WO2023199428A1 - Liquefied gas storage tank - Google Patents

Liquefied gas storage tank Download PDF

Info

Publication number
WO2023199428A1
WO2023199428A1 PCT/JP2022/017703 JP2022017703W WO2023199428A1 WO 2023199428 A1 WO2023199428 A1 WO 2023199428A1 JP 2022017703 W JP2022017703 W JP 2022017703W WO 2023199428 A1 WO2023199428 A1 WO 2023199428A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
tank
space
liquefied gas
pressure
Prior art date
Application number
PCT/JP2022/017703
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 武田
崇公 三好
晴彦 冨永
麻子 三橋
宏輔 関
まり子 高須賀
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2022/017703 priority Critical patent/WO2023199428A1/en
Publication of WO2023199428A1 publication Critical patent/WO2023199428A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present disclosure relates to liquefied gas storage tanks.
  • a double-shell tank that includes an inner tank and an outer tank as a tank for storing liquefied gas, such as cryogenic liquefied hydrogen.
  • liquefied gas such as cryogenic liquefied hydrogen.
  • high heat insulation can be achieved by providing a space (space between the inner and outer tanks) outside the inner tank in which the liquefied gas is stored.
  • an object of the present disclosure is to reliably block communication between the internal tank space and the space between the inner and outer tanks as necessary in a liquefied gas storage tank having a double structure. There is a particular thing.
  • the liquefied gas storage tank includes: A tank for storing liquefied gas, A tank body comprising: an inner tank that forms a storage space for the liquefied gas inward; and an outer tank that covers the inner tank and forms a heat insulating layer filled with the liquefied gas between the inner tank and the inner tank; , a communication path that communicates the space within the inner tank and the space between the inner and outer tanks; is provided in the communication passage and is set to open when the pressure in the space between the inner and outer tanks decreases to a predetermined value, or when the difference between the pressure in the inner tank space and the pressure in the inner tank space decreases to a predetermined value. and the first valve, a second valve provided in the communication passage in series with the first valve and configured to be able to open and close the communication passage; Equipped with.
  • FIG. 1 is a schematic diagram showing an example of a liquefied gas storage tank according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged schematic diagram of a part of the liquefied gas storage tank of FIG. 1 illustrating one mode of use of the tank.
  • FIG. 2 is an enlarged schematic view of a part of the liquefied gas storage tank of FIG. 1 to show another mode of use of the tank.
  • FIG. 1 shows a liquefied gas storage tank (hereinafter simply referred to as "tank”) 1 according to an embodiment of the present disclosure.
  • This tank 1 includes a tank body 3 that stores liquefied gas LG, a communication passage 5, a first valve 7, and a second valve 9, which will be described later.
  • the tank 1 is installed on a ship S, such as a liquefied gas storage ship.
  • a ship S such as a liquefied gas storage ship.
  • the liquefied gas storage ship in this embodiment is a liquefied gas carrier.
  • liquefied gas storage ships include, for example, liquefied gas fuel ships, bunkering ships that supply liquefied gas to other ships, and the like.
  • the tank 1 according to the present disclosure may be installed in a liquefied gas storage facility other than a ship, such as a ground liquefied gas storage facility or a plant that uses liquefied gas.
  • the liquefied gas LG stored in the tank 1 is, for example, liquefied ammonia (LNH 3 , about -33°C), liquefied petroleum gas (LPG, about -45°C), liquefied ethylene gas (LEG, about -100°C), liquefied These are natural gas (LNG, approximately -160°C), liquefied hydrogen (LH 2 , approximately -250°C), and liquefied helium (LHe, approximately -270°C).
  • liquefied hydrogen is stored in the tank 1.
  • the tank 1 is configured as a double shell tank having an inner tank 11 and an outer tank 13.
  • the tank body 3 includes an inner tank 11 that forms a storage space (hereinafter referred to as "inner tank space”) 15 for liquefied gas LG inwardly, and an inner tank 11 that covers the inner tank 11. and an outer tank 13 that forms a space (hereinafter referred to as "space between inner and outer tanks”) 17 filled with vaporized gas of the liquefied gas LG.
  • the outer peripheral surfaces of the inner tank 11 and the outer tank 13 may each be covered with a heat-insulating layer.
  • This tank 1 is normally operated in a state in which vaporized gas of liquefied gas is sealed in a space 17 between the inner and outer tanks, which is a heat insulating layer.
  • the tank body 3 has a body portion 3a that is a portion that accommodates the liquefied gas LG, and a dome portion 3b that projects upward from the body portion 3a.
  • the main body portion 3a is covered by a tank cover 23 that is a part of the hull 21 of the ship S.
  • the top wall of the tank cover 23 is formed with an opening through which the dome portion 3b is inserted. Through the opening of the tank cover 23, the dome portion 3b protrudes above the tank cover 23, that is, is exposed.
  • the dome portion 3b has a cylindrical side wall 25 extending substantially vertically, and a substantially hemispherical lid 27 that closes the upper opening of the side wall 25.
  • Various types of piping such as a plurality of transport pipes 29 for transporting (loading and unloading) the liquefied gas LG to and from the tank 1 are attached to the dome portion 3b.
  • a plurality of transport pipes 29 for transporting (loading and unloading) the liquefied gas LG to and from the tank 1 are attached to the dome portion 3b.
  • only one transport pipe 29 is shown for simplification.
  • the transport pipe 29 penetrates the lid 27 of the dome portion 3b in a substantially vertical direction.
  • the figure shows the above-mentioned transport pipe 29 as an example of a pipe extending to the outside of the tank 1 through the dome part 3b, but such a pipe does not carry vaporized gas.
  • piping such as transportation pipes.
  • a communication path 5 is provided that communicates the inner tank space 15 with the inner and outer tank space 17. Via the communication path 5, vaporized gas BG of the liquefied gas LG generated in the inner tank space 15 is introduced into the inner and outer tank space 17 at appropriate timing.
  • the gas introduction path for introducing the vaporized gas BG from an external liquefied gas source into the space 17 between the inner and outer tanks may be connected to the communication path 5 or provided independently from the communication path 5. good.
  • first predetermined pressure value a predetermined value on the communication path 5
  • first predetermined pressure difference a predetermined value on the communication path 5
  • first valve 7 is a safety valve that is set to automatically open when the first predetermined pressure difference is exceeded.
  • the first valve 7 opens when a first predetermined pressure difference is reached, and then the pressure in the space 17 between the inner and outer tanks reaches a predetermined pressure difference (hereinafter referred to as a "second predetermined pressure difference") with respect to the pressure in the inner tank space 15. It is configured to close when the pressure rises to less than the pressure difference (').
  • a second valve 9 separate from the first valve 7 is further provided on the communication path 5 in series with the first valve 7.
  • the second valve 9 is configured as a valve that can open and close the communication passage 5.
  • the second valve 9 is operated to open the first valve 7 even though the pressure in the inner tank space 15 has decreased to a second predetermined pressure difference or less with respect to the pressure in the space 17 between the inner and outer tanks after the first valve 7 is opened. It is provided for the purpose of closing the communicating path 5 when the valve 7 fails to close.
  • the second valve 9 is configured as a remote control valve.
  • the remote-controlled valve may be any type of valve as long as it is electrically opened and closed by a control signal, such as an electric valve, a solenoid valve, or a diaphragm-operated valve.
  • a remote control valve as the second valve 9
  • the second valve 9 can be closed in a short time after detecting that the first valve 7 cannot be closed when it should be closed.
  • the second valve 9 does not have to be a remote control valve. That is, the second valve 9 may be a valve that can be closed by direct operation.
  • the second valve 9 is provided on the primary side of the first valve 7. With this configuration, the second valve 9 is closed on the upstream side of the first valve 7, so communication between the inner tank space 15 and the inner and outer tank space 17 can be more reliably blocked.
