu.in,由12条380cu.in、16条250cu.in、8条150cu.in、8条100cu.in气枪组成,气枪工作压力为2000psi,设定海水深度为20m,海面反射系数为-0.9,所述阵列为平面阵列,阵列沉放深度为9m。
进一步地,如上所述的面向多目标的观测系统,每个所述子阵均由3条380cu.in、4条250cu.in、2条150cu.in、2条100cu.in的气枪组成;
其中,2条所述380cu.in的气枪并列连接构成第一枪簇;2条所述150cu.in的气枪并列连接构成第二枪簇;2条所述250cu.in的气枪并列连接构成第三枪簇;
1条所述380cu.in的气枪、第一枪簇、一条所述250cu.in的气枪、第二枪簇、依次串接的两条100cu.in气枪、一条所述250cu.in气枪、第三枪簇依次串接构成所述子阵;
其中,所述第一枪簇、第二枪簇、第三枪簇与其前后串接的气枪之间的间隔均为2.57m;组成枪簇的两条气枪间隔为0.8m;
所述依次串接的两条100cu.in的气枪、一条250cu.in的气枪之间的间隔均为2.5m。
进一步地,如上所述的面向多目标的观测系统,所述观测系统由所述连续可控编码震源和6条拖缆组成,拖缆长度6000m,拖缆间距100m,拖缆沉放深度为8m,道间距12.5m,炮线距18.75m。
一种面向多目标的观测系统的设计方法,包括以下步骤:
步骤A、设计含4个相同子阵的可控编码震源阵列,通过范德瓦尔斯非理想气体气枪子波模型模拟其子波及频谱;
步骤B、构造连续可控编码震源,该连续可控编码震源通过相继激发三个所述可控编码震源阵列构造而成,通过范德瓦尔斯非理想气体气枪子波模型模拟其子波及频谱;
步骤C、将所述连续可控编码震源与6条拖缆结合形成观测系统;
步骤D、基于所述观测系统,当单个震源激发时面向浅层目标,当三个震源依次激发时面向的是中深层目标;
所述三个可控编码震源阵列的激发方式为:首先激发A震源,航行25m后再激发B震源,再次航行25m时后,依次激发ABC三个震源,三个震源的间隔激发时间为75ms。
进一步地,如上所述的面向多目标的观测系统的设计方法,所述4个相同子阵的子阵间距为25m,阵列总容量为10560cu.in,由12条380cu.in、16条250cu.in、8条150cu.in、8条100cu.in气枪组成,气枪工作压力为2000psi,设定海水深度为20m,海面反射系数为-0.9,所述阵列为平面阵列,阵列沉放深度为9m。
进一步地,如上所述的面向多目标的观测系统的设计方法,所述观测系统由所述连续可控编码震源和6条拖缆组成,拖缆长度6000m,拖缆间距100m,拖缆沉放深度为8m,道间距12.5m,炮线距18.75m。
进一步地,如上所述的面向多目标的观测系统的设计方法,每个所述子阵均由3条380cu.in、4条250cu.in、2条150cu.in、2 条100cu.in的气枪组成;
其中,2条所述380cu.in的气枪并列连接构成第一枪簇;2条所述150cu.in的气枪并列连接构成第二枪簇;2条所述250cu.in的气枪并列连接构成第三枪簇;
1条所述380cu.in的气枪、第一枪簇、一条所述250cu.in的气枪、第二枪簇、依次串接的两条100cu.in气枪、一条所述250cu.in气枪、第三枪簇依次串接构成所述子阵;
其中,所述第一枪簇、第二枪簇、第三枪簇与其前后串接的气枪之间的间隔均为2.57m;组成枪簇的两条气枪间隔为0.8m;
所述依次串接的两条100cu.in的气枪、一条250cu.in的气枪之间的间隔均为2.5m。
有益效果:
