WO2023200164A1 - Ar device having refractive error correction function based on dual variable lense - Google Patents

Ar device having refractive error correction function based on dual variable lense Download PDF

Info

Publication number
WO2023200164A1
WO2023200164A1 PCT/KR2023/004461 KR2023004461W WO2023200164A1 WO 2023200164 A1 WO2023200164 A1 WO 2023200164A1 KR 2023004461 W KR2023004461 W KR 2023004461W WO 2023200164 A1 WO2023200164 A1 WO 2023200164A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable lens
lens
variable
user
refractive error
Prior art date
Application number
PCT/KR2023/004461
Other languages
French (fr)
Korean (ko)
Inventor
장이운
강호성
Original Assignee
주식회사 셀리코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 셀리코 filed Critical 주식회사 셀리코
Publication of WO2023200164A1 publication Critical patent/WO2023200164A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length

Definitions

  • This disclosure relates to an AR device, and more specifically, to an AR device equipped with a refractive error correction function based on a dual variable lens.
  • the virtual image or video appears blurry because it cannot be worn with glasses, and in this case, the refractive error must be corrected using a diopter.
  • AR glasses on the market do not have a diopter function, and a diopter must be installed to respond to the various refractive indices of the user's eyes.
  • a diopter must be installed to respond to the various refractive indices of the user's eyes.
  • the volume of the AR glasses increases significantly and the weight increases significantly.
  • AR glasses have an optical combiner to irradiate the image or video generated by the display unit to the human eye.
  • a semi-mirror method as shown in Figure 1 and an optical waveguide method as shown in Figure 2, but the semi-mirror type is The disadvantage of this method is that the device becomes larger and heavier, and the optical waveguide method has the problem of being expensive.
  • the purpose of the embodiment disclosed in the present disclosure is to provide an AR device equipped with a refractive error correction function based on a dual variable lens.
  • the embodiment disclosed in the present disclosure seeks to solve problems caused by the large and heavy size and high price of conventional AR devices.
  • the embodiment disclosed in the present disclosure seeks to solve the phase separation phenomenon that occurs in AR glasses using conventional variable lenses.
  • An AR device equipped with a refractive error correction function based on a dual variable lens projects light to provide an augmented reality (AR) image to the user.
  • display module a waveguide into which the projected light is incident; a first variable lens and a second variable lens provided between the light emission area of the waveguide and the user's field of view; a transfer unit provided on one side of the waveguide and moving the second variable lens; and a control unit that controls an operation to correct the user's refractive error by moving the second variable lens through the transfer unit, wherein the first variable lens is formed integrally with the lower part of the waveguide, and the upper part is formed as a flat surface.
  • the transfer unit controls an operation of correcting the user's refractive error by moving the second variable lens through the transfer unit, and determines the degree of myopia of the user. Accordingly, the transfer unit is controlled so that the maximum concave surfaces of the first variable lens and the second variable lens are close, and the maximum convex surfaces of the first variable lens and the second variable lens are close according to the degree of astigmatism of the user.
  • the transfer unit may be controlled so that the optical axes of the first variable lens and the second variable lens coincide with the center of the eyebox of the waveguide.
  • an AR device equipped with a refractive error correction function based on a dual variable lens is provided.
  • the embodiment disclosed in the present disclosure can solve problems caused by the large and heavy size and high price of conventional AR devices.
  • the embodiment disclosed in the present disclosure can solve the phase separation phenomenon that occurs in AR glasses using conventional variable lenses.
  • Figure 1 is a diagram illustrating conventional semi-mirror type AR glasses.
  • Figure 2 is a diagram illustrating conventional optical waveguide type AR glass.
  • Figure 3 is a diagram illustrating an image focusing on an eye with normal vision.
  • Figure 4 is a diagram illustrating myopia correction being performed.
  • Figure 5 is a diagram illustrating how hyperopia correction is performed.
  • Figure 6 is a diagram illustrating the application of a conventional Alvarez lens to AR glasses.
  • Figure 7 is a block diagram of AR glasses according to an embodiment of the present disclosure.
  • FIGS. 8 to 10 are diagrams illustrating AR glasses according to the first embodiment of the present disclosure.
  • 11 to 13 are diagrams illustrating AR glasses according to a second embodiment of the present disclosure.
  • FIGS. 14 to 16 are diagrams illustrating AR glasses according to a third embodiment of the present disclosure.
  • Figure 17 is a diagram illustrating AR glasses according to a fourth embodiment of the present disclosure.
  • the present disclosure does not describe all elements of the embodiments, and general content or overlapping content between the embodiments in the technical field to which the present disclosure pertains is omitted.
  • the term 'unit, module, member, block' used in the specification may be implemented as software or hardware, and depending on the embodiment, a plurality of 'unit, module, member, block' may be implemented as a single component, or It is also possible for one 'part, module, member, or block' to include multiple components.
  • first and second are used to distinguish one component from another component, and the components are not limited by the above-mentioned terms.
  • the identification code for each step is used for convenience of explanation.
  • the identification code does not explain the order of each step, and each step may be performed differently from the specified order unless a specific order is clearly stated in the context. there is.
  • 'AR glasses device includes all various devices that can perform computational processing and provide results to the user.
  • the AR glasses device may include all of a computer, a server device, and a portable terminal, or may take the form of any one.
  • the computer may include, for example, a laptop, desktop, laptop, tablet PC, slate PC, etc. equipped with a web browser.
  • the server device is a server that processes information by communicating with external devices, and may include an application server, computing server, database server, file server, game server, mail server, proxy server, and web server.
  • the portable terminal is, for example, a wireless communication device that guarantees portability and mobility, such as PCS (Personal Communication System), GSM (Global System for Mobile communications), PDC (Personal Digital Cellular), PHS (Personal Handyphone System), and PDA. (Personal Digital Assistant), IMT (International Mobile Telecommunication)-2000, CDMA (Code Division Multiple Access)-2000, W-CDMA (W-Code Division Multiple Access), WiBro (Wireless Broadband Internet) terminal, smart phone ), all types of handheld wireless communication devices, and wearable devices such as watches, rings, bracelets, anklets, necklaces, glasses, contact lenses, or head-mounted-device (HMD). may include.
  • PCS Personal Communication System
  • GSM Global System for Mobile communications
  • PDC Personal Digital Cellular
  • PHS Personal Handyphone System
  • PDA Personal Digital Assistant
  • IMT International Mobile Telecommunication
  • CDMA Code Division Multiple Access
  • W-CDMA Wideband Code Division Multiple Access
  • WiBro Wireless Broadband Internet
  • smart phone smart phone
  • Figure 1 is a diagram illustrating conventional semi-mirror type AR glasses.
  • Figure 2 is a diagram illustrating a conventional optical waveguide 30 type AR glass.
  • the semi-mirror method of FIG. 1 and the light pipe 30 method of FIG. 2 were used to focus the image/video generated in the display unit on the user's eyes.
  • the semi-mirror method reflects the image on the display and transmits the external real view, thereby combining the real and virtual views. It can secure the quality of the image, but has the disadvantage of making the device large and heavy. .
  • the light from the projector is diffracted and replicated through a passage (light pipe (30); wave guide) formed in the lens through which the light can pass, and is finally output to the eye box part of the lens.
  • a passage light pipe (30); wave guide
  • the lens size can be innovatively reduced, but it has the problem of being expensive.
  • Figure 3 is a diagram illustrating an image focusing on an eye with normal vision.
  • Figure 4 is a diagram illustrating myopia correction being performed.
  • Figure 5 is a diagram illustrating how hyperopia correction is performed.
  • the user's myopia is corrected using a concave lens
  • the user's hyperopia is corrected using a convex lens.
  • This method is a typical conventional method for correcting myopia and hyperopia. It was a method.
  • AR glasses are used by a variety of people, they must be manufactured to respond to the various refractive indices of each user, which makes the AR glasses bulky and heavy and expensive.
  • a representative variable lens method is to adjust the refractive index of the lens by making the inside of the lens consist of water and oil and applying electricity, but this also did not completely solve the increase in volume and weight.
  • Figure 6 is a diagram illustrating the application of a conventional Alvarez lens to AR glasses.
  • Alvarez lenses are provided above and below the lens of the light pipe 30. In this case, only half of the variable lens is affected, so the external view passes through both lenses and is properly formed, but the AR view is only on one side. However, there is a problem that the focus is not as desired and phase separation occurs.
  • the present disclosure seeks to solve the problems of the prior art that occur in FIGS. 1, 2, and 6 described above through the AR device 10 equipped with a refractive error correction function based on the dual variable lens 50.
  • Figure 7 is a block diagram of AR glasses according to an embodiment of the present disclosure.
  • the AR device 10 equipped with a refractive error correction function based on the dual variable lens 50 includes a control unit 90, a display module 20, a waveguide 30, It includes a transfer unit 40, a variable lens 50, a transfer unit 40, and an eye tracking module 60.
  • the AR glasses may include fewer or more components than those shown in FIG. 7 .
  • the display module 20 projects light to provide an augmented reality (AR) image to the user.
  • AR augmented reality
  • the waveguide 30 guides the light incident from the display module 20 and projects it toward the variable lens 50.
  • variable lens 50 is not fixed as a concave or convex lens and is variable.
  • variable lens 50 is provided between the light emission area of the waveguide 30 and the user's field of view.
  • variable lens 50 includes a first variable lens 51 and a second variable lens 52.
  • the waveguide 30 is located at the top, the first variable lens 51 and the second variable lens 52 are arranged in that order, and the user's field of view is located at the bottom.
  • variable lens 50 may be an Alvarez lens, and one variable lens 50 includes at least a convex lens in part and a concave lens in at least part of the entire lens.
  • the surface contains both convex and concave lenses.
  • the transfer unit 40 can move at least one of the first variable lens 51 and the second variable lens 52, and an actuator is typically applicable.
  • the gaze tracking module 60 may track the gaze direction of at least one of the user's left eye and right eye.
  • the memory 70 may store various commands and algorithms for operating the AR device 10, and in some embodiments, an artificial intelligence model that can be customized for each user and operated may be stored therein.
  • the control unit 90 is responsible for controlling the components within the AR device 10, and can specifically control the display module 20, the transfer unit 40, and the eye tracking module 60.
  • control unit 90 may execute a refractive error correction method based on the dual variable lens 50 by executing commands and algorithms stored in the memory 70.
  • FIGS. 8 to 10 are diagrams illustrating AR glasses according to the first embodiment of the present disclosure.
  • the transfer unit 40 is provided on the lower side (for example, the left side) of the waveguide 30.
  • the first variable lens 51 is installed at the top of one side (for example, the right side) of the transfer unit 40, and the second variable lens 52 is installed at the bottom of one side (for example, the right side) of the transfer unit 40. .
  • the first variable lens 51 and the second variable lens 52 are separated from each other and coupled to the transfer unit 40. Specifically, the first variable lens 51 is connected to the first actuator and the second variable lens 52. Can be combined with the second actuator.
  • the display module 20 is provided on the lower side of the other side (eg, right side) of the waveguide 30.
  • the light output from the display module 20 is input to the waveguide 30 and then is guided and transmitted through the first variable lens 51 and the second variable lens 52 in that order to the user. It is delivered.
  • Figure 8 illustrates that since the user has normal vision, the variable lens 50 is positioned in place without the control unit 90 separately controlling the transfer unit 40.
  • Figure 9 illustrates a user with maximum myopia, in which the control unit 90 controls the transfer unit 40 so that light is transmitted through the maximum concave surfaces of the first variable lens 51 and the second variable lens 52. It is illustrated.
  • Figure 10 illustrates a user with maximum hyperopia, and the control unit 90 controls the transfer unit 40 to transmit light through the maximum convex surface of the first variable lens 51 and the second variable lens 52. It is illustrated.
  • Figures 9 and 10 are merely examples of users with maximum myopia and maximum hyperopia, respectively, and in reality, the control unit 90 controls the transfer unit 40 according to the degree of myopia and hyperopia of the user to provide the first variable lens 51 and the first variable lens 51. By appropriately moving the second variable lens 52, light can be transmitted depending on the degree of myopia or hyperopia of the user.
  • 11 to 13 are diagrams illustrating AR glasses according to a second embodiment of the present disclosure.
  • the first variable lens 51 is combined with the waveguide 30 to reduce the size and size of the AR glasses, and the transfer unit 40 moves the second variable lens 52 to adjust the focus.
  • the first variable lens 51 is fixed/coupled/provided at the lower part of the waveguide 30, and the second variable lens 52 is installed on one side (for example, the right side) of the transfer unit 40. do.
  • the display module 20 is provided on the lower side of the other side (eg, right side) of the waveguide 30.
  • the control unit 90 controls the transfer unit 40 according to the degree of myopia or hyperopia of the user to appropriately move the second variable lens 52 to transmit light according to the degree of myopia or hyperopia of the user.
  • the first variable lens 51 may be formed to be less than the length of the waveguide 30, may include a flat lens area (first area) in at least a partial area, and the display module 20 Can project light to a flat lens area (first area).
  • the light projected by the display module 20 is transmitted through the flat lens area (first area) of the first variable lens 51, the waveguide 30, and the first variable lens 51.
  • the second variable lens 52 may be provided to the user.
  • the first variable lens 51 may not include a flat lens area (first area), and the display module 20 is located below one side (for example, the right side) of the waveguide 30. It is also possible to project light directly into the waveguide 30.
  • the user's focus is adjusted by moving only the second variable lens 52, so the structure of the AR glasses can be simplified and the size/volume can be further reduced.
  • FIGS. 14 to 16 are diagrams illustrating AR glasses according to a third embodiment of the present disclosure.
  • the first variable lens 51 is fixed/coupled/provided at the lower part of the waveguide 30, and the second variable lens 52 is installed on one side (right side) of the transfer unit 40.
  • the transfer unit 40 is provided below one side (left side) of the waveguide 30, and the display module 20 is fixed/coupled/below the other side (right side) of the second variable lens 52. It is prepared.
  • the difference between the second and third embodiments is that in the second embodiment, the display module 20 is provided below the flat lens area (first area) of the waveguide 30 or the first variable lens 51. In the third embodiment, the display module 20 is fixed/coupled/provided on the other side of the second variable lens 52.
  • control unit 90 controls the transfer unit 40 so that the optical axes of the first variable lens 51 and the second variable lens 52 coincide with the center of the eyebox of the waveguide 30. ) is controlled.
  • the AR glasses according to the third embodiment not only automatically adjusts the user's focus by always matching the optical axis of the variable lens 50 and the eyebox center of the waveguide 30, but also prevents distortion of the user's field of view. This does not occur and has the effect of preventing dizziness from occurring.
  • the AR glasses according to the third embodiment also include the advantages of the first and second embodiments, a size/volume reduction effect is also achieved through simplification of the structure.
  • the second variable lens 52 may include a flat lens area (second area) in a partial area, and the display module 20 is fixed/coupled/provided below the first area to display the first area. Light can be projected into an area.
  • the light output from the display module 20 is input to the second area of the second mask lens, the first area of the first variable lens 51, the waveguide 30, the first variable lens 51, and the first variable lens 51.
  • the variable lens 52 may be provided to the user in the following order.
  • the first variable lens 51 may not include a flat lens area (first area), and, as in the fourth embodiment of the present disclosure described in FIG. 17 below, a display module ( 20) may not be provided on the lower side of the other side of the second variable lens 52, but may be coupled/installed/provided on the side of the second variable lens 52.
  • Figure 17 is a diagram illustrating AR glasses according to a fourth embodiment of the present disclosure.
  • the fourth embodiment is different from the third embodiment in that the display module 20 is coupled/installed/provided on the side of the second variable lens 52, and the remaining configuration and structure are the same as the third embodiment.
  • the AR device 10 equipped with a refractive error correction function based on the dual variable lens 50 according to the embodiment of the present disclosure has been described.
  • step-by-step control operation of the AR glasses control unit 90 can be implemented as a refractive error correction method based on the dual variable lens 50.
  • the refractive error correction method based on the dual variable lens 50 is a method performed on AR glasses, where the control unit 90 controls the user to wear the AR glasses or turn on the AR glasses.
  • the steps can be performed, and the AR glasses can correct the user's refractive error through the steps performed by the control unit 90.
  • the description of the composition and structure of the AR glass is the same as that described with reference to FIGS. 7 to 17, so further description is omitted. do.
  • the method according to an embodiment of the present disclosure described above may be implemented as a program (or application) and stored in a medium in order to be executed in combination with a server, which is hardware.
  • the above-mentioned program is C, C++, JAVA, machine language, etc. that can be read by the processor (CPU) of the computer through the device interface of the computer in order for the computer to read the program and execute the methods implemented in the program.
  • It may include code coded in a computer language. These codes may include functional codes related to functions that define the necessary functions for executing the methods, and include control codes related to execution procedures necessary for the computer's processor to execute the functions according to predetermined procedures. can do.
  • these codes may further include memory reference-related codes that indicate at which location (address address) in the computer's internal or external memory additional information or media required for the computer's processor to execute the above functions should be referenced. there is.
  • the code uses the computer's communication module to determine how to communicate with any other remote computer or server. It may further include communication-related codes regarding whether communication should be performed and what information or media should be transmitted and received during communication.
  • the storage medium refers to a medium that stores data semi-permanently and can be read by a device, rather than a medium that stores data for a short period of time, such as a register, cache, or memory.
  • examples of the storage medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc., but are not limited thereto. That is, the program may be stored in various recording media on various servers that the computer can access or on various recording media on the user's computer. Additionally, the medium may be distributed to computer systems connected to a network, and computer-readable code may be stored in a distributed manner.
  • the steps of the method or algorithm described in connection with the embodiments of the present disclosure may be implemented directly in hardware, implemented as a software module executed by hardware, or a combination thereof.
  • the software module may be RAM (Random Access Memory), ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), Flash Memory, hard disk, removable disk, CD-ROM, or It may reside on any type of computer-readable recording medium well known in the art to which this disclosure pertains.