  • the second valve 9 may be provided on the secondary side of the first valve 7.
  • only one second valve 9 is provided, but a plurality of second valves 9 may be provided. In that case, the second valve 9 may be provided on each of the primary side and the secondary side of the first valve 7. Further, a plurality of communication passages 5 and first valves 7 may be provided.
  • a gas discharge path 31 is provided to discharge the gas in the space 17 between the inner and outer tanks to the outside of the tank 1.
  • the gas discharge path 31 is provided with a third valve 33 that is set to open at a predetermined pressure or higher.
  • the third valve 33 is configured as a safety valve that automatically opens at a predetermined pressure or higher.
  • the tank 1 includes an inner tank space pressure detection device 35 that detects the pressure in the inner tank space 15, and an inner tank space pressure detection device 35 that detects the pressure in the space 17 between the inner tank and the outer tank. It is provided with a space pressure detection device 37, an inner tank space temperature detection device 39 that detects the temperature of the inner tank space 15, and an inner and outer tank space temperature sensor 41 that detects the temperature of the space 17 between the inner and outer tanks.
  • detection devices consist of a sensor element that detects the physical quantity (pressure, temperature) to be detected, various circuits that perform necessary processing such as signal conversion processing and arithmetic processing on the acquired detected quantity, and information necessary for these processing.
  • the device is equipped with a memory for storing the data, a power source circuit such as a power supply element such as a battery or a power supply circuit for receiving power supply from the outside, a transmission circuit for transmitting the output signal to the outside by wire or wirelessly, and the like.
  • a power source circuit such as a power supply element such as a battery or a power supply circuit for receiving power supply from the outside
  • a transmission circuit for transmitting the output signal to the outside by wire or wirelessly, and the like.
  • the tank 1 may be provided with various detection devices necessary for the operation of the tank 1. Furthermore, it is not essential to provide the detection devices 35, 37, 39, and 41 exemplified above, and only those necessary for the operation of the tank 1 may be provided.
  • the second valve 9 By providing the second valve 9, after the first valve 7 is opened as shown in FIG.
  • the pressure of the inner tank increases to a second predetermined pressure difference or less with respect to the pressure of the inner tank space 15 and the inner tank does not close even though it should be closed, or when it cannot close even if you try to close it manually, etc.
  • the second valve 9 is used to close the communication passage 5 as shown in FIG. 2B, and the pressure in the space 17 between the inner and outer tanks exceeds the predetermined operating pressure. It can be prevented from rising.
  • first valve 7 and the second valve 9 are located above the base end 3ba of the dome portion 3b, that is, the boundary between the main body portion 3a and the dome portion 3b. More specifically, in this embodiment, the first valve 7 and the second valve 9 are located on the sides of the dome portion 3b.
  • a portion of the communication pipe forming the communication path 5 is exposed to the outside of the dome portion 3b from the side wall 25 of the portion of the dome portion 3b that projects upwardly of the tank cover 23. .
  • a first valve 7 and a second valve 9 are provided in the exposed portion of the communication passage 5 located on the side of the dome portion 3b.
  • the liquefied gas LG transport pipe 29 penetrates upward from the lid 27 of the dome portion 3b. This is to efficiently arrange piping and piping accessories such as various valves in the limited space of the dome part 3b, and to transfer the liquefied gas LG, which is the cargo of the tank 1, within the required cargo handling time.
  • first valve 7 and the second valve 9 are provided are not limited to the example described above.
  • one or both of the first valve 7 and the second valve 9 may be located above the dome portion 3b, or may be located below the base end 3ba of the dome portion 3b.
  • the third valve 33 is also located above the base end 3ba of the dome portion 3b of the tank 1, specifically on the side of the dome portion 3b.
  • the arrangement of the third valve 33 is not limited to this example either.
  • the arrangement of the transport pipes 29 is not limited to the illustrated example. Further, it is not essential to provide the dome portion 3b in the tank 1.
  • the second valve 9 is opened based on the pressure or temperature of at least one of the inner tank space 15 and the space 17 between the inner and outer tanks. Close. Specifically, the fact that the first valve 7 is not closed as set is detected by, for example, one or both of the inner tank space pressure detection device 35 and the inner and outer tank space pressure detection device 37 shown in FIG.
  • the second valve 9 can be closed based on the determined pressure value. Instead of or in addition to pressure detection, the first valve 7 closes based on the temperature value detected by either or both of the inner tank space temperature detection device 39 and the outer and outer tank space temperature detection device 41.
  • the second valve 9 may be closed after determining that the second valve 9 is not being used. In this way, the second valve can be closed at an appropriate timing by making a judgment based on at least one of the pressure and temperature of the inner tank space 15 and/or the outer and outer tank space 17.
  • FIG. 1 shows an independent double-shell tank 1 formed independently of the hull 21 as an example of the tank 1, the structure of the tank 1 is not limited to this example, and may be of any type.
  • the tank 1 may have a multiple heat-insulating structure.
  • the tank 1 may be of a type that is formed integrally with the hull 21.
  • the multiple heat insulation structure of the tank 1 may be a three-layer or more structure.
  • the second valve 9, which can be closed when the first valve 7 does not close is provided in the communication path 5. Therefore, after the first valve 7 is opened, the pressure in the space 17 between the inner and outer tanks increases until it becomes equal to or less than the second predetermined pressure difference with respect to the pressure in the inner tank space 15, and the valve 7, which should normally be closed, increases. If the communication passage 5 remains open, for example, if it does not close despite the above operation, or if it cannot be closed even if you try to close it manually, the second valve 9 is used to close the communication passage 5, and the inner and outer tanks are closed. It is possible to prevent the pressure in the interspace 17 from rising excessively beyond a predetermined operating pressure.
  • the second valve 9 may be a remote control valve. With this configuration, the second valve 9 can be closed in a short time after detecting that the first valve 7 cannot be closed when it should be closed.
  • the second valve 9 may be provided on the primary side of the first valve 7. With this configuration, the second valve 9 is closed on the upstream side of the first valve 7, so that communication between the inner tank space 15 and the inner and outer tank space 17 can be more reliably shut off.
  • the tank body 3 has a main body part 3a that is a part that accommodates the liquefied gas LG, and a dome part 3b that projects upward from the main body part 3a.
  • the first valve 7 and the second valve 9 may be located above the base end 3ba of the dome portion 3b. Furthermore, at least one of the first valve 7 and the second valve 9 may be located on the side of the dome portion 3b.
  • a gas exhaust path 31 is provided for discharging the gas in the space 17 between the inner and outer tanks to the outside, and the gas exhaust path 31 is provided so that the pressure in the space 17 between the inner and outer tanks is equal to or higher than a predetermined value. It may also include a third valve 33 that is set to open when the With this configuration, it is possible to more reliably prevent the pressure in the space 17 between the inner and outer tanks from becoming excessive.
  • the method of operating the liquefied gas storage tank 1 is a method of operating the liquefied gas storage tank 1 described above, in which when the first valve 7 is open, the inner tank space 15 and the space between the inner and outer tanks are This includes closing the second valve 9 based on at least one of the pressure and temperature of at least one of the spaces 17.
  • the second valve can be closed at an appropriate timing by making a judgment based on at least one of the pressure and temperature of the inner tank space 15 and/or the outer and outer tank space 17.