本发明基于地震子波绝对宽度越大分辨率越高的基本理论和陆地可控震源的设计思路,利用激发时间与子波信号接收时间的关系,通过有规律的调整气枪阵列中各子阵的激发时间使得阵列激发的子波中各子阵的脉冲峰值在时间长偏移,最终构造了波长为72ms的宽脉冲子波可控编码震源,然后利用3个可控编码震源相继激发的方式产生了连续可控的编码震源,并与常规观测系统结合,最终形成了成本低、可行性高的面向多目标的连续可控编码高密度高覆盖次数的观测系统。
附图说明
图1为本发明所述的面向多目标的连续可控编码高密度高覆盖次数观测系统的设计思路图;
图2为本发明所述的可控编码震源阵列平面图;
图3为本发明所述的可控编码震源阵列的激发子波及频谱图;
图4为本发明所述的大容量连续可控编码震源阵列平面图;
图5为本发明所述的大容量连续可控编码震源阵列的激发子 波及频谱图;
图6为本发明所述的大容量连续可控编码震源阵列的激发子波的不同频带及优势主频图;
图7为本发明所述的连续可控编码高密度高覆盖次数的观测系统平面图;
图8为本发明所述的面向多目标的连续可控编码高密度高覆盖次数的观测系统平面图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种面向多目标的连续可控编码高密度高覆盖次数的观测系统,该系统包括3个依次延迟激发构成的连续可控编码震源;所述连续可控编码震源与常规观测系统结合形成所述观测系统;
所述每个连续可控编码震源由4个相同子阵构成的可控编码震源阵列组成;
所述4个相同子阵的激发方式按照一定的时间延迟激发;
所述常规观测系统中震源的阵列组成与所述连续可控编码震源的阵列相同,只是各子阵及各震源均为同时激发。
进一步地,所述3个连续可控编码震源的激发方式为:第2个震源延迟75ms激发,第3个震源在第二个震源激发完成的基础上延迟75ms激发。
本发明实施例75ms为单个震源激发子波的波长,依次延迟激发75ms(150ms)既是为了使得各震源的激发子波波形完全分开,又可以构造波形包络更宽的超宽脉冲子波。
进一步地,所述4个相同子阵分别为:子阵1、子阵2、子阵3、子阵4;该4个子阵的激发方式为:子阵1无延迟激发,子阵2、子阵3延迟激发24ms,子阵4延迟激发48ms。所述4个相同子阵的子阵间距为25m,阵列总容量为10560cu.in,由12条380cu.in、16条250cu.in、8条150cu.in、8条100cu.in气枪组成,气枪工作压力为2000psi,设定海水深度为20m,海面反射系数为-0.9,所述阵列为平面阵列,阵列沉放深度为9m。
该子阵的优点为主要由大容量气枪组成,因此可以更好的压制气泡效应;其中子阵间距25m是为了拉开子阵间距,使每个子阵的激发可以看呈单独的“震源”,这样做的主要效果是细分了面元,面元大小由12.5*25m,减小到了6.25*6.25m;气枪工作压力和水深及海面反射系数均为常规参数;各子阵的延迟激发时间是为了构造宽脉冲子波。
进一步地,每个所述子阵均由3条380cu.in、4条250cu.in、2条150cu.in、2条100cu.in的气枪组成;
其中,2条所述380cu.in的气枪并列连接构成第一枪簇;2条所述150cu.in的气枪并列连接构成第二枪簇;2条所述250cu.in的气枪并列连接构成第三枪簇;
1条所述380cu.in的气枪、第一枪簇、一条所述250cu.in的气枪、第二枪簇、依次串接的两条100cu.in气枪、一条所述250cu.in气枪、第三枪簇依次串接构成所述子阵;
其中,所述第一枪簇、第二枪簇、第三枪簇与其前后串接的气枪之间的间隔均为2.57m;组成枪簇的两条气枪间隔为0.8m;
所述依次串接的两条100cu.in的气枪、一条250cu.in的气枪之间的间隔均为2.5m。
进一步地,所述观测系统由所述连续可控编码震源和6条拖缆组成,拖缆长度6000m,拖缆间距100m,拖缆沉放深度为8m, 道间距12.5m,炮线距18.75m。