Abstract

The present disclosure relates to an AR device having a refractive error correction function based on a dual variable lens, comprising: a display module that projects light to provide an augmented reality (AR) image to a user; a waveguide into which the projected light is incident; a first variable lens and a second variable lens provided between a light projection area of the waveguide and a field of view of the user; a transfer unit that moves at least one of the first variable lens and the second variable lens; and a control unit that controls an operation of correcting a refractive error of the user by moving at least one of the first variable lens and the second variable lens by means of the transfer unit.

Description

듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스AR device with refractive error correction function based on dual variable lenses
본 개시는 AR 디바이스에 관한 것으로, 보다 상세하게는 듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스에 관한 것이다.This disclosure relates to an AR device, and more specifically, to an AR device equipped with a refractive error correction function based on a dual variable lens.
대한 안경사 협회가 발표한 2019년 전국 안경 사용 실태 조사에 따르면, 우리나라 국민의 55.4%가 안경(콘택트렌즈 포함)을 착용한다고 보고되었다.According to the 2019 National Glasses Use Survey published by the Korean Optometrists Association, 55.4% of Koreans reported wearing glasses (including contact lenses).
이와 같은 굴절이상시를 가진 사람이 AR 글래스를 착용할 경우, 안경과 함께 착용할 수 없기 때문에 가상 이미지 또는 영상의 포커스가 맞지 않아 흐리게 보이게 되며, 이 때 디옵터를 통해 굴절이상을 교정해야 한다.When a person with such refractive error wears AR glasses, the virtual image or video appears blurry because it cannot be worn with glasses, and in this case, the refractive error must be corrected using a diopter.
하지만, 시중에 나와있는 AR 글래스의 경우 디옵터 기능이 구비되어 있지 않으며, 사용자 눈의 다양한 굴절률에 대응하기 위해서는 디옵터를 탑재해야 하지만 AR 글래스의 부피가 크게 커지고 무게가 크게 증가한다는 문제점이 있다.However, AR glasses on the market do not have a diopter function, and a diopter must be installed to respond to the various refractive indices of the user's eyes. However, there is a problem that the volume of the AR glasses increases significantly and the weight increases significantly.
AR 글래스는 디스플레이부에서 생성한 이미지 또는 영상을 사람의 눈에 조사하기 위해 광학 합성부(optical combiner)를 가지고 있으며, 도 1과 같은 반거울 방식과 도 2와 같은 광도파관 방식이 있으나, 반거울 방식은 장치가 크고 무거워진다는 단점이 있고 광도파관 방식은 가격이 고가라는 문제점이 있다.AR glasses have an optical combiner to irradiate the image or video generated by the display unit to the human eye. There are a semi-mirror method as shown in Figure 1 and an optical waveguide method as shown in Figure 2, but the semi-mirror type is The disadvantage of this method is that the device becomes larger and heavier, and the optical waveguide method has the problem of being expensive.
본 개시에 개시된 실시예는 듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스를 제공하는데 그 목적이 있다.The purpose of the embodiment disclosed in the present disclosure is to provide an AR device equipped with a refractive error correction function based on a dual variable lens.
또한, 본 개시에 개시된 실시예는 종래 AR 디바이스의 크고 무거운 단점과, 고가의 가격으로 인한 문제점을 해결하고자 한다.In addition, the embodiment disclosed in the present disclosure seeks to solve problems caused by the large and heavy size and high price of conventional AR devices.
또한, 본 개시에 개시된 실시예는 종래 가변렌즈를 이용한 AR 글래스에서 발생하는 상 분리 현상을 해결하고자 한다.In addition, the embodiment disclosed in the present disclosure seeks to solve the phase separation phenomenon that occurs in AR glasses using conventional variable lenses.
본 개시가 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present disclosure are not limited to the problems mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the description below.
상술한 과제를 해결하기 위한 본 개시의 일 실시예에 따른 듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스는, 사용자에게 증강현실(augmented reality, AR) 영상을 제공하기 위한 광을 투사하는 디스플레이 모듈; 상기 투사된 광이 입사되는 도파관; 상기 도파관의 광 출사 영역 및 상기 사용자의 시야 사이에 마련되는 제1 가변렌즈 및 제2 가변렌즈; 상기 도파관의 일측에 마련되며 상기 제2 가변렌즈를 이동시키는 이송부; 상기 이송부를 통해 상기 제2 가변렌즈를 이동시켜 상기 사용자의 굴절 이상을 교정하는 동작을 제어하는 제어부를 포함하고, 상기 제1 가변렌즈는 상기 도파관의 하부에 일체로 형성되되, 상부가 평면으로 형성되고 하부가 볼록면 및 오목면을 포함하도록 형성되고, 상기 제2 가변렌즈는 상기 제1 가변렌즈의 하측에 마련되되, 일측이 상기 이송부와 결합되고 타측에 상기 디스플레이 모듈이 결합되며, 상부가 볼록면 및 오목면을 포함하도록 형성되고, 하부가 평면으로 형성되고, 상기 제어부는 상기 이송부를 통해 상기 제2 가변렌즈를 이동시켜 상기 사용자의 굴절 이상을 교정하는 동작을 제어하고, 상기 사용자의 근시 정도에 따라 상기 제1 가변렌즈 및 상기 제2 가변렌즈의 최대 오목면이 근접하도록 상기 이송부를 제어하고, 상기 사용자의 난시 정도에 따라 상기 제1 가변렌즈 및 상기 제2 가변렌즈의 최대 볼록면이 근접하도록 상기 이송부를 제어하고, 상기 제1 가변렌즈와 상기 제2 가변렌즈의 광축(optic axis)이 상기 도파관의 아이박스(eyebox) 중심과 일치되도록 상기 이송부를 제어할 수 있다.An AR device equipped with a refractive error correction function based on a dual variable lens according to an embodiment of the present disclosure to solve the above-described problem projects light to provide an augmented reality (AR) image to the user. display module; a waveguide into which the projected light is incident; a first variable lens and a second variable lens provided between the light emission area of the waveguide and the user's field of view; a transfer unit provided on one side of the waveguide and moving the second variable lens; and a control unit that controls an operation to correct the user's refractive error by moving the second variable lens through the transfer unit, wherein the first variable lens is formed integrally with the lower part of the waveguide, and the upper part is formed as a flat surface. and the lower part is formed to include a convex surface and a concave surface, the second variable lens is provided below the first variable lens, one side is coupled to the transfer unit and the other side is coupled to the display module, and the upper side is convex. It is formed to include a surface and a concave surface, and the lower part is formed as a plane, and the control unit controls an operation of correcting the user's refractive error by moving the second variable lens through the transfer unit, and determines the degree of myopia of the user. Accordingly, the transfer unit is controlled so that the maximum concave surfaces of the first variable lens and the second variable lens are close, and the maximum convex surfaces of the first variable lens and the second variable lens are close according to the degree of astigmatism of the user. The transfer unit may be controlled so that the optical axes of the first variable lens and the second variable lens coincide with the center of the eyebox of the waveguide.
본 개시의 전술한 과제 해결 수단에 의하면, 듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스를 제공하는 효과를 제공한다.According to the means for solving the above-described problem of the present disclosure, an AR device equipped with a refractive error correction function based on a dual variable lens is provided.
또한, 본 개시에 개시된 실시예는 종래 AR 디바이스의 크고 무거운 단점과, 고가의 가격으로 인한 문제점을 해결할 수 있다.Additionally, the embodiment disclosed in the present disclosure can solve problems caused by the large and heavy size and high price of conventional AR devices.
또한, 본 개시에 개시된 실시예는 종래 가변렌즈를 이용한 AR 글래스에서 발생하는 상 분리 현상을 해결할 수 있다.In addition, the embodiment disclosed in the present disclosure can solve the phase separation phenomenon that occurs in AR glasses using conventional variable lenses.
본 개시의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present disclosure are not limited to the effects mentioned above, and other effects not mentioned may be clearly understood by those skilled in the art from the description below.
도 1은 종래 반거울 방식의 AR 글래스를 예시한 도면이다.Figure 1 is a diagram illustrating conventional semi-mirror type AR glasses.
도 2는 종래 광도파관 방식의 AR 글래스를 예시한 도면이다.Figure 2 is a diagram illustrating conventional optical waveguide type AR glass.
도 3은 정상 시력의 안구에 영상 포커스가 맞춰지는 것을 예시한 도면이다.Figure 3 is a diagram illustrating an image focusing on an eye with normal vision.
도 4는 근시 교정이 이뤄지는 것을 예시한 도면이다.Figure 4 is a diagram illustrating myopia correction being performed.
도 5는 원시 교정이 이뤄지는 것을 예시한 도면이다.Figure 5 is a diagram illustrating how hyperopia correction is performed.
도 6은 종래에 알바레즈 렌즈(Alvarez lens)를 AR 글래스에 적용한 것을 예시한 도면이다.Figure 6 is a diagram illustrating the application of a conventional Alvarez lens to AR glasses.
도 7은 본 개시의 실시예에 따른 AR 글래스의 블록도이다.Figure 7 is a block diagram of AR glasses according to an embodiment of the present disclosure.