Abstract

A tank (1) that stores a liquefied gas (LG) comprises: a tank body (3) that is provided with an inner vessel (11) forming, to the inside thereof, a storage space for the liquefied gas (LG), and an outer vessel (13) covering the inner vessel (11) and forming a space between the outer vessel (13) and the inner vessel (11), said space being filled with a gas (BG) that results from vaporization of the liquefied gas (LG); a communication passage (5) that communicates a space (15) in the inner vessel and a space (17) between the inner and outer vessels; a first valve (7) that is provided in the communication passage (5), and is set so as to open when the pressure of the space (17) between the inner and outer vessels has fallen to a prescribed value, or when the difference between said pressure and the pressure of the space (15) in the inner vessel has fallen to a prescribed value; and a second valve (9) that is provided in the communication passage (5) in series with the first valve (7), and is configured so as to be able to open and close the communication passage (5).

Description

液化ガス貯蔵タンクliquefied gas storage tank
 本開示は、液化ガス貯蔵タンクに関する。 The present disclosure relates to liquefied gas storage tanks.
 従来、液化ガス、例えば極低温の液化水素を貯蔵するタンクとして、内槽および外槽を備える二重殻タンクを用いることが提案されている。二重殻タンクでは、液化ガスが貯蔵される内槽の外側に空間(内外槽間空間)を設けることにより、高い断熱性を実現することができる。内外槽間空間は真空層とすることが一般的であるが、真空層とした場合、液化ガスを長期間貯蔵する際の真空度の維持など、実際の運用上管理が難しいことや、外槽に要求される強度レベルが高くなる。そこで、内槽内空間と内外槽間空間とを連通させるなどにより、液化ガスの気化ガスを内外槽間空間に導入することが提案されている(例えば、特許文献1参照)。 Conventionally, it has been proposed to use a double-shell tank that includes an inner tank and an outer tank as a tank for storing liquefied gas, such as cryogenic liquefied hydrogen. In a double-shell tank, high heat insulation can be achieved by providing a space (space between the inner and outer tanks) outside the inner tank in which the liquefied gas is stored. It is common practice to create a vacuum layer between the inner and outer tanks, but if a vacuum layer is used, it is difficult to manage in actual operation, such as maintaining the degree of vacuum when storing liquefied gas for a long period of time, and the space between the outer tank and the outer tank The level of strength required for Therefore, it has been proposed to introduce vaporized gas of liquefied gas into the space between the inner and outer tanks by, for example, making the space within the inner tank communicate with the space between the inner and outer tanks (see, for example, Patent Document 1).
国際公開第2020/202578号International Publication No. 2020/202578
 しかし、内外槽間空間に気化ガスを導入する場合、内外槽間空間の圧力が過度に上昇して内槽内空間の温度における飽和蒸気圧よりも高くなり、内槽壁面付近にてガスの凝縮が発生する可能性がある。これを防止するため、内槽内空間から内外槽間空間への気化ガスの過度な流入を防止する必要がある。 However, when introducing vaporized gas into the space between the inner and outer tanks, the pressure in the space between the outer and outer tanks increases excessively and becomes higher than the saturated vapor pressure at the temperature of the inner space, causing gas to condense near the inner tank wall. may occur. In order to prevent this, it is necessary to prevent excessive inflow of vaporized gas from the space within the inner tank to the space between the outer and outer tanks.
 本開示の目的は、上記の課題を解決するために、二重構造を有する液化ガス貯蔵タンクにおいて、内槽内空間と内外槽間空間との間の連通を、必要に応じて確実に遮断することにある。 In order to solve the above-mentioned problems, an object of the present disclosure is to reliably block communication between the internal tank space and the space between the inner and outer tanks as necessary in a liquefied gas storage tank having a double structure. There is a particular thing.
 上記目的を達成するために、本開示に係る液化ガス貯蔵タンクは、
 液化ガスを貯蔵するタンクであって、
 前記液化ガスの貯蔵空間を内方に形成する内槽と、前記内槽を覆い、前記内槽との間に、前記液化ガスが充填される断熱層を形成する外槽とを備えるタンク本体と、
 内槽内空間と内外槽間空間とを連通させる連通路と、
 前記連通路に設けられて、前記内外槽間空間の圧力が、所定値まで低下した場合、または前記内槽内空間の圧力との差が所定値となるまで低下した場合に開くように設定された第1弁と、
 前記連通路に前記第1弁と直列に設けられて、前記連通路を開閉可能に構成された第2弁と、
を備える。
In order to achieve the above object, the liquefied gas storage tank according to the present disclosure includes:
A tank for storing liquefied gas,
A tank body comprising: an inner tank that forms a storage space for the liquefied gas inward; and an outer tank that covers the inner tank and forms a heat insulating layer filled with the liquefied gas between the inner tank and the inner tank; ,
a communication path that communicates the space within the inner tank and the space between the inner and outer tanks;
is provided in the communication passage and is set to open when the pressure in the space between the inner and outer tanks decreases to a predetermined value, or when the difference between the pressure in the inner tank space and the pressure in the inner tank space decreases to a predetermined value. and the first valve,
a second valve provided in the communication passage in series with the first valve and configured to be able to open and close the communication passage;
Equipped with.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本開示に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本開示に含まれる。 Any combination of at least two features disclosed in the claims and/or the specification and/or drawings is included in the present disclosure. In particular, any combination of two or more of each of the following claims is included in the present disclosure.
 本開示は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本開示の範囲を定めるために利用されるべきものではない。本開示の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本開示の一実施形態に係る液化ガス貯蔵タンクの一例を示す模式図である。 図1の液化ガス貯蔵タンクの一部を拡大して、当該タンクの一使用形態を示す模式図である。 図1の液化ガス貯蔵タンクの一部を拡大して、当該タンクの他の使用形態を示す模式図である。
The present disclosure will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are merely for illustration and explanation and should not be used to define the scope of the present disclosure. The scope of the disclosure is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
FIG. 1 is a schematic diagram showing an example of a liquefied gas storage tank according to an embodiment of the present disclosure. FIG. 2 is an enlarged schematic diagram of a part of the liquefied gas storage tank of FIG. 1 illustrating one mode of use of the tank. FIG. 2 is an enlarged schematic view of a part of the liquefied gas storage tank of FIG. 1 to show another mode of use of the tank.
 以下、本開示の好ましい実施形態について図面を参照しながら説明する。図1に本開示の一実施形態に係る液化ガス貯蔵タンク(以下、単に「タンク」という。)1を示す。このタンク1は、液化ガスLGを貯蔵する部分であるタンク本体3と、後述する連通路5、第1弁7および第2弁9を備えている。 Hereinafter, preferred embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 shows a liquefied gas storage tank (hereinafter simply referred to as "tank") 1 according to an embodiment of the present disclosure. This tank 1 includes a tank body 3 that stores liquefied gas LG, a communication passage 5, a first valve 7, and a second valve 9, which will be described later.
 図示の例では、タンク1は、例えば液化ガス貯蔵船のような船舶Sに設置されている。なお、本明細書において「液化ガス貯蔵船」とは、液化ガスLGを貯蔵する機能を有する船舶を指す。本実施形態における液化ガス貯蔵船は液化ガス運搬船である。液化ガス運搬船以外にも、例えば液化ガス燃料船や、液化ガスを他の船舶に供給するバンカリング船等が液化ガス貯蔵船に含まれる。もっとも、本開示に係るタンク1は、船舶以外の液化ガス貯蔵設備、例えば地上の液化ガス貯蔵設備や、液化ガスを利用するプラントに設置されてもよい。 In the illustrated example, the tank 1 is installed on a ship S, such as a liquefied gas storage ship. Note that in this specification, the term "liquefied gas storage ship" refers to a ship that has the function of storing liquefied gas LG. The liquefied gas storage ship in this embodiment is a liquefied gas carrier. In addition to liquefied gas carriers, liquefied gas storage ships include, for example, liquefied gas fuel ships, bunkering ships that supply liquefied gas to other ships, and the like. However, the tank 1 according to the present disclosure may be installed in a liquefied gas storage facility other than a ship, such as a ground liquefied gas storage facility or a plant that uses liquefied gas.
 タンク1に貯蔵される液化ガスLGは、例えば、液化アンモニア(LNH、約-33℃)、液化石油ガス(LPG、約-45℃)、液化エチレンガス(LEG、約-100℃)、液化天然ガス(LNG、約-160℃)、液化水素(LH2、約-250℃)、液化ヘリウム(LHe、約-270℃)である。本実施形態では、タンク1に液化水素が貯蔵される。 The liquefied gas LG stored in the tank 1 is, for example, liquefied ammonia (LNH 3 , about -33°C), liquefied petroleum gas (LPG, about -45°C), liquefied ethylene gas (LEG, about -100°C), liquefied These are natural gas (LNG, approximately -160°C), liquefied hydrogen (LH 2 , approximately -250°C), and liquefied helium (LHe, approximately -270°C). In this embodiment, liquefied hydrogen is stored in the tank 1.