本发明还提供一种面向多目标的海洋连续可控编码高密度高覆盖次数的观测系统的设计方法,设计如图1所示,具体为,通过合理的调控气枪震源阵列中各子阵的激发时间,使各子阵激发子波信号的接收时间延迟,从而造成阵列中各子阵激发子波主脉冲峰值时间上偏移,构造波形包络较常规阵列宽的所述的可控编码震源,在此基础上通过3个所述可控编码震源连续激发,即相同的3个所述可控编码震源依次延迟激发形成大容量连续可控编码震源,将该大容量连续可控编码震源与常规观测系统结合并通过调整震源激发个数便构成了面向多目标的连续可控编码高密度高覆盖次数观测系统。
具体的,该设计方法包括以下步骤:
步骤A、设计含设计含4个相同子阵的可控编码震源阵列,通过范德瓦尔斯非理想气体气枪子波模型模拟其子波及频谱;
所述可控编码震源阵列如图2所示,由4个相同的子阵构成,子阵间距为25m,阵列总容量为10560cu.in,由12条380cu.in、16条250cu.in、8条150cu.in、8条100cu.in气枪组成,气枪工作压力为2000psi,设定海水深度为20m,海面反射系数为-0.9,所述阵列为平面阵列,阵列沉放深度为9m。各子阵的激发方式为,子阵1无延迟激发,子阵2、3延迟激发24ms,子阵4延迟激发48ms。所述的可控编码震源阵列的激发子波及频谱如图3所示。
步骤B、利用三个步骤A中所述的可控编码震源阵列,相继激发三个可控编码震源阵列构造大容量的连续可控编码震源,通过范德瓦尔斯非理想气体气枪子波模型模拟其子波及频谱;
所述大容量的连续可控编码震源如图4所示,由3个步骤A中所述的可控编码震源阵列组成。每个可控编码震源阵列内部单子阵的激发方式均为:子阵1无延迟激发,子阵2、3延迟激发24ms,子阵4延迟激发48ms。3个震源间的激发方式为,第2个震源延迟75ms 激发,第3个震源在第二个震源激发完成的基础上延迟75ms激发。所述大容量连续可控编码震源阵列的激发子波及频谱如图5所示,图6所示为不同频带及优势主频,其中图6中所示的不同频带及优势主频是针对中深层不同目标的,15-60Hz(主频40Hz)可以满足浅层目标的勘探,5-20Hz(主频10Hz)和1-5Hz(主频2Hz)的频带可以满足中深层目标的勘探。
步骤C、将步骤B中所述的连续可控编码震源与常规观测系统(即6条拖缆)结合形成连续可控编码高密度高覆盖次数观测系统。
所述连续可控编码高密度高覆盖次数观测系统如图7所示,该观测系统由步骤B中大容量连续可控编码震源和6条拖缆组成,拖缆长度6000m,拖缆间距100m,拖缆沉放深度为8m,道间距12.5m,炮线距18.75m。
步骤D、基于步骤C中所述的连续可控编码高密度高覆盖次数观测系统,针对浅、中深层不同的目标,分别激发单个所述步骤B中可控编码震源、所述步骤B中的3个可控编码震源,可实现面向多目标的连续可控编码高密度高覆盖次数观测系统。
所述面向多目标的连续可控编码高密度高覆盖次数观测系统如图8所示。图8中ABC代表了每航行25m,激发所述步骤A中的可控编码震源,具体的为,首先激发A震源,航行25m后再激发B震源,再次航行25m时后,依次激发ABC三个震源,三个震源的间隔激发时间为75ms。当单个震源激发时面向浅层目标,当三个震源依次激发时面向的是中深层目标。具体的激发方式如步骤(A)和步骤(B)所述。
实施例:
本实施例基于以下基本假设条件:勘探区长宽分别为14km和5km,最深目标层位深度为4000m,采集方式为双向采集。因此震源及观测系统设计的具体步骤为:
S01、可控编码震源阵列如图2所示,由4个相同的子阵构成,子阵间距为25m,阵列总容量为10560cu.in,由12条380cu.in、16条250cu.in、8条150cu.in、8条100cu.in气枪组成,气枪工作压力为2000psi,设定海水深度为20m,海面反射系数为-0.9,所述阵列为平面阵列,阵列沉放深度为9m。各子阵的激发方式为,子阵1无延迟激发,子阵2、3延迟激发24ms,子阵4延迟激发48ms。
S02、大容量连续可控编码震源阵列如图4所示,由3个步骤A中所述地可控编码震源组成。每个震源内部单子阵的激发方式如上步骤(1)所述。3个震源间的激发方式为,第2个震源延迟75ms激发,第3个震源在第二个震源激发完成的基础上延迟75ms激发。
S03、连续可控编码高密度高覆盖次数的观测系统如图7所示,该观测系统由步骤B中大容量连续可控编码震源和6条拖缆组成,拖缆长度6000m,拖缆间距100m,拖缆沉放深度为8m,道间距12.5m,炮线距18.75m。
S04、面向多目标的连续可控编码高密度高覆盖次数观测系统如图8所示。图8中ABC代表了每航行25m,激发的所述步骤A中的可控编码震源,具体的为,当A和B震源分别激发时是面向浅层目标,当A、B、C3个震源都激发时面向的是中深层目标。单个震源激发和3个震源相继激发时,具体的激发方式如步骤S01和步骤S02所述。
通过本发明实施例获得的观测系统的具体参数如表1所示,其中常规观测系统中震源的阵列组成与本发明实施例提出的震源阵列相同,但是各子阵及各震源均为同时激发。本发明提出的面向多目标的连续可控编码高密度高覆盖次数的观测系统覆盖次数较常规观测系统具有面元小,覆盖次数和覆盖密度提高7倍的优势。
表1常规观测系统与本发明观测系统参数对比
Figure PCTCN2022099328-appb-000001
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种面向多目标的观测系统,其特征在于,包括3个依次延迟激发构成的连续可控编码震源;所述连续可控编码震源与6条拖缆结合形成所述观测系统;
    所述每个连续可控编码震源由4个相同子阵构成的可控编码震源阵列组成;
    所述4个相同子阵的激发方式按照一定的时间延迟激发。
  2. 根据权利要求1所述的面向多目标的观测系统,其特征在于,所述3个连续可控编码震源的激发方式为:第2个震源延迟75ms激发,第3个震源在第二个震源激发完成的基础上延迟75ms激发。
  3. 根据权利要求1所述的面向多目标的观测系统,其特征在于,所述4个相同子阵分别为:子阵1、子阵2、子阵3、子阵4;该4个子阵的激发方式为:子阵1无延迟激发,子阵2、子阵3延迟激发24ms,子阵4延迟激发48ms。
  4. 根据权利要求3所述的面向多目标的观测系统,其特征在于,所述4个相同子阵的子阵间距为25m,阵列总容量为10560cu.in,由12条380cu.in、16条250cu.in、8条150cu.in、8条100cu.in气枪组成,气枪工作压力为2000psi,设定海水深度为20m,海面反射系数为-0.9,所述阵列为平面阵列,阵列沉放深度为9m。
  5. 根据权利要求4所述的面向多目标的观测系统,其特征在于,每个所述子阵均由3条380cu.in、4条250cu.in、2条150cu.in、2条100cu.in的气枪组成;
    其中,2条所述380cu.in的气枪并列连接构成第一枪簇;2条所述150cu.in的气枪并列连接构成第二枪簇;2条所述250cu.in的气枪并列连接构成第三枪簇;
    1条所述380cu.in的气枪、第一枪簇、一条所述250cu.in的气枪、第二枪簇、依次串接的两条100cu.in气枪、一条所述250cu.in 气枪、第三枪簇依次串接构成所述子阵;
    其中,所述第一枪簇、第二枪簇、第三枪簇与其前后串接的气枪之间的间隔均为2.57m;组成枪簇的两条气枪间隔为0.8m;