도 8 내지 도 10은 본 개시의 제1 실시예에 따른 AR 글래스를 예시한 도면이다.8 to 10 are diagrams illustrating AR glasses according to the first embodiment of the present disclosure.
도 11 내지 도 13은 본 개시의 제2 실시예에 따른 AR 글래스를 예시한 도면이다.11 to 13 are diagrams illustrating AR glasses according to a second embodiment of the present disclosure.
도 14 내지 도 16은 본 개시의 제3 실시예에 따른 AR 글래스를 예시한 도면이다.14 to 16 are diagrams illustrating AR glasses according to a third embodiment of the present disclosure.
도 17은 본 개시의 제4 실시예에 따른 AR 글래스를 예시한 도면이다.Figure 17 is a diagram illustrating AR glasses according to a fourth embodiment of the present disclosure.
본 개시 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Like reference numerals refer to like elements throughout this disclosure.
본 개시가 실시예들의 모든 요소들을 설명하는 것은 아니며, 본 개시가 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 ‘부, 모듈, 부재, 블록’이라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 '부, 모듈, 부재, 블록'이 하나의 구성요소로 구현되거나, 하나의 '부, 모듈, 부재, 블록'이 복수의 구성요소들을 포함하는 것도 가능하다.The present disclosure does not describe all elements of the embodiments, and general content or overlapping content between the embodiments in the technical field to which the present disclosure pertains is omitted. The term 'unit, module, member, block' used in the specification may be implemented as software or hardware, and depending on the embodiment, a plurality of 'unit, module, member, block' may be implemented as a single component, or It is also possible for one 'part, module, member, or block' to include multiple components.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 간접적으로 연결되어 있는 경우를 포함하고, 간접적인 연결은 무선 통신망을 통해 연결되는 것을 포함한다.Throughout the specification, when a part is said to be “connected” to another part, this includes not only direct connection but also indirect connection, and indirect connection includes connection through a wireless communication network. do.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Additionally, when a part "includes" a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary.
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is said to be located “on” another member, this includes not only cases where a member is in contact with another member, but also cases where another member exists between the two members.
제 1, 제 2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 전술된 용어들에 의해 제한되는 것은 아니다. Terms such as first and second are used to distinguish one component from another component, and the components are not limited by the above-mentioned terms.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions unless the context clearly makes an exception.
각 단계들에 있어 식별부호는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다. The identification code for each step is used for convenience of explanation. The identification code does not explain the order of each step, and each step may be performed differently from the specified order unless a specific order is clearly stated in the context. there is.
이하 첨부된 도면들을 참고하여 본 개시의 작용 원리 및 실시예들에 대해 설명한다.Hereinafter, the operating principle and embodiments of the present disclosure will be described with reference to the attached drawings.
본 명세서에서 '본 개시에 따른 AR 글래스 장치'는 연산처리를 수행하여 사용자에게 결과를 제공할 수 있는 다양한 장치들이 모두 포함된다. 예를 들어, 본 개시에 따른 AR 글래스 장치는, 컴퓨터, 서버 장치 및 휴대용 단말기를 모두 포함하거나, 또는 어느 하나의 형태가 될 수 있다.In this specification, 'AR glasses device according to the present disclosure' includes all various devices that can perform computational processing and provide results to the user. For example, the AR glasses device according to the present disclosure may include all of a computer, a server device, and a portable terminal, or may take the form of any one.
여기에서, 상기 컴퓨터는 예를 들어, 웹 브라우저(WEB Browser)가 탑재된 노트북, 데스크톱(desktop), 랩톱(laptop), 태블릿 PC, 슬레이트 PC 등을 포함할 수 있다.Here, the computer may include, for example, a laptop, desktop, laptop, tablet PC, slate PC, etc. equipped with a web browser.
상기 서버 장치는 외부 장치와 통신을 수행하여 정보를 처리하는 서버로써, 애플리케이션 서버, 컴퓨팅 서버, 데이터베이스 서버, 파일 서버, 게임 서버, 메일 서버, 프록시 서버 및 웹 서버 등을 포함할 수 있다.The server device is a server that processes information by communicating with external devices, and may include an application server, computing server, database server, file server, game server, mail server, proxy server, and web server.
상기 휴대용 단말기는 예를 들어, 휴대성과 이동성이 보장되는 무선 통신 장치로서, PCS(Personal Communication System), GSM(Global System for Mobile communications), PDC(Personal Digital Cellular), PHS(Personal Handyphone System), PDA(Personal Digital Assistant), IMT(International Mobile Telecommunication)-2000, CDMA(Code Division Multiple Access)-2000, W-CDMA(W-Code Division Multiple Access), WiBro(Wireless Broadband Internet) 단말, 스마트 폰(Smart Phone) 등과 같은 모든 종류의 핸드헬드(Handheld) 기반의 무선 통신 장치와 시계, 반지, 팔찌, 발찌, 목걸이, 안경, 콘택트 렌즈, 또는 머리 착용형 장치(head-mounted-device(HMD) 등과 같은 웨어러블 장치를 포함할 수 있다.The portable terminal is, for example, a wireless communication device that guarantees portability and mobility, such as PCS (Personal Communication System), GSM (Global System for Mobile communications), PDC (Personal Digital Cellular), PHS (Personal Handyphone System), and PDA. (Personal Digital Assistant), IMT (International Mobile Telecommunication)-2000, CDMA (Code Division Multiple Access)-2000, W-CDMA (W-Code Division Multiple Access), WiBro (Wireless Broadband Internet) terminal, smart phone ), all types of handheld wireless communication devices, and wearable devices such as watches, rings, bracelets, anklets, necklaces, glasses, contact lenses, or head-mounted-device (HMD). may include.
본 개시의 실시예에 따른 듀얼 가변렌즈(50) 기반의 굴절이상 교정 기능을 구비한 AR 디바이스(10)를 설명하기에 앞서, 동일 분야 기술에 대하여 간략하게 설명하도록 한다.Before describing the AR device 10 equipped with a refractive error correction function based on the dual variable lens 50 according to an embodiment of the present disclosure, technologies in the same field will be briefly described.
도 1은 종래 반거울 방식의 AR 글래스를 예시한 도면이다.Figure 1 is a diagram illustrating conventional semi-mirror type AR glasses.
도 2는 종래 광도파관(30) 방식의 AR 글래스를 예시한 도면이다.Figure 2 is a diagram illustrating a conventional optical waveguide 30 type AR glass.
종래 AR 글래스에서 디스플레이부에서 생성된 이미지/영상을 사용자의 눈에 초점이 맞도록 하는 방식으로 도 1의 반거울 방식, 도 2의 광도파관(30) 방식이 사용되었다.In conventional AR glasses, the semi-mirror method of FIG. 1 and the light pipe 30 method of FIG. 2 were used to focus the image/video generated in the display unit on the user's eyes.
반거울 방식은 도 1과 같이 디스플레이의 영상은 반사시키고, 외부의 현실 시야는 투과시켜 현실과 가상의 시야를 합성하는 방식으로 영상의 퀄리티는 확보할 수 있으나, 장치가 크고 무거워진다는 단점이 있다.As shown in Figure 1, the semi-mirror method reflects the image on the display and transmits the external real view, thereby combining the real and virtual views. It can secure the quality of the image, but has the disadvantage of making the device large and heavy. .
광도파관(30) 방식은 프로젝터에서 나온 빛이 렌즈 내에 형성된 빛이 지나갈 수 있는 통로(광도파관(30); wave guide)를 거쳐 회절, 복제되어 최종적으로 렌즈의 eye box 부분에 출력되며, 광도파관(30)이 nano-scale 이기 때문에 렌즈 크기를 혁신적으로 줄일 수 있으나, 가격이 고가라는 문제점이 있다.In the optical waveguide (30) method, the light from the projector is diffracted and replicated through a passage (light pipe (30); wave guide) formed in the lens through which the light can pass, and is finally output to the eye box part of the lens. (30) Because it is nano-scale, the lens size can be innovatively reduced, but it has the problem of being expensive.
도 3은 정상 시력의 안구에 영상 포커스가 맞춰지는 것을 예시한 도면이다.Figure 3 is a diagram illustrating an image focusing on an eye with normal vision.
도 4는 근시 교정이 이뤄지는 것을 예시한 도면이다.Figure 4 is a diagram illustrating myopia correction being performed.
도 5는 원시 교정이 이뤄지는 것을 예시한 도면이다.Figure 5 is a diagram illustrating how hyperopia correction is performed.
도 4를 참조하면, 오목렌즈를 이용하여 사용자의 근시 교정을 진행하고, 도 5를 참조하면 볼록렌즈를 이용하여 사용자의 원시 교정을 진행하는 것이 예시되어 있으며, 이러한 방식이 종래 대표적인 근시와 원시 교정 방법이었다.Referring to Figure 4, the user's myopia is corrected using a concave lens, and referring to Figure 5, the user's hyperopia is corrected using a convex lens. This method is a typical conventional method for correcting myopia and hyperopia. It was a method.
일반적인 안경의 경우 사용자에게 맞춤형으로 제작되기 때문에 사용자의 근시 또는 원시 여부와 그 정도를 감안하여 렌즈를 제작하게 된다.In the case of general glasses, they are custom-made for the user, so the lenses are manufactured taking into account whether the user is nearsighted or farsighted and the degree of that degree.