 タンク1は、内槽11および外槽13を有する二重殻タンクとして構成されている。具体的には、タンク本体3は、液化ガスLGの貯蔵空間(以下、「内槽内空間」と呼ぶ。)15を内方に形成する内槽11と、内槽11を覆い、内槽11との間に、液化ガスLGの気化されたガスが充填される空間(以下、「内外槽間空間」と呼ぶ。)17を形成する外槽13とを備える。内槽11および外槽13は、それぞれ、その外周面が防熱層によって覆われていてもよい。このタンク1は、断熱層である内外槽間空間17に液化ガスの気化ガスを封入した状態で定常運用される。 The tank 1 is configured as a double shell tank having an inner tank 11 and an outer tank 13. Specifically, the tank body 3 includes an inner tank 11 that forms a storage space (hereinafter referred to as "inner tank space") 15 for liquefied gas LG inwardly, and an inner tank 11 that covers the inner tank 11. and an outer tank 13 that forms a space (hereinafter referred to as "space between inner and outer tanks") 17 filled with vaporized gas of the liquefied gas LG. The outer peripheral surfaces of the inner tank 11 and the outer tank 13 may each be covered with a heat-insulating layer. This tank 1 is normally operated in a state in which vaporized gas of liquefied gas is sealed in a space 17 between the inner and outer tanks, which is a heat insulating layer.
 本実施形態では、タンク本体3は、液化ガスLGを収容する部分である本体部3aと、本体部3aから上方に突出するドーム部3bとを有している。この例では、本体部3aは、船舶Sの船体21の一部であるタンクカバー23によって覆われている。タンクカバー23の天壁には、ドーム部3bを挿通させる開口が形成されている。タンクカバー23の開口を通って、ドーム部3bがタンクカバー23の上方に突出、つまり露出している。 In the present embodiment, the tank body 3 has a body portion 3a that is a portion that accommodates the liquefied gas LG, and a dome portion 3b that projects upward from the body portion 3a. In this example, the main body portion 3a is covered by a tank cover 23 that is a part of the hull 21 of the ship S. The top wall of the tank cover 23 is formed with an opening through which the dome portion 3b is inserted. Through the opening of the tank cover 23, the dome portion 3b protrudes above the tank cover 23, that is, is exposed.
 ドーム部3bは、ほぼ鉛直方向に沿って延びる円筒形状の側壁25と、側壁25の上側開口部を閉じる略半球形状の蓋体27とを有している。ドーム部3bには、タンク1に対して液化ガスLGの輸送(積み下ろし)を行なうための複数の輸送管29といった各種の配管が取り付けられている。なお、同図では、簡略化のため、1つの輸送管29のみを示している。本実施形態では、輸送管29はドーム部3bの蓋体27をほぼ鉛直方向に貫通している。 The dome portion 3b has a cylindrical side wall 25 extending substantially vertically, and a substantially hemispherical lid 27 that closes the upper opening of the side wall 25. Various types of piping such as a plurality of transport pipes 29 for transporting (loading and unloading) the liquefied gas LG to and from the tank 1 are attached to the dome portion 3b. In addition, in the figure, only one transport pipe 29 is shown for simplification. In this embodiment, the transport pipe 29 penetrates the lid 27 of the dome portion 3b in a substantially vertical direction.
 なお、同図には、ドーム部3bを貫通してタンク1の外部へ延設された配管の一例として、上記の輸送管29を示しているが、このような配管には、気化したガスの輸送管等、各種の配管が含まれる。 The figure shows the above-mentioned transport pipe 29 as an example of a pipe extending to the outside of the tank 1 through the dome part 3b, but such a pipe does not carry vaporized gas. Includes various types of piping such as transportation pipes.
 本実施形態では、内槽内空間15と内外槽間空間17とを連通させる連通路5が設けられている。連通路5を介して、内槽内空間15で生じた液化ガスLGの気化ガスBGが適宜のタイミングで内外槽間空間17に導入される。なお、図示は省略するが、外部の液化ガス源から内外槽間空間17へ気化ガスBGを導入するガス導入路が連通路5に接続して、または連通路5と独立に設けられていてもよい。 In this embodiment, a communication path 5 is provided that communicates the inner tank space 15 with the inner and outer tank space 17. Via the communication path 5, vaporized gas BG of the liquefied gas LG generated in the inner tank space 15 is introduced into the inner and outer tank space 17 at appropriate timing. Although not shown, the gas introduction path for introducing the vaporized gas BG from an external liquefied gas source into the space 17 between the inner and outer tanks may be connected to the communication path 5 or provided independently from the communication path 5. good.
 本実施形態では、連通路5上に、内外槽間空間17の圧力が、所定値(以下、「第1所定圧力値」という。)まで低下した場合、または内槽内区間15の圧力との差が所定値(以下、「第1所定圧力差」という。)となるまで低下した場合に開くように設定された第1弁7が設けられている。具体的には、図示の例では、第1弁7として、前記第1所定圧力差以上で自動的に開作動するように設定された安全弁が使用されている。第1弁7は、第1所定圧力差に達したことにより開作動した後、内外槽間空間17の圧力が内槽内空間15の圧力に対して所定の圧力差(以下、「第2所定圧力差」)以下になるまで上昇した場合に閉じるように構成されている。 In this embodiment, when the pressure in the space 17 between the inner and outer tanks decreases to a predetermined value (hereinafter referred to as "first predetermined pressure value") on the communication path 5, or when the pressure in the inner and outer tank section 15 decreases, A first valve 7 is provided that is set to open when the difference decreases to a predetermined value (hereinafter referred to as "first predetermined pressure difference"). Specifically, in the illustrated example, the first valve 7 is a safety valve that is set to automatically open when the first predetermined pressure difference is exceeded. The first valve 7 opens when a first predetermined pressure difference is reached, and then the pressure in the space 17 between the inner and outer tanks reaches a predetermined pressure difference (hereinafter referred to as a "second predetermined pressure difference") with respect to the pressure in the inner tank space 15. It is configured to close when the pressure rises to less than the pressure difference (').
 本実施形態では、さらに、連通路5上に、第1弁7とは別個の第2弁9が、第1弁7と直列に設けられている。第2弁9は、連通路5を開閉可能な弁として構成されている。第2弁9は、第1弁7が開作動した後、内槽内空間15の圧力が内外槽間空間17の圧力に対して第2所定圧力差以下まで低下したにもかかわらず、第1弁7が閉じなかった場合に、連通路5を閉じる目的で設けられている。 In this embodiment, a second valve 9 separate from the first valve 7 is further provided on the communication path 5 in series with the first valve 7. The second valve 9 is configured as a valve that can open and close the communication passage 5. The second valve 9 is operated to open the first valve 7 even though the pressure in the inner tank space 15 has decreased to a second predetermined pressure difference or less with respect to the pressure in the space 17 between the inner and outer tanks after the first valve 7 is opened. It is provided for the purpose of closing the communicating path 5 when the valve 7 fails to close.
 具体的には、本実施形態では、第2弁9は、遠隔操作弁として構成されている。遠隔操作弁は、制御信号によって電気的に開閉される弁であればどのような方式の弁であってもよく、例えば電動弁、電磁弁、ダイヤフラム操作弁である。第2弁9として遠隔操作弁を使用することにより、第1弁7が閉じるべき場合に閉じられないことを検知してから、短時間で第2弁9を閉じることができる。もっとも、第2弁9は遠隔操作弁でなくてよい。すなわち、第2弁9は直接操作することにより閉じることのできる弁であってよい。 Specifically, in this embodiment, the second valve 9 is configured as a remote control valve. The remote-controlled valve may be any type of valve as long as it is electrically opened and closed by a control signal, such as an electric valve, a solenoid valve, or a diaphragm-operated valve. By using a remote control valve as the second valve 9, the second valve 9 can be closed in a short time after detecting that the first valve 7 cannot be closed when it should be closed. However, the second valve 9 does not have to be a remote control valve. That is, the second valve 9 may be a valve that can be closed by direct operation.
 また、この例では、第2弁9は、第1弁7の一次側に設けられている。このように構成することにより、第1弁7の上流側で第2弁9を閉じることになるので、より確実に内槽内空間15と内外槽間空間17との連通を遮断することができる。もっとも、第2弁9は第1弁7の二次側に設けられていてもよい。また、図示の例では第2弁9が1つのみ設けられているが、第2弁9は複数設けられていてもよい。その場合、第2弁9は第1弁7の一次側と二次側の各々に設けられていてもよい。また、連通路5,第1弁7は複数設けられていてもよい。 Furthermore, in this example, the second valve 9 is provided on the primary side of the first valve 7. With this configuration, the second valve 9 is closed on the upstream side of the first valve 7, so communication between the inner tank space 15 and the inner and outer tank space 17 can be more reliably blocked. . However, the second valve 9 may be provided on the secondary side of the first valve 7. Further, in the illustrated example, only one second valve 9 is provided, but a plurality of second valves 9 may be provided. In that case, the second valve 9 may be provided on each of the primary side and the secondary side of the first valve 7. Further, a plurality of communication passages 5 and first valves 7 may be provided.