    所述依次串接的两条100cu.in的气枪、一条250cu.in的气枪之间的间隔均为2.5m。
  6. 根据权利要求1所述的面向多目标的观测系统,其特征在于,所述观测系统由所述连续可控编码震源和6条拖缆组成,拖缆长度6000m,拖缆间距100m,拖缆沉放深度为8m,道间距12.5m,炮线距18.75m。
  7. 一种面向多目标的观测系统的设计方法,其特征在于,包括以下步骤:
    步骤A、设计含4个相同子阵的可控编码震源阵列,通过范德瓦尔斯非理想气体气枪子波模型模拟其子波及频谱;
    步骤B、构造连续可控编码震源,该连续可控编码震源通过相继激发三个所述可控编码震源阵列构造而成,通过范德瓦尔斯非理想气体气枪子波模型模拟其子波及频谱;
    步骤C、将所述连续可控编码震源与6条拖缆结合形成观测系统;
    步骤D、基于所述观测系统,当单个震源激发时面向浅层目标,当三个震源依次激发时面向的是中深层目标;
    所述三个可控编码震源阵列的激发方式为:首先激发A震源,航行25m后再激发B震源,再次航行25m时后,依次激发ABC三个震源,三个震源的间隔激发时间为75ms。
  8. 根据权利要求7所述的面向多目标的观测系统的设计方法,其特征在于,所述4个相同子阵的子阵间距为25m,阵列总容量为10560cu.in,由12条380cu.in、16条250cu.in、8条150cu.in、8条100cu.in气枪组成,气枪工作压力为2000psi,设定海水深度为20m,海面反 射系数为-0.9,所述阵列为平面阵列,阵列沉放深度为9m。
  9. 根据权利要求7所述的面向多目标的观测系统的设计方法,其特征在于,所述观测系统由所述连续可控编码震源和6条拖缆组成,拖缆长度6000m,拖缆间距100m,拖缆沉放深度为8m,道间距12.5m,炮线距18.75m。
  10. 根据权利要求7所述的面向多目标的观测系统的设计方法,其特征在于,每个所述子阵均由3条380cu.in、4条250cu.in、2条150cu.in、2条100cu.in的气枪组成;
    其中,2条所述380cu.in的气枪并列连接构成第一枪簇;2条所述150cu.in的气枪并列连接构成第二枪簇;2条所述250cu.in的气枪并列连接构成第三枪簇;
    1条所述380cu.in的气枪、第一枪簇、一条所述250cu.in的气枪、第二枪簇、依次串接的两条100cu.in气枪、一条所述250cu.in气枪、第三枪簇依次串接构成所述子阵;
    其中,所述第一枪簇、第二枪簇、第三枪簇与其前后串接的气枪之间的间隔均为2.57m;组成枪簇的两条气枪间隔为0.8m;
    所述依次串接的两条100cu.in的气枪、一条250cu.in的气枪之间的间隔均为2.5m。
PCT/CN2022/099328 2022-04-23 2022-06-17 一种面向多目标的观测系统及其设计方法 WO2023201869A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GBGB2313001.6A GB202313001D0 (en) 2022-04-23 2022-06-17 Multi-target-oriented observation system and design method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210431769.3 2022-04-23
CN202210431769.3A CN114895349A (zh) 2022-04-23 2022-04-23 一种面向多目标的观测系统及其设计方法