하지만, AR 글래스의 경우 다양한 사람들이 사용하기 때문에 각각의 사용자마다 가진 다양한 굴절률에 대응하도록 제작되어야 하는데, 이 때문에 AR 글래스의 부피가 커지고 무거워지며 고가의 가격이 형성된다.However, since AR glasses are used by a variety of people, they must be manufactured to respond to the various refractive indices of each user, which makes the AR glasses bulky and heavy and expensive.
이와 같은 문제점들을 해결하기 위해서 최근 시도되고 있는 것이 다초점 가변 렌즈(multi-focal adjustable lens)를 사용하는 것이다.To solve these problems, a recent attempt is to use a multi-focal adjustable lens.
대표적인 가변렌즈 방식으로 렌즈 내부를 물과 기름으로 구성하여 전기를 가함으로써 렌즈의 굴절률을 조절하는 방식이 있으나, 이 또한 부피와 무게 증가를 완벽하게 해결하지 못하였다.A representative variable lens method is to adjust the refractive index of the lens by making the inside of the lens consist of water and oil and applying electricity, but this also did not completely solve the increase in volume and weight.
도 6은 종래에 알바레즈 렌즈(Alvarez lens)를 AR 글래스에 적용한 것을 예시한 도면이다.Figure 6 is a diagram illustrating the application of a conventional Alvarez lens to AR glasses.
또한, 도 6과 같이 광도파관(30) 렌즈의 상하에 알바레즈 렌즈를 마련하는 방식인데, 이 경우 가변렌즈의 반쪽만 영향을 미치게 되어 외부 시야는 두 렌즈를 통과하여 제대로 맺히나, AR 시야는 한쪽만 통과하여 초점이 원하는 대로 맺히지 않고 상 분리 현상이 발생한다는 문제점이 있다.In addition, as shown in Figure 6, Alvarez lenses are provided above and below the lens of the light pipe 30. In this case, only half of the variable lens is affected, so the external view passes through both lenses and is properly formed, but the AR view is only on one side. However, there is a problem that the focus is not as desired and phase separation occurs.
따라서, 본 개시에서는 듀얼 가변렌즈(50) 기반의 굴절이상 교정 기능을 구비한 AR 디바이스(10)를 통해 전술한 도 1, 도 2 및 도 6에서 발생하는 종래 기술의 문제점을 해결하고자 한다.Therefore, the present disclosure seeks to solve the problems of the prior art that occur in FIGS. 1, 2, and 6 described above through the AR device 10 equipped with a refractive error correction function based on the dual variable lens 50.
이하, 첨부된 도면을 참조하여 본 개시의 실시예를 상세하게 설명한다.Hereinafter, embodiments of the present disclosure will be described in detail with reference to the attached drawings.
도 7은 본 개시의 실시예에 따른 AR 글래스의 블록도이다.Figure 7 is a block diagram of AR glasses according to an embodiment of the present disclosure.
도 7을 참조하면, 본 개시의 실시예에 따른 듀얼 가변렌즈(50) 기반의 굴절이상 교정 기능을 구비한 AR 디바이스(10)는 제어부(90), 디스플레이 모듈(20), 도파관(30), 이송부(40), 가변렌즈(50), 이송부(40) 및 시선 추적 모듈(60)을 포함한다.Referring to FIG. 7, the AR device 10 equipped with a refractive error correction function based on the dual variable lens 50 according to an embodiment of the present disclosure includes a control unit 90, a display module 20, a waveguide 30, It includes a transfer unit 40, a variable lens 50, a transfer unit 40, and an eye tracking module 60.
다만, 몇몇 실시예에서 AR 글래스는 도 7에 도시된 구성요소보다 더 적은 수의 구성요소나 더 많은 구성요소를 포함할 수도 있다.However, in some embodiments, the AR glasses may include fewer or more components than those shown in FIG. 7 .
디스플레이 모듈(20)은 사용자에게 증강현실(augmented reality, AR) 영상을 제공하기 위한 광을 투사한다.The display module 20 projects light to provide an augmented reality (AR) image to the user.
도파관(30)은 디스플레이 모듈(20)로부터 입사된 광을 가이드하여 가변렌즈(50) 방향으로 투사한다.The waveguide 30 guides the light incident from the display module 20 and projects it toward the variable lens 50.
가변렌즈(50)는 명칭과 같이 오목렌즈 또는 볼록렌즈로 고정되어 있지 않으며 가변 가능하다.The variable lens 50, as its name suggests, is not fixed as a concave or convex lens and is variable.
본 개시의 실시예에서 가변렌즈(50)는 도파관(30)의 광 출사 영역과 사용자의 시야 사이에 마련된다.In an embodiment of the present disclosure, the variable lens 50 is provided between the light emission area of the waveguide 30 and the user's field of view.
본 개시의 실시예에서 가변렌즈(50)는 제1 가변렌즈(51) 및 제2 가변렌즈(52)를 포함한다.In the embodiment of the present disclosure, the variable lens 50 includes a first variable lens 51 and a second variable lens 52.
일 예로, 도파관(30)이 최상단에 위치하고, 제1 가변렌즈(51), 제2 가변렌즈(52)의 순서대로 배치되며 최하단에 사용자의 시야가 위치한다.For example, the waveguide 30 is located at the top, the first variable lens 51 and the second variable lens 52 are arranged in that order, and the user's field of view is located at the bottom.
구체적으로, 본 개시의 실시예에서 가변렌즈(50)는 알바레즈 렌즈(Alvarez lens)가 적용 가능하며, 하나의 가변렌즈(50)는 적어도 일부에 볼록렌즈, 그리고 적어도 일부에 오목렌즈를 포함하여 전체면에 볼록렌즈와 오목렌즈가 모두 포함되어 있다.Specifically, in the embodiment of the present disclosure, the variable lens 50 may be an Alvarez lens, and one variable lens 50 includes at least a convex lens in part and a concave lens in at least part of the entire lens. The surface contains both convex and concave lenses.
이송부(40)는 제1 가변렌즈(51) 및 제2 가변렌즈(52) 중 적어도 하나를 이동시킬 수 있으며, 대표적으로 액추에이터가 적용 가능하다.The transfer unit 40 can move at least one of the first variable lens 51 and the second variable lens 52, and an actuator is typically applicable.
시선 추적 모듈(60)은 사용자의 좌안 및 우안 중 적어도 하나의 시선 방향을 추적할 수 있다.The gaze tracking module 60 may track the gaze direction of at least one of the user's left eye and right eye.
메모리(70)는 AR 디바이스(10)가 작동하기 위한 각종 명령어, 알고리즘이 저장될 수 있으며, 몇몇 실시예에서 사용자 개인에게 맞춤형으로 학습되어 작동할 수 있는 인공지능 모델이 저장될 수도 있다.The memory 70 may store various commands and algorithms for operating the AR device 10, and in some embodiments, an artificial intelligence model that can be customized for each user and operated may be stored therein.
제어부(90)는 AR 디바이스(10) 내 구성들의 제어를 담당하며, 구체적으로 디스플레이 모듈(20), 이송부(40), 시선 추적 모듈(60)을 제어할 수 있다.The control unit 90 is responsible for controlling the components within the AR device 10, and can specifically control the display module 20, the transfer unit 40, and the eye tracking module 60.
또한, 제어부(90)는 메모리(70) 내에 저장된 명령어, 알고리즘을 실행함으로써, 듀얼 가변렌즈(50) 기반의 굴절 이상 교정 방법을 실행할 수 있다.Additionally, the control unit 90 may execute a refractive error correction method based on the dual variable lens 50 by executing commands and algorithms stored in the memory 70.
이하에서는, 도 8 내지 도 16을 통해서 본 개시의 제1 실시예, 제2 실시예 및 제3 실시예에 따른 AR 글래스에 대해 상세히 설명한다.Hereinafter, AR glasses according to the first, second, and third embodiments of the present disclosure will be described in detail through FIGS. 8 to 16.
제1 실시예 내지 제3 실시예에 포함된 구성들의 기본적인 기능은 도 7의 블록도를 참조하여 설명한 것과 같으며, 추가적인 기능 배치의 차이점 등과 같은 상세한 설명은 각각의 도면을 참조하여 상세하게 다루도록 한다.The basic functions of the components included in the first to third embodiments are the same as those described with reference to the block diagram of FIG. 7, and detailed descriptions, such as differences in the arrangement of additional functions, are dealt with in detail with reference to the respective drawings. do.
이어서, 도 8 내지 도 16을 참조하여, 제1 실시예, 제2 실시예 및 제3 실시예를 순차적으로 설명하도록 한다.Next, with reference to FIGS. 8 to 16, the first, second, and third embodiments will be sequentially described.
도 8 내지 도 10은 본 개시의 제1 실시예에 따른 AR 글래스를 예시한 도면이다.8 to 10 are diagrams illustrating AR glasses according to the first embodiment of the present disclosure.
도 8을 참조하면, 이송부(40)는 도파관(30)의 일측(일 예로, 좌측) 하측에 마련되어 있다.Referring to FIG. 8, the transfer unit 40 is provided on the lower side (for example, the left side) of the waveguide 30.
제1 가변렌즈(51)는 이송부(40)의 일측(일 예로, 우측) 상단에 설치되고, 제2 가변렌즈(52)는 이송부(40)의 일측(일 예로, 우측) 하단에 설치되어 있다.The first variable lens 51 is installed at the top of one side (for example, the right side) of the transfer unit 40, and the second variable lens 52 is installed at the bottom of one side (for example, the right side) of the transfer unit 40. .
제1 가변렌즈(51) 및 제2 가변렌즈(52)는 각각 서로 분리되어 이송부(40)에 결합되어 있으며, 구체적으로 제1 가변렌즈(51)는 제1 액추에이터, 제2 가변렌즈(52)는 제2 액추에이터와 결합될 수 있다.The first variable lens 51 and the second variable lens 52 are separated from each other and coupled to the transfer unit 40. Specifically, the first variable lens 51 is connected to the first actuator and the second variable lens 52. Can be combined with the second actuator.
제1 실시예에서 디스플레이 모듈(20)은 도파관(30)의 타측(일 예로, 우측)의 하측에 마련된다.In the first embodiment, the display module 20 is provided on the lower side of the other side (eg, right side) of the waveguide 30.
따라서, 제1 실시예에서 디스플레이 모듈(20)에서 출력된 광은 도파관(30)으로 입력된 후 가이드 되어 상기 제1 가변렌즈(51)와 제2 가변렌즈(52)의 순서로 투과되어 사용자에게 전달된다.Accordingly, in the first embodiment, the light output from the display module 20 is input to the waveguide 30 and then is guided and transmitted through the first variable lens 51 and the second variable lens 52 in that order to the user. It is delivered.