 本実施形態では、内外槽間空間17のガスをタンク1の外部へ排出するガス排出路31が設けられている。ガス排出路31には、所定の圧力以上で開くように設定された第3弁33が設けられている。第3弁33は、所定の圧力以上で自動的に開く安全弁として構成されている。ガス排出路31に第3弁33を設けることにより、内外槽間空間17の圧力が過大となることを防止できる。もっとも、第3弁33は省略してもよい。 In this embodiment, a gas discharge path 31 is provided to discharge the gas in the space 17 between the inner and outer tanks to the outside of the tank 1. The gas discharge path 31 is provided with a third valve 33 that is set to open at a predetermined pressure or higher. The third valve 33 is configured as a safety valve that automatically opens at a predetermined pressure or higher. By providing the third valve 33 in the gas discharge path 31, it is possible to prevent the pressure in the space 17 between the inner and outer tanks from becoming excessive. However, the third valve 33 may be omitted.
 また、図1に示すように、本実施形態では、タンク1は、内槽内空間15の圧力を検知する内槽内空間圧力検知装置35、内外槽間空間17の圧力を検知する内外槽間空間圧力検知装置37、内槽内空間15の温度を検知する内槽内空間温度検知装置39、および内外槽間空間17の温度を検知する内外槽間空間温度検知装置41を備えている。これらの検知装置は、検知対象の物理量(圧力、温度)を検知するセンサ素子、取得した検出量に対して信号変換処理、演算処理等必要な処理を行う各種回路、これらの処理に必要な情報を格納するためのメモリ、電池等の電源素子または外部から電源供給を受けるための電源回路、出力信号を有線または無線で外部へ送信するための送信回路等を備えている。なお、タンク1には、これらの検知装置以外に、タンク1の運用上必要な各種検知装置が設けられていてよい。また、上記で例示した検知装置35,37,39,41を設けることは必須ではなく、これらのうちタンク1の運用上必要なもののみが設けられていてよい。 In addition, as shown in FIG. 1, in this embodiment, the tank 1 includes an inner tank space pressure detection device 35 that detects the pressure in the inner tank space 15, and an inner tank space pressure detection device 35 that detects the pressure in the space 17 between the inner tank and the outer tank. It is provided with a space pressure detection device 37, an inner tank space temperature detection device 39 that detects the temperature of the inner tank space 15, and an inner and outer tank space temperature sensor 41 that detects the temperature of the space 17 between the inner and outer tanks. These detection devices consist of a sensor element that detects the physical quantity (pressure, temperature) to be detected, various circuits that perform necessary processing such as signal conversion processing and arithmetic processing on the acquired detected quantity, and information necessary for these processing. The device is equipped with a memory for storing the data, a power source circuit such as a power supply element such as a battery or a power supply circuit for receiving power supply from the outside, a transmission circuit for transmitting the output signal to the outside by wire or wirelessly, and the like. Note that, in addition to these detection devices, the tank 1 may be provided with various detection devices necessary for the operation of the tank 1. Furthermore, it is not essential to provide the detection devices 35, 37, 39, and 41 exemplified above, and only those necessary for the operation of the tank 1 may be provided.
 第2弁9を設けたことにより、図2Aに示すように第1弁7が開作動した後、内槽内空間15の気化ガスBGが内外槽間空間17に流入して内外槽間空間17の圧力が内槽内空間15の圧力に対して第2所定圧力差以下まで上昇し、本来閉じるべきであるにもかかわらず閉じない場合や、手動で閉じようとしても閉じることができない場合等、連通路5が開かれた状態が続いた場合に、図2Bに示すように第2弁9を用いて連通路5を閉じ、内外槽間空間17の圧力が所定の運用圧力を超えて過度に上昇することを防止できる。 By providing the second valve 9, after the first valve 7 is opened as shown in FIG. When the pressure of the inner tank increases to a second predetermined pressure difference or less with respect to the pressure of the inner tank space 15 and the inner tank does not close even though it should be closed, or when it cannot close even if you try to close it manually, etc. If the communication passage 5 remains open, the second valve 9 is used to close the communication passage 5 as shown in FIG. 2B, and the pressure in the space 17 between the inner and outer tanks exceeds the predetermined operating pressure. It can be prevented from rising.
 内外槽間空間17の圧力が過度に上昇した場合、内外槽間空間17の圧力が、内槽内空間15の温度における飽和蒸気圧よりも高くなり、内外槽間空間17における内槽11の壁面付近でガスの凝縮が発生する可能性がある。その場合、内外槽間空間17の断熱性能の低下や、外槽13の温度低下による外槽13の周囲のガスの凝縮といった現象が生じるおそれがある。また、本実施形態のように内外槽間空間17のガス排出路31に第3弁33が設けられている場合には、図2Aに示すように連通路5が開かれた状態が続いた場合、内外槽間空間17の圧力が第3弁33の作動圧力に達し、第3弁33を介して気化ガスBGが外部へ放出され続ける可能性がある。第2弁9を用いて連通路5を閉じることにより、図2Bに示すように、このような状況を回避できる。 When the pressure in the space 17 between the inner and outer tanks increases excessively, the pressure in the space 17 between the outer and outer tanks becomes higher than the saturated vapor pressure at the temperature of the space 15 in the inner tank, and the wall surface of the inner tank 11 in the space 17 between the inner and outer tanks Gas condensation may occur nearby. In that case, phenomena such as a decrease in the heat insulation performance of the space 17 between the inner and outer tanks and condensation of gas around the outer tank 13 due to a decrease in the temperature of the outer tank 13 may occur. Further, in the case where the third valve 33 is provided in the gas exhaust path 31 of the space 17 between the inner and outer tanks as in this embodiment, if the communication path 5 remains open as shown in FIG. 2A, There is a possibility that the pressure in the space 17 between the inner and outer tanks reaches the operating pressure of the third valve 33, and the vaporized gas BG continues to be released to the outside via the third valve 33. By closing the communication path 5 using the second valve 9, such a situation can be avoided, as shown in FIG. 2B.
 本実施形態では、第1弁7および第2弁9が、ドーム部3bの基端3ba、つまり本体部3aとドーム部3bの境界部分よりも上方に位置している。より詳細には、本実施形態では、第1弁7および第2弁9が、ドーム部3bの側方に位置している。 In this embodiment, the first valve 7 and the second valve 9 are located above the base end 3ba of the dome portion 3b, that is, the boundary between the main body portion 3a and the dome portion 3b. More specifically, in this embodiment, the first valve 7 and the second valve 9 are located on the sides of the dome portion 3b.
 具体的には、この例では、連通路5を形成する連通管の一部が、ドーム部3bにおけるタンクカバー23の上方に突出する部分の側壁25から、ドーム部3bの外部へ露出している。この、ドーム部3bの側方に位置する連通路5の露出部分に、第1弁7および第2弁9が設けられている。上述したように、液化ガスLGの輸送管29は、ドーム部3bの蓋体27から上方に貫通している。これは、限られたドーム部3bのスペースに配管および各種弁といった配管の付属部品を効率的に配置すること、および、タンク1の積荷である液化ガスLGを要求される荷役時間内に移送するために必要な管径を有する配管を配置し、かつ配管の構造をできるだけ簡素化することが好ましいことによる。この場合に、連通路5および連通路5に設けられる各種弁をドーム部3bの側方に配置することにより、タンク1上部の配管類を効率的に配置することができる。第1弁7および第2弁9をこのように配置することは必須ではないが、第1弁7および第2弁9の少なくとも一方が、ドーム部3bの側方に位置していることが好ましい。 Specifically, in this example, a portion of the communication pipe forming the communication path 5 is exposed to the outside of the dome portion 3b from the side wall 25 of the portion of the dome portion 3b that projects upwardly of the tank cover 23. . A first valve 7 and a second valve 9 are provided in the exposed portion of the communication passage 5 located on the side of the dome portion 3b. As described above, the liquefied gas LG transport pipe 29 penetrates upward from the lid 27 of the dome portion 3b. This is to efficiently arrange piping and piping accessories such as various valves in the limited space of the dome part 3b, and to transfer the liquefied gas LG, which is the cargo of the tank 1, within the required cargo handling time. This is because it is preferable to arrange piping having a necessary pipe diameter and to simplify the structure of the piping as much as possible. In this case, by arranging the communication passage 5 and the various valves provided in the communication passage 5 on the sides of the dome portion 3b, the piping above the tank 1 can be efficiently arranged. Although it is not essential to arrange the first valve 7 and the second valve 9 in this way, it is preferable that at least one of the first valve 7 and the second valve 9 is located on the side of the dome portion 3b. .
 なお、第1弁7および第2弁9を設ける位置は上記で説明した例に限定されない。例えば、第1弁7および第2弁9の一方または両方がドーム部3bの上方に位置していてもよいし、ドーム部3bの基端3baより下方に位置していてもよい。 Note that the positions where the first valve 7 and the second valve 9 are provided are not limited to the example described above. For example, one or both of the first valve 7 and the second valve 9 may be located above the dome portion 3b, or may be located below the base end 3ba of the dome portion 3b.