Publications (1)

Publication Number Publication Date
WO2023201869A1 true WO2023201869A1 (zh) 2023-10-26

Family

ID=82717277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099328 WO2023201869A1 (zh) 2022-04-23 2022-06-17 一种面向多目标的观测系统及其设计方法

Country Status (2)

Country Link
CN (1) CN114895349A (zh)
WO (1) WO2023201869A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454672A (zh) * 2013-05-23 2013-12-18 中国海洋石油总公司 一种海上地震勘探气枪阵列震源三维空间组合方法
CN109239782A (zh) * 2018-08-30 2019-01-18 广州海洋地质调查局 一种天然气水合物精细地震勘探系统及方法
CN109239769A (zh) * 2018-11-01 2019-01-18 国家海洋局第二海洋研究所 利用深度和容量组合压制残留气泡的气枪震源设计方法
CN111551986A (zh) * 2020-06-08 2020-08-18 青岛海洋科学与技术国家实验室发展中心 震源系统及其作业方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049278B (zh) * 2014-06-24 2017-12-12 国家海洋局第一海洋研究所 多震源多拖缆触发时序控制系统及方法
CN106291709B (zh) * 2016-07-20 2018-05-18 中国海洋石油集团有限公司 一种海上拖缆宽频宽方位地震勘探方法
CN208547724U (zh) * 2018-08-24 2019-02-26 广州海洋地质调查局 一种气枪阵列震源及观测系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454672A (zh) * 2013-05-23 2013-12-18 中国海洋石油总公司 一种海上地震勘探气枪阵列震源三维空间组合方法
CN109239782A (zh) * 2018-08-30 2019-01-18 广州海洋地质调查局 一种天然气水合物精细地震勘探系统及方法
CN109239769A (zh) * 2018-11-01 2019-01-18 国家海洋局第二海洋研究所 利用深度和容量组合压制残留气泡的气枪震源设计方法
CN111551986A (zh) * 2020-06-08 2020-08-18 青岛海洋科学与技术国家实验室发展中心 震源系统及其作业方法

Also Published As

Publication number Publication date
CN114895349A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
AU2013274081B2 (en) Source acquisition with multiple frequency components
CN106291709B (zh) 一种海上拖缆宽频宽方位地震勘探方法
US3806863A (en) Method of collecting seismic data of strata underlying bodies of water
Toksöz et al. Microseisms: Mode structure and sources
US4064479A (en) Vertically directive arrays for marine seismic exploration
US4506352A (en) Method for use in marine seismic data gathering
US20200174147A1 (en) Method for seismic data acquisition and processing
US20100265793A1 (en) Methods for Optimizing Offset Distribution of Cross Spread 3-D Seismic Surveys Using Variable Shot Line Length
US11802986B2 (en) Hybrid ocean bottom seismic receiver and streamer seismic data acquisition using wide towed sources
CN109239782B (zh) 一种天然气水合物精细地震勘探系统及方法
WO2023201869A1 (zh) 一种面向多目标的观测系统及其设计方法
RU2592739C1 (ru) Способ сейсмических исследований на акваториях и устройство для его осуществления
US20190339404A1 (en) Seismic source operation at low frequencies
Chelminski et al. Sea trial of a low-frequency enhanced pneumatic source
CN208547724U (zh) 一种气枪阵列震源及观测系统
CN109683199B (zh) 一种用于海上地震勘探的多源随机激发地震采集方法
Ishiyama et al. 3D OBC seismic survey geometry optimization offshore Abu Dhabi
WO2019164405A1 (en) Improved seismic source firing sequence and receiver arrangement
RU2714519C1 (ru) Способ морской сейсмической разведки и устройство для его осуществления
CN103344986A (zh) 一种海洋空气枪立体子阵延迟激发方法
Campbell et al. Comparative ray-based illumination analysis
CN103336302A (zh) 基于高次余弦幅度加权的地震波束形成方法
WO2023201866A1 (zh) 一种海洋可控编码气枪震源以及设计方法
GB2149503A (en) Improvements relating to seismic surveying
Prastowo et al. A Case History: High Productivity Seismic Data Acquisition Using Bp’s ISS®(Independent Simultaneous Source) with Triple Source Vessels In 3D Tangguh Seismic Node Survey

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938098

Country of ref document: EP

Kind code of ref document: A1