도 8은 정상시를 가진 사용자이기 때문에 제어부(90)가 별도로 이송부(40)를 제어하지 않고 가변렌즈(50)가 제자리에 위치한 것이 예시되어 있다.Figure 8 illustrates that since the user has normal vision, the variable lens 50 is positioned in place without the control unit 90 separately controlling the transfer unit 40.
도 9는 최대 근시를 가진 사용자를 예시한 것으로, 제어부(90)가 제1 가변렌즈(51)와 제2 가변렌즈(52)의 최대 오목면에 광이 투과되도록 이송부(40)를 제어한 것이 예시되어 있다.Figure 9 illustrates a user with maximum myopia, in which the control unit 90 controls the transfer unit 40 so that light is transmitted through the maximum concave surfaces of the first variable lens 51 and the second variable lens 52. It is illustrated.
도 10은 최대 원시를 가진 사용자를 예시한 것으로, 제어부(90)가 제1 가변렌즈(51)와 제2 가변렌즈(52)의 최대 볼록면에 광이 투과되도록 이송부(40)를 제어한 것이 예시되어 있다.Figure 10 illustrates a user with maximum hyperopia, and the control unit 90 controls the transfer unit 40 to transmit light through the maximum convex surface of the first variable lens 51 and the second variable lens 52. It is illustrated.
도 9 및 도 10은 각각 최대 근시, 최대 원시 사용자에 대한 단순 예시일 뿐이고, 실제로 제어부(90)는 사용자의 근시 정도, 원시 정도에 따라서 이송부(40)를 제어하여 제1 가변렌즈(51)와 제2 가변렌즈(52)를 적절하게 이동시켜 사용자의 근시 정도 또는 원시 정도에 따라 광이 투과되도록 할 수 있다.Figures 9 and 10 are merely examples of users with maximum myopia and maximum hyperopia, respectively, and in reality, the control unit 90 controls the transfer unit 40 according to the degree of myopia and hyperopia of the user to provide the first variable lens 51 and the first variable lens 51. By appropriately moving the second variable lens 52, light can be transmitted depending on the degree of myopia or hyperopia of the user.
도 11 내지 도 13은 본 개시의 제2 실시예에 따른 AR 글래스를 예시한 도면이다.11 to 13 are diagrams illustrating AR glasses according to a second embodiment of the present disclosure.
제2 실시예에서는 AR 글래스의 경박 단소화를 위해 제1 가변렌즈(51)가 도파관(30)과 결합되어 있으며, 이송부(40)는 제2 가변렌즈(52)를 움직여서 초점을 조절하게 된다.In the second embodiment, the first variable lens 51 is combined with the waveguide 30 to reduce the size and size of the AR glasses, and the transfer unit 40 moves the second variable lens 52 to adjust the focus.
제2 실시예로, 제1 가변렌즈(51)는 도파관(30)의 하부에 고정/결합/마련되고, 제2 가변렌즈(52)는 이송부(40)의 일측(일 예로, 우측)에 설치된다.In a second embodiment, the first variable lens 51 is fixed/coupled/provided at the lower part of the waveguide 30, and the second variable lens 52 is installed on one side (for example, the right side) of the transfer unit 40. do.
이때, 디스플레이 모듈(20)은 도파관(30)의 타측(일 예로, 우측)의 하측에 마련된다.At this time, the display module 20 is provided on the lower side of the other side (eg, right side) of the waveguide 30.
제어부(90)는 사용자의 근시 정도 또는 원시 정도 따라 이송부(40)를 제어하여 제2 가변렌즈(52)를 적절하게 이동시켜 사용자의 근시 정도 또는 원시 정도에 따라 광이 투과되도록 할 수 있다.The control unit 90 controls the transfer unit 40 according to the degree of myopia or hyperopia of the user to appropriately move the second variable lens 52 to transmit light according to the degree of myopia or hyperopia of the user.
제2 실시예에서, 제1 가변렌즈(51)는 도파관(30)의 길이 이하로 형성될 수 있으며, 적어도 일부 영역에 평면 렌즈 영역(제1 영역)을 포함할 수 있고, 디스플레이 모듈(20)은 평면 렌즈 영역(제1 영역)으로 광을 투사할 수 있다.In the second embodiment, the first variable lens 51 may be formed to be less than the length of the waveguide 30, may include a flat lens area (first area) in at least a partial area, and the display module 20 Can project light to a flat lens area (first area).
따라서, AR 글래스가 이와 같이 구성되는 경우, 디스플레이 모듈(20)이 투사한 광은 제1 가변렌즈(51)의 평면 렌즈 영역(제1 영역), 도파관(30), 제1 가변렌즈(51), 제2 가변렌즈(52)의 순서로 진행되어 사용자에게 제공될 수 있다.Therefore, when the AR glasses are configured in this way, the light projected by the display module 20 is transmitted through the flat lens area (first area) of the first variable lens 51, the waveguide 30, and the first variable lens 51. , the second variable lens 52 may be provided to the user.
하지만, 이에 한정되는 것은 아니며 제1 가변렌즈(51)는 평면 렌즈 영역(제1 영역)을 포함하지 않을 수 있고, 디스플레이 모듈(20)은 도파관(30)의 일측(일 예로, 우측) 하측에 마련되어 도파관(30)으로 직접 광을 투사할 수도 있다.However, it is not limited to this, and the first variable lens 51 may not include a flat lens area (first area), and the display module 20 is located below one side (for example, the right side) of the waveguide 30. It is also possible to project light directly into the waveguide 30.
제2 실시예에 따른 AR 글래스의 경우, 제2 가변렌즈(52)만을 움직여서 사용자의 초점을 조절하기 때문에 AR 글래스의 구조를 단순화하고, 크기/부피를 더 줄일 수 있다는 장점이 있다.In the case of the AR glasses according to the second embodiment, the user's focus is adjusted by moving only the second variable lens 52, so the structure of the AR glasses can be simplified and the size/volume can be further reduced.
도 14 내지 도 16은 본 개시의 제3 실시예에 따른 AR 글래스를 예시한 도면이다.14 to 16 are diagrams illustrating AR glasses according to a third embodiment of the present disclosure.
제3 실시예에서, 제1 가변렌즈(51)는 도파관(30)의 하부에 고정/결합/마련되고, 제2 가변렌즈(52)는 이송부(40)의 일측(우측)에 설치된다.In the third embodiment, the first variable lens 51 is fixed/coupled/provided at the lower part of the waveguide 30, and the second variable lens 52 is installed on one side (right side) of the transfer unit 40.
제3 실시예에서, 이송부(40)는 도파관(30)의 일측(좌측) 하측에 마련되고, 디스플레이 모듈(20)은 제2 가변렌즈(52)의 타측(우측)의 하측에 고정/결합/마련된다.In the third embodiment, the transfer unit 40 is provided below one side (left side) of the waveguide 30, and the display module 20 is fixed/coupled/below the other side (right side) of the second variable lens 52. It is prepared.
제2 실시예와 제3 실시예가 다른 점은, 제2 실시예에서는 도파관(30) 또는 제1 가변렌즈(51)의 평면 렌즈 영역(제1 영역) 하측에 디스플레이 모듈(20)이 마련되지만, 제3 실시예에서는 디스플레이 모듈(20)이 제2 가변렌즈(52)의 타측에 고정/결합/마련된다.The difference between the second and third embodiments is that in the second embodiment, the display module 20 is provided below the flat lens area (first area) of the waveguide 30 or the first variable lens 51. In the third embodiment, the display module 20 is fixed/coupled/provided on the other side of the second variable lens 52.
이러한 구조로 인해, 이송부(40)가 제2 가변렌즈(52)를 이동시키면 디스플레이 모듈(20)이 제2 가변렌즈(52)와 함께 이동하게 된다.Due to this structure, when the transfer unit 40 moves the second variable lens 52, the display module 20 moves together with the second variable lens 52.
제3 실시예에서, 제어부(90)는 제1 가변렌즈(51)와 제2 가변렌즈(52)의 광축(optic axis)이 도파관(30)의 아이박스(eyebox) 중심과 일치되도록 이송부(40)를 제어한다.In the third embodiment, the control unit 90 controls the transfer unit 40 so that the optical axes of the first variable lens 51 and the second variable lens 52 coincide with the center of the eyebox of the waveguide 30. ) is controlled.
그리고, 이러한 구조로 인해 제3 실시예에 따른 AR 글래스는 가변렌즈(50)의 광축과 도파관(30)의 아이박스 중심이 항상 일치되어 사용자의 초점을 자동으로 조절하는 것은 물론, 사용자의 시야 왜곡이 발생하지 않고, 어지럼증 유발을 방지하게 되는 효과를 발휘하게 된다.And, due to this structure, the AR glasses according to the third embodiment not only automatically adjusts the user's focus by always matching the optical axis of the variable lens 50 and the eyebox center of the waveguide 30, but also prevents distortion of the user's field of view. This does not occur and has the effect of preventing dizziness from occurring.
또한, 제3 실시예에 따른 AR 글래스는 제1 실시예 및 제2 실시예의 장점 또한 포함하고 있으므로, 구조의 단순화를 통해서 크기/부피 감소 효과 또한 발휘된다.In addition, since the AR glasses according to the third embodiment also include the advantages of the first and second embodiments, a size/volume reduction effect is also achieved through simplification of the structure.
실제로, 굴절이상시를 가진 다양한 사용자를 대상으로 실험을 진행하였을 때, 모든 사용자가 안경없이 일반적인 AR 글래스를 착용하였을 때 초점이 맞지 않아 불편함을 호소하였다.In fact, when an experiment was conducted on various users with refractive errors, all users complained of discomfort due to lack of focus when wearing regular AR glasses without glasses.
하지만, 본 개시의 실시예에 따른 AR 글래스를 착용한 결과 사용자들은 굴절이상이 해결된 것은 물론 어지럼증이 발생하지 않았다.However, as a result of wearing the AR glasses according to an embodiment of the present disclosure, users not only had their refractive error resolved but also did not experience dizziness.
제3 실시예에서, 제2 가변렌즈(52)에서 일부 영역에 평면 렌즈 영역(제2 영역)을 포함할 수 있고, 디스플레이 모듈(20)은 제1 영역의 하측에 고정/결합/마련되어 제1 영역으로 광을 투사할 수 있다.In the third embodiment, the second variable lens 52 may include a flat lens area (second area) in a partial area, and the display module 20 is fixed/coupled/provided below the first area to display the first area. Light can be projected into an area.
따라서, 디스플레이 모듈(20)에서 출력된 광은 제2 가면렌즈의 제2 영역으로 입력되고, 제1 가변렌즈(51)의 제1 영역, 도파관(30), 제1 가변렌즈(51), 제2 가변렌즈(52)의 순서로 진행되어 사용자에게 제공될 수 있다.Accordingly, the light output from the display module 20 is input to the second area of the second mask lens, the first area of the first variable lens 51, the waveguide 30, the first variable lens 51, and the first variable lens 51. 2 The variable lens 52 may be provided to the user in the following order.