 本実施形態では、さらに、第3弁33も、タンク1のドーム部3bの基端3baよりも上方、具体的にはドーム部3bの側方に位置している。もっとも第3弁33の配置もこの例に限定されない。なお、輸送管29の配置は図示した例に限定されない。また、タンク1にドーム部3bを設けることは必須ではない。 In this embodiment, the third valve 33 is also located above the base end 3ba of the dome portion 3b of the tank 1, specifically on the side of the dome portion 3b. However, the arrangement of the third valve 33 is not limited to this example either. Note that the arrangement of the transport pipes 29 is not limited to the illustrated example. Further, it is not essential to provide the dome portion 3b in the tank 1.
 上述した本実施形態に係るタンク1の運用方法では、第1弁7が開いている場合に、内槽内空間15および内外槽間空間17の少なくとも一方の圧力または温度に基づいて第2弁9を閉じる。具体的には、第1弁7が設定どおりに閉じていないことを、例えば、図1に示す内槽内空間圧力検知装置35および内外槽間空間圧力検知装置37のいずれか一方または両方で検知した圧力値に基づいて判断し、第2弁9を閉じることができる。圧力検知の代わりに、またはこれに追加して、内槽内空間温度検知装置39および内外槽間空間温度検知装置41のいずれか一方または両方で検知した温度値に基づいて第1弁7が閉じられていなことを判断し、第2弁9を閉じてもよい。このように、内槽内空間15および/または内外槽間空間17の圧力および温度の少なくとも一方に基づいて判断することによって、適切なタイミングで第2弁を閉じることができる。 In the method of operating the tank 1 according to the present embodiment described above, when the first valve 7 is open, the second valve 9 is opened based on the pressure or temperature of at least one of the inner tank space 15 and the space 17 between the inner and outer tanks. Close. Specifically, the fact that the first valve 7 is not closed as set is detected by, for example, one or both of the inner tank space pressure detection device 35 and the inner and outer tank space pressure detection device 37 shown in FIG. The second valve 9 can be closed based on the determined pressure value. Instead of or in addition to pressure detection, the first valve 7 closes based on the temperature value detected by either or both of the inner tank space temperature detection device 39 and the outer and outer tank space temperature detection device 41. The second valve 9 may be closed after determining that the second valve 9 is not being used. In this way, the second valve can be closed at an appropriate timing by making a judgment based on at least one of the pressure and temperature of the inner tank space 15 and/or the outer and outer tank space 17.
 なお、図1には、タンク1の一例として、船体21とは独立に形成される独立型の二重殻タンク1を示したが、タンク1の構成はこの例に限定されず、いかなるタイプの多重防熱構造タンク1であってよい。例えば、タンク1は、船体21と一体に形成されるタイプのタンク1であってよい。また、タンク1の多重防熱構造は、三重以上の構造であってよい。 Although FIG. 1 shows an independent double-shell tank 1 formed independently of the hull 21 as an example of the tank 1, the structure of the tank 1 is not limited to this example, and may be of any type. The tank 1 may have a multiple heat-insulating structure. For example, the tank 1 may be of a type that is formed integrally with the hull 21. Moreover, the multiple heat insulation structure of the tank 1 may be a three-layer or more structure.
 以上説明した本実施形態に係る液化ガス貯蔵タンク1によれば、連通路5に、第1弁7に加えて、第1弁7が閉じない場合に閉作動可能な第2弁9が設けられているので、第1弁7が開作動した後、内外槽間空間17の圧力が内槽内空間15の圧力に対して第2所定圧力差以下になるまで上昇し、本来閉じるべきであるにもかかわらず閉じない場合や、手動で閉じようとしても閉じることができない場合等、連通路5が開かれた状態が続いた場合に、第2弁9を用いて連通路5を閉じ、内外槽間空間17の圧力が所定の運用圧力を超えて過度に上昇することを防止できる。 According to the liquefied gas storage tank 1 according to the present embodiment described above, in addition to the first valve 7, the second valve 9, which can be closed when the first valve 7 does not close, is provided in the communication path 5. Therefore, after the first valve 7 is opened, the pressure in the space 17 between the inner and outer tanks increases until it becomes equal to or less than the second predetermined pressure difference with respect to the pressure in the inner tank space 15, and the valve 7, which should normally be closed, increases. If the communication passage 5 remains open, for example, if it does not close despite the above operation, or if it cannot be closed even if you try to close it manually, the second valve 9 is used to close the communication passage 5, and the inner and outer tanks are closed. It is possible to prevent the pressure in the interspace 17 from rising excessively beyond a predetermined operating pressure.
 本実施形態に係る液化ガス貯蔵タンク1において、第2弁9が遠隔操作弁であってよい。この構成により、第1弁7が閉じるべき場合に閉じられないことを検知してから短時間で第2弁9を閉じることができる。 In the liquefied gas storage tank 1 according to the present embodiment, the second valve 9 may be a remote control valve. With this configuration, the second valve 9 can be closed in a short time after detecting that the first valve 7 cannot be closed when it should be closed.
 本実施形態に係る液化ガス貯蔵タンク1において、第2弁9が、第1弁7の一次側に設けられていてよい。この構成により、第1弁7の上流側で第2弁9を閉じることになるので、より確実に内槽内空間15と内外槽間空間17との連通を遮断することができる。 In the liquefied gas storage tank 1 according to the present embodiment, the second valve 9 may be provided on the primary side of the first valve 7. With this configuration, the second valve 9 is closed on the upstream side of the first valve 7, so that communication between the inner tank space 15 and the inner and outer tank space 17 can be more reliably shut off.
 本実施形態に係る液化ガス貯蔵タンク1において、タンク本体3が、前記液化ガスLGを収容する部分である本体部3aと、前記本体部3aから上方に突出するドーム部3bとを有し、第1弁7および第2弁9が、ドーム部3bの基端3baよりも上方に位置していてもよい。さらに、第1弁7および第2弁9の少なくとも一方が、ドーム部3bの側方に位置していてもよい。この構成により、タンク1に設けられるガス輸送用の配管など、他の配管の配置も含めて効率的にタンク1周りの空間を利用することができる。 In the liquefied gas storage tank 1 according to the present embodiment, the tank body 3 has a main body part 3a that is a part that accommodates the liquefied gas LG, and a dome part 3b that projects upward from the main body part 3a. The first valve 7 and the second valve 9 may be located above the base end 3ba of the dome portion 3b. Furthermore, at least one of the first valve 7 and the second valve 9 may be located on the side of the dome portion 3b. With this configuration, the space around the tank 1 can be efficiently utilized, including the arrangement of other piping, such as gas transportation piping provided in the tank 1.
 本実施形態に係る液化ガス貯蔵タンク1において、内外槽間空間17のガスを外部へ排出するガス排出路31と、ガス排出路31に設けられて、内外槽間空間17の圧力が所定値以上になった場合に開くように設定された第3弁33とを備えていてもよい。この構成により、内外槽間空間17の圧力が過大となることをより確実に防止できる。 In the liquefied gas storage tank 1 according to the present embodiment, a gas exhaust path 31 is provided for discharging the gas in the space 17 between the inner and outer tanks to the outside, and the gas exhaust path 31 is provided so that the pressure in the space 17 between the inner and outer tanks is equal to or higher than a predetermined value. It may also include a third valve 33 that is set to open when the With this configuration, it is possible to more reliably prevent the pressure in the space 17 between the inner and outer tanks from becoming excessive.
 本実施形態に係る液化ガス貯蔵タンク1の運用方法は、上記の液化ガス貯蔵タンク1を運用する方法であって、第1弁7が開いている場合に、内槽内空間15および内外槽間空間17の少なくとも一方の空間の圧力および温度の少なくとも一方に基づいて第2弁9を閉じることを含む。この構成によれば、内槽内空間15および/または内外槽間空間17の圧力および温度の少なくとも一方に基づいて判断することによって、適切なタイミングで第2弁を閉じることができる。 The method of operating the liquefied gas storage tank 1 according to the present embodiment is a method of operating the liquefied gas storage tank 1 described above, in which when the first valve 7 is open, the inner tank space 15 and the space between the inner and outer tanks are This includes closing the second valve 9 based on at least one of the pressure and temperature of at least one of the spaces 17. According to this configuration, the second valve can be closed at an appropriate timing by making a judgment based on at least one of the pressure and temperature of the inner tank space 15 and/or the outer and outer tank space 17.
 以上のとおり、図面を参照しながら本開示の好適な実施形態を説明したが、本開示の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本開示の範囲内に含まれる。 As described above, the preferred embodiments of the present disclosure have been described with reference to the drawings, but various additions, changes, or deletions can be made without departing from the spirit of the present disclosure. Accordingly, such are also included within the scope of this disclosure.
1 液化ガス貯蔵タンク
3 タンク本体
3a 本体部
3b ドーム部
3ba ドーム部の基端
5 連通路
7 第1弁
9 第2弁
11 内槽
13 外槽
15 内槽内空間
17 内外槽間空間
BG 気化ガス
LG 液化ガス
1 Liquefied gas storage tank 3 Tank body 3a Main body part 3b Dome part 3ba Base end of dome part 5 Communication passage 7 First valve 9 Second valve 11 Inner tank 13 Outer tank 15 Inner tank inner space 17 Space between inner and outer tanks BG Vaporized gas LG liquefied gas