하지만, 이에 한정되는 것은 아니며 제1 가변렌즈(51)는 평면 렌즈 영역(제1 영역)을 포함하지 않을 수 있고, 이하의 도 17에서 설명되는 본 개시의 제4 실시예와 같이, 디스플레이 모듈(20)은 제2 가변렌즈(52)의 타측 하부에 마련되지 않고, 제2 가변렌즈(52)의 측면에 결합/설치/마련될 수도 있다.However, it is not limited to this, and the first variable lens 51 may not include a flat lens area (first area), and, as in the fourth embodiment of the present disclosure described in FIG. 17 below, a display module ( 20) may not be provided on the lower side of the other side of the second variable lens 52, but may be coupled/installed/provided on the side of the second variable lens 52.
도 17은 본 개시의 제4 실시예에 따른 AR 글래스를 예시한 도면이다.Figure 17 is a diagram illustrating AR glasses according to a fourth embodiment of the present disclosure.
제4 실시예가 제3 실시예와 다른 것은, 디스플레이 모듈(20)이 제2 가변렌즈(52)의 측면에 결합/설치/마련된 것이고, 나머지 구성과 구조는 제3 실시예와 동일하다.The fourth embodiment is different from the third embodiment in that the display module 20 is coupled/installed/provided on the side of the second variable lens 52, and the remaining configuration and structure are the same as the third embodiment.
전술한 제1 실시예 내지 제4 실시예를 통해 본 개시의 실시예에 따른 듀얼 가변렌즈(50) 기반의 굴절이상 교정 기능을 구비한 AR 디바이스(10)를 설명하였다.Through the above-described first to fourth embodiments, the AR device 10 equipped with a refractive error correction function based on the dual variable lens 50 according to the embodiment of the present disclosure has been described.
이외에도, AR 글래스 제어부(90)의 단계별 제어 동작에 대한 듀얼 가변렌즈(50) 기반의 굴절이상 교정 방법으로 구현될 수 있다.In addition, the step-by-step control operation of the AR glasses control unit 90 can be implemented as a refractive error correction method based on the dual variable lens 50.
본 개시의 실시예에 따른 듀얼 가변렌즈(50) 기반의 굴절이상 교정 방법은, AR 글래스에 수행되는 방법으로, 제어부(90)가 사용자의 AR 글래스 착용 또는 AR 글래스의 턴온(turn on)동작을 감지하는 단계와, 제어부(90)가 시선 추적 모듈(60)을 통해 사용자의 좌안 및 우안 중 적어도 하나의 시선 방향을 추적하는 단계와, 제어부(90)가 상기 추적된 시선 방향을 기반으로 사용자의 초점을 판단하는 단계와, 제어부(90)가 상기 판단된 사용자의 초점을 기반으로 이송부(40)를 통해 제1 가변렌즈(51) 및 제2 가변렌즈(52) 중 적어도 하나가 이동되도록 제어하는 단계를 수행할 수 있고, AR 글래스는 상기 제어부(90)에 의해 수행되는 단계의 동작들을 통해 사용자의 굴절 이상을 교정할 수 있다.The refractive error correction method based on the dual variable lens 50 according to an embodiment of the present disclosure is a method performed on AR glasses, where the control unit 90 controls the user to wear the AR glasses or turn on the AR glasses. A step of detecting, the control unit 90 tracking the gaze direction of at least one of the user's left eye and the right eye through the gaze tracking module 60, and the control unit 90 tracking the user's gaze direction based on the tracked gaze direction. A step of determining focus, and the control unit 90 controlling at least one of the first variable lens 51 and the second variable lens 52 to move through the transfer unit 40 based on the determined focus of the user. The steps can be performed, and the AR glasses can correct the user's refractive error through the steps performed by the control unit 90.
또한, 본 개시의 실시예에 따른 듀얼 가변렌즈(50) 기반의 굴절이상 교정 방법에서 AR 글래스 내 구성상의 설명, 구조상의 설명은 도 7 내지 도 17을 통해 설명한 바와 동일하므로 더 이상의 설명은 생략하도록 한다.In addition, in the refractive error correction method based on the dual variable lens 50 according to the embodiment of the present disclosure, the description of the composition and structure of the AR glass is the same as that described with reference to FIGS. 7 to 17, so further description is omitted. do.
이상에서 전술한 본 개시의 일 실시예에 따른 방법은, 하드웨어인 서버와 결합되어 실행되기 위해 프로그램(또는 어플리케이션)으로 구현되어 매체에 저장될 수 있다.The method according to an embodiment of the present disclosure described above may be implemented as a program (or application) and stored in a medium in order to be executed in combination with a server, which is hardware.
상기 전술한 프로그램은, 상기 컴퓨터가 프로그램을 읽어 들여 프로그램으로 구현된 상기 방법들을 실행시키기 위하여, 상기 컴퓨터의 프로세서(CPU)가 상기 컴퓨터의 장치 인터페이스를 통해 읽힐 수 있는 C, C++, JAVA, 기계어 등의 컴퓨터 언어로 코드화된 코드(Code)를 포함할 수 있다. 이러한 코드는 상기 방법들을 실행하는 필요한 기능들을 정의한 함수 등과 관련된 기능적인 코드(Functional Code)를 포함할 수 있고, 상기 기능들을 상기 컴퓨터의 프로세서가 소정의 절차대로 실행시키는데 필요한 실행 절차 관련 제어 코드를 포함할 수 있다. 또한, 이러한 코드는 상기 기능들을 상기 컴퓨터의 프로세서가 실행시키는데 필요한 추가 정보나 미디어가 상기 컴퓨터의 내부 또는 외부 메모리의 어느 위치(주소 번지)에서 참조되어야 하는지에 대한 메모리 참조관련 코드를 더 포함할 수 있다. 또한, 상기 컴퓨터의 프로세서가 상기 기능들을 실행시키기 위하여 원격(Remote)에 있는 어떠한 다른 컴퓨터나 서버 등과 통신이 필요한 경우, 코드는 상기 컴퓨터의 통신 모듈을 이용하여 원격에 있는 어떠한 다른 컴퓨터나 서버 등과 어떻게 통신해야 하는지, 통신 시 어떠한 정보나 미디어를 송수신해야 하는지 등에 대한 통신 관련 코드를 더 포함할 수 있다.The above-mentioned program is C, C++, JAVA, machine language, etc. that can be read by the processor (CPU) of the computer through the device interface of the computer in order for the computer to read the program and execute the methods implemented in the program. It may include code coded in a computer language. These codes may include functional codes related to functions that define the necessary functions for executing the methods, and include control codes related to execution procedures necessary for the computer's processor to execute the functions according to predetermined procedures. can do. In addition, these codes may further include memory reference-related codes that indicate at which location (address address) in the computer's internal or external memory additional information or media required for the computer's processor to execute the above functions should be referenced. there is. In addition, if the computer's processor needs to communicate with any other remote computer or server in order to execute the above functions, the code uses the computer's communication module to determine how to communicate with any other remote computer or server. It may further include communication-related codes regarding whether communication should be performed and what information or media should be transmitted and received during communication.
상기 저장되는 매체는, 레지스터, 캐쉬, 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 구체적으로는, 상기 저장되는 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있지만, 이에 제한되지 않는다. 즉, 상기 프로그램은 상기 컴퓨터가 접속할 수 있는 다양한 서버 상의 다양한 기록매체 또는 사용자의 상기 컴퓨터상의 다양한 기록매체에 저장될 수 있다. 또한, 상기 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장될 수 있다.The storage medium refers to a medium that stores data semi-permanently and can be read by a device, rather than a medium that stores data for a short period of time, such as a register, cache, or memory. Specifically, examples of the storage medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc., but are not limited thereto. That is, the program may be stored in various recording media on various servers that the computer can access or on various recording media on the user's computer. Additionally, the medium may be distributed to computer systems connected to a network, and computer-readable code may be stored in a distributed manner.
본 개시의 실시예와 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접 구현되거나, 하드웨어에 의해 실행되는 소프트웨어 모듈로 구현되거나, 또는 이들의 결합에 의해 구현될 수 있다. 소프트웨어 모듈은 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리(Flash Memory), 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 개시가 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터 판독가능 기록매체에 상주할 수도 있다.The steps of the method or algorithm described in connection with the embodiments of the present disclosure may be implemented directly in hardware, implemented as a software module executed by hardware, or a combination thereof. The software module may be RAM (Random Access Memory), ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), Flash Memory, hard disk, removable disk, CD-ROM, or It may reside on any type of computer-readable recording medium well known in the art to which this disclosure pertains.
이상, 첨부된 도면을 참조로 하여 본 개시의 실시예를 설명하였지만, 본 개시가 속하는 기술분야의 통상의 기술자는 본 개시가 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.Above, embodiments of the present disclosure have been described with reference to the attached drawings, but those skilled in the art will understand that the present disclosure can be implemented in other specific forms without changing its technical idea or essential features. You will be able to understand it. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Claims (6)