Claims (7)

  1.  液化ガスを貯蔵するタンクであって、
     前記液化ガスの貯蔵空間を内方に形成する内槽と、前記内槽を覆い、前記内槽との間に、前記液化ガスの気化されたガスが充填される空間を形成する外槽とを備えるタンク本体と、
     内槽内空間と内外槽間空間とを連通させる連通路と、
     前記連通路に設けられて、前記内外槽間空間の圧力が、所定値まで低下した場合、または前記内槽内空間の圧力との差が所定値となるまで低下した場合に開くように設定された第1弁と、
     前記連通路に前記第1弁と直列に設けられて、前記連通路を開閉可能に構成された第2弁と、
    を備える液化ガス貯蔵タンク。
    A tank for storing liquefied gas,
    an inner tank that forms a storage space for the liquefied gas inward; and an outer tank that covers the inner tank and forms a space between the inner tank and which is filled with vaporized gas of the liquefied gas. A tank body comprising;
    a communication path that communicates the space within the inner tank and the space between the inner and outer tanks;
    is provided in the communication passage and is set to open when the pressure in the space between the inner and outer tanks decreases to a predetermined value, or when the difference between the pressure in the inner tank space and the pressure in the inner tank space decreases to a predetermined value. and the first valve,
    a second valve provided in the communication passage in series with the first valve and configured to be able to open and close the communication passage;
    A liquefied gas storage tank comprising:
  2.  請求項1に記載の液化ガス貯蔵タンクにおいて、前記第2弁が遠隔操作弁である、液化ガス貯蔵タンク。 The liquefied gas storage tank according to claim 1, wherein the second valve is a remote control valve.
  3.  請求項1または2に記載の液化ガス貯蔵タンクにおいて、前記第2弁が、前記第1弁の一次側に設けられている、液化ガス貯蔵タンク。 The liquefied gas storage tank according to claim 1 or 2, wherein the second valve is provided on the primary side of the first valve.
  4.  請求項1から3のいずれか一項に記載の液化ガス貯蔵タンクにおいて、
     前記タンク本体が、前記液化ガスを収容する部分である本体部と、前記本体部から上方に突出するドーム部とを有し、
     前記第1弁および前記第2弁が、前記ドーム部の基端よりも上方に位置している、
    液化ガス貯蔵タンク。
    The liquefied gas storage tank according to any one of claims 1 to 3,
    The tank body has a main body portion that accommodates the liquefied gas, and a dome portion that projects upward from the main body portion,
    the first valve and the second valve are located above a base end of the dome portion;
    Liquefied gas storage tank.
  5.  請求項4に記載の液化ガス貯蔵タンクにおいて、
     前記第1弁および前記第2弁の少なくとも一方が、前記ドーム部の側方に位置している、
    液化ガス貯蔵タンク。
    The liquefied gas storage tank according to claim 4,
    at least one of the first valve and the second valve is located on a side of the dome portion;
    Liquefied gas storage tank.
  6.  請求項1から5のいずれか一項に記載の液化ガス貯蔵タンクにおいて、さらに、
     前記内外槽間空間のガスを外部へ排出するガス排出路と、
     前記ガス排出路に設けられて、前記内外槽間空間の圧力が所定値以上になった場合に開くように設定された第3弁と、
    を備える、液化ガス貯蔵タンク。
    The liquefied gas storage tank according to any one of claims 1 to 5, further comprising:
    a gas discharge path for discharging the gas in the space between the inner and outer tanks to the outside;
    a third valve provided in the gas discharge path and configured to open when the pressure in the space between the inner and outer tanks exceeds a predetermined value;
    A liquefied gas storage tank.
  7.  請求項1から6のいずれか一項に記載の液化ガス貯蔵タンクを運用する方法であって、
     前記第1弁が開いている場合に、前記内槽内空間および前記内外槽間空間の少なくとも一方の空間の圧力および温度の少なくとも一方に基づいて前記第2弁を閉じることを含む、
    液化ガス貯蔵タンクの運用方法。
    A method of operating a liquefied gas storage tank according to any one of claims 1 to 6, comprising:
    closing the second valve based on at least one of the pressure and temperature of at least one of the inner tank space and the inner and outer tank space when the first valve is open;
    How to operate a liquefied gas storage tank.
PCT/JP2022/017703 2022-04-13 2022-04-13 Liquefied gas storage tank WO2023199428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017703 WO2023199428A1 (en) 2022-04-13 2022-04-13 Liquefied gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017703 WO2023199428A1 (en) 2022-04-13 2022-04-13 Liquefied gas storage tank