  1. 사용자에게 증강현실(augmented reality, AR) 영상을 제공하기 위한 광을 투사하는 디스플레이 모듈;A display module that projects light to provide augmented reality (AR) images to users;
    상기 투사된 광이 입사되는 도파관;a waveguide into which the projected light is incident;
    상기 도파관의 광 출사 영역 및 상기 사용자의 시야 사이에 마련되는 제1 가변렌즈 및 제2 가변렌즈;a first variable lens and a second variable lens provided between the light emission area of the waveguide and the user's field of view;
    상기 도파관의 일측에 마련되며 상기 제2 가변렌즈를 이동시키는 이송부;a transfer unit provided on one side of the waveguide and moving the second variable lens;
    상기 이송부를 통해 상기 제2 가변렌즈를 이동시켜 상기 사용자의 굴절 이상을 교정하는 동작을 제어하는 제어부;를 포함하고,A control unit that controls the operation of correcting the user's refractive error by moving the second variable lens through the transfer unit,
    상기 제1 가변렌즈는, 상기 도파관의 하부에 일체로 형성되되, 상부가 평면으로 형성되고 하부가 볼록면 및 오목면을 포함하도록 형성되고,The first variable lens is formed integrally with the lower part of the waveguide, and the upper part is formed as a plane and the lower part is formed to include a convex surface and a concave surface,
    상기 제2 가변렌즈는, 상기 제1 가변렌즈의 하측에 마련되되, 일측이 상기 이송부와 결합되고 타측에 상기 디스플레이 모듈이 결합되며, 상부가 볼록면 및 오목면을 포함하도록 형성되고, 하부가 평면으로 형성되고,The second variable lens is provided below the first variable lens, one side of which is coupled with the transfer unit and the other side of which is coupled with the display module, the upper part of which is formed to include a convex surface and a concave surface, and the lower part of which is flat. It is formed by,
    상기 제어부는,The control unit,
    상기 이송부를 통해 상기 제2 가변렌즈를 이동시켜 상기 사용자의 굴절 이상을 교정하는 동작을 제어하고,Controlling an operation to correct the user's refractive error by moving the second variable lens through the transfer unit,
    상기 사용자의 근시 정도에 따라 상기 제1 가변렌즈 및 상기 제2 가변렌즈의 최대 오목면이 근접하도록 상기 이송부를 제어하고,Controlling the transfer unit so that the maximum concave surfaces of the first variable lens and the second variable lens are close according to the degree of myopia of the user,
    상기 사용자의 난시 정도에 따라 상기 제1 가변렌즈 및 상기 제2 가변렌즈의 최대 볼록면이 근접하도록 상기 이송부를 제어하고,Controlling the transfer unit so that the maximum convex surfaces of the first variable lens and the second variable lens are close according to the degree of astigmatism of the user,
    상기 제1 가변렌즈와 상기 제2 가변렌즈의 광축(optic axis)이 상기 도파관의 아이박스(eyebox) 중심과 일치되도록 상기 이송부를 제어하는 것을 특징으로 하는,Characterized in that the transfer unit is controlled so that the optical axes of the first variable lens and the second variable lens are aligned with the center of the eyebox of the waveguide.
    듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스.AR device with refractive error correction function based on dual variable lenses.
  2. 제1항에 있어서,According to paragraph 1,
    상기 투사된 광은, 상기 도파관으로 입력된 후 상기 제1 가변렌즈와 상기 제2 가변렌즈의 순서로 투과되어 상기 사용자에게 전달되는,The projected light is input into the waveguide and then transmitted through the first variable lens and the second variable lens in that order and delivered to the user.
    듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스.AR device with refractive error correction function based on dual variable lenses.
  3. 제1항에 있어서,According to paragraph 1,
    상기 디스플레이 모듈은. 상기 제2 가변렌즈의 타측 하부에 마련된 것을 특징으로 하는,The display module is. Characterized in that it is provided in the lower part of the other side of the second variable lens,
    듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스.AR device with refractive error correction function based on dual variable lenses.
  4. 제3항에 있어서,According to paragraph 3,
    상기 제2 가변렌즈에서 상기 디스플레이 모듈이 마련되는 영역은, 평면 렌즈로 형성된 것을 특징으로 하는,The area where the display module is provided in the second variable lens is formed of a flat lens,
    듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스.AR device with refractive error correction function based on dual variable lenses.
  5. 제1항에 있어서,According to paragraph 1,
    상기 제1 가변렌즈와 상기 제2 가변렌즈의 폭은, 상기 제2 가변렌즈의 볼록면의 최고 높이와 오목면의 최저 높이의 차이 이상으로 형성되는 것을 특징으로 하는,Characterized in that the width of the first variable lens and the second variable lens is formed by more than the difference between the highest height of the convex surface and the lowest height of the concave surface of the second variable lens.
    듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스.AR device with refractive error correction function based on dual variable lenses.
  6. 제1항에 있어서,According to paragraph 1,
    상기 제1 가변렌즈 및 상기 제2 가변렌즈는, 알바레즈 렌즈(Alvarez lens)를 포함하는 것을 특징으로 하는,The first variable lens and the second variable lens include an Alvarez lens,
    듀얼 가변렌즈 기반의 굴절이상 교정 기능을 구비한 AR 디바이스.AR device with refractive error correction function based on dual variable lenses.
PCT/KR2023/004461 2022-04-12 2023-04-03 Ar device having refractive error correction function based on dual variable lense WO2023200164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220045212A KR102419009B1 (en) 2022-04-12 2022-04-12 AR device with refractive error correction function based on dual variable lenses
KR10-2022-0045212 2022-04-12

Publications (1)

Publication Number Publication Date
WO2023200164A1 true WO2023200164A1 (en) 2023-10-19

Family

ID=82407494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004461 WO2023200164A1 (en) 2022-04-12 2023-04-03 Ar device having refractive error correction function based on dual variable lense

Country Status (2)

Country Link
KR (1) KR102419009B1 (en)
WO (1) WO2023200164A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102419009B1 (en) * 2022-04-12 2022-07-08 주식회사 셀리코 AR device with refractive error correction function based on dual variable lenses

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510437A (en) * 2013-02-15 2016-04-07 アドレンズ リミテッドAdlens Limited Variable power lens
US20200124853A1 (en) * 2018-10-18 2020-04-23 Coretronic Corporation Optical transmitting module and head mounted display device
KR20200063789A (en) * 2018-11-28 2020-06-05 재단법인 구미전자정보기술원 Ar glass and method of providing augmented reality service using the same
US20200281460A1 (en) * 2019-03-07 2020-09-10 eyeBrain Medical, Inc. Integrated progressive lens simulator
US10877277B1 (en) * 2018-04-16 2020-12-29 Facebook Technologies, Llc Liquid crystal Alvarez lens
KR102419009B1 (en) * 2022-04-12 2022-07-08 주식회사 셀리코 AR device with refractive error correction function based on dual variable lenses

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10042097B2 (en) * 2014-11-27 2018-08-07 Magic Leap, Inc. Methods and system for creating focal planes using an alvarez lens
KR102009624B1 (en) * 2019-04-04 2019-08-12 엔에이치엔 주식회사 Method and system forcontrolling focusing length to enhance vision

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016510437A (en) * 2013-02-15 2016-04-07 アドレンズ リミテッドAdlens Limited Variable power lens
US10877277B1 (en) * 2018-04-16 2020-12-29 Facebook Technologies, Llc Liquid crystal Alvarez lens
US20200124853A1 (en) * 2018-10-18 2020-04-23 Coretronic Corporation Optical transmitting module and head mounted display device
KR20200063789A (en) * 2018-11-28 2020-06-05 재단법인 구미전자정보기술원 Ar glass and method of providing augmented reality service using the same
US20200281460A1 (en) * 2019-03-07 2020-09-10 eyeBrain Medical, Inc. Integrated progressive lens simulator
KR102419009B1 (en) * 2022-04-12 2022-07-08 주식회사 셀리코 AR device with refractive error correction function based on dual variable lenses

Also Published As

Publication number Publication date
KR102419009B1 (en) 2022-07-08

Similar Documents

Publication Publication Date Title
US20200218096A1 (en) Apparatus and method for fitting head mounted vision augmentation systems
WO2023200164A1 (en) Ar device having refractive error correction function based on dual variable lense
US7325922B2 (en) Adjustable focus eyeglasses
US20170235161A1 (en) Apparatus and method for fitting head mounted vision augmentation systems
Mann et al. Designing EyeTap digital eyeglasses for continuous lifelong capture and sharing of personal experiences
WO2018053905A1 (en) Virtual reality device
WO2022014967A1 (en) Augmented reality display device
CN113311584A (en) AR (augmented reality) glasses with vision correction function
CN210401895U (en) Intelligent glasses
US20240094544A1 (en) Tunable cylindrical lenses and head-mounted display including the same
WO2016035952A1 (en) Image processing device and image processing method for same
CN113189772A (en) Device, holographic lens and manufacturing method thereof, and near-to-eye display system
WO2021103271A1 (en) Ar display device
WO2019235837A1 (en) Optical assembly and electronic device comprising same
WO2000019263A1 (en) Apparatus and method for avoiding ocular muscular fatigue
WO2020171338A1 (en) Compact optical device for augmented reality
Spitzer et al. Optical approaches to incorporation of displays within eyeglasses
KR102543452B1 (en) Augmented Reality Optical System for Correcting the Wearer's Vision Universally
US11604368B2 (en) Contact lens and eyewear frame design using physical landmarks placed on the eye
US11972592B2 (en) Automated eyewear frame design through image capture
WO2023224409A1 (en) Projection lens optical system, projection device employing same, and wearable device
US20220319040A1 (en) Automated eyewear frame design through image capture
US20230350233A1 (en) Systems, apparatus, and methods for regulating refractive error development through the modulation of peripheral distortion
US20220317476A1 (en) Automated contact lens design through image capture of an eye wearing a reference contact lens
WO2024025055A1 (en) Vision training apparatus and vision training method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788516

Country of ref document: EP

Kind code of ref document: A1