Publications (1)

Publication Number Publication Date
WO2023199428A1 true WO2023199428A1 (en) 2023-10-19

Family

ID=88329256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017703 WO2023199428A1 (en) 2022-04-13 2022-04-13 Liquefied gas storage tank

Country Status (1)

Country Link
WO (1) WO2023199428A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156800A (en) * 1982-03-09 1983-09-17 Jgc Corp Double-shell low-temperature tank
JP2012532302A (en) * 2010-10-22 2012-12-13 大宇造船海洋株式会社 LNG storage container
JP2020012501A (en) * 2018-07-17 2020-01-23 株式会社Ihi Tank gas displacement method and device
JP2020104885A (en) * 2018-12-27 2020-07-09 川崎重工業株式会社 Vacuum double shell tank and pearlite replenishing method for the same
WO2020202578A1 (en) * 2019-04-05 2020-10-08 川崎重工業株式会社 Double-shell tank and liquefied gas carrier
JP2021160619A (en) * 2020-04-01 2021-10-11 川崎重工業株式会社 Ship

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156800A (en) * 1982-03-09 1983-09-17 Jgc Corp Double-shell low-temperature tank
JP2012532302A (en) * 2010-10-22 2012-12-13 大宇造船海洋株式会社 LNG storage container
JP2020012501A (en) * 2018-07-17 2020-01-23 株式会社Ihi Tank gas displacement method and device
JP2020104885A (en) * 2018-12-27 2020-07-09 川崎重工業株式会社 Vacuum double shell tank and pearlite replenishing method for the same
WO2020202578A1 (en) * 2019-04-05 2020-10-08 川崎重工業株式会社 Double-shell tank and liquefied gas carrier
JP2021160619A (en) * 2020-04-01 2021-10-11 川崎重工業株式会社 Ship

Similar Documents

Publication Publication Date Title
KR101788750B1 (en) Offshore structure and it's loading/unloading method, and cool down method of lng storage tank
EP3904196B1 (en) Ship
WO2023199428A1 (en) Liquefied gas storage tank
KR20210089866A (en) Hatch System Of Storage Tank For Ship And Temperature Control Method Of The Same
KR100673148B1 (en) Submarine
CN111356873A (en) Device for inerting a liquefied gas storage tank of a ship for transporting liquefied gas
KR20100099907A (en) Double upper deck for protecting tank dome and ship having the same
KR101637415B1 (en) Pressure control method and system for liquid cargo tank
EP4129815A1 (en) Ship
KR20110007450A (en) A co2 carrying ship
KR102348463B1 (en) Liquefied gas cargo tank and carrier with the cargo tank
KR20200093819A (en) Dome barrier structure of independence type storage tank
KR100952669B1 (en) Pressure regulating apparatus and lng carrier with the pressure regulating apparatus
KR20100003614U (en) Lng storage tank having an anti-sloshing structure
KR20160131471A (en) Pressure control method and system for liquid cargo tank
KR100758394B1 (en) Reliquefaction gas storage system for reliquefaction system of LNG carrier
KR101551797B1 (en) Lng cargocontainment and its insulation capability enhancing method
KR102595975B1 (en) Gas dome structure of pressurized cryogenic storage tank including leakage prevention device
KR200462375Y1 (en) Apparatus for collecting leakage of an independence type storage tank
WO2023182362A1 (en) Method for cooling down liquefied gas storage tank
KR20220000431A (en) Floating structure having hybrid cargo tank
KR101149498B1 (en) Natural gas hydrate container
KR102305885B1 (en) Gas treatment system and ship having the same
WO2023182366A1 (en) Cool-down method for liquefied gas storage tank
KR102480657B1 (en) System for treating leakage liquid for lng cargo tank and vessel including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937407

Country of ref document: EP

Kind code of ref document: A1